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Abstract

Algorithms for Learning and Incentive Design in Societal-Scale Systems

by

Kshitij Kulkarni

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor S. Shankar Sastry, Chair

This thesis studies problems that decision-makers face in environments that react or adapt
to them. Chapter 2 studies incentive design problems where a decision-maker sets incen-
tives over strategic agents who adapt over time and introduces a two-timescale algorithm
for solving these problems. Applications include atomic networked aggregative games and
non-atomic routing games. Chapter 3 considers the problem of inferring causal relationships
between the state of a dynamical system and the occurrence of a rare event associated with
the system and introduces an algorithm for solving this problem by aggregating data across
time. Chapter 4 studies the formation of coalitions of charging stations in electric vehi-
cle charging games and analyzes their performance relative to regimes where there are no
coalitions and where there are coalitions of maximal size. Chapter 5 studies the redesign of
congestion pricing schemes in settings where there are heterogeneities between the values-of-
time of travelers during traffic routing. Chapter 6 looks at group decision-making problems
in dynamic settings, where the preferences of agents might change, in contrast to the clas-
sical setting. In this setting, we prove a representation theorem that characterizes long-run
policies.
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Chapter 1

Introduction

We are increasingly surrounded by autonomous systems that learn from and make decisions
over the actions of strategic agents that they interact with. Some instances where such
systems are prevalent include traffic routing, electric vehicle charging, and the Internet. In
these applications, it is important to combine modern computing technologies with incentives
to improve the outcomes for all participants. This thesis studies several problems related
to the design and analysis of such systems. We describe the chapters of the thesis in more
detail:

Adaptive incentive design with learning agents. Incentive mechanisms are commonly
used to improve the outcome of the interaction of a large number of strategic agents. Op-
erators often face adaptive agents who repeatedly update their strategies in response to the
incentive mechanism. We propose an adaptive incentive mechanism that updates incentives
based on agents who repeatedly update their behavior as part of a learning process; the
incentive mechanism runs at a timescale that is much slower than the agents’ updates. This
results in a two-timescale coupled dynamical system. The incentive mechanism uses the
externality incurred by the agents’ strategies, relative to a cost specified by the operator.
We provide sufficient conditions on the underlying game between the agents such that the
incentive mechanism and agents’ updates jointly converge to a socially optimal point. To
demonstrate the practical applicability of this mechanism, we apply the theory to atomic net-
worked aggregative games and to non-atomic routing games. This chapter is adapted from
[132] and is joint work with Chinmay Maheshwari, Prof. Manxi Wu, and Prof. Shankar
Sastry.

Causal discovery for rare events. Causal phenomena associated with rare events occur
across a wide range of engineering problems, such as risk-sensitive safety analysis, accident
analysis and prevention, and extreme value theory. However, current methods for causal
discovery are often unable to uncover causal links between random variables in a dynamic
setting that manifest only when the variables first experience low-probability realizations.
To address this issue, we introduce a novel statistical independence test on data collected
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from time-invariant dynamical systems in which rare but consequential events occur. In
particular, we exploit the time-invariance of the underlying data to construct a superim-
posed dataset of the system state before rare events happen at different timesteps. We
then design a conditional independence test on the reorganized data. We provide sample
complexity bounds for the consistency of our method, and validate its performance across
various simulated and real-world datasets, including incident data collected from the Cal-
trans Performance Measurement System (PeMS). This chapter is adapted from [40] and is
joint work with Chih-Yuan Chiu and Prof. Shankar Sastry.

Understanding coalitions between EV charging stations. The rapid growth of elec-
tric vehicles (EVs) is driving the expansion of charging infrastructure globally. As charging
stations become ubiquitous, their substantial electricity consumption can influence grid op-
eration and electricity pricing. Naturally, some groups of charging stations, which could
be jointly operated by a company, may coordinate to decide their charging profile. While
coordination among all charging stations is ideal, it is unclear if coordination of some charg-
ing stations is better than no coordination. We analyze this intermediate regime between
no and full coordination of charging stations. We model EV charging as a non-cooperative
aggregative game, where each station’s cost is determined by both monetary payments tied
to reactive electricity prices on the grid and its sensitivity to deviations from a desired charg-
ing profile. We consider a solution concept that we call C-Nash equilibrium, which is tied
to a coalition C of charging stations coordinating to reduce their costs. We provide suffi-
cient conditions, in terms of the demand and sensitivity of charging stations, to determine
when independent and uncoordinated operation of charging stations could result in lower
overall costs to charging stations, the coalition, and charging stations outside the coalition.
Somewhat counter to common intuition, we show numerical instances where allowing charg-
ing stations to operate independently is better than coordinating a subset of stations as a
coalition. Jointly, these results provide operators of charging stations insights into how to
coordinate their charging behavior, and open several research directions. This chapter is
adapted from [106] and is joint work with Sukanya Kudva, Chinmay Maheshwari, Prof. Anil
Aswani, and Prof. Shankar Sastry.

Redesigning congestion pricing. We study congestion pricing schemes that not only
minimize total travel time, but also incorporate the heterogeneous values-of-time of trav-
elers via a distribution-welfare objective. Our analysis builds on a congestion game model
with heterogeneous traveler populations. We present four pricing schemes that account for
practical considerations, such as the ability to charge differentiated tolls to various traveler
populations and the option to toll all or only a subset of edges in the network. We evaluate
our pricing schemes in a calibrated freeway network of the San Francisco Bay Area. We
demonstrate that the proposed congestion pricing schemes improve both the total travel
time and the distribution-welfare objective compared to the current pricing scheme. Our re-
sults further show that pricing schemes charging differentiated prices to traveler populations
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with varying values-of-time lead to a less variable distribution of travel costs compared to
those that charge a homogeneous price to all. This chapter is adapted from [129], and is
joint work with Chinmay Maheshwari, Druv Pai, Jiarui Yang, Prof. Manxi Wu, and Prof.
Shankar Sastry.

Social choice with changing preferences. We study group decision making with chang-
ing preferences as a Markov Decision Process (MDP). We are motivated by the increasing
prevalence of automated decision-making systems when making choices for groups of people
over time. Our main contribution is to show how classic representation theorems from social
choice theory can be adapted to characterize optimal policies in this dynamic setting. We
provide an axiomatic characterization of MDP reward functions that agree with the Util-
itarianism social welfare functionals of social choice theory. We also provide discussion of
cases when the implementation of social choice-theoretic axioms may fail to lead to long-run
optimal outcomes. This chapter is adapted from [107] and is joint work with Prof. Sven
Neth.
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Chapter 2

Adaptive Incentive Design with
Learning Agents

Best way to predict the future:
just follow the incentives.

Vivek Ramaswamy

This chapter can be found in [132].

2.1 Introduction

Incentive mechanisms play a crucial role in many societal systems, where outcomes are
governed by the interaction of a large number of self-interested users (or algorithms on their
behalf) and a system operator. The outcome of such strategic interactions, characterized by
the Nash equilibrium, is often sub-optimal because of the fact that individual agents often
do not account for the externality of their actions (i.e., how their actions affect the costs of
others), when minimizing their own costs. An important way to address this sub-optimality
is to provide agents with incentives that align their individual goal of cost minimization with
the goal of minimizing the total cost of the system [120, 94, 21].

The system operator faces two key challenges when designing such incentive mechanisms.
First, due to the system’s scale and privacy concerns, the designer may only have access to
sampled information about the cost of agents in the system. Second, the system operator of-
ten needs to consider the adaptive behavior of agents, who repeatedly update their strategies
in response to the incentive mechanism, especially when the physical system experiences a
random shock and agents are trying to reach a new equilibrium [19, 43, 133]. As a result, the
designer cannot infer the equilibrium to predict agents’ behavior, making incentive design a
challenging task. This leads to the following question:
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Main Question (Q): How can a system operator learn an incentive mechanism
that achieves social optimality based on limited or sampled information about
the behavior of agents who are adaptively updating their strategies?

To answer this question, we propose an adaptive incentive mechanism that updates in-
centives based on the behavior of agents, which is repeatedly updated as part of a learning
process, and the gradient information of their cost functions. This results in a coupled dy-
namical system comprising incentive and strategy updates. Our proposed framework can be
applied to both atomic and non-atomic games.

Our proposed incentive mechanism has three key features. First, the incentive update
incorporates the externality incurred by the agents’ current strategy, which is evaluated as
the difference between their own marginal cost and the marginal cost for the entire system.
This feature guarantees that any fixed point of the coupled learning dynamics induces a
socially optimal outcome: the incentive provided to each agent equals their externality given
their equilibrium strategy, and the associated Nash equilibrium is a socially optimal strategy
(Proposition 2). Second, the incentive mechanism only requires limited information about
the behavior of agents. Specifically, it is agnostic to the strategy update dynamics used
by agents and only requires information about the gradient of the cost function of agents
at the current strategy to evaluate the externality (Remark 2.3.2). Third, the incentive
update occurs at a slower timescale compared to the agents’ strategy updates. This slower
evolution of incentives is a desirable characteristic because frequent incentive updates may
hamper agents’ participation. It allows agents to consider the incentives as static while
updating their strategies.

We provide sufficient conditions on the underlying game such that the set of fixed points
is a singleton, making the socially optimal incentive mechanism unique (Proposition 2). We
also characterize sufficient conditions that guarantee the convergence of the coupled dynam-
ical system (Proposition 3). Since the convergent strategy profile and incentive mechanism
correspond to a fixed point that is also socially optimal, these sufficient conditions ensure
that the dynamic incentive mechanism eventually induces a socially optimal outcome in the
long run. To prove this result, we leverage the timescale separation between the strategy
update and the incentive update, using results from the theory of two-timescale dynamical
systems [30]. This theory allows us to analyze the convergence of the coupled dynamical
system in two steps by decoupling the convergence of the strategy update and the incentive
mechanism update. First, the convergence of the strategy update (on the faster timescale)
is analyzed by viewing the incentive mechanism (on the slower timescale) as static. In our
work, we off-load this convergence to the rich literature on learning in games (e.g., [74,
170, 142]). Second, the convergence of the incentive mechanism update is analyzed via the
associated continuous-time dynamical system, evaluated at the converged value of the strat-
egy update (i.e., Nash equilibrium). The sufficient conditions developed in Proposition 3
are built on results on the convergence of non-linear dynamical systems from cooperative
dynamical systems theory [93] and Lyapunov-based methods [171].

To demonstrate the usefulness of the adaptive incentive mechanism, we apply the the-
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ory to two classes of practically relevant games: (i) atomic quadratic networked aggrega-
tive games and (ii) non-atomic routing games. In atomic networked quadratic games, each
agent’s cost function depends on their own strategy as well as the aggregate strategies of their
neighbors. This aggregation is done through a linear combination of the neighboring agents’
strategies with weights characterized by a network matrix. Our proposed incentive mecha-
nism enables the system operator to adaptively update incentives, based on the externality
of each agent’s strategy on their neighbors, while the agents are learning the equilibrium
strategies. Our results when specialized to this setup provide sufficient conditions on the
network matrix to ensure that the system converges to a socially optimal outcome.

Furthermore, in non-atomic routing games, agents (travelers) make routing decisions in
a congestible network with multiple origin-destination pairs. The system operator imposes
incentives in the form of toll prices on each network edge. Our proposed incentive mechanism
adaptively gets updated using only the observed flow on edges and the gradient of the edge
latency function. Agents can adopt a variety of strategy updates that lead to the equilibrium
of the routing game. We show that the adaptive incentive mechanism converges to the toll
price that minimizes total congestion.

The chapter is organized as follows: in Section 2.3, we describe the setup of both the
atomic and non-atomic games considered here. In addition, we also introduce the joint
strategy and incentive update considered in this paper. We present the main results on
the fixed point and convergence of the adaptive incentive mechanism in Section 3.5. In
Section 2.5, we study the application of our proposed adaptive incentive mechanism on
atomic networked aggregative games (Section 2.5) and non-atomic routing games (Section
2.5). We conclude with a discussion in Section 2.6.

2.2 Related Works

Two-timescale Learning Dynamics

Learning dynamics where incentives are updated at a slower timescale than the strategy of
agents have been studied in [141, 38, 164, 152, 167, 126, 121]. Specifically, [141] studies
Stackelberg games with a single leader and a population of followers. In their approach, the
leader deploys a gradient-based update and followers update their strategies using replicator
dynamics. [38] and [164] consider incentive design in affine congestion games, where the
incentives are updated using a distributed version of gradient descent. [152] studies incen-
tive design to control traffic congestion on a single highway using gradient based incentive
updates. [167] studies the problem of incentive design while learning the cost functions of
agents. The authors assume that both the cost functions and incentive policies are linearly
parameterized, and the incentive updates rely on the knowledge of agents’ strategy update
rules instead of just the current strategy as in our setting. Additionally, [126, 121] propose
a two-timescale discrete-time learning dynamics where agents adopt a mirror descent-based
strategy update and the system operator updates the incentive parameter according to a
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gradient-based method. The convergence of these gradient-based learning dynamics relies
on the assumption that the social cost, given agents’ equilibrium strategy, is convex in the
incentive parameter. However, the convexity assumption is restrictive, as highlighted by an
example in Appendix A.

Single-timescale Learning Dynamics

The problem of steering non-cooperative agents to a desired Nash equilibrium by considering
an incentive update which runs on the same timescale as strategy updates is studied in [174,
175, 194]. In [174], the authors study such updates in the specific setting of quadratic
aggregative games. In [175], the authors consider a setup where the agents’ costs are only
dependent on their own action and the price signal which is provided by operator which
is used by agents based on their individual reliability over the operator. The aim is to
design this price signal so that the reliability on the price signal is retained while steering
the equilibrium to the desired point. In [194], the authors consider the problem of steering
no-regret learning agents to an optimal equilibrium, but computing the incentive mechanism
requires solving an optimization problem at each time step.

Learning in Stackelberg Games

Our work is also related to the literature on learning in Stackelberg games, where the operator
often has limited information about the game between agents and needs to design the optimal
mechanism by dynamically receiving feedback from agents’ responses (for instance, refer to
[28, 119, 158, 16, 47, 98, 134]). Typically, this line of work posits structural assumptions
on the game between followers (e.g., a finite action space of agents, or linearly parametrized
utility functions of agents)[28, 119, 158, 16, 47, 98], or only ensures convergence to a locally
optimal solution [134].

In comparison to the three former lines of research, our externality-based incentive de-
sign is applicable for a broad class of games (with continuous action spaces and potentially
non-linear utility functions), while providing sufficient conditions to ensure asymptotic con-
vergence to the optimal solution.

Notation

Given a function f : Rn → R, we use ∇xi
f(x) to denote ∂f

∂xi
(x), the derivative of f with

respect to xi for any i ∈ {1, 2, ..., n} and ∇f to be the Jacobian of the function. For
any set A we use conv(A) to denote the convex hull of the set. For any set X ⊆ Rn, we
say that a function f : X → R is Lipschitz if there exists a positive scalar L such that
∥f(x) − f(x′)∥ ≤ L∥x − x′∥ for every x, x′ ∈ X. For any vector x ∈ X and any positive
scalar r > 0, the set Br(x) = {x′ ∈ X|∥x′ − x∥ < r} denotes the r-radius neighborhood of
the vector x. For any set X, we define boundary(X) and int(X) to be the boundary and
interior of the set X, respectively. Finally, for any function f(·), we denote the domain of
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the function by dom(f). For any vector x ∈ Rn, we define diag(x) ∈ Rn×n to be a diagonal
matrix with diagonal entries corresponding to entries of x.

2.3 Model

We now introduce both atomic and non-atomic static games, and present the adaptive
incentive design approach proposed in this work.

Static Games

Atomic Games

Consider a game G with a finite set of players I. The strategy of each player i ∈ I is xi ∈ Xi,
where Xi is a non-empty and closed interval in R. The joint strategy profile of all players is
x = (xi)i∈I , and the set of all joint strategy profiles is X :=

∏
i∈I Xi. The cost function of

each player i ∈ I is ℓi : R|I| → R. We measure the outcome of our games by costs instead
of utilities. Equivalently, the utility of each player is the negative value of the cost.

A system operator designs incentives by setting a payment pixi ∈ R for each player i
that is linear in their strategy xi. Here, pi ∈ R represents the marginal payment for every
unit increase in strategy of player i. The value of pixi can either be negative or positive,
which represents a marginal subsidy or a marginal tax, respectively. Given the incentive
mechanism p = (pi)i∈I , the total cost of each player i ∈ I is:

ci(x, p) = ℓi(x) + pixi, ∀ x ∈ X. (2.1)

A strategy profile x∗(p) ∈ X is a Nash equilibrium in the atomic game G with the incentive
mechanism p if

ci(x
∗
i (p), x

∗
−i(p), p) ≤ ci(xi, x

∗
−i(p), p), ∀ xi ∈ Xi, ∀i ∈ I.

A strategy profile x† ∈ X is socially optimal if it minimizes the social cost function Φ :
R|I| → R over X.

Assumption 2.3.1. The cost function ℓi(xi, x−i) is strongly convex in xi for all i ∈ I and all
x−i = (xj)j∈I\{i}. Moreover, ℓi(·) is continuously differentiable and its gradient is Lipschitz.
Additionally, the social cost function Φ(x) is twice continuously differentiable, has Lipschitz
gradient, and is strictly convex.

Under Assumption 2.3.1, it is known that, for any p ∈ R|I|, the Nash equilibrium x∗(p)
exists, is unique and is Lipschitz continuous in p [49]. Moreover, the socially optimal strategy
x† is also unique.
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Non-atomic Games

Consider a game G̃ with a finite set of player populations Ĩ. Each population i ∈ Ĩ is com-
prised of a continuum set of (infinitesimal) players with mass Mi > 0. Every (infinitesimal)
player in any population can choose an action in a finite set Si. The strategy distribu-
tion of population i ∈ Ĩ is x̃i = (x̃j

i )j∈Si
, where x̃j

i is the mass of players in population
i who choose action j ∈ Si. Then, the set of all strategy distributions of population i is

X̃i =
{
x̃i ∈ R|Si||

∑
j∈Si

x̃j
i = Mi, x̃j

i ≥ 0,∀j ∈ Si

}
. The strategy distribution of all popula-

tions is x̃ = (x̃i)i∈Ĩ ∈ X̃ =
∏

i∈Ĩ X̃i. We define S =
∏

i∈Ĩ Si. Given a strategy distribution

x̃ ∈ X̃, the cost of players in population i ∈ Ĩ for choosing action j ∈ Si is ℓ̃
j
i (x̃). We denote

ℓ̃i(x̃) = (ℓ̃ji (x̃))j∈Si
as the vector of costs for each i ∈ Ĩ.

A system operator designs incentives by setting a payment p̃ji for players in population i
who choose action j ∈ Si. Consequently, given the incentive mechanism p̃ = (p̃ji )j∈Si,i∈Ĩ , the

total cost experienced by any player, in population i ∈ Ĩ, that chooses action j ∈ Si is

c̃ji (x̃, p̃) = ℓ̃ji (x̃) + p̃ji , ∀ x̃ ∈ X̃. (2.2)

A strategy distribution x̃∗(p̃) ∈ X̃ is a Nash equilibrium in the nonatomic game G̃ with
incentive p̃ if

x̃j∗
i (p̃) > 0

⇒ c̃ji (x̃
∗(p̃), p̃) ≤ c̃j

′

i (x̃
∗(p̃), p̃), ∀j, j′ ∈ Si, ∀i ∈ Ĩ.

A strategy distribution x̃† ∈ X̃ is socially optimal if x̃† minimizes the social cost function
Φ̃ : R|S| → R.

Assumption 2.3.2. The function ℓ̃(·) is Lipschitz continuous. Moreover, it is strongly
monotone: there exists ρ > 0 such that〈

ℓ̃(x̃)− ℓ̃(x̃′), x̃− x̃′
〉
> ρ∥x̃− x̃′∥2, ∀x̃ ̸= x̃′ ∈ X̃.

Additionally, Φ̃(x̃) is twice continuously differentiable, has Lipschitz gradient, and strictly
convex.

Under Assumption 2.3.2, the Nash equilibrium x∗(p) exists, is unique and Lipschitz con-

tinuous for every p ∈ R|Ĩ| [170, 49]. Moreover, the socially optimal strategy distribution is
also unique.

Coupled Strategy and Incentive Update

We consider a coupled dynamics that jointly updates agents’ strategies and the incentive
mechanism with discrete timesteps k ∈ N. At step k, the strategy profile in the atomic game
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G (respectively non-atomic game G̃) is xk = (xi,k)i∈I (respectively x̃k = (x̃i,k)i∈Ĩ), where
xi,k (respectively x̃i,k) is the strategy of player i (population i), and the incentive mechanism
is pk = (pi,k)i∈I (respectively p̃k = (p̃ji,k)j∈Si,i∈Ĩ). The strategy updates and the incentive
updates are presented below:

Strategy update.

xk+1 = (1− γk)xk + γkf(xk, pk), (x-update)

x̃k+1 = (1− γk)x̃k + γkf̃(x̃k, p̃k). (x̃-update)

In each step k+1, the updated strategy is a linear combination of the strategy in step k (i.e.
xk in G and x̃k in G̃), and a new strategy f(xk, pk) ∈ X in G (respectively f̃(x̃k, p̃k) ∈ X̃ in
G̃) that depends on the previous strategy and the incentive mechanism. The relative weight
in the linear combination is determined by the step-size γk ∈ (0, 1). We require that for
any p (respectively p̃), the fixed point associated with the update (x-update) (respectively
(x̃-update)) is a Nash equilibrium, i.e.

x∗(p) = {x : f(x, p) = x}, ∀p ∈ R|I|,

x̃∗(p̃) = {x̃ : f̃(x̃, p̃) = x̃}, ∀ p̃ ∈ R|Ĩ|.
(2.3)

Some examples of commonly studied learning dynamics (x-update) and (x̃-update) are
enumerated below:

1. Equilibrium update ([47, 98]): The strategy update incorporates a Nash equilibrium
strategy profile with respect to the incentive mechanism in step k:

f(xk, pk) = x∗(pk), and f̃(x̃k, p̃k) = x̃∗(p̃k). (2.4)

2. Best response update ([74, 96]): The strategy update incorporates a best response
strategy with respect to the strategy and the incentive mechanism in step k:

fi(xk, pk) = argmin
yi∈Xi

ci(yi, x−i,k, pk),

f̃i(x̃k, p̃k) = argmin
ỹi∈X̃i

ỹ⊤i c̃i(x̃k, p̃k).
(2.5)

3. Gradient-based update ([125, 109, 170]): The strategy update incorporates a smoothed
strategy update with respect to the strategy and the incentive mechanism in step k:

fi(xk, pk) = argmin
yi∈Xi

zi(xk, pk)yi − h(yi),

f̃i(x̃k, p̃k) = argmin
ỹi∈X̃i

c̃i(x̃k, p̃k)− h̃(ỹi),
(2.6)

where zi(xk, pk) = xk − ηDxi
ci(xk, pk), η is step size, and h(·), h̃(·) are regularizers. If

h(·) is a quadratic function then the update becomes projected gradient descent [139].
Furthermore, if h̃(·) is the entropy function then the update becomes a perturbed
best-response update [170].
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Incentive update.

pk+1 = (1− βk)pk + βke(xk), (p-update)

p̃k+1 = (1− βk)p̃k + βkẽ(x̃k), (p̃-update)

where e(x) = (ei(x))i∈I , ẽ(x̃) = (ẽji (x̃))j∈Si,i∈Ĩ , and

ei(x) = Dxi
Φ(x)−Dxi

ℓi(x), ∀i ∈ I, (2.7a)

ẽji (x̃) = Dx̃j
i
Φ̃(x̃)− ℓ̃ji (x̃), ∀j ∈ Si, ∀i ∈ Ĩ. (2.7b)

In (2.7a), ei(x) is the difference between the marginal social cost, and the marginal cost of
player i given x. Similarly, ẽji (x̃) is the difference between the marginal social cost, and the
cost experienced by the players in population i who chooses action j. We refer to ei(x) and
ẽi(x̃) = (ẽji (x̃))j∈Si

as the externality of player i and population i, respectively, since they
capture the difference in impacts of their strategy on the social cost and individual cost.

The updates (p-update)-(p̃-update) modify the incentives on the basis of the externality
caused by the players. In each step k + 1, the updated incentive mechanism is a linear
combination of the incentive mechanism in step k (i.e. pk in G and p̃k in G̃), and the
externality (i.e. e(xk) in G and ẽ(x̃k) in G̃) given the strategy in step k. The relative weight
in the linear combination is determined by the step size βk ∈ (0, 1).

In summary, the joint evolution of the strategy and the incentive mechanism (xk, pk)
∞
k=1

(respectively (x̃k, p̃k)
∞
k=1) in the atomic game G (respectively non-atomic game G̃) is governed

by the learning dynamics (x-update)–(p-update) (respectively (x̃-update)–(p̃-update)). The
step-sizes (γk)

∞
k=1 and (βk)

∞
k=1 determine the speed of strategy updates and incentive updates.

Remark 2.3.1. Our externality-based incentive update contrasts with the gradient-based in-
centive update considered in the literature [126]. Gradient-based incentive updates typically
require that the equilibrium social cost function Φ(x∗(p)) (respectively Φ̃(x̃∗(p̃))) be strongly
convex in the incentive mechanism p (respectively p̃). However, this requirement is too re-
strictive and is not satisfied even in simple games due to the fact that the equilibrium strategy
vector is typically non-convex in the incentive mechanism. In Appendix A, we provide an
example of a two-link routing game where the equilibrium social cost function is non-convex
in the incentive mechanism, and the gradient-based learning dynamics do not converge.

Remark 2.3.2. The incentive update is based on only limited information about the players’
behavior. Specifically, it relies solely on the gradients of the social cost and those of the
players’, evaluated at the players’ current strategy profile. Note that it is agnostic to the
strategy update dynamics (i.e., (x-update), and (x̃-update)) employed by players.

2.4 General results

In Section 2.4, we characterize the set of fixed points of the updates (x-update)-(p-update)
and (x̃-update)-(p̃-update), and show that any fixed point corresponds to a socially optimal
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incentive mechanism such that the induced Nash equilibrium strategy profile minimizes the
social cost. In Section 2.4, we provide a set of sufficient conditions that guarantee the con-
vergence of strategy and incentive updates. Under these conditions, our adaptive incentive
mechanism eventually induces a socially optimal outcome.

Fixed point analysis

We first characterize the set of fixed points of the updates (x-update)-(p-update), and
(x̃-update)-(p̃-update) as follows:

Atomic game G, {(x, p)|f(x, p) = x, e(x) = p} , (2.8a)

Non-atomic game G̃,
{
(x̃, p̃)|f̃(x̃, p̃) = x̃, ẽ(x̃) = p̃

}
. (2.8b)

Using (2.3), from (2.8a) – (2.8b), we can write the set of incentive mechanisms at the fixed
point, P † as follows:

Atomic game G, P † = {(p†i )i∈I |e(x∗(p†)) = p†},
Non-atomic game G̃, P̃ † = {(p̃†i )i∈Ĩ |ẽ(x̃

∗(p̃†)) = p̃†}.
(2.9)

That is, at any fixed point, the incentive of each player is set to be equal to the externality
evaluated at their equilibrium strategy profile.

Our first result characterizes conditions under which the fixed point set P † (respectively
P̃ †) is non-empty and singleton in G (respectively G̃). Moreover, given any fixed point
incentive parameter p† ∈ P † and p̃† ∈ P̃ †, the corresponding Nash equilibrium is socially
optimal.

Proposition 2. Let Assumptions 2.3.1 hold and the strategy set X in an atomic game G be
compact. The set P † is a non-empty singleton set. The unique p† ∈ P † is socially optimal,
i.e. x∗(p†) = x†.

Moreover, in a non-atomic game G̃ under Assumptions 2.3.2, P̃ † is a non-empty singleton
set. The unique p̃† ∈ P̃ † is socially optimal, i.e., x̃∗(p̃†) = x̃†.

Proof. First, we show that P † is non-empty. That is, there exists p† such that e(x∗(p†)) = p†.
Define a function θ(p) = e(x∗(p)). We note that Assumption 2.3.1 guarantees that θ is well
defined. Thus the problem is reduced to showing the existence of a fixed point of θ(·), for
which we use the Schauder fixed point theorem [177].

We note that Assumption 2.3.1 ensures that θ(p) is a continuous function. Now, define
K := {θ(p) : p ∈ R|I|} ⊆ R|I|. We claim that the set K is compact. Indeed, this follows
by two observations. First, the externality function e(·) is continuous. Second, the range
of the function x∗(·) is X, which is a compact set. These two observations ensure that
θ(p) = e(x∗(p)) is a bounded function. Let K̃ := conv(K) be the convex hull of K, which
in turn is also a compact set. Denote the restriction of the function θ on the set K̃ as
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θ|K̃ : K̃ → K̃ where θ|K̃(p) = θ(p) for all p ∈ K̃. We note that θ|K̃ is a continuous function
from a convex, compact set to itself and therefore, the Schauder fixed point theorem ensures
that there exists p† ∈ K̃ such that p† = θ|K̃(p

†) = θ(p†). This concludes the proof of existence

of p†. A similar line of argument as above can be replicated for a non-atomic game G̃ to
show that P̃ † is non-empty.

