
Improved Pseudorandom Generators for AC0 Circuits

Xin Lyu

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-212
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-212.html

December 13, 2024



Copyright © 2024, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
I would like to thank Avishay Tal and Jelani Nelson for their advice. Thanks to
Avishay Tal and Lijie Chen for their comments on an early draft.



Improved Pseudorandom Generators for AC0 Circuits 

by Xin Lyu 

Research Project 

Submitted to the Department of Electrical Engineering and Computer Sciences, 
University of California at Berkeley, in partial satisfaction of the requirements for the 
degree of Master of Science, Plan II. 

Approval for the Report and Comprehensive Examination:

Committee: 

Professor Avishay Tal 
Research Advisor 

(Date) 

* * * * * * *

Professor Jelani Nelson 
Second Reader 

(Date) 

12/9/2024

Avishay Tal
12/11/2024



Improved Pseudorandom Generators for AC0 Circuits

Xin Lyu�

December 9, 2024

Abstract

We show a new PRG construction fooling depth-d, size-m AC
0 circuits within error �, which

has seed length O(logd�1(m) log(m/�) log log(m)). Our PRG improves on previous work [TX13,
ST19, Kel21] from various aspects. It has optimal dependence on 1

� and is only one “ log log(m)”
away from the lower bound barrier. For the case of d = 2, the seed length tightly matches the
best-known PRG for CNFs [DETT10, Tal17].

There are two technical ingredients behind our new result; both of them might be of in-
dependent interest. First, we use a partitioning-based approach to construct PRGs based on
restriction lemmas for AC

0. Previous works [TX13, ST19, Kel21] usually built PRGs on the
Ajtai-Wigderson framework [AW89]. Compared with them, the partitioning approach avoids
the extra “log(n)” factor that usually arises from the Ajtai-Wigderson framework, allowing us
to get the almost-tight seed length. The partitioning approach is quite general, and we believe
it can help design PRGs for classes beyond constant-depth circuits.

Second, improving and extending [TX13, ST19, Kel21], we prove a full derandomization of
the powerful multi-switching lemma [Hås14]. We show that one can use a short random seed to
sample a restriction, such that a family of DNFs simultaneously simplifies under the restriction
with high probability. This answers an open question in [Kel21]. Previous derandomizations
were either partial (that is, they pseudorandomly choose variables to restrict, and then fix those
variables to truly-random bits) or had sub-optimal seed length. In our application, having a fully-
derandomized switching lemma is crucial, and the randomness-e⇥ciency of our derandomization
allows us to get an almost-tight seed length.

1 Introduction

Let F be a class of functions. A pseudorandom generator (PRG) for F is an algorithm G : {0, 1}s �
{0, 1}n that maps a short random seed x into a longer string G(x) that appears random to every
distinguisher in F . More specifically, we say that G �-fools F , if for every f ⇥ F , it holds

|Ex�Us
[f(G(x))]⇤ Ex�Un

[f(x)]| ⌅ �.

In this work, we consider the class of bounded-depth Boolean circuits (aka. AC
0 circuits), a circuit

class that has been studied extensively over the past few decades. Constructing PRGs for AC
0

circuits is a central problem that has been studied extensively [AW89, Has89, NW94, Bra10, Tal17,
HS19, TX13, ST19, Kel21].

Quantitatively, let AC
0
d[m(n)] be the class of depth-d, size-m circuits. By the probabilistic

method, one can show that there exists an �-PRG for AC
0
d[m(n)] with seed length O(log(m/�)).

However, finding an explicit PRG with the same seed length seems beyond current technique. In
�
Department of EECS, University of California at Berkeley. Email: xinlyu@berkeley.edu

1



particular, any PRG for AC
0
d[m(n)] with seed length logo(d)(m) would give a non-trivial PRG for

NC
1 and imply that NP ⇧⌃ NC

1 (see, e.g., [GW13, Appendix A]). Also, it was observed in [TX13,
ST19, Kel21] that, if there is an explicit pseudorandom generator with seed length o(logd(m/�))

for AC
0
d[m(n)] , then there is an explicit function that requires AC

0
d-circuits of size 2�(n

1/(d�1)) to
compute, improving Håstad’s lower bound [Has89] that has resisted attack for more than 30 years!

There is an extensive line of work [AW89, Has89, NW94, Bra10, Tal17, HS19, TX13, ST19, Kel21]
aiming to construct better and better PRGs for AC

0. The seminal paper by Ajtai and Wigder-
son [AW89] gave the first non-trivial pseudorandom generator for AC0. Their PRG has seed length
n
o(1) for polynomial-size AC

0 circuits. Later, Nisan constructed PRG for AC
0 circuits by apply-

ing Håstad’s correlation bound [Has89] to the Nisan-Wigderson “hardness-to-randomness” frame-
work [NW94]. Nisan’s PRG has seed length log2d+O(1)(m/�) when �-fooling AC

0
d[m(n)] circuits.

A breakthrough result by Braverman [Bra10] showed that any logO(d2)(m/�)-wise independent
distribution �-fools AC

0
d[m(n)]. Combined with the standard construction of k-wise independent

distribution, this gave a PRG with seed length logO(d2)(m/�). Braverman’s analysis was further
sharpened by Tal [Tal17] and by Harsha and Srinivasan [HS19], bringing the seed length down to
log3d+O(1)(m) log(1/�). The Ajtai-Wigderson technique was revisited by Trevisan and Xue [TX13],
who constructed a PRG with seed length logd+O(1)(m/�). Recently there were two incompara-
ble improvements over the Trevisan-Xue result, one by Servedio and Tan [ST19] with seed length
logd+O(1)(m) · log(1/�) (i.e., it had optimal dependence on 1

⇥ ), and the other by Kelley [Kel21], who
got seed length �O(logd(m/�) log n).

1.1 Our Result

The main result of this work is a new PRG for AC
0
d[m] with improved seed length O(logd⇥1(m) ·

log(m/�) · log logm).

Theorem 1. For every d ⇥ N the following is true. For every m,n ⇥ N such that m ⌥ n and every
� > 0, there is an �-PRG for AC

0
d[m] circuits with seed length O(logd⇥1(m) · log(m/�) · log log(m)).

Our PRG construction improves two incomparable results by Servedio, Tan [ST19] and Kelley
[Kel21]. Its seed length has optimal dependence on 1

⇥ , and is only one “log logm” away from the
barrier of Håstad’s lower bounds [Has89, Hås14]. For the case of d = 2, the seed length becomes
O(log(m) log(m/�) log logm), tightly matching the best-known PRG for CNFs [DETT10, Tal17].
Furthermore, if the log log(m) term in the PRG for CNF can be shaved, then our construction
directly implies PRG for depth-d circuits with seed length O(logd⇥1(m) log(m/�)), tightly matching
current hardness bounds for AC

0 circuits. Interpreted from the “hardness-to-randomness” perspec-
tive [NW94], our result has converted almost all the “hardness” against AC0 into pseudorandomness
for AC

0.

2 Techniques

Our PRG crucially depends on two new technical ingredients. Both of them might be of independent
interest. First, we show a template to construct PRGs based on switching lemmas1. Our template
shares some similarities with the seminal Ajtai-Wigderson framework [AW89] but achieves shorter
seed length. Second, improving and extending results from [TX13, ST19, Kel21], we show a fully-
derandomized multi-switching lemma for small-width DNFs. That is to say, we give an algorithm

1
More generally, just like the Ajtai-Wigderson framework, our template can apply to any “simplify-under-

restriction” lemmas for Boolean devices (e.g., the shrinkage lemma for De-Morgan formulae).

2



that samples a pseudorandom restriction from a short random seed, such that a family of DNFs
simultaneously simplifies under the restriction with high probability. Applying our template with
the new derandomization gives PRGs for AC

0 circuits with the claimed seed length.

Notation We define some useful pieces of notation first. Let f : {0, 1}n � {0, 1} be a function.
Let � ⌃ [n] be a set and x ⇥ {0, 1}n be a string. A set-string pair (�, x) gives a restriction to f .
The restricted function is denoted by f |�[x,⇤] and is defined as f |�[x,⇤](y) = f(�[x, y]), where

�[x, y]i =

⇥
xi i /⇥ �

yi i ⇥ �
.

Intuitively, this means that all but the � part of the input is fixed to the corresponding bits in x,
and f |�[x,⇤] is now only a function of those � bits.

Let � ⌃ [n] be a random variable. We say that � has marginal p, if for each i ⇥ [n] it holds
that Pr[i ⇥ �] = p. We say that �[U, ⇥] is a (truly) p-random restriction, if each i ⇥ [n] is included
in � independently with probability p, and U is a uniformly random n-bit string. We always use
U to denote the uniform distribution over {0, 1}n.

2.1 A Partitioning-Based PRG

Our almost-tight (with respect to the lower bounds barrier) seed length uses on a new approach
to construct PRGs, which we call a partitioning-based approach. Previous best PRGs for AC

0

[ST19, Kel21] were built on the iterative restriction framework, developed by Ajtai and Wigderson
in their seminal work [AW89]. Using a partitioning strategy, we get simpler proof for the correctness
of our PRG with even improved seed length. We believe the partitioning-based approach could also
apply to function classes beyond bounded-depth circuits.

The PRG Template We briefly describe our construction. Suppose we want to design a PRG
for a circuit class Cgoal. What we have is a pseudorandom distribution X ⇥ {0, 1}n for another
related circuit class Csimple. We further assume a derandomized “simplify-under-restriction” lemma:
there is an integer k ⌥ 1, a real p > 0 and a pseudorandom distribution Y ⇥ {0, 1}n satisfying the
following:

• Let � ⌃ [n] be a k-wise independent set with marginal p. Then for every Cgoal circuit C, with
high probability over �,Y, the restricted circuit

C|�[Y,⇤](x) := C(�[Y, x])

is in Csimple.

Then, we choose w = 1
p and let H : [n] � [w] be a k-wise independent hash function. Denote

Hi := H
⇥1(i) for every i ⇥ [w]. Consider the following distribution

B = Y � (X(1)  H1)� (X(2)  H2)� · · ·� (X(w)  Hw).

