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Abstract

Agile Hardware/Software Co-Design for Hyperscale Cloud Systems

by

Sagar Prashant Karandikar

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Emeritus and Professor of the Graduate School Krste Asanović, Chair

Global reliance on cloud services, powered by transformative technologies such as generative
AI, machine learning, and big-data analytics, is driving exponential growth in demand for hy-
perscale cloud compute infrastructure. Meanwhile, the breakdown of classical hardware scaling
(e.g., Moore’s Law) is hampering growth in compute supply. Building domain-specific hardware
can address this supply-demand gap, but catching up with exponential demand requires developing
new hardware rapidly and with confidence that performance/efficiency gains will compound in the
context of a complete system. These are challenging tasks given the status quo in hardware design,
even before accounting for the immense scale of the cloud.

This dissertation focuses on two themes: (1) Developing agile, end-to-end HW/SW co-design tools
that challenge the status quo in hardware design across system scale. (2) Leveraging these tools
and hyperscale datacenter fleet profiling insights to architect/implement state-of-the-art domain-
specific hardware to address key inefficiencies in hyperscale systems.

We first cover the FireSim FPGA-accelerated hardware simulation platform, which automatically
constructs high-performance, cycle-exact, scale-out simulations of novel hardware designs derived
from tapeout-friendly RTL, empowering hardware designers and domain experts alike to rapidly
co-design systems. FireSim unlocks innovation in datacenter hardware with the ability to scale
to massive, distributed simulations of specialized datacenter clusters. Next, we cover Chipyard, a
platform for agile construction, evaluation, and tape-out of specialized RISC-V System-on-Chip
(SoC) designs using an RTL-generator-driven approach.

We then cover Hyperscale SoC, a cloud-optimized server chip built, evaluated, and taped-out with
FireSim/Chipyard. Hyperscale SoC includes several new domain-specific accelerators for expen-
sive but foundational overheads in hyperscale servers, including (de)serialization, (de)compression,
and more. This SoC demonstrates a new paradigm of data-driven, end-to-end HW/SW co-design,
combining key insights from profiling Google’s global datacenter fleet with the ability to rapidly
build/evaluate novel HW/SW systems in FireSim/Chipyard.
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Chapter 1

Introduction

While generative artificial intelligence, machine learning, and big-data analytics are producing
groundbreaking advances across disciplines, behind these advances is an exponential increase in
demand for compute infrastructure, especially in hyperscale datacenters (or WSCs, Warehouse-
Scale Computers). These hyperscale datacenters, operated by companies like Google, Amazon,
Microsoft, Meta, Baidu, Alibaba, and Tencent, are the compute backbone of society. They host
massive cloud services relied upon by billions of users and must do so in a cost-efficient and
environmentally sustainable way. The exponential demand trends for these systems are visible
across metrics: We see exponential growth in demand for compute driven by machine learning [55].
Global internet traffic, much of which is to or from these hyperscale datacenters, continues to grow
exponentially [96]. The volume of data created, captured, copied, and consumed worldwide also
follows a similar trend [207]. From a business perspective, we continue to see increased demand
for cloud systems, with Gartner projecting a 4.5× increase in cloud-user enterprises from 2023 to
2027 [77]. At the same time, the computing industry is at a once-in-a-generation inflection point:
Gone are the “rising tide lifts all boats” days of device scaling producing trends like Moore’s law
and Dennard scaling [87] that enabled exponential growth in the supply of compute to meet this
demand.

Further compounding this shift and in stark contrast to the stagnation of individual server per-
formance, datacenter network performance has continued to scale. Datacenter operators are cur-
rently deploying networks with 100s of Gbit/s of bandwidth at the leaves and latencies below 10s
of microseconds. On the horizon is the potential for silicon photonic networks to push 100s of
Terabits-per-second bandwidths straight to server processor dies [200]. New memory technologies
such as HBM also have the potential to fill interesting gaps in the datacenter memory hierarchy,
but also further deepen and complicate it, requiring detailed evaluation at scale. A large number
of academic and industry groups have also pushed towards disaggregated datacenter architectures
that combine all of these trends by splitting resources, including compute, high-performance stor-
age, and memory across a high-bandwidth, low-latency datacenter fabric [140, 76, 20, 121, 90, 92,
98, 66]. Following these hardware trends and the expectations of modern web-scale service users,
application and systems framework developers are also beginning to expect the ability to deploy
fine-grained tasks, where task runtime and latency expectations are measured in microseconds [29].
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Theme 1: Develop radical new agile end-to-end HW/SW co-design 
tools, including for hyperscale cloud systems.

Theme 2: Leverage tools + data-driven co-design to architect SoTA 
domain-specific HW to address key efficiency challenges in 
hyperscale cloud systems.

S. Karandikar, et. al., ISCA ’18
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ISCA@50 25-Year Retrospective
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Used in 60+ pubs from 25+ institutions
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S. Karandikar, et. al., 
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Widely used Open-
Source Project

S. Karandikar, et. al., 
ASPLOS ’20

S. Karandikar, et. al., MICRO ’21
MICRO ’21 Distinguished Artifact Award
Honorable Mention, Micro Top Picks ’21

S. Karandikar, et. al., 
ISCA ’23

S. Karandikar, et. al., Pre-publication.

Hyperscale SoC

FirePerf ProtoAcc CDPU Hyperscale Chip

Figure 1.1: Overarching themes and outline of this dissertation.

Focusing more specifically on compute, while the first few generations of WSCs used off-
the-shelf CPUs, the aforementioned compute supply-demand gap has pushed datacenter architects
towards building compute engines that are increasingly specialized and vertically integrated [30,
131]. As a case in point, the increased efficiency provided by domain-specific hardware such as
GPUs and TPUs has enabled the wide deployment of machine-learning pipelines in hyperscale
contexts. This is neatly distilled in a quote from Google’s original TPU paper [109], projecting
datacenter capacity requirements if a TPU-like device did not exist:

“The conversation changed in 2013 when a projection where people use voice search
for 3 minutes a day using speech recognition DNNs would require [Google’s] data-
centers to double to meet computation demands...”

—N. Jouppi, et. al., 2017 [109]

In fact, domain-specific hardware for machine learning has become so successful that despite
the widespread integration of machine learning into Google’s services, machine learning does not
currently dominate Google’s end-to-end energy consumption [164].

In modern WSCs, there is a clear need for hardware-software co-design to expand beyond
the confines of a single system (one GPU, TPU, server, etc.). Machine-learning model sizes
have rapidly outpaced the training and inference capabilities of individual GPUs, TPUs, and other
ASICs for ML, requiring scale-out co-design. The general-purpose compute platforms that feed
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vast amounts of data to these machine learning pipelines face similar problems; for example, data-
center server CPUs are plagued by system-level overheads that arise from the distributed nature of
WSCs, such as the datacenter taxes [110, 198]. Further complicating this co-design effort, WSCs
run large, layered software stacks consisting of diverse and rapidly evolving microservices, making
specialization difficult.

In this dissertation, we address two critical roadblocks to eliminating the hyperscale datacenter
capacity supply-demand gap: (1) How can we rapidly co-design hardware and software in scale-
out contexts such as hyperscale datacenters? (2) How can we address key system-level overheads
in WSCs (such as the datacenter taxes) to help close the WSC capacity supply-demand gap? Our
approach to addressing these roadblocks and our key contributions are shown in Figure 1.1, which
serves as a roadmap to the rest of this dissertation, while highlighting some of the wider impacts
of this work.

1.1 Chasing exponentials in the post-Moore era with agile
hardware design at-scale

Irrespective of domain, knowing what to specialize for can be challenging, as exemplified by the
hardware lottery effect, which shows that historically certain research ideas (e.g., new algorithm-
s/ML models) succeed only because they are well-suited to available hardware and not because
they are a global optimum [89]. In the new world of vertically optimized domain-specific hard-
ware, computer architects must collaborate across the stack to ensure the best ideas succeed, but
doing this requires radical new ways to rapidly develop new hardware and assess the hardware
implications of new algorithmic ideas.

To help us understand the scope of this methodological problem, Figure 1.2 shows an example
of aggregate system-level performance improvement over time when trends like Moore’s law and
Dennard scaling were alive and well. In this world, aggregate performance improvement over
time was a matter of compounding an achieved speedup of N× (e.g., N = 2) every p years (e.g.,
p= 1.5). Figure 1.2 emphasizes the importance of both of these terms. If, for example, our timeline
slips from an improvement cadence of 1.5 years to 2 years, we lose over 65% of our aggregate
performance improvement potential over the course of 10 years. Even worse, if achieved speedup
in each generation drops from 2× to 1.5×, over 85% of our aggregate performance improvement
potential is lost over 10 years.

What do these terms mean in the new world of vertically optimized domain-specific hardware?
First, achieved improvements must compound over time. This means that new optimizations and
new domain-specific hardware blocks must demonstrate large wins in the context of a complete
system, rather than in isolation. The second term implies that we must also produce these improve-
ments at a rapid pace. Only the combination of these two will result in new hardware scaling trends
that can keep pace with global demand for compute.

To achieve this, agile, end-to-end hardware/software co-design methodologies aim to revolu-
tionize the process of architecting computer systems by emphasizing two goals: (1) minimizing
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Figure 1.2: Performance improvement over time in the world of classical hardware scaling (e.g.,
Moore’s law, Dennard scaling).

hardware development iteration time/cost, especially when working in small groups of researcher-
s/engineers (the agile) and (2) developing/evaluating hardware and software in parallel, with a
focus on their interplay in a complete system (the end-to-end co-design).

Effective end-to-end co-design requires pre-silicon collaboration between researchers and en-
gineers working across the computing stack, including computer architecture, systems, compil-
ers, very-large-scale integration (VLSI), and application domains. However, working with the
single-source-of-truth describing a novel digital hardware design—the tapeout-friendly register
transfer-level (RTL) implementation—was incompatible with the development and evaluation ve-
locity needed to enable end-to-end full-system co-design, even for individual systems. Co-design
for hyperscale systems was not possible.

In the first half of this dissertation, we address this methodological challenge by building
FireSim and Chipyard, which together enable an agile hardware/software co-design flow that can
scale all the way to hyperscale cloud systems.

FireSim: Fast simulation of novel datacenter designs with RTL-level fidelity
FireSim is an open-source (https://fires.im) FPGA-accelerated hardware simulation platform
that automatically instruments and transforms tapeout-friendly RTL designs written in languages
like Chisel or SystemVerilog into fast (10s to 100s MHz), deterministic, and cycle-exact FPGA-
hosted simulators for productive pre-silicon verification and performance validation. Unlike FPGA
prototypes, FireSim includes validated, performance-accurate models for common I/O interfaces
like DRAM [34] and Ethernet [118] to enable modeling complete systems. To enable agility when

https://fires.im
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working with RTL designs, FireSim includes many debugging and profiling features not usually
available on FPGAs.

Chapter 2 demonstrates FireSim’s ability to scale to modeling massive datacenter clusters with
RTL-level detail. There, we show FireSim modeling a networked 1024-node cluster hosted on 256
cloud FPGAs, where each node is a RISC-V server SoC written in tapeout-friendly RTL with a
200 Gbit/s Ethernet NIC and a complete memory system, including DRAM. Simulated servers are
interconnected with a scalable, flexible Ethernet network model that provides both synchronization
between the 1024 simulations and data exchange for faithful Ethernet modeling. This 1024-node
simulation is sufficiently fast (10+ MHz) to, for example, boot Linux on each node and run WSC
services (e.g., memcached) to evaluate end-to-end performance in the modeled datacenter and
enable full-system end-to-end co-design at scale.

FireSim has been used (not only cited) in over 60 peer-reviewed publications from first au-
thors at over 25 academic and industrial institutions. FireSim has also been used as a standard
host platform for DARPA and IARPA programs and has been used in the development of com-
mercially available chips. FireSim was also selected as an IEEE Micro Top Pick [117], selected
for the ISCA@50 25-year Retrospective 1996-2020 [119], and nominated for CACM Research
Highlights. Chapter 2.9 provides a detailed retrospective on FireSim and discusses key lessons
learned.

Chipyard: Agile generation of RISC-V systems-on-chip (SoCs)
To facilitate an RTL-first approach to constructing new SoCs in agile teams, we discuss Chipyard
(Chapter 3), an open-source design, evaluation, and implementation framework for specialized
RISC-V SoCs. Chipyard enables researchers and engineers to productively compose complex
systems from a large collection of parameterized, generator-based IP blocks such as in- and out-
of-order RISC-V cores, uncore components, peripherals, accelerators, and more. Chipyard also
includes software that runs on the generated SoCs, ranging from firmware, bootloaders, and bare-
metal testing infrastructure to several compatible Linux distributions (e.g., Ubuntu). Users can
customize any component of a Chipyard-generated system and push it through high-performance
FPGA-accelerated simulation (FireSim), software simulation (e.g. Verilator and VCS), and auto-
mated ASIC flows (e.g. Hammer [214]) to productively iterate on specialized designs.