Next, we show that the incentive p† aligns the Nash equilibrium with social optimality
(i.e. for any p† ∈ P †, x∗(p†) = x†). Fix p† ∈ P †. For every i ∈ I we have p†i = ei(x

∗(p†)).
This implies Dxi

ℓi(x
∗(p†)) + p†i = Dxi

Φ(x∗(p†)) for every i ∈ I. This implies

J(x∗(p†), p†) = ∇Φ(x∗(p†)), (2.10)

where J(x, p) is the game Jacobian defined as Ji(x, p) = Dxi
ℓi(x) + pi for every i ∈ I. Next,

under Assumption 2.3.1, using the variational inequality characterization of Nash equilibrium
[65], we know that x∗(p†) is a Nash equilibrium if and only if

⟨J(x∗(p†), p†), x− x∗(p†)⟩ ≥ 0, ∀ x ∈ X. (2.11)

From (2.10) and (2.11) observe that

⟨∇Φ(x∗(p†)), x− x∗(p†)⟩ ≥ 0, ∀ x ∈ X. (2.12)

Further, from the first order conditions of optimality for social cost function we know that
x† is socially optimal if and only if it satisfies

⟨∇Φ(x†), x− x†⟩ ≥ 0, ∀ x ∈ X. (2.13)

Comparing (2.12) with (2.13), we note that x∗(p†) is the minimizer of the social cost function
Φ. This implies x∗(p†) = x† as x† is the unique minimizer of the social cost function Φ by
Assumption 2.3.1.

Similarly for a non-atomic game G̃, we show that the incentive p̃† aligns the Nash equi-
librium with social optimality (i.e. for any p̃† ∈ P̃ †, x̃∗(p̃†) = x̃†). Fix p̃† ∈ P̃ †. For every
j ∈ S̃i and i ∈ Ĩ, it holds that p̃j†i = ẽji (x̃

∗(p̃†)). This implies that

c̃ji (x̃
∗(p̃†), p̃†) = Dx̃j

i
Φ̃(x̃∗(p̃†)). (2.14)

Under Assumption 2.3.2, using the variational inequality characterization of Nash equilib-
rium for non-atomic games [170], we know that x̃∗(p̃†) is a Nash equilibrium if and only
if

⟨c̃(x̃∗(p̃†), p̃†), x̃− x̃∗(p̃†)⟩ ≥ 0 ∀ x̃ ∈ X̃. (2.15)

From (2.14) and (2.15), we observe that

⟨∇Φ̃(x̃∗(p̃†)), x̃− x̃∗(p̃†)⟩ ≥ 0 ∀ x̃ ∈ X̃. (2.16)
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From the first order conditions of optimality for the social cost function, we know that x̃† is
socially optimal if and only if it satisfies

⟨∇Φ̃(x̃†), x̃− x̃†⟩ ≥ 0, ∀ x̃ ∈ X̃. (2.17)

Comparing (2.16) with (2.17), we note that x̃∗(p̃†) is the minimizer of the social cost function
Φ̃. This implies x̃∗(p̃†) = x̃† as x̃† is the unique minimizer of the social cost function Φ̃ by
Assumption 2.3.2.

Next, we show that the set P † is singleton. We prove this via contradiction. Suppose
P † contains two element p†1, p

†
2, which are shown to align the Nash equilibrium with social

optimality. Therefore, it holds that x† = x∗(p†1) = x∗(p†2). Moreover, due to (2.9) we know
that p†1 = e(x∗(p†1)) and p†2 = e(x∗(p†2)). Consequently, we have p†1 = e(x†) = p†2. The proof
of uniqueness of P̃ † also follows analogously.

Remark 2.4.1. Proposition 2 demonstrates that the externality-based incentive updates
(p-update) and (p̃-update) have two advantages. Firstly, these updates guarantee that any
fixed point must achieve social optimality. Secondly, the result indicates that the optimal
incentive mechanism takes a simple format: the incentive mechanism is linear in players’
strategies in atomic games and is a constant vector in non-atomic games.

Convergence to optimal incentive mechanism

In this subsection, we provide sufficient conditions for the convergence of the strategy and
incentive updates (x-update)-(p-update) and (x̃-update)-(p̃-update). In order to study the
convergence of these updates we make the following assumption:

Assumption 2.4.1. The step sizes in (x-update)-(p-update) and (x̃-update)-(p̃-update)
satisfy
(i)

∑∞
k=1 γk =

∑∞
k=1 βk = +∞,

∑∞
k=1 γ

2
k + β2

k < +∞.

(ii) limk→∞
βk

γk
= 0.

In Assumption 2.4.1, (i) is a standard assumption on step-sizes that allows us to analyze
the convergence of the discrete-time learning updates via a continuous-time differential equa-
tion [30]. Additionally, (ii) assumes that the incentive update occurs at a slower timescale
compared to the strategy update.

In view of Assumption 2.4.1-(ii), it is necessary that the strategy updates converge if
the incentives are held fixed. This condition holds true for a variety of updates commonly
studied in the learning in games literature. For instance, the equilibrium update (compare
(2.4)) converges to Nash equilibrium in one step. Similarly, the best response update (com-
pare (2.5)) converges in zero sum games [92], potential games [181], and dominance solvable
games [145]. The gradient-based update (compare (2.6)) converges in concave games [168].
Therefore, in this work we do not focus on studying the convergence of strategy updates with
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fixed incentive mechanisms and we pick any off-the-shelf convergent strategy update. Our
goal is to characterize conditions under which the coupled strategy and incentive updates
(x-update)-(p-update) and (x̃-update)-(p̃-update) converge. Therefore, we impose the fol-
lowing assumption which is sufficient to ensure convergence of strategy updates (x-update)
and (x̃-update) with fixed incentive mechanisms. We assume that if the incentive mechanism
is fixed, then the corresponding continuous-time dynamical system converges to the Nash
equilibrium associated with that incentive mechanism.

Assumption 2.4.2. For any incentive mechanism p, p̃, consider the following continuous
time dynamical systems associated with (x-update) and (x̃-update), respectively,

ẋ(t) = f(x(t), p)− x(t), (x-dynamics)

˙̃x(t) = f̃(x̃(t), p̃)− x̃(t). (x̃-dynamics)

The equilibrium x∗(p) (respectively x̃∗(p̃)) is the global asymptotically stable fixed point of the
dynamics (x-dynamics) (respectively (x̃-dynamics)).

Using the standard approximation arguments from [31] it is evident that Assumption 2.4.1
and 2.4.2 are sufficient to ensure convergence of strategy updates (x-update) and (x̃-update)
with fixed incentive mechanisms. Against the preceding backdrop, in the following result,
we characterize the convergence conditions for the coupled strategy and incentive updates.

Proposition 3. Consider an atomic game G. Suppose that Assumptions 2.3.1, 2.4.1, 2.4.2
and at least one of the following conditions holds:
(C1) ∂ei(x

∗(p))
∂pj

> 0 for all p ∈ Rn and all i ̸= j. Additionally, at least one of the following

conditions hold:

(i) If ei(x
∗(0)) ≥ 0 for every i ∈ I then there exists p ∈ R|I|

+ such that ei(x
∗(p))−pi ≤

0 for every i ∈ I. Moreover, x1 ∈ X, p1 ∈ R|I|
+ .

(ii) If ei(x
∗(0)) ≤ 0 for every i ∈ I then there exists p ∈ R|I|

− such that ei(x
∗(p))−pi ≥

0 for every i ∈ I. Moreover, x1 ∈ X, p1 ∈ R|I|
− .

(C2) There exists a set dom(V ) ⊂ R|I| and a continuously differentiable function V :
dom(V )→ R+ such that V (p†) = 0 and V (p) > 0 for all p ̸= p†. Moreover:

∇V (p)⊤ (e(x∗(p))− p) < 0 ∀ p ̸= p†.

Additionally, let supk∈N(∥xk∥+∥pk∥) < +∞. Then there exist positive scalars r̄, ᾱ, β̄, γ̄ such
that the discrete-time updates (x-update)-(p-update) in G when initialized at p0 ∈ Br̄(p†),
x0 ∈ Br̄(x∗(p0)), with step-sizes such that

sup
k∈N

βk/γk ≤ ᾱ, sup
k∈N

βk ≤ β̄, sup
k∈N

γk ≤ γ̄, (2.18)
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satisfy1

lim
k→∞

(xk, pk) = (x†, p†). (2.19)

The same argument holds for a non-atomic game G̃ under Assumptions 2.3.2, 2.4.1, and
2.4.2.

Proof. Under Assumption 2.4.1, the two-timescale approximation theory [30, 32] suggests
that the strategy update (x-update) is a fast transient while the incentive update (p-update)
is a slow component. This separation in timescales allow us to study the convergence of these
updates in two stages. First, we study the convergence of fast strategy updates, for every
fixed value of the incentive. Second, we study the convergence of slow incentive updates,
assuming that the fast strategy updates have converged to the equilibrium.

Formally, to study the convergence of fast strategy updates, we re-write (x-update)-
(p-update) as follows

xk+1 = xk + γk (f(xk, pk)− xk)

pk+1 = pk + γk
βk

γk
(e(xk)− pk) .

(2.20)

Since supk∈N(∥xk∥ + ∥pk∥) < +∞ and limk→∞ βk/γk = 0 (compare Assumption 2.4.1), the
term βk

γk
(e(xk)− pk) in (2.20) goes to zero as k →∞. Consequently, leveraging the standard

approximation arguments [31, Lemma 1, Section 2.2], we conclude that the asymptotic
behavior of the updates in (2.20) is the same as that of the following dynamical system:

ẋ(t) = f(x(t),p(t))− x(t), ṗ(t) = 0.

Using Assumption 2.4.2, we conclude that

lim
k→∞

(xk, pk)→ {(x∗(p), p) : p ∈ R|I|}. (2.21)

Next, to study the convergence of the slow incentive updates, we re-write (p-update) as
follows

pk+1 = pk + βk (e(x
∗(pk))− pk) + βk (e(xk)− e(x∗(pk))) . (2.22)

We will show that (pk)k∈N will asymptotically follow the trajectories of the following continuous-
time dynamical system:

ṗ(t) = e(x∗(p(t)))− p(t). (2.23)

Note that p† is the fixed point of the trajectories of dynamical system (2.23) (compare Propo-
sition 2). Conditions (C1) and (C2) in Proposition 3 are based on results from non-linear

1The results in this chapter hold even if the updates (x-update)-(p-update) and (x̃-update)-(p̃-update)
are perturbed with martingale difference noise [32].
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dynamical systems which ensure convergence of (2.23). In particular, (C1)-(i) (respectively

(C1)-(ii)) builds on cooperative dynamical systems theory [93], which ensures that R|I|
+ (re-

spectively R|I|
− ) is positively invariant for (2.23) and p† ∈ R|I|

+ (respectively p† ∈ R|I|
− ) is

asymptotically stable. On the other hand, condition (C2) ensures the existence of a Lya-
punov function that is strictly positive everywhere except at p† and decreases along the flow
of (2.23) ([171]). Either condition guarantees the convergence of the trajectories of (2.23)
to p†.

Let D† denote the domain of attraction of p† for the dynamical system (2.23). From the
converse Lyapunov theorem [173], we know that there exists a continuously differentiable
function V̄ : D† → R+ such that V̄ (p†) = 0, V̄ (p) > 0 for all p ∈ D†\{p†} and V̄ (p)→∞ as
p → boundary(D†). For any r > 0, define V̄r = {p ∈ dom(V̄ ) : V̄ (p) ≤ r} to be a sub-level
set of V̄ . There exists 0 < r̄′ < r̄ such that V̄r̄′ ⊊ Br̄′(p†) ⊊ Br̄(p†) ⊊ V̄r̄. Additionally, define
ℓ0 = 0, ℓk =

∑k
i=1 βi and Lk = ℓn(k) where n(0) = 0, and

n(k) = min

m ≥ n(k − 1) :
m∑

j=n(k−1)+1

βj ≥ T

 ∀k ∈ N. (2.24)

Here, T is a positive integer to be described shortly. Furthermore, define p̄(k) : R+ → R|I|

to be a solution of (2.23) on [Lk,∞) such that p̄(k)(Lk) = pLk
.

To ensure that p̄(k)(Lk) ∈ dom(V̄ ) for k > 0, we show that for an appropriate choice of
T in (2.24), pLk

∈ int(D†) for every k ∈ N. From [32, Theorem IV.1], we know that there
exists K > 0 such that for all k ∈ N,

∥pk − p̄(0)(ℓk)∥

≤ K

(
sup
k

βk + sup
k

γk + sup
k

βk

γk
+ sup

k

βk

γk
∥x0 − x∗(p0)∥

)
= K

(
ᾱ + β̄ + γ̄ + ᾱr̄

)
=: κ.

Consequently, using the triangle inequality, it holds that

∥pk − p†∥ ≤ κ+ ∥p̄(0)(ℓk)− p†∥. (2.25)

Since V̄ is a Lyapunov function of (2.23) and p̄(0)(0) = p0 ∈ Br̄(p†) ⊊ V̄r̄, there exists
k̄ ∈ N such that for all k ≥ k̄, p̄(0)(ℓk) ∈ V̄r̄′ ⊊ Br̄′(p†). If we choose κ < r̄ − r̄′ then, from
(2.25), it holds that for all k ≥ k̄, pk ∈ Br̄(p†). Therefore, if we choose T ≥ k̄ in (2.24), it
holds that

pLk
∈ dom(V̄ ), ∀ k ∈ N. (2.26)

Define p̂ : R+ → R such that, for every k ∈ N, p̂(ℓk) = pk with linear interpolation on
[ℓk, ℓk+1]. Using the standard approximation arguments from [31, Chapter 6], it holds that2

sup
t∈[Lk,Lk+1]

∥p̂(t)− p̄(k)(t)∥

2For any T ≥ k̄ and δ > 0, there exists k(δ) such that p̂(ℓk(δ) + ·) form a “(T, δ)” perturbation (compare
[30]) of (2.23).
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≤ O

(∑
m≥Lk

β2
m + sup

m≥Lk

∥xm − x∗(pm)∥

)
. (2.27)

Using (2.21) and Assumption 2.4.1, we conclude that the right hand side in the above
equation goes to zero as k → ∞. Finally, using (2.26), (2.27) and [30, Lemma 2.1] we
conclude that pk → p† as k →∞.

2.5 Applications

In this section, we study the applicability of the proposed dynamic incentive design approach
in two practically relevant classes of games: atomic aggregative games and non-atomic rout-
ing games.

Atomic Aggregative Games

First, we study quadratic networked aggregative games [34, 33, 174, 1]. Consider a game
G comprised of a finite set of players I. The strategy set of every player is the entire real
line R (note that although this strategy set is not compact, compactness is only required to
ensure the existence of the Nash equilirium of the underlying game; in aggregative games,
we show that the Nash equilibrium exists and is unique for every incentive). Given the joint
strategy profile x = (xi)i∈I , the cost of each player i ∈ I is

ℓi(x) =
1

2
qix

2
i + αxi(Ax)i, (2.28)

where A ∈ R|I|×|I| is the network matrix, where Aij represents the impact of player j’s
strategy on the cost of player i, and α > 0 is a constant that characterizes the impact of
the aggregate strategy on the individual cost of players. Moreover, qi > 0 characterizes the
impact of each player’s own strategy on their cost function. Without loss of generality, we
consider Aii = 0 for all i ∈ I. For notational brevity, we define Q = diag((qi)i∈I) ∈ R|I|×|I|.

A system operator designs incentives by setting a payment pixi for player i for choosing
strategy xi. Thus, given a incentive vector p = (pi)i∈I , the total cost of player i is given by
ci(x, p) = ℓi(x) + pixi. The system operator’s objective is to ensure that the players reach a
strategy x†, which minimizes the following social cost function:

Φ(x) =
n∑

i=1

hi(xi), (2.29)

Assumption 2.5.1. We assume that for every i ∈ I, hi(·) is a strictly convex function with
Lipschitz continuous gradient. Furthermore, we assume the existence of y† ∈ R|I| such that
∇hi(y

†
i ) = 0 for every i ∈ I.
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Such separable social costs have been considered in the literature on control of agents
in aggregative games [84] as well as systemic risk analysis in financial networks [2]. One
example of Φ(x) that satisfies this property is Φ(x) = 1

2

∑
i∈I(xi − ξi)

2, which computes the
difference between the players’ strategies and some desired strategy ξ ∈ R|I|.

Proposition 4. Suppose that Assumption 2.5.1 holds and M := Q + αA is invertible.
Then, the Nash equilibrium x∗(p) exists and is unique for every incentive vector p ∈ R|I|.
Furthermore, the set P † is a singleton set.

Proof. First, we show that if M is invertible, then x∗(p) = −M−1p for any p ∈ R|I|. To see
this, observe that the cost function ci(xi, x−i, p) is strongly convex in xi and the strategy
space Xi is unconstrained. Therefore, it must hold that ∇xi

ci(x
∗(p), p) = 0, for every i ∈ I.

Consequently, using (2.28), it must hold that

qix
∗
i (p) + α(Ax∗(p))i + pi = 0, ∀ i ∈ I. (2.30)

Stacking (2.30) in a vector form yields Mx∗(p) = −p.
Next, we show that P † is a singleton set. From (2.7a), the externality in this setup is

expressed as:

ei(x) = ∇hi(xi)− qixi − α
n∑

j=1

Aijxj, ∀i ∈ I, ∀x. (2.31)

Combining (2.30) and (2.31), we obtain

ei(x
∗(p)) = ∇hi(x

∗
i (p)) + pi. (2.32)

Consequently, using (2.9), we obtain

P † = {p† ∈ R|I| : ∇hi(x
∗
i (p

†)) = 0, ∀ i ∈ I}. (2.33)

Since hi is strictly convex, from Assumption 2.5.1, there exists a unique y† such that
∇hi(y

†
i ) = 0, for every i ∈ I. Therefore, for every p† ∈ P † it should hold that x∗(p†) = y†.

Using the fact that x∗(p) = −M−1p, we obtain the unique p† = −My†.

Next, we provide sufficient conditions to ensure the convergence of (x-update)-(p-update).

Proposition 5. Consider the aggregative game G with invertible M . Suppose that Assump-
tions 2.4.1, 2.4.2, and 2.5.1 are satisfied, and at least one of the following conditions hold:
(A1) The matrix M has non-negative entries, M−1 has strictly-negative off-diagonal entries.

Furthermore, there exists3 some y† ∈ R|I| such that ∇hi(y
†
i ) = 0 for every i ∈ I, and

all entries of y† have the same sign;

3Since hi is strictly convex then ∇hi(·) is strictly increasing and can have only one zero-crossing, which
ensures that y† is unique.
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(A2) M is a symmetric positive definite matrix.
Additionally, supk∈N(∥xk∥ + ∥pk∥) < +∞. Then there exist positive scalars r̄, ᾱ, β̄, γ̄ such
that for every p0 ∈ Br̄(p†), x0 ∈ Br̄(x∗(p0)), with step-sizes that follow (2.18) must satisfy
limk→∞(xk, pk) = (x†, p†).

Proof. The proof follows by verifying that the conditions (A1) and (A2) ensure that the
conditions (C1) and (C2) in Proposition 3 are satisfied, respectively.

To begin, we show that condition (A1) ensures that condition (C1) is satisfied in Propo-
sition 3. Recall, from (2.32), that ei(x

∗(p)) = ∇hi(x
∗
i (p)) + pi. First, we show that i, j ∈ I

such that i ̸= j, ∂ei(x
∗(p))

∂pj
> 0. Indeed,

∂ei(x
∗(p))

∂pj
= ∇2hi(x

∗
i (p))

∂x∗
i (p)

∂pj

= ∇2hi(x
∗
i (p))(−M−1)ij > 0,

where the inequality holds because hi is strictly convex and (M−1)ij < 0.

Next, we show that if ei(x
∗(0)) ≥ 0 for every i ∈ I then there exists p ∈ R|I|

+ such that
ei(x

∗(p)) − pi ≤ 0 for every i ∈ I (compare (C1)-(i) in Proposition 3). Using (2.32), it is
sufficient to show that

∇hi(0) ≥ 0 ∀ i ∈ I =⇒ ∃ p̄ ∈ R|I|
+ s.t. (2.34)

∇hi(x
∗(p̄)) ≤ 0 ∀ i ∈ I.

By (A1), we know that ∇hi(y
†
i ) = 0 and y†i y

†
j ≥ 0 for every i, j ∈ I. We claim that

y†i∇hi(0) ≤ 0 for every i ∈ I. Indeed, for every i ∈ I,

0 ≤ (∇hi(y
†
i )−∇hi(x

∗
i (0)))(y

†
i − x∗

i (0)) = −y
†
i∇hi(0),

where the first inequality is due to the strict convexity of hi. Suppose ∇hi(0) ≥ 0 , for

every i ∈ I, then −y† ∈ R|I|
+ . Next, define p̄ = −(1 + ϵ)My†, for some ϵ > 0, then

p̄ ∈ R|I|
+ as y† ∈ R|I|

+ and M has all non-negative entries (compare (A1)). This ensures that
x∗(p̄) = (1 + ϵ)y†. We claim that ∇hi(x

∗
i (p̄)) < 0 for every i ∈ I. Indeed, for every i ∈ I,

0 < (∇hi(x
∗
i (p̄))−∇hi(y

†
i ))(x

∗
i (p̄)− y†i )

= ∇hi(x
∗
i (p̄))ϵy

†
i .

The claim follows because y†i ≤ 0 and ϵ > 0. This shows that the implication in (2.34) holds.

Similarly, it can be show that if ei(x
∗(0)) ≤ 0 for every i ∈ I then there exists p ∈ R|I|

− such
that ei(x

∗(p))− pi ≥ 0 for every i ∈ I (compare (C1)-(ii) in Proposition 3).
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Next, we verify that condition (A2) ensures that condition (C2) in Proposition 3 is
satisfied. Consider the function V (p) = (p − p†)⊤M−⊤(p − p†). Note that V (p†) = 0 and
V (p) > 0 for all p ̸= p†. Next, we show that ∇V (p)⊤(e(x∗(p))− p) ≤ 0. Indeed,

∇V (p)⊤(e(x∗(p))− p) = 2(p− p†)⊤M−⊤∇h(x∗(p))

= −2(x∗(p)− x∗(p†))∇h(x∗(p))

= −2(x∗(p)− x∗(p†))
(
∇h(x∗(p))−∇h(x∗(p†))

)
= −2(x∗(p)− x∗(p†))

(
∇h(x∗(p))−∇h(x∗(p†))

)
≤ 0

where the last equality holds due to the strict convexity of hi for every i ∈ I.

Remark 2.5.1. There exist instances of quadratic networked aggregative games such that
only one of the conditions (A1) or (A2) is satisfied in Proposition 5. For instance consider
the matrices

M1 =

[
1 0.1
1 1

]
,M2 =

[
1 −0.1
−0.1 1

]
.

Note that M1 satisfies (A1) but not (A2) and the matrix M2 satisfies (A2) but not (A1).

Non-atomic Traffic Routing on General Networks

Consider a routing game G̃ characterizing the interaction of strategic travelers over a graph
G̃ = (Ẽ , Ñ ) where Ñ is the set of nodes and Ẽ denotes the set of edges. Let Ĩ be the
set of origin-destination (o-d) pairs. Each o-d pair i ∈ Ĩ is connected by a set of routes4

represented by R̃i. Let R̃ = ∪i∈ĨR̃i denote the set of all routes on the network.
An infinitesimal traveler on the network is associated with an o-d pair and chooses a

route to commute between the o-d pair. Let the total population of travelers associated with
any o-d pair i ∈ Ĩ be denote by M̃i. Let x̃

j
i be the amount of travelers taking route j ∈ R̃i to

commute between o-d pair i ∈ Ĩ and x̃ = (x̃j
i )j∈R̃i,i∈Ĩ is a vector which contains, as its entries,

the route flow of all population on different routes. Naturally, it holds that
∑

j∈R̃i
x̃j
i = M̃i for

every i ∈ Ĩ. Any route flow x̃ induces a flow on the edges of the network denoted by w̃ such
that w̃a =

∑
i∈Ĩ
∑

j∈R̃i
x̃j
i1(a ∈ j) for every a ∈ Ẽ . We denote the set of feasible route flows

by X̃ and the set of feasible edge flows by W̃ = {(w̃a)a∈Ẽ : ∃x̃ ∈ X̃, w̃a =
∑

i∈Ĩ
∑

j∈R̃i
x̃j
i}.

For any o-d pair i ∈ Ĩ and route flow x̃ ∈ R|R̃|, the cost experienced by travelers using
route j ∈ R̃i is ℓ̃ji (x̃) =

∑
a∈Ẽ la(w̃a)1(a ∈ j), where la(·) is the edge latency function that

depends on the edge flows. For every edge a ∈ Ẽ , we assume that the edge latency function
la(·) is convex and strictly increasing. This property of edge latency function captures the
congestion effect on the transportation network [22, 169].

4A route is a set of contiguous edges.
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A system operator designs incentives by setting tolls on the edges of the network in the
form of edge tolls5, denoted by p̃ = (p̃a)a∈Ẽ . Every edge toll vector induces a unique route

toll vector P̃ . That is, for any o-d pair i ∈ Ĩ the toll on route j ∈ R̃i is

P̃ j
i =

∑
a∈Ẽ:a∈j

p̃a. (2.35)

Consequently, the total cost experienced by travelers on o-d pair i ∈ Ĩ who choose route
j ∈ R̃i is c̃ji (x̃, P̃ ) = ℓ̃ji (x̃) + P̃ j

i . Let x̃∗(P̃ ) denote a Nash equilibrium corresponding to
route tolls P̃ . Owing to (2.35), with slight abuse of notation, we shall frequently use x̃∗(P̃ )
and x̃∗(p̃) interchangeably. Typically, the equilibrium route flows can be non-unique but
the corresponding edge flows w̃∗(p̃) are unique. Furthermore, the function p̃ 7→ w̃∗(p̃) is a
continuous function [191].

The system operator’s objective is to design tolls that ensure that the resulting equilib-
rium minimizes the overall travel time incurred by travelers on the network, characterized
as the minimizer of

Φ̃(x̃) =
∑
i∈Ĩ

∑
j∈R̃i

x̃j
i ℓ̃

j
i (x̃). (2.36)

Note that the optimal route flow can be non-unique but the optimal edge flow, denoted by
w†, is unique [191].

Using the description of cost of travelers, the externality, based on (2.7b), caused by
travelers from o-d pair i ∈ Ĩ using the route j ∈ R̃i is

ẽji (x̃) =
∑
i′∈Ĩ

∑
j′∈R̃i

x̃j′

i′
∂ℓ̃j

′

i′ (x̃)

∂x̃j
i

(a)
=

∑
a∈Ẽ:a∈j

∇la(w̃a)w̃a, (2.37)

where (a) is due to Lemma A.0.2 in Appendix A.
Define

P̃
†
= {(p̃†a)a∈Ẽ : p̃†a = w̃∗

a(p̃
†)∇la(w̃∗

a(p̃
†)),∀ a ∈ Ẽ

}
.

Proposition 6. The set P̃
†
is a non-empty singleton set. The unique p† ∈ P̃

†
is socially

optimal, i.e. w̃(p†) = w†.

Proof. First, we show that P̃
†
is non-empty. This can be shown analogously to the proof of

existence in Proposition 2 by using the Schauder fixed point theorem and the continuity of
the function w̃∗(·). We omit the details of this proof.

