
Implicit Learning in Deep Models: Enhancing Extrapolation
Power and Sparsity

Alicia Tsai

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-214
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-214.html

December 14, 2024

Copyright © 2024, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Implicit Learning in Deep Models: Enhancing Extrapolation Power and Sparsity

By

Alicia Tsai

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Laurent El Ghaoui, Chair
Professor Alper Atamtürk

Professor Murat Arcak

Fall 2024

Implicit Learning in Deep Models: Enhancing Extrapolation Power and Sparsity

Copyright 2024

by

Alicia Tsai

1

Abstract

Implicit Learning in Deep Models: Enhancing Extrapolation Power and Sparsity

by

Alicia Tsai

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Laurent El Ghaoui, Chair

This thesis investigates the transformative potential of implicit models in deep learning, with
a focus on their capabilities to tackle challenges in extrapolation, sparsity, and robustness.
Unlike traditional neural networks that rely on predefined, layer-by-layer architectures, implicit
models define outputs through equilibrium equations, enabling dynamic adaptability and
compact representations. We present a comprehensive framework for understanding implicit
models, encompassing theoretical foundations of well-posedness, algorithms for constrained
sparsification, and robustness analyses. The versatility and effectiveness of implicit models are
demonstrated across diverse tasks, including mathematical operations, temporal forecasting,
and geographical extrapolation, where they consistently outperform non-implicit baselines,
particularly under distribution shifts. Key contributions include the introduction of the
sensitivity matrix and error bounds, which provide interpretable robustness measurements
and facilitate the generation of adversarial attacks. We also highlight depth adaptability
and closed-loop feedback as fundamental mechanisms driving the superior extrapolation
performance of implicit models. This work establishes implicit models as a robust, scalable,
and interpretable alternative paradigm for neural network design, with significant implications
for addressing real-world challenges involving noisy, sparse, and out-of-distribution data.

i

To my family and my lovely fiancé.

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1

2 Implicit Learning in Deep Models 4
2.1 Introduction . 4
2.2 Implicit prediction rules . 5
2.3 System Well-posedness . 7
2.4 Composition of Implicit Models . 11
2.5 Implicit Models of Deep Neural Networks . 15
2.6 Conclusion . 19

3 Constrained Implicit Learning 21
3.1 Introduction . 21
3.2 Constrained Implicit Learning Framework 22
3.3 Algorithm for Constrained Implicit Model Sparsification 25
3.4 Numerical Experiments . 32
3.5 Conclusion . 38

4 Robustness Analysis via Implicit Representation 40
4.1 Introduction . 40
4.2 Robustness bound . 41
4.3 Sensitivity Matrix . 45
4.4 Adversarial Attacks via Implicit Representation 52
4.5 Conclusion . 56

5 The Extrapolation Power of Implicit Models 58
5.1 Introduction . 58
5.2 Problem Setup . 60

iii

5.3 Numerical Experiments . 67
5.4 Depth Adaptability & Feedback Loop . 74
5.5 Conclusion . 78

Bibliography 81

iv

List of Figures

2.1 Left: equation x = ϕ(Ax + b) has two or no solutions, depending on the sign of b.
Right: solution is unique for every b. 8

2.2 Cascade connection of two implicit models to be read from right to left, consistent
with matrix-vector multiplication rules. 12

2.3 A max-pooling operation: the smaller image contains the maximal pixel values of
each colored area. cite source . 18

2.4 Building block of residual networks. 19
2.5 The model matrix A for a 20-layer residual network. 20

3.1 A diagram view of an implicit model, where Z is the pre-activation state “before”
passing through the activation function ϕ and X is the post-activation state “after”
passing through ϕ. 22

3.2 Performance of different κ at each iteration on CIFAR-100. 34
3.3 Performance of different κ at each iteration on 20NewsGroup. 35
3.4 Performance of different κ at each iteration with warm starting on CIFAR-100. . 36
3.5 Performance of different κ at each iteration with warm starting on 20NewsGroup. 36
3.6 Performance of different κ trained with partial data on CIFAR-100. 37
3.7 Performance of different κ trained with partial data on 20NewsGroup. 38

4.1 Sensitivity matrix for a 3-layer neural network with q = 10 outputs and n = 1094
states. The matrix has dimension q × n (10× 1094 in this example) 46

4.2 Sensitivity matrix for a 3-layer neural network with q = 10 outputs and n = 1094
states. 46

4.3 Visualization of bounds on the state vector x for different methods. The plots
depict the implicit box bounds (blue), interval propagation bounds (red), and
implicit LP bounds (green) for selected dimensions of the state vector. 51

4.4 Left: Sensitivity values for a feed-forward network trained on MNIST, visualized
for the class “digit 0.” Darker regions indicate higher sensitivity to input per-
turbations, showing which pixels significantly influence the network’s predictions.
Right: Sensitivity values for a ResNet-20 model trained on CIFAR-10, visualized
for the class “airplane.” Color intensity highlights the areas most sensitive to
perturbations, with high sensitivity values concentrated on key image regions
associated with the class. 53

v

4.5 Top: adversarial samples from MNIST. On the left are dense attacks with small
perturbations and on the right are sparse attacks with random perturbations
(perturbed pixels are marked as red). Bottom: example sparse attack on CIFAR-
10. The left ones are cleaned images, the middle ones are perturbed images, and
the right ones mark the perturbed pixels in red for higher visibility. 55

4.6 Example attack on CIFAR dataset. Top: clean data. Bottom: perturbed data. . 56
4.7 Example attack on MNIST dataset. Left: non-sparse attack. Right: sparse attack. 56

5.1 An implicit block. We replace the linear cell in a vanilla RNN with an implicit
block not distinguishing between the output and the recurrent hidden state. . . 61

5.2 Time series of a 21-day rolling average of AMC stock volatility plotted on a log
scale, highlights a drastic volatility increase at the beginning of our validation cutoff. 64

5.3 Geometric visualization of one set of training features (xi, yi, zi, pi, θi) and its
corresponding labels (X, Y , Z, T). The triangles correspond to stations and the
star corresponds to a source. 65

5.4 The map shows the training set region colored in blue, roughly corresponding to
the Pacific Ring of Fire. The two red areas are the testing set regions for k = 3. 66

5.5 Test MSE for the identity function task. MSE for MLP and Transformers model
increases as the distribution shift hyper-parameter κ increases. 68

5.6 Test Log(MSE) for the arithmetic operations. The implicit model strongly out-
performs all other models on OOD data. 68

5.7 Training loss (MSE) for rolling average task. Implicit models maintain close to
constant loss (↓) across shifts. 70

5.8 Test accuracy for rolling argmax task. ImplicitRNN and regular implicit model
achieve the best results across shifts. 71

5.9 The implicitRNN most accurately models spike magnitudes. 72
5.10 Extrapolation comparison between EikoNet and implicit model on the location

prediction task as the extrapolation factor increases. The implicit model has the
general edge in terms of MSE loss. 73

5.11 Breaking down the prediction values, we observe that the implicit model only
outperforms EikoNet in longitude and latitude predictions. 73

5.12 Relationship between model performance during training and the number of
iterations. 75

5.13 Growth of implicit models as the input complexity increases in the arithmetic
tasks and rolling argmax. 75

5.14 A matrix and node diagram representation of one iteration through the implicit
model: Ax + Bu. In red, we have the weights that induce feedback in A, and in
yellow, the non-feedback weights. 77

5.15 Implicit models benefit from closed-loop feedback specifically in harder extrapola-
tion tasks. 79

vi

List of Tables

3.1 Sparsity levels and accuracy on the CIFAR-100 and 20NewsGroup data. 33
3.2 Comparison between sparsity levels and accuracy on the CIFAR-100 and 20News-

Group data with exisiting benchmark. 34
3.3 Training computational speed up by using warm-start and partial data matrix U . 37

4.1 Experimental results of attack success rate against percentage of perturbed inputs
on MNIST and CIFAR-10 (10000 samples from test set). 54

5.1 Testing loss of our implicit model and five MLP models with specific activations
on the identity function task. We observe the implicit model outperforms the
MLP across activation functions. Description of the activation functions in the
appendix. 67

5.2 Test MSE table of two MLPs and our implicit model on arithmetic operations.
The best MLP for both tasks was with ReLU6 activation. 69

5.3 Train and test metrics (↓) in forecasting time series with sudden changes for
synthetic (spiky time series) and real-world data (AMC stock volatility). Our
architectures vary between tasks (see Table 5.5) but the implicit model outperforms
all fine-tuned models. 72

5.4 Testing metrics (MSE ↓ for the arithmetic operations and rolling average, accuracy
↑ for rolling argmax) for a distribution shift of 100 comparing an implicit model
trained with and without closed-loop feedback. 78

5.5 Details of the explicit and implicit network architectures used in the experiments. 80

vii

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my advisor, Professor
Laurent El Ghaoui. His unwavering encouragement and support throughout my Ph.D.
have been a constant source of motivation. I deeply admire his intellectual curiosity and
entrepreneurial spirit, which have profoundly shaped my academic journey. Beyond guiding my
research, he has inspired me to thrive as a researcher who not only explores innovative ideas but
also collaborates effectively, leads teams, and communicates research with audiences beyond
our field. His new chapter as Dean at VinUniversity opened extraordinary opportunities for
me—spending nearly half of my Ph.D. in Vietnam and traveling to many countries. These
experiences have enriched my life in ways I will always cherish. His push to bring research
closer to solving real-world problems has been instrumental in shaping my perspective and
aspirations.

I am incredibly thankful to my thesis committee members, Professor Alper Atamtürk and
Professor Murat Arcak. Alper’s advice on the implicit modeling project directly contributed
to the sparsification work in Chapter 3, and I am grateful for his warm welcome to the
Berkeley chapter of the AI Research Institute for Advances in Optimization (AI4OPT). Murat
provided invaluable guidance on early drafts of the robustness project in Chapter 4 and
recommended me to serve as the organizer for the EECS Visit Day for the Control, Intelligent
Systems, and Robotics Program, which was an enriching experience. I also thank Professor
Khalid M. Mosalam for his role on my qualification committee. Khalid introduced me to
the field of Earthquake Engineering, and our early collaborations taught me the value of
interdisciplinary work, which has greatly influenced my research approach.

I especially want to thank my mentors who guided and inspired me even before my
Ph.D. journey began—Professor Jason Hsu, Dr. Wenwey Hseush, Professor Shou-De Lin,
Professor Ling-Chieh Kung, and Professor Snow Tseng from National Taiwan University.
Their encouragement and belief have been a cornerstone of my academic and professional
growth, providing me with the foundation to pursue my dreams and thrive throughout my
career.

I am grateful to the El Ghaoui Research Group—Forest Yang, Armin Askari, Zihao Chen,
Fangda Gu, and Geoff Negiar—for their camaraderie and the fun, often random, conversations
about Ph.D. life at Berkeley. My heartfelt thanks also go to my collaborators, Selim Gunay
and Lindsay Chuang, who taught me so much about structural engineering and seismology.

During my Ph.D., I was fortunate to intern at leading industry research labs—Amazon
Alexa AI, Apple Research, and Google DeepMind. I am grateful for the brilliant colleagues I
had the privilege to collaborate with and for the knowledge I gained from them.

A huge thanks to Zong-Yen Wu and Ricky Liu for being my pillars of support during
my Ph.D. and for keeping our 1903 apartment filled with life and delicious food. To my
friends at Berkeley—Mu-Ti, Tobey, Alice, Ming-Yu, Shangpo, Lili, Yi-Hsuan, Ping-Huang,
Jeffery, Szu-Chi, Alex, Angela, Jennifer, and the BATS community—thank you for making

viii

my Berkeley journey so memorable. To my beloved friends across the globe—Chava and
Sherry—thank you for the joy, warmth, and friendship you have shared with me for nearly
15 years. Your presence in my life has been a constant source of happiness.

I am also deeply inspired by the friends and colleagues who believe in community outreach.
Chi-Yi, Wendy, Sara, Melissa, Sarah, and Yinghan, your dedication to making a positive
impact has been immensely inspiring. Organizations such as Women in Data Science Taipei,
Women in Machine Learning, Taiwan Data Science Association, and Delta Analytics have
been incredible sources of learning and growth.

Lastly, I thank my family. My parents, Tzu-Hsien and Ming-Chao, have been my strongest
supporters, always believing in me and showering me with unconditional love. To my fiancé,
Chien-Wei, thank you for always being by my side, especially during the lowest points of my
Ph.D. when my anxiety was at its peak. Your strength and support have been my anchor.

To everyone who has been part of this journey, thank you for riding it with me and
making it a truly unforgettable chapter of my life.

1

Chapter 1

Introduction

Artificial Neural Networks (ANNs) have revolutionized machine learning by providing a
framework for approximating complex, non-linear functions. Inspired by the structure of
biological neurons, ANNs consist of layers of interconnected nodes that process input data
and extract meaningful representations. While shallow networks are effective for some
problems, their ability to model complex data is limited. The introduction of Deep Learning,
characterized by networks with many layers, has dramatically expanded the capability of
neural networks across domains like computer vision, natural language processing, and
time-series analysis.

Deep learning leverages hierarchical feature extraction, where lower layers capture simple
patterns while deeper layers extract abstract representations. This capability has enabled
breakthroughs in areas like image classification, speech recognition, and autonomous systems.
However, despite their widespread success, traditional feed-forward deep neural networks
(DNNs) face challenges, including their reliance on fixed architectures, difficulty in extrapo-
lating to out-of-distribution (OOD) data, and sensitivity to adversarial perturbations.

Implicit models represent a fundamental shift in neural network design. Unlike traditional
deep neural networks (DNNs), which process data through a predefined sequence of layers,
implicit models determine outputs by solving equilibrium equations that define the relation-
ships between inputs and internal states. This approach allows for dynamic adaptation to
the complexity of tasks, as the model’s depth is not fixed but emerges from the equilibrium
computation.

Examples of implicit models span a diverse range of applications and designs. Physics-
Informed Neural Networks (PINNs) integrate physical laws directly into the learning process,
ensuring that predictions adhere to known scientific principles. By embedding partial
differential equations into their architecture, PINNs solve complex physical problems while
maintaining fidelity to established theories [76]. While PINNs incorporate physical constraints
via embedded equations, the implicit models in this thesis generalize this approach by defining
their behavior through equilibrium equations, enabling them to represent a wide variety

CHAPTER 1. INTRODUCTION 2

of systems beyond physical laws. Boltzmann Machines, introduced by Geoffrey Hinton
[47], consist of symmetrically connected, neuron-like units that make stochastic decisions
about their states. This symmetric connectivity allows them to model complex probability
distributions and perform associative memory tasks. In contrast, the implicit models explored
in this thesis leverage asymmetric weight matrices, providing a more dynamic framework for
learning and adaptation. This asymmetry facilitates improved generalization and robustness
under distribution shifts.

Deep Equilibrium Models (DEQs) closely align with the equilibrium-based approach of
the implicit models studied here. DEQs define the output of the network as the fixed point
of a single-layer transformation, effectively simulating infinite-depth networks without the
computational burden of stacking layers. This characteristic makes DEQs particularly efficient
for capturing long-range dependencies [8]. Similarly, Neural Ordinary Differential Equations
(ODEs) extend the equilibrium framework to continuous-time dynamics by parameterizing
the derivative of the hidden state using neural networks. This approach offers a principled
method for modeling time-series data and dynamic systems with continuous-time behavior,
bridging the gap between traditional deep learning and differential equations [16].

The implicit models discussed above share foundational principles with those explored
in this thesis, particularly in their reliance on equilibrium-based formulations and their
adaptability across diverse tasks. Together, these examples highlight the versatility of implicit
models as a unifying paradigm. They demonstrate how equilibrium-driven frameworks provide
a robust foundation for solving complex, real-world problems and offer insights into the
development of scalable, interpretable, and adaptable neural networks.

This thesis discusses the theoretical properties and practical applications of implicit
models, contrasting them with traditional deep learning architectures and investigating their
potential to overcome the limitations of standard neural networks. The remainder of this
thesis is organized as follows:

Chapter 2: Implicit Learning in Deep Models This chapter introduces implicit
prediction rules and explores the theoretical underpinnings of implicit models, including
system well-posedness and composition. We highlight how implicit models extend and
generalize traditional neural network architectures, laying the groundwork for their application
in deep learning.

Chapter 3: Constrained Implicit Learning Here, we develop a constrained implicit
learning framework designed to sparsify neural networks by imposing constraints on their
structure. An efficient algorithm for network sparsification is presented, along with numerical
experiments that demonstrate the effectiveness of the method in maintaining model accuracy
while reducing complexity.

CHAPTER 1. INTRODUCTION 3

Chapter 4: Robustness Analysis via Implicit Representation This chapter discusses
the robustness of implicit models against adversarial attacks. We introduce the sensitivity
matrix, a novel tool for evaluating input-output robustness. The chapter also explores how
this matrix can be leveraged for generating adversarial samples and improving model defenses.

Chapter 5: The Extrapolation Power of Implicit Models The focus shifts to the
extrapolation capabilities of implicit models, essential for generalizing beyond training data.
Through a series of mathematical and real-world tasks, including time-series forecasting and
earthquake location prediction, we demonstrate the adaptability and superior performance of
implicit models in out-of-distribution scenarios.

By investigating the theoretical and practical advantages of implicit models, this thesis
aims to contribute to the growing body of work that seeks to make neural networks more
robust, efficient, and generalizable.

4

Chapter 2

Implicit Learning in Deep Models

2.1 Introduction

Deep learning has revolutionized artificial intelligence by achieving remarkable success across
diverse domains, including computer vision, natural language processing, and scientific
computing [59, 32]. At the heart of traditional deep learning models lies the explicit layer-
by-layer architecture, where computations flow sequentially from input to output through a
fixed-depth network [43]. While effective, this rigid structure can struggle to generalize to
complex, dynamic, or out-of-distribution data, limiting its adaptability and robustness [78].

Implicit learning introduces a paradigm shift in how deep models are designed and
optimized. Instead of relying on predefined, feedforward architectures, implicit models define
their behavior through equilibrium equations, where the outputs of intermediate layers are
solutions to implicit functions [7, 25]. These models, often referred to as equilibrium or
implicit models, represent a departure from traditional architectures by focusing on the
steady-state behavior of the network rather than its depth-dependent structure [2].

This equilibrium formulation offers several key advantages. First, implicit models adapt
their effective depth to the complexity of the task, solving the equilibrium equation iteratively
until convergence [42]. This flexibility allows them to model more intricate dependencies
compared to their explicit counterparts. Second, implicit models inherently incorporate
feedback mechanisms within their computations, enabling recurrent information flow during
forward passes. Such feedback loops mirror biological neural systems and improve robustness
and stability under challenging conditions, such as adversarial attacks or distribution shifts
[61, 79]. By reframing neural networks as implicit systems, this approach unlocks new
opportunities for designing models that are both robust and efficient, paving the way for
further exploration into their theoretical foundations and practical applications in real-world
scenarios [22, 50].

The relationship between implicit models and physics-based formulations has been explored
in the context of differential equations. Physics-inspired models like Neural ODEs [17] and

CHAPTER 2. IMPLICIT LEARNING IN DEEP MODELS 5

Hamiltonian Neural Networks [39] leverage continuous-time dynamics to encode conservation
laws and stability directly into their learning processes. These models share common ground
with implicit methods in their ability to model long-term dependencies and provide robust
solutions, particularly for applications in dynamical systems and scientific computing [50].

Boltzmann machines, a class of stochastic recurrent neural networks, have historically
been designed with symmetric weight matrices to ensure convergence. Recent works have
explored the use of asymmetric weight matrices to allow for richer representational power
while maintaining stability [1, 46]. The equilibrium nature of these models aligns closely
with the fixed-point solutions of implicit models, offering a promising avenue for further
exploration in combining stochasticity and implicit dynamics.

Recent development of Deep equilibrium models, introduced by Bai et al. [7], are a pio-
neering class of implicit models that solve for a fixed-point equilibrium instead of propagating
through explicit layers. These models allow for infinite depth at a fixed computational cost
and demonstrate state-of-the-art performance in tasks such as sequence modeling and image
recognition. DEQs have also been extended to incorporate memory efficiency and more robust
solvers, enhancing their practical usability [25].

By integrating insights from these related fields, this work advances the understanding of
implicit learning frameworks. Specifically, we investigate the unique properties of implicit
models, including their adaptability to complex data distributions, their ability to incorporate
feedback loops, and their robustness under adversarial or noisy conditions. These attributes
position implicit models as a versatile and efficient framework for addressing the limitations
of traditional deep neural networks, particularly in safety-critical and dynamically evolving
environments [61, 42].

2.2 Implicit prediction rules

This thesis explores a novel class of deep learning models that utilize implicit prediction
rules. Unlike traditional neural networks, which are based on a recursive, layer-by-layer
computation, implicit models predict outcomes by solving a fixed-point equation involving a
single “state” vector x ∈ Rn. The prediction process is defined as follows: for a given input
vector u, the predicted output ŷ(u) is computed as:

ŷ(u) = Cx + Du (Prediction Equation) (2.1a)

x = ϕ(Ax + Bu) (Equilibrium Equation) (2.1b)

Here, ϕ : Rn → Rn represents a nonlinear activation function, and the matrices A,B,C,D
contain the model parameters.

In this framework, the vector x ∈ Rn serves as a “state” that encodes n latent features
extracted from the input u through the equilibrium equation (2.1b). Unlike explicit models,

CHAPTER 2. IMPLICIT LEARNING IN DEEP MODELS 6

which compute this state via forward propagation through a fixed number of layers, implicit
models only provide x implicitly by solving the equilibrium equation. This flexibility enables
implicit models to adaptively adjust their effective depth based on the input data, an
important distinction highlighted in prior works such as [7] and [2].

However, solving the equilibrium equation is not always straightforward. The equation
may lack a solution or fail to be unique, raising critical concerns about well-posedness. For
simplicity, the formulation above excludes bias terms. These can be easily incorporated by
increasing the input vector to (u, 1), thereby increasing the column dimension of B by one.
This minor adjustment maintains the generality of the framework.

Interestingly, implicit models encompass most current neural network architectures as
special cases. For instance, recurrent neural networks (RNNs) and certain residual networks
can be reformulated as implicit models under specific constraints [17]. Implicit models,
however, represent a significantly broader class. They offer higher representational capacity,
as measured by the number of trainable parameters for a given hidden feature dimension.
Additionally, implicit models naturally accommodate feedback loops and cyclic dependencies
within the network, which are typically disallowed in conventional deep learning paradigms
[9, 17]. This implicit approach to learning introduces a fundamentally different perspective
on model design, enabling more efficient, robust, and scalable solutions for tasks involving
dynamic or complex data distributions.

Notation. Throughout this thesis, we adopt the following notation for matrices, vectors,
and associated operations. For a matrix U , |U | denotes the matrix obtained by taking the
absolute value of each entry of U , while U+ represents the matrix formed by retaining only
the positive part of each entry. For a vector v, diag(v) refers to the diagonal matrix with
the entries of v along its diagonal. Conversely, for a square matrix V , diag(V) denotes the
vector formed by the diagonal entries of V .

The vector 1 represents a vector of ones, with its size inferred from context. The Hadamard
(elementwise) product of two n-vectors x and y is denoted by x⊙ y. To represent the sum of
the largest k entries of a vector z, we use the notation sk(z).