Like FireSim, Chipyard has become a widely used open-source project: the Chipyard repos-
itory on GitHub has over 650 public forks and more than 700 users and developers have joined
Chipyard’s mailing list to track development milestones and to ask and answer questions about
Chipyard usage. To democratize access to agile co-design tools, we have run nine hands-on FireS-
im/Chipyard tutorials at academic conferences since 2019 and organized the first FireSim/Chip-
yard Workshop in 2023, a full-day event with ten talks from external FireSim/Chipyard users and
developers. Chapter 3.5 provides a retrospective on Chipyard and highlights key lessons learned.
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1.2 Addressing hyperscale datacenter inefficiencies with
data-driven co-design of a cloud-optimized server
system-on-chip (SoC)

Prior work has highlighted critical overheads that drastically reduce the efficiency of hyperscale
cloud servers, such as the “datacenter taxes” [110, 198]. These datacenter taxes include fundamen-
tal primitives that are needed to enable scalable and distributed computation, such as serialization,
compression, remote-procedure call, memory-movement operations (copies, moves, etc.), hashing,
and memory allocation. Together, these have been shown to account for over 25% of CPU cycles
in hyperscale server fleets [110], with several additional externalities that we will bring to light in
later parts of this dissertation.

Addressing these overheads has previously been a challenge because they are deeply inter-
twined with the systems software stack. Accelerating these operations requires much finer-grained
specialization as compared to other domains. This motivated the design of Hyperscale SoC (Chap-
ter 4), a custom server system-on-chip optimized for the cloud.

As part of a multi-year industry-academic collaboration between Google and UC Berkeley, we
architect, implement, evaluate, and ultimately tape-out Hyperscale SoC. Hyperscale SoC is based
on Chipyard, configured with high-performance RISC-V MegaBOOM OoO application cores, a
wide on-chip network to match existing hyperscale designs, and the 200 Gbit/s Ethernet NIC from
FireSim [118]. Rather than relying on the coarse-grained acceleration opportunities enabled by
traditional server integration (e.g., PCIe cards), Hyperscale SoC takes advantage of several forms
of near-CPU accelerator integration to enable fine-grained offloading of key datacenter taxes.

A core thread tying together the Hyperscale SoC project is rigorous, data-driven methodology.
Given the goal of building a highly specialized hardware/software system for the hyperscale cloud,
naturally we must answer the questions alluded to earlier: (1) How do we know that we are building
the right specialized hardware? (2) How do we ensure we are building a complete solution that
allows us to understand the end-to-end impact of our novel architectural ideas?

To answer the first question, we must understand what specialized hardware should be de-
ployed in next-generation datacenters. Given the ability to profile Google’s worldwide hyperscale
datacenter fleet1, we are able to identify critical insights about the motivation and design of custom
accelerators for the datacenter taxes and build and open-source hyperscaler-representative bench-
marks for each domain.

To address the second question, we harness the agile hardware/software co-design tools dis-
cussed earlier to design and implement (in RTL) specialized hardware for the aforementioned
domains and integrate it into Hyperscale SoC. We then run complete software stacks (including
Google-representative benchmarks) on this design using FireSim. We also obtain ASIC quality-
of-result data for our designs for a commercial 16nm-class FinFET process and eventually tape-out
the design in this process. The following subsections will provide a brief overview of three key
pieces of Hyperscale SoC.

1The work in this dissertation was partially done while being affiliated with both Google and UC Berkeley.
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FirePerf: Agile cross-stack profiling and co-design for end-host networking
Bringing up a new server design like Hyperscale SoC and achieving performance comparable to
modern commercial designs is a daunting task, given the need to improve not only core com-
pute kernels, but also intricate and elusive system-level bottlenecks. Profiling these bottlenecks
requires both high-fidelity introspection and the ability to run sufficiently many cycles to exe-
cute complex software stacks, a challenging combination. FirePerf (Chapter 5) addresses this
systematically by developing and open-sourcing high-fidelity, out-of-band performance profiling
features for FireSim that allow non-domain-experts to rapidly understand how to improve end-to-
end system performance for a domain (in this case, networking) by avoiding many of the pitfalls of
classical profiling tools. Having been upstreamed to FireSim, several FireSim users have written
peer-reviewed publications that use the FirePerf tools and extend FirePerf’s capabilities.

FirePerf enables us to quickly bring Hyperscale SoC’s Linux userspace networking perfor-
mance in line with commercial servers via HW/SW co-design, without consulting domain experts.
With FirePerf, we identify/implement broadly applicable fixes to the Linux kernel for RISC-V
(which also help existing commercial chips), specific improvements to the HW/SW interface be-
tween Linux and Hyperscale SoC’s Ethernet NIC implementation, and demonstrate the effective-
ness of hardware acceleration for memory-to-memory copies and moves, a key overhead in com-
mercial hyperscale servers.

A hardware accelerator for protocol buffers
Serialization libraries like Google’s Protocol Buffers (protobuf) define the foundational interface
for flexible and robust data exchange in hyperscale systems, both between multiple services (via
RPC) and between services and persistent storage. However, this flexibility and robustness, a must
for highly available systems at scale, introduces significant compute overheads.

In Chapter 6, we present the first in-depth study of serialization library usage at scale by pro-
filing protobuf usage in Google’s hyperscale datacenter fleet. We show that nearly 10% of fleet
CPU cycles are spent in protobufs and challenge several prevailing assumptions about serializa-
tion, including showing that PCIe-attached protobuf accelerators are likely infeasible due to mem-
ory access patterns and in-memory object sparsity. To support community research, we build and
open-source a hyperscaler-representative (de)serialization benchmark, Google HyperProtoBench.

We then design an open-source hardware accelerator for protobuf, implemented in RTL and
integrated into Hyperscale SoC near-CPU. Applications can easily harness the accelerator, as it
sits behind a modified version of the open-source protobuf software library and is wire-compatible
with standard protobufs. Closing the loop, we present an end-to-end evaluation of our entire RTL-
based accelerated system running HyperProtoBench on Linux using FireSim. We demonstrate
significant speedups compared to Xeon servers while consuming a small fraction of the silicon
area. Our experiences have influenced industry, including various silicon vendors. This work also
received the Distinguished Artifact Award at MICRO ’21 and was selected as an IEEE Micro Top
Picks 2021 Honorable Mention.
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CDPU: Accelerating general-purpose lossless (de)compression at scale
General-purpose lossless data compression and decompression (“(de)compression”) is unique am-
ongst the datacenter taxes in that its purpose is not to add functionality, but to trade-off datacenter
resources like CPU cycles, network bandwidth, and memory/storage capacity. Efficient hardware
for (de)compression can radically change these trade-offs, but designing optimal hardware com-
pression and decompression processing units (“CDPUs”) is challenging due to the variety of algo-
rithms deployed, input data characteristics, and evolving system-balance tradeoffs.

To navigate this vast design space, in Chapter 7 we present the first multi-year data-driven
analysis of (de)compression usage at a major cloud provider by profiling Google’s hyperscale dat-
acenter fleet. We present several surprising insights, covering hardware implementation timelines,
accelerator chaining challenges, and accelerator placement considerations. Most notably, while
(de)compression already consumes 2.9% of fleet CPU cycles and 10-50% of cycles in key ser-
vices, this demand is artificially limited. We identify that hyperscale services tend to avoid using
the best software compression techniques due to their high CPU cost, a significant opportunity for
hardware accelerators to save more than just CPU cycles.

While prior work has improved the microarchitectural state-of-the-art for CDPUs, we find that
higher-level design parameters like CDPU placement, hash table sizing, and history window sizes
have a more critical impact on the viability of CDPU integration but are not well-studied. To
address this, we present the first end-to-end design/evaluation framework for CDPUs, including:
1. An open-source RTL-based CDPU generator that supports many run-time and compile-time
parameters. 2. Integration into Hyperscale SoC for rapid performance and silicon area evalua-
tion across CDPU placements and parameters. 3. An open-source (de)compression benchmark,
HyperCompressBench, that is representative of (de)compression usage in Google’s fleet.

We perform an extensive CDPU design space exploration, spanning a 46× range in CDPU
speedup, 3× range in silicon area (for a single pipeline), and evaluate a variety of CDPU integration
techniques to optimize CDPU designs for hyperscale contexts. Our final hyperscale-optimized
CDPU instances are up to 10× to 16× faster than a single Xeon core, while consuming a small
fraction (as little as 2.4% to 4.7%) of the area. Our experiences exploring CDPU design have
influenced product design at Google and various silicon vendors.

Hyperscale chip
To demonstrate the realizability of Hyperscale SoC, we tape-out a 16 mm2 Hyperscale chip in the
Intel 16 process. The die contains two Hyperscale systems-on-chip networked together, each with
an out-of-order RISC-V MegaBOOM core, protobuf (de)serialization accelerators, CDPUs, and
200 Gbit/s Ethernet NIC. While the chip has returned from fabrication, it is still being tested, so
further details about the chip are not included in this dissertation.
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https://sites.coecis.cornell.edu/isca50retrospective/files/2023/06/

Karandikar 2018 FireSim.pdf

6. ISCA 2023: “CDPU: Co-designing Compression and Decompression Processing Units for
Hyperscale Systems”
Sagar Karandikar, Aniruddha N. Udipi, Junsun Choi, Joonho Whangbo, Jerry Zhao, Svilen Kanev, Edwin Lim, Jyrki
Alakuijala, Vrishab Madduri, Yakun Sophia Shao, Borivoje Nikolić, Krste Asanović, and Parthasarathy Ranganathan
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Chapter 2

FireSim: Fast simulation of novel
datacenter designs with RTL-level fidelity

In this chapter, we discuss the first component of our agile hardware/software co-design flow for
hyperscale systems research, FireSim. FireSim is an open-source FPGA-accelerated hardware
simulation platform that can scale to modeling novel datacenter designs, using customizable server
RTL designs as ground truth. After discussing FireSim’s design, we conclude the chapter by
discussing FireSim’s impact as an open-source project and highlight key lessons learned.

2.1 Introduction
The trends discussed in Chapter 1 push the boundaries of hardware-software co-design at-scale.
Architects can no longer simply simulate individual nodes and leave the issues of scale to post-
silicon measurement. Additionally, the introduction of custom silicon in the cloud means that
architects must model emerging hardware, not only incremental enhancements to well-understood
processor microarchitectures. Hardware-software co-design studies targeting next-generation WS-
Cs are hampered by a lack of a scalable and performant simulation environment. Using microar-
chitectural software simulators modified to scale out [160, 154] is fundamentally bottlenecked by
the low simulation speeds (5–100 KIPS) of the underlying single-server software simulator. Fast
custom-built simulation hardware has been proposed [203], but is difficult to modify and expensive
($100k+) to acquire, which limits access by most academic and industrial research teams.

In this chapter, we present FireSim1,2, an open-source, cycle-exact, FPGA-accelerated simula-
tion framework that can simulate large clusters, including high-bandwidth, low-latency networks,
on a public-cloud host platform. Individual nodes in a FireSim simulation are automatically derived
from synthesizable RTL and run realistic software stacks, including booting Linux, at 10s to 100s
of MHz. High-performance C++ switch models coordinate simulation globally and provide clean
abstractions that hide the host system transport to allow users to define and experiment with their

1https://fires.im
2https://github.com/firesim

https://fires.im
https://github.com/firesim
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own switching paradigms and link-layer protocols. FireSim also automates the construction of a
scale-out simulation—users define the network topology and number and types of server blades
in the system being simulated, and FireSim builds and deploys high-performance simulations on
Amazon EC2 F1 instances. Users can then treat the simulated nodes as if they were part of a real
cluster—simulated datacenter nodes are visible on the network and can be accessed via SSH to run
software while collecting performance data that is cycle-exact. Thus, a FireSim user is isolated
from the complications of running FPGA-accelerated simulations. They write RTL (which can
later be synthesized with CAD tools and possibly taped out) to customize their datacenter blades,
C++ code to customize switch designs, and specify the topology and link characteristics of their
network simulation to the simulation manager, which then builds and deploys a simulation. Only
RTL changes require re-running FPGA synthesis—network latency, bandwidth, network topology,
and blade selection can all be configured at runtime.

Chapter 2.2 describes recent hardware trends that allow us to build a fast, usable, and cost-
effective hardware simulation environment. Chapter 2.3 describes the FireSim simulation envi-
ronment, including the target designs FireSim is capable of simulating, and our high-performance
network simulation infrastructure. Chapter 2.4 validates data collected by software in FireSim
simulations against parameters set in the FireSim configuration, as well as reproducing scale-out
system phenomena from recent literature. Chapter 2.5 discusses simulation performance and scale,
including a 1024-node simulation. Chapter 2.6 describes some early work in warehouse-scale
hardware-software co-design that uses the FireSim simulation platform and discusses preliminary
results. Finally, Chapter 2.7 discusses prior work in the area of scale-out system simulation and
contrasts it with FireSim.