Here, �, denote bitwise XOR,AND respectively. X
(1)

, . . . ,X
(w) are w independent copies of X.

The idea is, for every i ⇥ [w], if we zoom in and check the set H
⇥1(i), we see that H

⇥1(i) is a
k-wise independent set with marginal 1

w . Let C ⇥ Cgoal be a circuit that we wish to fool. Imagine
that we sample all but the X

(i) part of B first. We then calculate Zi := Y �
⇤

j ⇤=i(X
(j)  Hj) and

3



consider the restricted function C|Hi[Zi,⇤]. We hope that with high probability over H and Zi, the
restricted function is in Csimple, which can be fooled by X

(i). As we will show, this is indeed the case
with one minor technicality2. Therefore, we conclude that C cannot distinguish B from another
distribution where we replace the X

(i) part in B with a uniform random string U
(i). Applying a

hybrid argument allows us to show that C fails to distinguish between B and

B
⌅ = Y � (U(1)  H1)� (U(2)  H2)� · · ·� (U(w)  Hw) ⌦ U,

implying that B fools Cgoal circuits.
Assume the seed length to sample Y,H is short enough so that it would not be the bottleneck to

sample B. Then, the seed length for sampling B is larger than that for X by a factor of w = O(1/p).

Application to AC
0

circuits In the next section, we will show a derandomized simplify-under-
restriction lemma (i.e., the derandomized Håstad’s multi-switching lemma) for AC0 circuits. For now
let us assume the lemma, which works with parameter 1

p = O(logm) and simplifies depth-d circuits
to depth-(d ⇤ 1) circuits with high probability. Plugging the lemma in our template gives a PRG
for AC0

d circuits with seed length longer than AC
0
d⇥1-PRG by O(logm). Currently, the best PRG for

depth-2 circuits (i.e., CNF/DNFs) has seed length O(log(m) log(m/�) log logm) ([DETT10, Tal17]).
Using it as our starting point, for every d ⌥ 3 we construct a PRG for depth-d circuits with seed
length O(logd⇥1(m) log(m/�) log log(m)), as claimed.

Comparison with the Ajtai-Wigderson framework Ajtai and Wigderson were the first to
apply restriction lemmas to construct PRGs [AW89]. They developed the so-called “iterative restric-
tions” framework and gave the first non-trivial PRG for AC

0 circuits. Compared with the Nisan-
Wigderson “hardness-to-randomness” framework [NW94], the Ajtai-Wigderson framework can “open
up” the black box of lower bounds proof, which enables us to construct short PRGs for some delicate
circuit classes (e.g., read-once AC

0 formulae [GMR+12]). For these reasons, the Ajtai-Wigderson
framework has been increasingly popular in recent years, and its applications went far beyond AC

0

[GMR+12, TX13, HLV18, LV20, FK18, MRT19, DMR+21].
It would be instructive to compare our approach with their framework. In the following, we

briefly review their framework first. Let t = ⇥(log n/p) be a parameter. Let X
(1)

, . . . ,X
(t) be t

independent copies of X (the pseudorandom distribution for Csimple). We sample a list of random
sets �1

, . . . ,�t as follows.

• First, sample �1 ⌃ [n] being a k-wise independent p-marginal subset of [n].

• Having observed �1, we sample �2 ⌃ [n] \�1 in a k-wise independent and p-marginal way.

• For every i ⌥ 3. We first observe �1 ↵ · · · ↵�i⇥1 and then sample �i ⌃ [n] \ (
⌅i⇥1

j=1�
j), also

in a k-wise independent and p-marginal way.

In the real implementation, we can first sample �t ⌃ [n] and then subtract
⌅i⇥1

j=1�
j from it.

Given these primitives, the Ajtai-Wigderson PRG outputs

D = (X(1)  �1)� (X(2)  �2)� · · ·� (X(t)  �t).

We observe that with high probability, �1 � · · · � �t forms a partition of [n]. The proof of
correctness is also by a hybrid argument. We observe two major di⇤erences between the Ajtai-
Wigderson framework and our method.

2
Specifically, note that there might be a correlation between H and Zi, because H determines which part of each

X
(j)

gets added to Zi. We show how to handle this issue in Section 2.2. See also Section 4 for the formal proof of

the construction.

4



1. As an advantage, the Ajtai-Wigderson framework does not need to sample Y, and a par-
tial derandomization of the “simplify-under-restriction” lemma su⌅ces for applying Ajtai-
Wigderson. That is, it only requires that the circuit C|�[U,⇤] simplifies with high probability
over a partially-pseudorandom restriction (�,U), where the restriction set � is pseudorandom
and the string U is truly random.
To see why this is true, we look into the analysis of the hybrid argument. For example,
consider comparing the hybrid distribution

D
(0) = (U(1)  �1)� (U(2)  �2)� · · ·� (U(t)  �t),

with
D

(1) = (X(1)  �1)� (U(2)  �2)� · · ·� (U(t)  �t).

For simplicity, let us assume that �1 � · · · � �t always covers [n]. Then we have D
(0) =

�1[U,U
(1)] and D

(1) = �1[U,X
(1)], which enable us to apply the partially-derandomized

restriction lemma.

2. However, when there is a fully-derandomized restriction lemma, using our approach results in
a PRG of shorter seed length. Note that the Ajtai-Wigderson framework partitions the [n]
coordinates into t = ⇥(log n/p) blocks and fills in each block with independent pseudorandom
strings. Since the set �i covers (roughly) p-fraction of currently uncovered coordinates at
each time i ⇥ [t], it is crucial to set t = ⇤(log n/p) so that

⌅t
j=1�

j covers [n] with high
probability. Our construction, on the other hand, samples a k-wise independent hash function
H : [n]� [w], which naturally induces a partition H

⇥1(1)� · · ·�H
⇥1(w). Then we only need

w = O(1/p) independent samples of X to complete the construction. In other words, we save
the log(n) overhead by exploiting the symmetry between blocks in our design.

Concluding remarks The partitioning-based approach is quite general: for every scenario that
Ajtai-Wigderson applies, if we can prove a fully-derandomized “simplify-under-restriction” lemma,
then we may hope to use the new framework to shave the log(n) overhead in seed length. Two more
concrete examples are sparse F2-polynomials [ST19] and small-size De-Morgan formulae [IMZ12,
HHTT21]. However, the log(n) overhead from the Ajtai-Wigderson framework is minor in those
applications. For example, the PRG for S-sparse F2-polynomials has seed length 2O(

⇧
S) [ST19].

Improving a log(n) factor here is not as significant as for AC
0 circuits.

In the case of (arbitrary-order) read-once branching programs, Forbes and Kelley [FK18] have
shown PRGs with seed length O(log3 n) and �O(log2 n) for general and constant-width ROBPs,
respectively. Their PRGs are based on the Ajtai-Wigderson framework, and both of them have
an extra log(n) overhead in seed length due to this reason. It would be exciting to see if one can
use the partitioning-based approach to give improved PRG for these models. If this turns out to
be true, then we may hope for a simpler construction of nearly-logarithmic seed PRG for ROBPs
of all constant width, which would be a major advance in the derandomization of small-space
computation. Currently, we only know a nearly-logarithmic seed PRG for width-3 ROBP [MRT19],
whose proof seems hard to generalize to larger widths.

Partitioning (or called “bucketing” in some literature) is not a new technique in the pseudo-
randomness literature. There are works [LV96, GMR13] using partitioning to design approximate
counting algorithms for DNF. We also note that Meka and Zuckerman [MZ13] have used a similar
strategy to construct PRGs for low-degree polynomial threshold functions (PTFs). Their PRG also
partitions [n] coordinates into small blocks by a bounded-independent hash function and fills in each
block with independent but pseudorandom bits. However, their analysis was completely di⇤erent

5



from ours, nor did they need to add a noise string “Y” to fool any restriction lemma. As far as we
are aware, our work is novel in using partitioning to construct PRGs based on restriction lemmas.

2.2 Derandomized Multi-Switching Lemma

The second technical ingredient behind our result is a fully-derandomized multi-switching lemma
for small-width DNFs.

Håstad’s switching lemma Switching lemmas are perhaps the most powerful and versatile
tools in analyzing low-depth Boolean circuits, with applications ranging from proving lower bounds
[Has89, Hås14, Vio21], constructing pseudorandom generators [AW89, TX13, ST19, Kel21], learning
of AC0 functions [LMN93], designing circuit-analysis algorithms for AC0 [BIS12, IMP12], to proving
Fourier-analytic properties of AC0 [LMN93, Tal17], to name a few.

The standard switching lemma, originally proved by Håstad, says that for a width-w DNF3
F , if

we apply a 1
20w -random restriction (�,x), then with probability 1⇤�, F |�[x,⇤] collapse to a decision

tree of depth O(log(1/�)). We can also prove a switching lemma for small-size DNFs: suppose F

is a size-m unbounded-width DNF. Then, applying a 1
log(m/⇥) -random restriction collapses F to a

depth-O(log(m/�)) decision tree with probability 1⇤ �.
In Section 5, we show a derandomization for the standard switching lemma. That is, we prove

Lemma 1 (Derandomized Switching Lemma, slightly-simplified). Let k,m ⌥ 1 be integers, and
�, p > 0 be reals. Let F =

⇧m
i=1Ci be a size-m width-k DNF over inputs {0, 1}n. For all t ⌥ 1, let

(�,x) be any joint random variable such that:

• � is a (t+ k)-wise p-marginal subset of [n].

• Conditioning on �, x is a random string that �-fools CNF of size at most m.

Consider the random restriction F |�[x,⇤], we have:

Pr
�,x

[DT(F |�[x,⇤]) > t] ⌅ (10kp)t + (4m)t+k�.

See Section 5 for the stronger statement and the formal proof. Also note that we allow correlation
between � and x, which is crucial to apply the lemma in our PRG tempalte.