For a matrix A and integers p, q ≥ 1, the induced matrix norm is defined as:

∥A∥p→q = max
ξ
∥Aξ∥q subject to ∥ξ∥p ≤ 1.

In particular, when p = q =∞, this reduces to the l∞-induced norm of A, also referred to as
the max-row-sum norm, expressed as:

∥A∥∞ = max
i

∑
j

|Aij|.

We compactly represent the set {1, . . . , L} as [L]. For an n-vector z partitioned into L
blocks, where z = (z1, . . . , zL) with zl ∈ Rnl for l ∈ [L] and n1 + . . . + nL = n, the L-vector

CHAPTER 2. IMPLICIT LEARNING IN DEEP MODELS 7

of norms is defined as:

η(z) := (∥z1∥p1 , . . . , ∥zL∥pL)⊤. (2.2)

Finally, for any square, non-negative matrix M , there exists a real eigenvalue that is
larger than or equal to the modulus of all other eigenvalues. This eigenvalue, known as the
Perron-Frobenius eigenvalue [66], is denoted by λPF (M).

2.3 System Well-posedness

Blockwise Lipschitz (BLIP) Continuity Condition

In this section, we focus on activation maps ϕ that satisfy the Blockwise Lipschitz (BLIP)
continuity condition, a property commonly held by popular activation functions.

Definition 1 (Blockwise Lipschitz (BLIP) Condition). An activation map ϕ satisfies the
BLIP condition if it adheres to the following two properties:

1. Blockwise Property: The map ϕ operates in a blockwise fashion. Specifically, there
exists a partition of n as n = n1 + . . . + nL, such that for any vector z partitioned into
corresponding blocks z = (z1, . . . , zL), where zl ∈ Rnl for l ∈ [L], the map ϕ can be
written as:

ϕ(z) = (ϕ1(z1), . . . , ϕL(zL)),

where ϕl : Rnl → Rnl are block-specific maps for l ∈ [L].

2. Lipschitz Continuity: Each block-specific map ϕl is Lipschitz-continuous with a
constant γl > 0, with respect to the lpl-norm for some integer pl ≥ 1:

∀u, v ∈ Rnl , ∥ϕl(u)− ϕl(v)∥pl ≤ γl∥u− v∥pl .

A special case of interest is the Componentwise Non-Expansive (CONE) maps, character-
ized by nl = 1 and γl = 1 for all l ∈ [L].

Definition 2 (Componentwise Non-Expansive (CONE) Map). An activation map ϕ is said
to be a CONE map if it satisfies the following condition:

∀u, v ∈ Rn, |ϕ(u)− ϕ(v)| ≤ |u− v|, (2.3)

where the inequality and absolute values are taken componentwise.

Examples of CONE maps include: ReLU (ϕ(x) = max(0, x)), Leaky ReLU and its variants,
Hyperbolic tangent (tanh), Sigmoid function, all applied componentwise to vector inputs.

CHAPTER 2. IMPLICIT LEARNING IN DEEP MODELS 8

Our framework also accommodates maps that are not strictly componentwise, such as the
softmax function. The softmax operation acts on an n-vector z as:

SoftMax(z) :=

(
ezi∑
j e

zj

)
i∈[n]

. (2.4)

The softmax function is 1-Lipschitz-continuous with respect to the l1-norm [26], making it
compatible with the proposed framework despite its non-componentwise nature.

Well-posed Systems

We analyze the prediction rule (2.1a), which maps an input u ∈ Rp to a predicted output
ŷ(u) ∈ Rq. The equilibrium equation (2.1b), which governs the hidden state x, does not
always guarantee a well-defined or unique solution. For example, Figure 2.1 illustrates a
scalar case where multiple solutions can arise.

To ensure that the state x has a unique solution, we impose a well-posedness condition
on the n× n matrix A, formalized as follows:

Definition 3 (Well-posedness Property). A matrix A ∈ Rn×n is said to be well-posed for
the activation map ϕ (denoted A ∈WP(ϕ)) if, for any n-vector b, the equation:

x = ϕ(Ax + b) (2.5)

admits a unique solution x ∈ Rn.

z

x

z = Ax + b

x = max(0, z)

b < 0

b > 0

z

x

z = Ax + b

x = max(0, z)

b < 0

b > 0

Figure 2.1: Left: equation x = ϕ(Ax + b) has two or no solutions, depending on the sign of b.
Right: solution is unique for every b.

There are several classes of matrices that satisfy the well-posedness property. One
notable example is the class of strictly upper-triangular matrices, which are well-posed for

CHAPTER 2. IMPLICIT LEARNING IN DEEP MODELS 9

any activation map that acts component-wise. This class naturally arises when modeling
feedforward neural networks within the framework of implicit models, as the strictly upper-
triangular structure ensures the absence of feedback loops, simplifying the solution of the
equilibrium equation.

Tractable Sufficient Conditions for Well-posedness

Our goal is to identify numerically tractable constraints on A that ensure it satisfies the
well-posedness property.

Assume that ϕ is a BLIP map as defined in (1). Partition the matrix A according to the
tuple (n1, . . . , nL) into blocks Aij ∈ Rni×nj for 1 ≤ i, j ≤ L. Using this partition, define an
L× L matrix of induced norms N(A, γ) ∈ RL×L

+ , where the elements are given for i, j ∈ [L]
by:

(N(A, γ))ij := γi∥Aij∥pj→pi = γi max
ξ
∥Aijξ∥pi subject to ∥ξ∥pj ≤ 1. (2.6)

In the case of CONE maps as defined in (2), the vector γ is the all-ones vector, and the
matrix N(A, γ) simplifies to |A|, the matrix of element-wise absolute values.

The sufficient condition for well-posedness, stated next, relies on the contraction mapping
theorem [82, p.83].

Theorem 1 (Perron-Frobenius (PF) Sufficient Condition for Well-posedness for BLIP
Activation). Assume that ϕ satisfies the BLIP condition (1). Then, the matrix A is well-
posed with respect to ϕ if:

λPF (N(A, γ)) < 1, (2.7)

where N(A, γ) is the matrix of induced norms defined in (2.6). Under this condition, for any
n-vector b, the solution to the equation (2.5) can be computed using the fixed-point iteration:

x(0) = 0, x(t + 1) = ϕ(Ax(t) + b), t = 0, 1, 2, (2.8)

Moreover, if ϕ is a CONE map as defined in (2), the PF condition (2.7) simplifies to:

λPF (|A|) < 1.

Proof of Theorem (1). Let b ∈ Rn. We aim to show that for the Picard iteration (2.8), the
following holds for every t ≥ 1:

η(x(t + 1)− x(t)) ≤ N(A, γ)η(x(t)− x(t− 1)),

CHAPTER 2. IMPLICIT LEARNING IN DEEP MODELS 10

where η is the vector of norms defined in (2.2). For every l ∈ [L] and t ≥ 0, we have:

[η(x(t + 1)− x(t))]l = ∥ϕl([Ax(t) + b]l)− ϕl([Ax(t− 1) + b]l)∥pl (from (2.8))

≤ γl∥[A(x(t)− x(t− 1))]l∥pl

= γl

∥∥∥∥∥∥
∑
h∈[L]

Alh(x(t)− x(t− 1))h

∥∥∥∥∥∥
pl

≤ γl
∑
h∈[L]

∥Alh∥ph→pl∥xh(t)− xh(t− 1)∥ph

= [N(A, γ)η(x(t)− x(t− 1))]l,

which establishes the desired bound, where M := N(A, γ).

Now, assume that λPF (M) < 1, as posited in Theorem 1. By the Perron-Frobenius theo-
rem, I−M is non-singular, and all other eigenvalues λ of N(A, γ) satisfy |λ| ≤ λPF (N(A, γ)) <
1.

To prove the existence of a solution to the equilibrium equation, we show that the sequence
of Picard iterates is Cauchy. For every t, τ ≥ 0, we have:

η(x(t + τ)− x(t)) ≤
t+τ∑
k=t

Mkη(x(1)− x(0)) ≤M t

τ∑
k=0

Mkη(x(1)− x(0)).

Since M t converges to 0 as t → +∞, the sequence of Picard iterates is Cauchy. Define
w ∈ RL

+ as:

w :=
+∞∑
k=0

Mkη(x(1)− x(0)) = (I −M)−1η(x(1)− x(0)).

It follows that η(x(t + τ)− x(t)) → 0 as t → +∞, which implies that {x(t)} converges to
x ∈ Rn, satisfying x = ϕ(Ax + b). This proves the existence of a solution.

To prove uniqueness, suppose x1, x2 ∈ Rn are two solutions to the equilibrium equation.
By the theorem’s hypothesis:

η(x1 − x2) ≤Mη(x1 − x2) ≤Mkη(x1 − x2), ∀k ≥ 1.

As Mk → 0 as k → +∞, it follows that x1 = x2, establishing uniqueness.

We now discuss several important observations and implications of the well-posedness
conditions and the PF sufficient condition.

Remark 1. The fixed-point iteration (2.8) exhibits linear convergence. Each iteration involves
a matrix-vector product, making the computational complexity of solving the equilibrium
equation comparable to a forward pass through a network of similar size. This computational
efficiency highlights the practical feasibility of using implicit models in real-world scenarios.

CHAPTER 2. IMPLICIT LEARNING IN DEEP MODELS 11

Remark 2. The Perron-Frobenius (PF) condition λPF (N(A, γ)) < 1 provides a strong
guarantee of well-posedness but is not convex in A. To address this limitation, the convex
condition ∥N(A, γ)∥∞ < 1 can serve as a sufficient alternative. This sufficiency follows from
the inequality:

∥M∥∞ ≥ λPF (|M |),
which holds for any square matrix M . The convex condition offers a more tractable approach
for practical verification of well-posedness.

Remark 3. The PF condition in Theorem 1 can be conservative in certain cases. For
instance, consider triangular matrices, which often arise in feedforward architectures. A
triangular matrix A is well-posed with respect to the ReLU activation function if and only if
diag(A) < 1, as established in (2). For such matrices, the equilibrium equation can be solved
explicitly via the backward recursion:

xn =
(bn)+

1− Ann

, xi =
1

1− Aii

(
bi +

∑
j>i

Aijxj

)
+

, i = n− 1, . . . , 1.

Notably, such matrices may violate the PF condition λPF (|A|) < 1. For example, if A11 < −1,
we have λPF (|A|) > 1, demonstrating that the PF condition can be overly restrictive.

Remark 4. The well-posedness property and the PF sufficient condition exhibit invariance
under row and column permutations, provided ϕ acts componentwise. Specifically, if A is well-
posed with respect to a componentwise CONE map ϕ, then for any permutation matrix P , the
matrix PAP⊤ is also well-posed with respect to ϕ. Similarly, the condition λPF (N(A, γ)) < 1
remains invariant under such permutations. This invariance extends naturally to the more
general BLIP case, emphasizing the flexibility of the framework in modeling complex systems.

In summary, the well-posedness property provides a crucial foundation for the implicit
modeling framework, ensuring the existence and uniqueness of solutions to equilibrium
equations. The PF sufficient condition λPF (N(A, γ)) < 1, while conservative in some cases,
offers a practical and numerically efficient approach to verifying well-posedness, particularly
when paired with convex relaxations such as ∥N(A, γ)∥∞ < 1. Furthermore, the invariance of
well-posedness under row and column permutations highlights the flexibility of the framework
in accommodating different structural representations. These results not only establish a
robust theoretical foundation but also highlight the practical feasibility of implicit models.

2.4 Composition of Implicit Models

Implicit models can be naturally composed using matrix algebra, allowing for flexible and
modular designs, as illustrated in Figure 2.2. In certain cases, the structure of the composition
ensures that well-posedness is preserved, as shown in the following result.

CHAPTER 2. IMPLICIT LEARNING IN DEEP MODELS 12

(
A2 B2

C2 D2

)
ϕ2

ŷ2(u1)

z2 x2 (
A1 B1

C1 D1

)
ϕ1

u2 = ŷ1(u1)
u1

z1 x1

Figure 2.2: Cascade connection of two implicit models to be read from right to left, consistent with
matrix-vector multiplication rules.

Theorem 2 (Well-posedness of Block-Triangular Matrices with Componentwise Activation).
Assume that the activation map ϕ acts componentwise. Consider the upper block-triangular
matrix:

A :=

(
A11 A12

0 A22

)
,

where Aii ∈ Rni×ni for i = 1, 2. The matrix A is well-posed with respect to ϕ if and only if
the diagonal blocks A11 and A22 are well-posed with respect to ϕ.

This result highlights an important structural property: the well-posedness of a block-
triangular matrix depends solely on the well-posedness of its diagonal blocks. This property
simplifies the analysis and design of complex implicit models by enabling modular verification
of well-posedness. For example, when building a large implicit model, each subsystem
(corresponding to a diagonal block) can be analyzed independently, ensuring the entire system
remains well-posed.

Proof of Theorem 2. We express the equilibrium equation x = ϕ(Ax + b) in block form:

x1 = ϕ(A11x1 + A12x2 + b1), x2 = ϕ(A22x2 + b2),

where b = (b1, b2), x = (x1, x2), with bi ∈ Rni , xi ∈ Rni , for i = 1, 2. Since ϕ acts
componentwise, we use the same notation ϕ for both equations.

Sufficiency. Assume that A11 and A22 are well-posed with respect to ϕ. - From the second
equation x2 = ϕ(A22x2 + b2), the well-posedness of A22 ensures a unique solution x∗

2 for any
b2. - Substituting x2 = x∗

2 into the first equation, it becomes:

x1 = ϕ(A11x1 + A12x
∗
2 + b1).

The well-posedness of A11 ensures that this equation has a unique solution x1 for any b1.
Thus, the entire system has a unique solution x = (x1, x2), proving that A is well-posed.

CHAPTER 2. IMPLICIT LEARNING IN DEEP MODELS 13

Necessity Assume that A is well-posed with respect to ϕ. - Consider the second equation
x2 = ϕ(A22x2 + b2). The well-posedness of A implies that this equation must have a unique
solution x∗

2 for any b2. Hence, A22 is well-posed with respect to ϕ. - To prove that A11 is
well-posed, set b2 = 0 and let b1 be arbitrary. The system becomes:

x1 = ϕ(A11x1 + A12x2 + b1), x2 = ϕ(A22x2).

Since A22 is well-posed, the second equation has a unique solution x∗
2. Substituting x2 = x∗

2

into the first equation, it reduces to:

x1 = ϕ(A11x1 + b1 + A12x
∗
2).

For the well-posedness of A, this equation must have a unique solution x1 for any b1, which
implies that A11 is well-posed with respect to ϕ. Thus, the necessity of the condition is
established.

Combining sufficiency and necessity, we conclude that A is well-posed with respect to ϕ if
and only if A11 and A22 are well-posed with respect to ϕ.

This result confirms the earlier claim that when ϕ is the ReLU activation function, an
upper-triangular matrix A ∈WP(ϕ) if and only if diag(A) < 1. A similar result holds for
lower block-triangular matrices of the form:

A :=

(
A11 0
A21 A22

)
,

where A21 ∈ Rn2×n1 is arbitrary.

The framework can be extended to activation maps ϕ that satisfy the Blockwise Lipschitz
(BLIP) condition. In this case, we assume that the partition of A into blocks is consistent with
the block structure of ϕ. This scenario naturally arises when implicit models are composed
from well-posed blocks, as we will see later. The following theorem formalizes this result.

Theorem 3 (Well-posedness of Block-Triangular Matrices with Blockwise Activation).
Assume that the matrix A can be written as:

A :=

(
A11 A12

0 A22

)
,

where Aii ∈ Rni×ni for i = 1, 2, and that the activation map ϕ acts blockwise. Specifically,
there exist two maps ϕ1 and ϕ2 such that:

ϕ((z1, z2)) = (ϕ1(z1), ϕ2(z2)), ∀zi ∈ Rni , i = 1, 2.

Then A is well-posed with respect to ϕ if and only if for i = 1, 2, the matrices A11 and A22

are well-posed with respect to ϕ1 and ϕ2, respectively.

CHAPTER 2. IMPLICIT LEARNING IN DEEP MODELS 14

This theorem extends the well-posedness property from componentwise activation functions
(as in Theorem 2) to blockwise activation functions that satisfy the BLIP condition. It
highlights the modularity of implicit models, where well-posedness of the system can be
analyzed in terms of its constituent blocks. This result is especially useful when designing
and composing complex models from simpler, well-posed components.

Using the results established above, we can preserve the well-posedness of implicit
models through composition. For instance, consider two models with matrix parameters
(Ai, Bi, Ci, Di) and activation functions ϕi, i = 1, 2. We define a cascaded prediction rule as
follows:

ŷ2 = C2x2 + D2u2, where u2 = ŷ1 = C1x1 + D1u1, xi = ϕi(Aixi + Biui), i = 1, 2.

This cascaded rule can be expressed in the standard form of (P), where:

x = (x2, x1), ϕ((z2, z1)) = (ϕ2(z2), ϕ1(z1)),

and the overall system matrices are given by:

(
A B
C D

)
=

 A2 B2C1 B2D1

0 A1 B1

C2 D2C1 D2D1

 .

By Theorem 3, the cascaded prediction rule is well-posed for the blockwise activation map
ϕ((z2, z1)) = (ϕ2(z2), ϕ1(z1)) if and only if each individual prediction rule is well-posed. In
other words, the modular well-posedness of each component ensures the well-posedness of the
cascaded system. This result highlights the compositional nature of implicit models, enabling
the design of complex, multi-layer systems while maintaining the foundational property
of well-posedness. Such modularity is particularly advantageous in applications requiring
scalable and interpretable models, as well-posedness can be verified independently for each
subsystem.

In both cascade and parallel connections, the triangular structure of the matrix A in
the composed system ensures that the Perron-Frobenius (PF) sufficient condition for well-
posedness is satisfied for the composed system if and only if it holds for each sub-system.
This property highlights the modularity of implicit models, allowing for scalable composition
while preserving well-posedness.

However, multiplicative connections present additional challenges, as they are not generally
Lipschitz-continuous unless the inputs are bounded. Specifically, consider two activation
maps ϕi, i = 1, 2, that are Lipschitz-continuous with constants γi and bounded such that
|ϕi(v)| ≤ ci for all v. In this case, the multiplicative map:

(u1, u2) ∈ R2 → ϕ(u) = ϕ1(u1)ϕ2(u2),

CHAPTER 2. IMPLICIT LEARNING IN DEEP MODELS 15

is Lipschitz-continuous with respect to the l1-norm, with constant:

γ := max{c2γ1, c1γ2}.

Such multiplicative connections frequently arise in the context of attention mechanisms
in neural networks, which employ bounded activation functions like tanh. The boundedness
of these activations ensures the Lipschitz property for multiplicative connections, enabling
their integration into well-posed implicit models.

2.5 Implicit Models of Deep Neural Networks

A wide variety of deep neural networks can be represented as implicit models, including
convolutional networks, recurrent networks, attention mechanisms, residual connections, and
more. This unified perspective offers a powerful framework for analyzing and designing neural
network architectures.

By leveraging the composition rules outlined in §2.4, we can focus on modeling individual
layers, as a deep neural network is essentially a cascade of such layers. Each layer can be
expressed as an implicit model, and when layers are composed in a cascade fashion, the
overall model inherits a block-Lipschitz structure in its activation map. Moreover, the strictly
triangular structure of the matrix A naturally emerges from this composition.

This structure has significant implications for well-posedness. Specifically, the triangular
nature of A ensures that the implicit models derived from such neural networks are well-posed.
In particular, the corresponding Perron-Frobenius eigenvalue of the matrix N(A, γ), defined
in (2.6), is zero because N(A, γ) is strictly triangular. This guarantees that the equilibrium
equation of the implicit model has a unique solution.

We can always ensure that the resulting implicit model satisfies the stronger norm
condition for well-posedness mentioned in (2). Specifically, for a CONE map ϕ, the stronger
condition ∥A∥∞ < 1 can always be achieved by appropriately scaling the weight matrices of
the network’s layers and using a scaled version of the state vector x. This scaling preserves
the model’s functionality while ensuring compliance with the sufficient condition for well-
posedness, thereby improving the stability and robustness of the implicit model.

Dense Feedforward Networks

To illustrate the construction of an implicit model, we consider a fully dense feedforward
network. The prediction rule for a feedforward network with L > 1 fully connected layers is
given as follows:

ŷ(u) = WLxL, xl+1 = ϕl(Wlxl), x0 = u, (2.9)

where:

CHAPTER 2. IMPLICIT LEARNING IN DEEP MODELS 16

• Wl ∈ Rnl+1×nl are weight matrices,

• ϕl : Rnl+1 → Rnl+1 are activation maps,

• l = 1, . . . , L.

We can represent this feedforward network as an implicit model in the form of (2.1a),
where the state vector is x = (xL, . . . , x1) and the system matrices are:

(
A B
C D

)
=

0 WL−1 . . . 0 0

0
. . .

...
...

. . . W1 0
0 W0

WL 0 . . . 0 0

 , (2.10)

The activation function ϕ is defined blockwise and operates on an n-vector z = (zL, . . . , z1)
as:

ϕ(z) = (ϕL(zL), . . . , ϕ1(z1)).

The system is well-posed due to the strictly upper triangular structure of A, regardless of
the specific values of A. The equilibrium equation:

x = ϕ(Ax + Bu),

is efficiently solved via backward block substitution, which corresponds to a standard forward
pass through the network.

If the state vector x lists the hidden variables in their natural order (rather than in
reverse), the matrix A becomes strictly lower triangular. This alternative representation also
preserves well-posedness but modifies the structure of the system.

Convolutional Layers and Max-Pooling

A single convolutional layer can be represented as a linear map:

y = Du,

where u is the input, and D is a matrix that represents the (linear) convolution operator.
This operator exhibits a “constant-along-diagonals,” Toeplitz-like structure, which encodes
the convolution process efficiently.

CHAPTER 2. IMPLICIT LEARNING IN DEEP MODELS 17

Example of 2D Convolution. Consider a 3× 3 input matrix U and a 2× 2 kernel K.
The convolution operation produces a 2× 2 output matrix Y . Specifically:

U =

u1 u2 u3

u4 u5 u6

u7 u8 u9

 , K =

(
k1 k2
k3 k4

)
.

The convolution can be represented as y = Du, where y and u are vectors obtained by
stacking the rows of Y and U , respectively. The matrix D, which encodes the convolution
operation, is given by:

D =

k1 k2 0 k3 k4 0 0 0 0
0 k1 k2 0 k3 k4 0 0 0
0 0 0 k1 k2 0 k3 k4 0
0 0 0 0 k1 k2 0 k3 k4

 .

Here, each row of D corresponds to a specific position of the sliding window in the convolution
operation, and the Toeplitz-like structure ensures that the weights from K are consistently
applied across different regions of U .

Max-Pooling. In practice, a convolutional layer is often combined with a max-pooling
operation. Max-pooling downsamples the input by extracting the largest value from specific
sub-areas of the original image, reducing the spatial dimensions while retaining the most
prominent features.

The max-pooling operation can be represented as:

yj = max
1≤i≤h

(Bju)i, j ∈ [q],

where:

• p is the number of elements in the input vector u,

• h is the size of the pooling window,

• q is the number of pooling regions (p = qh),

• Bj ∈ Rh×p selects the sub-area corresponding to the j-th pooling window.