2.2 Harnessing FPGAs in the public cloud
Architects experience many challenges when building and using FPGA-accelerated simulation
platforms. FPGA platforms are unwieldy, especially when compared to software simulators that
run on commodity compute platforms. Traditional FPGA platforms are constrained by high prices,
individual platform quirks that make reproducibility difficult, the need to provision for maximum
utilization at time of initial purchase, and long build times, where parallelism is limited by the
number of build licenses and build servers available. Even when FPGA pricing is insignificant to
a project, building a custom rack of large FPGAs requires significant systems management and
operations experience and makes it extremely difficult to share and reproduce research prototypes.

But recently, many cloud providers have begun integrating FPGAs into their cloud services, in-
cluding Amazon [11], Microsoft [44, 175], Huawei [93], and Alibaba [10]. In particular, Amazon
makes FPGAs available as part of its public cloud offering, allowing developers to directly design
FPGA-based applications that run in the cloud. Using an FPGA-enabled public cloud platform
such as EC2 F1 addresses many of the traditional issues with FPGA-based hardware simulation
platforms and provides many of the same benefits to computer architects that the cloud brought
to distributed systems builders. At the dawn of the cloud era, systems researchers identified sev-
eral changes to the economics of obtaining compute: (1) the new illusion of infinite computing
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resources, (2) the elimination of up-front commitment towards hardware resources, and (3) the
ability to scale resources on-demand [18]. Given that prices of large FPGAs are much higher
than even the most expensive general-purpose-compute servers, these advantages are magnified
for developers and users of FPGA-based simulation platforms.

Since EC2 F1 is a relatively recent offering, we summarize some of the key features of the
service to explain why it forms a natural platform on which to build the scalable FireSim envi-
ronment. Amazon’s EC2 F1 offering provides two new EC2 instance types, f1.2xlarge and
f1.16xlarge, which consist of a powerful host instance (8 or 64 vCPUs, 122 or 976 GB of
DRAM, 10 or 25 Gbit/s networking) attached to 1 or 8 Xilinx Virtex UltraScale+ FPGAs over
PCIe. Furthermore, each FPGA contains 64 GB of DRAM onboard across 4 channels, making it
an ideal platform for prototyping servers. The ability to provision any number of these instances
on-demand and distribute work to them provides scalability. Chapter 2.3 describes FireSim’s abil-
ity to automate the mapping and deployment of a simulation across a large number of f1.2xlarge
and f1.16xlarge instances.

Amazon also provides an “FPGA Developer AMI”, an OS image that contains all of the tooling
and licenses necessary to produce FPGA images for F1 instances pre-installed. As with FPGAs
themselves, users can now scale to an essentially unlimited number of FPGA synthesis/P&R ma-
chines, making it possible to parallelize builds for design-space exploration and for constructing
heterogeneous cluster simulations. Chapter 2.3 describes the FireSim infrastructure that can auto-
matically distribute FPGA image builds based on a set of supplied node configurations.

In addition to F1 instances, FireSim also uses m4.16xlarge instances, which are “standard”
EC2 instances that support high-performance (25 Gbit/s) networking. FireSim uses these instances
to run aggregation and root switch models. Altogether, by taking advantage of the scalability of a
cloud FPGA platform, we demonstrate the ability to automatically generate, deploy, and simulate
a cluster of 1024 quad-core server nodes (for a total of 4096 cores) interconnected by a 200 Gbit/s
network with 2 µs latency at 3.4 MHz. In aggregate, this simulation runs ˜14 billion instructions
per second and harnesses 12.8 million dollars’ worth of FPGAs, at a total cost of only $100 per
simulation hour3 to the user with no upfront capital expenditure. Chapter 2.5 details this example
FireSim instantiation.

2.3 FireSim design and internals
FireSim models a target system containing a collection of server blades connected by some form
of network. The target server blades are modeled using FAME-1 models [202] automatically de-
rived from the RTL of the server SoCs and mapped onto FPGA instances, while the target network
is modeled with high-performance, cycle-by-cycle C++ switch models running on host server in-
stances. These two target components are interconnected by a high-performance simulation-token
transport that models target link characteristics and abstracts away host platform details, such as
PCIe communication and host-to-host Ethernet communication. Figures 2.1 and 2.2 show the tar-

3Dollar amounts cited in this chapter are 2018 numbers.
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Figure 2.2: Example mapping of a 64-node simulation to EC2 F1 in FireSim.

get topology and target-to-host mapping respectively for a 64-node simulation with 8 top-of-rack
(ToR) switches and one root switch, which we use as an example throughout this section.

Server Blade Simulation
Target Server Design

FireSim compute servers are derived from the Rocket Chip SoC generator [22], which is an SoC
generation library written in Chisel [25]. Rocket Chip can produce Verilog RTL for a complete
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Table 2.1: Server blade configuration.

Blade Component RTL or Model
1 to 4 RISC-V Rocket Cores @ 3.2 GHz RTL
Optional RoCC Accel. (Table 2.2) RTL
16 KiB L1I$, 16 KiB L1D$, 256 KiB L2$ RTL
16 GiB DDR3 FPGA Timing Model
200 Gbit/s Ethernet NIC RTL
Disk Software Model

Table 2.2: Example accelerators for custom blades.

Accelerator Purpose
Page Fault Accel. Remote memory fast-path (Chapter 2.6)
Hwacha [137, 136, 135] Vector-accelerated compute
HLS-Generated Rapid custom scale-out accels.

processor system, including the RISC-V Rocket CPU, L1 and L2 caches, custom accelerators
(Table 2.2), and I/O peripherals. Table 2.1 shows the Rocket Chip configurations we use throughout
this work. When we refer to a particular frequency f for Rocket Chip, for example 3.2 GHz in
Table 2.1, this implies that all models that require a notion of target time in the simulation (e.g.,
the network) assume that 1 cycle is equivalent to 1/ f seconds. The “FAME-1 Rocket Chip” box in
Figure 2.2 provides a sample block diagram of a Rocket Chip server node.

Target Server Network Interface Controller

To build complete server nodes, we add two new peripherals to the Rocket Chip SoC. The first is
a network interface controller (NIC) written in Chisel that exposes a top-level network interface
on the SoC. The design of the NIC is shown in Figure 2.3. The NIC sends and receives Ethernet
packets to/from the network switch. Recent works have called for CPU and NIC to be integrated
on the same die in order to decrease communication latency [184]. Our NIC implements this ap-
proach and connects directly to the on-chip network of the Rocket Chip SoC through the TileLink2
interconnect [191]. This allows the NIC to directly read/write data in/out of the shared L2 on the
server SoC (Figure 2.2).

The NIC is split into three main blocks: the controller, the send path, and the receive path (Fig-
ure 2.3). The controller in the NIC is responsible for communicating with the CPU. It holds four
queues: send request queue, receive request queue, send completion queue, and receive completion
queue. The queues are exposed to the processor as memory-mapped IO registers. To send a packet
out through the NIC, the CPU writes the memory address and length of the packet to the send
request queue. To receive a packet from the NIC, the CPU writes the address of the receive buffer
to the receive request queue. When the send/receive paths finish processing a request, they add an
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Figure 2.3: Network Interface Controller (NIC) design.

entry to their respective completion queues. The NIC also has an interrupt line to the CPU, which
it asserts when a completion queue is occupied. The interrupt handler then reads the completion
entries off of the queue, clearing the interrupt.

The send path in the NIC begins with the reader module, which takes a send request from the
controller and issues read requests for the packet data from memory. Responses from memory are
forwarded to the next stage, the reservation buffer. The reader sends a completion signal to the
controller once all the reads for the packet have been issued.

The reservation-buffer module stores data read from memory while it waits to be transmitted
through the network interface. Responses from the memory bus can arrive out-of-order, so the
reservation buffer also performs some reordering so that the data is sent to the next stage in-order.

After the reservation buffer comes the aligner, which allows the send path to handle unaligned
packets. The interface to the memory system is 64 bits wide, so the reader can only read data at
an eight-byte alignment. If the starting address or ending address of the packet is not a multiple
of eight, some extra data before or after the packet will be read. The aligner shifts data coming
from the buffer so that the extra data is omitted, and the first byte of the packet will be the first byte
delivered to the destination.

The final module in the send path is the rate limiter, which allows NIC bandwidth to be lim-
ited at runtime using a token-bucket algorithm. Essentially, the limiter holds a counter that is
decremented every time a network flit is sent and incremented by k every p cycles. Flits can be
forwarded from input to output so long as the count is greater than zero. This makes the effective
bandwidth k

p times the unlimited rate. The values k and p can be set at runtime, allowing simula-
tion of different bandwidths without resynthesizing the RTL. Unlike external throttling of requests,
this internal throttling appropriately backpressures the NIC, so it behaves as if it actually operated
at the set bandwidth.

The receive path begins at the network input with a packet buffer. Since we cannot back-
pressure the Ethernet network, the buffer must drop packets when there is insufficient space. Pack-
ets are only dropped at full-packet granularity so that the operating system never sees incomplete
packets.

The writer module takes packet data from the buffer and writes it to memory at the addresses
provided by the controller. The writer sends a completion to the controller only after all writes for
the packet have retired.
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To interface between user-space software and the NIC, we wrote a custom Linux driver to allow
any Linux-compatible networking software to run on FireSim.

The top-level interface of the NIC connects to the outside world through a FAME-1 decoupled
interface—each cycle, the NIC must receive a token and produce a token for the simulation to
advance in target time. Chapter 2.3 details cycle-accurate packet transport outside of the NIC.

Target Server Block-Device Controller

We also add a block-device controller to the server blades simulated in FireSim to allow booting
of custom Linux distributions with large root filesystems. The block-device controller contains a
frontend module that interfaces with the CPU and one or more trackers that move data between
memory and the block device. The frontend exposes memory-mapped I/O (MMIO) registers to the
CPU, through which it can set the fields needed for a block-device request. To start a block device
transfer, the CPU reads from the allocation register, which sends a request to one of the trackers
and returns the ID of the tracker. When the transfer is complete, the tracker sends a completion to
the frontend, which records the ID of the tracker in the completion queue and sends an interrupt
to the CPU. The CPU then reads from the completion queue and matches the ID with the one it
received during allocation. The block device is organized into 512-byte sectors, so the controller
can only transfer data in multiples of 512 bytes. The data does not need to be aligned at a 512-byte
boundary in memory, but it does need to be aligned on the block device.

Cycle-Exact Server Simulations from RTL

We use the FAME-1 [202] transforms provided by the MIDAS/Strober frameworks [125, 124] to
translate the server designs written in Chisel into RTL with decoupled I/O interfaces for use in
simulation. Each target cycle, the transformed RTL on the FPGA expects a token on each input
interface to supply input data for that target cycle and produces a token on each output interface
to feed to the rest of the simulated environment. If any input of the SoC does not have an input
token for that target cycle, simulation stalls until a token arrives. This allows for timing-accurate
modeling of I/O attached to custom RTL on the FPGA. To provide a cycle-accurate DRAM model
for our target servers, we use an existing synthesizable DRAM timing model provided with MI-
DAS, attached directly to each host FPGA’s on-board DRAM, with parameters that model DDR3.
Other I/O interfaces (UART, Block Device, NIC) communicate with a software driver (“simula-
tion controller” in Figure 2.2) on the host CPU core, which implements both timing and functional
request handling (e.g. fetching disk blocks). Since in this work we are primarily interested in
scaling to large clusters and network modeling, we focus on the implementation of the network
token-transport mechanism used to globally coordinate simulation target time between the FAME-
1-transformed server nodes.

Improving Scalability and Utilization

In addition to the previously described configuration, FireSim includes an additional “supernode”
configuration, which simulates multiple complete target designs on each FPGA to provide im-
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proved utilization and scalability.
The basic target design described above utilizes only 32.6% of the FPGA LUT resources and

one of the four memory channels. Only 14.4% of this utilization was for our custom server-blade
RTL. As a result, the supernode configuration packs four simulated nodes on each FPGA, increas-
ing FPGA LUT utilization for server blades to approximately 57.7% of the FPGA logic resources,
and total FPGA LUT utilization to 76%. This optimization reduces the cost of simulating large
clusters, at the cost of multiplexing network token transfer for four nodes over a single PCIe link.
Chapter 2.5 describes how supernodes support the simulation of a large cluster with 1024 nodes.

This type of scalability is particularly important when attempting to identify datacenter-level
phenomena and reduces the dependency on the cloud-provider’s instantaneous FPGA instance ca-
pacity. Furthermore, this capability allows for the simulation of smaller target network topologies,
such as connecting a ToR switch to 32 simulated nodes, without an expensive host-Ethernet cross-
ing for token transport.