One can already construct a 1
m -error PRG for AC

0
d[m] with seed length O(logd(m) log log(m))

based on Lemma 1. Let C ⇥ AC
0
d[m] be a size-m depth-d circuit. We assume that each bottom-layer

gate of C has fan-in bounded by O(log(m)) for simplicity4. We apply Lemma 1 with p = 1
c logm , t =

c log(m), and � = 2⇥c log2(m) for some large constant c > 1. We also take x as a pseudorandom
string that �-fools CNF. Then with probability at least 1 ⇤ 1

m2 over the pseudorandom restriction
(�,x), every depth-2 sub-circuit of C simplifies to a depth-t decision tree, which means that we
can express C|�[x,⇤] as a depth-(d⇤ 1) circuit of size poly(m). Hence, assuming we can fool depth-
(d⇤ 1) circuit with seed length O(logd⇥1(m) log log(m)), then we can fool depth-d circuit with seed
length O(logd(m) log log(m)) by applying the partitioning-based PRG. Here we have omitted the
seed length to sample Y and H. It turns out they will not be the bottleneck: see Section 4 for the
details.

3
The width of a DNF F is defined as the maximum number of variables in any term of F .

4
This assumption can be met by first applying a

1
2 -(pseudo)random restriction, because with high probability

every bottom-layer gate with large fan-in is killed under such a restriction.

6



Multi-switching lemma For the case that � < m
⇥�(1), using Lemma 1 may result in a longer

seed length. In fact, to simplify the circuit with probability at least 1 ⇤ �, one must take the “t”
parameter in Lemma 1 as ⇥(log(m/�)). Then, applying Lemma 1 once simplifies C to a depth-
(d⇤ 1) circuit with bottom fan-in bounded by t = ⇥(log(m/�)). To further apply the lemma, one
has to set p as 1

⇥(log(m/⇥)) to make the probability bound in Lemma 1 non-trivial. Therefore, the
depth-d PRG would have seed length longer than the depth-(d ⇤ 1) PRG by 1

p = ⇤(log(m/�)),
bringing the total seed length to ⇤(logd(m/�) log log(m)).

If we insist on using a 1
log(m) -random restriction and want to have the same (1⇤ �) probability

guarantee, we can use the multi-switching lemma. We give its statement first.

Lemma 2. Let t, w, k, n,m ⌥ 1 be integers. Let p, ⇤ > 0 be reals. Let F = {F1, . . . , Fm} be a
list of size-m width-k DNFs on inputs {0, 1}n. Let (�,x) be a joint random variable satisfying the
following:

• � is a (t+ k)-wise p-marginal subset of [n],

• Conditioning on �, x is an n-bit random string that ⇤-fools size-(m2) CNF.

Then with probability at least 1 ⇤
⌃
4mt/w(24pk)t + (24m)t+k

· ⇤
⌥

over (�,x), there exists a com-
mon w-partial depth-t decision tree5 for F|�[x,⇤]. That is, we can construct a list of decision trees
T1, . . . , Tm computing F1|�[x,⇤], . . . , Fm|�[x,⇤]. Each Ti is of depth at most (t + w), and all of Ti’s
share the same query strategy in the first t queries.

Let C ⇥ AC
0
d[m] be a circuit with bottom fan-in bounded by k = log(m). Let F denote the family

of depth-2 sub-circuits of C. Apply Lemma 2 on F with 1
p = O(log(m)), t = O(log(m/�)), w =

O(log(m)) and ⇤ = ⇥
mO(t) . We know that F|�[x,⇤] fails to simplify with probability at most

�
4mt/w(24pk)t + (24m)t+k

· ⇤
 
⌅ �.

When F does simplify, we can compute C|�[x,⇤] by a hybrid model: a depth-t decision tree with
AC

0
d⇥1[m ·2w]-circuits on leaves. The decision tree part performs t adaptive queries according to the

common partial decision tree of F . After that, functions in F can be expressed as depth-w decision
trees, which means that C can be computed by an AC

0
d⇥1[m · 2w] circuit.

If we can fool every depth-(d⇤1) circuit on the leaves with error ⇥
2t , then we can fool this hybrid

model with error �. Assuming a O(logd⇥2(m) log(m/�) log log(m)) PRG for depth-(d⇤ 1) circuits,
fooling this hybrid model requires seed length

O

�
logd⇥2(m · 2w) log(m2t/�) log log(m)

 
= O(logd⇥2(m) log(m/�) log log(m)).

This allows us to construct a PRG for depth-d circuits with seed length O(logd⇥1(m) · log(m/�) ·
log log(m)), as claimed.

Proof intuition When the restriction string is truly random, Kelley’s technique [Kel21] shows a
clear picture about what makes a random restriction �[U, ⇥] bad. Fix an AC

0
d[m] circuit C. Given a

restriction �[U, ⇥], we want to know whether C simplifies under �[U, ⇥]. Roughly speaking, Kelley
shows that one can first observe the restriction string U and come up with a list of t = log(m)log(m)

sets S1, . . . , St, each of size c log(m) for a large constant c ⌥ 1. Then, we look at the set �: C

5
See Section 3.2 for the formal definition of “partial decision tree”.

7



fails to simplify under �[U, ⇥], only when � contains at least one set Si from the list. Since � is
O(log(m))-wise 1

c log(m) -marginal, this happens with probability at most 2⇥c log(m) by a simple union
bound.

We apply Kelley’s technique to derandomize the multi-switching lemma [Hås14]. The proof of
the multi-switching lemma involves many tricks and technicalities. Here we try to give some (over-
simplified) intuition. At a very high level, the multi-switching lemma is proved by combining the
standard switching lemma with a union bound. If F|⌅ fails a have w-partial depth-t decision tree,
then there is a subset of at most t

w formulae in F⌅, such that the summation of their decision tree
complexities exceeds t. This is because every formula with decision tree complexity no larger than
w can be handled “for free”. Therefore, each bad formula contributes at least w to the summation.
There are at most m

t/w = 2O(t) such subsets. For each of them, we bound the probability that the
summation of their DT complexities exceeds t by O(kp)t. This step is rather similar (in spirit) to
the case of standard switching lemma, and Kelley’s technique applies.

The final piece in our analysis is the full derandomization. By Kelley’s technique, we know
that the partially-pseudorandom restriction �[U, ⇥] is as good as a truly random one. We further
derandomize the random string by using the techniques by Trevisan, Xue, and by Servedio, Tan
[TX13, ST19]. Specifically, they constructed bounded-depth circuits (called “testers”) that take a
restriction as input and decide whether the restriction is good or not (for simplifying the target
circuit). Now, consider sampling a string x from a distribution that fools bounded-depth circuits,
Given the tester, we can show that �[x, ⇥] is as good as �[U, ⇥]. Since fooling higher-depth circuits
requires longer random bits, to control the final seed length of our PRG, we need the tester to be
implementable in AC

0
2. For the standard switching lemma, the Trevisan-Xue tester [TX13] does

have depth 2. For the multi-switching lemma, things become a bit trickier: the Servedio-Tan tester
[ST19] was designed as a depth-3 circuit and did the test faithfully. We (implicitly) implemented a
“upper-side approximator” of their tester. Our one-sided tester can be expressed as a CNF, and is
equally useful when upper-bounding the probability of picking bad restrictions.

See our derandomized switching lemmas for the standard and multi-switching versions in Sec-
tion 5 and Section 6, respectively. Instead of playing with decision trees and tracing down query
paths, we strive to present the proof based on the “canonical query algorithm”. Our proof is more
operational and, in our opinion, easier to follow.

Comparison with previous works For the task of designing PRGs for AC0 circuits, before our
result, there were two incomparable results on the frontier, one by Servedio and Tan [ST19] and the
other by Kelley [Kel21]. Both of them were built on derandomization results for switching lemmas.

The Servedio-Tan PRG is based on a derandomization of Håstad’s multi-switching lemma [Hås14],
and has seed length logd+O(1)(m) log(1/�) when �-fooling AC

0
d[m(n)]. Due to the usage of multi-

switching lemma, their PRG has optimal dependence on the error parameter �. However, their
derandomization of the switching lemma is weaker in seed length. The two factors together deter-
mined the final seed length of their PRG.

Kelley’s PRG, on the other hand, is based on a stronger derandomization of the standard
switching lemma [Has89]. It has seed length �O(logd(m/�) log(n)). The exponent on log(m) matches
the lower bound barrier, credit to the fact that their stronger derandomization allows one to sample
a restriction using a much shorter seed. However, Kelley only showed a partial derandomization,
which is not applicable in our construction. Also, the dependence on 1

⇥ is inferior due to the
somewhat coarse analysis in the standard switching lemma. It was left as an open question in
[Kel21] whether one can get the same high-equality derandomization of the multi-switching lemma
and optimize the dependency on 1

⇥ .

8



We answer this question in the a⌅rmative by showing a fully-derandomized multi-switching
lemma that improves both works. Combined with the partitioning-based PRG framework, our
lemma gives a PRG for AC0 with an almost tight seed length. We hope our derandomization of the
switching lemmas could find applications in other contexts.

Finally, we remark that the “decision-tree-followed-by-circuit” type hybrid model also appears
in many previous works. The applications include proving correlation bounds and Fourier spectrum
bounds [Hås14, Tal17], constructing PRGs [ST19, HHTT21], designing circuit-analysis algorithms
[CSS18], etc.

3 Preliminaries

In this section, we set up necessary pieces of notation, and review some well-known and useful facts
from the literature of pseudorandmoness and complexity theory.

3.1 Restrictions, Partial-Assignments and Strings

We use the term “restriction” and “partial assignment” interchangeably. Both of them refer to a
string of the form ⌅ ⇥ {0, 1, ⇥}. Here, if ⌅i = 0/1, it means the i-th bit of ⌅ is fixed to that value.
Otherwise, the i-th bit of ⌅ is unfixed.

For two partial assignments ⌅,⇧ ⇥ {0, 1, ⇥}, define their composition ⌅ � ⇧ as:

(⌅ � ⇧)i =
⇥
⌅i ⌅i ⇧= ⇥

⇧i o.w.
.

Note that the left partial assignment always has a higher priority than the right one.
Let � ⌃ [n] be a set. For two partial assignments ⌅,⇧ ⇥ {0, 1, ⇥}n, let �[⌅,⇧] be the assignment

defined as

�[⌅,⇧]i =

⇥
⌅i, i /⇥ �

⇧i, i ⇥ �
.