Here, each Bj extracts a specific sub-area of the input, and the max operation selects the
largest value from that sub-area to form the output yj.

In the example of Figure 2.3, the number of pixels selected in each area is h = 4, the
output dimension is q = 4, and the input dimension is p = qh = 16. Vectorizing images row

CHAPTER 2. IMPLICIT LEARNING IN DEEP MODELS 18

12 20 30 0

8 12 2 0

34 70 37 4

112 100 25 12

2× 2
Max-
Pool 20 30

112 37

Figure 2.3: A max-pooling operation: the smaller image contains the maximal pixel values of each
colored area. cite source

by row, we have:
B1

B2

B3

B4

 = diag(M,M) ∈ R16×16, M :=

I2 0 0 0
0 0 I2 0
0 I2 0 0
0 0 0 I2

 ∈ R8×8,

where I2 is the 2× 2 identity matrix.

Define the mapping ϕ : Rn → Rn, where n = p, as follows. For a p-vector z decomposed
into q blocks (z1, . . . , zq), we set:

ϕ(z1, . . . , zq) = (max(z1), . . . ,max(zq), 0, . . . , 0).

(The padded zeroes are necessary to ensure that the input and output dimensions of ϕ are
the same.) Using this mapping, we obtain the implicit model:

y = Cϕ(Bu) = Cx, where x := ϕ(Bu).

Here, C is used to select the top q elements at the output of ϕ:

C =
(
Iq 0 . . . 0

)
, B :=

(
B⊤

1 . . . B⊤
q

)⊤
.

The Lipschitz constant of the max-pooling activation map ϕ, with respect to the l∞-norm,
is 1.

Convolutional layers and max-pooling operations can be seamlessly incorporated into the
implicit model framework. The Toeplitz-like structure of the convolution operator D and the
pooling matrices Bj ensure efficient computation while enabling a mathematically rigorous
representation of these common operations in convolutional neural networks (CNNs).

Residual Networks

Residual networks (ResNets) are constructed using a building block as illustrated in Figure 2.4.

CHAPTER 2. IMPLICIT LEARNING IN DEEP MODELS 19

Figure 2.4: Building block of residual networks.

Mathematically, a residual block combines two linear transformations with non-linearities
applied in the middle and at the end, while adding the input to the output of these transfor-
mations:

y = ϕ2(u + W2ϕ1(W1u)).

This formulation is a special case of the implicit model in (2.1). Defining the blockwise
activation map:

ϕ(z1, z2) = (ϕ1(z1), ϕ2(z2)),

the residual block can be expressed in matrix form as:(
x1

x2

)
= ϕ

((
0 0
W2 0

)(
x1

x2

)
+

(
W1

I

)
u

)
, y = x2.

Figure 2.5 shows the model matrix A for a 20-layer residual network. Convolutional layers
in the network correspond to matrix blocks with Toeplitz-like (constant along diagonals)
structure. The residual connections are represented by the straight lines on top of these
blocks. Throughout the network, the ReLU activation function is used, except in the final
layer.

2.6 Conclusion

In this chapter, we explored the foundational aspects of implicit models, which define outputs
through equilibrium equations rather than explicit sequential computations. This approach

CHAPTER 2. IMPLICIT LEARNING IN DEEP MODELS 20

Figure 2.5: The model matrix A for a 20-layer residual network.

provides greater flexibility and efficiency in deep learning architectures. We examined the
conditions ensuring well-posedness, guaranteeing the existence and uniqueness of solutions to
these equilibrium equations, and discussed how implicit models can be composed to construct
complex systems from simpler components.

Building upon this theoretical framework, Chapter 3 focuses on the practical application
of implicit models, specifically constrained implicit learning for neural network sparsifica-
tion. Sparsification seeks to reduce the number of parameters in a neural network without
significantly compromising performance, thereby improving computational efficiency and in-
terpretability. By leveraging the principles of implicit modeling, we reformulate sparsification
as a constrained optimization problem, introducing a novel approach to parameter reduction
in neural networks. This methodology streamlines the network while preserving, and in some
cases enhancing, its robustness and generalization capabilities.

21

Chapter 3

Constrained Implicit Learning

3.1 Introduction

Implicit neural networks [8, 16, 41] offer a significant advantage over traditional neural
networks: their model parameters are represented as simple data matrices. This structural
simplicity allows for efficient model sparsification post-training by employing least-squares-
based feature selection methods. In contrast, traditional neural networks typically necessitate
retraining from scratch with varying regularization parameters to achieve sparsification.

The architecture of implicit neural networks, as proposed by [23] and [7], has garnered
increasing attention due to its simplicity and versatility in integrating various traditional
neural network architectures. Consequently, theories and applications initially developed for
conventional neural networks are progressively being extended to implicit networks [72, 27,
30, 41].

Deep neural networks are often characterized by substantial redundancy, with a small
subset of network coefficients retaining the majority of inference power [5, 20]. This observation
has spurred research dedicated to sparsifying neural network coefficients without compromising
inference efficiency. Common methods for network sparsification include:

1. Incorporating sparsity-inducing regularization terms into the training objective [63, 83].

2. Modifying the neural network architecture [96].

3. Applying post-training sparsification procedures that balance accuracy and sparsity
[88, 63, 28, 5].

While existing sparsification methods yield satisfactory results on established networks,
they present several limitations. Firstly, these techniques are often architecture-dependent,
necessitating distinct sparsification strategies for different network architectures. Additionally,
they must navigate the complex interplay between the training objective and sparsity,

CHAPTER 3. CONSTRAINED IMPLICIT LEARNING 22

often resulting in challenging optimization problems. Consequently, devising a universal
sparsification scheme for traditional neural networks remains a formidable challenge. In light of
this, our paper explores the emerging branch of implicit deep learning networks. As elaborated
in the following section, sparsifying an implicit neural network can be conceptualized as a
straightforward least-squares problem with sparsity penalties or constraints, irrespective of
the underlying network architecture.

3.2 Constrained Implicit Learning Framework

Given a dataset with input U ∈ Rp×m and output Y ∈ Rq×m, where each column represents
an input or output vector, an implicit model is defined by the equilibrium equation and the
prediction equation:

X = ϕ(AX + BU) (E)

Ŷ (U) = CX + DU (P)

Here:

• ϕ : Rn×m → Rn×m is a strictly increasing nonlinear activation function, such as ReLU,
tanh, or sigmoid.

• A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n, and D ∈ Rq×p are model parameters.

In equation (E), the input feature matrix U undergoes a linear transformation via B, and
the internal state matrix X is obtained as the fixed-point solution. The output prediction Ŷ
is then derived using the prediction equation (P). This structure is illustrated in Figure 3.1,
where the “pre-activation” state matrix Z and “post-activation” state matrix X are depicted;
each column corresponds to a single data point.

[
A B
C D

]
ϕ

UŶ = CX + DU

X = ϕ(Z)Z = AX + BU

Figure 3.1: A diagram view of an implicit model, where Z is the pre-activation state “before” passing
through the activation function ϕ and X is the post-activation state “after” passing through ϕ.

CHAPTER 3. CONSTRAINED IMPLICIT LEARNING 23

We provide a simple example of constructing X and Z from a 3-layer fully connected
network of the form:

ŷ(u) = W2x2, x2 = ϕ(W1x1), x1 = ϕ(W0x0), x0 = u,

where u is a single vector input. For notational simplicity, we exclude bias terms, which
can be easily accounted for by considering the vector (u, 1) instead of u. Each column of Z
and X corresponds to the state from a single input. The column z is formed by stacking all
the intermediate layers before applying ϕ, and the column x is formed by stacking all the
intermediate layers after applying ϕ:

z =

(
W1x1

W0x0

)
, x = ϕ(z) =

(
x2

x1

)
.

In this example, we can verify that its equivalent implicit form is:

(
A B

C D

)
=

0 W1 0

0 0 W0

W2 0 0

 .

For more complex networks, determining an equivalent implicit form can be a non-trivial
task.

Constrained Implicit Model

The constrained implicit learning framework trains an implicit model with a key constraint: it
must match both the state X and output Ŷ of a given “baseline” (implicit or layered) model
when the same inputs U are applied. This framework provides flexibility to incorporate any
baseline deep neural network without directly addressing its architecture. Instead, we extract
the pre-activation and post-activation state matrices.

For a given baseline model:

• If the baseline is implicit, the state matrix X can be obtained through fixed-point
iterations.

• If the baseline is a standard layered network, X can be obtained via a simple forward
pass.

In both cases, we extract the pre-activation state matrix Z, ensuring X = ϕ(Z), where ϕ
is the activation function. Each column of Z and X corresponds to a single data point. For
layered networks, these matrices are constructed by stacking all intermediate layers into a
single column vector, with the first intermediate layer at the bottom and the last layer at the
top.

CHAPTER 3. CONSTRAINED IMPLICIT LEARNING 24

The implicit models are characterized by the conditions:

Z = AX + BU, Ŷ = CX + DU,

which ensure that the implicit model matches both the state and outputs of the baseline
model. To find another well-posed model that satisfies these conditions, we solve the following
convex problem:

min
A,B,C,D

ℓ(A,B,C,D) (3.2a)

subject to Z = AX + BU, (3.2b)

Ŷ = CX + DU, (3.2c)

∥A∥∞ ≤ κ, (3.2d)

where:

• ℓ is a user-defined loss function,

• κ ≤ 1 is a hyper-parameter ensuring well-posedness (defined in Definition 3).

Equality Constraints Relaxation

The equality constraints (3.2b) and (3.2c), which enforce an exact match for the internal state
and output, can be relaxed to allow for approximate matching. This relaxation introduces
flexibility into the model by incorporating penalty terms into the objective function. The
relaxed optimization problem becomes:

min
(A,B,C,D)∈C,∥A∥∞≤κ

ℓ(A,B,C,D) + λ1∥Z − (AX + BU)∥2F + λ2∥Ŷ − (CX + DU)∥2F , (3.3)

where:

• ℓ: A user-defined loss function.

• C: A user-defined constraint set for the model parameters.

• λ1 and λ2: Hyper-parameters that control the degree of matching for the state and
output, respectively.

• ∥ · ∥F : Frobenius norm, ensuring quadratic penalties for deviations from the constraints.

This relaxation allows for greater flexibility in optimization while still ensuring that the
learned model parameters align closely with the internal states and outputs of the baseline
model. By adjusting λ1 and λ2, the user can control the trade-off between exact matching
and other objectives in the training process.

CHAPTER 3. CONSTRAINED IMPLICIT LEARNING 25

The training problem (3.3) can be decomposed into a series of parallel, smaller problems,
each involving a single row, or a block of rows, if ℓ is decomposable. This decomposition is
feasible for most objective functions commonly used in neural network training.

For a single row (a⊤, b⊤) of (A,B), and with z⊤ being the corresponding row in Z, the
problem reduces to:

min
a,b

ℓ(a, b) + λ1

∥∥∥z − (X⊤, U⊤)(a
b

)∥∥∥2 (3.4)

subject to ∥a∥1 ≤ κ,

where ∥a∥1 ≤ κ represents the well-posedness condition, as ∥A∥∞ is separable in terms of
rows.

The optimization problem for C,D is independent of that for A,B and has a similar form
to problem (3.4), but without the well-posedness constraint:

min
c,d

ℓ(c, d) + λ2

∥∥∥ŷ − (X⊤, U⊤)(c
d

)∥∥∥2. (3.5)

When ℓ = 0, problem (3.4) reduces to the basis pursuit problem introduced in [18], for
which efficient optimization algorithms have been developed over the years [91, 73]. These
algorithms enable effective solutions for sparsity-driven tasks in various settings.

In the next section, we introduce tailored algorithms designed specifically for implicit
model sparsification to solve problem (3.4) effectively.

3.3 Algorithm for Constrained Implicit Model

Sparsification

In this section, we discuss algorithms for model sparsification in implicit models. The optimiza-
tion problem (3.4) is a least-squares problem, which can be efficiently solved using stochastic
gradient descent (SGD) or its numerous variants [29]. These methods are computationally
effective and well-suited for modern machine learning workflows.

However, the optimization problem (3.4) presents a greater challenge due to the ℓ1
constraint. This problem is equivalent to the LASSO in its constrained form [90]. While
projected gradient descent and its variants can be applied directly to (3.4), each iteration
requires a projection onto the ℓ1-norm ball [58]. This operation becomes computationally
expensive and less practical as the dimension of (a, b) grows.

Furthermore, state-of-the-art preprocessing techniques, such as safe screening rules and
active set methods [98, 31], cannot be directly applied to the constrained formulation of (3.4).

CHAPTER 3. CONSTRAINED IMPLICIT LEARNING 26

This limitation highlights the need for tailored algorithms designed specifically to address the
challenges posed by the sparsification of implicit models under these constraints.

In light of the challenges associated with directly solving problem (3.4), we propose an
alternative algorithm that transforms it into a sequence of least-squares problems with ℓ1
penalties. This approach leverages state-of-the-art LASSO techniques, facilitating more
efficient optimization.

Our algorithm employs a bisection method along the LASSO regularization path to
identify an approximate regularization parameter that satisfies the original constraint. By
iteratively adjusting the regularization parameter and solving the corresponding LASSO
problem, we converge to a solution that approximates the desired sparsity level while adhering
to the constraints of the original problem. This method capitalizes on the efficiency of existing
LASSO solvers and the structured exploration of the regularization path, offering a practical
solution to the computational difficulties inherent in high-dimensional settings.

Algorithm Design

For brevity of exposition, we overload notation and define:

M := (X⊤, U⊤), a := (a, b).

Using this notation, we formulate the following constrained LASSO problem:

P (κ) := min
a

1

2
∥Ma− z∥2 subject to ∥a∥1 ≤ κ,

where ∥a∥1 ≤ κ simultaneously enforces sparsity and the well-posedness constraint. We
assume that the constraint is not trivially satisfied:

A1: Non-trivial solution: 0 ≤ κ < ∥(M⊤M)−1M⊤z∥1.

To simplify the formulation, we define:

h(a) :=
1

2
∥Ma− z∥2,

and use h(a) and 1
2
∥Ma− z∥2 interchangeably.

Before proceeding further, we introduce the unconstrained LASSO problem, which will
serve as a critical subroutine in our analysis:

Q(λ) := min
a

h(a) + λ∥a∥1 (Unconstrained LASSO).

CHAPTER 3. CONSTRAINED IMPLICIT LEARNING 27

P (κ) and Root Finding

Our method is based on the following function:

g(λ) := ∥a∗Q(λ)∥1, (3.6)

a∗Q(λ) = arg min
a
{h(a) + λ∥a∥1}, (3.7)

where we apply a bisection method to find λ such that g(λ) = κ. Before establishing our
algorithm, we provide the intuition behind our approach by analyzing the fundamental
properties of g(λ).

Lemma 1. The function g(λ) satisfies the following properties:

• g(λ) is continuous and piecewise linear [68].

• g(λ1)− g(λ2) ≤ 0 if λ1 > λ2. That is, g(λ) is monotonically decreasing.

• g(0) = ∥(M⊤M)−1M⊤z∥1 ≤ 1
m
∥M⊤z∥1.

• g(λ) = 0 if λ ≥ ∥M⊤z∥∞.

Proof. Proof of Lemma 1

We start by proving the monotonicity of g(λ). Assume λ1 > λ2. By the optimality
condition, we have:

1

2
∥Ma∗Q(λ1)

− z∥2 + λ1∥a∗Q(λ1)
∥1 ≤

1

2
∥Ma∗Q(λ2)

− z∥2 + λ1∥a∗Q(λ2)
∥1,

1

2
∥Ma∗Q(λ2)

− z∥2 + λ2∥a∗Q(λ2)
∥1 ≤

1

2
∥Ma∗Q(λ1)

− z∥2 + λ2∥a∗Q(λ1)
∥1.

Summing these two inequalities and rearranging terms yields:

(λ1 − λ2)(g(λ1)− g(λ2)) = (λ1 − λ2)(∥a∗Q(λ1)
∥1 − ∥a∗Q(λ2)

∥1) ≤ 0.

Dividing both sides by λ1 − λ2 > 0 confirms that g(λ) is monotonically decreasing.

For the second condition, note that a∗Q(0) = (M⊤M)−1M⊤z, and thus:

∥a∗Q(0)∥1 = ∥(M⊤M)−1M⊤z∥1 ≤ ∥(M⊤M)−1∥ · ∥M⊤z∥ ≤ 1

m
∥M⊤z∥.

Finally, consider the case where λ ≥ ∥M⊤z∥∞. In this scenario, we have:

1

2
∥z∥2 =

1

2
∥Ma− z −Ma∥2

=
1

2
∥Ma− z∥2 − ⟨Ma,Ma− z⟩+

1

2
∥Ma∥2

=
1

2
∥Ma− z∥2 + ⟨Ma, z⟩

≤ 1

2
∥Ma− z∥2 + ∥M⊤z∥∞∥a∥1.

CHAPTER 3. CONSTRAINED IMPLICIT LEARNING 28

When λ ≥ ∥M⊤z∥∞, the penalty dominates the optimization, forcing g(λ) = 0. This
completes the proof.

Lemma 2. Given 0 < κ < ∥(M⊤M)−1M⊤z∥1, there exists a λκ > 0 such that a∗P (κ) = a∗Q(λκ)
.

Proof. Proof of Lemma 2

By Lemma 1, we know there exists λκ such that g(λκ) = κ ∈ (0, ∥(M⊤M)−1M⊤z∥1).
Next, we verify that for any a∗Q(λκ)

= arg min
{

1
2
∥Ma− z∥2 + λκ∥a∥1

}
,

a∗Q(λκ) = arg min
∥a∥1≤κ

{
1

2
∥Ma− z∥2

}
.

To do so, recall the optimality condition of Q(λκ), which states:

0 ∈ ∂a=a∗
Q(λκ)

{
1
2
∥Ma− z∥2 + λκ∥a∥1

}
= M⊤(Ma∗Q(λκ) − z) + λκ∂(∥a∗Q(λκ)∥1).

Now, we plug a∗Q(λκ)
and λκ into the optimality conditions of P (κ) and verify:

∥a∗Q(λκ)∥1 ≤ κ,

λκ ≥ 0,

λκ(κ− ∥a∗Q(λκ)∥1) = 0,

∂a=a∗
Q(λκ)

{
1

2
∥Ma− z∥2 + λκ(∥a∥1 − κ)

}
∋ 0.

These conditions are satisfied, which completes the proof.

Lemma 1 establishes that by identifying the correct λ, the solutions to Q(λ) and P (κ)
are equivalent. Furthermore, Lemma 2 demonstrates that g(λ) is monotonic and that finding
λκ such that g(λκ) = κ suffices to recover a∗P (κ).

This equivalence naturally suggests employing a bisection method to identify λκ. By
iteratively narrowing the search interval for λκ, we can efficiently locate the value along the
LASSO regularization path that satisfies the sparsity constraint.

Algorithm (1) summarizes the bisection algorithm to search for the matching λκ over the
LASSO regularization path.

Analysis of the Bisection Method

Having established the intuition behind the bisection method, we now analyze its computa-
tional efficiency and convergence properties. Recall that λκ ∈ (0, ∥M⊤z∥∞), as established
earlier. The bisection method terminates after at most

T = O(log(1/ε))

CHAPTER 3. CONSTRAINED IMPLICIT LEARNING 29

Algorithm 1 Bisection algorithm on LASSO regularization path

input κ,M, z, ε
initialize u = ∥M⊤z∥, l = 0
while u− l ≥ ε

set λ = 1
2
(u + l)

solve a∗Q(λ) = arg mina{h(a) + λ∥a∥1}
if ∥a∗Q(λ)∥1 ≥ κ
l← λ

else
u← λ

end
output λ, a∗Q(λ)

iterations, where ε is the desired precision. This logarithmic dependence on ε ensures a fast
convergence rate for identifying λκ.

In addition to the outer bisection iterations, the proximal gradient method is employed to
solve the subproblem Q(λ) at each step. The complexity of these internal iterations can be
analyzed using the following standard result:

Lemma 3 ([53]). If the proximal gradient method is applied to Q(λ), then:

h(ak)− h(a∗) ≤ exp
(
−µ

L
K
)
{h(a0)− h(a∗)},

where:

• L is the largest eigenvalue of M⊤M ,

• µ is the Polyak-Lojasiewicz constant of the problem,

• ak is the output of the k-th proximal gradient iteration,

• a∗ is the unique optimal solution to Q(λ).

This result guarantees an exponential convergence rate for the proximal gradient method
under the Polyak-Lojasiewicz condition. Combining this with the logarithmic convergence of
the bisection method yields an efficient overall procedure for solving P (κ).

Intuitively, the bisection method achieves linear convergence in both the outer loop
(bisection iterations) and the inner loop (proximal gradient iterations). This results in a
worst-case iteration complexity of:

K = O(T · log(1/ε)) = O(log2(1/ε)),

CHAPTER 3. CONSTRAINED IMPLICIT LEARNING 30

where T is the number of bisection iterations and ε is the desired precision for each step.

In the following subsection, we demonstrate how the convergence rate can be further
improved by employing warm-starting techniques for solving consecutive bisection subprob-
lems. By initializing each new subproblem using the solution from the previous iteration, we
effectively reduce the number of required proximal gradient iterations, leading to a faster
overall convergence.

Effect of Warm-Starting

Lemma 4 (Effect of Warm-Starting). Given λ1, λ2, the following holds:

h(a∗Q(λ1)
) + λ1∥a∗Q(λ1)

∥1 −
[
h(a∗Q(λ2)

) + λ2∥a∗Q(λ2)
∥1
]
≤ √n · |λ1 − λ2| · A,

where A = supλ ∥a∗Q(λ)∥∞.

Proof. The proof leverages the Lipschitz continuity of the objective function with respect
to λ and the boundedness of the solution a∗Q(λ). For any pair λ1, λ2, the difference in the
objectives can be bounded as follows:∣∣(h(a∗Q(λ1)

) + λ1∥a∗Q(λ1)
∥1
)
−
(
h(a∗Q(λ2)

) + λ2∥a∗Q(λ2)
∥1
)∣∣

is proportional to |λ1 − λ2| scaled by the maximum ℓ∞-norm of the solutions across λ, which
is A = supλ ∥a∗Q(λ)∥∞. Without loss of generality, assume that λ1 > λ2. Then:

h(a∗Q(λ1)
) + λ1∥a∗Q(λ1)

∥1 ≤ h(a∗Q(λ2)
) + λ1∥a∗Q(λ2)

∥1
= h(a∗Q(λ2)

) + λ2∥a∗Q(λ2)
∥1

+ (λ1 − λ2)∥a∗Q(λ2)
∥1

≤ h(a∗Q(λ2)
) + λ2∥a∗Q(λ2)

∥1
+
√
n|λ1 − λ2|A, (3.8)

where A = supλ ∥a∗Q(λ)∥∞. The factor
√
n accounts for the dimensionality of the solution

space. Exchanging the position of λ1, λ2, this completes the proof.