5If we directly use the setup of non-atomic games presented in Section 2.3 we would require the system
operator to use route-based tolls rather than edge-based tolls. This is often impractical, as the set of routes
can be very large.
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Next, we show that any p† ∈ P̃
†
aligns the Nash equilibrium with social optimality, i.e.

w̃(p†) = w†. For any p† ∈ P̃
†
, we have p̃†a = w̃∗

a(p̃
†)∇la(w̃∗

a(p̃
†)) for every a ∈ Ẽ . This implies,

∂

∂w̃a

(w̃a(p̃
†)la(w̃a(p̃

†))) = la(w̃a(p̃
†)) + p̃†a, ∀ a ∈ Ẽ . (2.38)

Note that for any arbitrary edge toll p̃ ∈ R|Ẽ|, w̃∗(p̃) is the unique solution to the following
strictly convex optimization problem [170].

min
w̃∈W̃

T̃ (w̃) =
∑
a∈Ẽ

∫ w̃a

0

la(τ)dτ +
∑
a∈Ẽ

p̃aw̃a. (2.39)

Therefore, w̃∗(p̃) is a Nash equilibrium if and only if∑
a∈Ẽ

(la(w̃a(p̃) + p̃a)(w̃a − w̃a(p̃))) ≥ 0 ∀ w̃ ∈ W̃ . (2.40)

Combining (2.38) and (2.40), we conclude that∑
a∈Ẽ

∂

∂w̃a

(w̃a(p̃
†)la(w̃a(p̃

†)))(w̃a − w̃∗
a(p̃

†)) ≥ 0 ∀ w̃ ∈ W̃ . (2.41)

Further, from the first order conditions of optimality for the social cost function, we know
that x̃† is socially optimal if and only if∑

i∈Ĩ

∑
j∈R̃i

∂Φ(x̃†)

∂x̃j
i

(x̃j
i − x̃†j

i ) ≥ 0. (2.42)

Using Lemma A.0.3 in Appendix A, we can equivalently write (2.42) in terms of edge flows
as follows ∑

a∈Ẽ

∂

∂w̃a

(w̃†
ala(w̃

†
a))(w̃a − w̃†

a) ≥ 0 ∀ w̃ ∈ W̃ , (2.43)

where w† is the edge flow corresponding to the route flow x†. Comparing (2.41) with (2.43),
we note that w̃∗(p†) is the minimizer of social cost function Φ̃. This implies w̃∗(p̃†) = w̃†.

The proof that P̃
†
is singleton follows by contradiction which is analogous to that of

Proposition 2. We omit the details.

Next, we show that the updates (x̃-update)-(p̃-update) converge to the fixed points dis-
cussed in previous section.
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Proposition 7. Suppose that for every i ∈ Ĩ , j ∈ R̃i

c̃ji (x̃
∗(p̃†)) ≤ c̃j

′

i (x̃
∗(p̃†)) ∀ j′ ∈ R̃i =⇒ x̃∗

i,j(p̃
†) > 0. (2.44)

Additionally, supk∈N(∥x̃k∥ + ∥p̃k∥) < +∞. Then there exist positive scalars r̄, ᾱ, β̄, γ̄ such
that for every p̃0 ∈ Br̄(p̃†), x̃0 ∈ Br̄(x̃∗(p̃0)), with step-sizes that follow (2.18) must satisfy
limk→∞(x̃k, p̃k) = (x̃†, p̃†).

Proof. The proof follows by verifying the second convergence condition in Proposition 3. We
show that V (p̃) = (p̃− p̃†)⊤∆(p̃− p̃†) serves as candidate Lyapunov function which satisfies

the conditions stated in Proposition 3-(C2) if we set ∆ ∈ R|Ẽ|×|Ẽ| to be a diagonal matrix
such that

∆a,a = (∇la(w̃∗
a(p̃

†)) + w̃∗
a(p̃

†)∇2la(w̃
∗
a(p̃

†)))−1.

Due to the strict monotonicity and convexity of la(·), it follows that ∆a,a > 0 for every a ∈ Ẽ .
Towards this goal, we show that there exists a positive scalar r such that for any p̃ ∈ Br(p̃†),
it holds that ∑

a∈Ẽ

∇p̃aV (p̃)⊤ (w̃∗
a(p̃)∇la(w̃∗

a(p̃))− p̃a) < −2V (p̃). (2.45)

Indeed, we note that∑
a∈Ẽ

∇p̃aV (p̃) (w̃∗
a(p̃)∇la(w̃∗

a(p̃))− p̃a)

= 2
∑
a∈Ẽ

∆a,a(p̃a − p̃†a) (w̃
∗
a(p̃)∇la(w̃∗

a(p̃))− p̃a)

= 2
∑
a∈Ẽ

∆a,a(p̃a − p̃†a)
(
w̃∗

a(p̃)∇la(w̃∗
a(p̃))− p̃†a + p̃†a − p̃a

)
= −2V (p̃) + 2

∑
a∈Ẽ

∆a,a(p̃a − p̃†a)
(
ϕa(p̃)− ϕa(p̃

†)
)

where for every a ∈ Ẽ , ϕa(p̃) := w̃∗
a(p̃)∇la(w̃∗

a(p̃)). Thus it suffices to show that∑
a∈Ẽ

∆a,a(p̃a − p̃†a)
(
ϕa(p̃)− ϕa(p̃

†)
)
≤ 0. (2.46)

Condition (2.44) ensures that the function ϕ̃ is differentiable in a neighborhood of p̃† (compare
[191, Chapter 4]). From Lemma A.0.1 in Appendix A, we know that if z⊤∆Dϕ(p̃†)z ≤ 0 for
all z then there exists r > 0 such that (2.46) holds for all p̃ ∈ Br(p̃†). Indeed, by the design
of ∆ it holds that ∆Dϕ(p̃†) = Dw̃(p̃†). Finally, using Lemma A.0.1 and Lemma A.0.4 in
Appendix A, we note that z⊤Dw̃(p̃†)z ≤ 0. This concludes the proof.
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2.6 Discussion and Future Work

We propose an adaptive incentive mechanism that (i) updates based on the feedback of each
agent’s externality, (ii) is agnostic to the learning rule employed by agents, and (iii) updates
at a slower timescale compared to the agents’ learning dynamics, leading to a two-timescale
coupled dynamical system. We provide sufficient conditions that ensure the convergence of
this dynamical system to the optimal incentive mechanism, guaranteeing that the Nash equi-
librium of the corresponding game among agents achieves social optimality. We demonstrate
the effectiveness of our proposed incentive mechanism in two practically relevant games:
atomic networked quadratic aggregative games and non-atomic network routing games, by
verifying the proposed convergence conditions.

An important direction for future research is to verify the convergence conditions in a
broader class of games. Notably, leveraging the externality-based dynamic incentive design
update proposed in an earlier version of this chapter (compare [133]), [122] studied the
convergence of such updates in power systems.
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Chapter 3

Causal Discovery for Rare Events

It ain’t what you don’t know
that gets you into trouble. It’s
what you know for sure that
just ain’t so.

Mark Twain

This chapter can be found in [40].

3.1 Introduction

The occurrence of rare yet consequential events during the evolution of a dynamical system
is ubiquitous in many fields of engineering and science. Examples include natural disasters,
vehicular accidents, and stock market crashes. When studying such phenomena, it is crucial
to understand the causal links between the disruptive event and the underlying system
dynamics. In particular, if certain values of the system state increase the probability that
the disruptive event occurs, control strategies should be implemented to steer the state away
from such values. This can be accomplished, for instance, by incorporating a description
of this causal relationship into the cost function that generates these control inputs in an
optimization-based control framework. In general, it is important to consider the following
question:

Main Question (Q): Given a rare event associated with a dynamical system, does the
onset of the event become more likely when the system state assumes certain values?

Below, we present a running example, invoked throughout ensuing sections to provide con-
text.

Running Example: Consider the task of reducing the number of vehicular accidents on
a road by identifying their causes. In particular, consider the scenario in which the amount



CHAPTER 3. CAUSAL DISCOVERY FOR RARE EVENTS 27

of traffic on a network of roads has a causal effect on accident occurrence. For example,
on busy streets, high traffic flow may render chain collisions more likely. In this case, since
steady-state flows in a traffic network can be controlled via incentives, regulators can adjust
prices on each network link to redistribute flow and reduce the number of accidents that
transpire [130, 131]. Conversely, on other roads, low traffic flow may incentivize drivers to
exceed the speed limit and create more opportunities for accidents to occur. In this case,
traffic engineers can enforce speed limits more stringently at times of low traffic flow.

Although many well-established methods in the causal discovery literature can efficiently
learn causal relationships from data, most only apply to data generated from probability
distributions associated with static, acyclic Bayesian networks [79, 157]. Moreover, most
causal discovery algorithms developed for time series data rely on stringent assumptions,
such as linear dynamics and additive Gaussian noise models, or aggregate data along slices
of fixed time indices [79, 80, 85, 160]. However, rare events often occur sparsely at any fixed
time and cannot be easily modeled using linear dynamics.

To address these shortcomings, we present a novel approach for aggregating and analyzing
time series data recording sparsely occurring, but consequential events, in which data is
collected in a time-ordered fashion from a dynamical system. Our method rests on the
observation that, whereas a rare event may be highly unlikely to occur at any fixed time t,
the probability of the event occurring at some time along the entire horizon of interest is
often much higher. Thus, we aggregate the time series data along the times of the event’s first
occurrence. This renders the dataset more informative, by better representing the rare events
of interest. Next, we present an algorithm that uses the curated data to analyze the causal
relationships governing the occurrence of the rare event. We formally pose the question
of whether the system state causally affects the occurrence of the rare event as a binary
hypothesis test, with the null hypothesis H0 corresponding to the negative answer, and the
alternative hypothesis H1 corresponding to the positive one. We prove that our proposed
method is consistent against all alternatives [118]. In other words, if H0 were true, then as
the number of data trajectories N in the dataset approaches infinity, our approach would
reject H1 with probability 1. We validate the performance of our algorithm on simulated
and on publicly available traffic and incident data collected from the Caltrans Performance
Measurement System (PeMS).

3.2 Related Works

Causal Discovery for Static and Time Series Data

Causal discovery algorithms identify causal links among a collection of random variables
from a dataset of their realizations. Common approaches include constraint-based methods
(which use statistical independence tests), score-based methods (which pose causal discovery
as an optimization problem), and hybrid methods [79, 157, 161]. However, most of these
approaches apply only to non-temporal settings. For time series data, Granger causality uses
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vector autoregression to study whether one time series can be used to predict another [85].
Other methods aggregate different data trajectories by matching time indices [160, 60], or
directly solve a time-varying causal graph [135]. However, these methods do not address the
problem of inferring causal links between rare events and dynamical systems, across sample
trajectories on which the rare event can often occur at different times.

Extreme Value Theory and Analysis of Rare Events

Extreme value theory characterizes dependences between random variables that exist only
when a low-probability event occurs, e.g., rare meteorological events, or financial crises [59,
12]. Most closely related to our work are [80], which studies causal links between heavy-tailed
random variables, and [101], which explores causal relationships between characteristics of
London bicycle lanes, e.g., density, length, and collision rate, and abnormal congestion.
However, [80] imposes restrictive assumptions, such as linear models, while the discussion in
[101] on accidents’ occurrences is restricted to empirical studies. In contrast, our proposed
algorithm returns a nonparametric conditional independence test statistic that is capable
of characterizing relationships between a general dynamical system, and the onset of a rare
event.

Traffic Network Analysis

Traffic network theory aims to mathematically describe and control traffic flow in urban
networks of roads, bridges, and highways [17, 105, 4]. Recent literature has proposed the
design of tolling mechanisms that drive a traffic network to the socially optimal steady
state [131, 44]. However, these methods do not model or predict the occurrence of sudden
yet consequential events, such as extreme weather events, car accidents, and other causes of
unexpected congestion. In contrast, this chapter uses the occurrence of rare but consequential
car accidents in traffic networks as a running example, to illustrate the applicability of our
method on analyzing causal links between dynamical systems and associated rare events.

3.3 Preliminaries

Consider a stochastic, discrete-time dynamical system with state variable Xt ∈ Rn, event
variable At ∈ {0, 1} with P(At = 1) ∈ [p1, p2] for some p1, p2 ∈ (0, 1) for all t, with p1 < p2,
and dynamics Xt+1 = f(Xt, At,Wt) for each t ≥ 0, where Wt ∈ Rw denotes i.i.d. noise,
and f : Rn × {0, 1} × Rw → Rn denotes the nonlinear dynamics of the system state. Let T
denote the time at which the rare event first occurs, and, with a slight abuse of notation,
let A1:t = 0 denote the event that A1 = · · · = At = 0. Moreover, we assume that the first
occurrence of the rare event is governed by a time-invariant probability distribution, i.e.:

P(At+1 = 1|Xt ⪯ x,A1:t = 0) (3.1)
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=P(At′+1 = 1|Xt′ ⪯ x,A1:t′ = 0), ∀ t, t′ ≥ 0,

where, for each x, y ∈ Rn, the notation x ⪯ y represents xi ≤ yi for each i ∈ [n] := {1, · · · , n},
and for each x ∈ Rn, there exists some constant ratio α(x) > 0 such that:

P(Xt−1 ⪯ x|At = 1, A1:t−1 = 0) (3.2)

=α(x) · P(Xt−1 ⪯ x|A1:t−1 = 0).

In words, we assume that the flow distribution is related to the first occurrence of the
rare event in a time-invariant manner. Given this setup, we restate Q, first defined in the
introduction, as the following hypothesis testing problem. The binary hypothesis test, with
null hypothesis H0 as below, is a mathematically rigorous characterization of Q.

Definition 3.3.1. Let H0 be the null hypothesis given by:

H0 : P(At+1 = 1|Xt ⪯ x,A1:t = 0)

=P(At+1 = 1|A1:t = 0), ∀x ∈ R,
H1 : P(At+1 = 1|Xt ⪯ x,A1:t = 0)

̸=P(At+1 = 1|A1:t = 0), ∀x ∈ R.

In words, H0 holds if and only if the first occurrence of the rare event transpires indepen-
dently of the system state at that time. For convenience, we define the left and right hand
sides of H0 by:

a1(x) := P(At+1 = 1|Xt ⪯ x,A1:t = 0), (3.3)

a2 := P(At+1 = 1|A1:t = 0). (3.4)

Running Example: Consider a parallel link traffic network of R links that connect a
single source and a single destination. Let Xt,i ∈ R denote the traffic flow on every link
i ∈ [R] := {1, · · · , R} at time t, and define Xt := (Xt,1, · · · , Xt,r) ∈ RR. (In general, one
can define Xt,i ∈ Rd to encapsulate other observed quantities relevant to link i at time t,
e.g., vehicle speed and pavement quality). The event variable At = 1 corresponds to the
occurrence of an accident in the network at time t.

In this context, Definition 3.3.1 corresponds to checking whether the first occurrence of
an accident on the R-link network at time t is affected by the flow level at time t−1. This is
of interest to traffic authorities, since costly accidents become more likely at certain levels of
traffic flow Xt, then the flow should be monitored to decrease the chance that such accidents
occur. Flow management can be applied by dynamically tolling the links, as in [130]. As
accidents are relatively rare in most traffic datasets, it can be difficult to construct accurate
estimates of accident probabilities and flows before accidents at any given time t. Instead,
below, we propose a novel method of data aggregation that allows the use of information on
accident occurrences across all times.
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Since Xt is a continuous random variable, a direct comparison of (3.3) and (3.4) would
necessitate computing (3.3) for uncountably many values of x ∈ Rn. Instead, we use the laws
of conditional and total probability to reformulate the problem. In the spirit of Bayes’ rule,
we compare the state distribution immediately before the rare event occurred, instead of the
rare event probabilities under different state values. Formally, under either hypothesis, the
state distribution immediately before the first accident can be decomposed as the following
infinite sum; for each x ∈ Rn:

P(XT−1 ⪯ x) =
∞∑
t=1

P(Xt−1 ⪯ x, T = t)

=
∞∑
t=1

P(Xt−1 ⪯ x,At = 1, A1:t−1 = 0)

=
∞∑
t=1

P(Xt−1 ⪯ x,A1:t−1 = 0)

· P(At = 1|Xt−1 ⪯ x,A1:t−1 = 0).

Intuitively, if H0 were true, then the condition Xt−1 ⪯ x in the term P(At = 1|Xt−1 ⪯
x,A1:t−1 = 0) can be dropped. A rigorous formulation is given in Proposition 3.3.2 below.

Proposition 3.3.2. The null hypothesis H0 in Definition 3.3.1 holds if and only if, for each
x ∈ Rn:

P(XT−1 ⪯ x) (3.5)

=
∞∑
t=1

P(Xt−1 ⪯ x,A1:t−1 = 0) · P(At = 1|A1:t−1 = 0).

Proof. See Appendix B.

For convenience, we define, for each t ∈ N and x ∈ R:

b1(x) := P(XT−1 ⪯ x),

βt(x) := P(Xt−1 ⪯ x,A1:t−1 = 0),

γt := P(At = 1|A1:t−1 = 0),

b2(x) :=
∞∑
t=1

βt(x) · γt

=
∞∑
t=1

P(Xt−1 ⪯ x,A1:t−1 = 0)

· P(At = 1|A1:t−1 = 0)
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=
∞∑
t=1

P(Xt−1 ⪯ x,A1:t−1 = 0)

· P(At = 1, A1:t−1 = 0)

P(A1:t−1 = 0)

=
∞∑
t=1

P(Xt−1 ⪯ x|A1:t−1 = 0) · P(T = t).

Note that b1(x), b2(x) ∈ [0, 1] (in particular, that b2(x) ≤ 1 follows by observing that b2(x) ≤∑∞
t=1 P(T = t) = 1.)
The test statistic that we use to distinguish between the distributions b1(x) and b2(x) is

the gap:

sup
x∈Rn

|b1(x)− b2(x)|

Intuitively, a large gap would indicate a higher likelihood that a component-wise larger or
smaller state would change the probability of an event occurring. We formalize this notion
in Algorithm 1, and provide finite sample guarantees for empirical estimates of b1(x) and
b2(x) that can be constructed efficiently from data and used to compute the test statistic.

Running Example: In the traffic network example, b1(x) corresponds to the probability
thatXT−1, the network flows before the first accident, is component-wise less than or equal to
x. Meanwhile, b2(x) describes the weighted average of traffic flows at each time t, conditioned
on the first accident occurring after t (i.e., no accident occurs before), with the distribution
of the first accident time T as weights. Section 3.4 describes sample-efficient methods for
constructing empirical estimates of b1(x) and b2(x) from a dataset of independent traffic
flows.

3.4 Methods

Main Algorithm

We present Algorithm 1, which solves the hypothesis testing problem in Definition 3.3.1
from a dataset of N independent trajectories, by constructing and comparing finite-sample
empirical cumulative distribution functions (CDFs) b̂N1 (x) and b̂N2 (x) for the expressions
b1(x) and b2(x), respectively, and verifying whether or not (3.5) holds (in accordance with
Proposition 3.3.2).

Note on the baseline method The common baseline method for resolving the problem
in Definition 3.3.1 is to fix t ≥ 1, and compare the CDF values P(Xt−1 ⪯ x|T = t) and
P(Xt−1 ⪯ x), for each x ∈ Rn at the fixed t. This is effectively a “static variant” of Algorithm
1 that only utilizes dynamical state values immediately before accidents that occur at time
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t. It is generally difficult to estimate P(Xt−1 ⪯ x|T = t) from data, since P(T = t) can
be very small for any given t. Our algorithm (Algorithm 1) instead aggregates data across
times when the rare event has occurred, allowing the event to be represented with higher
probability.

Algorithm 1: Hypothesis Testing with Reorganized Dataset.

Data: Dataset of system state and rare event variables: {(Xi
t , A

i
t) : t ≥ 0, i ∈ [N ]}

Result: Distribution gap: supx∈R |b̂N1 (x)− b̂N2 (x)|
1 T̂ i ← Realization of T for data trajectory i, ∀ i ∈ [N ].

2 b̂N1 (x)← 1
N

∑N
i=1 1{XT̂ i−1 ⪯ x}.

3 β̂N
t (x)← 1

N

∑N
i=1 1{Xi

t ⪯ x,Ai
1:t−1 = 0}.

4 γ̂Nt ←


∑N

i=1 1{Ai
1:t−1=0,Ai

t=1}∑N
i=1 1{Ai

1:t−1=0}
, if

∑N
i=1 1{Ai

1:t−1 = 0} > 0,

0, else.
.

5 b̂N2 (x)←
∑∞

t=1 β̂
N
t (x) · γ̂Nt .

6 return supx∈R |b̂N1 (x)− b̂N2 (x)|.

Theoretical Guarantees

Theorem 3.4.1 below illustrates that, if H0 holds, then as the number of sample trajectories
N approaches infinity, the empirical distributions of (B.1) and (B.2), as constructed in
Algorithm 1, converge at an exponential rate to their true values. In other words, if H0

holds, then for any fixed significance level α, Algorithm 1 will require a dataset of size no
greater than O(ln(1/α)) to reject H1. This establishes a finite sample bound that controls
the error of the statistical independence test corresponding to the test statistic presented
in Algorithm 1. The proof follows by carefully applying concentration bounds for light-
tailed random variables, and invoking the Dvoretsky-Kiefer-Wolfowitz (DKW) inequality
[55], which prescribes explicit convergence rates for empirical CDFs to the true CDF.

Theorem 3.4.1. (Exponential Convergence to Consistency Against all Alterna-
tives) Suppose the null hypothesis H0 holds, i.e., b1(x) = b2(x).

1. If n = 1, i.e., Xt ∈ R for each t ≥ 0, then for each ϵ > 0, there exist continuous,
positive functions C1(ϵ), C2(ϵ) > 0 such that:

P
(
sup
x∈Rn

{∣∣b̂N1 (x)− b̂N2 (x)
∣∣} > ϵ

)
≤C1(ϵ) · e−N ·C2(ϵ).

2. If n > 1, then there exist continuous, positive functions C3(ϵ), C4(ϵ) > 0 such that:

P
(
sup
x∈Rn

{∣∣b̂N1 (x)− b̂N2 (x)
∣∣} > ϵ

)
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≤
[
C3(ϵ)(N + 1)n+ C4(ϵ)

]
· e−N ·C5(ϵ).

For sufficiently large N , the factor N + 1 can be replaced by the constant 2.

Proof. The proof is contained in Appendix B.

Remark 3.4.1. If H0 does not hold, i.e., δ := supx∈Rn |b1(x) − b2(x)| > 0, then the same
logical arguments used to establish Theorem 3.4.1 can be employed to show that (for the n = 1
case), for each ϵ > 0:

P
(
sup
x∈Rn

{∣∣b̂N1 (x)− b̂N2 (x)
∣∣} ∈ (δ − ϵ, δ + ϵ)

)
≤C1(ϵ) · e−N ·C2(ϵ),

where C1(ϵ), C2(ϵ) > 0 are the same continuous, positive functions given above. That is,
as N⟩∞, the gap between bN1 (x) and bN2 (x) approaches δ exponentially. The n > 1 case
follows analogously from the multivariate version of the Dvoretsky-Kiefer-Wolfowitz (DKW)
inequality [144].

3.5 Results

Here, we illustrate the numerical performance of our proposed method on simulated and
real-world traffic data, and its efficacy over baseline aggregation methods of concatenating
data points along a single, fixed time t. We note that in the experiments on the real-world
dataset collected from the Caltrans PeMS system, the data collected is time-ordered. Code
containing the datasets and experiments is available at the following link:

https://github.com/kkulk/causality.

Simulated Data

In our first set of experiments, we construct synthetic data for single- and multi-link traffic
networks. For the single-link network, we use the following dynamics. For each t ∈ [Th]:

x[t+ 1] = (1− µ(A[t])) · x(t) + µ(A[t]) · u[t] + w[t],

A[t+ 1] ∼ P(x(t))

where x(t) ∈ R denotes the traffic flow at time t, A[t] ∈ {0, 1} is the Boolean random
variable that indicates whether or not an accident has occurred at time t, µ(A[t]) > 0
describes the fraction of traffic flow departing the link, u[t] ∈ R denotes the total input
traffic flow, w[t] ∈ R is a zero-mean noise term, and Th is the finite time horizon. Here, we
set Th = 500, µ(0) = 0.3, µ(1) = 0.2, u(t) = 100 for each t ∈ [Th], and draw w(t) i.i.d. from
the continuous uniform distribution on (−10, 10). We create datasets corresponding to the

https://github.com/kkulk/causality
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null and alternative hypotheses. For the null hypothesis, we fix the distribution of x(t) to be
Bernoulli(0.01), regardless of the value of x(t). This simulates a scenario where the likelihood
of an accident occurring has no dependence on traffic flow. For the alternative hypothesis,
we set the distribution of x(t) to be Bernoulli(0.01) when x(t) < 109 and Bernoulli(0.10)
when x(t) ≥ 109. This represents a scenario where higher traffic loads increase the likelihood
that an accident occurs.

To contrast the performance of our algorithm with the baseline, we compute the fol-
lowing quantities from datasets of independent trajectories corresponding to H0 and H1, in
accordance with Proposition 3.3.2 and Theorem 3.4.1:

• For our method—We compute the empirical estimates b̂N1 (x) and b̂N2 (x) of the func-
tions b1(x) and b2(x) as functions of x (Figure 3.1), and the maximum CDF gap
supx∈Rn |b̂N1 (x)− b̂N2 (x)| as functions of N (Figure 3.2).

• For the baseline method—We compute the empirical estimates of the CDFs of
Xt−1|T = t and Xt−1, with t fixed at 1, as functions of x (Figure 3.1), and the corre-
sponding maximum CDF gap as functions of N (Figure 3.2). Note that for N < 500,
it is difficult to obtain the CDF of Xt−1|T = t, due to rarity of the event at any given
time.

Figures 3.1 and 3.2 show that, compared to the baseline, our approach distinguishes between
the null and alternative hypotheses from a far smaller dataset. This illustrates that our
method, compared to the baseline, distinguishes the dependence between the occurrence of
a rare event and the state values immediately preceding the event more efficiently.

Appendix B contains further empirical results on synthetic datasets for multi-link net-
works.

Figure 3.1: (Top) From left to right, b1(x) and b2(x) vs. x plots for (H0, N = 500), (H0, N =
2000), (H1, N = 500), and (H1, N = 2000). (Bottom) From left to right, empirical CDFs for
Xt−1|T = t and Xt−1 with t = 1, in the same order of hypothesis and N values.
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Figure 3.2: CDF gap between vs. N . Red and blue correspond to the baseline and our
method, respectively, while thick and thin lines correspond to the null and alternative hy-
potheses, respectively. Our approach (thin blue curve) correctly identifies the null hypothesis
dataset with a relatively small number of samples, while the baseline aggregation method
fails to do so (thin red curve).

Caltrans PeMS Dataset

We also demonstrate the efficacy of Algorithm 1 on real traffic flow and incident data collected
from the publicly available Caltrans Performance Measurement System (PeMS) dataset [185].
PeMS uses loop detectors placed on freeways to collect flow, speed, and other traffic condition
information, and overlays this with incident reports. We consider daily traffic flow data (#
vehicles / time) collected from January to August 2022 from 6 A.M. to 2 P.M., at 5-minute
intervals, on various bridges in the San Francisco Bay Area: San Mateo-Hayward, San
Francisco - Oakland, and Richmond - San Rafael. That is, we consider single link networks
connecting a source and destination with the continuous variables Xt ∈ R+ corresponding to
average flows on the link. Correspondingly, we use incident data collected on these bridges
by PeMS in the same time interval from the California Highway Patrol (CHP).

Data Collection We treat each day as an independent trajectory of the traffic flows on ev-
ery bridge. The PeMS dataset contains flows collected from dual loop detectors placed along
the bridges. For each time between 6 A.M. and 2 P.M., we average the flow data recorded
by loop detectors on each bridge to obtain the state variable Xt for time t. Mathematically,
we define Xt :=

1
|I|
∑|I|

i=1X
i
t , where I denotes the set of loop detectors on a single link, and

X i
t denotes the flow measured by detector i ∈ I at time t. We exclude from our analysis any

trajectory on which there was no incident for the entire day, since such trajectories do not
contain data relevant to our problem of interest.
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Results In Table 1, we enumerate the sample size N and test statistic supx∈R |b̂N1 (x) −
b̂N2 (x)| for the six traffic links (three bridges, each with two directions of traffic flow). Note the
substantial difference in the CDF gap (of nearly 0.178) for the Richmond-San Rafael Bridge,
East, compared to all other links, indicating that the flows on this link are particularly
causally linked to the first time of incident formation. Further, the San Francisco-Oakland
Bay Bridge, East, also has a higher CDF gap (0.081) relative to the West direction, and
relative to the other bridges. These gaps are visible in the CDF plots in Figures 3(e) and
3(c), respectively.

Link N sup
x∈R
|b̂N1 (x)− b̂N2 (x)|

San Mateo-Hayward 85 0.053
Bridge, East (SR92-E)
San Mateo-Hayward 116 0.039

Bridge, West (SR92-W)
San Francisco - Oakland 116 0.081
Bay Bridge, East (I80-E)
San Francisco -Oakland 112 0.042

Bay Bridge, West (I80-W)
Richmond - San Rafael 45 0.178
Bridge, East (I580-E)
Richmond - San Rafael 94 0.048
Bridge, West (I580-W)

Table 3.1: CDF gap, supx∈Rn |b̂N1 (x)− b̂N2 (x)| for the six links in the San Francisco Bay Area.

3.6 Discussion and Future Work

We present a novel method for identifying causal links between the state evolution of a
dynamical system and the onset of an associated rare event. Crucially, we leverage the time-
invariance to reorganize data in a manner that better represents occurrences of the rare event.
We then formulate a non-parametric statistical independence test to infer causal dependen-
cies between the dynamical states and the rare event. Empirical results on simulated and
real-world time-series data indicate that our method outperforms a baseline approach that
conducts independence tests only on a single time slice of the original rare events dataset.