Let f : {0, 1}n � {0, 1} be a function and ⌅ ⇥ {0, 1, ⇥}n be a partial assignment. We use
f |⌅ : {0, 1}

n � {0, 1} to denote the restriction of f on ⌅. That is, f |⌅(y) := f(⌅ � y).

3.2 Computational Models

AC
0
d[s(n)] denotes the family of Boolean circuits of size at most s(n) and depth at most d. Such

circuits can have AND,OR,NOT gates. Here, NOT gates do not count in the depth, and AND,OR

gates can have unbounded fan-in. We measure the size of a circuit by the total number of wires
(including input wires) in it. For the case of d = 2, we also use the terms DNF and CNF to refer
to OR � AND and AND � OR circuits respectively. The width of a DNF or CNF is defined as the
maximum of its bottom fan-in. We also use k-DNF (resp. k-CNF) to denote DNF (resp. CNF) of
width at most k.

A decision tree T is a binary tree. Each inner node of T is labelled with an index i ⇥ [n], and
has exactly two children, which are labelled with 0 and 1. Each leaf of T is labelled with a Boolean
value b ⇥ {0, 1}. A decision tree T computes a function in the following manner: on an input
x ⇥ {0, 1}n, we start from the root of T . In each turn we observe the index i of current node, query
xi and move to the left/right child depending on the bit xi we received. Once we reach a leaf with
label b, we output T (x) = b. The depth of a decision tree is the length of the longest path from
root to any leaf.

9



We also consider a special decision tree model for a list of functions. See the definition below.

Definition 1. Let t, w, n,m ⌥ 1 be integers. Let F = {F1, . . . , Fm} be a list of functions mapping
from {0, 1}n to {0, 1}. A w-partial depth-t decision tree for F is a depth-t decision tree T satisfying
the following. For every Fi ⇥ F and every leaf ⌃ of T , let ⌥ ⇥ {0, 1, ⇥}n be the partial assignment
that corresponds to ⌃ (That is, ⌥i equals ⇥ if T does not query xi before reaching ⌃, otherwise ⌥i

equals to the value that leads T to move towards ⌃). Then it holds that DT(Fi|⇧) ⌅ w.

3.3 Pseudorandomness

Recall the definition of bounded independence.

Definition 2. Let n,m be two integers. Let H be a distribution over hash functions map-
ping {0, 1}n into {0, 1}m. We say that H is k-wise independent, if for any k input-output pairs
(x1, y1), . . . , (xk, yk) ⇥ {0, 1}n ◊ {0, 1}m where x1, . . . , xt are distinct, it holds that

Pr
h�H

[�i ⇥ [k], h(xi) = yi] = 2⇥km
.

We have the following standard construction of bounded independence hash functions (check
e.g., [Vad12, Chapter 3.5.5]).

Lemma 3. For every n,m, k ⌥ 1, there is an explicit k-wise independent hash functions H that
maps {0, 1}n into {0, 1}m. One can sample a function in H using O(k(n+m)) random bits.

We also consider a weaker notion of pseudorandomness called “k-wise p-boundedness”, first
defined and studied by [Kel21].

Definition 3. Suppose � is a random subset of [n]. We say that � is k-wise p-bounded if for any
set B ⌃ [n] of size at most k, it holds that Pr�[B ⌃ �] ⌅ p

|B|.

For intuition, if we sample � by independently including each i in � with probability at most
p, then � is n-wise p-bounded.

4 Improved PRG for Constant-Depth Circuits

In this section, we aim to prove the main theorem, re-stated below.

Reminder of Theorem 1. For every d ⌥ 2 the following is true. For every m,n ⇥ N such that
m ⌥ n and every � > 0, there is an �-PRG for AC

0
d[m] circuits with seed length O(logd⇥1(m) ·

log(m/�) · log log(m)).
We start with the following fact, which is crucial in our construction.

Theorem 2 ([DETT10, Tal17]). For every m,n ⇥ N such that m ⌥ n and every � > 0, there is an
�-PRG for AC

0
2[m] circuits (namely, CNF/DNF formulae) with seed length O(log(m) · log(m/�) ·

log log(m)).

We give the formal statement of the derandomized multi-switching lemma below. This is the
full version of Lemma 2 in the introduction.

Lemma 4. Let t, w, k, n,m ⌥ 1 be integers. Let p, � > 0 be reals. Let F = {F1, . . . , Fm} be a list of
size-m k-DNFs on inputs {0, 1}n. Let (�,x) be a joint random variable satisfying the following:

10



• � is a (t+ k)-wise p-bounded subset of [n],

• Conditioning on �, x is an n-bit random string that �-fools size-(m2) CNF.

Then we have

Pr
T��,x�x

[F|�[x,⇤] does not have w-partial depth-t DT] ⌅ 4mt/w(24pk)t + (24m)t+k
· �.

We defer the proof of Lemma 4 to Section 6. Assuming Lemma 4, we prove Theorem 1. We
prove a slightly stronger form of Theorem 1, stated below.

Theorem 3. For every d ⌥ 2 the following is true. For every m,n ⇥ N such that m ⌥ n, k ⇥ N
and every � > 0, there is an �-error, O((log2(m) + k · logd⇥2(m)) · log(m/�) · log log(m))-seed PRG
for AC

0
d[m] circuits with bottom fan-in bounded by k.

Theorem 3 shows that, when the bottom fan-in of the AC
0
d circuits is smaller than o(log(m)),

we can hope for shorter seed length through our construction. Note that we can always interpret
a depth-d AC

0 circuit with unbounded bottom fan-in as a depth-(d + 1) AC
0 circuit with bottom

fan-in being 1. Then, Theorem 1 follows from Theorem 3 easily.

Proof. We use induction on the depth d. The case for d = 2 follows from Theorem 2. Assuming
this is true for depth d⇤ 1 ⌥ 2, we prove it for the case of d. Let w = 40k and t = 80 log(m/�). We
prepare the following pseudorandom primitives.

• First, let H : [n]� [w] be a 2t-wise independent hash function, samplable using O(log(n) log(m/�))
bits. In the following, we will use Hi to denote H⇥1(i). We remark that Hi can be equivalently
expressed as an n-bit string. Namely, (Hi)j = 1 if and only if j ⇥ Hi.

• Second, let �⌅ = �/(w · 2t+1). Sample X1, . . . ,Xw ⇥ {0, 1}n, each being an independent string
that �⌅-fools AC

0
d⇥1-circuits of size 2m2 and bottom-width logm. When d ⇤ 1 ⌥ 3, Xi is

samplable using O(logd⇥2(m) · log(m/�) · log log(m)) bits by the induction hypothesis. For
the case d⇤ 1 = 2, Xi is samplable using O(log(m) log(m/�) log log(m)) bits by Theorem 2.

• Lastly, let Y ⇥ {0, 1}n be a random string that �/(24m)2t-fools size-m CNF, samplable using
O(log2m · log(m/�) · log logm) bits (by Theorem 2).

The seed for our generator is the concatenation of the seeds used to sample all the primitives
above. We compute the output of our generator as

Y � (X1  H1)� (X2  H2)� · · ·� (Xw  Hw). (1)

Here,  and � denote bit-wise AND and XOR respectively. The seed length is bounded by

O

�
log(n) log(m/�) + w · logd⇥2(m) log(m · 2t/�) log log(m) + log2m log(m/�) log logm

 

⌅ O((log2(m) + k · logd⇥2(m)) · log(m/�) · log log(m)).

We argue the correctness by a hybrid argument. Fix C to be an AC
0
d-circuit that we wish to

fool. Let U1, . . . ,Uw denote w independent uniformly random strings from {0, 1}n. For every
i ⇥ {0, 1, . . . , w}, we define the i-th hybrid distribution as

Di := Y � (U1  H1)� · · ·� (Ui  Hi)� (Xi+1  Hi+1)� · · ·� (Xw  Hw). (2)

11



We observe that D0 is the output distribution of our PRG, while Dw is a uniformly random string
from {0, 1}n. Hence, it su⌅ces to show that

|Ex�D0 [C(x)]⇤ Ex�Dw
[C(x)]| ⌅ �. (3)

To show (3), it su⌅ces to show for every i ⇥ {1, . . . , w} that

|Ex�Di�1 [C(x)]⇤ Ex�Di
[C(x)]| ⌅ �/w. (4)

In the following, we prove (4). We observe that Hi is 2t-wise 1
w -bounded. Conditioning on an

instantiation of H, we have that Zi := Y �
⌦

j<i(Uj  Hj) �
⌦

j>i(Xj  Hj) is an �/(24m)2t-
pseudorandom string for size-(m2) CNF, because Y is. Let F be the family of all next-to-bottom
layer sub-circuits of C. Denote by E the event

“F|Hi[Zi,⇤] does not have log(m)-partial depth-t DT.”

Then it follows from Lemma 4 that

Pr
H,Y,U1,...,Ui�1,Xi+1,...,Xw

[E ] ⌅ 4mt/ log(m)

↵
24

k

w

�t

+
� · (24m)t+log(m)

(24m)2t
⌅ �

2w
.

Conditioning on ¬E ,H,Y,U1, . . . ,Ui⇥1,Xi+1, . . . ,Xw and calculating Zi as defined above, one can
then write C|Hi[Zi,⇤] as a depth-t decision tree T where each leaf of T is labelled by an AC

0
d⇥1-circuit

of size m2 and bottom fan-in log(m). Let {⌃1, . . . , ⌃2t} enumerate the leaves of the decision tree. Each
⌃j is associated with a size-m2 depth-(d⇤ 1) circuit, which is also denoted by ⌃j : {0, 1}n � {0, 1}
for brevity. Then one can write C|(Hi)[Zi,⇤] as

C|Hi[Zi,⇤](y) =
2t�

j=1

⌃j(y) · {T (y) reaches leaf ⌃j}.