Implications of Lemma 4. Given Lemma 4, we are guaranteed that if λ1, λ2 are sufficiently
close, warm-starting Q(λ1) with the optimal solution to Q(λ2) results in a small initial
optimality gap, bounded by

√
n|λ1 − λ2|A. This bound ensures that as λ1 approaches λκ,

the computational cost of solving each subproblem decreases significantly.

This result highlights the benefit of warm-starting: when the change in λ between
consecutive iterations is small, the change in the corresponding optimal solution is also
bounded. This bounded change enables efficient reuse of the solution from the previous
iteration as the initialization for the next, thereby accelerating convergence across the bisection
path.

CHAPTER 3. CONSTRAINED IMPLICIT LEARNING 31

Theorem 4. If each Q(λ) is warm-started using the optimal solution from the previous
iteration, the overall worst-case iteration complexity becomes:

K = O(log2(1/ε)).

Proof. Proof of Theorem 4

Let I(γ, ε) denote the number of iterations required for the proximal gradient method to
converge, given an initial optimality gap γ and tolerance ε. From Lemma 2, we know:

I(γ, ε) = µ−1L log(γ/ε),

where µ is the Polyak-Lojasiewicz constant, and L is the largest eigenvalue of M⊤M .

Define ∆ = ∥(M⊤M)−1M⊤z∥1 · A, where A is the maximum ℓ∞-norm of the solutions
along the regularization path. For the t-th iteration, the initial optimality gap γt satisfies:

γt ≤ 2−t
√
n∆ + εt−1,

where εt−1 is the tolerance used in the (t− 1)-th iteration.

Thus, the number of iterations for the proximal gradient method at step t is:

I(γt, εt) ≤ µ−1L log

(
2−t
√
n∆ + εt−1

ε⊤

)
,

where ε⊤ ≡ ε, the desired global tolerance, and T = log2(1/ε) is the total number of bisection
steps.

Summing over all iterations, the total number of proximal gradient iterations is:

K =
T∑
t=1

I(γt, εt)

≤ µ−1L

T∑
t=1

log

(√
n∆

ε
2−t + 1

)

≲ µ−1L

T∑
t=1

log

(√
n∆

2t−T
+ 1

)
= O(log2(1/ε)).

Thus, the worst-case iteration complexity of the warm-started bisection algorithm is
O(log2(1/ε)).

CHAPTER 3. CONSTRAINED IMPLICIT LEARNING 32

Theorem 4 establishes that employing a warm-start strategy for initializing each Q(λ)
ensures that the computational complexity K grows at a rate no faster than the square of
the logarithm of the inverse of the desired precision ε. This result highlights the efficiency of
the warm-start approach, as it significantly reduces the computational burden by effectively
narrowing the initial optimality gap in successive iterations. Consequently, warm-starting
leads to notable performance enhancements across all solver iterations.

The complete algorithm, integrating the bisection method with warm-starting, is presented
in Algorithm 2.

Algorithm 2 Constrained Implicit Model Sparsification

input Data matrix U ; A trained standard (layered) neural network N : R× R→ R× R;
Hyper-parameter κ ≤ 1 and ε.
initialize Run a single forward pass on N with U to obtain outputs Ŷ , i.e., Ŷ = N (U).
Collect all intermediate layers before and after passing through the activation ϕ. Construct
Z and X by stacking all intermediate layers.
set M := (XT UT),W := (A,B) = 0
for each row zi of Z

warm start Q(λi) with the optimal solution to Q(λi−1)
solve Q(λi) with Algorithm 1
update row i of W ← a∗Q(λi)

end
output W

3.4 Numerical Experiments

To evaluate the effectiveness of the proposed implicit model sparsification framework, we
conduct experiments on two benchmark datasets: CIFAR-100 [56] and 20NewsGroup1. The
experiments leverage ResNet-20 [21] and DistilBERT2 [81] as baseline architectures. The
baseline test accuracy for these models is 92.1% on CIFAR-100 and 92.8% on 20NewsGroup.

In our experiments, we fix the tolerance parameter at ε = 0.01. Optimization problems
are solved using the Mosek [4] optimization solver, ensuring robust and efficient convergence.
To measure the efficiency of our sparsification algorithm, we report the total number of
iterations required to traverse all rows of the weight matrix.

The following sections present detailed results on the accuracy, sparsity, and computational
efficiency achieved using the proposed sparsification method, demonstrating its capability to
maintain performance while significantly reducing model complexity.

1http://qwone.com/∼jason/20Newsgroups/
2https://huggingface.co/docs/transformers/model doc/distilbert

http://qwone.com/~jason/20Newsgroups/
https://huggingface.co/docs/transformers/model_doc/distilbert

CHAPTER 3. CONSTRAINED IMPLICIT LEARNING 33

Table 3.1: Sparsity levels and accuracy on the CIFAR-100 and 20NewsGroup data.

CIFAR-100 20NewsGroup

κ Accuracy (%) Sparsity (%) Accuracy (%) Sparsity (%)

0.005 76.7 98.1 60.9 97.8
0.01 79.1 96.4 74.2 95.9
0.05 84.2 95.2 80.2 95.3
0.1 87.1 93.8 87.2 93.3
0.5 89.0 93.3 88.8 90.7
0.99 91.0 90.1 90.6 87.4

Dense 92.1 0 92.8 0

Table 3.1 illustrates the trade-off between sparsity and test performance for the CIFAR-
100 and 20NewsGroup datasets, employing warm-starting as outlined in Algorithm 2. The
hyper-parameter κ serves as a direct control for the sparsity level of the model, where higher
κ values correspond to lower sparsity levels.

Our results demonstrate the algorithm’s capability to compute highly sparse networks,
achieving significant reductions in the number of parameters with only a 2% reduction in
test accuracy on both datasets compared to the original dense networks. As the number of
non-zero elements increases (i.e., sparsity decreases), a gradual improvement in test accuracy
is observed, illustrating the inherent trade-off between model sparsity and performance.

Even with approximately 10% of the model weights retained, the models maintain
competitive performance levels, exhibiting only a marginal decrease in accuracy. This
resilience highlights the robustness of the proposed method, particularly in scenarios requiring
aggressive pruning while preserving predictive performance. Such results validate the efficacy
of our sparsification approach in balancing model complexity and task performance.

In our evaluation, we compare the proposed method with several state-of-the-art optimization-
based parameter reduction techniques: SSS [51], SPR [11], and MLA [49]. SSS and SPR
formulate parameter reduction as a sparse regularized optimization problem. SSS employs
an ℓ1-relaxation approach, while SPR utilizes perspective relaxation to enhance sparsity
and stability. MLA, on the other hand, focuses on aligning semantic information between
intermediate outputs and overall model performance by incorporating feature and semantic
correlation losses alongside a classification loss. This approach is conceptually similar to our
state- and outputs-matching conditions.

For experiments on CIFAR-100, we follow the original papers’ settings by using ResNet-20
for SSS and SPR, and ResNet-18 for MLA, ensuring a fair comparison. The hyper-parameters
are kept consistent with those reported in the original papers. As shown in Table 3.2, our

CHAPTER 3. CONSTRAINED IMPLICIT LEARNING 34

Table 3.2: Comparison between sparsity levels and accuracy on the CIFAR-100 and 20NewsGroup
data with exisiting benchmark.

CIFAR-100 20NewsGroup

Method Accuracy (%) Sparsity (%) Accuracy (%) Sparsity (%)

SSS 88.4 44.4 89.5 48.7
SPR 89.8 45.9 90.6 50.5
MLA 89.1 50.0 90.3 51.8
Ours 91.0 90.1 90.6 87.4

Dense 92.1 0 92.8 0

0 500 1000 1500 2000 2500 3000

Iteration

0

20

40

60

80

100

T
es

t
A

cc
u

ra
cy

(%
)

CIFAR-100

Dense

κ=5 · 10−3

κ=1 · 10−2

κ=5 · 10−2

κ=1 · 10−1

κ=5 · 10−1

κ=1 · 100

Figure 3.2: Performance of different κ at each iteration on CIFAR-100.

method consistently outperforms all baselines, achieving superior test performance while
obtaining a significantly larger reduction in the number of parameters. This demonstrates the
efficacy of the proposed sparsification framework, which not only achieves better trade-offs
between sparsity and performance but also offers a scalable and robust solution for parameter
reduction.

Figures 3.2 and 3.3 illustrate the performance of the algorithm for various values of κ,
showcasing the corresponding test accuracy at each iteration. To enhance computational

CHAPTER 3. CONSTRAINED IMPLICIT LEARNING 35

0 500 1000 1500 2000 2500 3000

Iteration

0

20

40

60

80

100

T
es

t
A

cc
u

ra
cy

(%
)

20NewsGroup

Dense

κ=5 · 10−3

κ=1 · 10−2

κ=5 · 10−2

κ=1 · 10−1

κ=5 · 10−1

κ=1 · 100

Figure 3.3: Performance of different κ at each iteration on 20NewsGroup.

efficiency, we employ warm-starting within the bisection inner loop. This involves initializing
the solution with the optimal parameters obtained from the preceding iteration, thereby
accelerating the exploration of the solution space.

A comparative analysis of the algorithm’s performance with and without warm-starting is
presented in Figures 3.4 and 3.5, for κ = 1, κ = 0.1, and κ = 0.5. The results demonstrate that
warm-starting yields an average speedup of 1.8x in convergence time and significantly reduces
computational overhead. These findings highlight the efficiency gains achieved by leveraging
warm-starting, particularly in scenarios involving extensive parameter sparsification.

In solving the problem (3.4), the input matrix U ∈ Rp×m does not need to encompass
the entire training dataset. To explore the minimum sample size required for effectively
training a sparse implicit model, we conducted experiments varying the number of samples.
Figures 3.6 and 3.7 illustrate the performance of different κ values trained with subsets of
the training data. As the percentage of total training samples increases, corresponding to
higher m in the input matrix U , the dimension of M also increases. The results indicate that
test performance improves initially with increasing training data, but eventually plateaus.
Specifically, for CIFAR-100 (Figure 3.6), the performance stabilizes at approximately 20% of
the total training data, while for 20NewsGroup (Figure 3.7), stabilization occurs around 30%.

For very small values of κ, the model may become excessively sparse, which hinders
effective learning. Conversely, for sufficiently large κ, training can be efficiently conducted

CHAPTER 3. CONSTRAINED IMPLICIT LEARNING 36

0 500 1000 1500 2000 2500 3000

Iteration

0

20

40

60

80

100

T
es

t
A

cc
u

ra
cy

(%
)

CIFAR-100

Dense

κ=1 · 10−1 (warm start)

κ=5 · 10−1 (warm start)

κ=1 · 100 (warm start)

κ=1 · 10−1

κ=5 · 10−1

κ=1 · 100

Figure 3.4: Performance of different κ at each iteration with warm starting on CIFAR-100.

0 500 1000 1500 2000 2500 3000

Iteration

0

20

40

60

80

100

T
es

t
A

cc
u

ra
cy

(%
)

20NewsGroup

Dense

κ=1 · 10−1 (warm start)

κ=5 · 10−1 (warm start)

κ=1 · 100 (warm start)

κ=1 · 10−1

κ=5 · 10−1

κ=1 · 100

Figure 3.5: Performance of different κ at each iteration with warm starting on 20NewsGroup.

CHAPTER 3. CONSTRAINED IMPLICIT LEARNING 37

using only a fraction of the dataset. These findings highlight the state matrix X as a
high-quality representation, capable of capturing significant underlying information, thereby
enabling model training with substantially fewer samples.

Additionally, Table 3.3 summarizes the computational speed-ups achieved by leveraging
partial datasets. The results underscore the practical implications of utilizing reduced datasets,
demonstrating significant efficiency gains in terms of computational scalability and resource
utilization.

0 5 10 15 20 25 30 35 40

Percentage of Data Used (%)

0

20

40

60

80

100

T
es

t
A

cc
u

ra
cy

(%
)

CIFAR-100

Dense

κ=5 · 10−3

κ=1 · 10−2

κ=5 · 10−2

κ=1 · 10−1

κ=5 · 10−1

κ=1 · 100

Figure 3.6: Performance of different κ trained with partial data on CIFAR-100.

Table 3.3: Training computational speed up by using warm-start and partial data matrix U .

CIFAR-100 20NewsGroup

κ Warm Start 20% Data Warm Start 30% Data

0.1 2.2x 9.1x 1.5x 8.7x
0.5 2.0x 7.8x 1.6x 8.4x
0.99 1.7x 7.5x 1.7x 7.4x

CHAPTER 3. CONSTRAINED IMPLICIT LEARNING 38

0 5 10 15 20 25 30 35 40

Percentage of Data Used (%)

0

20

40

60

80

100

T
es

t
A

cc
u

ra
cy

(%
)

20NewsGroup

Dense

κ=5 · 10−3

κ=1 · 10−2

κ=5 · 10−2

κ=1 · 10−1

κ=5 · 10−1

κ=1 · 100

Figure 3.7: Performance of different κ trained with partial data on 20NewsGroup.

3.5 Conclusion

In conclusion, this work introduces a novel paradigm in neural network sparsification—Implicit
Model Sparsification. Unlike conventional techniques that often depend on intricate network
structures or specialized loss functions, our approach adopts a streamlined methodology.
Implicit Model Sparsification is formulated as a straightforward least-squares problem, aug-
mented with sparsity-inducing constraints or penalties. This simplicity significantly broadens
the applicability of the method to a diverse range of neural network architectures.

To address computational challenges and enhance the scalability of our approach, we
have developed a parallel algorithm. This algorithm effectively handles the complexities of
transforming traditional neural networks into implicit models while maintaining computa-
tional efficiency and model performance. Our experimental results on the CIFAR-100 and
20NewsGroup datasets demonstrate the efficacy of the proposed method, particularly its
robustness under high pruning rates. The models exhibit minimal loss in test accuracy even
when trained with significantly reduced parameters, showcasing the resilience of our approach.

Additionally, our investigation into the optimal sample size required for training sparse
implicit models provides valuable insights. The experiments reveal that a moderate subset of
the training data suffices to achieve competitive performance, emphasizing the information-
rich representation captured by the state matrix. This finding highlights the practicality of
training with limited data while retaining robust performance.

CHAPTER 3. CONSTRAINED IMPLICIT LEARNING 39

In summary, Implicit Model Sparsification offers a versatile and innovative framework for
neural network compression. With its simplicity, scalability, and demonstrated effectiveness,
this paradigm holds significant promise for real-world applications where efficiency and
resource optimization are paramount.

While the sparsification framework introduced in this chapter offers significant advances
in model efficiency, neural networks deployed in real-world scenarios must also contend with
challenges posed by input perturbations, adversarial attacks, and out-of-distribution data. To
address these critical concerns, the next chapter discusses Robustness Analysis via Implicit
Representation. By leveraging the unique structure of implicit models, we develop methods
to quantify and enhance the resilience of neural networks against such adversities.

40

Chapter 4

Robustness Analysis via Implicit
Representation

4.1 Introduction

Despite the remarkable success of deep neural networks (DNNs) across various domains, their
vulnerability to adversarial perturbations remains a critical challenge. Since the seminal work
by Szegedy et al., a plethora of research has revealed the susceptibility of state-of-the-art
DNNs to adversarial samples—inputs that are imperceptibly modified to mislead the model
[33, 57, 70]. Although adversarial samples only slightly deviate from the original data
distribution, their impact on classification accuracy highlights the fragility of current DNN
architectures.

This vulnerability has spurred significant interest in designing robust models capable of
withstanding adversarial attacks [65, 69, 75, 35]. However, many defense mechanisms have
proven ineffective against adaptive attacks [6, 12], underscoring fundamental gaps in our
understanding of DNN robustness. These challenges have fueled efforts to develop robustness
evaluations [13, 105], interpretability techniques, and visualization methods that aim to
bridge these gaps [34, 86, 104]. Yet, critical questions surrounding the root causes of DNN
vulnerabilities remain unanswered.

In this work, we introduce implicit models as a powerful framework for robustness analysis.
Implicit models, defined by fixed-point equations rather than layer-wise mappings, provide a
unifying perspective that encompasses many existing DNN architectures. Their scalability
and well-posedness make them particularly suited for robustness evaluations. By leveraging
the mathematical structure of implicit models, we establish a comprehensive framework that
extends theoretical robustness guarantees to a wide range of DNN models. This approach
not only strengthens our understanding of DNN behavior under adversarial conditions but
also lays the foundation for designing inherently robust architectures.

CHAPTER 4. ROBUSTNESS ANALYSIS VIA IMPLICIT REPRESENTATION 41

4.2 Robustness bound

In this section, we analyze the robustness properties of implicit models defined by the
prediction rule (2.1b). Specifically, we aim to derive bounds on the state, output, and loss
function under the presence of input uncertainties. Such robustness analysis is valuable for
multiple purposes, including diagnosing model vulnerabilities, generating adversarial attacks,
and guiding the design of penalties or constraints during training. To ensure a well-posed
framework, we assume that the activation map satisfies the Blockwise Lipschitz (BLIP)
condition, and the matrix A of the implicit model adheres to the sufficient well-posedness
conditions established in Theorem (3).

Input Uncertainty Models

We consider scenarios where the input vector is uncertain and is only known to belong to
a given set U ⊆ Rp. Our results are applicable to a broad class of input uncertainty sets;
however, we focus on the following two representative cases:

The first case corresponds to a box-bounded uncertainty set, where the input vector is
constrained to lie within a specified range around a nominal value:

Ubox :=
{
u ∈ Rp : |u− u0| ≤ σu

}
. (4.1)

Here, the p-vector σu > 0 defines the componentwise uncertainty bounds for each dimension
of the input, and u0 ∈ Rp represents the vector of “nominal” inputs.

The second case introduces a cardinality-limited uncertainty set, which not only bounds
the magnitude of deviations in the input but also restricts the number of components allowed
to change:

U card :=
{
u ∈ Rp : |u− u0| ≤ σu, Card(u− u0) ≤ k

}
. (4.2)

In this formulation, Card(·) denotes the cardinality (i.e., the number of non-zero components)
of its argument, and k < p specifies the maximum allowable number of perturbed components.
This constraint captures scenarios where a limited number of features can deviate from their
nominal values, offering a more structured representation of input uncertainty.

These uncertainty models provide flexibility in characterizing diverse input perturbation
scenarios. The following subsections explore how such input uncertainties propagate through
the implicit model, affecting the state and output predictions.

Box Bounds on the State Vector

Assume that ϕ is a CONE map, and the input vector u is known to belong to the box-bounded
uncertainty set Ubox defined in (4.1). Our goal is to derive componentwise bounds on the
state vector x, expressed as |x − x0| ≤ σx, where x and x0 are the unique solutions to
ξ = ϕ(Aξ + Bu) and ξ = ϕ(Aξ + Bu0), respectively, and σx > 0 represents the bound.

CHAPTER 4. ROBUSTNESS ANALYSIS VIA IMPLICIT REPRESENTATION 42

Using the definition of x and x0, we can write:

|x− x0| = |ϕ(Ax + Bu)− ϕ(Ax0 + Bu0)|
≤ |A||x− x0|+ |B(u− u0)|,

where the inequality follows from the Lipschitz property of the CONE map ϕ.

This leads to the following upper bound:

∥x− x0∥∞ ≤ ∥A∥∞∥x− x0∥∞ + ∥B(u− u0)∥∞.

Under the assumption that ∥A∥∞ < 1, we have:

∥x− x0∥∞ ≤
∥|B|σu∥∞
1− ∥A∥∞

, (4.3)

where σu is the componentwise uncertainty bound for the input vector.

For the cardinality-constrained uncertainty set U card defined in (4.2), the bound becomes:

∥x− x0∥∞ ≤
δ

1− ∥A∥∞
, (4.4)

where
δ := max

1≤i≤n
sk(σu ⊙ |B|⊤ei),

with ei representing the i-th unit vector in Rn, and sk denoting the sum of the top k entries
in a vector. This formulation accounts for the sparsity constraint in the input perturbations,
effectively limiting the number of perturbed components to k.

We can refine the analysis above by deriving a “box” (componentwise) bound for cases
where ϕ is a block-Lipschitz (BLIP) map. The result involves the matrix of norms N(A, γ)
defined in (2.6), as well as a corresponding matrix of norms for the input matrix B.

To formalize this, we decompose B into blocks B = (Bli)l∈[L],i∈[p], where each Bli ∈ Rnl

represents the interaction between the l-th block of the state vector and the i-th component
of the input vector. Using this blockwise structure, we define an L × p matrix of norms,
denoted as N(B, γ), given by:

N(B, γ) :=
(
γl∥Bli∥pl

)
l∈[L],i∈[p]. (4.5)

Here, γl is the Lipschitz constant of the l-th block of the activation map ϕ, and ∥Bli∥pl
represents the norm of the block Bli with respect to the lpl-norm. This matrix captures the
influence of input uncertainty on each block of the state vector, allowing for a more nuanced
characterization of the state bounds in the presence of blockwise structure.

CHAPTER 4. ROBUSTNESS ANALYSIS VIA IMPLICIT REPRESENTATION 43

Theorem 5 (Box bound on the vector norms of the state, BLIP map). Assume that ϕ is
BLIP, and the corresponding sufficient well-posedness condition of (1) is satisfied. Then,
I −N(A, γ) is invertible, and

η(x− x0) ≤ (I −N(A, γ))−1N(B, γ)σu, (4.6)

where the vector of norms function η(·) is defined in (2.2).

Proof. Proof of Theorem (5)

For every l ∈ [L], we proceed as follows:

[η(x− x0)]l ≤ ∥ϕl([A(x− x0) + B(u− u0)]l)∥pl

≤ γl

∥∥∥∥∥∥
∑
h∈[L]

Alh(x− x0)h

∥∥∥∥∥∥
pl

+ γl

∥∥∥∥∥∥
∑
i∈[p]

Bli(u− u0)i

∥∥∥∥∥∥
pl

≤ γl
∑
h∈[L]

∥Alh∥ph→plη(x− x0)h + γl
∑
i∈[p]

∥Bli∥pl |u− u0|i

≤ [N(A, γ)η(x− x0)]l + [N(B, γ)|u− u0|]l,

which establishes the desired bound. Since I −N(A, γ) is invertible under the well-posedness
condition, we conclude:

η(x− x0) ≤ (I −N(A, γ))−1N(B, γ)σu.

Note that the box bound can be computed via fixed-point iterations. For instance, when
ϕ is a CONE map, we solve the equation:

(I − |A|)σx = |B|σu,

as the limit point of the fixed-point iteration:

σx(0) = 0, σx(t + 1) = |A|σx(t) + |B|σu, t = 0, 1, 2, . . . ,

which converges since λPF (|A|) < 1. This iterative procedure ensures efficient computation
of the box bounds for the state vector.

Bounds on the Output

The previous analysis enables us to quantify the effect of input noise on the output vector y.
Let us assume that the activation function ϕ satisfies the Componentwise Non-Expansiveness
(CONE) condition of (2.3). Additionally, we assume the stricter well-posedness condition

CHAPTER 4. ROBUSTNESS ANALYSIS VIA IMPLICIT REPRESENTATION 44

∥A∥∞ < 1 is satisfied. This condition can always be enforced by appropriately rescaling the
model, provided λPF (|A|) < 1.

For the implicit prediction rule (2.1), the following bound holds:

∀u, u0 : ∥ŷ(u)− ŷ(u0)∥∞ ≤ ρ∥u− u0∥∞, ρ :=
∥B∥∞∥C∥∞
1− ∥A∥∞

+ ∥D∥∞.