Network Simulation
Target Switch Modeling

Switches in the target design in FireSim are modeled in software using a high-performance C++
switching model that processes network flits cycle-by-cycle. The switch models have a parametriz-
able number of ports, each of which interact with either a port on another switch or a simulated
server NIC on the FPGA. Port bandwidth, link latency, amount of buffering, and switching latency
are all parameterized and runtime configurable.

The simulated switches implement store-and-forward switching of Ethernet frames. At ingress
into the switch, individual simulation tokens that contain valid data are buffered into full packets,
timestamped based on the arrival cycle of their last token, and placed into input packet queues.
This step is done in parallel using OpenMP threads, with one thread per-port. The timestamps are
also incremented by a configurable minimum switching latency to model the minimum port-to-
port latency of datacenter switches. These timestamps are later used to determine when a packet
can be released to an output buffer. A global switching step then takes all input packets available
during the switching round, pushes them through a priority queue that sorts them on timestamp,
and then drains the priority queue into the appropriate output port buffers based on a static MAC
address table (since datacenter topologies are relatively fixed). In this step, packets are duplicated
as necessary to handle broadcasts. Finally, in-parallel and per-port, output ports “release” packets
to be sent on the link in simulation-token form, based on the switch’s notion of simulation time,
the packet timestamp, and the amount of available space in the output token buffer. In essence,
packets can be released when their release timestamp is less than or equal to global simulation time.
Since the output token buffers are of a fixed size during each iteration, congestion is automatically
modeled by packets not being able to be released due to full output buffers. Dropping due to buffer
sizing and congestion is also modeled by placing an upper bound on the allowable delay between
a packet’s release timestamp and the global time, after which a packet is dropped. The switching
algorithm described above and assumption of Ethernet as the link-layer is not fundamental to
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FireSim—a user can easily plug in their own switching algorithm or their own link-layer protocol
parsing code in C++ to model new switch designs.

High-performance Token Transport

Unlike simulating “request-response” style channels (e.g. AXI channels) in cycle-accurate simu-
lation platforms, the decoupled nature of datacenter networks introduces new challenges and pre-
vents many optimizations traditionally used to improve simulation performance, especially when
simulated nodes are distributed as in FireSim. In this section, we describe our network simulation
and how we map links in simulation to the EC2 F1 host platform.

From the target’s view, endpoints on the network (either NICs or ports on switches) should
communicate with one another through a link of a particular latency and bandwidth. On a simulated
link, the fundamental unit of data transferred is a token that represents one target cycle’s worth of
data. Each target cycle, every NIC expects one input token and produces one output token in
response. Each port on every switch also behaves in the same way, expecting one input token and
generating one output token every cycle. For a link with link latency of N cycles, N tokens are
always “in-flight” on the link at any given time. That is, if a particular network endpoint issues a
token at cycle M, the token arrives at the other side of the link for consumption at cycle M+N.

Network tokens in FireSim consist of two components: the target payload field and a “last”
metadata field that indicates to the transport that a particular token is the end of a packet, without
having to understand a particular link-layer protocol. In the case of our Ethernet model, the target
payload field contains two fields: the actual data being transmitted by the target design during that
cycle and a valid signal to indicate that the input data for this cycle is legitimate data (as opposed
to an empty token, which corresponds to a cycle where the endpoint received nothing from the
network). To simulate the 200 Gbit/s links we use throughout this work, the width of the data field
is set to 64 bits, since we assume that our simulated processor frequency is 3.2 GHz. In a distributed
simulation as in FireSim, different host nodes are decoupled and can be executing different target
cycles at the same time, but the exchange of these tokens ensures that each server simulation
computes each target cycle deterministically, since all NICs and switch ports are connected to the
same network and do not advance unless they have input tokens to consume.

In a datacenter topology, there are two types of links that need to be modeled: links between
a NIC and a switch port and links between two switch ports on different switches. Since we
model switches in software and NICs (and servers) on FPGAs, these two types of links map to two
different types of token transport. Transport between NICs and switch models requires two hops:
a token must first cross the PCIe interface to an individual node’s simulation driver, then be sent to
a local switch model through shared memory or a remote switch model over a socket.

As discussed in prior work on distributed software-based cluster simulation [154], batching the
exchange of these tokens improves host bandwidth utilization and hides the data movement latency
of the host platform—both PCIe and Ethernet in the case of EC2 F1. Tokens can be batched up to
the target’s link latency, without any compromise in cycle accuracy. Given that the movement of
network tokens is the fundamental bottleneck of simulation performance in a FireSim simulation,
we always set our batch size to the target link latency being modeled.



CHAPTER 2. FIRESIM 19

We utilize three types of physical transports to move tokens. Communication between FPGAs
and host CPUs on EC2 F1 happens over PCIe. For high-performance token transport, we use the
Amazon Elastic DMA (EDMA) interface to move batches of tokens (one link latency’s worth)
between token queues on the FPGA and the simulation controller on the host. Transport between
the simulation controller and a ToR switch or between two switches can be done either through a
shared memory port (to effectively provide zero-copy transfer between endpoints) or a TCP socket
when endpoints are on separate nodes. Since we are focused on simulating low-latency target
networks, our primary bottleneck in simulation is the host latency of these transport interfaces.
Since latency is the dominant factor, we also do not employ any form of token compression. This
also means that simulation performance is stable (workload independent), apart from the cost of
the switching phase inside a switch. We explore the trade-off between target-link latency and
simulation performance in Chapter 2.5.

To provide a concrete example to tie together the physical and logical layers in link modeling
and token transport, let us trace the progress of a packet moving between two servers (labeled A
and B) connected by a single ToR switch in simulation. For simplicity, we assume that the packet
consists of only one token, however this description naturally extends to longer packets. We assume
that links have a latency of l cycles and that we batch token movement by always moving l tokens
at a time across host PCIe/network links. We also assume that the network is completely unloaded
and that switches have a minimum port-to-port latency of n cycles. Within a server, cycle-accuracy
is maintained by virtue of directly running FAME-1-transformed RTL on an FPGA, so we focus
on the path between the top-level I/O of the two server NICs that are communicating:

1. Suppose that all simulated components (the switch and the two servers) begin at cycle t = 0,
with each input token queue initialized with l tokens.

2. Each simulated component can independently advance to cycle t = l by consuming the input
tokens. Suppose that server A’s NIC has a valid packet to send at cycle t = m < l.

3. This packet is written into the output token buffer in the NIC Simulation Endpoint (see
Figure 2.2) on the FPGA at index m. When server A has completely filled the buffer, the buffer is
copied first to the software simulation controller over PCIe and then to the ToR switch via shared
memory.

4. In the meantime, since the switch was also initially seeded with l tokens per port, its simu-
lation time has also advanced to cycle l, before it receives this buffer.

5. Now, when the switch “ticks” cycle-by-cycle through the newly received buffer and reaches
simulation time t = l +m, it will “receive” the packet sent by server A.

6. Next, the switch will write the packet to an output buffer after a minimum switching delay,
n, at cycle t = l +m+ n. For the sake of argument, assume m+ n < l. Then, this packet will be
written to the next buffer sent out by the switch.

7. In the meantime, server B will have received two rounds of input buffers, so it will have
advanced to cycle 2l when it receives the buffer containing the packet. Since the packet is at index
m+n in this buffer, it will arrive at the input of the server’s NIC at cycle 2l +m+n, or two times
the link latency, plus the switching latency, plus the time at which server A sent the packet.

This decoupled simulation technique allows us to scale easily to large clusters. Furthermore,
simulations generally map well onto our host platform, since we are in essence simulating large
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m4_16xlargeIPs = [...]

f1_16xlargeIPs = [...]

root = SwitchNode()

level2switches = [SwitchNode() for x in range(8)]

servers = [[ServerNode("QuadCore")

for y in range(8)]

for x in range(8)]

root.add_downlinks(level2switches)

for l2switchNo in range(len(level2switches)):

switch = level2switches[l2switchNo]

servers = servers[l2switchNo]

switch.add_downlinks(servers)

Figure 2.4: Example simulation configuration. This instantiates a simulation of the cluster topol-
ogy shown in Figure 2.1 with quad-core servers.

target clusters on large host clusters. Unlike software simulators, the power of our host CPUs can
be dedicated to fast network switching, while FPGAs handle the computationally expensive task
of modeling the low-level details of the processors and the rest of the server blades.

Deploying/Mapping Simulation to EC2 F1

At this point, we have outlined each component necessary to build a large-scale cluster simulation
in FireSim. However, without automation, the task of stitching together all of these components
in a reliable and reproducible way is daunting. To overcome this challenge, the FireSim infras-
tructure includes a simulation manager that automatically builds and deploys simulations given a
programmatically defined datacenter topology. That is, a user can write a configuration in Python
that describes a particular datacenter topology and server types for each server blade as shown in
Figure 2.4. The FireSim cluster manager takes this configuration and automatically runs the de-
sired RTL through the FPGA build flow and generates the high-performance switch models and
simulation controllers with the appropriate port implementations (shared memory, socket, PCIe
transport). In particular, based on the given topology, simulated servers are automatically assigned
MAC and IP addresses and the MAC switching tables in the switch models are automatically pop-
ulated for each switch in the simulation. Once all component builds are complete, the manager
flashes FPGAs on each F1 instance with the desired server configurations, deploys simulations and
switch models as described by the user, and finally boots Linux (or other software) on the simu-
lated nodes. At the root switch, a special port can be added to the network that allows for direct
ingress into the simulated datacenter network over SSH. That is, a user can directly ssh into the
simulated system from the host machine and treat it as if it were a real cluster to deploy programs
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Figure 2.5: Ping latency vs. configured link latency.

and collect results. Alternatively, a second layer of the cluster manager allows users to describe
jobs that automatically run on the simulated cluster nodes and automatically collect result files
and host/target-level measurements for analysis outside of the simulation. For example, the open
release of FireSim includes reusable workload descriptions used by the manager to automatically
run various versions of SPECint, boot other Linux distributions such as Fedora, or reproduce the
experiments described later in this chapter, among others.

2.4 Validating FireSim’s modeling fidelity

In this section, we validate the FireSim simulation environment, in particular our high-perf-
ormance, cycle-accurate network simulation, using several benchmarks.

Network Latency Benchmarking
We benchmark end-to-end latency between simulated nodes by collecting samples from the ping
utility in Linux, while varying the target link latency set in simulation. This experiment boots Linux
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on a simulated 8-node cluster connected by a single ToR switch and collects the results of 100 pings
between two nodes. We ignore the first ping result on each boot, since this includes additional
latency for an ARP request for the node to find the MAC address of the node being pinged. We
then vary the configured link latency for the simulation and record the average RTT reported by
ping. Figure 2.5 shows the results of this benchmark. The bottom line represents the “ideal” round
trip time (link latency times four, plus a fixed port-to-port switching latency of 10 cycles times
two). As expected for a correct network simulation, the measured results parallel the ideal line,
with a fixed offset that represents overhead in the Linux networking stack and other server latency.
The ≈34 µs overhead we observe matches results widely reported in the OS literature [184].

Network Bandwidth Benchmarking: iperf3 on Linux
Next, we run iperf3, a standard network benchmarking suite, on top of Linux on the simulated
nodes and measure the bandwidth between two nodes connected by a ToR switch. In this bench-
mark, we measure an average bandwidth over TCP of 1.4 Gbit/s. While this is much lower than
our nominal link bandwidth of 200 Gbit/s, we suspect that the bulk of this mismatch is due to the
relatively slow single-issue in-order Rocket processor running the network stack in software on an
immature RISC-V Linux port with our Linux network driver.

Bare-metal node-to-node bandwidth test
To separate out the limits of the software stack from our NIC hardware and simulation environment,
we implemented a bare-metal bandwidth benchmarking test that directly interfaces with the NIC
hardware. The test constructs a sequence of Ethernet packets on one node and sends them at
maximum rate to another node. On the other node, we verify that the received data is correct
and then send an acknowledgement to the sender to indicate test completion. With this test, a
single NIC is able to drive 100 Gbit/s of traffic onto the network, confirming that our current Linux
networking software stack is a bottleneck.

Saturating Network Bandwidth
Because our current target server-blade designs are not capable of saturating the 200 Gbit/s network
links that we are modeling even using bare-metal programs, we demonstrate the ability to saturate
our network simulation by running concurrent streams across a cluster. We simulate a 16-node
cluster with two ToR switches and one root switch. Each server attached to the first ToR switch
sends data to the corresponding server on the other ToR switch (through the root switch). We then
measure the aggregate bandwidth over time at the root switch. Figure 2.6 shows the results of this
benchmark. We performed this test with different rate limits set on the sending nodes to simulate
the standard Ethernet bandwidths of 1, 10, 40, and 100 Gbit/s. Each sender node starts a fixed unit
of time after the previous sender began, so that traffic at the ToR switch ramps up over time and
eventually saturates in the cases of 40 and 100 Gbit/s senders.
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Figure 2.6: Multi-node bandwidth test. Dotted grey lines mark the entry points of individual
senders.