As future work, the causal discovery algorithm presented here may be used to more
effectively control the evolution of a dynamical system associated with a rare but conse-
quential event. By establishing causal links between the dynamical state and the rare event,
control strategies can be redesigned to maneuver the state away from regions of the state
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(a) San Mateo-Hayward Bridge, East (SR92-E) (b) San Mateo-Hayward Bridge, West (SR92-W)

(c) San Francisco - Oakland Bay Bridge, East
(I80-E)

(d) San Francisco - Oakland Bay Bridge, West
(I80-W)

(e) Richmond-San Rafael Bridge, East (I580-E) (f) Richmond-San Rafael Bridge, West (I580-W)

Figure 3.3: Empirical CDFs b̂N1 (x) and b̂N2 (x) for six bridges in the San Francisco Bay Area.
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space where the event occurs more frequently. Important engineering applications include
incentive design and flow control methods in the network traffic systems literature, such as
dynamic tolling and rerouting. Finally, future work can present more extensive empirical
analysis of both the baseline method and our method across different applications.
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Chapter 4

Understanding Coalitions Between
EV Charging Stations

Apes together strong!

Rise of the Planet of the Apes

This chapter can be found in [106].

4.1 Introduction

The proliferation of electric vehicles (EVs) has brought major changes to road transportation.
EVs are playing a significant role in the transition to a sustainable energy-based future and
are projected to surpass traditional internal combustion engine-based vehicles in the coming
decades [27]. The growth in EVs has led to the genesis of a new industry around building
faster and more accessible charging infrastructure [36], comprising several electric vehicles
charging companies (EVCCs) such as Tesla, EVgo, and Chargepoint. One major challenge
associated with the design of charging infrastructure is that charging stations, especially
fast-charging stations, draw a considerable amount of electricity when in operation [183,
6, 63] and may adversely impact the grid infrastructure [5, 117, 62]. The ideal solution
to this challenge is to coordinate the demands from all charging stations to distribute the
load on the grid [5, 151]. However, this is hard to implement in practice due to the high
communication and computational costs of such centralized approaches, and concerns about
privacy of the information shared by EV charging stations [36]. Since coordination between
all EV charging stations is impractical in most cases, we consider the scenario where only
some of these stations coordinate and form a coalition (refer to Figure 4.1 for a schematic).
While it might intuitively seem that some coordination is always better than no coordination,
we give a counter-example to show this is not necessarily true. We study the following main
question in this chapter:
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Figure 4.1: A schematic depiction of charging stations located in different areas (e.g. res-
idential, downtown, highway) and owned by different EVCCs. Charging stations that are
contained in the same red box are owned by the same company (i.e. form a coalition). Each
charging station demands charge from the grid, which determines the prices.

Main question (Q): Could coordination between a few potentially heteroge-
neous charging stations lead to undesirable consequences?

To answer this question, we model the interaction between charging stations as a non-
cooperative aggregative game. Charging stations are strategic agents that draw power from
the grid over a finite time window, and have different location-specific charging demands and
different sensitivities to deviations from a desired operating demand profile. Each charging
station aims to minimize its cost comprising of (i) a payment for power demanded from the
grid, and (ii) the deviations from their desired operating charging profile. In our model,
we consider that the price per unit of power depends on the total power demanded by
all charging stations (resulting in a game theoretic interaction between charging stations).
Therefore, in our model, charging stations act as “price-makers”, rather than “price-takers”
[128, 76, 153, 51]. Finally, some charging stations enter into a coalition (e.g. those owned
by a single EVCC) to coordinate their total demand in order to minimize their total cost.

We compare the outcome of the game-theoretic interaction in two scenarios: (a) when
some charging stations form a coalition C, and (b) when each charging station operates
independently without any coordination. We differentiate the equilibrium in these two sce-
narios as C−Nash and Nash equilibrium respectively, and characterize them analytically in
Theorem 4.4.1 and Corollary 4.4.3 respectively. In general, we observe that the equilibrium
decomposes into two components: a charging profile uniformly distributed across time and a
correction term to account for the coalition of charging stations (Theorem 4.4.1). We assess
the scenarios (a)-(b) in terms of three metrics depending on the overall cost experienced by:
(i) all charging stations (the societal cost); (ii) all charging stations within a coalition, and
(iii) all charging stations outside of a coalition. We identify sufficient conditions on the game
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parameters under which the formation of a coalition will be worse than the independent op-
eration of charging stations in terms of all three metrics (i)− (iii), as presented in Theorems
4.4.4 and 4.4.6. Furthermore, we present numerical examples that satisfy these conditions,
demonstrating that coalitions can lead to worse outcomes for all the charging stations, the
coalition, and non-coalition charging stations alike. Notably, we find that these outcomes
persist even when we relax the assumptions in our theoretical results, highlighting scenarios
where conventional intuition about coordinating charging stations may not hold.

4.2 Related Works

Aggregative Games and EV Charging

Several works have proposed studying EV charging as a non-cooperative game [128, 76, 153,
51]. These works mainly study existence, uniqueness, and computation of Nash equilibria
of the EV charging game, and analyze these equilibria via measures such as the price of
anarchy (PoA) [153]. Our key differentiation from this line of literature is to understand the
impact of the formation of a coalition of a subset of EV stations.

Coalitions and Equilibria

Strong Nash equilibrium is an outcome wherein no coalition of agents can collectively devi-
ate from their strategy to improve their utilities, and was first introduced as a concept in
[14]. Since this seminal paper, numerous studies have delved into necessary and sufficient
conditions for its existence [148], computational properties [77], and its performance across
various game classes, often measured by the k-strong price of anarchy [68, 61, 7, 66, 15, 39].
This metric quantifies the worst-case welfare loss at strong equilibrium compared to opti-
mal welfare. Unlike strong Nash equilibrium, our notion of C−Nash equilibrium (Definition
4.3.2) is a relaxation and only requires stability with respect to a specific coalition C and not
all possible coalitions. Strong Nash equilibrium may not always exist in our setting but we
provide an explicit characterization of C-Nash equilibrium (Theorem 4.4.1).

Users as Price-Takers

Prior works have delved into the potential effects of uncoordinated EV charging on the
power grid [166, 86]. In response, efforts such as those outlined in [5, 151, 73] have tackled
the challenge of devising incentive mechanisms to coordinate small users, often categorized
as “price-takers,” to shift their charging windows and mitigate grid impacts. However, in
contrast to these approaches, our work conceptualizes charging stations, which serve many
EVs and thus can aggregate demand, as “price-makers” within electricity markets.
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4.3 Model

Notations For any positive integer m, we define [m] := {1, 2, ...,m}. Consider two matri-
ces A = (aij)i∈[m],j∈[n] ∈ Rm×n, B ∈ Rp×q. We define A ⊗ B ∈ Rpm×qn to be the Kronecker
product of matrices A and B. For any finite set X, we define 1X ∈ R|X| to be a vector with
all entries to be 1. For any vector x ∈ Rm and p ⊆ [m], we use the notation xp ∈ R|p| to
denote the components of vector x corresponding to p. Additionally, we denote x−p ∈ Rm−|p|

to denote the components of vector x corresponding to all entries that are not in p.

Charging stations as strategic entities. Consider a game comprised of I charging sta-
tions, each operating as a strategic entity making decisions on their charging levels through-
out a period spanning T units of time. Each station i ∈ [N ] is characterized by a nominal
charging profile (x̄t

i)t∈[T ], where the total charge demanded is di. That is,
∑

t∈[T ] x̄
t
i = di. The

variation of charge demanded between stations reflects differences in the number of vehicles
typically utilizing each charging facility.

The actual charging profile of any station may differ from the nominal charging profile
due to the externality imposed by other stations through electricity prices, which we define
shortly. We denote xt

i to be the charge demanded by station i during hour t. Define Xi =
{xi ∈ RT :

∑
t∈[T ] x

t
i = di} to be the set of feasible charging profiles for station i 1. With a

slight abuse of notation, we define xt ∈ RN as the vector of charging profile of all stations
at time step t ∈ [T ], and x = (xt

i)t∈T,i∈I to be the joint charging profile of all stations.
In our model, we consider reactive prices where the electricity price depends on the total

charge demanded. More formally, the cost incurred by any station i under a joint strategy
x is given by:

ci(x) =
∑
t∈[T ]

pt(x)xt
i +

µi

2
∥xi − x̄i∥2, (4.1)

where (a) µi > 0 is the sensitivity parameter of station i; (b) for every t ∈ [T ], pt(x) denotes
the price per unit of electricity when the joint charging profile of all stations is x. It is
through this price signal that the charging profiles of other charging stations impose an
externality on any station. In what follows we assume that the price function is linear, i.e.
pt(x) = at + bt1⊤

Nx
t for some at, bt > 0 ([153, 51]). The parameters at represents the price

fluctuations due to non-EV demand on the grid. We assume that for all time t ∈ [T ], bt = b
for some positive scalar b ∈ R.

1We do not impose non-negativity constraints on the charging profile. This modeling decision is justified,
as charging stations have the capability not only to draw power from the grid but also to inject power into the
grid when necessary [104]. Correspondingly, we also do not impose upper bounds on the charging profiles;
we assume that there is always enough charge available to meet the charging demand for a given problem
instance. It is an interesting direction of future research to impose additional constraints on the set X which
align more closely with real-world conditions.
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Remark 4.3.1. The heterogeneity in sensitivity parameters µi between different stations can
be ascribed to their geographic location (compare Figure 4.1). For instance, a station posi-
tioned in a major city’s downtown can exhibit heightened sensitivity in meeting its demand
requirements compared to one situated within a residential neighborhood.

Nash equilibrium, defined below, is widely used to characterize the outcome of the inter-
action in charging games [128, 76, 153, 51].

Definition 4.3.1. A joint charge profile x∗ is a Nash equilibrium if ci(x
∗
i , x

∗
−i) ≤ ci(xi, x

∗
−i)

for every i ∈ [N ], xi ∈ Xi.

Coalitions between charging stations. Coalitions between charging stations can be
easily facilitated by electric vehicle charging companies who operate multiple charging sta-
tions. Every coalition of stations jointly decides their charging profile. For ease of exposition,
we consider only single coalition2. The goal of the coalition is to choose xC ∈

∏
i∈C Xi that

minimizes the coalition’s cumulative cost function cC(x) =
∑

i∈C ci(x). Next, we introduce a
natural extension of Definition 4.3.1 to examine the outcome of interactions in the presence
of a coalition.

Definition 4.3.2. A joint charge profile x† ∈ X is a C-Nash equilibrium if (i)
∑

i∈C ci(x
†) ≤∑

i∈C ci(x
′
C, x

†
−C) for every x′

C ∈
∏

j∈C Xj, and (ii) ci(x
†) ≤ ci(x

′
i, x

†
−i) for every x′

i ∈ Xi, i ̸∈ C.

When |C| = 1, Definition 4.3.1 and 4.3.2 are equivalent. For the rest of this chapter,
we denote C−Nash equilibrium by x† and Nash equilibrium when charging stations act
autonomously by x∗.

4.4 Results

In Section 4.4, we analytically characterize the C−Nash equilibrium in terms of game pa-
rameters. Next, we derive sufficient conditions when the Nash equilibrium is preferred over
C−Nash equilibrium, in terms of the overall cost experienced by all charging stations, by
charging stations within the coalition, and by charging stations outside the coalition. Fi-
nally, we provide numerical instances where the coalition performs worse than the Nash
equilibrium.

Analytical Characterization of C−Nash equilibrium

Theorem 4.4.1. For any arbitrary coalition C ⊂ [N ], when b > 0 and µi > 0 ∀i ∈ I, the
C−Nash equilibrium exists, is unique, and takes the following form

x†t =
d

T
+
∑
t′∈[T ]

Tδtt
′ − 1

T

(
b(1I1

⊤
I +C) + µ

)−1 ·

2The results in this chapter can be extended to encompass scenarios involving multiple coalitions.
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·
(
µx̄t′ − at

′
1I

)
, (4.2)

where δtt
′
is the Kronecker delta function (δtt

′
= 1 when t = t′ and is 0 otherwise), µ =

diag([µ1, · · · , µI ]) and C =

(
1C1

⊤
C 0

0 II\C

)
.

Proof. Before presenting the proof, we define some useful notation. DefineA = [a1, a2, ..., aT ]⊤

and the concatenated vector of charging profiles x† := [x1†
1 , · · · , x1†

I , · · · · · · , xt†
1 , · · · , xt†

I ]
⊤.

First, we show that for any coalition C ⊂ [N ], the resulting game is a strongly monotone
game. To ensure this it is sufficient to verify that (i) the strategy set is convex, and (ii)
the game Jacobian is positive definite [64]. The convexity of strategy sets holds because the

strategy sets Xi are simplices. Next, to compute the game Jacobian, we define Gi(x) = ∂cC(x)
∂xi

if i ∈ C, and Gi(x) = ∂ci(x)
∂xi

if i ̸∈ C.
It can be verified that the game Jacobian, J(x), is J(x) = ∇G(x) = Θ, where Θ :=

IT ⊗
(
b(1I1

⊤
I +C) + µ

)
, which is guaranteed to be a positive definite matrix by Lemma

4.4.2. Thus, for any C, the game is strongly monotone, and the equilibrium is unique. We
now introduce two optimization problems:

PC(x
†
−C) : min

xC∈XC

∑
j∈C

cj(xC, x
†
−C)

s.t.
∑
t′∈[T ]

xt′

j = dj ∀j ∈ C,

∀ i ∈ [N ]\C, Pi(x
†
−i) : min

xi∈Xi

ci(xi, x
†
−i)

s.t.
∑
t′∈[T ]

xt′

i = di.

By definition of C−Nash equilibrium, charging stations within C jointly solve the optimization
problem PC(x

†
−C) when the charging profiles of other stations x†

−C is known. Similarly, each

player i ∈ [N ]\C solves the optimization problem Pi(x
†
−i) when the charging profile of other

players x†
−i is known. Note that each of the optimization problems has linear constraints, and

hence the Karush–Kuhn–Tucker (KKT) conditions are necessary for optimality. We solve
the KKT conditions of all these problems simultaneously to get a unique solution. Since we
established that the equilibrium is unique, this unique solution to the KKT conditions is the
C−Nash equilibrium.

The KKT conditions can be written in a compact form, where λ = (λi)i∈[N ] are the
Lagrange multipliers associated with the linear constraint of every charging station:

Θx† = (IT ⊗ µ)x̄− (IT ⊗ 1I)A− (1T ⊗ II)λ (4.3a)

(1⊤
T ⊗ II)x

† = d, (4.3b)
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where Γ := (1⊤
T ⊗ II)Θ

−1(1T ⊗ II). We prove in Lemma 4.4.2 that Γ and Θ are invertible.
Using this fact and solving (4.3) by eliminating λ, we obtain a closed-form expression for
the C−Nash equilibrium in (4.4):

x† =Ψ1(Γ,Θ) ((IT ⊗ µ)x̄− (IT ⊗ 1I)A) + Ψ2(Γ,Θ)d, (4.4)

with Ψ1(Γ,Θ) =
(
INT −Θ−1(1T ⊗ II)Γ

−1(1⊤
T ⊗ II)

)
Θ−1 and Ψ2(Γ,Θ) = Θ−1(1T ⊗ II)Γ

−1.
Expanding the terms using the time index, it can be checked that equation (4.4) is equivalent
to (4.2), completing the proof.

Next, we present a technical result, used in the proof of Theorem 4.4.1, the proof of which
is deferred to Appendix C.

Lemma 4.4.2. Θ and Γ are positive definite and hence invertible matrices.

We now make some remarks about Theorem 4.4.1.

Remark 4.4.1. The closed-form equilibrium solution in (4.2) is comprised of a fixed term
and a correction term. The fixed term represents a charging profile that is uniform across
time. The second term is the correction to account for the aggregate effects of the coalition,
demand and charging preferences of the charging stations, and exogenous non-EV demand.
As expected, when the time-dependent factors at

′
and x̄t′ are constant across time, the cor-

rection term is zero and charging stations charge uniformly across time.

Remark 4.4.2. The result in Theorem 4.4.1 extends to the setting of multiple (non-overlapping)
coalitions C1, C2, ...CK by setting

C =



1C11
⊤
C1 0 · · · 0

0 1C21
⊤
C2 · · · 0

...
...

. . .
...

...
... 1CK1

⊤
CK

...
0 0 0 II\∪K

i=1Ci

 .

In fact, all theoretical results in this article can be directly extended to the multiple coalition
case by using the above C matrix. For the sake of clear presentation, we shall always work
with K = 1 in the following.

We conclude this section by stating the following specialization of Theorem 4.4.1, which
characterizes Nash equilibrium.

Corollary 4.4.3. The Nash equilibrium x∗ takes the following form:

x∗t =
d

T
+
∑
t′∈[T ]

Tδtt
′ − 1

T

(
b(1I1

⊤
I + IN) + µ

)−1 ·
(
µx̄t′ − at

′
1I

)
,

where IN ∈ RN×N is the identity matrix.

The proof of Corollary 4.4.3 follows by setting C = {1} in Theorem 4.4.1.
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When is C−Nash equilibrium beneficial?

In this subsection, we study conditions under which the C−Nash equilibrium is preferred to
Nash equilibrium and vice-versa. For a charging profile x, define the total cost incurred by
a group of charging stations in S ⊆ [I] as

cS(x) :=
∑
i∈S

ci(x), ∀ x ∈ X. (4.5)

In order to compare the outcome under Nash equilibrium and C−Nash equilibrium, we use
the following metrics:

c[I](x
∗)

c[I](x†)︸ ︷︷ ︸
:=M[I]

,
cC(x

∗)

cC(x†)︸ ︷︷ ︸
:=MC

,
c[N ]\C(x

∗)

c[N ]\C(x†)︸ ︷︷ ︸
:=M[N ]\C

, (Eval-Metric)

where, recall, x∗ is the Nash equilibrium when there is no coalition, and x† is the C-Nash
equilibrium. These metrics are the ratio of the total cost experienced by different groups
of players at Nash equilibrium and at C−Nash equilibrium. In particular, M[N ] is this ratio
for all players, MC is this ratio for players within the coalition C, and M[N ]\C is this ratio of
players outside of the coalition. For any S ∈ {[N ], C, [N ]\C}, ifMS < 1, the Nash equilibrium
is preferred. Otherwise the C−Nash equilibrium is preferred by the set of players S. Next,
we theoretically characterize these metrics in two cases:

Case A: Exogeneous price fluctuations at are uniform across time

Here, we specialize to the case when at = a ∀t ∈ [T ] for some a ∈ R. This can happen
when the price is influenced by a constant non-EV demand throughout the day. Under this
setting, the equilibria x† and x∗ are given below.

Proposition 8. Suppose at = at
′
for all t, t′ ∈ [T ]. Then for every t ∈ [T ],

x∗t =
d

T
+
∑
t′∈[T ]

Tδtt
′ − 1

T

(
b(1I1

⊤
I + IN) + µ

)−1
µx̄t′ ,

x†t =
d

T
+
∑
t′∈[T ]

Tδtt
′ − 1

T

(
b(1I1

⊤
I + C) + µ

)−1
µx̄t′ .

Further, consider the scenario when all the charging stations prepare for similar peak
and low demand hours, and use charging rate recommendations from EV manufacturers to
predict their demand requirements. That is, they desire similar demand profiles (up to a
constant factor) across the day. This scenario is captured in Assumption 4.4.1.

Assumption 4.4.1. The desired demand of each charging station i ∈ [N ] at time step
t ∈ [T ] is x̄t

i = diα
t, where

∑
t∈[T ] α

t = 1 and αt ≥ 0 for all t ∈ [T ].
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Next, we delineate conditions under which the formation of a coalition is worse than
the independent operation of charging stations in terms of verifiable conditions on game
parameters.

Theorem 4.4.4. Suppose Assumption 4.4.1 holds and at = at
′
for all t, t′ ∈ [T ]. Any group

S ⊆ [N ] incurs a lower cost in Nash equilibrium compared to C−Nash equilibrium if and
only if ∑

i∈S

f †
i (µ, b, d)− f ∗

i (µ, b, d) ≥ 0, (4.6)

where for every i ∈ [N ], f †
i (µ, b, d) := ∆†∆†

i+
µi(∆

†
i−di)

2

2b
, f ∗

i (µ, b, d) := ∆∗∆∗
i+

µi(∆
∗
i−di)

2

2b
,∆†

i :=(
(b(1N1

⊤
N +C) + µ)−1µd

)
i
, and ∆∗

i :=
(
(b(1N1

⊤
N + IN) + µ)−1µd

)
i
. Additionally, ∆† :=∑

i∈[N ] ∆
†
i and ∆∗ :=

∑
i∈[N ] ∆

∗
i .

Proof. For a subset S of charging stations, the total cost under Nash equilibrium is lower
than C−Nash equilibrium if and only if∑

i∈S

ci(x
∗) ≤

∑
i∈S

ci(x
†). (4.7)

In the rest of the proof, we calculate these costs in terms of the game parameters. For
every t ∈ [T ], define F t := Tαt−

∑
t′∈[T ] α

t′ . Since
∑

t∈[T ] α
t = 1, it holds that F t = Tαt− 1

and
∑

t∈[T ] F
t = 0. Using Assumption 4.4.1 along with Proposition 8, we get the following

for C−Nash equilibrium:

x†t
i =

di
T

+
F t

T
∆†

i , 1⊤
Nx

†t =
D

T
+

F t

T
∆†

x†t
i − x̄t

i =
F t

T
(∆†

i − di),

(4.8)

where D =
∑

i∈[N ] di. Using (4.1) and (4.8) and
∑

t∈[T ] F
t = 0, the cost of station i at

C−Nash equilibrium is:

ci(x
†) = adi +

b
∑
t∈[T ]

(1⊤Nx
t†)xt†

i

+
µi

2
∥x†

i − x̄i∥2

= adi +
b

T 2

TDdi +
∑
t∈[T ]

(F t)2∆†∆†
i


+

µi

2T 2

∑
t∈[T ]

(F t)2(∆∗
i − di)

2.
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Consequently, the total cost of charging stations in S is:∑
i∈S

ci(x
†) =

(
aDS +

bDDS

T

)

+
F
T 2

(∑
i∈S

b∆†∆†
i +

µi

2
(∆†

i − di)
2

)
,

where DS :=
∑

i∈S di, F :=
∑

t∈[T ](F
t)2. Analogously, we can also compute the total cost

at Nash equilibrium. Using these results, we conclude (4.7) is equivalent to

aDS +
bDDS

T
+
F
T 2

(∑
i∈S

b∆†∆†
i +

µi

2
(∆†

i − di)
2

)

≥ aDS +
bDDS

T
+
F
T 2

(∑
i∈S

b∆∗∆∗
i +

µi

2
(∆∗

i − di)
2

)
⇐⇒

∑
i∈S

f †
i (µ, b, d)− f ∗

i (µ, b, d) ≥ 0.

Remark 4.4.3. Interestingly, the condition (4.6) in Theorem 4.4.4 is independent of T, αt, a
and depends only on µ and d.

Corollary 4.4.5. When ci(x
†), ci(x

∗) ≥ 0 ∀i ∈ [N ], Theorem 4.4.4 can be used to an-
alyze (Eval-Metric) as follows. For any S ∈ {[N ], C, [N ]\C}, MS ≤ 1 if and only if∑

i∈S f
†
i (µ, b, d)− f ∗

i (µ, b, d) ≥ 0.

Case B: The desired demand x̄t is uniform across time

In this subsection, we analyze the setting when x̄t is uniform in t. This denotes a uniform
spread of desired demand by the stations. This resembles the nominal charging profile when
the EV adoption will reach a critical mass, when each charging station observes a constant
flow of EVs. In this setting, when averaged over any time window, the nominal charge is
uniformly spread.

Proposition 9. If x̄t = d/T, ∀ t ∈ [T ] then

x∗t =
d

T
−
∑
t′∈[T ]

Tδtt
′ − 1

T

(
b(1I1

⊤
I + IN) + µ

)−1
1Na

t′ ,

x†t =
d

T
−
∑
t′∈[T ]

Tδtt
′ − 1

T

(
b(1I1

⊤
I + C) + µ

)−1
1Na

t′ .
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Theorem 4.4.6. Suppose x̄t = d/T, for every t ∈ [T ]. Any group S ⊆ [N ] incurs a lower cost
in Nash equilibrium when compared to C−Nash equilibrium if and only if g†S(µ, b)−g∗S(µ, b) ≥
(Γ† − Γ∗)h(A), where for every i ∈ [N ],

g†S(µ, b) :=
b

T

∑
i∈S

Γ†Γ†
i +

µi

2T
(Γ†

i )
2

g∗S(µ, b) :=
b

T

∑
i∈S

Γ∗Γ∗
i +

µi

2T
(Γ∗

i )
2

h(A) :=

∑
t,t′∈[T ] a

tat
′ (
Tδtt

′ − 1
)

∑
t∈[T ]

(∑
t′∈[T ] a

t′ (Tδtt′ − 1)
)2 ,

Γ∗
i :=

(
(b(1N1

⊤
N + IN) + µ)−11N

)
i
,

Γ†
i :=

((
b(1I1

⊤
I + C) + µ

)−1
1I

)
i
.

Additionally, Γ∗ :=
∑

i∈[N ] Γ
∗
i and Γ† :=

∑
i∈[N ] Γ

†
i .

Proof. The proof is analogous to that of Theorem 4.4.4 and is deferred to Appendix C.

Remark 4.4.4. The condition in Theorem 4.4.6 does not depend on the heterogeneity of
demand of charging stations d.

Corollary 4.4.7. When ci(x
†), ci(x

∗) ≥ 0 ∀i ∈ [N ], Theorem 4.4.6 can be used to analyze
(Eval-Metric) as follows.

MS ≤ 1 ⇐⇒ g†S(µ, b)− g∗S(µ, b) ≥ (Γ† − Γ∗)h(A)

∀S ∈ {[N ], C, [N ]\C}.

Coalitions may not be always beneficial.

In this subsection, we construct instances where the formation of a coalition is not beneficial,
which satisfy the setup discussed in the previous section. We set N = 5, T = 10, b = 0.5 and
consider that each station can be of two types: Type H or Type L. For the purpose of this
example, we consider that all stations in a coalition are of Type L and all stations outside
the coalition are of Type H. A station i ∈ [N ] is said to be Type H if di = 5 and µi = 1,
and of Type L if di = 1 and µi = 0.1. Additionally, we set αt = η1 for t ≤ T/2, and η2
otherwise. Furthermore, we set at = 0.5 + δνt where νt ∼ Unif([0, 1]). We study the impact
of the size of the coalition on various metrics presented in (Eval-Metric). In Figure 4.2, we
study the case η1 = 0.4/T, η2 = 1.6/T and δ = 0, which is aligned with the setup considered
in Theorem 4.4.4. Meanwhile, in Figure 4.3, we set η1 = 1/T, η2 = 1/T and δ = 0.4, which
is aligned with the setup considered in Theorem 4.4.6. From these figures we conclude that
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Figure 4.2: Setting η1 = 0.4/T, η2 = 1.6/T and δ = 0

Figure 4.3: Setting η1 = 1/T, η2 = 1/T and δ = 0.4
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Figure 4.4: Comparison between Nash equilibrium and C−Nash equilibrium with respect to
(Eval-Metric) under different sized coalitions.

there exist coalitions, where from the coalition’s perspective (i.e. MC) the outcome under
Nash equilibrium is preferred to the outcome under coordination. Furthermore, in Figure
4.2, we find that there exist instances when the C−Nash equilibrium is not preferred under
every evaluation metric. Finally, in Figure 4.3, we find that the formation of a coalition not
only adversely impacts the coalition but also provides an advantage to stations outside the
coalition.

4.5 Numerical Results

In this section we expand on the experimental results from Section 4.4 by relaxing the
conditions imposed on game parameters. The code to generate the figures in this section is
available at

https://github.com/kkulk/coalition-ev.

Impact of simultaneous variations in at and αt. In Figure 4.4, we study the impact of
the size of the coalition in terms of (Eval-Metric). In contrast to Section 4.4, we consider both
at and αt to be non-uniform and randomly assign stations to be of Type H with probability
0.2 if they are within the coalition. All stations outside of the coalition are assigned to be
of Type L. We find that if the size of coalition is small then Nash equilibrium turns out to
be favorable along all metrics (Eval-Metric). However, as the size of the coalition increases,
it may be beneficial to form a coalition.

https://github.com/kkulk/coalition-ev
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Figure 4.5: The phrase “Coalition better” (resp. “Nash better”) implies M[N ] > 1 (resp.
M[N ] < 1).

Figure 4.6: The phrase “Coalition better” (resp. “Nash better”) implies MC > 1 (resp.
MC < 1).