This inequality shows that the prediction rule is Lipschitz-continuous, with a Lipschitz
constant bounded above by ρ. The parameter ρ characterizes the sensitivity of the output
predictions to perturbations in the input, providing a meaningful measure of the model’s
robustness to noise.

The above result motivates incorporating the ∥ · ∥∞ norm into the training objective, as a
penalty on model parameters A,B,C,D. Specifically, a convex penalty can be designed to
bound the Lipschitz constant ρ as follows:

ρ ≤ 1

2

∥B∥2∞ + ∥C∥2∞
1− ∥A∥∞

+ ∥D∥∞. (4.7)

By constraining ρ, we can ensure a trade-off between robustness and model complexity,
improving the stability of the model under perturbations.

We can refine this analysis with the following theorem, applicable to cases where ϕ satisfies
the Block Lipschitz (BLIP) condition. Decomposing C into column blocks C = (C1, . . . , CL),
where Cl ∈ Rq×nl for l ∈ [L], we define the matrix of (dual) norms as:

N(C) := (∥Cil∥p∗l)l∈[L], i∈[q],

where the dual norm p∗l is defined as p∗l := 1
1−1/pl

for l ∈ [L].

Additionally, recall the corresponding matrix of norms for A defined in (2.6) and for B
in (4.5). These matrices provide a structured representation of how different blocks of the
parameter matrices A,B, and C interact with the BLIP properties of ϕ.

The refined analysis extends the robustness bounds to models with BLIP activation
functions, allowing for a more granular characterization of sensitivity to input noise. By
leveraging the norm matrices N(A, γ), N(B, γ), and N(C), we can compute tighter bounds on
the Lipschitz constant and output sensitivity. This generalization ensures broader applicability
across architectures with blockwise operations, such as convolutional or attention-based
networks.

Theorem 6 (Box bound on the output, BLIP map). Assume that ϕ is a BLIP map and that
the sufficient condition for well-posedness λPF (N(A, γ)) < 1 is satisfied. Then, I −N(A, γ)
is invertible, and

∀ u, u0 |ŷ(u)− ŷ(u0)| ≤ S|u− u0|, (4.8)

CHAPTER 4. ROBUSTNESS ANALYSIS VIA IMPLICIT REPRESENTATION 45

where the (non-negative) q × p matrix

S := N(C)(I −N(A, γ))−1N(B, γ) + |D|

is a “sensitivity matrix” of the implicit model with a BLIP map. In the special case where ϕ
is a CONE map, the sensitivity matrix simplifies to:

S = |C|(I − |A|)−1|B|+ |D|.

Proof. Proof of Theorem (4.8)

For a given i ∈ [q], consider the componentwise bound for the output difference:

|ŷ(u)− ŷ(u0)|i =

∣∣∣∣∣∣
∑
l∈[L]

Cil(x− x0)l +
∑
j∈[p]

Dij(u− u0)j

∣∣∣∣∣∣ .
Using the triangle inequality, we have:

|ŷ(u)− ŷ(u0)|i ≤
∑
l∈[L]

|Cil(x− x0)l|+
∑
j∈[p]

|Dij(u− u0)j|.

For the first term, applying the dual norm relationship:

|Cil(x− x0)l| ≤ ∥Cil∥p∗l ∥(x− x0)l∥pl .

Thus:
|ŷ(u)− ŷ(u0)|i ≤

∑
l∈[L]

∥Cil∥p∗l η(x− x0)l +
∑
j∈[p]

|Dij(u− u0)j|.

Substituting the box bound on η(x− x0) from (4.6), we get:

η(x− x0) ≤ (I −N(A, γ))−1N(B, γ)|u− u0|.

Finally, substituting this into the output bound:

|ŷ(u)− ŷ(u0)| ≤
(
N(C)(I −N(A, γ))−1N(B, γ) + |D|

)
|u− u0|,

proving the result.

4.3 Sensitivity Matrix

The sensitivity matrix can be computed via fixed-point iterations, which are guaranteed to
converge due to the well-posedness assumption stated in the theorem. For the case of CONE
maps, these iterations are described as follows:

CHAPTER 4. ROBUSTNESS ANALYSIS VIA IMPLICIT REPRESENTATION 46

Figure 4.1: Sensitivity matrix for a 3-layer neural network with q = 10 outputs and n = 1094 states.
The matrix has dimension q × n (10× 1094 in this example)

X(t + 1) = |A|X(t) + |B|, t = 0, 1, 2, . . . ,

where the sequence X(t) converges to a limit point X∞, provided λPF (|A|) < 1. Once
X∞ is determined, the sensitivity matrix S can be computed as:

S = |C|X∞ + |D|.

Figure 4.2: Sensitivity matrix for a 3-layer neural network with q = 10 outputs and n = 1094 states.

The implicit model formulation enables the analysis and bounding of distortions in the
state vector x and the output ŷ caused by unknown-but-bounded input noise. This provides
valuable insights into the behavior of deep neural networks (DNNs) under uncertainty, a

CHAPTER 4. ROBUSTNESS ANALYSIS VIA IMPLICIT REPRESENTATION 47

condition inherent in most real-world applications. The sensitivity matrix, a key analytical
tool, offers a means to visualize the input-output relationships of a given DNN model.

Figure 4.2 illustrates the sensitivity matrix for a neural network used in a classification
task with q = 10 classes. Notably, certain classes exhibit higher sensitivity values, indicating
greater susceptibility to input noise. This insight can guide resource allocation, as classes
with higher sensitivity may require significantly more training data to achieve comparable
classification accuracy.

Moreover, the sensitivity matrix serves as a powerful tool for adversarial analysis. By
identifying the input features with the highest sensitivity, it informs adversaries on which
features to perturb to significantly distort the model’s output. This enables the generation of
small, imperceptible, or sparse perturbations targeted at the most sensitive input features.
Section 4.4 presents examples of adversarial images generated using this approach.

Our analysis also informs the design of adversarial defenses. We show that the prediction
rule is Lipschitz-continuous, bounded above by κ, as defined in (4.9) in Section 4.2. This
observation motivates the use of ∥ · ∥∞ as a regularization technique to promote robustness
during training. Specifically, a convex penalty can be applied to bound the Lipschitz constant
from above:

κ ≤ P (A,B,C,D) :=
1

2

∥B∥2∞ + ∥C∥2∞
1− ∥A∥∞

+ ∥D∥∞, (4.9)

where P is the penalty function.

This regularization penalty can be further refined using the component-wise bound, making
∥S∥∞, the norm of the sensitivity matrix, a natural choice for enhancing robustness during
training. By integrating these insights, the approach not only strengthens model resilience
against adversarial perturbations but also improves the interpretability and manageability of
DNN behaviors under uncertain inputs.

Worst-case Loss Function

In this section, we analyze the worst-case behavior of the loss function under bounded input
noise, assuming the activation map ϕ satisfies the CONE property in Section 2.3. Using the
box bounds derived for the state and output vectors in Section 4.2, we compute bounds on
the loss function evaluated between a given “target” y ∈ Rp and the prediction ŷ.

For the squared Euclidean loss function, defined as:

L(y, ŷ) = ∥y − ŷ∥22,

the worst-case loss can be computed using the box bound (4.8) as:

Lwc(y, ŷ
0) := max

|ŷ−ŷ0|≤σy

L(y, ŷ) = ∥|y − ŷ0|+ σy∥22,

where ŷ0 represents the nominal prediction.

CHAPTER 4. ROBUSTNESS ANALYSIS VIA IMPLICIT REPRESENTATION 48

For the cross-entropy loss function, defined as:

L(y, ŷ) = log

(
q∑

i=1

eŷi

)
− y⊤ŷ,

where y ≥ 0 and 1⊤y = 1 (representing the target class probabilities), we consider a simplified
scenario with D = 0, leading to the nominal output ŷ0 := Cx0. Using the norm bound (4.3),
we have ∥x− x0∥∞ ≤ ρ for a suitable ρ > 0. The worst-case loss is then:

Lwc(y, ŷ
0) := max

δx : ∥δx∥∞≤ρ
L(y, ŷ0 + Cδx),

which can be expressed as:

max
δx : ∥δx∥∞≤ρ

log

(
q∑

i=1

eŷ
0
i +c⊤i δx

)
− y⊤(ŷ0 + Cδx),

where c⊤i is the i-th row of C.

Direct computation of this expression may be challenging, but we can derive an upper
bound by separately evaluating the two terms:

Lwc(y, ŷ
0) ≤ log

(
q∑

i=1

eŷ
0
i +ρ∥ci∥1

)
− y⊤ŷ0 + ρ∥C⊤y∥1.

Given y ≥ 0 and 1⊤y = 1, we have ∥C⊤y∥1 ≤ ∥C∥∞, yielding:

L(y, ŷ0) ≤ Lwc(y, ŷ
0) ≤ L(y, ŷ0) + 2ρ∥C∥∞.

Using the refined box bounds (4.8), we can further tighten this result:

Lwc(y, ŷ
0) ≤ log

(
q∑

i=1

eŷ
0
i +σy,i

)
− y⊤ŷ0 + y⊤σy.

These bounds highlight the impact of the sensitivity matrix on worst-case loss behavior,
providing insights into robustness optimization during training.

Linear Programming (LP) Relaxation for CONE Maps

The previously discussed bounds do not provide a direct method to generate adversarial
attacks, i.e., feasible points u ∈ U that maximize the impact on the state vector. In certain
cases, however, it is possible to refine these box bounds using an LP relaxation, which has
the added advantage of suggesting a specific adversarial attack. Here, we focus on the ReLU
activation function ϕ(z) = max(z, 0) = z+, which satisfies the CONE map property.

CHAPTER 4. ROBUSTNESS ANALYSIS VIA IMPLICIT REPRESENTATION 49

We consider the optimization problem:

p∗ := max
x,u∈U

∑
i∈[n]

fi(xi) : x = z+, z = Ax + Bu, |x− x0| ≤ σx, (4.10)

where fi are arbitrary functions. For example:

• Setting fi(ξ) = (ξ − x0
i)

2, i ∈ [n], corresponds to finding the largest discrepancy
(measured in ℓ2-norm) between x and x0.

• Setting fi(ξ) = −ξ, i ∈ [n], corresponds to minimizing the ℓ1-norm of the state vector
x.

By construction, this formulation improves on the previous state bound, ensuring:

p∗ ≤
∑
i∈[n]

max
|α|≤1

fi(x
0
i + ασx,i).

To generalize our result for arbitrary sets U , we use the support function σU , which is
defined for any b ∈ Rp as:

σU(b) := max
u∈U

b⊤u. (4.11)

Note that the support function depends only on the convex hull of the set U .

For specific cases, we have closed-form expressions for the support function:

• For the box set Ubox defined in (4.1), the support function is:

σUbox(b) = b⊤u0 + σ⊤
u |b|,

where u0 is the nominal input, and σu represents the component-wise uncertainty.

• For the cardinality-constrained set U card defined in (4.2), the support function is:

σUcard(b) = b⊤u0 + sk(σu ⊙ |b|),

where sk is the sum of the top k entries of its vector argument, a convex function.

This LP relaxation provides a means to refine state bounds and identify specific input
perturbations that maximize the impact on the state vector.

The only coupling constraint in (4.10) is the affine equation, which motivates the following
relaxation.

CHAPTER 4. ROBUSTNESS ANALYSIS VIA IMPLICIT REPRESENTATION 50

Theorem 7 (LP Bound on the State). An upper bound on the objective of problem (4.10) is
given by:

p∗ ≤ p := min
λ

σU(B⊤λ) +
∑
i∈[n]

gi(λi, (A
⊤λ)i),

where σU is the support function defined in 4.11, and gi, i ∈ [n], are the convex functions
defined as:

gi : (α, β) ∈ R2 → gi(α, β) := max
ζ : |ζ+−x0

i |≤σx,i

fi(ζ+)− αζ + βζ+, i ∈ [n].

If the functions gi, i ∈ [n], are closed, we have the bidual expression:

p := max
x, u∈CoU

−
∑
i∈[n]

g∗i (−(Ax + Bu)i, xi),

where g∗i is the conjugate of gi, i ∈ [n].

Proof. Proof of Theorem 7

We begin by rewriting the original optimization problem:

p∗ ≤ p := min
λ

max
x, u∈U

∑
i∈[n]

fi(xi) + λ⊤(Ax + Bu− z) subject to x = z+, |x− x0| ≤ σx.

Expanding the terms, we get:

p = min
λ

max
u∈U

λ⊤Bu + max
z : |z+−x0|≤σx

∑
i∈[n]

(
fi(z

+
i) + (A⊤λ)iz

+
i − λizi

)
.

Defining µ = A⊤λ, we rewrite the above expression:

p = min
λ, µ=A⊤λ

(
max
u∈U

λ⊤Bu

)
+
∑
i∈[n]

gi(λi, µi),

which establishes the first part of the theorem.

Next, assume that the functions gi, i ∈ [n], are closed. By strong duality, we have:

p = min
λ, µ

max
x, u∈U

λ⊤Bu + x⊤(A⊤λ− µ) +
∑
i∈[n]

gi(λi, µi).

Rearranging the terms, we arrive at the dual formulation:

p = max
x, u∈Co(U)

−
∑
i∈[n]

g∗i (−(Ax + Bu)i, xi),

where g∗i is the conjugate of gi, for i ∈ [n]. This completes the proof.

CHAPTER 4. ROBUSTNESS ANALYSIS VIA IMPLICIT REPRESENTATION 51

Figure 4.3: Visualization of bounds on the state vector x for different methods. The plots depict
the implicit box bounds (blue), interval propagation bounds (red), and implicit LP bounds (green)
for selected dimensions of the state vector.

In the case when fi(ξ) = ciξ, i ∈ [n], where c ∈ Rn is given, it turns out that our
relaxation, when expressed in bidual form, has a natural look:

p∗ ≤ p = max
x, u∈U

c⊤x subject to x ≥ Ax + Bu, x ≥ 0, |x− x0| ≤ σx.

When the cardinality of changes in the input is constrained to the set U card, the bound
takes the form:

p∗ ≤ p = max
x, u

c⊤x subject to
x ≥ Ax + Bu, x ≥ 0, |x− x0| ≤ σx,

∥diag(σu)−1(u− u0)∥1 ≤ k, |u− u0| ≤ σu.

Figure 4.3 compares three types of bounds on the state vector x across two random
dimensions: interval bound propagation (IBP) [36], implicit box bounds, and implicit LP
bounds. Interval bound propagation refers to a method for propagating input uncertainty
through a neural network layer by layer, using interval arithmetic to bound the range of
possible values at each layer. While IBP is computationally efficient and widely used for
robustness certification, it tends to produce conservative estimates of the uncertainty region.

CHAPTER 4. ROBUSTNESS ANALYSIS VIA IMPLICIT REPRESENTATION 52

This conservatism, illustrated by the red bounds in the figure, often leads to significant
overestimation of the true uncertainty region, resulting in inefficiencies in robustness analysis
or adversarial attack generation.

In contrast, the implicit box bounds (blue) provide a significantly tighter estimation of the
feasible region by leveraging the structural properties of the implicit model and the sufficient
well-posedness conditions. These bounds are more informative, capturing the constraints
imposed by the model’s architecture and activation functions.

The implicit LP bounds (green), derived using a Lagrange relaxation, are the tightest
among the three methods. These bounds exploit both the linear structure of the system and
the precise input uncertainty constraints to characterize the state space with high accuracy.
The tightness of these bounds not only improves interpretability but also provides actionable
insights for generating adversarial attacks. By identifying specific input perturbations that
maximize the impact on the state or output, implicit LP bounds enable more targeted and
effective adversarial analysis. Together, these results highlight the advantages of implicit
bounds over interval propagation methods for applications requiring robust and precise
estimates of state distortions.

4.4 Adversarial Attacks via Implicit Representation

Attack via the Sensitivity Matrix

The preceding analysis highlights the utility of the sensitivity matrix as a critical tool for
evaluating robustness. In this section, we demonstrate how the sensitivity matrix can be
leveraged to craft effective adversarial attacks on two widely used public datasets: MNIST
and CIFAR-10.

We evaluate the performance of sensitivity-matrix-based attacks in comparison to com-
monly used gradient-based adversarial attack methods, including the Fast Gradient Sign
Method (FGSM) [33] and the Jacobian-based Saliency Map Attack (JSMA) [70]. The experi-
ments are conducted on the following two neural network architectures:

• Feed-forward Neural Network (FFNN): A three-layer fully connected feed-forward
network trained on the MNIST dataset, achieving 98% clean accuracy. The model
utilizes ReLU activations and is optimized using cross-entropy loss.

• ResNet-20: A 20-layer deep residual network [44] trained on the CIFAR-10 dataset,
achieving 92% clean accuracy. The model incorporates batch normalization and ReLU
activations for stable and efficient training.

Through these experiments, we highlight the effectiveness of sensitivity-based attacks
in reducing model accuracy while adhering to a fixed perturbation budget. These results

CHAPTER 4. ROBUSTNESS ANALYSIS VIA IMPLICIT REPRESENTATION 53

underscore the utility of the sensitivity matrix for targeted adversarial attack generation, as
well as its potential to inform robust model design.

We compare our method against commonly used gradient-based adversarial attacks.
Specifically, for a given prediction function F learned by a deep neural network, a benign
input sample u ∈ Rp, and its corresponding target y, we compute the gradient of F with
respect to u, denoted as ∇uF (u, y). The absolute value of the gradient, |∇uF (u, y)|, serves
as an indication of which input features an adversary should perturb. This approach aligns
with saliency map techniques such as those proposed in [86, 70].

The sensitivity matrix, however, offers a key distinction. Unlike the gradient, which
depends on the specific input sample u, the sensitivity matrix provides a global measurement
of robustness that is independent of the input data. As a result, it serves as a more general-
purpose tool for evaluating a model’s susceptibility to adversarial perturbations. By leveraging
the sensitivity matrix, our method demonstrates its capability to generate attacks that are
both effective and computationally efficient, while providing insights into the model’s inherent
vulnerabilities.

Figure 4.4: Left: Sensitivity values for a feed-forward network trained on MNIST, visualized for
the class “digit 0.” Darker regions indicate higher sensitivity to input perturbations, showing which
pixels significantly influence the network’s predictions. Right: Sensitivity values for a ResNet-20
model trained on CIFAR-10, visualized for the class “airplane.” Color intensity highlights the areas
most sensitive to perturbations, with high sensitivity values concentrated on key image regions
associated with the class.

Figure 4.4 presents visualizations of the sensitivity matrix for two distinct models and
datasets. On the left, the sensitivity values for a feed-forward network trained on MNIST
are shown for the class “digit 0.” The visualization highlights regions in the input space
where small perturbations can have the most significant impact on the model’s predictions.

CHAPTER 4. ROBUSTNESS ANALYSIS VIA IMPLICIT REPRESENTATION 54

Darker areas represent higher sensitivity, indicating that these pixels play a critical role in
classification. On the right, the sensitivity matrix for a ResNet-20 model trained on CIFAR-10
is visualized for the class “airplane.” The color intensity emphasizes regions of high sensitivity,
which are often concentrated in areas containing features strongly associated with the target
class, such as edges or structural details of the object. These sensitivity visualizations not
only reveal the model’s reliance on specific features for prediction but also provide insights
into potential vulnerabilities. Adversaries can exploit these high-sensitivity regions to craft
effective and targeted attacks, while developers can leverage this information to enhance
model robustness by focusing on these critical areas during training.

Table 4.1: Experimental results of attack success rate against percentage of perturbed inputs on
MNIST and CIFAR-10 (10000 samples from test set).

Sensitivity matrix attack Gradient-based attack
% of perturbed inputs MNIST CIFAR-10 MNIST CIFAR-10

0.1% 1.01% 3.04% 2.42% 1.75%
1% 13.41% 10.16% 26.92% 6.66%
10% 70.67% 36.21% 74.90% 33.18%
20% 89.82% 57.01% 87.10% 52.57%
30% 90.22% 67.45% 89.82% 66.59%

Table 4.1 presents the experimental results of adversarial attacks using the sensitivity
matrix and the absolute value of the gradient on MNIST and CIFAR-10 datasets. For the
sensitivity matrix attack, we start by perturbing the input features with the highest values
according to the sensitivity matrix. Similarly, for the gradient-based attack, we perturb the
features with the highest absolute gradient values. In both cases, the input features are
perturbed into small random values.

Our experiments demonstrate that the sensitivity matrix attack is as effective as the
gradient-based attack while being significantly simpler to implement. This highlights the
practical advantage of the sensitivity matrix for adversarial attack generation. Interestingly,
the sensitivity matrix attack does not require specific input samples, unlike gradient-based
methods. An adversary with access to the model parameters can easily craft adversarial
samples using the sensitivity matrix. In cases where the model parameters are unavailable,
an adversary can leverage the principle of transferability [62], training a surrogate model to
approximate the sensitivity matrix.

Figure 4.5 demonstrates the effectiveness of adversarial attacks using both dense and sparse
perturbation strategies on MNIST (top) and CIFAR-10 (bottom) datasets. For MNIST,
the left panel showcases dense attacks where small perturbations are applied uniformly
across the image, causing the classifier to misidentify the digits while maintaining the visual
appearance. The right panel highlights sparse attacks where only a few strategically chosen
pixels, marked in red, are perturbed to achieve the same mis-classification. These sparse

CHAPTER 4. ROBUSTNESS ANALYSIS VIA IMPLICIT REPRESENTATION 55

Figure 4.5: Top: adversarial samples from MNIST. On the left are dense attacks with small
perturbations and on the right are sparse attacks with random perturbations (perturbed pixels are
marked as red). Bottom: example sparse attack on CIFAR-10. The left ones are cleaned images,
the middle ones are perturbed images, and the right ones mark the perturbed pixels in red for
higher visibility.

attacks are particularly significant as they alter the classification (e.g., “6” to “5” or “0” to
“1”) with minimal modifications, emphasizing the potency of targeted perturbations.

For CIFAR-10, the first column displays clean images, the middle column shows sparsely
perturbed adversarial examples, and the rightmost column marks the perturbed pixels in
red for visibility. These sparse perturbations subtly manipulate the classifier’s predictions
(e.g., changing the label from “airplane” to another class) without noticeably affecting the
visual quality of the images. This highlights the vulnerability of deep learning models to
small, imperceptible changes, and the effectiveness of sparse attacks in generating adversarial
samples with minimal input modification.

Attack with LP Relaxation for CONE Maps

Although the sensitivity matrix can be used to generate effective adversarial examples, a more
sophisticated attack may be desirable by exploiting the specific weaknesses of an individual
data point. This can be achieved using the LP relaxation outlined in Theorem (7), which
has the advantage of producing a targeted adversarial example for a given input. The
experiment in this section is conducted on MNIST and CIFAR-10 datasets. Specifically, the
optimization problem outlined in (4.10) is solved using the LP relaxation, with the function
fi(ξ) = (ξ−x0

i)
2. This formulation identifies perturbed images that maximize the discrepancy

between the perturbed state x and the nominal state x0.