In the 100 Gbit/s test, each sender is able to saturate the full bandwidth of its link, so the total
bandwidth at the switch jumps up by 100 Gbit/s for each sender until it saturates at 200 Gbit/s after
the second sender enters. In the 40 Gbit/s test, the total bandwidth increases by 40 Gbit/s for each
additional sender until it saturates after five senders enter. In the 1 and 10 Gbit/s tests, the root
switch’s bandwidth is not saturated and instead maxes out at 8 and 80 Gbit/s, respectively.

Reproducing memcached QoS Phenomena from Deployed Commodity
Clusters in FireSim
As an end-to-end validation of FireSim running a realistic datacenter workload, we run the mem-
cached key-value store and use the mutilate distributed memcached load-generator from Leverich
and Kozyrakis [139] to benchmark our simulated system. While much simulation work has focused
on reproducing well-known phenomena like the long-latency tail, we go further to validate a finer-
grained phenomenon: thread imbalance in memcached servers when memcached is instructed to
use more threads than the number of cores in the system. Reproducing this result involves interac-
tion between the core microarchitecture, operating system, and network. Under thread imbalance,
a sharp increase in tail latency was shown while median latency was relatively unchanged [139].
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Figure 2.7: Reproducing the effect of thread imbalance in memcached on tail latency.

To replicate this result, we simulate an 8-node cluster in FireSim interconnected by a 200 Gbit/s,
2 µs latency network, where each simulated server has 4 cores. We provision one server in the
simulation as a memcached host. We also cross-compile mutilate and its dependencies to run on
RISC-V servers and run it on the remaining seven simulated blades to generate a specified ag-
gregate load on the memcached server. On the serving node, we configure memcached to run
with either 4 or 5 threads and report median and tail (95th-percentile) latencies based on achieved
queries per second. Figure 2.7 shows the results of this experiment. As expected from the earlier
work [139], we observe thread imbalance when running with 5 threads—the tail latency is signifi-
cantly worsened by the presence of the extra thread, while median latency is essentially unaffected.
In the 4-thread case, we also notice an interesting phenomenon at low to medium load—the 95th-
percentile line for 4-threads tracks the 5-thread case, until a certain load is reached. We suspect
that this phenomenon is due to poor thread placement in that region of QPS, even when the number
of threads equals the number of cores in the system [139]. To confirm our suspicion, we run an
additional experiment where we drive the same load, but run a memcached server with 4 threads
and pin one thread to each of the four cores in the processor (“4 threads pinned” in Figure 2.7). In
this case, we again see the same curve for 50th-percentile latency. However, the 95th-percentile
curve is smoothed-out relative to the no-pinning 4-thread 95th-percentile curve, but overlaps it at
high load, where we suspect that the Linux scheduler automatically places threads as if they were
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Figure 2.8: Simulation rate vs. # of simulated target nodes.

pinned one-to-a-core, even in the no-pinning case.

2.5 Characterizing FireSim simulation rates across system
scale and configuration

In this section, we analyze the performance of FireSim simulations, using a variety of target con-
figurations.

Performance vs. target scale
To show the overhead of token-based synchronization of all simulated nodes in clusters intercon-
nected by a simulated 2 µs, 200 Gbit/s network as a function of cluster size, we run a benchmark
that boots Linux to userspace, then immediately powers down the nodes in the cluster and reports
simulation rate. This process does not exercise the network from the target perspective. However,
as we do not yet perform any form of token compression, the number of tokens exchanged on the
host platform is exactly the same as if there were network traffic (empty tokens are being moved
between the target network endpoints). The only component of simulation overhead not included
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Figure 2.9: Simulation rate vs. simulated network link latency.

in this measurement is the overhead of packet switching inside the switch when there is traffic on
the network. However, this is primarily a function of the load on a single switch, rather than simu-
lation scale. This benchmark shows the overhead of distributing simulations, first between FPGAs
on one instance, then between FPGAs in different instances. Figure 2.8 shows the results of this
benchmark, both for “standard” and “supernode” FPGA configurations.

Performance vs. target network latency
As prior work has shown, moving tokens between distributed simulations is a significant bottleneck
to scaling simulations [154]. Furthermore, as target link latency is decreased, simulation perfor-
mance also decreases proportionally due to the loss of benefits of request batching. Throughout
this work, we focus on a 2 µs link latency when benchmarking, since we consider this to be sim-
ilar to latencies desired in experiments. Figure 2.9 shows simulation performance as a function
of varying target link latency. As expected, simulation performance improves as the batch size of
tokens increases.
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Figure 2.10: Topology of 1024-node datacenter simulation.
Table 2.3: 1024-node memcached experiment latencies and QPS.

50th
Percentile
(µs)

95th
Percentile
(µs)

Aggregate
Queries-Per-
Second

Cross-ToR 79.26 128.15 4,691,888.0
Cross-aggregation 87.10 111.25 4,492,745.6
Cross-datacenter 93.82 119.50 4,077,369.6

Thousand-Node Datacenter Simulation
To demonstrate the scale achievable with FireSim, we run a simulation that models 1024 × 3.2 GHz
quad-core nodes, with 32 top-of-rack switches, 4 aggregation switches, and one root switch, all in-
terconnected by a 2 µs, 200 Gbit/s network and arranged in a tree-topology, at a simulation rate
of 3.42 MHz. This design represents a more realistic target design point than the simpler design
used as an example in Chapter 2.3, since we make use of FireSim’s “supernode” feature to pack
four simulated nodes per FPGA, giving a total of 32 simulated nodes attached to each ToR switch.
Figure 2.10 shows this topology in detail. Each ToR switch has 32 downlinks to nodes and one
uplink to an aggregation switch. Each aggregation switch has eight downlinks, each to one ToR
switch and one uplink to the root switch. Finally, the root switch has 4 downlinks to the 4 ag-
gregation switches in the target topology. This topology is specified to the FireSim simulation
manager with around 10 lines of configuration code. More complicated topologies, such as a fat-
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tree, can similarly be described in the manager configuration, but we do not explore them in this
work. Compared to existing software simulators, this instantiation of FireSim simulates an order
of magnitude more nodes, with several orders of magnitude improved performance.

To map this simulation to EC2, we run 32 f1.16xlarge instances, which host ToR switch
models and simulated server blades, and 5 m4.16xlarge instances to serve as aggregation and
root-switch model hosts. The cost of this simulation can be calculated for 2 different EC2 pricing
models: spot instances (bidding on unused capacity) and on-demand (guaranteed instances). To
calculate the spot price of this simulation, we use the longest stable prices in recent history, ignor-
ing downward and upward spikes. This results in a total cost of ≈$100 per simulation hour. Using
on-demand instances, which have fixed instance prices, this simulation costs ≈$440 per simula-
tion hour. Using publicly listed retail prices of the FPGAs on EC2 (≈$50K each), this simulation
harnesses ≈$12.8M worth of FPGAs. We expect that users will use cluster-scale experiments to
prototype systems, with datacenter-scale experiments to analyze behavior at-scale once a system
is already stable at cluster-scale.

As an example experiment that runs at this scale, we use the mutilate memcached load gen-
erator (as in Chapter 2.4) to generate load on memcached servers throughout the datacenter. In
each experiment, there are 512 memcached servers and 512 mutilate load generator nodes, with
each load generator targeting one server. We run these in 3 different configurations: one where
all requests remain intra-rack, one where all requests cross an aggregation switch (but not the root
switch), and one where all requests cross the root switch, by changing which servers and load
generators are paired together. Table 2.3 shows average 50th-percentile latency, average 95th-
percentile latency, and total QPS handled across all server-client pairs for these experiments. As
expected, when we jump from crossing ToR switches only to crossing aggregation switches for
each request, the 50th-percentile latency increases by 4 times the link latency, plus switching la-
tency, or approximately 8 µs. A similar increase is seen in the 50th-percentile latency when moving
from crossing aggregation switches to crossing root switches. On the other hand, in both cases,
there is no predictable change in 95th-percentile latency, since it is usually dominated by other
variability that masks changes in number of hops for a request. Finally, we see that number of
queries per second decreases. This decrease is not as sharp as one would expect, because we limit
the generated load to ≈10,000 requests per server, since we are interested primarily in showing the
effects of latency rather than OS-effects or congestion.

2.6 A preliminary case-study of scale-out acceleration:
Building a page-fault accelerator

In this section, as a case study to exemplify the cross-cutting architecture projects enabled by
FireSim, we show preliminary performance results for a “Page-Fault Accelerator” [167], devel-
oped by Nathan Pemberton, Emmanuel Amaro, Howard Mao, and Deborah Soung, that removes
software from the critical path of paging-based remote memory.

There have been several recent proposals to disaggregate memory in warehouse-scale comput-



CHAPTER 2. FIRESIM 29

ers, motivated by the increasing performance of networks, and a proliferation of novel memory
technologies (e.g., HBM, NVM) [20, 90]. In a system with memory disaggregation, each com-
pute node contains a modest amount of fast memory (e.g., high-bandwidth DRAM integrated on-
package), while large capacity memory or NVM is made available across the network through
dedicated memory nodes.

One common proposal to harness the fast local memory is to use it as a large cache for the re-
mote bulk memory. This cache could be implemented purely in hardware (e.g., [213, 132]), which
could minimize latency but may involve complicated architectural changes and would lack OS
insights into memory usage. An alternative is to manage the cache purely in software with tradi-
tional paging mechanisms (e.g., [76, 84]). This approach requires no additional hardware, can use
sophisticated algorithms, and has insight into memory usage patterns. However, our experiments
show that even when paging to local memory, applications can be slowed significantly due to the
overhead of handling page faults, which can take several microseconds and pollute the caches. In
this case study, we propose a hybrid HW/SW cache using a new hardware device called the “page
fault accelerator” (PFA).

The PFA works by handling the latency-critical page faults (cache-miss) in hardware, while
allowing the OS to manage latency-insensitive (but algorithmically complex) evictions async-
hronously. We achieve this decoupling with a queue of free page frames (freeQ) to be used by
the PFA for fetched pages, and a queue of new page descriptors (newQ) that the OS can use to
manage new page metadata. Execution then proceeds as follows:

• The OS allocates several page frames and pushes their addresses onto the freeQ. The OS
experiences memory pressure and selects pages to evict to remote memory. It marks them as
“remote” in the page tables and then provides them to the PFA for eviction.

• The application attempts to access a remote page, triggering the PFA to request the page
from remote memory and place it in the next available free frame. The application is then
resumed.

• Some time later (either through a background daemon, or through an interrupt due to full
queues) the OS pops all new page descriptors off the newQ and records the (now local)
pages in its metadata. The OS typically provides more free frames at this time.

We implemented the PFA in Rocket Chip and modified Linux to use it for all paging activity.
For our baseline, we modified Linux to use the memory blade directly through its normal pag-
ing mechanisms (similar to Infiniswap [84]). The memory blade itself is implemented as another
Rocket core running a bare-metal memory server accessed through a custom network protocol.
Figure 2.11 plots PFA performance on two benchmarks: Genome, a de-novo genome assembly
benchmark that involves random accesses into a large hash table, and Qsort, a simple quicksort
benchmark. Both benchmarks were tuned to have a peak memory usage of 64 MiB. Quicksort is
known to have good cache behavior and does not experience significant slowdowns when swap-
ping. Genome assembly, however, has unpredictable access patterns, leading to significant cache
thrashing in low local memory configurations. In both cases, the PFA significantly reduces the
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Figure 2.11: Hardware-accelerated vs. software paging.

overhead (by up to 1.4×). A more detailed analysis shows that while the number of evicted pages
is the same in both cases, using the PFA leads to a 2.5× reduction in metadata management time
on average. While the same code path is executed for each new page, the PFA batches these events,
leading to improved cache locality for the OS, and fewer cache-polluting page-faults for the appli-
cation. Future implementations could use a background daemon for new-page processing, further
decoupling the application from new page management.

2.7 Related work
Computer architects have long used cycle-accurate simulation techniques to model machines and
workloads, including servers in warehouse-scale machines. Simulation of machines at the scale of
individual nodes was largely sufficient for 2010-era datacenters; the commodity Ethernet network
used in most datacenters provided a natural decoupling point to draw a boundary on the effects of
microarchitectural changes. Since most systems were built using commodity components, issues of
scale could be measured in actual deployments and used to improve future designs. For example,
in cases where scale-out workloads differed from traditional workloads in terms of fine-grained
performance, performance-counter based mechanisms could be used to analyze microarchitectural
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performance issues on commodity servers at scale [67, 110].
Other tools for simulating rack-scale systems can broadly be divided into three categories—

software-based simulators that provide flexibility but low performance, hardware-accelerated sim-
ulators that are expensive to deploy and difficult to use but provide high-performance, and statis-
tical models that analyze the big-picture of datacenter performance but are not targeted towards
modeling fine-grained system interactions. Below, we review this prior work.