Impact of the composition of coalitions. Here we show that not only the size of the
coalition, but also the composition of the coalition, plays an important role in deciding
whether the coalition is beneficial. To illustrate this point, we examine an example with
N = 3, T = 10, b = 1 and at = 10 for all t ∈ [T ]. We posit a scenario where the first two
stations form a coalition. Each station is one of two types, namely Type H or Type L. We
call a station i ∈ [N ] to be of Type H if di = 5 and µi = 5, and of Type L if di = 1 and
µi = 1. In Figures 4.5, 4.6, and 4.7, we present a comparative analysis, evaluating how
different coalitions perform in terms of metric presented in (Eval-Metric). We find under
some circumstances MS > 1 for all S ∈ {[N ], C, [N ]\[C]}. For instance, this is the case when
the coalition is comprised of atleast one Type H station and the station outside the coalition
is of Type H. On the contrary, perhaps surprisingly, there are also instances when MS < 1 for
all S ∈ {[N ], C, [N ]\[C]}. For instance, this is the case when the stations within a coalition
are of Type H and the station outside the coalition is of Type L.

4.6 Discussion and Future Work

In this work, we initiate a study to understand the impact of coalitions between charging
stations as charging infrastructure continues to grow in the coming years. As charging
stations draw a substantial amount of electricity from the grid, they will be “price-makers”
on the electricity grid. More often than not, multiple charging stations are operated by
same electric vehicle charging company (EVCC), which could facilitate coordination between
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Figure 4.7: The phrase “Coalition better” (resp. “Nash better”) implies M[N ]\C > 1 (resp.
M[N ]\C < 1).

charging stations. In this work, we analytically characterize the equilibrium outcome in the
presence of coalitions. Our analysis hints at potential losses encountered by EVCCs if they
coordinate all charging stations owned by them in the presence of heterogeneity in charging
demand and user preferences.

There are several interesting questions for future research in understanding the impact
of coalitions between charging stations. In the current model we assume the overall demand
of a charging station is fixed, but this demand could be affected by electricity prices [117,
62, 193]. We also assume the price functions are linear; future work may extend this to
generic nonlinear functions. Furthermore, there are additional operational constraints such
as limited capacity of the energy infrastructure and bounds on charging rates of EVs that
could be accounted for while computing the equilibrium.
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Chapter 5

Redesigning Congestion Pricing

Defeating traffic is the ultimate
boss battle. Even the most
powerful humans in the world
cannot defeat traffic.

Elon Musk

5.1 Introduction

Congestion pricing is an incentive mechanism for effective utilization of road infrastructure
among travelers who selfishly seek to minimize their travel time on the network. Widely
adopted in many major cities, both theoretical [191] and empirical [45, 163, 159, 58] studies
have shown that congestion pricing can reduce traffic congestion and improve air quality
[127, 116, 196, 89]. The revenue generated from congestion pricing is often reinvested to
improve the road infrastructure and public transit [82, 176]. Despite these benefits, the
implementation of congestion pricing often faces challenges, and one of the primary concerns
is its disproportional impact on travelers who have a heterogeneous value-of-time to travel
on the network (for example, due to variations in income) [54, 78]. Some travelers often have
limited access to alternative transportation options, and congestion fees may add additional
financial burden.

In this work we present a principled approach to compute congestion pricing schemes
that incorporate both (i) the efficiency objective of minimizing the total travel time on the
network, and (ii) the distribution-welfare objective, where the distribution is assessed in
terms of the maximum disparity in relative change in travel costs experienced by different
traveler populations following the implementation of tolls, compared to a scenario with no
tolls, and welfare is assessed as the average relative change in travel costs experienced by
travelers across all types following the implementation of tolls, compared to a scenario with no
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tolls. Crucially, we seek to understand the set of efficiency-inducing tolls that also minimize
the disparity in costs across different traveler types.

We consider a non-atomic routing game, where travelers make routing decisions based
on the travel time of each route plus the monetary cost that includes tolls and gas prices.
The monetary cost is adjusted by the travelers’ value-of-time— the amount of money a
traveler is willing to pay to save a unit of time. Our game has a finite number of traveler
populations, each with a heterogeneous value-of-time. Following the result from [88], the
equilibrium flow in our game is unique, and can be computed by solving a convex optimization
problem. Moreover, the congestion minimizing edge flow vector (i.e. the edge flow vector
that minimizes the total travel time) is unique.

We propose four kinds of congestion pricing schemes that differ in terms of whether (a)
tolls price different types differently, and (b) whether tolls can be set on all edges or only
on a subset of edges. In particular, the four congestion pricing schemes are: (i) homoge-
neous pricing scheme with no support constraints, denoted by hom, where all populations
are charged with the same tolls and all edges are allowed to be tolled; (ii) heterogeneous
pricing scheme with no support constraints, denoted by het, where populations are charged
with differentiated toll prices based on their types and all edges can be tolled; (iii) homo-
geneous pricing scheme with support constraints, denoted by hom sc, where tolls are not
differentiated but only a subset of edges can be tolled; (iv) heterogeneous pricing scheme
with support constraints, denoted by het sc, where tolls are differentiated and only a subset
of edges are tolled.

We compute the tolls in each pricing scheme using a two-step approach. First, we char-
acterize the set of tolls that minimize the total travel time (i.e. efficiency objective). Second,
we select a particular toll price in the set of tolls computed in the first step to optimize for
an objective that achieves the trade-off between average welfare of all populations and the
distribution of costs across different populations. Under the hom and het pricing schemes,
the set of tolls that minimize the total travel time (as computed in the first step) can be
characterized as the set of solutions of a linear program, and the second step of selecting a
particular toll price is also an optimal solution of a linear program (Proposition 5.4.3) and
het (Proposition 5.4.4). The two step approach and the linear program formulations build on
the study of enforceable equilibrium flows in routing games with heterogeneous populations
[70, 103, 191, 91]. On the other hand, under hom sc and het sc, direct extensions of the
two linear programs to include toll support set constraints are not guaranteed to achieve the
efficiency objective. In fact, the problem of designing congestion minimizing pricing schemes
with support constraints is known to be NP hard without the consideration of heterogeneous
value-of-time [95, 29, 90]. Building on the linear programming-based approaches developed
for the pricing schemes without support constraints, we propose a linear programming-based
heuristic to compute tolls with support constraints and evaluate their efficiency outcomes in
the case study.

We next apply our results to evaluate the performances of the four congestion pricing
schemes in the San Francisco Bay Area freeway network. Populations in the San Francisco
Bay area exhibit significant income disparities. This is evident from the distribution of
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Figure 5.1: Median income.

median annual individual income of each neighborhood as shown in Figure 5.1. Moreover, the
area has low public transport coverage and thus, a large fraction of the populations commute
via car. We can see in Figure 5.2 that the driving population percentages of most zip codes
outside of San Francisco and Oakland are higher than 60%. Moreover, zip codes that are on
the east side of the Bay Area have both a high percentage of driving population and a low
median individual income. This observation underscores the importance of designing efficient
congestion pricing schemes that accounts for the heterogeneity in the willingness-to-pay of
different traveler populations.

We model the freeway network in the San Francisco Bay Area as a network with 17
nodes (Figure 5.3). Each node represents a major work or home location for travelers, and
the edges represent the primary freeways connecting these locations. Since we differentiate
populations based on their value-of-time, which is a latent parameter that cannot be directly
estimated from the data, we use the median individual income as a proxy ([13, 87, 188, 184])
to categorize travelers with home at each node into three types of populations with low,
middle and high value-of-time, respectively.

Using high-fidelity datasets from Safegraph, the Caltrans Performance Measurement Sys-
tem (PeMS), and the American Community Survey (ACS), we calibrate the latency function
of each edge and the demand of each traveler population between each pair of nodes.

The current congestion pricing scheme, denoted by curr , sets a $7 price on each of the
bridges in the Bay Area in the east to west direction (Figure 5.3). We compute the four
congestion pricing schemes (hom, het, hom sc, het sc), and compare the resulting equilibrium
routing behavior in comparison to curr and the zero pricing scheme that set no tolls. We
summarize our findings below:

(i) Efficiency and Distribution: All four proposed pricing schemes leads to a lower value
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Figure 5.2: Driving population percentage.

of total travel time compared to curr. Surprisingly, curr is also marginally outperformed by
zero. This is primarily attributed to the fact that the homogeneous toll price of $7 on all
the bridges under curr does not account for the heterogeneous distribution of populations
between different home-work locations. We show that hom and het achieve the minimum
congestion, as indicated by our theoretical result (Proposition 5.4.2). Additionally, hom sc
and het sc achieve lower value of total travel time than curr and zero but higher than hom
and het. Furthermore, we find that the price of anarchy (POA) – the ratio between the total
travel time in equilibrium with no tolls and that of the minimum value total travel time
[169] – in our setup is 1.04, which is close to 1. This is likely due to the high total demand
of travelers in the Bay area network since the POA always converges to 1 in routing games
as the population demand increases [41, 42].

We find that all pricing schemes, except hom, result in lower travel costs for all traveler
populations compared to curr. Additionally, our results show that curr is outperformed by
all other schemes, except hom, even on the distribution metric.

(ii) Revenue Generation: We observe that the revenue generated by hom is the highest
among all schemes, since it charges high tolls to all travelers in order to achieve the minimum
congestion. Moreover, the revenues generated by het, hom sc and het sc are comparable to
curr with het being marginally higher and, hom sc and het sc, marginally lower.

The rest of the chapter is organized as follows: Section 5.2 presents an overview of past
related works. Section 5.3 presents the model of routing games with heterogeneous popula-
tions. Section 5.4 presents computational methods for the four congestion pricing schemes
(hom, het, hom sc, and het sc). Section 5.5 presents the calibration of the routing game
model in the San Francisco Bay Area. Section 5.6 presents the efficiency and distributional
evaluations of the proposed pricing schemes and the comparison of their congestion patterns.
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5.2 Related Works

The literature on designing congestion pricing schemes can be categorized into two main
threads: first-best and second-best. First-best pricing schemes allow tolls to be placed on
every edge of the network. The most popular first-best tolling scheme is marginal cost
pricing, which sets the toll price to be the marginal cost created by an additional unit of
congestion on each edge [10, 22, 178, 169]. Additionally, an extensive line of research in this
thread also focuses on characterizing the set of all congestion-minimizing toll prices (see [191],
and references therein). On the other hand, second-best pricing schemes restrict the set of
edges that can be tolled. The literature on second-best pricing schemes primarily focuses on
formulating the problem as a mathematical program with equilibrium constraints (MPEC)
and developing algorithms to approximate the optimal solution (e.g. [192, 35, 69, 108, 110,
123, 156, 186, 112, 56, 102]). The papers [95, 29, 90] studied the problem of characterizing
the hardness of the problem of designing second-best tolls. The paper [95] showed that it
is NP hard to compute optimal tolls on a subset of edges in general networks and gave a
polynomial time algorithm to solve the problem for the parallel link case with affine latency
functions. This was extended to allow for non-affine latency functions by [90], and an upper
bound on the toll values in [29]. In our setup, hom and het are first-best pricing schemes and
hom sc and het sc are second-best pricing schemes. We contribute to this line of literature
by proposing a multi-step linear programming based approach to compute hom and het that
account for the distributional objective and the heterogeneous traveler populations. Our
approach also proposes an efficient heuristic to solve hom sc and het sc with at most three
linear programs instead of iteratively computing the Wardrop equilibrium.

The literature on congestion pricing has mostly focused on homogeneous pricing schemes
with a few exceptions. The paper [67] considered tolling schemes that differentiate conven-
tional vehicles from clean energy vehicles. Differentiated tolls are also used in [115, 114,
138] to study mixed autonomy. The paper [37] studied the impact of differentiated tolling
in parallel-link networks with affine cost functions where travelers that have heterogeneous
value-of-time.

One effort to ameliorate the distributional problems resulting from congestion pricing is
to redistribute the toll revenue (see [176, 83, 50, 3, 88, 99], or references therein), or provide
tradable or untradable travel credits (see [198, 124, 53, 149, 190], or references therein). The
papers [82, 176] were amongst the first to propose different ways to redistribute the revenue
in form of infrastructure development and tax rebates. The effectiveness of redistribution
schemes are theoretically analyzed in single-lane bottleneck models [10, 24], parallel networks
[3], and single origin-destination networks [57].

Pareto-improving congestion pricing schemes were introduced as another approach to
reduce inequality. First proposed by [111], Pareto-improving congestion pricing minimizes
the total congestion while ensuring that no travelers are worse off in comparison to no tolls.
The paper [179] studied the design of Pareto-improving schemes for travelers with hetero-
geneous value-of-time, and [113] further proved that such Pareto-improving schemes only
exist in special classes of networks. The paper [88] studied the problem of designing Pareto-
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improving pricing schemes combined with a revenue refund. The work [99] extended this
line of research by developing optimal revenue refunding schemes to minimize the congestion
and distributional problems together. In both [88] and [99], the tolls minimize the weighted
sum of travel times with the weights being each population’s value-of-time. This objective
is different from our goal of minimizing the unweighted total travel time, which is a more
suitable metric to assess the environmental impact of congestion on traffic networks.

A third line of works introduced the study of fairness constrained traffic assignment
problems, proposed by [97], where the fairness metric is the maximum difference of travel
time experienced by travelers between the same origin-destination pair. [8, 9] extended this
line of research by developing algorithmic methods to solve the fairness constrained traffic
assignment problem. The problem of devising congestion pricing schemes which could enforce
the resulting traffic assignment patterns was studied in [100]. [100] studies a homogeneous
pricing scheme that implements the traffic assignment minimizing an interpolation of the
potential function (which is used to characterize the equilibrium) and the social cost function.

This chapter contributes to the above from three aspects: (i) Our distributional consid-
eration accounts for both the travel time cost and the monetary cost, which includes both
the toll and the gas prices. This generalizes the fairness notion that focuses only on the
travel time difference; (ii) Our tolling scheme minimizes the total congestion in the network
(i.e. guarantees the optimal efficiency) while providing a planner a flexible way to trade-off
between the total welfare, the cost distribution across heterogeneous populations and total
revenue. In particular, by tuning the parameter that governs the trade-off between the aver-
age welfare and the distributional term, we can increase or reduce the revenue collected by
the pricing scheme; (iii) We provide a comprehensive evaluation of different congestion pric-
ing schemes in terms of efficiency, distribution and revenue using real-world data collected
in the San Francisco Bay Area.

Another line of research related to this paper is on developing inverse optimization-based
tools to estimate model parameters (such as demand and latency functions) in non-atomic
routing games [189, 25, 195]. There are several differences between our approach and these
works. First, we use high fidelity datasets to directly estimate the latency on every edge
and the demand of travelers. Second, we consider heterogeneous population of travelers as
opposed to the homogeneous population of travelers considered in these works.

Finally, on the empirical side, [72, 146, 18, 197] focused on understanding the impact
of congestion pricing of the San Francisco-Oakland Bay Bridge, which is the most heavily
congested segment in the San Francisco Bay Area highway network. Our work generalizes
this line of work to the entire Bay Area highway network using high-fidelity mobility and
socioeconomic datasets.

5.3 Model

In this section, we introduce the non-atomic networked routing game model that forms the
basis for our theoretical and computational results. We introduce equilibrium routing and
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the four types of congestion pricing schemes we consider in this paper.

Network

Consider a transportation network G̃ = (N,E), where N is the set of nodes, and E is the
set of edges. A set of non-atomic travelers (agents) make routing decisions in the network
between their origin and destination. We denote the set of origin-destination (o-d) pairs by
K and the set of routes (i.e. sequences of edges) connecting each o-d pair k ∈ K by Rk.

Travelers for each o-d pair k are grouped into I populations, where each population is
associated with a different level of value-of-time θi ∈ R≥0 that captures the trade-off travelers
in population i are willing to make between travel time and monetary cost while selecting
between different routes. We refer to agents with value-of-time θi as type i agents. The
demand vector is given by D = (Dik)i∈I,k∈K , where D

ik is the demand of agents with type i
that want to travel between o-d pair k. Throughout, we operate under the inelastic demand
assumption: traveler demands on each origin-destination pair are constant. This assumption
is reasonable in the empirical study that follows, given that (i) our analysis focuses on the
commuting behavior during the morning rush hour, when the majority of trips are work-
related with little elasticity; (ii) the availability of public transit is sparse and the cost of
car ownership is high [52].

The strategy distribution of agents is denoted q = (qikr )r∈Rk,i∈I,k∈K , where qikr is the flow
of agents with type i and o-d pair k who take route r. Therefore, given a demand D, the
set of feasible strategy distributions is given by:

Q(D) :=

{
q :
∑
r∈Rk

qikr = Dik, qikr ≥ 0,∀r ∈ Rk, i ∈ I, k ∈ K

}
. (5.1)

Given a strategy distribution q ∈ Q(D), the flow of agents of type i ∈ I on edge e ∈ E is
given by

f i
e(q) :=

∑
k∈K

∑
r∈Rk

qikr 1(e ∈ r), (5.2)

and the total flow of agents on edge e ∈ E is

we(q) :=
∑
i∈I

f i
e(q). (5.3)

The travel time experienced by agents taking edge e ∈ E is ℓe(we(q)), where the latency
function ℓe : R+ → R+ is continuous, strictly increasing, and convex. Consequently, the to-
tal travel time experienced by agents from o-d pair k ∈ K who use route r ∈ Rk is given by
ℓr(q) :=

∑
e∈r ℓe(we(q)). With slight abuse of notation, we use ℓr(q) and ℓr(w) interchange-

ably to represent the latency of route r where w is the edge flow vector corresponding to
the strategy distribution q. In addition to the travel time, the total cost experienced by



CHAPTER 5. REDESIGNING CONGESTION PRICING 61

each individual agent also includes the congestion price imposed by the planner, and the
gas cost required to travel on the route the agent chooses. In particular, let pie be the toll
price imposed on travelers of type i ∈ I for using edge e ∈ E, and ge be the gas cost of
using an edge e ∈ E. Note that we allow for the toll price to be type-specific in the general
setting. We will later discuss different scenarios for setting the toll prices. Given the tolls
p = (pie)e∈E,i∈I , the cost experienced by travelers of type i ∈ I associate with o-d pair k ∈ K
and taking route r ∈ Rk is given by

cir(q, p) := ℓr(q) +
1

θi

∑
e∈r

(pie + ge). (5.4)

Crucially, a key feature of our model is that the toll and gas costs experienced by each
agent are modulated by the value-of-time θi of that agent. This allows us to model the
heterogeneity present in the types of travelers. Given this setup, we define Nash equilibrium
to be the strategy distribution such that no traveler has incentive to deviate from their
chosen route. That is,

Definition 5.3.1. Given tolls p, a strategy profile q∗(p) is a Nash equilibrium if

∀i ∈ I, k ∈ K, r ∈ Rk, qik∗r (p) > 0

⇒ cir(q
∗(p), p) ≤ cir′(q

∗(p), p) ∀r′ ∈ Rk.

The objective of the planner is to minimize the network congestion, measured by the
total travel time experienced by all travelers. For any strategy distribution q, we denote the
planner’s cost function as follows:

S(q) :=
∑
e∈E

we(q)ℓe(we(q)), (5.5)

where we(q) is given by (5.3). We denote the set of socially optimal strategy distributions
as q† := argminq∈Q(D) S(q), and the induced socially optimal edge flows as w† = (w†

e)e∈E,

where w†
e = we(q

†) is given by (5.3).

Congestion pricing

We now introduce two practical considerations for implementing the congestion price. The
first consideration is whether or not the toll is type-specific. In particular, a congestion
pricing scheme is homogeneous if the toll is uniform across all population types, and hetero-
geneous if the toll varies with population types (formally, whether pie is allowed to depend
on i or not, on each edge). The challenge of implementing a heterogeneous scheme is that
the population type (i.e. value-of-time) is a latent variable that is privately known only by
the individual traveler. In practice, an individual’s value-of-time sis often closely correlated
with their income level, i.e. higher-income groups are typically associated with a higher
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value-of-time, while lower-income groups correlate with a lower value-of-time [13, 87, 188,
184]. Therefore, one way to implement heterogeneous tolling is to set tolls based on the
income level of travelers. For example, low income groups, which have significant overlap
with the population of low value-of-time travelers, may receive a subsidy or a toll rebate in
certain areas. Such rebate programs have been established in several states in the United
States, e.g., California 1 , Virginia 2 , New York 3.

The second consideration is whether or not tolls can be set on all the edges of the network
or only on a subset (formally, whether or not pie is allowed to be strictly positive on all e ∈ E).
In practical terms, congestion pricing often requires the installation of physical facilities,
which might not be feasible on all road segments. Thus, a congestion pricing scheme has no
support constraints if tolls can be imposed on all edges, or has support constraints if tolls
can only be imposed on a subset of edges, denoted as ET . We note that congestion pricing
schemes with (respectively without) support constraints are also referred to as first-best
(respectively second-best) tolling schemes in the literature.

Building on the above two considerations, we define four types of tolling schemes: (i)
Homogeneous tolls with no support constraints (hom): pie ≥ 0 and pie = pje for all e ∈ E
and all i, j ∈ I; (ii) Heterogeneous tolls with no support constraints (het): pie ≥ 0 for all
e ∈ E, i ∈ I; (iii) Homogeneous tolls with support constraints (hom sc): pie = pje for all
i, j ∈ I and all e ∈ E. Additionally, pie = 0 for all e ∈ E\ET , and pie ≥ 0 for all e ∈ ET ; (iv)
Heterogeneous tolls with support constraints (het sc): pie = 0 for all e ∈ E\ET , and pie ≥ 0
for all e ∈ ET .

5.4 Computation Methods

In this section, we outline methods for computing equilibrium routing strategies and the
four congestion pricing schemes. We first establish that, given any fixed toll values, the
equilibrium outcome can be derived as the optimal solution to a convex optimization problem.
We then demonstrate that the set of homogeneous tolls (hom) and heterogeneous tolls (het)
without support constraints that realize the socially optimal edge flows can be characterized
as the set of optimal solutions of linear programs. Next, we present a multi-step approach for
calculating the toll prices that strikes a balance between the cost distribution, as measured
by the cost disparity between travelers from different populations, and at the same time,
maximizing the welfare of all traveler populations. For congestion pricing schemes with
support constraints, we adapt our approach to provide a heuristic for calculating hom sc
and het sc, acknowledging that such solutions may not guarantee the implementation of the
socially optimal edge flows.

1https://mtc.ca.gov/news/new-year-brings-new-toll-payment-assistance-programs
2https://www.vdottollrelief.com/
3https://new.mta.info/fares-and-tolls/bridges-and-tunnels/resident-programs

https://mtc.ca.gov/news/new-year-brings-new-toll-payment-assistance-programs
https://www.vdottollrelief.com/
https://new.mta.info/fares-and-tolls/bridges-and-tunnels/resident-programs
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Proposition 5.4.1. Given toll prices p, a strategy distribution q∗(p) is a Nash equilibrium
if and only if it is a solution to the following convex optimization problem:

min
q∈Q(D)

Φ(q, p, θ) =
∑
e∈E

∫ we(q)

0

ℓe(z) dz

+
∑
i∈I

∑
e∈E

(pie + ge)

θi
f i
e(q), (5.6)

where wi
e(q), we(q) are given by (5.2) and (5.3), respectively. Moreover, given any toll price

vector p, the equilibrium edge flow vector w∗(p) := w(q∗(p)) is unique. Additionally, the
socially optimal edge flow vector w† is unique.

[88] showed the same result as Proposition 5.4.1 without the gas price. The proof follows
directly from the method in [88].

Proposition 5.4.1 shows that w† is unique. However, we note that such a w† may be
induced by multiple type-specific flow vectors f †. Although these different type-specific flow
vectors all induce the same aggregate edge load, and thus minimize the total cost, they may
lead to different travel times experienced by different populations.

The following proposition shows that the set of prices hom (respectively het) that imple-
ments the socially optimal edge load can be characterized each by a linear program.

Proposition 5.4.2. (1) A homogeneous congestion pricing scheme p† = (p†e)e∈E imple-
ments the socially optimal edge flow w† = (w†

e)e∈E if and only if there exists z† such
that (p†, z†) is a solution to the following linear program:

T ∗
hom = max

p,z

∑
i∈I

∑
k∈K

Dikzik −
∑
e∈E

pew
†
e,

s.t. zik −
∑
e∈r

(pe + ge) ≤ θiℓr(w
†),

∀k ∈ K, r ∈ Rk, i ∈ I,

pe ≥ 0, ∀e ∈ E.

(Phom)

(2) A heterogeneous congestion pricing scheme p† = (pi†e )e∈E,i∈I implements a type-specific
socially optimal edge flow f †, = (f †i,

e )e∈E,i∈I if and only if there exists a z† such that
(p†, z†) is a solution to the following linear program:

T ∗
het(f

†) = max
p,z

∑
i∈I

∑
k∈K

Dikzik −
∑
e∈E

∑
i∈I

pief
†i,
e ,

s.t. zik −
∑
e∈r

(pie + ge) ≤ θiℓr(w
†),

∀k ∈ K, r ∈ Rk, i ∈ I,

pie ≥ 0, ∀e ∈ E, i ∈ I.

(Phet)
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Proposition 5.4.2 follows the results in [70, 103, 137, 191, 91]. The proof builds on the
two linear programs (Phom) – (Phet) and their dual programs (Dhom) and (Dhet) as follows:

min
q

∑
i∈I

∑
k∈K

∑
r∈Rk

(θiℓr(w
†) +

∑
e∈r

ge)q
ik
r (Dhom)

s.t.
∑
i∈I

∑
k∈K

∑
r∈Rk:e∈r

qikr ≤ w†
e, ∀e ∈ E, (Dhom.a)∑

r∈Rk

qikr = Dik, ∀i ∈ I, k ∈ K, (Dhom.b)

qikr ≥ 0 ∀i ∈ I, k ∈ K, r ∈ Rk. (Dhom.c)

min
q

∑
i∈I

∑
k∈K

∑
r∈Rk

(θiℓr(w
†) +

∑
e∈r

ge)q
ik
r (Dhet)

s.t.
∑
k∈K

∑
r∈Rk:e∈r

qikr ≤ f †i,
e , ∀e ∈ E, i ∈ I, (Dhet.a)∑

r∈Rk

qikr = Dik, ∀i ∈ I, k ∈ K, (Dhet.b)

qikr ≥ 0, ∀i ∈ I, k ∈ K, r ∈ Rk. (Dhet.c)

Under both hom and het, the feasibility constraints of the associated primal and dual pro-
grams as well as the complementary slackness conditions are equivalent to the equilibrium
condition where only routes with the minimum cost are taken by travelers. Moreover, con-
straints (Dhom.a) and (Dhet.a) must be tight at optimality, indicating that the induced flow
vector in equilibrium is indeed w†, which minimizes total travel time. Therefore, the set of
optimal solutions of (Phom) and (Phet) are the set of toll vectors that induce w† under hom
and het, respectively.

We denote P †
hom as the set of socially optimal toll prices for hom, and P †

het(f
†) as the set

of socially optimal toll price for het that induces a type-specific socially optimal edge flow
f †. Proposition 5.4.2 demonstrates that both sets can be computed as the optimal solution
set of linear programs. We note that the set P †

het(f
†) depends on which type-specific socially

optimal flow f † is induced since the objective function (Phet) depends on f †.

Furthermore, P †
hom and P †

het(f
†) may not be singleton. This presents an opportunity for

the planner to decide which specific toll price from the optimal solution set to implement.
While all tolls in P †

hom and P †
het(f

†) achieve the minimum social cost, they do so by impacting
travelers differently given their individual origin-destination pair and value-of-time. We
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consider that the central planner aims at solving the following problem:

min
p

L(p) :=

max
i,i′∈I

∣∣∣∣ 1Di

∑
k∈K

Dik c
ik†(p)

cik†(0)
− 1

Di′

∑
k′∈K

Di′k′ c
i′k′†(p)

ci′k′†(0)

∣∣∣∣︸ ︷︷ ︸
(i)

+ λ
1

D

∑
i∈I

∑
k∈K

Dik c
ik†(p)

cik†(0)︸ ︷︷ ︸
(ii)

,

s.t. p ∈

{
P †
hom, in hom,

P †
het(f

†), in het with route flow f †,

(5.8)

where Di =
∑

k∈K Dik, D =
∑

i∈I D
i, λ ≥ 0,

cik†(p) = min
r∈Rk

{
ℓr(w

†) +
1

θi

∑
e∈r

(pe + ge)

}
(5.9)

is the equilibrium cost of individuals with o-d pair k and type i given the toll price p and
socially optimal edge load w†, and cik†(0) is the equilibrium cost of individuals with o-d pair
k and type i given no (or zero) tolls. We emphasize that the cost cik†(p) is the minimum cost
of choosing a route given the socially optimal load vector w†, the toll price, and the gas fee.
This is indeed an equilibrium cost of traveler population with type i and o-d pair k since
any p ∈ P †

hom or p ∈ P †
het(f

†) guarantees that the equilibrium edge vector is w†.
The objective function in (5.8) indicates that the central planner selects the toll price that

not only minimizes the total travel time but also balances the distribution of costs among
populations with different values-of-time, and the average welfare that accounts for the travel
time as well as the toll price and gas fee. In particular, in (5.8) (i) reflects an objective that
assesses the maximum disparity in the relative change in travel costs experienced by different
types of travelers following the implementation of tolls, compared to a scenario without tolls,
and (ii) reflects an average welfare objective that is the average of the relative change in travel
costs experienced by all of the travelers following the implementation of tolls, compared to
a scenario without tolls. Balancing welfare maximization with cost disparity minimization
avoids the potential problem with just minimizing cost disparity: charging excessively high
prices to all types of travelers. Moreover, λ ≥ 0 is a parameter that governs the relative
weight between the distributional objective and the welfare objective.