Figure 4.6 presents five examples of perturbed images generated through the LP relaxation.
Despite appearing visually similar to the original images, the perturbed images effectively

CHAPTER 4. ROBUSTNESS ANALYSIS VIA IMPLICIT REPRESENTATION 56

cause the model to misclassify instances that it otherwise predicts correctly. These results
demonstrate the potency of adversarial examples generated by LP relaxation, offering a
refined method for targeted attacks that leverage the inherent vulnerabilities of specific data
points.

Our framework also supports sparse adversarial attacks by incorporating a cardinality
constraint. Figure 4.7 illustrates three examples of perturbed images under both non-
sparse and sparse attack scenarios. The images on the left represent the outcomes of
non-sparse attacks, while those on the right depict sparse attacks. In both cases, the model
fails to correctly predict the labels of the perturbed images. These results demonstrate
the effectiveness of implicit prediction rules in generating powerful adversarial attacks.
Furthermore, this capability is highly valuable for adversarial training, as it enables the
generation of a large number of adversarial examples that can be added back to the training
dataset, thereby enhancing the robustness of the model against such attacks.

Figure 4.6: Example attack on CIFAR dataset. Top: clean data. Bottom: perturbed data.

Figure 4.7: Example attack on MNIST dataset. Left: non-sparse attack. Right: sparse attack.

4.5 Conclusion

In this chapter, we presented a comprehensive robustness analysis for implicit models,
emphasizing their theoretical properties and practical applications. By building on the

CHAPTER 4. ROBUSTNESS ANALYSIS VIA IMPLICIT REPRESENTATION 57

concept of well-posedness, we established a rigorous framework for studying the behavior of
implicit models under input perturbations. We derived key results, including box bounds on
the state and output vectors, as well as the sensitivity matrix, which serves as a valuable tool
for quantifying and visualizing model robustness.

The sensitivity matrix emerged as a central theme in our analysis, offering an intuitive and
effective measure for identifying input features most susceptible to adversarial perturbations.
We demonstrated its practical utility through experiments on MNIST and CIFAR-10 datasets,
where it facilitated the generation of targeted adversarial attacks comparable in effectiveness
to gradient-based methods, but with greater interpretability and flexibility. The matrix also
provided insights into the inherent robustness of different classes and model components,
highlighting its potential for guiding robust model design and adversarial training.

Additionally, we extended our analysis to include more sophisticated adversarial attacks
using LP relaxations, showcasing their ability to exploit individual data point weaknesses.
These attacks, which can be tailored to generate both sparse and non-sparse perturbations,
further underscore the versatility and power of implicit model representations in understanding
and addressing adversarial vulnerabilities.

Our findings also offer actionable insights for improving model robustness during training.
Specifically, the bounds and penalties derived in this chapter, such as those involving the
sensitivity matrix or output bounds, point to natural regularization strategies that could be
integrated into future training pipelines. These techniques provide a pathway for not only
diagnosing but also mitigating vulnerabilities in neural networks.

In conclusion, this chapter demonstrates the strength of the implicit model framework
in formalizing and addressing robustness challenges in modern neural networks. Building
on this foundation of robustness, the next chapter explores a complementary strength of
implicit models: their extrapolation power. While robustness focuses on how models handle
perturbations within their training domain, extrapolation examines their ability to generalize
effectively to out-of-distribution data and unseen scenarios. This property is crucial for
understanding how implicit models adapt to novel environments and diverse tasks, making
them a versatile tool for real-world applications. In the following chapter, we discuss the
extrapolation capabilities of implicit models, investigating their unique potential to outperform
traditional architectures in challenging settings.

58

Chapter 5

The Extrapolation Power of Implicit
Models

5.1 Introduction

Learning to extrapolate–estimating unknown values beyond the scope of observed data–is a
cornerstone of human intelligence and a critical step towards advancing machine learning
systems capable of generalization. Despite their widespread success across diverse domains,
modern neural networks often fail to extrapolate effectively when faced with data outside
their training distribution. This limitation presents a fundamental challenge in deploying
these models in dynamic and unpredictable environments.

In this chapter, we explore the extrapolation power of a general class of implicit deep
learning models [8, 16, 17, 24], which generalize traditional layered neural networks. Implicit
deep learning models determine their representations via fixed-point equations, allowing
information to propagate both forwardly and backwardly through closed-form feedback
loops. This distinctive architecture enables implicit models to overcome many limitations
of traditional feed-forward networks and provides a promising framework for learning data
representations in complex and unstructured domains.

Several formulations of implicit models include deep equilibrium models (DEQs) [8],
Neural ODEs [17], and general implicit models discussed in this thesis. Unlike classical neural
networks that compute outputs in a strictly layered, feed-forward manner, implicit models
define their state vectors through an equilibrium equation. Outputs are implicitly determined
by solving this equilibrium equation. This unique computational paradigm allows for the
design of more flexible and expressive models, which recent studies have shown to excel in
both practical applications and theoretical generalization [10, 40, 93].

From a neuroscience perspective, the equilibrium state in implicit models has been
interpreted as a closed-loop feedback system, mimicking how the brain processes information
through recurrent and feedback loops [64]. This feedback mechanism allows inputs to revisit

CHAPTER 5. THE EXTRAPOLATION POWER OF IMPLICIT MODELS 59

and reverse directions within the computational graph, distinguishing implicit models from
traditional feed-forward architectures.

In the following sections, we explore how implicit models leverage their unique structure
to extrapolate effectively in out-of-distribution scenarios. By investigating the theoretical
and empirical properties of implicit models, we aim to demonstrate their potential to
surpass traditional architectures in tasks requiring robust extrapolation capabilities. In this
chapter, we investigate whether implicit deep learning models exhibit superior extrapolation
capabilities—a fundamental aspect of human intelligence—compared to similarly sized non-
implicit neural network models. Our contributions are summarized as follows:

• Demonstrating Extrapolation Power: We showcase the extrapolation capabilities
of implicit deep learning models across three diverse domains: (1) well-defined mathe-
matical arithmetic, (2) real-world earthquake location data, and (3) volatile time series
forecasting. These experiments highlight the adaptability and robustness of implicit
models in handling out-of-distribution data.

• Analyses and Ablation Studies: We perform detailed analyses and ablation studies
focusing on two critical factors of implicit models: depth adaptability and closed-
loop feedback. Our results reveal that features learned by implicit models are more
generalizable than those of non-implicit models, underscoring their capacity for effective
learning and extrapolation.

Mathematical tasks. Previous research has primarily focused on developing specialized
neural network models capable of learning algorithms [37, 38, 52, 60, 85]. For instance,
Neural Arithmetic Logic Units (NALUs) were specifically designed to represent mathematical
relationships within their architecture, aiming to improve arithmetic extrapolation [92].
However, these models were later found to exhibit significant instability during training [84].
Neural Arithmetic Expression Calculators (NAECs) utilize reinforcement learning to solve
mathematical expressions involving addition, subtraction, multiplication, and division [15].
Unlike NALU, NAECs require the mathematical operation as an additional input to the
network. Studies by Nogueira, Jiang, and Lin demonstrated that Transformers performed
effectively for addition and subtraction tasks, achieving high accuracy in interpolation
experiments. However, challenges arose with other Transformer-based architectures like
BART [97] and large language models (LLMs) [100], which struggled to accurately reproduce
functions for wide distribution ranges. On the contrary, Charton showed that Transformers
could provide “roughly correct” solutions for matrix inversion and eigenvalue decomposition
tasks, even for out-of-distribution (OOD) inputs, indicating a notable level of mathematical
understanding.

Out-of-distribution generalization. Only a handful of studies have explored out-of-
distribution (OOD) generalization for implicit deep learning models [60, 74, 54]. These

CHAPTER 5. THE EXTRAPOLATION POWER OF IMPLICIT MODELS 60

works highlight the capabilities of implicit deep learning models on tasks like Blurry MNIST,
sequential tasks [60], matrix inversion, and graph regression [3]. Researchers such as Liang
et al. and Anil et al. emphasize a unique property of deep equilibrium models (DEQs)
known as path independence, where the models converge to similar fixed points regardless of
initialization. This property suggests that DEQs could gather more information on OOD
inputs by iterating longer before converging, potentially outperforming other models. [77]
theorized that this property is most beneficial when testing DEQs on data more complex
than the training distribution. They also demonstrated that increasing the number of inner
iterations could lead to overfitting on interpolation tasks. Our work provides further evidence
supporting these hypotheses by examining well-defined functions and real-world datasets
with OOD characteristics.

Function extrapolation. Xu et al. studied the extrapolation behavior of ReLU-based
multi-layer perceptrons (MLPs) and graph neural networks on quadratic, cosine, and linear
functions. They identified specific architectural choices that enhance extrapolation, such as
encoding task-specific non-linearities into model features. Similarly, in the vision domain,
Webb et al. introduced context normalization to obtain more generalized features. Additionally,
Wu et al. demonstrated the benefits of neural networks with Hadamard products (NNs-Hp)
and polynomial networks (PNNs) for arithmetic extrapolation. In this paper, we hypothesize
that implicit models inherently “adapt” to distribution changes, eliminating the need for
task-specific feature transformations to achieve effective extrapolation.

5.2 Problem Setup

We explore two types of implicit models: standard implicit models as defined in (2.1b), and
a variant referred to as implicitRNN.

ImplicitRNN. The implicitRNN functions similarly to a vanilla RNN, processing sequential
inputs one step at a time. For each time step i, where si ∈ Rp represents the i-th element in
a sequence (s1, s2, · · · , st), the model input u for the implicitRNN is a concatenation of si
and the previous hidden state hi−1. This setup is analogous to a vanilla RNN. The implicit
prediction rule for implicitRNN is defined as follows:

h0 = 0, x0 = 0, ui =

(
si

hi−1

)
x = ϕ(Ax + Bui) (equilibrium equation)

ŷi(ui) = Cx + Dui (prediction equation)

hi = ŷi(ui).

In this setup, the recurrent layer is replaced by an implicit structure consisting of the
equilibrium and prediction equations, as illustrated in Figure 5.1. The implicitRNN model

CHAPTER 5. THE EXTRAPOLATION POWER OF IMPLICIT MODELS 61

is introduced to compare implicit models with explicit sequential models, while both retain
representations of data step-by-step.

Figure 5.1: An implicit block. We replace the linear cell in a vanilla RNN with an implicit block
not distinguishing between the output and the recurrent hidden state.

Extrapolate on Mathematical Tasks

We explore three categories of functions, ranging from simple to complex:

1. Identity function: A basic mapping task where the output is expected to match the
input exactly.

2. Arithmetic operations: Tasks involving addition and subtraction with additional data
transformation.

3. Rolling functions over sequential data: Tasks such as computing averages and identifying
the index of the maximum value (argmax) in a rolling sequence.

To evaluate the extrapolation performance of implicit models, we generate two datasets:

• Training data: utrain ∼ P (µ;σ)

• Testing data: utest ∼ P (µ + κ;σ + κ)

Here, P represents a known probability distribution, µ and σ are the mean and standard
deviation, respectively, and κ is a hyper-parameter introducing a distributional shift to test
the model’s extrapolation capabilities.

CHAPTER 5. THE EXTRAPOLATION POWER OF IMPLICIT MODELS 62

Identity function. Recent research has highlighted the challenges neural networks face
in learning the identity mapping f(u) = u, where the output should exactly replicate the
input [45, 92]. Despite its simplicity, this task remains a benchmark for evaluating a model’s
ability to preserve input fidelity.

Arithmetic operations. We consider two arithmetic tasks: addition and subtraction,
involving transformed data. Following the framework proposed by Trask et al., we randomly
select indices i, j, k, l from the range [1, 50], ensuring i < j and k < l. For each input vector
u⃗ := ⟨u1, u2, · · · , u50⟩, we compute:

a =

j∑
a=i

ua, b =
l∑

b=k

ub

The outputs are defined as:

y = a + b (addition task), y = a− b (subtraction task).

Rolling function over sequential data. We investigate two rolling tasks over sequences:
average and argmax.

• Rolling average: For each timestep j, the model predicts the average of the sequence
up to j, given by:

1

j

j∑
i=1

ui.

• Rolling argmax: The model predicts the index of the maximum value observed so far
in the sequence up to timestep j. This task is cast as a classification problem where
the output is a one-hot encoded vector of length L = 10, representing the index of the
maximum input observed. The evaluation focuses on predictions for the final element
of the sequence.

These tasks provide a diverse set of challenges for assessing the extrapolation power of implicit
models across structured and sequential data scenarios.

We compare implicit models against neural networks specifically designed to excel on
each task:

• MLPs for simple functions such as the identity mapping.

• LSTMs for tasks involving sequential data [48].

• NALUs for out-of-distribution (OOD) arithmetic tasks [92].

CHAPTER 5. THE EXTRAPOLATION POWER OF IMPLICIT MODELS 63

• Transformer-based models for more complex mathematical tasks [95].

The details of each task including the architectures of the compared models, are provided
in Table 5.5. All models are optimized using grid search and 5-fold cross-validation on
in-distribution inputs to ensure consistency and reliability in performance evaluation.

To ensure a fair comparison, the number of parameters in the implicit models is matched to
their non-implicit counterparts. This allows us to directly assess the extrapolation capabilities
of the implicit models without confounding factors such as model size or capacity. These
rigorous evaluation setups provide a strong foundation for analyzing the relative strengths
and weaknesses of implicit models in various extrapolation scenarios.

Extrapolate on Noisy Real-world Data

Beyond mathematical extrapolation, where data is generated from a known underlying
function, we explore extrapolation on real-world problems characterized by noisy data and
the absence of explicit data generation functions. These tasks require robust generalization to
predict unseen events, making them ideal benchmarks for evaluating extrapolation capabilities.

We focus on two challenging real-world applications:

• Oscillating Time Series Forecasting: Predicting future states of oscillatory systems,
such as weather patterns or stock market indices, which exhibit non-linear and periodic
behaviors.

• Earthquake Location Prediction: Estimating the location of earthquakes from
seismic readings, where data often contains noise and limited coverage, making it
inherently difficult to generalize beyond observed events.

These applications test the ability of models to extrapolate from incomplete and noisy
training data to unobserved regions, providing insights into their robustness and adaptability
under real-world conditions.

Oscillating Time Series Forecasting

Spiky Synthetic Data. We first examine a synthetic benchmark, spiky time series forecast-
ing, where spikes are randomly inserted into a periodic time series derived from a combination
of sine functions. This controlled setting tests the extrapolation capabilities of models on
periodic and non-linear sequences.

The dataset consists of 7,000 training data points and 3,000 testing data points. The
training set includes 20 spiky regions, each containing 100 data points, with a proportionate

CHAPTER 5. THE EXTRAPOLATION POWER OF IMPLICIT MODELS 64

number of spiky regions in the test set. Data points in the spiky regions are sampled from
the function

y = 5× (sin(2x) + sin(23x) + sin(78x) + sin(100x)),

where the frequencies in the range [0, 100] are chosen arbitrarily to generate a sufficiently
spiky pattern. The magnitude of the spiky regions is capped at 20 to simulate high-intensity
fluctuations.

Outside the spiky regions, data points are sampled from a simpler function,

y = sin(x) + ϵ,

where ϵ ∼ N (0, 0.25) represents added Gaussian noise. This setup ensures a clear distinction
between spiky and non-spiky regimes, allowing for a robust evaluation of extrapolation
performance. Both LSTM and implicit models are evaluated under these conditions to
compare their ability to generalize beyond the training distribution.

Figure 5.2: Time series of a 21-day rolling average of AMC stock volatility plotted on a log scale,
highlights a drastic volatility increase at the beginning of our validation cutoff.

AMC Stock Volatility. We further investigate real-world financial data by forecasting
AMC stock volatility, particularly focusing on the significant increase in average volatility
observed in early 2021, as illustrated in Figure 5.2. Volatility, defined as the variance of
volume-weighted average prices (VWAP), serves as a measure of the risk or uncertainty
associated with the price fluctuations of a security. The task involves predicting AMC’s
volatility over the next 10 minutes, using the VWAP for each of the past 60 minutes as input.

To highlight distributional shifts, we deviate from the conventional approach of calculating
volatility as the standard deviation of returns. Instead, we compute the variance of raw
prices, amplifying the difference between the training and test datasets.

CHAPTER 5. THE EXTRAPOLATION POWER OF IMPLICIT MODELS 65

The training dataset covers the period from February 1, 2015, to December 31, 2020,
while the validation set spans January 1, 2021, to December 31, 2021. To further challenge
the models, we refrain from stationarizing the data via differencing or return calculations,
emphasizing the importance of adaptability to evolving price distributions. We compare
the performance of implicit models against several baseline approaches, including simple
linear regression and non-implicit neural networks. Details of the baseline architectures are
summarized in Table 5.5.

Earthquake Location Prediction

Figure 5.3: Geometric visualization of one set of training features (xi, yi, zi, pi, θi) and its
corresponding labels (X, Y , Z, T). The triangles correspond to stations and the star corresponds
to a source.

The earthquake location prediction problem is a well-established challenge in seismology
[87, 80]. The task involves predicting the location (X, Y , and Z coordinates) and the seismic
wave travel time (T) of an earthquake based on data recorded from nearby seismometers.
Accurate solutions to this problem hold significant humanitarian importance, as they could
enable early warnings before the arrival of potentially destructive secondary waves of an
earthquake. Despite its importance, the problem remains challenging due to the sparsity of
seismic event observations [19].

For this experiment, we compare the performance of general-purpose implicit models
against EikoNet [87], a recently developed deep learning model specifically designed for
earthquake location prediction. Notably, our results demonstrate that implicit models,
despite their generality, can outperform EikoNet when tasked with out-of-distribution (OOD)
location predictions. This highlights the potential of implicit models to generalize beyond

CHAPTER 5. THE EXTRAPOLATION POWER OF IMPLICIT MODELS 66

the constraints of domain-specific architectures, providing a robust alternative for seismic
event analysis.

Figure 5.4: The map shows the training set region colored in blue, roughly corresponding to the
Pacific Ring of Fire. The two red areas are the testing set regions for k = 3.

We follow the methodology outlined by Chuang et al., generating synthetic seismograph
samples recorded by five stations, with one designated as the anchor station to serve as the
reference for all seismic wave arrival times. As illustrated in Figure 5.3, the input features
include a station’s coordinates (x, y, z), event-station back-azimuths (θ), and relative wave
travel times (p) with respect to the anchor station.

The training data is synthetically generated within a range of 90◦E to −90◦E, approxi-
mately corresponding to the Pacific Ring of Fire, as shown in Figure 5.4. Testing is conducted
on regions shifted from 10◦E to 90◦E beyond this Ring of Fire.

For comparison, we use EikoNet, a deep learning model introduced by Smith, Azizzade-
nesheli, and Ross specifically designed for earthquake location prediction. While earthquakes
primarily occur along active tectonic boundaries, an extrapolated earthquake location predic-
tion system has broader applications, including detecting earthquakes in new areas, whether
natural or human-induced (e.g., mining, oil, and gas activities). Such systems are also
valuable for explosion monitoring, providing a universal mapping capability across diverse
seismic events.

CHAPTER 5. THE EXTRAPOLATION POWER OF IMPLICIT MODELS 67

5.3 Numerical Experiments

Mathematical Extrapolation

Identity Function. The test mean squared error (MSE) for the identity function task is
illustrated in Figure 5.5. The implicit model consistently achieves the lowest test MSE (below
5) for test data exhibiting a distribution shift from 0 to 25. Even under substantial distribution
shifts of up to 200, where utest ∈ R10 ∼ U(−205, 205), the implicit model outperforms the
Transformer encoder model by a factor of 105 and the MLP by a factor of 103.

For the identity function and arithmetic operation taks, we experimented with 15 different
activation functions on our MLP: hardtanh, sigmoid, reLU6, tanh, tanhshrink, hardshrink,
leakyrelu, softshrink, softsign, reLU, preLU, multipreLU, softplus, eLU and seLU. We tried
to understand whether specific activations helped the MLP extrapolate as well as our implicit
model. Table 5.1 summarizes the results of 5 of these activation functions on our identity
function task as compared to the implicit deep learning model.

Table 5.1: Testing loss of our implicit model and five MLP models with specific activations on
the identity function task. We observe the implicit model outperforms the MLP across activation
functions. Description of the activation functions in the appendix.

Train MSE Test MSE

Activation MLP Implicit MLP Implicit

ReLU 2.14× 10−3 12.4 ×10−1 21.6 2.16
Leaky ReLU 3.28× 10−3 - 22.3 -
Softplus 1.57× 10−2 - 17.1 -
Softsign 3.01× 10−1 - 47.5 -
Log sigmoid 1.71× 10−2 - 17.1 -

This significant performance gap underscores the robustness of implicit models in han-
dling distribution shifts, contrasting sharply with non-implicit models such as MLPs and
Transformers, which tend to overfit to the training distribution and exhibit dramatically
increased errors under larger distribution shifts. The identity function task highlights the
spurious features often learned by these non-implicit models.

Moreover, our implicit model achieves equilibrium after only 4 training iterations, demon-
strating its efficiency. By contrast, similarly sized MLPs and Transformer encoders face
challenges with overfitting, which emphasizes the implicit model’s ability to mitigate overfit-
ting through rapid convergence, particularly for simpler tasks like identity mapping.

Arithmetic Operations. The results for the addition and subtraction arithmetic tasks
are presented in Figure 5.6. The implicit model not only outperforms various Transformer
encoders but also surpasses NALU, a model specifically designed for mathematical operations.

CHAPTER 5. THE EXTRAPOLATION POWER OF IMPLICIT MODELS 68

Figure 5.5: Test MSE for the identity function task. MSE for MLP and Transformers model
increases as the distribution shift hyper-parameter κ increases.

Figure 5.6: Test Log(MSE) for the arithmetic operations. The implicit model strongly outperforms
all other models on OOD data.

CHAPTER 5. THE EXTRAPOLATION POWER OF IMPLICIT MODELS 69

As demonstrated by Wei et al., Transformer models typically require significantly larger
model sizes (e.g., 1023 parameters) to perform arithmetic tasks effectively. In contrast, the
implicit model, with only 7,650 parameters, successfully learns these operations, achieving a
testing loss of less than 1 for distribution shifts smaller than 100.

Table 5.2 compares the test MSE for our MLP with ReLU activation, the best MLP
across all 15 activations and our implicit model. We have xtrain ∈ R100 ∼ U(1, 2) and
xtest ∈ R100 ∼ U(2, 5). For both operations, the implicit model greatly outperforms the MLP
regardless of the activation function.

Table 5.2: Test MSE table of two MLPs and our implicit model on arithmetic operations. The best
MLP for both tasks was with ReLU6 activation.

Operation ReLU MLP Best MLP Implicit

Addition 6.95 ×1031 8.50 ×103 16.07
Subtraction 3.69 ×1019 1.87×104 3.40 ×10−2

Throughout the experiments, implicit models consistently outperformed non-implicit
models in extrapolation tasks, particularly when training samples were limited. Surprisingly,
the specialized NALU model exhibited the worst performance, with testing losses exceeding
1010 for an extrapolation shift of merely 10, as depicted in Figure 5.6. Across all experiments,
the NALU model failed to produce robust out-of-distribution predictions, highlighting the
limitations of its specialized architecture compared to the general-purpose implicit model.