Software Simulators
One approach to simulating warehouse-scale computers is to take existing cycle-accurate full-
system software simulators and scale them up to support multiple nodes. One simulator that uses
this approach is dist-gem5 [154], a distributed version of the popular architectural simulator gem5.
This simulator networks together instances of gem5 running on different nodes by moving synchro-
nization messages and target packets. The primary advantage of these software-based approaches
is that they are extremely flexible. However, this flexibility comes at the expense of performance—
these software-based solutions are several orders of magnitude slower than FPGA-accelerated sim-
ulation platforms like FireSim. Also, software models of processors are notoriously difficult to val-
idate and calibrate against a real design [86], and do not directly provide reliable power and area
numbers. By utilizing FPGAs in a cloud service, FireSim matches many of the traditional flexibil-
ity advantages of software simulators, excluding short build times. Software simulators have also
traditionally had more sophisticated hardware models than FPGA-based simulators, however the
recent explosion in open-source hardware is providing realistic designs [21, 85, 26] that have the
advantage of being truly cycle-exact and synthesizable to obtain realistic physical measurements.

Another prior software-based approach is reflected in the Wisconsin Wind Tunnel (WWT)
[179] project, which used the technique of direct execution to achieve high simulation performance
for individual nodes. In turn, WWT encountered similar performance bottlenecks as FireSim—
network simulation has a significant impact on overall simulation performance. Follow-on work
in the WWT project [41] explored the impact of several different network simulation models on
the performance and accuracy of WWT. Similarly, we plan to explore more optimized network
simulation models in FireSim in the future, which would trade-off accuracy vs. performance to
support different user needs, using our current cycle-exact network model as the baseline. FireSim
already supports the other extreme of the performance-accuracy curve—purely functional network
simulation—which allows individual simulated nodes to run at 150+ MHz, while still supporting
the transport of Ethernet frames between simulated nodes.

The Graphite simulator [153] takes a different software-based approach to simulating datacen-
ters. Graphite can simulate thousands of cores in a shared-memory system at high simulation rate
(as low as 41× slowdown), but only by dropping cycle accuracy and relaxing synchronization be-
tween simulated cores. Moreover, unlike full-system software simulators, Graphite only supports
user applications and does not boot an OS.

A final software-based approach to simulating datacenters is to abstractly model the datacenter
as a set of statistical events. This reduces simulation runtime, but sacrifices the fidelity provided
by detailed microarchitectural models. This approach is used by datacenter-scale simulators like
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BigHouse [150] and MDCSim [141]. BigHouse models a datacenter using a stochastic queuing
simulation, representing datacenter workloads as a set of tasks with a distribution of arrival and
service times. The distribution is determined empirically by instrumenting deployed datacenter
systems. These distributions are then used to generate a synthetic event trace that is fed into a
discrete-event simulation. The simulation is distributed across multiple nodes by running a separate
instance of the simulator with a different random seed on each node, then collecting the individual
results into a final merged result. MDCSim separates the simulation into three layers: user, kernel,
and communication. It then models specific services and systems in each layer, such as web and
database servers, schedulers, and NIC, as M/M/1 queues. While these simulation tools are useful
for providing the “big picture” of datacenter performance and can do so considerably faster than
FireSim, FireSim instead focuses on modeling fine-grained interactions at the level of detailed
microarchitecture changes between systems at-scale.

Hardware-accelerated Simulators
Several proprietary tools exist for hardware-accelerated system simulation, such as Cadence Palla-
dium, Mentor Veloce, and Synopsys Zebu [108]. These systems are generally prohibitively expen-
sive (≈millions of dollars) and thus unattainable for all but the largest industrial design groups.

Some existing projects use FPGAs to accelerate simulation of computer systems, including
large multicore systems [16]. Most recently, projects in the RAMP collaboration [215] pushed
towards fast, productive FPGA-based evaluation for multi-core systems [49, 165, 50, 204]. How-
ever, most of these simulation platforms do not support simulation of scale-out systems. To our
knowledge, the closest simulator to FireSim in this regard is DIABLO [203, 201] and FireSim
builds on key lessons learned from the RAMP and DIABLO projects. Although DIABLO also
uses FPGAs to simulate large scale-out systems, there are several significant differences between
DIABLO and FireSim:

Automatically transformed RTL vs. Abstract Models. In DIABLO, servers are modeled
using handwritten SystemVerilog abstract RTL models of SPARC cores. Authoring abstract RTL
models is far more difficult than developing an actual design in RTL, and abstract RTL cannot be
run through an ASIC flow to gain realistic power and area numbers. FireSim’s simulated servers
are built by directly applying FAME-1 transforms to the original RTL for a server blade to yield a
simulator that has the exact cycle-by-cycle bit-by-bit behavior of the user-written RTL. Simulated
switches in DIABLO are also abstract RTL models. In FireSim, users still write abstract switch
models, but since switches are not the simulation bottleneck, switch models can be written in C++
making them considerably easier to modify. For detailed switch simulations, FireSim could be
extended to also support FAME-1 transformations of real RTL switch designs.

Specialized vs. Commodity Host Platform. Given the lack of FPGA-cloud platforms at
the time, DIABLO uses a custom-built FPGA platform that cost ≈$100K at time of publication,
excluding operation and maintenance costs and the requirement for sysops expertise. This choice
of platform makes it very difficult for other researchers to use DIABLO and reproduce results. In
contrast, FireSim is deployed in a public cloud environment where Amazon has made all platform-
specific FPGA scripts open-source [13]. Similarly, the entire FireSim code base is open-source,



CHAPTER 2. FIRESIM 33

which allows any user to easily deploy simulations on EC2 without the high CapEx of a DIABLO-
like system. Furthermore, Amazon frequently gives substantial EC2 credit grants to academics for
research purposes through their AWS Cloud Credits for Research program [12].

2.8 Conclusion
The open-source FireSim simulation platform represents a new approach to warehouse-scale archi-
tectural research, simultaneously supporting an unprecedented combination of fidelity (cycle-exact
microarchitectural models derived from synthesizable RTL), target scale (4,096 processor cores
connected by network switches), flexibility (modifiable to include arbitrary RTL and/or abstract
models), reproducibility, target software support, and performance (less than 1,000× slowdown
over real time), while using a public FPGA-cloud platform to remove upfront costs and provide
large cluster simulations on-demand.

2.9 A retrospective on six years of FireSim

Introduction
“Why is it called FireSim?” is a question we receive often, posed by users who today employ
FireSim to simulate a variety of systems beyond its initial goal: as a “from-the-RTL-up” simulator
for a specialized Warehouse-Scale Computer (WSC) architecture called FireBox [20]. When we
set out to build FireSim, the published mandate [20] was to:

“...simulate an entire FireBox, including the fiber-optic network, the switch, the NIC, and 1000
SoCs, with every core running the full BDAS stack (from the AMP Lab) and the Linux OS, as
well as interactive services and batch applications, with only a factor of 1000x slowdown from
realtime.”

The FireSim ISCA‘18 paper (Chapter 2 and [118]) describes how we exceeded these objectives,
with one caveat: our demo applications were not JVM-based as no usable RISC-V JVM existed
in 2017. While the achieved scale was exciting, the true promise and broader adoption of FireSim
has been driven by how this scale was realized.

Hardware Trends in 2017
Around 2017, when building FireSim, we identified several technology trends that helped us over-
come these issues:

FPGAs in the public cloud became broadly available [27, 112, 116]. Cloud computing, estab-
lished for years in systems research [18], could now benefit architects. Academics/startups could
elastically scale high-fidelity simulations to 1000s of nodes without buying millions of dollars of
FPGAs. In large organizations, architects/systems SW developers, who rarely get access to costly
“big metal” HW-accelerated simulators, could now co-design HW/SW directly using real RTL.
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FPGA capacity grew sufficiently to host interesting research targets without immediately re-
quiring “tricks” (multi-threading, abstract modeling, partitioning, etc.) from the FPGA simulator
literature. Many were later added to FireSim, but critically, were not initially required to ship a
useful simulator.

Open-source, industry-verified hardware implementations became available. These were
sufficiently capable to serve as a base for architecture research and included microprocessors,
caches, on-chip networks, and peripherals [22, 1, 2].

RISC-V brought broad SW support for open HW designs, allowing them to run entire oper-
ating systems and applications.

Intermediate representations of RTL enabled compiler passes that automatically transformed
HW designs [103, 25].

FireSim’s Design Philosophy
Several guiding principles enabled FireSim to scale from high-fidelity simulations of single SoCs
to entire WSCs:

Treat FPGAs as a “simulation appliance.” Users should focus on their design task, not
FPGA platform specifics. FireSim took a cloud-first approach, with heavy automation to hide
the complexities of using FPGAs and ample documentation (https://docs.fires.im). This
automation was required to enable the simulation scale presented in the original paper, but all users
today, including those simulating single systems or using on-premises FPGAs, reap the benefits.

Parameterized tapeout-friendly RTL should be the single source of truth. The vast major-
ity of users should not have to modify and re-calibrate abstracted models.

FPGA simulation “tricks” should be applied by a compiler, e.g., FireSim’s multi-ported
RAM [147] and multi-threading optimizations [33]. Abstract models should be used only when
necessary and must be heavily validated and re-used (e.g., FireSim’s FASED DRAM model [34]).
Extending upon this basis, FireSim now supports automatic designer-guided partitioning of large,
monolithic RTL designs across multiple FPGAs via FireAxe [218].

One flow should scale from high-level architectural modeling and software implemen-
tation to pre-silicon verification/validation for tape-out. This required coherently packaging
everything from RTL designs and VLSI tools to compatible software [120, 168]. In 2019, as the
flow grew, parts were moved to a more logical home in Chipyard [14].

Easy-to-use instrumentation and deterministic simulation are essential. FirePerf [115] and
DESSERT [123] added high-fidelity and deterministic debugging and performance instrumentation
to FireSim, enabling SW-simulator-like flexibility and introspection, but at significantly higher
speeds.

Open-source and the FireSim community
FireSim was open-sourced (https://github.com/firesim/firesim) in May 2018 alongside
the publication of the ISCA paper. With the wide variety of features added to FireSim over
time (many of which are highlighted in the previous sub-section), it has matured into the de

https://docs.fires.im
https://github.com/firesim/firesim
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facto open-source high-performance FPGA-accelerated simulation platform for designs at various
scales. While we cannot cover all of FireSim’s features here, hundreds of pages of documentation
covering many more features are available at https://docs.fires.im. Today, FireSim enables
domain experts across the computing stack (e.g., algorithms and ML model experts) to work di-
rectly with computer architects on fast simulations of real hardware implementations running their
actual software stacks, allowing domain experts to directly influence hardware designs in hours
rather than years, before a hardware design is ossified in a fabricated chip.

As of the time of writing, FireSim has been used (not only cited) in over 60 peer-reviewed
publications from first authors at over 25 academic and industrial institutions. These publica-
tions have spanned many EE/CS-focused research domains, including computer architecture, sys-
tems, networking, security, scientific computing, algorithms, HPC, circuits, design automation,
and more. This validates our vision that an easy-to-use, high-performance simulator of realistic
RTL hardware implementations would provide a shared platform to enable HW/SW co-design and
collaboration between researchers at varying levels of the computing stack. The complete list of
FireSim user publications and user institutions is too long to list here; see the FireSim website:
https://fires.im/publications/#userpapers.

Several users have deployed FireSim in surprising ways. For example, FireSim has been used
as a standard host platform for DARPA and IARPA programs. In particular, FireSim was used as a
host platform for DARPA’s first ever bug bounty program, FETT, to make several novel security-
augmented hardware designs available to hundreds of white-hat hackers for security evaluation
over the internet [128]. FireSim has also been used in the development of commercially available
chips and industrial users have also published comparisons of FireSim simulations of their designs
against their taped-out silicon, providing an end-to-end validation of FireSim’s performance mod-
eling capabilities [133]. Other users have even deployed FireSim for its original purpose of mod-
eling novel, scale-out systems [95, 107]. In addition to its original Chisel HDL support, FireSim
now also works with SystemVerilog designs, such as those generated by HLS toolchains [91].

To help build community, many tutorials at ISCA, MICRO, ASPLOS, and HPCA have given
hundreds of attendees hands-on experience running FireSim simulations on cloud FPGAs. The first
FireSim Workshop, co-located with ASPLOS 2023, brought together the FireSim community with
a day of talks from external FireSim users (https://fires.im/workshop-2023). Workshops
and tutorials are discussed further in Chapter 3.5.