We denote the socially optimal homogeneous congestion pricing scheme that solves the
central planner’s problem (5.8) as p∗hom. The next proposition shows that we can solve the
central planner’s problem (5.8) for hom by another linear program.
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Proposition 5.4.3. For the hom tolling scheme, p∗hom is an optimal solution of the following
linear program:

min
p,z,y

y +
λ

D

∑
i∈I

∑
k∈K

Dik zik

θicik†(0)
(P∗

hom)

s.t. y ≥ 1

Di

∑
k∈K

Dik zik

θicik†(0)
− 1

Di′

∑
k′∈K

Di′k′ zi
′k′

θi′ci′k′†(0)
,

∀i, i′ ∈ I, (P∗
hom.a)∑

i∈I

∑
k∈K

Dikzik −
∑
e∈E

pew
†
e ≥ T ∗

hom, (P∗
hom.b)

zik −
∑
e∈r

(pe + ge) ≤ θiℓr(w
†), ∀k ∈ K, r ∈ Rk, i ∈ I, (P∗

hom.c)

pe ≥ 0 ∀e ∈ E, (P∗
hom.d)

where T ∗
hom is the optimal value of (Phom).

In (P∗
hom), constraints (P∗

hom.c) and (P∗
hom.d) ensure that variables (p, z) are in the feasible

set of (Phom), and constraint (P∗
hom.b) further restricts the set of (p, z) in (P∗

hom) to be the set
of optimal solutions of (Phom). Thus, following Proposition 5.4.2, any feasible p in (P∗

hom)
must be a toll vector that induces the socially optimal edge flow w†. Moreover, the proof
of Proposition 5.4.2 further ensures that for every i ∈ I, k ∈ K there exists r ∈ Rk such
that the corresponding constraint in (P∗

hom.c) must be tight at optimality, which indicates
that any zik in (P∗

hom) equals to θi · cik†(p). Additionally, constraints (P∗
hom.a) guarantee that

at optimality y = maxi,i′∈I

∣∣∣∣ 1
Di

∑
k∈K Dik cik†(p)

cik†(0)
− 1

Di′
∑

k′∈K Di′k′ c
i′k′†(p)

ci′k′†(0)

∣∣∣∣. Thus, the linear

program (P∗
hom) computes the homogeneous toll prices that minimize the total travel time

and optimize the distributional and welfare objectives with a relative weight λ.
To summarize, the programs (Phom) and (P∗

hom) provide a two-step approach for comput-
ing p∗hom: first, compute T ∗

hom by solving the linear program (Phom) given the unique edge
flow w†. Second, compute p∗hom by solving the linear program (P∗

hom) using T ∗
hom.

Next, we show that the planner can compute the heterogeneous toll price vector (het) that
minimize the total travel time and optimize the distribution-welfare objective (5.8), denoted
by p∗het, using a similar approach as described above. However, in het, one additional issue
arises, since the set P †

het(f
†) and consequently p∗het depend on the selection of the type-specific

flow vector f †, which may not be unique. Here, we propose to select the type-specific flow
vector f † as the one that induces the edge flow vector w† (which minimizes total travel time)
while also minimizing the disparity in the total travel time experienced across all traveler
populations. To compute such a f †, we first find a feasible routing strategy profile q† that
induces w† and minimizes the average cost difference among traveler populations. Such a q†
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can be solved by the following linear program:

min
q

x,

s.t. x ≥
∑
k∈K

∑
r∈Rk

(
qikr ℓr(w

†)− qi
′k
r ℓr(w

†)
)
, ∀i, i′ ∈ I,∑

r∈Rk

qikr = Dik,∀ i ∈ I, k ∈ K,∑
i∈I

∑
k∈K

∑
r∈Rk:e∈r

qikr = w†
e,∀e ∈ E,

qikr ≥ 0,∀ i ∈ I, k ∈ K, r ∈ Rk.

Then, the induced population-specific flow vector f † associated with q† is given by (5.2).
Based on f †, we compute p∗het as the optimal solution of a linear program.

Proposition 5.4.4. For the het tolling scheme, given f †, p∗het is an optimal solution of the
following linear program:

min
p,z,y

y +
λ

D

∑
i∈I

∑
k∈K

Dik zik

θicik†(0)
(P∗

het)

s.t. y ≥ 1

Di

∑
k∈K

Dik zik

θicik†(0)
− 1

Di′

∑
k′∈K

Di′k′ zi
′k′

θi′ci′k′†(0)
,

∀i, i′ ∈ I, (P∗
het.a)∑

i∈I

∑
k∈K

Dikzik −
∑
e∈E

pew
†
e ≥ T ∗

het(f
†), (P∗

het.b)

zik −
∑
e∈r

(pie + ge) ≤ θiℓr(w
†), ∀k ∈ K, r ∈ Rk, i ∈ I, (P∗

het.c)

pie ≥ 0, ∀e ∈ E, i ∈ I, (P∗
het.d)

where T ∗
het(f

†) is the optimal value of the objective function of (Phet) associated with f †.

Propositions 5.4.2 and 5.4.4 show that p∗het can be computed using a three-step approach:
first, we compute the type-specific flow vector f † that induces the edge flow w† while also
minimizing the travel time difference among all traveler populations using (5.4). Second, we
compute T ∗

het(f
†) using (Phet) given f †. Third, we compute p∗het using (P∗

het).
Finally, we discuss how to extend our approaches of computing p∗hom and p∗het to incor-

porate the support constraints of the toll price. Previous studies [95, 29] showed that the
problem of computing toll prices that satisfy support set constraints and also minimize the
total travel time is NP hard even without considering heterogeneous values-of-time of trav-
elers or distributional objectives. Here, we provide heuristics for computing the toll prices
with support constraints. We evaluate the performance of our heuristics in terms of total
travel time, cost distribution, and welfare on the San Francisco Bay Area network in Sec.
5.5.
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Heuristics for computing p∗hom sc We propose a two-step heuristic to compute hom sc
by appropriately modifying the two-step method to compute hom.

We first solve the following linear program that adds the support constraints to (Phom):

T ∗
hom sc = max

p,z

∑
i∈I

∑
k∈K

Dikzik −
∑
e∈E

pew
†
e,

s.t. zik −
∑
e∈r

(pe + ge) ≤ θiℓr(w
†),

∀k ∈ K, r ∈ Rk, i ∈ I,

pe ≥ 0, ∀e ∈ ET , pe = 0, ∀e ∈ E \ ET .

(Phom sc)

We note that the equilibrium edge load associated with any optimal solution of (Phom sc),
say ŵ, may not be equal to the socially optimal edge load w†. This is because the constraints
that require edges in E \ET have zero tolls remove the dual constraints in (Dhom.a) for edges
in ET . As a result, the primal and dual argument in the proof of Proposition 5.4.2 no longer
holds, and thus the induced edge flow ŵ may not be equal to w†.

Note that the optimal solution to (Phom sc) will be non-unique. Therefore, inspired by
(P∗

hom), we consider the following heuristic to incorporate both the distribution and welfare
metric while also accounting for support constraints. Note that simply adding the support
constraints in (P∗

hom) could render the optimization problem infeasible as the optimal set
of homogeneous tolls P ∗

hom need not have a solution that satisfies the support constraints.
In particular, the constraint (P∗

hom.b) would get violated. This is because T ∗
hom ≥ T ∗

hom sc as
the constraint set of (P∗

hom sc) is contained in that of (P∗
hom). Therefore, we compute p∗hom sc

as the optimal solution of the following linear program which adds support constraints to
(P∗

hom) while relaxing the constraint (P∗
hom.b) by using T ∗

hom sc instead of T ∗
hom:

min
p,z,y

y +
λ

D

∑
i∈I

∑
k∈K

Dik zik

θicik†(0)
(P∗

hom sc)

s.t. y ≥ 1

Di

∑
k∈K

Dik zik

θicik†(0)
− 1

Di′

∑
k′∈K

Di′k′ zi
′k′

θi′ci′k′†(0)
,

∀i, i′ ∈ I, (P∗
hom sc.a)∑

i∈I

∑
k∈K

Dikzik −
∑
e∈E

pew
†
e ≥ T ∗

hom sc, (P∗
hom sc.b)

zik −
∑
e∈r

(pe + ge) ≤ θiℓr(w
†),∀k ∈ K, r ∈ Rk, i ∈ I, (P∗

hom sc.c)

pe ≥ 0, ∀e ∈ ET , pe = 0, ∀e ∈ E \ ET . (P∗
hom sc.d)

Heuristics for computing p∗het sc The computation of p∗het sc follows a three-step proce-
dure, similar to that of p∗het but restricting the set of allowable tolls to be zero on non-tollable
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edges, as done in hom sc. First, we compute the population-specific flow vector f † that in-
duces the congestion minimizing edge flow w† while also minimizes the average difference of
travel time among all traveler populations using (5.4). Next, we add the support constraints
to (Phet) to compute the optimal value T ∗

het sc(f
†) as follows:

T ∗
het sc(f

†) = max
p,z

∑
i∈I

∑
k∈K

Dikzik −
∑
e∈E

∑
i∈I

pief
†i
e ,

s.t. zik −
∑
e∈r

(pie + ge) ≤ θiℓr(w
†),

∀k ∈ K, r ∈ Rk, i ∈ I,

pie ≥ 0, ∀e ∈ ET ∀i ∈ I,

pe = 0, ∀e ∈ E \ ET ∀i ∈ I.

(Phet sc)

Analogous to the case hom sc, the equilibrium edge load associated with the optimal solution
of (Phet sc), ŵ, may not be equal to the socially optimal edge load w† due to the added support
constraints. We compute p∗het sc as the optimal solution of the following linear program which
adds support constraints to (P∗

het) while relaxing the constraint (P∗
het.b) by using T

∗
het sc instead

of T ∗
het:

min
p,z,y

y +
λ

D

∑
i∈I

∑
k∈K

Dikzik, (P∗
het sc)

s.t. y ≥ 1

Di
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Dik zik

θicik†(0)
− 1
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Di′k′ zi
′k′

θi′ci′k′†(0)
,

∀i, i′ ∈ I, (P∗
het sc.a)∑

i∈I

∑
k∈K

Dikzik −
∑
e∈E

piew
†
e ≥ T ∗

het sc, (P∗
het sc.b)

zik −
∑
e∈r

(pie + ge) ≤ θiℓr(w
†),

∀k ∈ K, r ∈ Rk, i ∈ I, (P∗
het sc.c)

pie ≥ 0, ∀e ∈ ET , i ∈ I, pie = 0, ∀e ∈ E \ ET , i ∈ I. (P∗
het sc.d)

5.5 Model Calibration for the San Francisco Bay Area

In this section, we calibrate the non-atomic routing game model for the San Francisco
Bay Area freeway network using the Caltrans Performance Measurement System (PeMS)
dataset 4, American Community Survey (ACS) dataset 5 and Safegraph neighborhood pat-
terns dataset from 2019 6. We briefly describe each dataset. We subsequently present the

4Available at https://pems.dot.ca.gov/
5Available at https://www.census.gov/programs-surveys/acs
6This dataset was available for public use at https://www.safegraph.com till 2021 and is now commer-

cially available

https://pems.dot.ca.gov/
https://www.census.gov/programs-surveys/acs
https://www.safegraph.com
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calibration of the Bay Area transportation network, the demand of each population type,
and the value-of-time parameters.

Datasets

Caltrans PeMS Dataset The Caltrans PeMS dataset is based on measurements taken
from loop detectors placed on a network of freeways and bridges in California. Our dataset is
taken from district 4, which covers the entire San Francisco Bay Area. This dataset provides
hourly flow counts and average vehicle speeds measured by each loop detector placed along
the freeways. We use this dataset to calibrate the latency functions of edges.

American Community Survey (ACS) Dataset The ACS dataset is collected by the
US Census Bureau to record demographic and socioeconomic information. We use the infor-
mation from the Means of Transportation (2019) entry in ACS, which provides information
of commuters’ mode choices (percentage of driving population), employment, and household
income. The dataset is collected at the zip-code level for the entire United States.

Safegraph Neighborhood Patterns Dataset This dataset records the aggregate mo-
bility pattern using the data collected from 40 million mobile devices in the US. This dataset
estimates the commuting pattern by counting the number of mobile devices that travel from
one census block group (CBG) to another CBG and dwell for at least 6 hours between 7:30
am and 5:30 pm Monday through Friday. We use this dataset in conjunction with the ACS
dataset to estimate the demand of driving commuters between each o-d pair in the network
within each income level.

The San Francisco Bay Area freeway network

We represent the San Francisco Bay Area using a network with 17 nodes (see Fig. 5.3). Each
node represents a major city, and the edges are the major freeways connecting these cities.
Among these edges, five of them are bridges: the Golden Gate Bridge, the Richmond-San
Rafael Bridge, the San Francisco-Oakland Bay Bridge, the San Mateo-Hayward Bridge, and
the Dumbarton Bridge. They are represented as the magenta boxes in Figure 5.3. In 2019,
a flat toll of $7 is imposed for a single crossing on each bridge in the direction denoted in
Figure 5.3.

Demand estimate We categorize the driving population into three distinct segments
based on their value-of-time, namely low, middle, and high value-of-time. The determination
of the fraction of driving population in each of these categories relies on the Means of Trans-
portation dataset from ACS. Specifically, we assign a traveler to the (a) low value-of-time
category if their annual individual income is less than $25, 000, to the (b) middle value-of-time
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Node Abbr

San Rafael SRFL
Richmond RICH
Oakland OAKL
San Francisco SFRN
San Leandro SLND
Hayward HAYW
South SF SSFO
Fremont FREM
San Mateo SANM
Redwood City REDW
Palo Alto PALO
Milpitas MILP
Mountain View MTNV
San Jose SANJ
Sausalito SAUS
Daly City DALY
Berkeley BERK

Figure 5.3: Bay Area transportation network with tolled bridge segments. Different colors
on the map represent the boundaries of cities. The table contains the names of the nodes in
map along with abbreviations.

category if their annual individual income falls within the range of $25, 000 to $65, 000, and
to the (c) high value-of-time category if their annual individual income exceeds $65, 000.

Figure 5.4 provides a visual representation of the distribution of traveler demand to and
from each node in the network, stratified by value-of-time. Note that this demand specifically
pertains to inter-node travel, with within-node demand excluded from the analysis. We find
that approximately 40% of travelers are high willingess-to-pay, and 30% of travelers are of
middle and low value-of-time, each. In Figure 5.4a (respectively Figure 5.4b), we present the
distribution of traveler demand based on their home (respectively work) location. Around
55% of traffic emerges from relatively few nodes on the East Bay such as RICH, OAKL,
SLND, HAYW, FREM, SANJ. Moreover, around 40% of traffic has a work destination in
one of the four nodes SFRN, PALO, MTNV, and OAKL. Notably, there exists substantial
heterogeneity in both the home and work locations of different traveler types, as can be
observed by comparing the distribution of demands in Figure 5.4 to the distribution of
median income found in Figure 5.1. For instance, nodes such as RICH, HAYW, SLND, and
DALY are predominantly inhabited by a higher number of low value-of-time travelers, while
nodes such as PALO, OAKL, SFRN, FREM, and SAUS are predominantly inhabited by high
value-of-time travelers. It is interesting to note that on most of the nodes the demographics of
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(a) Distribution of traveler types based on their
origin (home) nodes.

(b) Distribution of traveler types based on their
destination (work) nodes.

Figure 5.4: Distribution of origin and destination traveler demands.

(a) Home Location (b) Home Location (c) Work Location (d) Work Location

Figure 5.5: Distribution of home and work demands across high, middle, and low income
levels aggregated over the two sides of the Bay Area.

incoming traffic predominantly comprises high value-of-time travelers. Additionally, as can
be seen in Figure 5.5, high-income travelers make up a large fraction demand that originates
in the West Bay, as well as of the work location demand on both the East and West Bay.

Next, we describe the approach used to compute the daily demand of different types
of travelers traveling between different o-d pairs during January 2019-June 2019. There are
three main steps to our approach: first, we obtain an estimate of the relative demand of trav-
elers traveling between different zip-codes in the Bay Area by using the Safegraph dataset.
For every month, the Neighborhood Patterns data in the Safegraph dataset provides the av-
erage daily count of mobile devices that travel between different census block groups (CBGs)
during the work day, which is then aggregated to obtain the relative demand of travelers
traveling between different zip codes. After accounting for the sampling bias induced due to
the randomly sampled population across the United States, we calibrate demands by using
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the ACS dataset which provides the income-stratified driving population in every zip code.
Finally, to obtain an estimate of daily variability in demand we further augment the demand
data with the PeMS dataset by adjusting for daily variation in the total flow on the network
in every month. The details of demand estimation are included in [129].

Calibrating the edge latency functions We calibrate the latency functions of each
edge of the Bay Area freeway network shown in Figure 5.3. We adopt the Bureau of Public
Roads (BPR) function proposed by the Federal Highway Administration (FHA) [136],defined
as ℓe(we) = ae + bew

4
e , for every e ∈ E, where ae represents the free-flow travel time (i.e.

latency with zero flow) of edge e and be is the slope of congestion.
We compute the average driving time of each edge during the morning rush hour (6am to

12pm) on each workday from January 1, 2019 to June 30, 2019 using the speed and distance
data from the PeMS dataset. We denote the set of all days as T , the travel time and traffic
flow of each edge e ∈ E on day t ∈ T as ℓ̂te and ŵt

e, respectively. The details of computing(
ℓ̂te, ŵ

t
e

)
t∈T

are provided in [129]. We estimate the free-flow travel time ae of each e ∈ E

using the average travel time of edge e computed from the PeMS dataset at 3am, when the
traffic flow is approaching zero. We denote the estimated value of ae as âe for each e ∈ E.
We next estimate the slope be of each edge e ∈ E using an ordinary least squares regression.
In particular, the estimate b̂e is solved as the minimizer of the following convex program: for
every e ∈ E, b̂e = argmin

be∈R

∑
t∈T ∥ℓ̂te − âe − be · (ŵt

e)
4∥2.

Estimating the value-of-time parameters

We formulate the problem of estimating the value-of-time parameters as an inverse optimiza-
tion problem. Specifically, the optimal estimate of value-of-time parameters corresponding
to the three types of travelers, θH∗, θM∗, θL∗, are the ones that minimize the difference be-
tween the observed flows on each edge of the network and the corresponding equilibrium
edge flows. That is,

θ∗H , θ
∗
M , θ∗L = argmin

θH ,θM ,θL

∑
t∈T

∑
e∈E

(ŵt
e − we(q

t))2

s.t. qt ∈ argmin
q∈Q(Dt)

Φ(q, p, θ) ∀t ∈ T , (5.14a)

we(q
t) is given by (5.3), (5.14b)

Q(Dt) is given by (5.1), (5.14c)

where p is the toll price vector in 2019 (i.e. $7 on each bridge, and $0 for the remaining
edges), ŵt

e is the observed edge flow on each edge e ∈ E and each day t ∈ T computed using
the PeMS dataset, and Dt is the estimated demand vector of each day t computed using the
ACS and Safegraph datasets.

Directly solving (5.14) is challenging due to the non-linearity of the edge latency func-
tion and the potential function in (5.14a). We compute the estimates using grid search:
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Figure 5.6: Observed and computed equilibrium edge flow.

we construct a grid of value-of-time, where the granularity of each of θH , θM , θL is $5 per
hour. We also assume that the maximum value of value-of-time is $100 per hour and the
minimum is $0 per hour. Therefore, we define the set of all possible parameter values as
Θ := {0, 5, 10, 15, . . . , 100}3. For each θ = (θH , θM , θL) ∈ Θ, we compute the equilibrium
flow qt for every t ∈ T and compute the total squared error as in the objective function of
(5.14). The optimal parameter θ∗ is the one that minimizes the total squared error. We
obtain:

θ∗ = (θL∗, θM∗, θH∗) = ($10/hour, $30/hour, $70/hour).

Our estimate θ∗ is consistent with the observations reported in prior works, which show
that the value-of-timetypically lie between 60%− 100% of the average hourly income of the
population ([154, 13, 140]).

Furthermore, as a robustness check, we plot the equilibrium edge flow we(q
t∗) and ob-

served edge flow ŵt
e for every e ∈ E, t ∈ T in Figure 5.6. Each dot in this figure represents the

flow on an edge e ∈ E on a single day t ∈ T . Overall, the dots are distributed along the diag-
onal of the plot indicating that the computed equilibrium edge flows are relatively consistent
with the observed edge flows subject to noise in time costs and demand fluctuations.

5.6 Analysis

Our goals in this section are threefold. First, we analyze the average travel time7 induced at
equilibrium due to the current congestion pricing scheme, curr, and identify corridors in the
Bay Area which are congested. Next, using the computational method and the calibrated
model of the San Francisco Bay area freeway network introduced earlier, we compute the
toll values under the congestion pricing schemes hom, het, hom sc, and het sc. Finally, we
compare different congestion pricing schemes in terms of efficiency and the distribution of
travel cost, and also in terms of the overall revenue generated at equilibrium.

7We define average travel time to be the ratio between total travel time and the total demand of travelers.
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Congestion under the current congestion pricing scheme (curr)

Here, we analyze the average travel time induced at equilibrium under the current congestion
pricing scheme, curr, which imposes a uniform toll of $7 on each of the five bridges in the
Bay Area, namely on the Richmond-San Rafael Bridge (RICH-SRFL), San Francisco-Oakland
Bay Bridge (OAKL-SFRN), Golden Gate Bridge (SAUS-SFRN), San Mateo-Hayward Bridge
(HAYW-SANM), and Dumbarton Bridge (FREM-PALO).

Figure 5.7a depicts the difference between the equilibrium travel time given curr and
the travel time induce at w† (normalized by free flow travel time on every edge). We ob-
serve that edges on the eastern corridor (connecting nodes RICH-BERK-OAKL-SLND-HAYW-
FREM) are over-congested. Meanwhile, the edges on the western corridor (connecting nodes
SRFL-SAUS-SFRN-DALY-SSFO-SANM-REDW) are relatively less congested. Furthermore, we
observe that amongst all bridges the Bay Bridge (OAKL-SFRN) is also most congested, which
is consistent with several prior studies [146, 18, 81]. Additionally, Figure 5.7b presents the
difference in the edge flows induced at equilibrium with that of socially optimal edge flows.
We observe that in order to reduce the overall congestion we need to ensure that: (i) the
travelers using the edges in the corridor RICH-BERK-OAKL-SFRN (respectively SFRN-OAKL-
BERK-RICH) are incentivized to use the edges in the corridor RICH-SRFL-SAUS-SFRN (re-
spectively SFRN-SAUS-SRFL-RICH), (ii) the travelers using the edges in the corridor SFRN-
SSFO are incentivized to use the corridor SFRN-DALY-SSFO, and (iii) the travelers using
the eastern corridor MILP-FREM-HAYW-SLND-OAKL are diverted to use the western corri-
dor MTNV-PALO-REDW-SANM-SSFO by suitably incentivizing them to use the Dumbarton
Bridge (FREM-PALO) or the San Mateo-Hayward Bridge(HAYW-SANM).

Furthermore, we note that the average travel cost8 (the sum of the travel time cost and the
equivalent time cost of the monetary expense, as in equation (5.4)) experienced by different
types of travelers at equilibrium is unequal in curr. Specifically, low value-of-time travel-
ers bear the travel cost of approximately 91 minutes, while high and middle value-of-time
travelers face costs of 61 and 68 minutes, respectively. Moreover, as indicated in Table 5.1,
this unequal distribution of travel time persists not only on average but also when examined
across different threshold levels of travel cost.

To summarize, we observe that the current congestion pricing scheme implemented the
Bay area does not result in efficient allocation of traffic on the network. Additionally, it also
leads to unequal distribution of travel cost across different types of travelers.

Toll values under different congestion pricing schemes

Here, using the calibrated model of the Bay Area obtained in Section 5.5, we present the
computed values of tolls on various edges of the Bay area network under different congestion
pricing schemes (namely, hom, het, hom sc, het sc) obtained using the computational method-

8It can be shown that the average travel cost experienced by travelers is independent of the route flows on
the network and is only dependent on the equilibrium edge flows, which are unique as shown in Proposition
5.4.1.
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Travel Cost Low (%) Middle (% ) High (%)

≥ 60 minutes 69 55 46
≥ 90 minutes 51 31 28
≥ 120 minutes 32 13 12
≥ 150 minutes 17 1 1

Table 5.1: Fraction of low, middle and high value-of-time travelers that incur total cost (in
minutes) more than stated threshold at equilibrium.

ology presented earlier. Figure 5.8a presents the toll values computed under hom by solving
(P∗

hom). Figures 5.8b-5.8d present the toll values for low, middle, and high value-of-time
travelers under het by solving (P∗

het). Figure 5.8e presents the toll values computed under
hom sc by solving (P∗

hom sc). Figure 5.8f further presents the toll values for low, middle, and
high value-of-time travelers under het sc. To compute all of these toll values, we choose
λ = 20 in (P∗

hom), (P∗
het), (P∗

hom sc).
Note that in hom and het, on all the bridges, tolls in the east-to-west direction are lower

than tolls in the west-to-east direction. This is in contrast to curr, where the west-to-east
direction is not tolled at all on any bridge and only the east-to-west direction is tolled at a
flat rate of $7 (refer Figure 5.3). Given that the western corridor is less congested than the
eastern corridor in curr (refer Figure 5.7a), such tolling is useful to efficiently redistribute
traffic in the network. Furthermore, note that in all of the congestion pricing schemes we
compute, unlike curr, the Golden Gate Bridge (SAUS-SFRN) is not tolled at all. This choice
ensures that more travelers in the eastern corridor, particularly in nodes such as RICH and
BERK are able to reach nodes in the west, particularly SFRN, through the Golden Gate
Bridge instead of the San Francisco-Oakland Bay Bridge (OAKL-SFRN).

Discussion on efficiency, distribution and revenue generation

In this subsection, we compare the effectiveness of curr, hom, hom sc, het and het sc in terms
of efficiency (the average travel time for all travelers), equity (average increase in travel cost
in comparison to no tolls), and revenue generation (the total toll revenue generated by these
schemes). Additionally, we also compare these pricing schemes with the scenario when no
toll is implemented (denoted as zero).

Efficiency and Distribution Considerations

Figure 5.9 represents the average travel time experienced by travelers under different con-
gestion pricing schemes. As expected from Proposition 5.4.2, the congestion pricing schemes
hom and het achieves the minimum average travel time on the network. Additionally, we note
that hom sc and het sc do not achieve the minimum average travel time due to the support
constraints. Furthermore, it’s noteworthy that het sc results in a slightly improved average
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travel time compared to hom sc. This improvement can be attributed to the flexibility of
heterogeneous pricing schemes, which allow for type-specific tolls.

Furthermore, from Figure 5.9, we observe that the Price of Anarchy (PoA) – which is
the ratio of the social cost of equilibrium value of congestion induced under no tolls with
that of the optimum– is 1.04 for the Bay Area transportation network. This is likely due
to the high congestion level of the network during the morning rush hour. Theoretical
studies (e.g. [42]) have proved that the PoA approaches 1 as the total demand of travelers
increases. Moreover, empirical studies (e.g. [150, 143]) have also shown that the PoA in the
transportation networks of London, Boston, New York City and Singapore are also close to 1.
Furthermore, from Figure 5.9, we find that all congestion pricing schemes hom, hom sc, het,
het sc outperform curr in terms of average travel time. Surprisingly, curr is also marginally
outperformed by zero. A key reason is that curr imposes the same tolls on all of the bridges
which does not result in effective re-distribution of traffic from the eastern corridor to the
western corridor. While a reduced toll price or zero toll price may increase the total demand
of travelers, its impact is likely to be not significant due to (1) the high expense of car
ownership and parking fee ([52] estimates that US average annual car ownership cost is
$12182 in 2023), and (2) the low coverage of public transportation in the Bay Area.