Let’s fix an index j ⇥ [2t] for now. Note that ⌃j(y) · {reach ⌃j on y} is itself a depth-(d⇤ 1) circuit
of size at most 2m2. By the construction of Xi we know that

���EXi
[⌃j(Xi + Zi) · {T reaches ⌃j on Xi + Zi}]⇤

EUi
[⌃j(Ui + Zi) · {T reaches ⌃j on Ui + Zi}]

��� ⌅
�

2t+1w
.

Taking a summation over all leaves j, one gets
��EXi

[C|Hi[Zi,⇤](Xi + Zi)]⇤ EUi
[C|Hi[Zi,⇤](Ui + Zi)]]

�� ⌅ �

2w
.

Finally, one has

|Ex�Di�1 [C(x)]⇤ Ex�Di
[C(x)]| ⌅ Pr[¬E ] ·

�

2w
+ Pr[E ] ⌅ �

w
,

proving (4).

Given Theorem 3, we prove Theorem 1 by tuning parameters.

Proof of Theorem 1. For every d ⌥ 3 and every AC
0
d[m] circuit with unbounded bottom fan-in, we

can interpret it as a depth-(d+ 1) circuit with bottom fan-in being 1. Applying Theorem 3 in this
case gives a PRG with seed length O(logd⇥1(m) log(m/�) log log(m)), as desired. For the case of
d = 2, we use Theorem 2 directly. This completes the proof.

12



As a final remark, suppose we could have O(log(m) log(m/�))-seed PRG for CNFs (namely,
if we can shave the log logm factor in Theorem 2). Then our construction implies PRG for
AC

0
3 with seed length O(log2(m) log(m/�)), and further implies PRG for AC

0
d with seed length

O(logd⇥1(m) log(m/�)), matching the lower bound barrier [Has89, Hås14].

5 Fully-Derandomized Switching Lemma

Before we show the proof of Lemma 4, we state and prove the simpler version of the classical switch-
ing lemma in this section. The following statement is the full version of Lemma 1 in Introduction.
Lemma 1 follows from Lemma 5 trivially.

Lemma 5. Let k,m ⌥ 1 be integers, and �, p > 0 be reals. Let F =
⇧m

i=1Ci be a size-m k-DNF
over inputs {0, 1}n. For all t ⌥ 1, let (�,x) be a joint random variable such that:

• � is a (t+ k)-wise p-bounded subset of [n].

• Conditioning on �, x is a random string that �-fools CNF of size at most m.

Consider the random restriction F |�[x,⇤], we have:

Pr
�,x

[DT(F |�[x,⇤]) > t] ⌅ (10kp)t + (4m)t+k
· �.

Understanding the proof of Lemma 5 is necessary to read the proof of Lemma 4. On the other
hand, once Lemma 5 is established, we can prove Lemma 4 using a rather similar strategy. The rest
of the section is devoted to the proof of Lemma 5.

We will first introduce the important concept of “canonical decision tree” ([Has89, TX13, ST19,
Tal17]) in Section 5.1. We prove for the case that x is truly random (and only � is pseudorandom)
in Section 5.2, and then argue how to prove for pseudorandom x in Section 5.3.

Throughout the whole section, we always use F =
⇧m

i=1Ci to denote the k-DNF that we are
analyzing. For every i ⇥ [m] let Vi ⌃ [n] be the variables involved in the term Ci.

5.1 Canonical decision tree

For a DNF F =
⇧m

i=1Ci, denote by TF the canonical decision tree of F , whose construction is shown
in Algorithm 1. We use CDT(F ) to denote the depth of the canonical decision tree for F . Since
canonical decision tree is one particular decision tree of F , its depth must be no less than DT(F ).
To prove Lemma 5, we will analyze canonical decision trees, and show that with high probability

13



over the random restriction ⌅, we have CDT(F |⌅) < t.
Algorithm 1: Canonical Decision Tree

Input: A DNF F =
⇧m

i=1Ci, black-box access to a string ⌥ ⇥ {0, 1}n.
initialize:

j
⌃ ✏ 0.
x✏ (⇥)n.

while j
⌃
< m do

Find the first j > j
⌃ such that Cj(x) ⇧⌦ 0. If no such j exists, exit the loop.

Bj ✏ the set of unknown variables in Cj .
Query ⌥Bj

.
Set xBj

✏ ⌥Bj
.

if Cj(x) = 1 then

return 1.
j
⌃ ✏ j.

return 0

5.2 Proof when x is truly random

Defining witness Let ⌅ = �[x, ⇥] being a bad restriction, under which CDT(F |⌅) ⌥ t. Consider
simulating the canonical decision tree TF |�

. We know that on some inputs ⌥ ⇥ {0, 1}n, TF |�
fails

to output the decision after making (t⇤ 1) queries. We choose one such ⌥ and simulate TF |�
until

it makes at least t queries. The “running transcript” of TF |�
on ⌥ is naturally a witness to the fact

that CDT(F⌅) ⌥ t. We formalize this idea in the following definition.

Definition 4. Let F =
⇧m

i=1Ci be the k-DNF and ⌅ ⇥ {0, 1, ⇥}n be a restriction. Let t ⌥ 1.
Consider a tuple (r, ⌃i, si, Bi,⌥i), where:

1. r ⇥ [1, t] is an integer.

2. (⌃1, . . . , ⌃r) ⇥ [m]r is a list of increasing indices.

3. (s1, . . . , sr) is a list of positive integers such that s :=
⌦r

i=1 si ⇥ [t, t+ k ⇤ 1].

4. (B1, . . . , Br) is a list of subsets of [k]. Moreover, for every i ⇥ [r], |Bi| = si.

5. (⌥1, . . . ,⌥r) is a list of binary strings. For every i ⇥ [r], |⌥i| = si.

We call (r, ⌃i, si, Bi,⌥i) a t-witness for ⌅, if there exists ⌥ ⇥ {0, 1}n such that:

• When we run TF |�
on ⌥, for every i ⇥ [r], C⌃i is the i-th term queried by TF |�

.

• By the time TF |�
issues the i-th set of query, exactly si variables in C⌃i are not known, and

their “relative positions” in V⌃i are specified by Bi.

• The response to the i-th set of query is ⌥i.

We define the size of the witness (r, ⌃i, si, Bi,⌥i) as s :=
⌦r

i=1 si.

14



Notation convention When Bi and ⌥i are associated with a term C⌃i , sometimes we will slightly
abuse notation by using Bi to refer to the set of variables it corresponds to in V⌃i (Recall V⌃i is the
set of variables that appear in C⌃i), and use ⌥i to denote a partial assignment ⌥i ⇥ {0, 1, ⇥}n in
which we only assign the Bi part of ⌥i and leave other coordinates unfixed. In this section, we will
mostly use the term “witness” to denote t-witness, since we are always analyzing for a fixed t.

It is easy to see that if DT(F |⌅) ⌥ t, there must be a witness for CDT(F |⌅) ⌥ t
6. By now, a

natural idea to bound the probability of picking a bad restriction would be (1) enumerating every
possible witness, (2) calculating the probability of a random ⌅ having such a witness, and (3) union-
bounding over them. Unfortunately this is too expensive for us: we have at least

⌃m
t

⌥
choices of

the list (⌃i). In order for this approach to be meaningful, we have to bound the probability that a
random restriction has a particular witness by m

⇥t, which seems very hard, if not impossible.
It turns out we can avoid the enumeration of (⌃i) part in the witness. To succinctly describe the

idea, let us define partial witnesses first.

Definition 5. Let F =
⇧m

i=1Ci be the k-DNF and ⌅ ⇥ {0, 1, ⇥}n be a restriction. Let t ⌥
1. Consider a tuple (r, si, Bi,⌥i). We call (r, si, Bi,⌥i) a partial t-witness for ⌅, if there exists
(⌃1, . . . , ⌃r) such that (r, ⌃i, si, Bi,⌥i) is a t-witness for ⌅.

Remark 1. Here we make an important observation: if (r, si, Bi,⌥i) is a partial witness for ⌅, then
there is only one valid list (⌃i) which makes (r, ⌃i, si, Bi,⌥i) a witness for ⌅ (To see this, first note
that ⌃1 is fixed. After querying ⌃1 and getting the response ⌥1, use induction). This observation will
prove useful in Section 5.3 and Section 6.

Then, the proof goes by enumerating r, si, Bi,⌥i and bounding the following:

Pr
⌅
[DT(F |⌅) ⌥ t] ⌅

�

(r,si,Bi,⇧i)

Pr
⌅
[(r, si, Bi,⌥i) is a partial witness for ⌅]. (5)

Fixing an s ⇥ [t, t+ k⇤ 1], there are at most (4k)s possible partial witnesses (r, si, Bi,⌥i) of size
s. For each of them, if we can bound the probability by, say, (2p)s, then the lemma is proved.

The witness searcher Now, given a restriction ⌅ and a candidate partial witness (r, si, Bi,⌥i),
how can we decide if there is a list (⌃i)i such that (r, ⌃i, si, Bi,⌥i) constitutes a witness for ⌅? We
will do so by designing and using a simple procedure, which we call the witness searcher. More
specifically, our searcher receives as input a restriction ⌅, a partial witness (r, si, Bi,⌥i) and an
advice string y ⇥ {0, 1}n. It outputs either a complete witness (r, ⌃i, si, Bi,⌥i), or a special ERROR

6
However, we note that the converse may not be true, since our witness can only refute the existence of shallow

canonical decision trees.

15



symbol. Its description in shown in Algorithm 2.
Algorithm 2: Witness Searcher

Input: A DNF F =
⇧m

i=1Ci, a restriction ⌅ ⇥ {0, 1, ⇥}n, a partial witness (r, si, Bi,⌥i), an
advice y ⇥ {0, 1}n.

initialize:

z ✏ ⌅ � y.
j
⌃ ✏ 0.
c✏ 1.

while c ⌅ r do

Find the first j > j
⌃ such that Cj is satisfied by z. If no such i exists, return ERROR.

Set ⌃c ✏ j, and associate Bc,⌥c with C⌃c .
Replace the Bc part of z with ⌥c. That is, z ✏ ⌅ � ⌥1 � · · · � ⌥c � y.
c✏ c+ 1.
j
⌃ ✏ j.

return (r, ⌃i, si, Bi,⌥i)

In the following, we use S to denote Algorithm 2.