FireSim was designed from the ground-up to support reproducibility, which has been a chal-
lenge in architecture research. The initial FireSim release included a script that reproduced the
experiments from the ISCA paper, including the largest scale-out simulations. For users, FireSim
provides an automated and user-friendly interface for managing simulations, enabling easy scal-
ing from a few simulations hosted by on-premises FPGAs to massive parallel simulations using
hundreds of FPGAs on cloud platforms like AWS EC2 F1. FireSim removes the high capital
expenses traditionally involved in FPGA-based simulation, democratizing access to realistic pre-
silicon modeling of new hardware designs, including at scale. Accessing individual simulated
systems in FireSim looks like accessing any virtual machine, presenting a familiar interface to
SW developers and enabling collaborative HW/SW co-design from a single-source-of-truth: the
RTL for a digital hardware design. Exemplifying this democratization and corresponding ease of

https://docs.fires.im
https://fires.im/publications/#userpapers
https://fires.im/workshop-2023


CHAPTER 2. FIRESIM 36

reproducibility, many FireSim user papers have since undergone artifact evaluation processes now
part of conferences, including receiving multiple distinguished artifact awards at conferences like
ISCA and MICRO [113, 159, 218].

Today, FireSim is actively developed by a global group of contributors. Notably, a recent
FireSim release, coinciding with our tutorial at ISCA-50, supports several on-premises FPGA
boards, including desktop/server-class boards requested by users (Xilinx U250, U280, and VCU-
118). Also added is the RHS Research Nitefury II, an exciting low-cost, portable board that works
with a laptop via Thunderbolt or M.2. FireSim’s on-premises FPGA support was added with the
aforementioned design principles in-mind, maintaining the automation and abstraction that have
made cloud-hosted FireSim a powerful tool. Users can also easily transition between on-premises
and cloud FPGAs, enabling a hybrid-cloud approach where early development occurs on a small
cluster of on-premises FPGAs, with the ability to burst to cloud FPGAs during deadlines.

In addition to this direct impact, FireSim was also selected as an IEEE Micro Top Pick [117],
selected for the ISCA@50 25-year Retrospective 1996-2020 [119], and nominated for CACM
Research Highlights.

Looking forward, we are excited to see how FireSim and the broader open-hardware commu-
nity evolve.
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Chapter 3

Chipyard: Agile generation of RISC-V
systems-on-chip

In this chapter, we discuss the second component of our agile hardware/software co-design flow
for hyperscale systems research, Chipyard. Chipyard (https://chipyard.readthedocs.io) is
an open-source RISC-V system-on-chip design, implementation, and evaluation framework with a
focus on agility, generator-driven-design, and automation. Chipyard grew out of the difficulties we
experienced in building complete, working systems from the vast new collections of open-source
hardware IP being developed at Berkeley and other institutions around 2018. A later section in
this chapter will detail this history and Chipyard’s impact (Chapter 3.5). But first, we will focus
on Chipyard’s capabilities, especially from the lens of serving as the basis for the development of
specialized systems-on-chip, such as Hyperscale SoC (Chapter 4).

3.1 Use cases and philosophy
While Chipyard has been used in a variety of domains (Chapter 3.5), it was designed to address
one key question common in modern architecture research:

Having identified a new specialization opportunity and devised a paper design, how
can one identify its true impact on power, performance, and area (PPA) rapidly and in
the context of a complete system?

While there are numerous interpretations of the above question, Chipyard takes the following
opinionated approach:

1. A complete hardware system is an RTL implementation of an entire system-on-chip, con-
taining cores, accelerators, a memory hierarchy, peripherals, and more.

2. Designs should be expressed in a generator-driven way, rather than building single instances.
Designers should use HDLs (e.g., Chisel) that employ modern software engineering tech-

https://chipyard.readthedocs.io
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niques, including powerful parameterization and metaprogramming mechanisms to enable
design-space exploration and early verification.

3. A complete system includes software; not only microbenchmarks, but substantial end-user
workloads that require real operating systems, compilers, and more.

4. Feedback on a design (e.g., PPA) comes from rigorous tools, not only modeling and intuition.
These include industry ECAD tools and validated open-source tools.

5. All of the above must be achievable rapidly by users in small, agile teams.

Chipyard allows exceptions to these methodological-defaults (e.g., SystemVerilog-based IP can
be easily integrated), but these tenets form the basis of the design decisions in Chipyard and are
what makes Chipyard so powerful.

Figure 3.1 shows an overview of the Chipyard flow, starting with optional user inputs at the
top. Users can supply their own configuration of the generated system-on-chip design or rely
on included default example designs for systems of various scales. Users can supply their own
Chisel or SystemVerilog IP blocks and integrate them in various ways, whether as new cores or
tiles, new accelerators, peripherals, etc. Users can also supply custom software stacks to run
on their designs or customize the included FireMarshal flows for generating packaged workloads
running on RISC-V Linux distributions. The middle of the diagram highlights the various hardware
and software components built into Chipyard, which we will cover individually in the following
sections. Finally, the bottom of the diagram highlights various output flows in Chipyard and how
they contribute to obtaining high-quality power, performance, and area (PPA) results for a novel
system-on-chip design.

3.2 Chipyard’s curated library of hardware components
We will first explore the set of hardware components included in Chipyard and shown in the middle
of Figure 3.1. Chipyard provides a curated library of components that users can productively
combine into complex systems-on-chip. The vast majority of hardware IP included in Chipyard
is also silicon-proven in academic testchips and in some cases has even shipped in commercial
products.

Put together, these components will be able to generate various types of specialized systems-
on-chip, with Figure 3.2 serving as an example.

Tiles and Cores
Tiles in Chipyard consist of a RISC-V core and its private (usually L1) caches. Chipyard supports
several different cores written in a variety of HDLs, while providing a standardized interface for
integrating new cores.
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Figure 3.1: Overview of Chipyard inputs, flow, components, and outputs.
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Figure 3.2: Example Chipyard-generated SoC design.

The most commonly used cores included in Chipyard are Rocket [22] and SonicBOOM [230,
228]. Rocket is a 5-stage single-issue in-order core designed as an efficient design point for low-
power applications and was the first open-source RISC-V CPU. It supports the RV64GC pro-
file, boots off-the-shelf RISC-V Linux distributions, and has been proven in numerous academic
testchips and commercial products.

SonicBOOM [230, 228] is a 12-stage superscalar out-of-order RISC-V core that serves as a
high-performance design point for general-purpose systems. Like Rocket, it supports the RV64GC
profile and boots off-the-shelf RISC-V Linux distributions like Buildroot, Fedora, Ubuntu, and
more. SonicBOOM has also been tapeout proven in several academic testchips. Both Rocket
and SonicBOOM support attaching RoCC-based accelerators, which we will discuss further in
Chapter 3.2.

Also included in Chipyard are several other cores:

• The Sodor Educational Cores [45] are a set of textbook-style RV32IM cores used in com-
puter architecture classes at Berkeley, including 1, 2, 3, and 5-stage cores as well as a mi-
crocoded bus-based implementation.

• The CVA6 [226] and Ibex [143] cores are SystemVerilog RISC-V implementations from the
PULP project [182].
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• VexiiRiscv [212] is a 6-stage dual-issue in-order core written in SpinalHDL.

• SpikeTile allows users to plug in the Spike golden reference RISC-V ISA simulator as a tile
in Chipyard, replacing detailed core models with a fast functional ISA simulator to enable
rapid testing of RTL-implementations of peripherals, accelerators, and more.

This large collection of integrated cores means that Chipyard can build SoCs designed for
a wide-variety of applications and targeting a wide variety of power, performance, and area en-
velopes.

Accelerators
Chipyard supports two primary “sockets” for integrating accelerators: RoCC and MMIO.

The RoCC interface (originally, the Rocket Custom Coprocessor interface) enables integrat-
ing custom decoupled co-processors with Rocket and BOOM cores in Chipyard. Commands for
accelerators are encoded in custom RISC-V instructions executed by the application processor.
When the application processor encounters such an instruction, it dispatches a command to the
accelerator that can contain optional register data and relevant metadata. The accelerator performs
computations based on these commands and can write back into core registers. RoCC-attached ac-
celerators also have access to the page-table walker and TLB to support virtual addressing. These
accelerators can read/write data to/from both the L1 data cache or the outer memory (e.g., via
the L2). A vast number of accelerators have been implemented within this abstraction in the
literature. Chipyard includes several as composable examples, including the Gemmini ML accel-
erator [78], the Hwacha vector accelerator [136, 137, 135, 54], a SHA3 accelerator, and acceler-
ators for (de)serialization and (de)compression that we will explore in later chapters. Recently,
AuRORA [127] added support in Chipyard for ReRoCC, “Remote RoCC” accelerators that are
disaggregated SoC-level accelerators rather than co-processors attached directly to cores. These
accelerators can be shared with other cores while preserving much of the RoCC infrastructure.

Chipyard also supports more classical “MMIO-attached” accelerators that are connected di-
rectly to the system bus (i.e., on-chip network), controlled via memory-mapped registers, and have
the ability to DMA to the memory system. Examples packaged in Chipyard include the NVIDIA
NVDLA accelerator [161] and an FFT accelerator generator [208].

Uncore, SoC Interconnect, and Peripherals
Chipyard is built around the free and open TileLink [192] chip-scale coherent interconnect stan-
dard. TileLink is similar to AXI/ACE and supports common functionality required to build com-
plex SoCs, including support for multi-core systems, accelerators, peripherals, direct-memory ac-
cess, etc. Some TileLink interconnect IP comes from Rocket Chip, which provides RTL genera-
tors for crossbar-based buses, width-adapters, clock-crossings, and adapters to other protocols like
AXI4 and APB. The Constellation Network-on-Chip (NoC) generator [229] is used in Chipyard to
produce more complex TileLink interconnects, such as meshes. Constellation supports advanced
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NoC features like multi-NoC support, irregular topologies, and deadlock-free wormhole routing
with virtual channels.

Chipyard uses an open-source L2 from SiFive [189], which supports directory-based coher-
ence and is highly parameterized to support various design tradeoffs. Backing memory in Chip-
yard is provided in one of three ways: RTL simulation uses DRAMSim2 [181], FireSim FPGA-
accelerated simulations use the FASED DRAM Model [34], and taped-out chips either talk to
memory controller IP or proxy requests to a testchip host over serial TileLink.

Chipyard also provides numerous standard peripherals, including interrupt controllers, JTAG,
UART, GPIOs, SPI, I2C, PWM, clock-management devices, ser/des, scratchpads, and a 200 Gbit/s
Ethernet NIC.

Configuration Layer
Chipyard configurations are written in Chisel/Scala and enable users to productively and rapidly
express complex system-on-chip designs in a concise fashion. These configurations are broadly
broken into three groups. The digital system configuration components allow users to manage IP
within the SoC and IP parameters. The chip I/O configuration allows the user to dictate how the
SoC will communicate with the outside world (e.g., I/O cells, FireSim Bridges, etc.). Finally, the
harness configuration supplies information about what the I/Os will talk to, such as a software
model, FireSim bridge, or tethered FPGA. In a few tens of lines, users can build complex Chipyard
SoCs with dozens of cores, accelerators, a complex NoC, and more.

3.3 Managing software for the SoC design
Building complex software stacks is a strict necessity for effectively evaluating novel hardware-
software co-design ideas. Building these software stacks and managing their evolution as a design
evolves in maturity can be a daunting task in a small, agile team. As a start, Chipyard provides a
RISC-V toolchain with associated compilers, libraries, simulators like Spike and QEMU [111], and
debugging tools like GDB. The FireMarshal tool [168], co-developed with Chipyard and FireSim,
bridges the gap between these toolchain components and reproducibly building and shipping com-
plete workloads that run on Chipyard-generated designs (e.g., SPEC on Linux). Given a workload’s
YAML configuration, FireMarshal automates the process of building binaries and filesystems for
the target design (whether baremetal or OS-hosted) as well as managing end-to-end experiments.
This experiment management functionality includes incorporating input datasets, binaries, and
other collateral as well as extraction of workload outputs. FireMarshal can also bridge various
levels of simulation, for example pre-running complicated workload installation tasks in a QEMU-
based simulation before actually running the workload on FireSim. Most critically, FireMarshal
supports numerous RISC-V Linux distributions, including Ubuntu, Fedora, and Buildroot as well
as supplying drivers for the various peripherals included in Chipyard.
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3.4 Chipyard output flows

Elaboration flow
Chipyard’s top-level elaboration flow is driven by Chisel [25] and FIRRTL [103]. Essentially, the
“top” of Chipyard is a Chisel generator program that, when run, generates the FIRRTL intermediate
representation for the design. As part of the execution of this program, various high-level pre-
verification (“correct-by-construction”) steps occur, including parameter negotiation and validation
with Diplomacy [52].