Figure 5.10 illustrates the average travel cost experienced by type of travelers under
different pricing schemes. We observe that the difference of average cost across the three
traveler types is lower in het, het sc, hom sc, and zero, in comparison to curr. Moreover, we
observe that for all type of travelers, the average travel cost is lower in het, het sc, hom sc,
and zero, in comparison to curr9. Furthermore, we note that this observation not only holds
in the averaged sense but also in a distributional sense10. Thus, curr may not be preferred
by any type of traveler.

Next, in Figure 5.11, we compare different pricing schemes in terms of two metrics:
average travel time and the distribution-welfare metric (as defined in (5.8)-(i)). Our results
show that all pricing schemes, except for hom, outperform curr on both metrics. Additionally,
we present a Pareto front (dotted line) that illustrates the trade-off between minimizing
average travel time and reducing distributional disparities. The method used to compute
this trade-off curve is detailed in [129].

Revenue considerations

Another important aspect of determining the congestion pricing scheme is the revenue it
generates, which could be used for maintenance or expansion of existing transportation
infrastructure, enhancing public transportation options, amongst other things. Figure 5.12

9The pricing scheme hom results in higher travel cost because it cannot differentiate between the types
of traveler and charges higher tolls to travelers in order to ensure minimum average travel time.

10This result is illustrated in [129, Table 2-4], which presents the proportion of travelers of a particular
type experiencing travel costs surpassing a predetermined threshold. We observe that, regardless of the value
of threshold and the type of travelers, the proportion of travelers experiencing cost higher than a threshold
is higher in curr in comparison to het, het sc, hom sc, and zero.
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presents a comparison of different congestion pricing scheme in terms of total revenue. As
per data released by the Metropolitan Transportation Commission (MTC) 11 a total toll
revenue of $633, 932, 206 was collected in the Bay Area during the year 2019-2020. Our
calibrated model in curr predicts toll revenues on the same order of magnitude but slightly
lower than MTC data. The mismatch between our prediction and MTC data is attributed
to the fact that (i) our analysis only focuses on the morning rush hour, but MTC data also
includes tolls collected beyond the morning rush hour as well, (ii) MTC data also includes
tolls on HOV (High Occupancy Vehicle) lanes which are currently not added in our analysis,
(iii) there is some additional demand incoming from other nearby cities not included in our
analysis, and (iv) higher tolls are charged to multi-axle vehicles, with tolls charged as high
as $36 in 2019.12

Notably, hom generates the highest revenue as it applies uniformly higher prices across
all edges, irrespective of traveler types, with the goal of achieving a minimum average travel
time. Moreover, the revenue of the other three pricing schemes hom sc, het and het sc are
comparable to that of curr with het being slightly higher and hom sc and het sc being slightly
lower.

5.7 Discussion

We study the problem of designing congestion pricing schemes that minimize the total travel
time while reducing the distributional impacts of charging prices to travelers with heteroge-
neous value-of-time. We propose a linear programming-based approach to design four types
of pricing schemes, varying based on (a) whether tolls are based on value-of-time and (b)
whether all or only some network edges are tolled. Evaluating these schemes on the San
Francisco Bay Area highway network shows that they outperform the current system in re-
ducing congestion, improving the cost distribution, and generating revenue. Heterogeneous
pricing schemes, in particular, offer travel cost distributions that are less disparate, high-
lighting their potential for future research. Key research directions include exploring rebate
programs to support heterogeneous pricing, expanding the analysis to include incoming trav-
elers from other cities, and considering mode choice and demand elasticity from factors like
remote work.

11available at https://mtc.ca.gov/about-mtc/authorities/bay-area-toll-authority/

historic-toll-paid-vehicle-counts-toll-revenue
12refer to http://tinyurl.com/MTC-Multi-Axle)

https://mtc.ca.gov/about-mtc/authorities/bay-area-toll-authority/historic-toll-paid-vehicle-counts-toll-revenue
https://mtc.ca.gov/about-mtc/authorities/bay-area-toll-authority/historic-toll-paid-vehicle-counts-toll-revenue
http://tinyurl.com/MTC-Multi-Axle


CHAPTER 5. REDESIGNING CONGESTION PRICING 79

(a) Proportional travel time increase under curr (normalized by free flow
travel time).

(b) Difference between equilibrium flow induced by curr and optimal flow.

Figure 5.7: Current congestion pricing scheme
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(a) Tolls under hom (b) Tolls under het for low type (c) Tolls under het for middle
type

(d) Tolls under het for high type (e) Tolls under hom sc (f) Tolls under het sc

Figure 5.8: Toll values under congestion pricing schemes hom, het, hom sc, and het sc.

Figure 5.9: Comparison of average social cost per traveler for curr, zero, hom, hom sc, het, and
het sc. Here, the dashed line represents the optimal value of average travel time computed
by solving (5.5).
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Figure 5.10: Average travel cost experienced by different types of travelers under different
tolling schemes.

Figure 5.11: Trade-off between average travel time and cost distribution: The blue triangles
represent different pricing schemes, positioned near the Pareto curve (a polynomial best-fit
curve through the triangle points), based on computations detailed in [129].

Figure 5.12: Comparison of total revenue collected for current, hom, hom-sc, het, het-sc.
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Chapter 6

Social Choice with Changing
Preferences

When Moses approached the
camp and saw the calf and the
dancing, his anger burned and
he threw the tablets out of his
hands, breaking them to pieces
at the foot of the mountain.

Exodus 32:19-20

This chapter can be found in [107].

6.1 Introduction

Social choice theory [11] is a classic subfield of economics and philosophy that seeks to
identify decisions that a social planner may make for a group based on the preferences of
the group’s members. In particular, the standard theorems of social choice are so-called
representation theorems that provide constraints on the kinds of social alternatives that may
be chosen given axioms on individual preferences. However, social choice generally operates
in an environment where preferences are static and are not shaped by previous decisions
that have been made by the social planner [75]. This leads to various critiques of social
choice, for example from Pettigrew, who argues that utility functions of individuals change
over time [162], and Parkes and Procaccia, who study the problem of group decision making
with changing preferences from a voting-theoretic perspective [155]. In recent years, there
has also been work on studying dynamic preferences in other contexts [46] [147].

In parallel, there is a standard theory of dynamic decision-making in the Markov Decision
Process (MDP) literature [165] that studies memoryless state-transition models with reward
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functions and policies that maximize long-run rewards. MDPs are used in many decision-
making tasks, most commonly in reinforcement learning applications [20].

As automated decision-making systems begin to make a larger fraction of choices for
groups of individuals, we believe that a theory which joins the rigorous representation the-
orems of social choice theory with the dynamic nature of sequential decision-making is re-
quired. We aim to provide an optimality criterion for policies in such a setting by drawing
on the rich existing work in social choice theory.

Our Results and Contributions

Our main contribution is to use a particular model of dynamic social choice, called a Social
Choice MDP [155], and to show how we can draw on representation theorems to constrain
reward functions and optimal policies to agree with the social welfare functional of Utili-
tarianism. In order to prove this representation theorem, we connect the class of reward
functions of the Social Choice MDP with the individual utility functions of the agents in the
group by providing axiomatic constraints which are necessary and sufficient for the reward
function of the Social Choice MDP to agree with Utilitarianism. We also characterize the
class of policies that arise as a result of implementing the long-run maximization of (Quasi-
)Utilitarian rewards, and show that these policies lead to reasonable optimality criteria. This
leads to axiomatic constraints on the value function of the optimization problem. Finally,
we note that there are axioms that are standard in social choice theory, but whose validity
breaks down in the dynamic setting. The most prominent of these is the (local) version of
the Pareto axiom [155].

Previous Work

There has been previous work on studying dynamic social choice with evolving preferences
by Parkes and Procaccia [155]. The main difference between this previous work and our
contribution is that we use a different way to map social choice concepts to MDPs. While
Parkes and Procaccia focus on axioms on social choice functions as constraints on policies,
we focus on axioms on social welfare functionals as constraints on the reward function. The
significance of this difference is that we can draw on the rich work in social choice theory
on representation theorems for social welfare functionals, especially representation theorems
for Utilitarianism [23]. Relatedly, while Parkes and Procaccia assume that group members
have only ordinal preferences, we assume that their preferences are represented by (cardinal)
utility functions.

6.2 Social Choice Theory

In this section, we introduce the basics of (classic) social choice theory [11, 75]. We start
with a non-empty, finite set V of group members and a non-empty, finite set X of social
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alternatives. Let U(X) be {u | u : X → R}, the set of all utility functions over the social
alternatives. Then, we define:

Definition 6.2.1. A profile is a function U : V → U(X).

This means that a profile is an assignment of utility functions to group members. For
every i ∈ V , we write Ui(x) as shorthand for U(i)(x). Let U be the set of all profiles.

In social choice theory, we are interested in how a group, or a ‘social planner’, should
make decisions based on the preferences of all group members. There are different ways of
formalizing this question. First, we can study social choice functions:

Definition 6.2.2. A social choice function (SCF) is a map f : D → X, where D is some
set of profiles.

Given some profile U ∈ dom(f), a SCF f selects a preferred social alternative f(U) ∈ X.
Note that a SCF f must select a unique x ∈ X for each U ∈ D. This is a potential drawback
of SCFs, as there may be situations in which different alternatives are equally good. In this
case, SCFs require the introduction of arbitrary tie-breakers. Further, SCFs do not encode
any information about the ranking among the social alternatives which are not chosen. We
can avoid both of these problems by focusing instead on social welfare functions:

Definition 6.2.3. A social welfare functional (SWF) is a map f : D → B(X), where D is
some set of profiles and B(X) is the set of all binary relations on X.

Given some profile U ∈ dom(f), a SWF f returns a binary relation on X, which we
interpret as a ‘social preference relation’. For any profile U , we write xf(U)y if (x, y) ∈
f(U). The intended interpretation of xf(U)y is that ‘x is socially preferred to y’. We write
xP (f(U))y if xf(U)y and not yf(U)x. The intended interpretation of xP (f(U))y is that ‘x
is strictly socially preferred to y’.

Much work in social choice theory focuses on axioms which are imposed either on SCFs
or SWFs (for example, some form of the Pareto principle). Here are Pareto axioms for SCFs
and SWFs:

SCF f satisfies Pareto (SCF) if for all U ∈ dom(f) and all x, y ∈ X, if Ui(x) >
Ui(y) for all i ∈ V , then f(U) ̸= y .

SWF f satisfies Pareto (SWF) if for all U ∈ dom(f) and all x, y ∈ X, if
Ui(x) > Ui(y) for all i ∈ V , then xP (f(U))y.

Research in social choice theory focuses in particular on representation theorems : finding a
set of axioms which are necessary and sufficient for a SCF or SWF to be representable by a
certain functional form [26]. An example is the SWF of Utilitarianism:

Definition 6.2.4. SWF f is Utilitarianism if for all U ∈ dom(f), x, y ∈ X,

xf(U)y ⇐⇒
∑
i∈V

Ui(x) ≥
∑
i∈V

Ui(y).



CHAPTER 6. SOCIAL CHOICE WITH CHANGING PREFERENCES 85

In English, an alternative x is socially preferred to y if the sum of utilities of all the
members of the group in x is bigger than the sum of utilities of the members in y. Consider
the following axioms:

SWF f satisfies Universal Domain if dom(f) is the set of all profiles.

SWF f satisfies Transitivity (Completeness) if for all U ∈ dom(f), f(U) is
transitive (complete).

SWF f satisfies Independence of Irrelevant Alternatives (IIA) if for all
U,U ′ ∈ dom(f) and x, y ∈ X, if Ui(x) = U ′

i(x) and Ui(y) = U ′
i(y) for all i ∈ V ,

then xf(U)y if and only if xf(U ′)y.

Definition 6.2.5. Two profiles U and U ′ satisfy cardinal unit comparability, written U ∼CUC

U ′, if there is a β ∈ R with β > 0 and for every i ∈ V , there is some αi ∈ R such that for
all x ∈ X, Ui(x) = αi + βU ′

i(x).

SWF f satisfies CUC-Invariance if for all U,U ′ ∈ dom(f), if U ∼CUC U ′, then
f(U) = f(U ′).

SWF f satisfies Functional Anonymity if for all U,U ′ ∈ dom(f) and permu-
tations ρ : V → V , if for all i ∈ V , U ′

i = Uρ(i), then f(U) = f(U ′).

It has been shown that these axioms characterize Utilitarianism:

Theorem 6.2.6. A SWF f is Utilitarianism if and only if f satisfies Universal Do-
main, Transitivity, Completeness, IIA, Pareto (SWF), CUC-Invariance and F-
Anonymity [48].

6.3 Dynamic Decision-Making for Groups

Social choice theory normally considers static decision-making for groups. While this is
amenable to analysis (through representation theorems), there is a critique of social choice
in that it does not consider the case when preferences shift over time. Here, we consider the
dynamic setting where the group members’ preferences are changing over time according to
a probabilistic model that is known to the social planner.

Markov Decision Processes

This section introduces our model for dynamic decision-making for groups. We consider
Markov Decision Processes, which are memoryless state-transition models along with a re-
ward function, which we define as:
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Definition 6.3.1. A Markov Decision Process is a tuple ⟨S,A, R, P ⟩ where S is a finite
non-empty set, A is a finite non-empty set, P : S × A → R is a probability function and
R : S ×A → R is a reward function.

Further, the probability function satisfies the Markov assumption, which means that the
probability of the next state only depends on the current state-action pair. We also define
the notion of a policy:

Definition 6.3.2. A (deterministic) policy is a function π : S → A.

The Social Choice MDP Model

Given the static models from social choice and the dynamic, state-transition based models
from the MDP literature, we seek to define a model for dynamic decision-making when
group members’ preferences are shifting over time in response to actions taken by the social
planner.

Definition 6.3.3. A Social Choice Markov Decision Process is a tuple ⟨S,A, R, P ⟩ where S
is a non-empty finite set of profiles U : V → U(X), A is the set of finite social alternatives
X, P : S ×A → R is a probability function and R : U ×A → R is a function.

Our model differs from other Social Choice MDP models in two ways: first, we assume
cardinal preferences, which give rise to MDP state spaces that are comprised of assignments
of utility functions to group members, and second, our reward functions are defined over U ,
the set of all profiles, in order for our representation theorems to hold.

From SCFs to SWFs

Note that in a Social Choice MDP, a policy π : S → A is a social choice function f : D → X,
since S is a set of profiles and A is a set of social alternatives. Thus, [155] apply insights from
the social choice literature to characterize policies in Social Choice MDPs. However, observe
that there is also a correspondence between reward functions and SWFs. In particular, every
reward function R in a Social Choice MDP induces a social welfare functional fR : D →
B(X).

Definition 6.3.4. Given a reward function R, we define the corresponding SWF fR for
every profile U and all x, y ∈ X:

xfR(U)y ⇐⇒ R(U, x) ≥ R(U, y).

We can use this correspondence to use social choice axioms on SWFs as constraints on
the reward function. One natural choice is the Utilitarian reward function: for every U ∈ S
and a ∈ A, R(U, a) =

∑
i∈V Ui(a). However, instead of requiring the reward function to

be strictly Utilitarian, we can also focus on the weaker requirement that it must agree with
Utilitarianism up to strictly increasing transformations:
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Definition 6.3.5. A reward function R : S×A → R is Quasi-Utilitarian if for every U ∈ S
and a ∈ A, R(U, a) = f

(∑
i∈V Ui(a)

)
, where f : R→ R is a strictly increasing function.

6.4 Quasi-Utilitarian Characterization

In this section, we introduce constraints on the reward function R which entail that R agrees
with the Utilitarianism social welfare functional and give a characterization of the policies
generated by the Quasi-Utilitarian reward function.

Reward functions and SWFs

Using the mapping from reward functions and SWFs introduced above, we will impose the
following axioms on the reward function R, which correspond to axioms on the induced SWF
fR:

Reward function R satisfies Pareto (SWF) if for all U ∈ dom(fR) and all
x, y ∈ X, if Ui(x) > Ui(y) for all i ∈ V , then xP (fR(U))y.

Reward function R satisfies Independence of Irrelevant Alternatives (IIA)
if for all U,U ′ ∈ dom(fR) and x, y ∈ X, if Ui(x) = U ′

i(x) and Ui(y) = U ′
i(y) for

all i ∈ V , then xfR(U)y if and only if xfR(U
′)y.

Reward function R satisfies CUC-Invariance if for all U,U ′ ∈ dom(fR), if
U ∼CUC U ′, then fR(U) = fR(U

′).

Reward function R satisfies Functional Anonymity if for all U,U ′ ∈ dom(fR)
and permutations ρ : V → V , if for all i ∈ V , U ′

i = Uρ(i), then fR(U) = fR(U
′).

Then, we show in Appendix D:

Theorem 6.4.1. The following are equivalent for any Social Choice MDP:

1. R satisfies Pareto (SWF), IIA, CUC-Invariance and Functional Anonymity.

2. R agrees with Utilitarianism, so for any profile U and x, y ∈ X, we have

R(U, x) ≥ R(U, y) ⇐⇒
∑
i∈V

Ui(x) ≥
∑
i∈V

Ui(y).

Equivalently, R is Quasi-utilitarian.
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Long Run Maximization

To get from reward function to optimal policies, we need to make additional assumptions. In
this section, we draw on standard results from the MDP literature to argue for a particular
kind of policy.

Definition 6.4.2. A value function is a map V : Π × S → R, where Π is the set of all
policies and S is the set of all states.

Intuitively, V (π, s) is the value of executing policy π starting in state s. Given a value
function, we define:

Definition 6.4.3. The policy π∗ is optimal relative to V if for all states s ∈ S, π∗ ∈
argmax

π∈Π
V (π, s).

We assume that the value function satisfies the Bellman equation [165] for any π ∈ Π
and s ∈ S:

V (π, s) = R(s, π(s)) + γ
∑
s′∈S

p(s′ | s, π(s))V (π, s′),

where 0 < γ < 1. This means that the value of executing policy π starting in state s is the
sum of the immediate reward R(s, π(s)) and the expected future value of executing π in the
next state, discounted by γ.1 Now we can appeal to a standard result in the theory of MDPs
[180, 182]:

Theorem 6.4.4. Let V : Π× S → R be a value function. Then the following are equivalent
for any MDP:

1. V satisfies the Bellman equation.

2. V is the expected sum of discounted future rewards. So, for any π and s,

V (π, s) = E

[
∞∑
t=1

γtR(st, π(st))

]
,

where st is a random variable describing the state after t steps starting in state s with
policy π and the expectation is taken relative to the transition model P .

Taken together with theorem 6.4.1, we can use this result to characterize what we call
the class of long-run quasi-utilitarian policies:

1There are interesting questions about how to choose the discount rate which we do not discuss here in
detail, see e.g. [71].
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Definition 6.4.5. Given a social choice MDP, a policy π∗ is long-run quasi-utilitarian if
for all s ∈ S,

π∗ ∈ argmax
π∈Π

E

[
∞∑
t=1

γtf

(∑
i∈V

U t
i (a)

)]
,

where U t is a random variable describing the profile after t steps starting in state s with
policy π, the expectation is taken relative to the transition model P , and f : R → R is
strictly increasing.

We propose this as a reasonable optimality criterion for group decision making under
changing preferences. We can characterize this class as follows:

Theorem 6.4.6. Given a social choice MDP, assume that V satisfies Bellman equation
and R satisfies Weak Pareto, IIA, CUC-Invariance and Functional Anonymity.
Then, the following are equivalent for any policy π:

1. π is optimal relative to V ,

2. π is long-run quasi-utilitarian.

6.5 Discussion and Future Work

We finish by discussing some consequences of our approach to group decision making with
changing preferences. As noted above, there are two different ways of mapping social choice
concepts to MDPs. First, we can think of policies as social choice functions (SCFs) and
use axioms on SCFs to constrain policies. Second, we can exploit a correspondence between
reward functions and social welfare functionals (SWFs), which is our distinctive contribution.
We also noted earlier that there are two versions of the Pareto axiom for SCFs and SWFs
respectively. The axioms for group decision making with changing preferences we defend
here imply that our reward function satisfies the Pareto axiom for the SWF induced by the
reward function:

Reward function R satisfies Pareto (SWF) if for all U ∈ dom(fR) and all
x, y ∈ X, if Ui(x) > Ui(y) for all i ∈ V , then xP (fR(U))y.

However, the policies which satisfy our optimality criterion will not, in general, satisfy the
Pareto axiom for SCFs:

SCF f satisfies Pareto (SCF) if for all U ∈ dom(f) and all x, y ∈ X, if Ui(x) >
Ui(y) for all i ∈ V , then f(U) ̸= y .

Applied to policies π, this axiom states that for all profiles U and all x, y ∈ X, if Ui(x) > Ui(y)
for all i ∈ V , then π(U) ̸= y. This means that if every group member assigns higher utility to
social alternative x than to social alternative y, y will not be chosen by our policy. However,
this will not be true in general. Suppose, for example, that y leads, with high probability, to
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a future trajectory of high reward, while x leads, with high probability, to a future trajectory
of low reward. Then, a long-run optimal policy will often choose y over x even though all
group members assign higher utility to x.

This is interesting, because Parkes and Proccacia seem to suggest that the latter version
of the Pareto axiom is a normatively sound constraint on group decision making:

“In the case of Pareto optimality, if at any point the members all prefer one choice
to another then the latter choice should not be made by the organization.” [155]

In our view, while Pareto optimality in this sense might perhaps be a compelling axiom in
some social choice contexts, such as sequential voting, it is not compelling in the context
of long-run welfare optimization. This shows that once we focus on a dynamic setting
with changing preferences, some of the traditional axioms of social choice theory lose their
justification. Thus, it is important to study group decision making with changing preferences
in its own right.
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Chapter 7

Conclusion

We consider several problems that arise when computational systems interact with and make
decisions over the actions of strategic agents. We formulate problems in incentive design
(in traffic routing and atomic aggregative games), causal discovery, coalition formation (in
electric charging), congestion pricing, and social choice for groups of agents. In doing so, we
propose novel algorithms for solving these problems and present numerical experiments and
empirical studies that demonstrate their efficacy. As future work, we propose expanding the
scope of the theoretical assumptions and the empirical studies in the chapter of this thesis
to apply to real-time user data collected from a broad variety of settings.
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anarchy, utility games and coalitional dynamics”. In: Algorithmic Game Theory: 7th
International Symposium, SAGT 2014, Haifa, Israel, September 30–October 2, 2014.
Proceedings 7. Springer. 2014, pp. 218–230.

[16] Yu Bai, Chi Jin, Huan Wang, and Caiming Xiong. “Sample-efficient learning of stack-
elberg equilibria in general-sum games”. In: Advances in Neural Information Process-
ing Systems 34 (2021), pp. 25799–25811.

[17] Jean-Bernard Baillon and Roberto Cominetti. “Markovian Traffic Equilibrium”. In:
Mathematical Programming (Feb. 2008).

[18] Ian C Barnes, Karen Trapenberg Frick, Elizabeth Deakin, and Alexander Skabardonis.
“Impact of peak and off-peak tolls on traffic in san francisco–oakland bay bridge
corridor in california”. In: Transportation research record 2297.1 (2012), pp. 73–79.

[19] Jorge Barrera and Alfredo Garcia. “Dynamic incentives for congestion control”. In:
IEEE Transactions on Automatic Control 60.2 (2014), pp. 299–310.

[20] Andrew G. Barto, R. S. Sutton, and C. J. C. H. Watkins. “Learning and Sequential
Decision Making”. In: Learning and computational Neuroscience. MIT Press, 1989,
pp. 539–602.
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Georgios Piliouras. “Wealth inequality and the price of anarchy”. In: arXiv preprint
arXiv:1802.09269 (2018).

[79] Clark Glymour, Kun Zhang, and Peter Spirtes. “Review of Causal Discovery Methods
Based on Graphical Models”. In: Frontiers in Genetics 10 (2019).

[80] Nicola Gnecco, Nicolai Meinshausen, Jonas Peters, and Sebastian Engelke. “Causal
Discovery in Heavy-tailed Models”. In: The Annals of Statistics 49.3 (2021), pp. 1755–
1778.



BIBLIOGRAPHY 98

[81] Eric J Gonzales and Eleni Christofa. “Empirical assessment of bottleneck congestion
with a constant and peak toll: San Francisco–Oakland Bay Bridge”. In: EURO Journal
on Transportation and Logistics 3.3 (2015), pp. 267–288.

[82] PB Goodwin. “How to make road pricing popular”. In: Economic Affairs 10.5 (1990),
pp. 6–7.

[83] Phil B Goodwin. “The rule of three: a possible solution to the political problem of
competing objectives for road pricing”. In: Traffic engineering & control 30.10 (1989),
pp. 495–497.

[84] Sergio Grammatico. “Dynamic control of agents playing aggregative games with
coupling constraints”. In: IEEE Transactions on Automatic Control 62.9 (2017),
pp. 4537–4548.

[85] Clive William John Granger. “Investigating Causal Relations by Econometric Models
and Cross-Spectral Methods”. In: Econometrica. Vol. 37. 1969, pp. 424–438.

[86] Giambattista Gruosso. “Analysis of impact of electrical vehicle charging on low volt-
age power grid”. In: 2016 International Conference on Electrical Systems for Aircraft,
Railway, Ship Propulsion and Road Vehicles & International Transportation Electri-
fication Conference (ESARS-ITEC). IEEE. 2016, pp. 1–6.

[87] Hugh Gunn. “Spatial and temporal transferability of relationships between travel
demand, trip cost and travel time”. In: Transportation Research Part E: Logistics
and Transportation Review 37.2-3 (2001), pp. 163–189.

[88] Xiaolei Guo and Hai Yang. “Pareto-improving congestion pricing and revenue refund-
ing with multiple user classes”. In: Transportation Research Part B: Methodological
44.8-9 (2010), pp. 972–982.

[89] Libin Han, Chong Peng, and Zhenyu Xu. “The effect of commuting time on quality
of life: evidence from China”. In: International journal of environmental research and
public health 20.1 (2022), p. 573.

[90] Tobias Harks, Ingo Kleinert, Max Klimm, and Rolf H Möhring. “Computing network
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Appendix A

Proofs for Chapter 2

Counter-example.

In this section, we present an instance of a non-atomic game where a standard gradient-
based incentive design approach would fail. Specifically, we will show that the social cost,
as a function of the incentive (evaluated at Nash equilibrium), is non-convex and has a zero
gradient, which would result in the gradient-based approach not converging.

Consider a non-atomic routing game, comprising of two nodes and two edges connecting
them. This network is used by one unit of travelers traveling from the source node S to the
destination node D. The latency function of two edges are denoted in Figure A.1. In this

S D

c1(x̃, p̃) = x̃1 + p̃1

c2(x̃, p̃) = x̃2 + p̃2

Figure A.1: Two-link routing game.

game, the strategy set is X̃ = {x̃ ∈ R2 : x̃1 + x̃2 = 1}. The equilibrium congestion levels on
the two edges is obtained by computing the minimizer of the following function [191]:

T (x̃, p̃) =
1

2
x̃2
1 +

1

2
x̃2
2 + p̃1x̃1 + p̃2x̃2.

Thus, for any toll vector p̃ the Nash equilibrium is x̃∗(p̃) = argminx̃∈X̃ T (x̃, p̃) is such that

x̃∗
1(p̃) = P[0,1]

(
p̃2−p̃1+1

2

)
, x̃∗

2(p̃) = P[0,1]

(
p̃1−p̃2+1

2

)
, where for any scalar x ∈ R, P[0,1](x)

denotes its projection on the line segment [0, 1].
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The social cost function (compare (2.36)) is given by Φ̃(x̃) = x̃1ℓ̃1(x̃)+ x̃2ℓ̃2(x̃) = x̃2
1+ x̃2

2.
Thus,

Φ̃(x̃∗(p̃)) =

{
(p̃1−p̃2)

2+1

2
if |p̃1 − p̃2| ≤ 1,

1 otherwise

However, this function is not convex, for example, on the set |p̃1 − p̃2| < 1.5. Therefore,
gradient based updates initialized in the region {(p̃1, p̃2) ∈ R2 : 1.1 ≤ |p̃1− p̃2| ≤ 1.5} will not
converge to the global optimizer as the gradient is zero in this region. Thus, the approach
from [121, 126] does not apply here.

Auxiliary Results

Lemma A.0.1 ([65]). For any fixed p′ and continuously differentiable function ϕ : Re → Re

the condition

⟨ϕ(p)− ϕ(p′), p− p′⟩ ≤ 0 ∀ p ∈ Br(p′)

for some r > 0, holds if and only if z⊤Dϕ(p′)z ≤ 0 for all z ∈ R|e|.

Lemma A.0.2. The externality ẽji in (2.37) can be alternatively written, in terms of edge
flows, as ẽji (x̃) =

∑
a∈j w̃a∇la(w̃a).