Rolling Functions. Figures 5.7 and 5.8 illustrate the performance of implicit models
compared to LSTMs and Transformers on two sequence modeling tasks. In the rolling average
task (Figure 5.7), the LSTM and Transformers exhibit similar behaviors, with loss increasing
as the test distribution shifts further from the training data. By contrast, the implicit model
maintains a nearly constant loss, demonstrating superior robustness to distributional changes.

For the rolling argmax task (Figure 5.8), we employ a Transformer encoder-decoder
architecture where the target sequence consists of right-shifted argmax labels. This setup
inherently favors Transformers, as simply outputting the final element in the target sequence
approximates the argmax of the input sequence up to (but not including) the current element.
Given the uniform distribution of argmax labels, this approach implies an expected accuracy
of 90% or 1 − 1/L, where L = 10 is the sequence length. Surprisingly, both the standard
implicit model and implicitRNN outperform LSTMs and Transformers in this task. Moreover,
the implicitRNN achieves higher accuracy than the standard implicit model, highlighting the
potential benefits of a rolling latent representation for tasks requiring positional awareness
within sequences.

A comparison of Transformer variants reveals that small Transformers may overfit to their
positional encodings (PE) on simpler tasks. Notably, the Transformer without positional

CHAPTER 5. THE EXTRAPOLATION POWER OF IMPLICIT MODELS 70

Figure 5.7: Training loss (MSE) for rolling average task. Implicit models maintain close to constant
loss (↓) across shifts.

encodings, which lacks the ability to differentiate between sequence positions, performs better
than its counterparts. This architecture consistently achieves accuracy close to the 90%
benchmark, suggesting it effectively learns to always output the final value in the target
sequence.

Overall, these results demonstrate the competitive performance of both the standard
implicit model and implicitRNN, especially in scenarios requiring an understanding of relative
positions within a sequence. The implicitRNN structure, which mirrors that of a vanilla RNN
but replaces the recurrent cell with an implicit layer, demonstrates substantial performance
improvements over LSTMs. This indicates the potential of the implicit layer to learn
effective memory-gating mechanisms. Further experimentation with longer sequence lengths
is necessary to confirm this conjecture. For additional model architectural details, refer to
Table 5.5.

Oscillating Time Series Forecasting

In our prior experiments, we evaluated the performance of implicit models on well-defined
mathematical tasks. Here, we transition to real-world noisy data, where the underlying
functions are unknown. This shift allows us to investigate whether the extrapolation benefits
of implicit models extend to more complex, real-world scenarios.

For the spiky time series forecasting task, the objective is to accurately capture sudden
and short-lived distribution changes in the data. Such extreme events, commonly observed in

CHAPTER 5. THE EXTRAPOLATION POWER OF IMPLICIT MODELS 71

Figure 5.8: Test accuracy for rolling argmax task. ImplicitRNN and regular implicit model achieve
the best results across shifts.

stock prices, sales volumes, or resource capacity predictions, challenge traditional forecasting
models that struggle to extrapolate to unprecedented patterns. The ability to adapt effectively
to these synthetic spikes has significant real-life implications.

Table 5.3 shows that the implicitRNN achieves a threefold reduction in test MSE compared
to non-implicit models in the spiky time series task. Figure 5.9 further highlights the implicit
model’s ability to accurately predict the locations and magnitudes of these spikes. In contrast,
both the transformer decoder and LSTM models frequently revert to predicting the average of
the time series. This tendency to output mean values underscores the limitations of standard
models in handling sharp fluctuations and complex time-series patterns.

Encouraged by these results, we applied implicit models to predict the sharp rise in
AMC stock volatility observed in 2021. Volatility forecasting is particularly challenging
due to abrupt changes in price behavior. We report the Mean Absolute Percentage Error
(MAPE)1 in Table 5.3. The implicit model demonstrates superior performance, outperforming
other baselines by a factor of 1.67, further solidifying its ability to extrapolate effectively in
real-world noisy data scenarios.

CHAPTER 5. THE EXTRAPOLATION POWER OF IMPLICIT MODELS 72

Figure 5.9: The implicitRNN most accurately models spike magnitudes.

Table 5.3: Train and test metrics (↓) in forecasting time series with sudden changes for synthetic
(spiky time series) and real-world data (AMC stock volatility). Our architectures vary between
tasks (see Table 5.5) but the implicit model outperforms all fine-tuned models.

Spiky Data (MSE) AMC Stock (MAPE)

Model Train Test Train Test

Transformer 0.061 0.012 12.2 6.51
ImplicitRNN 0.015 0.004 2.61 1.71
LSTM 0.011 0.011 10.5 5.46
MLP - - 5.51 2.87
Linear regression - - 7.19 3.94

Earthquake Location Prediction

To generate samples of seismic waves between specific longitudes, based on the methods
presented by Chuang et al., we used a 1D velocity model called Ak135 from the Python
library obspy.taup. Obspy is a Python framework used to process seismological data. Kennett,

1The Mean Absolute Percentage Error (MAPE) metric evaluates a model’s capability to predict changes
in magnitudes relative to their sizes. While the Root Mean Square Error (RMSE) is higher for the implicit
model on validation data (train RMSE = 0.001784, validation RMSE = 0.266366), the validation MAPE is
lower because the average volatility in the validation set is orders of magnitude larger.

CHAPTER 5. THE EXTRAPOLATION POWER OF IMPLICIT MODELS 73

Figure 5.10: Extrapolation comparison between EikoNet and implicit model on the location
prediction task as the extrapolation factor increases. The implicit model has the general edge in
terms of MSE loss.

Figure 5.11: Breaking down the prediction values, we observe that the implicit model only outper-
forms EikoNet in longitude and latitude predictions.

CHAPTER 5. THE EXTRAPOLATION POWER OF IMPLICIT MODELS 74

Engdahl, and Buland demonstrate the accuracy of this model compared to real-world data
(see specifically Figure 6). A 1D velocity model assumes the P-wave travel time (the duration
the P-wave takes to travel from point A to point B) only depends on two attributes: the
distance between the source and the receiver station and the depth of the source. We use this
model to create a travel time lookup table based on these two attributes. We then generate
source locations from a mesh that spans the entire globe while adding perturbation to each
latitude and longitude pair. We generate station locations using the source-station distances
we have from the lookup table and place the stations in random orientations (azimuths) from
the source.

In the earthquake location prediction task, our implicit model demonstrates an improve-
ment of 0.25e−3 in the in-distribution test loss compared to EikoNet, a model specifically
designed for seismic data. As shown in Figure 5.10, the performance of the implicit model
progressively improves in terms of extrapolated test MSE as k increases. By the time k
reaches 2, the implicit model surpasses EikoNet, and at k = 9, the implicit model’s test
loss is 1.59e−2 lower than that of EikoNet. This improvement corresponds to an average
enhancement of 11◦ in longitude and 2◦ in latitude.

Further refinement may be achieved by limiting the source latitude along with longi-
tude during training, potentially leading to greater improvements in latitude extrapolation.
However, as depicted in Figure 5.11, the implicit model faces greater difficulty in predicting
time and depth, with performance deteriorating as k increases. Specifically, at k = 9, the
implicit model’s average error worsens by 9.2 seconds for time prediction and 409 km for
depth prediction.

Future research should investigate whether training an implicit model exclusively on time
and depth labels could enhance its performance in these aspects. This two-pass approach
would parallel traditional location prediction methods, such as HYPOINVERSE (USGS),
where constraints on depth and time present particularly challenging problems.

5.4 Depth Adaptability & Feedback Loop

In our analysis, we identify two key properties that contribute to the effective extrapolation
capabilities of implicit models, even with limited datasets. The first property, depth adapt-
ability, allows these models to dynamically adjust their effective depth rather than being
constrained to a fixed number of layers. The second property, closed-loop feedback, enables
inputs to revisit the same nodes during a single pass, enhancing learning and adaptability.

Depth adaptability. Figures 5.12 and 5.13 illustrate the concept of depth adaptability in
implicit models, showcasing their dynamic ability to adjust the number of iterations required
for convergence based on the complexity of the input data.

Figure 5.12 highlights the relationship between training accuracy and the number of

CHAPTER 5. THE EXTRAPOLATION POWER OF IMPLICIT MODELS 75

Figure 5.12: Relationship between model performance during training and the number of iterations.

Figure 5.13: Growth of implicit models as the input complexity increases in the arithmetic tasks
and rolling argmax.

iterations for the rolling argmax task. As training progresses, both metrics improve, demon-
strating how implicit models refine their representations through iterative transformations.
This behavior underscores the inherent adaptability of implicit models during the training
process, where higher iterations correspond to better accuracy, particularly for complex tasks.

Figure 5.13 expands on this concept by showing how the number of iterations grows with
the complexity of input data for arithmetic operations (left) and the rolling argmax task
(right). For arithmetic tasks like addition and subtraction, the iteration count increases as the
distribution shift factor grows, reflecting the model’s need for more transformations to handle

CHAPTER 5. THE EXTRAPOLATION POWER OF IMPLICIT MODELS 76

out-of-distribution (OOD) inputs. Similarly, in the rolling argmax task, the distribution
shift factor correlates with the required iterations, emphasizing the model’s ability to adapt
dynamically when encountering increasingly complex data.

During a forward pass, an implicit model concludes either by converging to a fixed point
x∗ or reaching a predefined iteration limit. The required number of iterations serves as an
indicator of the model’s perceived task complexity. On average, implicit models required
approximately 15 iterations for addition, 30 for subtraction, and 175 for the rolling argmax
task. For in-distribution inputs, iterations stabilized as the model familiarized itself with the
parameter matrices. However, as inputs deviated further from the training distribution, the
number of iterations increased, suggesting that the input U underwent more transformations
via the model parameters.

This behavior aligns with the findings of Liang et al., highlighting how implicit models
dynamically “grow” in depth to adapt their feature space to OOD inputs. This adaptability
offers dual benefits: for in-distribution data, low depth minimizes overfitting, while for OOD
data, higher depth reduces underfitting. The figures demonstrate the implicit model’s capacity
to balance these challenges effectively, leveraging its dynamic depth adaptability to achieve
robust extrapolation.

Closed-loop feedback. Introduced by Wiener, the concept of closed-loop feedback refers
to a system’s ability to self-correct by using its outputs as part of the input for subsequent
steps. As elaborated by Patten and Odum, this mechanism involves returning a portion of
the output to influence the input at the next step. In neural networks, feedback is typically
encoded through the backward pass during training. However, implicit models, as depicted
in Figure 5.14, inherently incorporate feedback within a single iteration via the feedback
connections in the parameter matrix A (specifically, its lower-triangular part).

Unlike standard feed-forward neural networks, where inputs move strictly forward layer
by layer, implicit models allow inputs to revisit the same nodes or even move backward
within a single iteration. This mechanism enables the model to correct itself iteratively from
one layer to the next, enhancing its ability to refine intermediate states dynamically. In
contrast, non-implicit models only correct themselves after completing a full pass through all
layers. Ma, Tsao, and Shum emphasized the importance of closed-loop feedback in implicit
models, drawing parallels to human neural networks where feedback loops are fundamental.
To assess the role of closed-loop feedback in extrapolation, we conducted ablation studies on
the lower-triangular part of the A matrix. Specifically, we considered a simplified implicit
model with a strictly upper-triangular A matrix, effectively removing feedback. At time
t + 1, the iteration equation for such a model becomes xt+1 = ϕ(Axt + Bu). Ignoring the
activation ϕ and Bu terms, this formulation highlights how xt directly carries outputs from
the previous iteration without any feedback correction. By contrasting this setup with the
typical behavior of implicit models, we illustrate the critical role of closed-loop feedback in
improving extrapolation capabilities.

CHAPTER 5. THE EXTRAPOLATION POWER OF IMPLICIT MODELS 77

Figure 5.14: A matrix and node diagram representation of one iteration through the implicit model:
Ax+Bu. In red, we have the weights that induce feedback in A, and in yellow, the non-feedback
weights.

xt+1 ≈ Axt =

xt+1
0

xt+1
1

xt+1
2

 =

⋆ W0 W1

⋆ ⋆ W2

⋆ ⋆ ⋆

xt
0

xt
1

xt
2

 (5.1)

=

⋆ · xt
0 + W0x

t
1 + W1x

t
2

⋆ · xt
0 + ⋆ · xt

1 + W2x
t
2

⋆ · xt
0 + ⋆ · xt

1 + ⋆ · xt
2

 .

Closed-loop feedback corresponds to xt
i being used to generate xt+1

i . Equation 5.1 illustrates
how the ⋆ weights encode this feedback mechanism. Specifically, the i-th state at time step
t + 1, denoted as xt+1

i , depends not only on its past output xt
i directly through weights on

the diagonal but also indirectly through weights in the lower triangular part of the matrix.
For example, xt+1

2 depends not only on xt
2 but also on xt

1 due to the lower triangular ⋆
weights. Furthermore, both xt

1 and xt
2 depend on xt−1

0 , highlighting the chain of dependencies
facilitated by the feedback mechanism.

We compared a standard implicit model (with feedback loops) against an ablated implicit
model (without feedback loops), where the upper-triangularity of A was enforced during
training. The standard implicit models correspond to those used in our experiments, as
described in Section 5.2. The results of the mathematical tasks for implicit models with and

CHAPTER 5. THE EXTRAPOLATION POWER OF IMPLICIT MODELS 78

without feedback are presented in Table 5.4. It is evident that feedback loops play a crucial
role in helping the models achieve significantly lower testing loss, particularly on inputs with
distribution shifts.

Figure 5.15 presents the ablation results for both models across distribution shifts in
arithmetic and rolling sequential tasks. Ablating feedback harms model performance for
subtraction but not for addition. The regular model, with its feedback loops, has twice as
many weights, which could potentially lead to overfitting on simpler tasks. Feedback loops
appear to enhance stability under distribution shifts for rolling average tasks, whereas they
only provide better performance in calculating the rolling argmax of a sequence.

Moreover, besides superior overall performance, the presence of closed-loop feedback
makes the model more resistant to distribution shifts. Notably, its loss increases more
gradually in the subtraction and rolling average experiments. Our analysis demonstrates that
implicit models possess the capability to adapt their architecture dynamically by learning
the necessary depth, node connections, and self-corrections based on past predictions within
a single training iteration, thanks to their closed-loop feedback mechanism.

Task Feedback No feedback

Add. 3.06 4.07
Sub. 0.953 1.80
R. Max. 93.7% 91.8%
R. Avg. 1e−4 1e−3

Table 5.4: Testing metrics (MSE ↓ for the arithmetic operations and rolling average, accuracy ↑
for rolling argmax) for a distribution shift of 100 comparing an implicit model trained with and
without closed-loop feedback.

5.5 Conclusion

This chapter explored the remarkable extrapolation capabilities of implicit models, showcasing
their potential as robust alternatives to standard neural networks for out-of-distribution
tasks. Through extensive experiments on mathematical operations, noisy real-world datasets,
and sequential forecasting, we demonstrated the superiority of implicit models in handling
temporal, geographical, and distributional shifts.

Two key properties—depth adaptability and closed-loop feedback—emerged as the primary
drivers of this performance. Depth adaptability allows implicit models to dynamically adjust
their depth to suit the complexity of inputs, while closed-loop feedback enables self-correction
within a single iteration, enhancing their ability to refine intermediate representations. These
characteristics help implicit models outperform non-implicit baselines across various tasks,
including arithmetic operations, rolling functions, and earthquake location prediction.

CHAPTER 5. THE EXTRAPOLATION POWER OF IMPLICIT MODELS 79

Figure 5.15: Implicit models benefit from closed-loop feedback specifically in harder extrapolation
tasks.

Additionally, the flexibility of implicit models reduces reliance on task-specific architectural
engineering, allowing them to generalize effectively with minimal data and training. Their
capacity to integrate feedback loops further enhances their robustness, particularly in scenarios
where data exhibits significant shifts or non-stationarity.

The findings in this chapter highlight the transformative potential of implicit models for
tasks requiring generalization and robust extrapolation. This work lays the foundation for
further research into their applications in other domains and motivates the development of
training strategies that fully exploit their inherent strengths.

CHAPTER 5. THE EXTRAPOLATION POWER OF IMPLICIT MODELS 80

Task Baseline model Implicit models

Identity Function MLP: 10× 9× 9× 10 Regular:
A ∈ R4×4, B ∈ R4×10, C ∈ R10×4, D ∈ R10×10

Arithmetic Operations MLP: 50× 10× 10× 1
NALU: 50× 10× 10× 1

Regular: A ∈ R20×20, B ∈ R20×50, C ∈
R1×20, D ∈ R1×50

Rolling Average LSTM: 1×18×18×1 Regular: A ∈ R32×32, B ∈ R32×10, C ∈
R10×32, D ∈ R10×10

Rolling Argmax LSTM: 1×21×21×10 Regular: A ∈ R36×36, B ∈ R36×10, C ∈
R10×36, D ∈ R10×10

ImplicitRNN: A ∈ R21×21, B ∈ R21×23, C ∈
R22×21, D ∈ R22×23

Spiky Time Series LSTM: 1×20×20×1 ImplicitRNN: A ∈ R20×20, B ∈ R20×21, C ∈
R20×20, D ∈ R20×21 with a 20×1 linear layer

Volatility Prediction LSTM: 1× 38× 38× 1
SGD Linear Regression
MLP:
60× 50× 27× 27× 27× 10× 1

Regular: A ∈ R53×53, B ∈ R53×60, C ∈
R1×53, D ∈ R1×60

RNN: A ∈ R37×37, B ∈ R37×41, C ∈
R40×37, D ∈ R40×41 with a 40×1 linear layer

Earthquake Prediction EikoNet:
270×32×128×128×128×32×4

Regular: A ∈ R190×190, B ∈ R190×270, C ∈
R4×190, D ∈ R4×270

Task Transformers

Identity Function Encoder-decoder: 10× 10× 5, 5 attention heads

Arithmetic Operations Sequential encoder: 1 layer, 10 attention heads, feedforward dim 50 -
processes each array as a single sequence.
Depth-wise encoder: 1 layer, 1 attention head, feedforward dim 500, max PE
length 50 - processes each element in a given array as a single sequence.

Rolling Average Encoder-decoder: 10× 10× 5× 10, 5 attention heads

Rolling Argmax Masked encoder-decoder: 1 encoder layer, 1 decoder layer, 2 attention heads,
feedforward dim 10, max PE length 10
Unmasked encoder-decoder: 1 encoder layer, 1 decoder layer, 2 attention
heads, feedforward dim 10, max PE length 10
Unmasked encoder-decoder without PE: 1 encoder layer, 1 decoder layer,
2 attention heads, feedforward dim 10

Spiky Time Series Masked decoder: 1x10 linear layer (expansion) −→ masked decoder (1 layer, 2
attention heads, feedforward dim 2048, max PE length 10) −→ 10x1 linear layer
(contraction)

Volatility Prediction Sequential encoder: 1 layer, 1 attention head, feedforward dim 2048, max PE
length 60 −→ 60x1 linear layer

Earthquake Prediction N/A

Table 5.5: Details of the explicit and implicit network architectures used in the experiments.

81

Bibliography

[1] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. “A Learning Algorithm
for Boltzmann Machines”. In: Cognitive Science 9.1 (1985), pp. 147–169.

[2] Brandon Amos and J. Zico Kolter. “OptNet: Differentiable Optimization as a Layer in
Neural Networks”. In: International Conference on Machine Learning (ICML). 2017,
pp. 136–145.

[3] Cem Anil et al. “Path Independent Equilibrium Models Can Better Exploit Test-Time
Computation”. In: Advances in Neural Information Processing Systems (NeurIPS
2022). 2022. url: https://arxiv.org/abs/2211.09961.

[4] MOSEK ApS. The MOSEK Optimizer API for Python 9.3.21. 2022. url: https:
//docs.mosek.com/latest/pythonapi/index.html.

[5] Amir H Ashouri, Tarek S Abdelrahman, and Alwyn Dos Remedios. “Fast on-the-fly
retraining-free sparsification of convolutional neural networks”. In: arXiv preprint
arXiv:1811.04199 (2018).

[6] Anish Athalye, Nicholas Carlini, and David A. Wagner. “Obfuscated Gradients Give
a False Sense of Security: Circumventing Defenses to Adversarial Examples”. In:
Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Vol. 80. Proceedings of
Machine Learning Research. PMLR, 2018, pp. 274–283. url: http://proceedings.mlr.
press/v80/athalye18a.html.

[7] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. “Deep equilibrium models”. In:
Advances in Neural Information Processing Systems 32 (2019).

[8] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. “Deep Equilibrium Models”. In:
Advances in Neural Information Processing Systems. Ed. by H. Wallach et al. Vol. 32.
Curran Associates, Inc., 2019. url: https://proceedings.neurips.cc/paper/2019/file/
01386bd6d8e091c2ab4c7c7de644d37b-Paper.pdf.

[9] Shaojie Bai, Vladlen Koltun, and J Zico Kolter. “Multiscale deep equilibrium models”.
In: Advances in Neural Information Processing Systems 33 (2020), pp. 5238–5250.

https://arxiv.org/abs/2211.09961
https://docs.mosek.com/latest/pythonapi/index.html
https://docs.mosek.com/latest/pythonapi/index.html
http://proceedings.mlr.press/v80/athalye18a.html
http://proceedings.mlr.press/v80/athalye18a.html
https://proceedings.neurips.cc/paper/2019/file/01386bd6d8e091c2ab4c7c7de644d37b-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/01386bd6d8e091c2ab4c7c7de644d37b-Paper.pdf

BIBLIOGRAPHY 82

[10] Shaojie Bai, Vladlen Koltun, and J. Zico Kolter. “Multiscale Deep Equilibrium Models”.
In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle et al.
Vol. 33. Curran Associates, Inc., 2020, pp. 5238–5250. url: https://proceedings.
neurips.cc/paper/2020/file/3812f9a59b634c2a9c574610eaba5bed-Paper.pdf.

[11] Matteo Cacciola et al. “Deep Neural Networks pruning via the Structured Perspective
Regularization”. In: arXiv:2206.14056 [cs.LG] (June 2022). url: https://arxiv.org/
pdf/2206.14056.pdf.

[12] Nicholas Carlini and David A. Wagner. “Adversarial Examples Are Not Easily Detected:
Bypassing Ten Detection Methods”. In: Proceedings of the 10th ACM Workshop on
Artificial Intelligence and Security, AISec@CCS 2017, Dallas, TX, USA, November 3,
2017. ACM, 2017, pp. 3–14. doi: 10.1145/3128572.3140444. url: https://doi.org/10.
1145/3128572.3140444.

[13] Nicholas Carlini and David A. Wagner. “Towards Evaluating the Robustness of
Neural Networks”. In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San
Jose, CA, USA, May 22-26, 2017. IEEE Computer Society, 2017, pp. 39–57. doi:
10.1109/SP.2017.49. url: https://doi.org/10.1109/SP.2017.49.

[14] François Charton. What is my math transformer doing? – Three results on inter-
pretability and generalization. 2022. doi: 10.48550/ARXIV.2211.00170. url: https:
//arxiv.org/abs/2211.00170.

[15] Kaiyu Chen et al. “Neural Arithmetic Expression Calculator”. In: CoRR abs/1809.08590
(2018). arXiv: 1809.08590. url: http://arxiv.org/abs/1809.08590.