Lemma 6. If (r, si, bi,⌥i) is a partial witness for ⌅, then there exists an advice y that makes S

find (⌃i)ri=1. More importantly, on a uniformly random y ⇣ Un, S finds (⌃1, . . . , ⌃r) with probability
exactly 2⇥s.

Proof. If (r, si, ⌃i, bi,⌥i) is a witness for ⌅, it records a running transcript of TF |�
on some input

⌥ ⇥ {0, 1}n. This mean that C⌃1 is the first term queried by TF |�
, which implies:

1. Every term before C⌃1 is falsified by ⌅ (because TF |�
skipped them).

2. C⌃1 is consistent with ⌅ (because TF |�
was uncertain of the value of C⌃i(⌥).

Now, consider running S on (r, si, bi,⌥i), S will also skip all the terms before C⌃1 . At C⌃1 , since ⌅ is
consistent with C⌃1 , the random string ⌅ � y satisfies C⌃1 with probability 2⇥|B1|. Conditioning on
this happened, in the later execution, we modify z and replace the part corresponding to B1 with
⌥1.

At this point, we go back and inspect the execution of TF |�
on ⌥. Since (r, si, ⌃i, bi,⌥i) is the

running transcript of TF |�
on ⌥, we know that ⌥1 was the response that TF |�

received from querying
alive variables in C⌃1 . Since TF |�

issued its second bunch of queries to alive variables in C⌃2 , it
implies that terms from C⌃1+1 to C⌃2⇥1 are all falsified by ⌅ � ⌥1, and C⌃2 is consistent with ⌅ � ⌥1.
Then, it follows that ⌅ �⌥1 �y satisfies C⌃2 with probability 2⇥|B2|. Conditioning on this happened,
the searcher will proceed with string ⌅ �⌥1 �⌥2 � y and we can again consider the execution of TF |�

after querying C⌃2 . We do this argument so on and so forth, until we have identified all of r indices
⌃1, . . . , ⌃r and exit the procedure. In summary, we have shown there exists y which makes S find
the list (⌃i)ri=1, and the probability of sampling such a y is

2⇥
�

c

i=1 |Bi| = 2⇥s

as desired.

Decoupling If we inspect the execution of S carefully, we can notice that it only needs to know
the string z = ⌅ � y to work. In particular, it does not need to know which part of z is fixed in
the restriction ⌅. Therefore, we can revise S to get a searcher S

⌅: the input to S
⌅ is now a string z

16



and (r, si, Bi,⌥i). Otherwise it runs identically the same way as S. We denote the output of S ⌅ as
S
⌅(z, (r, si, Bi,⌥i)). By Lemma 6, we have

Pr
⌅�R

[(r, si, Bi,⌥i) is a partial witness for ⌅]

⌅ 2s · Pr
⌅�R,y�Un

[S ⌅(⌅ � y, (r, si, Bi,⌥i)) is a witness for ⌅].

Denote ⌅ = �[x, ⇥]. We observe that

{ (r, ⌃i, si, Bi,⌥i) is a witness for ⌅} ⌅

✏
⇣

⌘

✓

◆
r

j=1

Bj

�

� ⌃ �

⌫
⇠

⇡ . (6)

For a (t+k)-wise p-bounded set �, the event on the right hand side holds with probability p

�
j
|Bj |.

Then, we have

Pr
⌅��[x,0],y�Un

[ S ⌅(⌅ � y, (r, si, Bi,⌥i)) is a witness for ⌅]

= E�Ex,y�Un

⇢
{S

⌅(�[x, y], (r, si, Bi,⌥i)) is a witness for ⌅}
�

= Ez�Un

⌧
Pr
�
[S ⌅(z, (r, si, Bi,⌥i)) is a witness for ⌅]

�

⌅ p
s
,

where the third equality is due to that �[x, y] is distributed as Un when x, y ⇣ Un, and the last
inequality holds by (6) and the (t+ k)-wise p-bounded property of �.

Wrapping-up We finish the proof by enumerating all (r, si, Bi,⌥i) and taking a summation.

Pr
⌅��[x,⇤]

[DT(F |⌅) ⌥ t] ⌅
�

(r,si,Bi,⇧i)

Pr
⌅��[x,⇤]

[(r, si, Bi,⌥i) is a partial witness for ⌅]

⌅
�

(r,si,Bi,⇧i)

2s · Ez⌥Un

⌧
Pr
�
[S ⌅(z, (r, si, Bi,⌥i)) is a witness for �[x, ⇥]]

�

⌅
t+k�

s=t

2s(4k)sps

⌅ (10kp)t. (7)

5.3 Proof when x is pseudorandom

Now we consider the case that x is not truly random. There could even be correlation between
x and �. Our only requirement for x is that, for every fixed �, x is a pseudorandom string that
�-fools CNFs of size at most m. First of all, by Remark 1, the following equation is established.

{(r, si, Bi,⌥i) is a partial witness for ⌅} =
�

⌃i

{(r, ⌃i, si, Bi,⌥i) is a witness for ⌅}. (8)

If we inspect the deduction in (7), it actually shows the following:
�

(r,si,Bi,⇧i)

�

⌃i

Pr
⌅��[Un,⇤]

[(r, ⌃i, si, Bi,⌥i) is a witness for ⌅] ⌅ (10kp)t. (9)

17



Next, fixing the set � and a tuple of (r, ⌃i, si, Bi,⌥i), we consider the predicate

h
(r,⌃i,si,Bi,⇧i)
� (x) := {(r, ⌃i, si, Bi,⌥i) is a witness for �[x, ⇥]}.

We omit the superscript and subscript of h when they are clear from context. We claim that h can
be implemented by a CNF of size at most m. To see this, note that h(x) = 1 if all of the following
hold.

• For every j < ⌃1, Cj is falsified by �[x, ⇥]. For this to be true, there is at least one variable in
Cj that is not chosen by � and is assigned to the opposite value to its appearance in Cj . Note
that we can use an OR over relevant variables or their negations to verify if Cj is falsified.

• For j = ⌃1, C⌃1 cannot be falsified by �[x, ⇥], which means all variables in C⌃1 that are not
chosen by � are assigned so that it does not contradict C⌃1 . We can use an AND over those
variables to verify this.

• For every ⌃1 < j < ⌃2, Cj is falsified by �[x,⌥1], which means that either Cj is falsified by ⌥1,
or there is at least one variable in Cj that is not chosen by � and is assigned to the opposite
value. If Cj is falsified by ⌥1, there is nothing to verify. Otherwise, we can verify it by an OR
over relevant variables.

• The same reasoning applies to Cj for every j ⌥ ⌃2. Finally, after we finish the verification for
C⌃r , we are done.

In summary, we can implement h by a CNF (AND of ORs). It is obvious that the size of the CNF
is no larger than the size of F , which is m. Therefore, we conclude that x �-fools h. That is,

���� Pr
x�Un

[h(r,⌃i,si,Bi,⇧i)
� (x)]⇤ Pr

x�x
[h(r,⌃i,si,Bi,⇧i)

� (x)]

���� ⌅ �. (10)

Finally, we have

Pr
⌅��[x,⇤]

[DT(F |⌅) ⌥ t] ⌅
�

(r,si,Bi,⇧i)

Pr
⌅��[x,⇤]

[(r, si, Bi,⌥i) is a partial witness for ⌅]

⌅
�

(r,si,Bi,⇧i)

�

⌃i

Pr
⌅��[x,⇤]

[(r, ⌃i, si, Bi,⌥i) is a witness for ⌅]

⌅
�

(r,si,Bi,⇧i)

�

⌃i

�+ Pr
⌅��[Un,⇤]

[(r, ⌃i, si, Bi,⌥i) is a witness for ⌅]

⌅ (10kp)t + (4m)t+k
· �.

Here, the first line is due to the argument in Section 5.2. The second line holds by (8). The third
line is due to (10). The last line holds because (9) and there are at most (4m)k+t possible tuples
(r, ⌃i, si, Bi,⌥i).

6 Derandomizing the Multi-Switching Lemma

In this section, we prove Lemma 4. Recall the statement.

Reminder of Lemma 4. Let t, w, k, n,m ⌥ 1 be integers. Let p, � > 0 be reals. Let F =
{F1, . . . , Fm} be a list of size-m k-DNFs on inputs {0, 1}n. Let (�,x) be a joint random variable
satisfying the following:

18



• � is a (t+ k)-wise p-bounded subset of [n],

• Conditioning on �, x is a random string that �-fools size-(m2) CNF.

Then we have

Pr
T��,x�x

[F|�[x,⇤] does not have w-partial depth-t DT] ⌅ 4mt/w(24pk)t + (24m)t+k
· �.

The rest of the section is devoted to the proof of Lemma 4. Section 6.1 states some preliminary
tools and includes a proof overview. Section 6.2 considers the case that x is truly random. It extends
the idea in Section 5.2 and has a rather similar structure. Finally in Section 6.3, we consider the
case that x is pseudorandom, and finish the proof.

6.1 Preliminaries

The canonical partial decision tree Let ⌅ be a random restriction under which F|� fails to
have a w-partial depth-t decision tree. Let � ⇥ {0, 1}n be an unknown string that our decision tree
shall query. We consider the following attempt (see Algorithm 3) to construct a partial decision
tree for F|⌅. Here z ⇥ {0, 1}n is an auxiliary string to be chosen. Every choice of z ⇥ {0, 1}n yields
a di⇤erent partial decision tree for F . In [ST19], the construction was called “canonical partial
decision tree”.

Algorithm 3: Canonical Partial Decision Tree
Input: A list of DNFs F = {F1, . . . , Fm}, black-box access to a string � ⇥ {0, 1}n, and an

auxiliary string z ⇥ {0, 1}n.
initialize:

x✏ (⇥)n.
j ✏ 1.
counter✏ 0.

while counter < t do

Find the smallest i ⌥ j such that DT(Fi|x) > w. If no such i exists, exit the loop.
y ✏ (⇥)n.
I ✏ ⌘.
while Fi|x�y(⇥) is not constant and counter < t do

Ci,q ✏ the term that TFi|x⇥y will query.
Bi,q ✏ the set of unknown variables in Ci,q|x�y.
yBi,q

✏ zBi,q
.