Proof. Expanding the externality expression from (2.37) we observe that

ẽji (x̃) =
∑
i′∈Ĩ

∑
j′∈R̃i

x̃j′

i′
∂ℓ̃j

′

i′ (x̃)

∂x̃j
i

(a)
=
∑
i′∈Ĩ

∑
j′∈R̃i

x̃j′

i′

∑
a∈e

1(a ∈ j′)
∂la(w̃a)

∂x̃j
i

(b)
=
∑
i′∈Ĩ

∑
j′∈R̃i

x̃j′

i′

∑
a∈e

1(a ∈ j′)∇la(w̃a)
∂w̃a

∂x̃j
i

(c)
=
∑
i′∈Ĩ

∑
j′∈R̃i

x̃j′

i′

∑
a∈e

1(a ∈ j′)∇la(w̃a)1(a ∈ j)

(d)
=
∑
a∈e

∇la(w̃a)1(a ∈ j)
∑
i′∈Ĩ

∑
j′∈R̃i

x̃j′

i′1(a ∈ j′)

(e)
=
∑
a∈j

∇la(w̃a)w̃a

where (a) follows by expanding out the expression of route costs in terms of edge costs, (b)
follows by the chain rule, (c) follows due to the definition of edge flows, (d) follows by change
of order of summations and finally (e) follows by the definition of edge flows. This completes
the proof.
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Lemma A.0.3. x† satisfies (2.42) if and only if (2.43).

Proof. First, we show that

Φ(x̃) =
∑
a∈e

w̃ala(w̃a). (A.1)

Indeed,

Φ(x̃)
(2.36)
=
∑
i∈Ĩ

∑
j∈R̃i

x̃j
i ℓ̃

j
i (x̃)

=
∑
i∈Ĩ

∑
j∈R̃i

x̃j
i

∑
a∈e

1(a ∈ j)la(w̃a)

=
∑
a∈e

la(w̃a)
∑
i∈Ĩ

∑
j∈R̃i

x̃j
i1(a ∈ j) =

∑
a∈e

la(w̃a)w̃a.

Next, observe that ∑
i∈Ĩ

∑
j∈R̃i

∂Φ(x̃†)

∂x̃j
i

(x̃j
i − x̃†j

i )

=
∑
i∈Ĩ

∑
j∈R̃i

∑
a∈e

∂

∂x̃j
i

(w̃ala(w̃a)) (x̃
j
i − x̃†j

i )

=
∑
i∈Ĩ

∑
j∈R̃i

∑
a∈e

∂

∂w̃a

(w̃ala(w̃a))1(a ∈ j)(x̃j
i − x̃†j

i )

=
∑
a∈e

∂

∂w̃a

(w̃ala(w̃a))
∑
i∈Ĩ

∑
j∈R̃i

1(a ∈ j)(x̃j
i − x̃†j

i )

=
∑
a∈e

∂

∂w̃a

(w̃ala(w̃a)) (w̃a − w̃†
a).

This concludes the proof.

Lemma A.0.4. For any p̃, p̃′ ∈ R|e| the following holds∑
a∈e

(p̃a − p̃′a)(w̃
∗
a(p̃a)− w̃∗

a(p̃
′
a)) ≤ 0. (A.2)

Proof. To prove this result, we first show that∑
i∈Ĩ

∑
j∈R̃i

(P̃ j
i − P̃

′j
i )(x̃∗j

i (P̃ )− x̃∗j
i (P̃ ′)) ≤ 0, (A.3)
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where P̃ and P̃ ′ are the route tolls associated with edge tolls p̃ and p̃′ respectively through
(2.35).

Let the feasible set of the optimization problem (2.39) be denoted by F . Using the first-
order conditions of optimality for the strictly convex optimization problem (2.39) we obtain
the following variational inequality:∑

i∈Ĩ

∑
j∈R̃i

(
c̃ji (x̃

∗(P̃ ), P̃ )
)
·
(
ỹji − x̃∗j

i (P̃ )
)
≥ 0,∀ ỹ ∈ F , (A.4)

where P̃ is the route toll associated with edge toll p̃. Rewriting (A.4) for edge tolls p̃′ we
obtain ∑

i∈Ĩ

∑
j∈R̃i

(
c̃ji (x̃

∗(P̃ ′), P̃ ′)
)
·
(
ỹ

′j
i − x̃∗j

i (P̃ ′)
)
≥ 0, ∀ ỹ′ ∈ F , (A.5)

where P̃ ′ is the route toll associated with edge toll p̃′.
We are now ready to show the condition (A.3). Note that∑

i∈Ĩ

∑
j∈R̃i

(P̃ j
i − P̃

′j
i )(x̃∗j

i (P̃ )− x̃∗j
i (P̃ ′))

(a)

≤
∑
i∈Ĩ

∑
j∈R̃i

(ℓ̃ji (x̃
∗(P̃ ′))− ℓ̃ji (x̃

∗(P̃ )))(x̃∗j
i (P̃ )− x̃∗j

i (P̃ ′))

(b)
=
∑
i∈Ĩ

∑
j∈R̃i

(x̃∗j
i (P̃ )− x̃∗j

i (P̃ ′))·

·
∑
a∈e

(la(w̃
∗
a(p̃

′))− la(w̃
∗
a(p̃)))1(a ∈ j)

(c)
=
∑
a∈e

(la(w̃
∗
a(p̃

′))− la(w̃
∗
a(p̃)))·

·
∑
i∈Ĩ

∑
j∈R̃i

(x̃∗j
i (P̃ )− x̃∗j

i (P̃ ′))1(a ∈ j)

(d)
=
∑
a∈e

(la(w̃
∗
a(p̃

′))− la(w̃
∗
a(p̃)))(w̃

∗
a(p̃)− w̃∗

a(p̃
′))

(e)

≤ 0 (A.6)

where we obtain (a) by adding (A.4), evaluated at ỹ = x̃∗(P̃ ′), and (A.5), evaluated at
ỹ′ = x̃∗(P̃ ), (b) holds by the definition of the route loss function, (c) holds by interchange of
summation, (d) holds by the definition of edge flows and (e) holds due to the monotonicity
of edge latency functions. This proves (A.3).

Now we are ready to prove (A.2). Note that∑
a∈e

(p̃a − p̃a′)(w̃
∗
a(p̃)− w̃∗

a(p̃
′))
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(a)
=
∑
a∈e

(p̃a − p̃a′)
∑
i∈Ĩ

∑
j∈R̃i

(x̃∗j
i (P̃ )− x̃∗j

i (P̃ ′))1(a ∈ j)

(b)
=
∑
i∈Ĩ

∑
j∈R̃i

(x̃∗j
i (P̃ )− x̃∗j

i (P̃ ′))
∑
a∈e

(p̃a − p̃a′)1(a ∈ j)

(c)
=
∑
i∈Ĩ

∑
j∈R̃i

(x̃∗j
i (P̃ )− x̃∗j

i (P̃ ′))(P̃ j
i − P̃

′j
i )

(d)

≤ 0,

where (a) holds due to the definition of edge flows, (b) holds due to interchange of summation,
(c) holds due to the definition of route tolls, (d) holds due to (A.3). This concludes the
proof.
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Appendix B

Proofs for Chapter 3 and Additional
Experiments

Preliminaries

Proof. (Proof of Proposition 3.3.2) Fix x ∈ Rn arbitrarily. By Bayes’ rule:

P(At = 1|Xt−1 ≤ x,A1:t−1 = 0)

=P(At = 1|A1:t−1 = 0)

· P(Xt−1 ⪯ x|At = 1, A1:t−1 = 0)

P(Xt−1 ⪯ x|A1:t−1 = 0)

=P(At = 1|A1:t−1 = 0) · α(x),
where α(x) is as defined in (3.2). Thus, P(At = 1|At−1 = 0) is time-invariant, i.e., holds the
same value for each t ∈ [T ]. Next, by invoking Bayes’ rule again, we have:

P(XT−1 ⪯ x) (B.1)

=
∞∑
t=1

P(Xt−1 ⪯ x|T = t) · P(T = t)

=
∞∑
t=1

P(Xt−1 ⪯ x, T = t)

=
∞∑
t=1

P(Xt−1 ⪯ x,A1:t−1 = 0, At = 1)

=
∞∑
t=1

P(At = 1|Xt ⪯ x,A1:t−1 = 0)

· P(Xt−1 ⪯ x,A1:t−1 = 0)

=a1(x) ·
∞∑
t=1

P(Xt−1 ⪯ x,A1:t−1 = 0).
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and:

∞∑
t=1

P(Xt−1 ⪯ x,A1:t−1 = 0) (B.2)

· P(At = 1|A1:t−1 = 0)

=a2 ·
∞∑
t=1

P(Xt−1 ⪯ x,A1:t−1 = 0).

Thus, the null hypothesis H0 in Definition 3.3.1 holds if and only if (B.1) and (B.2) are
equal, as claimed.

Methods

Proof. (Proof of Theorem 3.4.1) Fix ϵ > 0, and take:

Tc :=

⌈
1

ln(1− p1)
ln

(
ϵp21
16p2

)⌉
.

First, to show that b̂N1 (x) → b1(x) at an exponential rate in N , we invoke the Dvoretsky-
Kiefer-Wolfowitz inequality:

P
(
sup
x∈Rn

∣∣b̂N1 (x)− b1(x)
∣∣ > 1

2
ϵ

)
≤ 2 · e−

1
2
Nϵ2

Next, to show that b̂N2 (x) → b2(x) at an exponential rate in N , we have, via the triangle
inequality:

sup
x∈Rn

∣∣∣∣∣b̂N2 (x)− b2(x)

∣∣∣∣∣
= sup

x∈Rn

∣∣∣∣∣
∞∑
t=1

[
β̂N
t (x)γ̂N

t − βt(x)γt

]∣∣∣∣∣
=

Tc∑
t=1

[
sup
x∈Rn

{
|β̂N

t (x)− βt(x)|
}
γ̂N
t

+ sup
x∈Rn

{
|γ̂N

t − γt|
}
βt(x)

]
+ sup

x∈Rn

{
∞∑

t=Tc+1

[
|β̂N

t (x)γ̂N
t |+ |βt(x)γt|

]}

≤
Tc∑
t=1

sup
x∈Rn

{
|β̂N

t (x)− βt(x)|
}
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+
Tc∑
t=1

sup
x∈Rn

{
|γ̂N

t − γt|
}
· P(A1:t−1 = 0)

+
1

N

N∑
i=1

∞∑
t=Tc+1

1{T̂ i = t}+
∞∑

t=Tc+1

P(T = t),

where the third and fourth term in the final expression follow by observing that, for any
x ∈ R, by definition of the quantities β̂N

t (x), γ̂N
t , βt(x), and γt:

|β̂N
t (x)γ̂N

t |

=
1

N

N∑
i=1

1{X i
t ⪯ x,Ai

1:t−1 = 0}

·
∑N

i=1 1{Ai
1:t−1 = 0, Ai

t = 1}∑N
i=1 1{Ai

1:t−1 = 0}

≤ 1

N

N∑
i=1

1{Ai
1:t−1 = 0}

·
∑N

i=1 1{Ai
1:t−1 = 0, Ai

t = 1}∑N
i=1 1{Ai

1:t−1 = 0}

=
1

N

N∑
i=1

1{Ai
1:t−1 = 0, Ai

t = 1}

=
1

N

N∑
i=1

1{T̂ i = t}

and similarly:

|βt(x)γ(t)|
=P(Xt−1 ⪯ x,A1:t−1 = 0) · P(At = 1|A1:t−1 = 0)

≤P(A1:t−1 = 0) · P(At = 1|A1:t−1 = 0)

≤P(At = 1, A1:t−1 = 0)

=P(T = t).

Below, we upper bound each of the four terms in the final expression above.

• First, by the Dvoretsky-Kiefer-Wolfowitz inequality, we have, for each t ∈ [Tc] :=
{1, · · · , Tc}:

P

(
Tc∑
t=1

sup
x∈Rn

{
|β̂N

t (x)− βt(x)|
}
≥ 1

8
ϵ

)
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≤P

(
Tc⋃
t=1

{
sup
x∈Rn

{
|β̂N

t (x)− βt(x)|
}
≥ 1

8Tc

ϵ

})

≤
Tc∑
t=1

P
(
sup
x∈Rn

{
|β̂N

t (x)− βt(x)|
}
≥ 1

8Tc

ϵ

)
≤2Tc exp

(
− ϵ2

32T 2
c

·N
)
.

• Second, let Nt ∈ [N ] denote the number of trajectories with A1:t−1 = 0. We first show
that, with high probability, Nt ≥ N · P(A1:t−1 = 0)2. We then show that, under this
condition on Nt taking a sufficiently large value, γ̂N

t (x)⟩γt(x) exponentially in N .

First, the Hoeffding bound for general bounded random variables ([187] Theorem
2.2.6) gives:

P
(

1

N
Nt ≤ P(A1:t−1 = 0)2

)
≤P

(∣∣∣∣∣ 1NNt − P(A1:t−1 = 0)

∣∣∣∣∣
≥ P(A1:t−1 = 0)− P(A1:t−1 = 0)2

)

≤ exp

(
−2
[
P(A1:t−1 = 0)− P(A1:t−1 = 0)2

]2
N

)
Then, if Nt ≥ N · P(A1:t−1 = 0), we can bound the gap between γ̂N

t (x) and γt(x) as
follows:

P
(
|γ̂N

t (x)− γt(x)| >
ϵ

8Tc · P(A1:t−1 = 0)

)
≤ exp

(
− 2 · P(A1:t−1 = 0)2 ·N

· ϵ2

64T 2
c · P(A1:t−1 = 0)2

)

≤ exp

(
− ϵ2

32T 2
c

·N
)
.

• Third, to bound B̂N
Tc

:= 1
N

∑N
i=1

∑∞
t=Tc+1 1{T̂ i = t}, define:

BTc :=
∞∑

t=Tc+1

1{T = t} = 1{T > Tc}.
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Thus, BTc is a Bernoulli random variable with parameter P(BTc = 1), and expectation
upper bounded by:

E[BTc ] = P(BTc = 1) ≤ (1− p1)
Tc .

By definition of Tc, we have E[BTc ] ≤ 1
16
ϵ. Moreover, since BTc is a Bernoulli random

variable, we have, by the Hoeffding bound for general bounded random variables ([187]
Theorem 2.2.6):

P

(
1

N

N∑
i=1

B̂N
Tc

>
1

8
ϵ

)

=P

(
1

N

N∑
i=1

B̂N
Tc
− E[BTc ] >

1

8
ϵ− E[BTc ]

)

≤P

(
1

N

N∑
i=1

B̂N
Tc
− E[BTc ] >

1

16
ϵ

)

< exp

(
− 1

128
N

)
.

• Finally, note that by definition of Tc:

∞∑
t=Tc+1

P(T = t) = P(T > Tc)

≤ (1− p1)
Tc

<
1

16
ϵ.

For the multivariate version (i.e., n > 1), the same proof follows, albeit with the multi-
variate version of the Dvoretsky-Kiefer-Wolfowitz inequality [144].

Experiment Results

Multi-link Traffic Networks

For the multi-link traffic network, we use the dynamics: ([130])

xi[t+ 1] (B.3)

=(1− µ) · xi[t] + µ · e−β·xi[t]∑R
j=1 e

−β·xj [t]
· u[t] + w[t], (B.4)

∀ t ∈ [T ], i ∈ [R], (B.5)
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Figure B.1: CDF Gap between vs. N , for the 2-link traffic network example. Here, red and blue
correspond to the baseline and our method, respectively, while thick and thin lines correspond to the
null and alternative hypotheses, respectively. Our approach correctly identifies the null hypothesis
dataset with a relatively small number of samples, while the naive aggregation method fails to do
so (thin blue curve).

Figure B.2: CDF Gap between vs. N , for the 3-link traffic network example. The color and
thickness schemes are identical to those of the single-link and 2-link plots in Figures 3.2 and B.1.

A[t] ∼ P(x[t]), (B.6)

where xi[t] denotes the traffic flow on each link i ∈ [R], u[t] ∈ R and w[t] ∈ R, and Th,
are the input, zero-mean noise terms, and time horizon, as before. Here, we set T = 250,
µ(0) = 0.3, µ(1) = 0.2, u(t) = 100R for each t ∈ [T ], and we again draw w[t] i.i.d. from the
continuous uniform distribution on (−10, 10). As with the single-link case, we created two
datasets for the null and alternative hypotheses. For the null hypothesis, we fix P(x[t]) to
be Bernoulli(0.02); for the alternative hypothesis, we set P(x[t]) to be Bernoulli(0.02) when
x[t] < 105, and Bernoulli(0.30) when x[t] ≥ 105. Again, this setting encodes the situation
where higher traffic loads cause higher accident probabilities.

Similar to the single-link case, we compute the maximum CDF gap supx∈Rn |b̂N1 (x)−b̂N2 (x)|
as functions of N (thin lines), and the empirical CDFs of Xt−1|T = t and Xt−1 (thick lines)
for both the null and alternative hypotheses. We again observe that our method distinguishes
between the two hypotheses at a smaller sample number N compared to the baseline method.

Analogous results hold for a 3-link system with dynamics as given by (B.3) and are
presented in Figure B.2.
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Appendix C

Proofs for Chapter 4

Proof of Lemma 4.4.2

Note that Θ = IT ⊗
(
b(1I1

⊤
I +C) + µ

)
is positive definite if and only if each of the terms

in the Kronecker product is positive definite [172]. Hence, it is sufficient to show that
Q := b(1N1

⊤
N + C) + µ is a positive definite matrix. First, note that Q is a symmetric

matrix. Additionally, for any z ∈ RN , it holds that

z⊤Qz = b(1⊤
Nz)

2 + b(
∑
i∈C

zi)
2 +

∑
i∈C

µiz
2
i +

∑
i∈N\C

(b+ µi)z
2
i ,

which is strictly positive for all z ̸= 0. Next, we show that Γ is invertible by calculating its
inverse. Indeed,

Γ−1 =
(
(1⊤

T ⊗ II)Θ
−1(1T ⊗ II)

)−1

=
(
1⊤
T 1T ⊗

(
b(1I1

⊤
I + C) + µ

)−1
)−1

=
1

T

(
b(1I1

⊤
I + C) + µ

)
=

1

T
Q.

This completes the proof.

Proof of Theorem 4.4.6

For every t ∈ [T ], define Gt :=
∑

t′∈[T ] a
t′
(
Tδtt

′ − 1
)
. Using this, the expression for x†t from

Proposition 9 can be re-written as follows

x†t =
d

T
− 1

T

(
b(1I1

⊤
I + C) + µ

)−1
1IG

t. (C.1)
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Consequently, it holds that

x†t
i =

di
T
− Gt

T
Γ†
i

1⊤
Nx

†t =
D

T
− Gt

T
Γ†

x†t
i − x̄t

i = −
1

T
Γ†
iG

t.

(C.2)

Consequently, combining previous equations with (4.1), for every i ∈ [N ],

ci(x
†) =

∑
t∈[T ]

atx†t
i +

b

T 2

∑
t∈[T ]

(
D −GtΓ†) (di −GtΓ†

i

)
+

µi(Γ
†
i )

2

2T 2

∑
t∈[T ]

(Gt)2

=
∑
t∈[T ]

at
(
di
T
− Gt

T
Γ†
i

)
+

b

T 2

TDdi + Γ†Γ†
i

∑
t∈[T ]

(Gt)2


+

µi(Γ
†
i )

2

2T 2

∑
t∈[T ]

(Gt)2, (C.3)

where the last equality is because
∑

t∈[T ] G
t =

∑
t,t′∈[T ] a

t′
(
Tδtt

′ − 1
)
= 0. Additionally,

summing (C.3) for all i ∈ S, we obtain

∑
i∈S

ci(x
†) =

∑
t∈[T ]

at

(
DS

T
− Gt

T

∑
i∈S

Γ†
i

)
+

bDDS

T

+
bΓ†∑

i∈S Γ
†
i

∑
t∈[T ](G

t)2

T 2
+

b

2T 2

∑
t∈[T ]

(Gt)2
∑
i∈S

µi

b
(Γ†

i )
2

=

(
ADS −

∑
i∈S Γ

†
i

∑
t∈[T ] a

tGt

T
+

bDDS

T

)

+
b
∑

t∈[T ](G
t)2

T 2

(
Γ†
∑
i∈S

Γ†
i +
∑
i∈S

µi

2b
(Γ†

i )
2

)
,

where A :=
∑

t∈[T ] a
t. Analogously, we obtain the cost at Nash equilibrium as follows

∑
i∈S

ci(x
∗) =

(
ADS −

∑
i∈S Γ

∗
i

∑
t∈[T ] a

tGt

T
+

bDDS

T

)

+
b
∑

t∈[T ](G
t)2

T 2

(
Γ∗
∑
i∈S

Γ∗
i +

∑
i∈S

µi

2b
(Γ∗

i )
2

)
.
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Using the above equations, we obtain that
∑

i∈S ci(x
†) >

∑
i∈S ci(x

∗) if and only if g†S(µ, b)−
g∗S(µ, b) ≥ (Γ† − Γ∗)h(A). This completes the proof.
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Appendix D

Proofs for Chapter 6

We begin by proving theorem 6.4.1, which adapts techniques from analogous results in the
social choice literature (i.e. theorem 6.2.6):

Proof. First, we show that for any reward function R in a Social Choice MDP, fR satisfies
Universal Domain, Completeness and Transitivity. Consider an arbitrary profile U ∈ U . We
have xfR(U)y ⇐⇒ R(U, x) ≥ R(U, y), which is well defined since the domain of R is U ×X.
Therefore, fR satisfies Universal Domain. Consider an arbitrary profile U ∈ dom(fR). By
completeness of ≥ on R, we have R(U, x) ≥ R(U, y) or R(U, y) ≥ R(U, x), so xfR(U)y or
yfR(U)x, so fR(U) is complete. Now assume xfR(U)y and yfR(U)z for some x, y, z ∈ X.
It follows that R(U, x) ≥ R(U, y) and R(U, y) ≥ R(U, z). Therefore, R(U, x) ≥ R(U, z), so
xfR(U)z. Therefore, fR(U) is transitive. Since U was arbitrary, fR satisfies Completeness
and Transitivity.

Assume, in addition, that R satisfies Weak Pareto, IIA, CUC-Invariance and Func-
tional Anonymity. Therefore, fR satisfies Pareto (SWF), IIA, CUC-Invariance and
Functional Anonymity. So by theorem 6.2.6, fR is Utilitarianism:

xfR(U)y ⇐⇒
∑
i∈V

Ui(x) ≥
∑
i∈V

Ui(y).

By definition of fR, we have xfR(U)y ⇐⇒ R(U, x) ≥ R(U, y), so

R(U, x) ≥ R(U, y) ⇐⇒
∑
i∈V

Ui(x) ≥
∑
i∈V

Ui(y),

so R agrees with Utilitarianism.
We now prove the converse direction of the equivalence. That is, we want to show that

if R agrees with Utilitarianism, that is, for any profile U and x, y ∈ X, we have

R(U, x) ≥ R(U, y) ⇐⇒
∑
i∈V

Ui(x) ≥
∑
i∈V

Ui(y) (D.1)

then R satisfies Pareto (SWF), IIA, CUC-Invariance, and Functional Anonymity.
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We start by showing that R satisfies Pareto (SWF). That is, we want to show that for
all U ∈ dom(fR) and all x, y ∈ X, if Ui(x) > Ui(y) for all i ∈ V , then xP (fR(U))y. Assume
that Ui(x) > Ui(y) for all i ∈ V . Then, we know that

∑
i∈V Ui(x) >

∑
i∈V Ui(y). Because

R agrees with Utilitarianism, then we know that R(U, x) > R(U, y), and in turn, this means
that the social welfare functional fR induced by R satisfies xP (fR(U))y for all x, y ∈ X,
which is what we wanted to show.

Next, we consider IIA. That is, we want to show that for all U,U ′ ∈ dom(fR) and
x, y ∈ X, if Ui(x) = U ′

i(x) and Ui(y) = U ′
i(y) for all i ∈ V , then xfR(U)y if and only if

xfR(U
′)y. Assume that Ui(x) = U ′

i(x) and Ui(y) = U ′
i(y) and xfR(U)y. Then, because fR is

the SWF induced by R, we know that R(U, x) ≥ R(U, y), and furthermore, because R agrees
with Utilitarianism, we know that

∑
i∈V Ui(x) ≥

∑
i∈V Ui(y). However, by the property

that Ui(x) = U ′
i(x) and Ui(y) = U ′

i(y) for all i ∈ V , we get the inequality
∑

i∈V U ′
i(x) ≥∑

i∈V U ′
i(y). Therefore, once again, because R agrees with Utilitarianism, we have R(U ′, x) ≥

R(U ′, y), and thus xfR(U
′)y. The steps in this proof are reversible, and thus the converse

direction follows as well.
Now consider CUC-Invariance. For all U,U ′ ∈ dom(f), we want to show that if

U ∼CUC U ′, then fR(U) = fR(U
′). Assume U ∼CUC U ′. By definition, there is a β ∈ R with

β > 0 and for every i ∈ V , there is some αi ∈ R such that for all x ∈ X, Ui(x) = αi+βU ′
i(x).

We have, for all x, y ∈ X,

xfR(U)y ⇐⇒
∑
i∈V

Ui(x) ≥
∑
i∈V

Ui(y)

by assumption. By standard properties of summation,∑
i∈V

Ui(x) ≥
∑
i∈V

Ui(y) ⇐⇒
∑
i∈V

βUi(x) ≥
∑
i∈V

βUi(y) ⇐⇒
∑
i∈V

αi+βUi(x) ≥
∑
i∈V

αi+βUi(y)

and by definition∑
i∈V

αi + βUi(x) ≥
∑
i∈V

αi + βUi(y) ⇐⇒
∑
i∈V

U ′
i(x) ≥

∑
i∈V

U ′
i(y) ⇐⇒ xfR(U

′)y.

Therefore, xfR(U)y ⇐⇒ xfR(U
′)y, so fR(U) = fR(U

′).
We finish by showing Functional Anonymity. We want to show that for all U,U ′ ∈

dom(fR) and permutations ρ : V → V , if for all i ∈ V , U ′
i = Uρ(i), then fR(U) = fR(U

′).
Consider profiles U and U ′ and a permutation ρ : V → V such that for all i ∈ V , U ′

i = Uρ(i).
Now, for all x, y ∈ X:

xf(U)y ⇐⇒
∑
i∈V

Ui(x) ≥
∑
i∈V

Ui(y)

Permutations do not affect the sum, so we have, for any permutation ρ : V → V ,∑
i∈V

Ui(x) ≥
∑
i∈V

Ui(y) ⇐⇒
∑
i∈V

Uρ(i)(x) ≥
∑
i∈V

Uρ(i)(y),
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and by definition∑
i∈V

Uρ(i)(x) ≥
∑
i∈V

Uρ(i)(y) ⇐⇒
∑
i∈V

U ′
i(x) ≥

∑
i∈V

U ′
i(y) ⇐⇒ xfR(U

′)y,

which completes our proof.

We proceed by proving theorem 6.4.6:

Proof. Consider a social choice MDP where V satisfies the Bellman equation and R satisfies
Weak Pareto, IIA, CUC-Invariance and Functional Anonymity.

Assume that π is optimal relative to V . Therefore, for all s ∈ S

π ∈ argmax
π∈Π

V (π, s).

Since V satisfies the Bellman equation, we have V (π, s) = E [
∑∞

t=1 γ
tR(st, π(st))] for all

s ∈ S by theorem 6.4.4, so

π∗ ∈ argmax
π∈Π

E

[
∞∑
t=1

γtR(st, π(st))

]
.

for all s ∈ S.
By Weak Pareto, IIA, CUC-Invariance and Functional Anonymity and theorem

6.4.1, R is quasi-utilitarian, so we have R(U, a) = f
(∑

i∈V Ui(a)
)
, where f : R → R is a

strictly increasing function. Therefore,

π∗ ∈ argmax
π∈Π

E

[
∞∑
t=1

γtf

(∑
i∈V

U t
i (a)

)]
,

where f is strictly increasing, so π is long-run quasi utilitarian.
Assume that π is long-run quasi utilitarian. By definition, for all s ∈ S

π∗ ∈ argmax
π∈Π

E

[
∞∑
t=1

γtf

(∑
i∈V

U t
i (a)

)]
,

so

π∗ ∈ argmax
π∈Π

E

[
∞∑
t=1

γtR(st, π(st))

]
,

where R(U, a) = f
(∑

i∈V U t
i (a)

)
for some strictly increasing f . By theorem 6.4.4, since V

satisfies the Bellman equation, we have V (π, s) = E [
∑∞

t=1 γ
tR(st, π(st))] for all s ∈ S.

Therefore, we have for all s ∈ S

π ∈ argmax
π∈Π

V (π, s),

so π is optimal relative to V .
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