[16] Ricky T. Q. Chen et al. “Neural Ordinary Differential Equations”. In: Advances
in Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran
Associates, Inc., 2018. url: https : / / proceedings . neurips . cc / paper / 2018 / file /
69386f6bb1dfed68692a24c8686939b9-Paper.pdf.

[17] Ricky TQ Chen et al. “Neural ordinary differential equations”. In: Advances in neural
information processing systems 31 (2018).

[18] Shaobing Chen and David Donoho. “Basis pursuit”. In: Proceedings of 1994 28th
Asilomar Conference on Signals, Systems and Computers. Vol. 1. IEEE. 1994, pp. 41–
44.

[19] Lindsay Y. Chuang et al. “Deep Learning and Masksembles for Sparse Network
Earthquake Location and Uncertainty Estimation”. Manuscript in preparation. 2023.

[20] Misha Denil et al. “Predicting parameters in deep learning”. In: Advances in neural
information processing systems 26 (2013).

[21] Terrance Devries and Graham W. Taylor. “Improved Regularization of Convolutional
Neural Networks with Cutout”. In: CoRR abs/1708.04552 (2017). arXiv: 1708.04552.
url: http://arxiv.org/abs/1708.04552.

https://proceedings.neurips.cc/paper/2020/file/3812f9a59b634c2a9c574610eaba5bed-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/3812f9a59b634c2a9c574610eaba5bed-Paper.pdf
https://arxiv.org/pdf/2206.14056.pdf
https://arxiv.org/pdf/2206.14056.pdf
https://doi.org/10.1145/3128572.3140444
https://doi.org/10.1145/3128572.3140444
https://doi.org/10.1145/3128572.3140444
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.48550/ARXIV.2211.00170
https://arxiv.org/abs/2211.00170
https://arxiv.org/abs/2211.00170
https://arxiv.org/abs/1809.08590
http://arxiv.org/abs/1809.08590
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://arxiv.org/abs/1708.04552
http://arxiv.org/abs/1708.04552

BIBLIOGRAPHY 83

[22] Emilien Dupont, David Duvenaud, and Andrew Gordon Wilson. “Augmented Neural
ODEs”. In: Advances in Neural Information Processing Systems (NeurIPS). 2019,
pp. 3133–3144.

[23] Laurent El Ghaoui et al. “Implicit Deep Learning”. In: SIAM Journal on Mathematics
of Data Science 3.3 (2021), pp. 930–958. doi: 10.1137/20M1358517. eprint: https:
//doi.org/10.1137/20M1358517. url: https://doi.org/10.1137/20M1358517.

[24] Laurent El Ghaoui et al. “Implicit Deep Learning”. In: SIAM Journal on Mathematics
of Data Science 3.3 (2021), pp. 930–958. doi: 10.1137/20M1358517. eprint: https:
//doi.org/10.1137/20M1358517. url: https://doi.org/10.1137/20M1358517.

[25] Samuel F. Fung and Jerome Darbon. “Implicit Networks and Convergence Guarantees
for Learning”. In: International Conference on Machine Learning (ICML). 2021,
pp. 456–468.

[26] Bolin Gao and Lacra Pavel. “On the properties of the softmax function with application
in game theory and reinforcement learning”. In: arXiv preprint arXiv:1704.00805
(2017).

[27] Tianxiang Gao and Hongyang Gao. “On the optimization and generalization of
overparameterized implicit neural networks”. In: arXiv preprint arXiv:2209.15562
(2022).

[28] Yash Garg and K Selçuk Candan. “iSparse: Output informed sparsification of neural
network”. In: Proceedings of the 2020 International Conference on Multimedia Retrieval.
2020, pp. 180–188.

[29] Guillaume Garrigos and Robert M Gower. “Handbook of convergence theorems for
(stochastic) gradient methods”. In: arXiv preprint arXiv:2301.11235 (2023).

[30] Zhengyang Geng et al. “On training implicit models”. In: Advances in Neural Infor-
mation Processing Systems 34 (2021), pp. 24247–24260.

[31] Laurent El Ghaoui, Vivian Viallon, and Tarek Rabbani. “Safe feature elimination for
the lasso and sparse supervised learning problems”. In: arXiv preprint arXiv:1009.4219
(2010).

[32] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016.

[33] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and Har-
nessing Adversarial Examples”. In: 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings. 2015. url: http://arxiv.org/abs/1412.6572.

[34] Ian J. Goodfellow and Oriol Vinyals. “Qualitatively characterizing neural network
optimization problems”. In: 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.
Ed. by Yoshua Bengio and Yann LeCun. 2015. url: http://arxiv.org/abs/1412.6544.

https://doi.org/10.1137/20M1358517
https://doi.org/10.1137/20M1358517
https://doi.org/10.1137/20M1358517
https://doi.org/10.1137/20M1358517
https://doi.org/10.1137/20M1358517
https://doi.org/10.1137/20M1358517
https://doi.org/10.1137/20M1358517
https://doi.org/10.1137/20M1358517
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6544

BIBLIOGRAPHY 84

[35] Sven Gowal et al. “On the Effectiveness of Interval Bound Propagation for Training
Verifiably Robust Models”. In: CoRR abs/1810.12715 (2018). arXiv: 1810.12715. url:
http://arxiv.org/abs/1810.12715.

[36] Sven Gowal et al. “On the effectiveness of interval bound propagation for training
verifiably robust models”. In: arXiv preprint arXiv:1810.12715 (2018).

[37] Alex Graves, Greg Wayne, and Ivo Danihelka. “Neural Turing Machines”. In: CoRR
abs/1410.5401 (2014). arXiv: 1410.5401. url: http://arxiv.org/abs/1410.5401.

[38] Alex Graves et al. “Hybrid computing using a neural network with dynamic external
memory”. In: Nature. 538.7626 (2016-10). issn: 0028-0836.

[39] Samuel Greydanus, Misko Dzamba, and Jason Yosinski. “Hamiltonian Neural Net-
works”. In: arXiv preprint arXiv:1906.01563 (2019).

[40] Fangda Gu et al. “Implicit Graph Neural Networks”. In: Proceedings of the 34th Inter-
national Conference on Neural Information Processing Systems. NIPS’20. Vancouver,
BC, Canada: Curran Associates Inc., 2020. isbn: 9781713829546.

[41] Fangda Gu et al. “Implicit graph neural networks”. In: Advances in Neural Information
Processing Systems 33 (2020), pp. 11984–11995.

[42] Eldad Haber and Lars Ruthotto. “Stable Architectures for Deep Neural Networks”.
In: Inverse Problems 34.1 (2017), p. 014004.

[43] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition (CVPR). 2016,
pp. 770–778.

[44] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 770–778.

[45] Kaiming He et al. “Identity mappings in deep residual networks”. In: European
conference on computer vision. Springer. 2016, pp. 630–645.

[46] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. “A Fast Learning Algorithm
for Deep Belief Nets”. In: Neural Computation 18.7 (2006), pp. 1527–1554.

[47] Geoffrey E. Hinton and Terrence J. Sejnowski. “Optimal perceptual inference”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE. 1983, pp. 448–453.

[48] Sepp Hochreiter and Jürgen Schmidhuber. “LSTM can Solve Hard Long Time Lag
Problems”. In: Advances in Neural Information Processing Systems. Ed. by M.C. Mozer,
M. Jordan, and T. Petsche. Vol. 9. MIT Press, 1996. url: https://proceedings.neurips.
cc/paper files/paper/1996/file/a4d2f0d23dcc84ce983ff9157f8b7f88-Paper.pdf.

[49] Yiming Hu et al. “Multi-Loss-Aware Channel Pruning of Deep Networks”. In: 2019
IEEE International Conference on Image Processing (ICIP) (2019), pp. 889–893.

https://arxiv.org/abs/1810.12715
http://arxiv.org/abs/1810.12715
https://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1410.5401
https://proceedings.neurips.cc/paper_files/paper/1996/file/a4d2f0d23dcc84ce983ff9157f8b7f88-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1996/file/a4d2f0d23dcc84ce983ff9157f8b7f88-Paper.pdf

BIBLIOGRAPHY 85

[50] Lingyi Huang, Zhengang Xu, and Mihai Anitescu. “Understanding Implicit Models
in Scientific Machine Learning”. In: Journal of Computational Physics 464 (2022),
p. 111363.

[51] Zehao Huang and Naiyan Wang. “Data-Driven Sparse Structure Selection for Deep
Neural Networks”. In: ECCV (2018).

[52] Lukasz Kaiser and Ilya Sutskever. Neural GPUs Learn Algorithms. 2015. doi: 10.
48550/ARXIV.1511.08228. url: https://arxiv.org/abs/1511.08228.

[53] Hamed Karimi, Julie Nutini, and Mark Schmidt. “Linear convergence of gradient
and proximal-gradient methods under the polyak- lojasiewicz condition”. In: Machine
Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD
2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part I 16. Springer.
2016, pp. 795–811.

[54] Jacob Kelly et al. Learning Differential Equations that are Easy to Solve. 2020. arXiv:
2007.04504 [cs.LG].

[55] B. L. N. Kennett, E. R. Engdahl, and R. Buland. “Constraints on seismic velocities
in the Earth from traveltimes”. In: Geophysical Journal International 122.1 (July
1995), pp. 108–124. issn: 0956-540X. doi: 10.1111/j.1365-246X.1995.tb03540.x. eprint:
https://academic.oup.com/gji/article-pdf/122/1/108/1543667/122-1-108.pdf. url:
https://doi.org/10.1111/j.1365-246X.1995.tb03540.x.

[56] Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”. In: 2009.

[57] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. “Adversarial examples in
the physical world”. In: 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings. Open-
Review.net, 2017. url: https://openreview.net/forum?id=HJGU3Rodl.

[58] Condat Laurent. “Fast projection onto the simplex and the l1 ball”. In: Math. Prog
158 (2016), pp. 575–585.

[59] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature
521.7553 (2015), pp. 436–444.

[60] Kaiqu Liang et al. “Out-of-Distribution Generalization with Deep Equilibrium Models”.
In: ICML 2021 Workshop on Uncertainty and Robustness in Deep Learning (2021).

[61] Renjie Liao et al. “Reviving and Improving Recurrent Backpropagation”. In: Interna-
tional Conference on Machine Learning (ICML). 2018, pp. 1188–1196.

[62] Yanpei Liu et al. “Delving into Transferable Adversarial Examples and Black-box
Attacks”. In: 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017. url: https://openreview.net/forum?id=Sys6GJqxl.

[63] Christos Louizos, Max Welling, and Diederik P Kingma. “Learning sparse neural
networks through L 0 regularization”. In: arXiv preprint arXiv:1712.01312 (2017).

https://doi.org/10.48550/ARXIV.1511.08228
https://doi.org/10.48550/ARXIV.1511.08228
https://arxiv.org/abs/1511.08228
https://arxiv.org/abs/2007.04504
https://doi.org/10.1111/j.1365-246X.1995.tb03540.x
https://academic.oup.com/gji/article-pdf/122/1/108/1543667/122-1-108.pdf
https://doi.org/10.1111/j.1365-246X.1995.tb03540.x
https://openreview.net/forum?id=HJGU3Rodl
https://openreview.net/forum?id=Sys6GJqxl

BIBLIOGRAPHY 86

[64] Yi Ma, Doris Tsao, and Heung-Yeung Shum. “On the principles of Parsimony and Self-
consistency for the emergence of intelligence”. In: Frontiers of Information Technology
& Electronic Engineering (2022), pp. 1–26.

[65] Aleksander Madry et al. “Towards Deep Learning Models Resistant to Adversarial
Attacks”. In: International Conference on Learning Representations. 2018. url: https:
//openreview.net/forum?id=rJzIBfZAb.

[66] Carl D Meyer. Matrix analysis and applied linear algebra. Vol. 71. Siam, 2000.

[67] Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. “Investigating the Limitations of
the Transformers with Simple Arithmetic Tasks”. In: CoRR abs/2102.13019 (2021).
arXiv: 2102.13019. url: https://arxiv.org/abs/2102.13019.

[68] Michael R Osborne, Brett Presnell, and Berwin A Turlach. “A new approach to
variable selection in least squares problems”. In: IMA journal of numerical analysis
20.3 (2000), pp. 389–403.

[69] Nicolas Papernot et al. “Distillation as a Defense to Adversarial Perturbations Against
Deep Neural Networks”. In: IEEE Symposium on Security and Privacy, SP 2016, San
Jose, CA, USA, May 22-26, 2016. IEEE Computer Society, 2016, pp. 582–597. doi:
10.1109/SP.2016.41. url: https://doi.org/10.1109/SP.2016.41.

[70] Nicolas Papernot et al. “The Limitations of Deep Learning in Adversarial Settings”.
In: IEEE European Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken,
Germany, March 21-24, 2016. IEEE, 2016, pp. 372–387. doi: 10.1109/EuroSP.2016.36.
url: https://doi.org/10.1109/EuroSP.2016.36.

[71] B. Patten and E. Odum. “The Cybernetic Nature of Ecosystems”. In: 118.6 (Dec.
1981). doi: https://doi.org/10.1086/283881.

[72] Hongwu Peng et al. “Towards sparsification of graph neural networks”. In: 2022 IEEE
40th International Conference on Computer Design (ICCD). IEEE. 2022, pp. 272–279.

[73] Nicholas G Polson, James G Scott, and Brandon T Willard. “Proximal algorithms in
statistics and machine learning”. In: (2015).

[74] Christopher Rackauckas et al. Universal Differential Equations for Scientific Machine
Learning. 2021. arXiv: 2001.04385 [cs.LG].

[75] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. “Semidefinite relaxations for
certifying robustness to adversarial examples”. In: Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada. 2018, pp. 10900–10910.
url: http://papers.nips.cc/paper/8285- semidefinite- relaxations- for- certifying-
robustness-to-adversarial-examples.

https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://arxiv.org/abs/2102.13019
https://arxiv.org/abs/2102.13019
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/EuroSP.2016.36
https://doi.org/10.1109/EuroSP.2016.36
https://doi.org/https://doi.org/10.1086/283881
https://arxiv.org/abs/2001.04385
http://papers.nips.cc/paper/8285-semidefinite-relaxations-for-certifying-robustness-to-adversarial-examples
http://papers.nips.cc/paper/8285-semidefinite-relaxations-for-certifying-robustness-to-adversarial-examples

BIBLIOGRAPHY 87

[76] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. “Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations”. In: Journal of Computational Physics 378
(2019), pp. 686–707.

[77] Zaccharie Ramzi et al. “Test like you Train in Implicit Deep Learning”. In: (2023).
arXiv: 2305.15042 [cs.LG].

[78] Benjamin Recht et al. “Do CIFAR-10 Classifiers Generalize to CIFAR-10?” In: arXiv
preprint arXiv:1805.12156 (2019).

[79] Sebastian Ruder. “An Overview of Gradient Descent Optimization Algorithms”. In:
arXiv preprint arXiv:1609.04747 (2017).

[80] Omar M. Saad, Ali G. Hafez, and M. Sami Soliman. “Deep Learning Approach
for Earthquake Parameters Classification in Earthquake Early Warning System”.
In: IEEE Geoscience and Remote Sensing Letters 18.7 (2021), pp. 1293–1297. doi:
10.1109/LGRS.2020.2998580.

[81] Victor Sanh et al. “DistilBERT, a distilled version of BERT: smaller, faster, cheaper
and lighter”. In: ArXiv abs/1910.01108 (2019).

[82] Shankar Sastry. Nonlinear systems: analysis, stability, and control. Vol. 10. Springer
Science & Business Media, 2013.

[83] Simone Scardapane et al. “Group sparse regularization for deep neural networks”. In:
Neurocomputing 241 (2017), pp. 81–89.

[84] Daniel Schlör, Markus Ring, and Andreas Hotho. “iNALU: Improved Neural Arithmetic
Logic Unit”. In: Frontiers in Artificial Intelligence 3 (2020). issn: 2624-8212. doi:
10.3389/frai.2020.00071. url: https://www.frontiersin.org/articles/10.3389/frai.2020.
00071.

[85] Avi Schwarzschild et al. “Can You Learn an Algorithm? Generalizing from Easy
to Hard Problems with Recurrent Networks”. In: Advances in Neural Information
Processing Systems. Ed. by M. Ranzato et al. Vol. 34. Curran Associates, Inc.,
2021, pp. 6695–6706. url: https : / / proceedings . neurips . cc / paper / 2021 / file /
3501672ebc68a5524629080e3ef60aef-Paper.pdf.

[86] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep Inside Convolutional
Networks: Visualising Image Classification Models and Saliency Maps”. In: 2nd
International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Workshop Track Proceedings. Ed. by Yoshua Bengio and Yann
LeCun. 2014. url: http://arxiv.org/abs/1312.6034.

[87] Jonathan D. Smith, Kamyar Azizzadenesheli, and Zachary E. Ross. “EikoNet: Solving
the Eikonal Equation With Deep Neural Networks”. In: IEEE Transactions on Geo-
science and Remote Sensing 59.12 (Dec. 2021), pp. 10685–10696. doi: 10.1109/tgrs.
2020.3039165. url: https://doi.org/10.1109/TGRS.2020.3039165.

https://arxiv.org/abs/2305.15042
https://doi.org/10.1109/LGRS.2020.2998580
https://doi.org/10.3389/frai.2020.00071
https://www.frontiersin.org/articles/10.3389/frai.2020.00071
https://www.frontiersin.org/articles/10.3389/frai.2020.00071
https://proceedings.neurips.cc/paper/2021/file/3501672ebc68a5524629080e3ef60aef-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/3501672ebc68a5524629080e3ef60aef-Paper.pdf
http://arxiv.org/abs/1312.6034
https://doi.org/10.1109/tgrs.2020.3039165
https://doi.org/10.1109/tgrs.2020.3039165
https://doi.org/10.1109/TGRS.2020.3039165

BIBLIOGRAPHY 88

[88] Yi Sun, Xiaogang Wang, and Xiaoou Tang. “Sparsifying neural network connections
for face recognition”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 4856–4864.

[89] Christian Szegedy et al. “Intriguing properties of neural networks”. In: International
Conference on Learning Representations. 2014. url: http://arxiv.org/abs/1312.6199.

[90] Robert Tibshirani. “Regression shrinkage and selection via the lasso”. In: Journal of
the Royal Statistical Society Series B: Statistical Methodology 58.1 (1996), pp. 267–288.

[91] Kim-Chuan Toh and Sangwoon Yun. “An accelerated proximal gradient algorithm
for nuclear norm regularized linear least squares problems”. In: Pacific Journal of
optimization 6.615-640 (2010), p. 15.

[92] Andrew Trask et al. “Neural Arithmetic Logic Units”. In: Advances in Neural Informa-
tion Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran Associates, Inc., 2018.
url: https://proceedings.neurips.cc/paper/2018/file/0e64a7b00c83e3d22ce6b3acf2c582b6-
Paper.pdf.

[93] Alicia Y Tsai et al. “State-driven Implicit Modeling for Sparsity and Robustness in
Neural Networks”. In: arXiv preprint arXiv:2209.09389 (2022).

[94] USGS. HYPOINVERSE Earthquake Location. Version 1.4. 2019. url: https://www.
usgs.gov/software/hypoinverse-earthquake-location.

[95] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural Information
Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017,
pp. 5998–6008. url: https://proceedings.neurips.cc/paper files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[96] Li Wan et al. “Regularization of neural networks using dropconnect”. In: International
conference on machine learning. PMLR. 2013, pp. 1058–1066.

[97] Cunxiang Wang et al. “Exploring Generalization Ability of Pretrained Language
Models on Arithmetic and Logical Reasoning”. In: Natural Language Processing and
Chinese Computing. Ed. by Lu Wang et al. Cham: Springer International Publishing,
2021, pp. 758–769. isbn: 978-3-030-88480-2.

[98] Yun Wang. “Feature screening for the lasso”. PhD thesis. Princeton University, 2015.

[99] Taylor W. Webb et al. “Learning Representations that Support Extrapolation”. In:
CoRR abs/2007.05059 (2020). arXiv: 2007.05059. url: https://arxiv.org/abs/2007.
05059.

[100] Jason Wei et al. “Emergent Abilities of Large Language Models”. In: Transactions
on Machine Learning Research (2022). Survey Certification. issn: 2835-8856. url:
https://openreview.net/forum?id=yzkSU5zdwD.

[101] N. Wiener. “Cybernetics.” In: MIT Press, Cambridge, Mass (1948).

http://arxiv.org/abs/1312.6199
https://proceedings.neurips.cc/paper/2018/file/0e64a7b00c83e3d22ce6b3acf2c582b6-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/0e64a7b00c83e3d22ce6b3acf2c582b6-Paper.pdf
https://www.usgs.gov/software/hypoinverse-earthquake-location
https://www.usgs.gov/software/hypoinverse-earthquake-location
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2007.05059
https://arxiv.org/abs/2007.05059
https://arxiv.org/abs/2007.05059
https://openreview.net/forum?id=yzkSU5zdwD

BIBLIOGRAPHY 89

[102] Yongtao Wu et al. “Extrapolation and Spectral Bias of Neural Nets with Hadamard
Product: a Polynomial Net Study”. In: Advances in Neural Information Processing
Systems. Ed. by Alice H. Oh et al. 2022. url: https://openreview.net/forum?id=
cXUMAnWJJj.

[103] Keyulu Xu et al. “How Neural Networks Extrapolate: From Feedforward to Graph
Neural Networks”. In: (2021). arXiv: 2009.11848 [cs.LG].

[104] Fuxun Yu et al. “Interpreting and Evaluating Neural Network Robustness”. In: Pro-
ceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI 2019, Macao, China, August 10-16, 2019. Ed. by Sarit Kraus. ijcai.org, 2019,
pp. 4199–4205. doi: 10.24963/ijcai.2019/583. url: https://doi.org/10.24963/ijcai.
2019/583.

[105] Hongyang Zhang et al. “Theoretically Principled Trade-off between Robustness and
Accuracy”. In: Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA. Ed. by Kamalika Chaudhuri
and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. PMLR,
2019, pp. 7472–7482. url: http://proceedings.mlr.press/v97/zhang19p.html.

https://openreview.net/forum?id=_cXUMAnWJJj
https://openreview.net/forum?id=_cXUMAnWJJj
https://arxiv.org/abs/2009.11848
https://doi.org/10.24963/ijcai.2019/583
https://doi.org/10.24963/ijcai.2019/583
https://doi.org/10.24963/ijcai.2019/583
http://proceedings.mlr.press/v97/zhang19p.html

	Contents
	List of Figures
	List of Tables
	Introduction
	Implicit Learning in Deep Models
	Introduction
	Implicit prediction rules
	System Well-posedness
	Composition of Implicit Models
	Implicit Models of Deep Neural Networks
	Conclusion

	Constrained Implicit Learning
	Introduction
	Constrained Implicit Learning Framework
	Algorithm for Constrained Implicit Model Sparsification
	Numerical Experiments
	Conclusion

	Robustness Analysis via Implicit Representation
	Introduction
	Robustness bound
	Sensitivity Matrix
	Adversarial Attacks via Implicit Representation
	Conclusion

	The Extrapolation Power of Implicit Models
	Introduction
	Problem Setup
	Numerical Experiments
	Depth Adaptability & Feedback Loop
	Conclusion

	Bibliography