I ✏ I ↵Bi,q.
counter✏ counter + |Bi,q|.

Query �I , and set xI ✏ �I .
j ✏ i.

return x

Note that in Algorithm 3, it is possible for a formula Fi to get picked by the outer “while” loop
more than once.

Proof overview Before we dive into the formal proof, we try to give some (over-simplified)
intuition here. If F does not have w-partial DT of depth t, then Algorithm 3 fails to construct a
partial decision tree of depth t on every auxiliary string z. However, we will only consider some

19



“adversarially chosen” z’s. That is, we only consider those z’s that trick Algorithm 3 to make at
least w queries on each chosen formula. By doing so, we are guaranteed that Algorithm 3 only
chooses t

w formulae in total.
Then, we can pay a factor of m

t

w to enumerate a subset of t
w formulae in F , and calculate the

probability that Algorithm 3 “gets stuck” on those formulae. Having fixed those t
w formulae, we can

use ideas similar to Section 5.2, and bound the probability by O(pk)t. In summary, we get

Pr[bad restriction] ⌅ m
t

w ·O(pk)t.

Here we only considered the case that the restriction string x is purely random. For the case that
both � and x are pseudorandom, we use tricks similar to Section 5.3 and pay another additive
factor.

6.2 Proof when x is truly random

We start the proof by considering the case that x is a truly random string. Fix ⌅ to be a bad
restriction, under which F|⌅ fails to have a w-partial depth-t decision tree. It implies that on every
z ⇥ {0, 1}n, Algorithm 3 fails to construct a partial decision tree for F . However, for ease of our
analysis, we will only consider a special class of string z. We give the following definition.

Definition 6. Let ⌅ be a bad restriction for F . We call z ⇥ {0, 1}n a powerful (w, t)-refutation
for ⌅, if there exists � ⇥ {0, 1}n satisfying the following: Algorithm 3 on input (F|⌅,�, z) makes at
least t queries. Moreover, at each time we query �I , it is guaranteed that |I| ⌥ w.

Powerful refutations always exist for bad restrictions, as shown in the following.

Lemma 7. If F|⌅ does not have w-partial decision tree of depth t, then there exists a powerful
(w, t)-refutation for ⌅.

Proof. If F⌅ does not have w-partial decision tree of depth t, then it means Algorithm 3 fails to
construct a w-partial DT of depth t for every z ⇥ {0, 1}n. Then we construct a powerful refutation
z, together with its associated adversarial input �, in the following way.

• Initially, we set z = � = (⇥)n. Then we monitor the execution of Algorithm 3 on (F ,�, z),
and gradually fill in z, � when they are accessed by Algorithm 3.

• Whenever Algorithm 3 chooses one formula Fi|⌅�x in the outer while-loop, we do the following:

– When running inside the inner while-loop, Algorithm 3 needs to consult the auxiliary
string z. We can fill in relevant variables of z in such a way that Algorithm 3 consults
at least w bits from z in the loop. Since DT(Fi|⌅�x) ⌥ w, this is always possible.

– After finishing the inner loop, Algorithm 3 will make a query to �I . At this point, we set
�I in such a way that F|⌅�x�⌥ does not have w-partial DT of depth (t⇤ counter). This is
always possible as long as F⌅�x does not have w-partial DT of depth (t⇤ counter + |I|),
which holds by induction.

• After Algorithm 3 returns, we fill in the remaining bits of �, z with zeros.

Having established Lemma 7, we come up with the following definition of “global witness”
naturally.

20



Definition 7. Let t, w be two integers. Consider a list of k-DNFs F = {F1, . . . , Fm}. Suppose
⌅ ⇥ {0, 1, ⇥}n is a restriction. Let (R,Li, Si,Wi,�i) be a tuple, where

1. 1 ⌅ R ⌅ t
w is an integer;

2. 1 ⌅ L1 ⌅ L2 ⌅ · · · ⌅ LR ⌅ m is a list of R non-decreasing indices;

3. S1. . . . , SR is a list of R integers such that
⌦R

i=1 Si ⇥ [t, t+ k];

4. W1, . . . ,WR is a list of witnesses (as per Definition 4). For every i ⇥ [R], Wi has size Si;

5. �1, . . . ,�R are R strings where |�i| = Si for every i ⇥ [R].

We call the tuple a (w, t)-global witness for ⌅, if it satisfies the following.

1. Set ⌅1 = ⌅. W1 is a S1-witness for FL1 |⌅1 .

2. For every i ⌥ 2, let Ii⇥1 ⌃ [n] be the set of variables involved in Wi⇥1. Note that |Ii⇥1| = Si⇥1

since the size of Wi⇥1 is Si⇥1. Identify �i⇥1 as a partial assignment in {0, 1, ⇥}n where only
the part �i⇥1,Ii�1 is set and other coordinates are filled in with ⇥. Construct ⌅i = ⌅i⇥1 � �i⇥1.
Then Wi is a Si-witness for FLi

|⌅i .

The size of the global witness is defined as
⌦R

i=1 Si.

As a corollary of Lemma 7, we have:

Corollary 1. Consider a list of k-DNFs F = {F1, . . . , Fm}. Suppose ⌅ ⇥ {0, 1, ⇥}n is a restriction
such that F|⌅ does not have w-partial depth-t decision tree. Then there exists a (w, t)-global witness
for ⌅.

Proof. By Lemma 7, there exists a powerful (w, t)-refutation for F|⌅. Take one such refutation z

with its adversarial input �. Inspect the execution of Algorithm 3 on (F|⌅,�, z) and record the
transcript. The transcript contains the desired tuple.

Similar to what we have done in Section 5.2, we define the global partial witness.

Definition 8. Let t, w be two integers. Consider a list of k-DNFs F = {F1, . . . , Fm}. Suppose
⌅ ⇥ {0, 1, ⇥}n is a restriction. Let (R,Li, Si, Pi,�i) be a tuple, where

1. 1 ⌅ R ⌅ t
w is an integer;

2. 1 ⌅ L1 ⌅ L2 ⌅ · · · ⌅ LR ⌅ m is a list of R non-decreasing indices;

3. S1. . . . , SR is a list of R integers such that
⌦R

i=1 Si ⇥ [t, t+ k];

4. P1, . . . , PR is a list of partial witnesses. For every i ⇥ [R], Pi has size Si.

5. �1, . . . ,�R are R strings where |�i| = Si for every i ⇥ [R].

We call (R,Li, Si, Pi,�i) a (w, t)-global partial witness for ⌅, if we can complete Pi to get a witness
Wi for every i ⇥ [R], such that (R,Li, Si,Wi,�i) is a global witness for ⌅.

Remark 2. Again, it is easy to see by induction that, for every global partial witness, there is
exactly one way to complete it and get a global witness.

21



By a simple counting, it turns out for every S ⇥ [t, t+k], there are at most 2mt/w(12k)S possible
global partial witnesses of size S:

1. First, 2mt/w ways to choose at most t
w formulae in F .

2. Then, 3S ways to partition the s units of “query budget” into R partial witnesses as S =⌦R
i=1 Si, and further partition the budget for each partial witness as Si =

⌦ri
j=1 si,j .

3. Then, at most k
S ways to construct sets Bi,j for each partial witness.

4. Finally, there are 4S ways to choose �i’s, as well as ⌥i,j ’s in each partial witness.

Fixing a global partial witness (R,Li, Si, Pi,�i), we try to bound the probability that a random
⌅ has this witness by (2p)k. Using the witness searcher (Algorithm 2) as a subroutine, we design
a global witness searcher first. Again, the global witness searcher needs access to an advice string
y ⇥ {0, 1}n. See Algorithm 4.

Algorithm 4: Global Witness Searcher
Input: A list of DNFs F = {F1, . . . , Fm}, a restriction ⌅ ⇥ {0, 1, ⇥}n, a global partial

witness (R,Li, Si, Pi,�i), and an advice y ⇥ {0, 1}n.
initialize:

z ✏ ⌅ � y.
c✏ 1.
⌅(1) ✏ ⌅.

while c ⌅ R do

Run Algorithm 2 on (FLc
, ⌅(c), Pc, y). If it reports ERROR, report ERROR and

terminate the procedure. Otherwise let Wc be the witness returned.
Ic ✏ the set of variables involved in Wc.
Identify �c as a partial assignment, where only �Ic is fixed.
⌅(c+1) ✏ ⌅(c) � �c.
c✏ c+ 1.

return x

In the following, we use S to denote Algorithm 4 for brevity. Based on Lemma 6, we prove:

Lemma 8. If (R,Li, Si, Pi,�i) is indeed a global partial witness for ⌅, then there exists an advice
y that makes S find (R,Li, Si, Pi,�i). More importantly, on a uniformly random y ⇣ Un, S finds
(⌃1, . . . , ⌃r) with probability exactly 2⇥S, where S :=

⌦R
i=1 Si is the size of the global witness.

Proof. We examine the execution of S. It first runs Algorithm 2 as a subroutine, trying to find W1

for P1. With probability 2⇥S1 over y, Algorithm 2 succeeds in finding W1. Conditioning on this
happened, we have only committed the assignment of yI1 , and the rest part of y is still uniformly
random. Also note that we set ⌅(2)I1

to �1, which will hide yI1 in the later execution. This enables
us to do an induction and finish the proof.

Decoupling Now, we can observe that S only needs to know z = ⌅ � y to work. In particular, it
does not need to know which part of z is fixed in ⌅. Therefore, we can revise S to get a searcher S ⌅:
the input to S

⌅ is now a string z and a global partial witness (R,Li, Si, Pi,�i). Otherwise it runs
identically the same way as S. We denote the output of S ⌅ as S ⌅(z, (R,Li, Si, Pi,�i)). By Lemma 8,

22



we have
Pr
⌅�R

[(R,Li, Si, Pi,�i) is a global partial witness for ⌅]

⌅ 2S · Pr
⌅�R,y�Un

[S ⌅(⌅ � y, (R,Li, Si, Pi,�i)) is a global witness for ⌅]

We observe that

{ (R,Li, Si,Wi,�i) is a global witness for ⌅} ⌅

✏
⇣

⌘

✓

◆
R

j=1

Ij

�

� ⌃ �

⌫
⇠

⇡ . (11)

For a (t + k)-wise p-bounded �, the event on the right hand side holds with probability p

�
j
|Ij |.

Then, we have

Pr
⌅��[x,0],y�Un

[ S ⌅(⌅ � y, (R,Li, Si, Pi,�i)) is a global witness for ⌅]

= E�Ex,y�Un

⇢
{S

⌅(�[x, y], (R,Li, Si, Pi,�i)) is a global witness for ⌅}
�

= Ez�Un

⌧
Pr
�
[S ⌅(z, (R,Li, Si, Pi,�i)) is a global witness for ⌅]

�

⌅ p
S
,

where the third line is due to that �[x, y] is distributed as Un when x, y ⇣ Un, and the last inequality
holds by (11) and the (t+ k)-wise p-bounded property of �.

Wrapping-up We finish the proof by enumerating all (R,Li, Si, Pi,�i) and taking a summation.

Pr
⌅��[x,⇤]

[F|⌅ does not have w-partial depth-t decision tree]

⌅
�

(R,Li,Si,Pi,⌥i)

Pr
⌅��[x,⇤]

[(R,Li, Si, Pi,�i) is a global partial witness for ⌅]

⌅
�

(R,Li,Si,Pi,⌥i)

2S · Ez⌥Un

⌧
Pr
�
[S ⌅(z, (R,Li, Si, Pi,�i)) is a global witness for �[x, ⇥]]

�

⌅
t+k�

S=t

2mt/w2S(12k)SpS

⌅ 4mt/w(24kp)t. (12)

6.3 Proof when x is pseudorandom

Now we consider the case that x is not truly random. Our only requirement for x is that, for every
fixed �, x is a pseudorandom string that �-fools CNFs of size at most m. First of all, by Remark 2,
the following equation is established.

{(R,Li, Si, Pi,�i) is a global partial witness for ⌅}

=
�

Wi:completion of Pi

{(R,Li, Si,Wi,�i) is a global witness for ⌅}. (13)

23



Then, the deduction in (12) implies that
�

(R,Li,Si,Wi,⌥i)

Pr
⌅��[Un,⇤]

[(R,Li, Si,Wi,�i) is a global witness for ⌅] ⌅ 4mt/w(24kp)t. (14)

Next, fixing a tuple (R,Li, Si,Wi,�i) and an instantiation of �, we consider the predicate

h
(R,Li,Si,Wi,⌥i)
� (x) := {(R,Li, Si,Wi,�i) is a global witness for �[x, ⇥]}.

We omit the superscript and subscript of h when they are clear from context. We claim that h can
be implemented by a CNF of size at most

⌦m
i=1 size(Fi) ⌅ m

2. To see this, note that h(x) = 1 if for
every i ⇥ [R], Wi is a witness for ⌅ � �1 � · · · � �i⇥1. By argument in Section 6.3, this can be verified
using a CNF of size size(FLi

). Therefore, we can evaluate h using an AND over R CNFs, which is
itself a larger CNF. Therefore, we conclude that x �-fools h. That is,

���� Pr
x�Un

[h(R,Li,Si,Wi,⌥i)
� (x)]⇤ Pr

x�x
[h(R,Li,Si,Wi,⌥i)

� (x)]

���� ⌅ �. (15)

Finally, we have

Pr
⌅��[x,⇤]

[F|⌅ does not have w-partial depth-t decision tree]

⌅
�

(R,Li,Si,Wi,⌥i)

Pr
⌅��[x,⇤]

[(R,Li, Si,Wi,�i) is a global witness for ⌅]

⌅
�

(R,Li,Si,Wi,⌥i)

�+ Pr
⌅��[Un,⇤]

[(R,Li, Si,Wi,�i) is a global witness for ⌅]

⌅ 4mt/w(24kp)t + (24m)t+k
· �.

Here, the first line is due to the argument in Section 6.2 and observation (13). The second line
is due to (15). The last line holds because (14) and there are at most (24m)t+k possible tuples
(R,Li, Si,Wi,�i).

Acknowledgements

I would like to thank Avishay Tal for numerous insightful discussions during the development of the
project. I am also grateful to Lijie Chen and Avishay Tal for helpful comments on an early draft,
which helped me improve the presentation significantly.

References

[AW89] Miklós Ajtai and Avi Wigderson. Deterministic simulation of probabilistic constant
depth circuits. Adv. Comput. Res., 5:199–222, 1989.

[BIS12] Paul Beame, Russell Impagliazzo, and Srikanth Srinivasan. Approximating acˆ0 by
small height decision trees and a deterministic algorithm for #acˆ0sat. In Computational
Complexity Conference, pages 117–125. IEEE Computer Society, 2012.

[Bra10] Mark Braverman. Polylogarithmic independence fools AC 0 circuits. J. ACM,
57(5):28:1–28:10, 2010.

24



[CSS18] Ruiwen Chen, Rahul Santhanam, and Srikanth Srinivasan. Average-case lower bounds
and satisfiability algorithms for small threshold circuits. Theory Comput., 14(1):1–55,
2018.

[DETT10] Anindya De, Omid Etesami, Luca Trevisan, and Madhur Tulsiani. Improved pseudoran-
dom generators for depth 2 circuits. In Maria J. Serna, Ronen Shaltiel, Klaus Jansen,
and José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, 13th International Workshop, APPROX 2010,
and 14th International Workshop, RANDOM 2010, Barcelona, Spain, September 1-3,
2010. Proceedings, volume 6302 of Lecture Notes in Computer Science, pages 504–517.
Springer, 2010.

[DMR+21] Dean Doron, Raghu Meka, Omer Reingold, Avishay Tal, and Salil P. Vadhan. Monotone
branching programs: Pseudorandomness and circuit complexity. Electron. Colloquium
Comput. Complex., page 18, 2021.

[FK18] Michael A. Forbes and Zander Kelley. Pseudorandom generators for read-once branching
programs, in any order. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages
946–955. IEEE Computer Society, 2018.

[GMR+12] Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, and Salil P. Vadhan.
Better pseudorandom generators from milder pseudorandom restrictions. In 53rd Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick,
NJ, USA, October 20-23, 2012, pages 120–129. IEEE Computer Society, 2012.

[GMR13] Parikshit Gopalan, Raghu Meka, and Omer Reingold. DNF sparsification and a faster
deterministic counting algorithm. Comput. Complex., 22(2):275–310, 2013.

[GW13] Oded Goldreich and Avi Wigderson. On the size of depth-three boolean circuits for
computing multilinear functions. Electron. Colloquium Comput. Complex., page 43,
2013.

[Has89] John Hastad. Almost optimal lower bounds for small depth circuits. Adv. Comput. Res.,
5:143–170, 1989.

[Hås14] Johan Håstad. On the correlation of parity and small-depth circuits. SIAM J. Comput.,
43(5):1699–1708, 2014.

[HHTT21] Pooya Hatami, William Hoza, Avishay Tal, and Roei Tell. Fooling constant-depth
threshold circuits. Electron. Colloquium Comput. Complex., page 2, 2021.

[HLV18] Elad Haramaty, Chin Ho Lee, and Emanuele Viola. Bounded independence plus noise
fools products. SIAM J. Comput., 47(2):493–523, 2018.

[HS19] Prahladh Harsha and Srikanth Srinivasan. On polynomial approximations to AC. Ran-
dom Struct. Algorithms, 54(2):289–303, 2019.

[IMP12] Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algo-
rithm for ac0. In SODA, pages 961–972. SIAM, 2012.

25



[IMZ12] Russell Impagliazzo, Raghu Meka, and David Zuckerman. Pseudorandomness from
shrinkage. In 53rd Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 111–119. IEEE
Computer Society, 2012.

[Kel21] Zander Kelley. An improved derandomization of the switching lemma. In Samir Khuller
and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT
Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages
272–282. ACM, 2021.

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier
transform, and learnability. J. ACM, 40(3):607–620, 1993.

[LV96] Michael Luby and Boban Velickovic. On deterministic approximation of DNF. Algo-
rithmica, 16(4/5):415–433, 1996.

[LV20] Chin Ho Lee and Emanuele Viola. More on bounded independence plus noise: Pseudo-
random generators for read-once polynomials. Theory Comput., 16:1–50, 2020.

[MRT19] Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom generators for width-3
branching programs. In Moses Charikar and Edith Cohen, editors, Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix,
AZ, USA, June 23-26, 2019, pages 626–637. ACM, 2019.

[MZ13] Raghu Meka and David Zuckerman. Pseudorandom generators for polynomial threshold
functions. SIAM J. Comput., 42(3):1275–1301, 2013.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci.,
49(2):149–167, 1994.

[ST19] Rocco A. Servedio and Li-Yang Tan. Improved pseudorandom generators from pseudo-
random multi-switching lemmas. In Dimitris Achlioptas and László A. Végh, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, APPROX/RANDOM 2019, September 20-22, 2019, Massachusetts Institute of
Technology, Cambridge, MA, USA, volume 145 of LIPIcs, pages 45:1–45:23. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[Tal17] Avishay Tal. Tight bounds on the fourier spectrum of AC0. In Ryan O’Donnell, editor,
32nd Computational Complexity Conference, CCC 2017, July 6-9, 2017, Riga, Latvia,
volume 79 of LIPIcs, pages 15:1–15:31. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2017.

[TX13] Luca Trevisan and Tongke Xue. A derandomized switching lemma and an improved
derandomization of AC0. In Proceedings of the 28th Conference on Computational Com-
plexity, CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, pages 242–247. IEEE
Computer Society, 2013.

[Vad12] Salil P. Vadhan. Pseudorandomness. Found. Trends Theor. Comput. Sci., 7(1-3):1–336,
2012.

[Vio21] Emanuele Viola. AC0 unpredictability. ACM Trans. Comput. Theory, 13(1):5:1–5:8,
2021.

26