Once the FIRRTL IR is generated for the design, various automated passes can run on the de-
sign to transform the target netlist. For example, FireSim simulators are automatically constructed
using such passes and VLSI flows can also use FIRRTL passes to adjust the module hierarchy to
satisfy downstream tools. Once the desired transformations are completed, CIRCT [142] is used
to generate synthesizable Verilog and collateral for SystemVerilog blackboxes is also packaged in.

RTL-simulation flows
As a first step in the co-design loop, Chipyard supports many of the standard Verilog/SystemVer-
ilog simulation tools, such as Verilator, VCS, and Xcelium. This enables running microbenchmarks
and collecting waveforms. Various software shims are provided for peripherals, e.g., bridging
UART to a user-readable file and bridging off-chip memory requests to DRAMSim2 [181].

FPGA-accelerated simulation flows
As a design develops and workloads become increasingly complicated, designs can automatically
be deployed as FPGA-based simulators using FireSim, as described in Chapter 2.

Tape-out flows
Chipyard supports the Hammer [214] agile ASIC flow for both ASIC quality-of-results metric
collection (power, frequency, area) and final tape-out. Hammer supports tools from several pop-
ular ECAD tool vendors as well as open-source flows. Hammer also has downloadable plugins
for several commercial and open-source PDKs. Lastly, Chipyard also supports generating FPGA
prototypes for the express purpose of building a host/tether system for testchips.
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Figure 3.3: Internal hardware development flows at Berkeley in 2018. From “Building an (easy-
to-use) ecosystem” (unpublished), a talk from this dissertation’s author at a 2018 lab offsite.

3.5 A retrospective on five years of Chipyard
Today, Chipyard is one of the leading open-source platforms for specialized RISC-V SoC design
and both the Chipyard and FireSim communities are growing rapidly. This chapter will outline
some of the history behind Chipyard’s development and some of the lessons learned along the
way. One key reason for Chipyard’s success is that it grew out of our own need for a productive
and agile hardware development flow; Chipyard was used by its own developers from day one.

Battling productivity loss in the era of complex, heterogeneous
systems-on-chip
Chipyard’s development grew out of a session at a 2018 lab offsite at Berkeley where we discussed
the state of productivity in our hardware development flows. At the time we had two key problems,
first that internally we had multiple flows: the FireSim flow for architecture research (open-sourced
in May 2018) and our tapeout flow (Figure 3.3). Researchers developing new hardware designs
had to separately integrate their design into these two flows and manage/synchronize multiple “top”
repositories. This was doable, especially with access to institutional knowledge, but was neither
scalable nor productive.

Secondarily, it was extremely challenging for external users (or new internal users) to under-
stand the interactions between components and put together a flow for their project that spanned
from early design-space-exploration, pre-silicon validation and ASIC quality-of-results metric col-
lection, and tape-out (Figure 3.4). While FireSim shipped with documentation from day-one about
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Figure 3.4: Externally visible hardware development flows from Berkeley in 2018. From “Building
an (easy-to-use) ecosystem” (unpublished), a talk from this dissertation’s author at a 2018 lab
offsite.

how to use FireSim as a simulator, naturally this documentation did not dive in-depth into how to
modify the design being simulated nor how to use any VLSI flow for ASIC metric collection.

The conclusion from this offsite session was that it would be worthwhile for us in the long
run to spend time developing a new agile system-on-chip development framework with the explicit
goal of enabling us (and the broader community) to build specialized systems more quickly. After a
sequence of long meetings, deliberation, and technical discussion (and bike-shedding), this became
Chipyard1. Technical details behind Chipyard have already been discussed in depth in Chapter 3.
In the rest of this chapter, we will highlight some key aspects behind Chipyard’s wide adoption.

1Originally called “REBAR”, which was quickly ditched, but can still be found in old slides via a well-crafted
Google search, along with a more comical depiction of the origin story described in this chapter.
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Figure 3.5: Chipyard/FireSim community building.

While both Chipyard and FireSim have large amounts of public documentation, we decided that
the best way to reach users, refine our methodologies, and understand what truly works in an agile
hardware design flow was to run hands on tutorials at various venues. This tutorial was designed
to showcase a wide range of Chipyard and FireSim use-cases: attendees would get to customize a
Chipyard-generated RISC-V system-on-chip with a hashing accelerator, run microbenchmarks on
it in software RTL simulation, build a FireSim FPGA image, and then boot Linux on the SoC in
FireSim (on cloud FPGAs) and run userspace applications that exercised the custom accelerator.

Having harnessed the benefits of a cloud-first approach when building FireSim, we decided
that the flexibility of the cloud would serve as a natural platform for building scalable tutorials.
Given the popularity of these tutorials, this was a prescient choice: purchasing only the FPGAs
required to run our very first tutorial (with over 60 attendees) would have cost around 1.2 million
dollars (not even counting host servers or OpEx). Instead, the all-in cloud compute cost of running
our first tutorial was only $1254.44.

To enable this, we designed cloud infrastructure for managing isolated, controlled access to
cloud instances for tutorial attendees that worked in cooperation with upstream FireSim’s cloud
manager, which dynamically launches/terminates instances as necessary to keep costs in control.
Users sign up on a Google form, are automatically allocated an instance, and then are emailed an
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IP address and keypair to ssh in. Another key advantage of this approach was that attendees could
bring essentially any computer; once they were ssh-ed2 into our cloud instances, they were in a
sufficiently powerful and controlled environment to easily follow along with the tutorial.

Interestingly, this tutorial-oriented cloud management infrastructure also become extremely
useful as artifact evaluation became popular in computer architecture conferences. It allowed us to
easily give artifact evaluators access to specialized hardware used in our papers (e.g., FPGAs for
FireSim) without putting the burden of obtaining that hardware on the evaluators.

To date, this tutorial has been run over nine times at numerous computer architecture confer-
ences and other venues, with hundreds of researchers, students, engineers, and educators getting
hands-on experience with our agile co-design tools. We have seen consistently high levels of in-
terest (Figure 3.5) and plan to continue to run these tutorials in the future.

Community workshops
In addition to tutorials, we organized the First FireSim and Chipyard User and Developer Work-
shop at ASPLOS 2023 (https://fires.im/workshop-2023/). The goal of this workshop was
to bring together the Chipyard/FireSim community to help drive the future direction of the ecosys-
tem and spawn new collaborations. The first workshop was a full-day event with a total of ten
talks (bottom-right, Figure 3.5) from external Chipyard/FireSim users and developers covering
a wide variety of topics, including FireSim’s usage in DARPA FETT, high-performance tracing,
co-simulation, high-performance networking, new host platforms, security, and more. Like the
tutorials, we plan to continue this workshop in the future.

Chipyard usage
Chipyard has become widely used in academic research, teaching, tapeouts, and more broadly in
the open-source hardware community. For example, the Chipyard repository on GitHub has over
650 public forks. Over 45 of these public forks have seen active development in the last six months
and many hold an entire organization’s worth of Chipyard user projects. More than 700 people
have joined Chipyard’s mailing list to track development milestones and to ask and answer ques-
tions about Chipyard usage. Also, over 90 unique contributors have made commits to Chipyard
since its inception. Chipyard has also been used extensively in courses at UC Berkeley [15] and
other universities. Most notably, the “tapeout” class at Berkeley has harnessed Chipyard to en-
able students to go through the entire tapeout flow in a single semester, from nothing to a GDS
for a bespoke, specialized SoC shipped to fabrication [205]. In the following semester, students
take a “bringup” class, where they get the chip back from fabrication and in each semester have
successfully demonstrated working chips.

2Perhaps surprisingly, this is not a perfect approach: once in a while we had issues with locale configuration on an
attendee’s laptop leaking into remote machines they ssh into; similarly, some attendees had local configurations that
automatically applied various customization actions to any machine they ssh-ed into.

https://fires.im/workshop-2023/
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Lessons from running large academic hardware projects
Below is a summary of some of the key lessons we learned (or ideas that were validated) from the
Chipyard/FireSim projects:

1. “Dogfooding” is key. Chipyard’s developers are also Chipyard users (up to the time of
writing, this is true without exception). As a result, many good design decisions are obvious
because they solve problems we face on a day-to-day basis.

2. For projects oriented around improving productivity and scale-of-design, there is no better
way to convince users than to show them hands-on and end-to-end. Hands-on tutorials are
the single best tool for onboarding users. Of course, good documentation is essential too.

3. For academic projects in particular, continuous integration is critical, since it implicitly dis-
tributes the workload of maintaining the project, which grows as the complexity and amount
of different IP in modern SoCs continues to increase. Maintaining an open-source project is
rarely on anyone’s critical path and it is commonly the case that there is only one person who
actually has time to spend on releases, management, etc. Their job must be made as easy
as possible and ensuring that the end-to-end system continues to work as developers make
individual contributions is a key step towards this.

4. Spend disk space and CPU time in initial setup to save actual human-in-the-loop iteration
time. There is always an urge to try to optimize these parameters in a large project, but it
should rarely be done at the expense of latency when a user is actively working on their
design. In practice, micro-optimizations like only initializing parts of the repo with option
flags or only caching parts of initial builds end up slowing down users more when they
suddenly decide to start using a feature. Perhaps more importantly, they create a complex
matrix of repository states that make testing/CI extremely costly.

5. Tying project releases to tutorials is useful. Since everything must work for a live, hands-on
tutorial, releasing at the same time forces a high level of release quality.

6. If you can, use the cloud. Supporting a single host platform eliminates the vast majority of
user issues, especially for specialized hardware like FPGAs. Of course, this is not always
feasible but can still be used for certain cases (e.g., the aforementioned tutorials).

Looking forward, we are excited to see how Chipyard, FireSim, and the broader open-hardware
community evolve.
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Chapter 4

Hyperscale SoC: A server system-on-chip
optimized for cloud datacenters

In this chapter, we switch contexts from building agile hardware/software co-design platforms
to designing new specialized hardware that directly addresses key system-level inefficiencies in
hyperscale servers.

Prior work has highlighted critical overheads that drastically reduce the efficiency of hyper-
scale cloud servers, such as the “datacenter taxes” [110, 198]. These datacenter taxes include
fundamental primitives that are needed to enable scalable and distributed computation, such as
serialization, compression, remote-procedure call, memory-movement operations (copies, moves,
etc.), hashing, and memory allocation. Together, these have been shown to account for over 25%
of CPU cycles in hyperscale server fleets [110] with several additional externalities that we will
show in later parts of this dissertation.

Addressing these overheads has previously been a challenge because they are deeply inter-
twined with the systems software stack. Accelerating these operations requires much finer-grained
specialization as compared to other domains. This motivated the design of Hyperscale SoC (Chap-
ter 4), a custom server system-on-chip optimized for the cloud.

As part of a multi-year industry-academic collaboration between Google and UC Berkeley, we
architected, implemented, evaluated, and ultimately taped-out Hyperscale SoC. Hyperscale SoC
is based on Chipyard, configured with high-performance RISC-V MegaBOOM OoO application
cores, a wide on-chip network to match existing hyperscale designs, and the 200 Gbit/s Ethernet
NIC from FireSim [118]. Rather than relying on the coarse-grained acceleration opportunities
enabled by traditional server integration (e.g., PCIe cards), Hyperscale SoC can take advantage of
several forms of near-CPU accelerator integration to enable fine-grained offloads.

To use this design as a hyperscale research platform, we first had to bring the SoC’s network-
ing performance in-line with modern cloud servers, leading to the FirePerf project. Once we had
a reasonable baseline, we specialized the SoC design for costly but foundational operations in hy-
perscale servers such as (de)serialization, general-purpose lossless (de)compression, and memory
copies/moves.

While we will return to these novel architectural ideas in later parts of this dissertation, a core
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thread tying together the Hyperscale SoC project is rigorous, data-driven methodology. Given the
goal of building a highly specialized HW/SW system for the Hyperscale Cloud, naturally we must
answer the questions alluded to earlier:

1. How do we know that we are building the right specialized hardware?

2. How do we ensure we are building a complete solution that allows us to understand the
end-to-end impact of our novel architectural ideas?

4.1 Profiling a hyperscale datacenter fleet to influence
hardware designs and construct representative
benchmarks

Google-Wide Profiling (GWP) Fleet-wide profiles of CPUs: stack traces, 
workload names, cycle counts, etc.

protobufz Fleet-wide protobuf message shape 
information: sizes, types, etc.

protodb Static information about all .protos in 
Google’s codebase.

compressionz Fleet-wide compression usage: call sizes, 
algorithms, levels, history size, etc.

(1) Justify DSA existence
(2) Influence DSA Design 

(3) Publish data

Build hyperscale-
representative open-source 
benchmarks for evaluation

Figure 4.1: The data-driven co-design methodology for hyperscale systems established and used
in this dissertation. Driven by profiling data collected at Google, we justify the existence of various
domain-specific accelerators and derive requirements for these accelerators. We also open-source
new Hyperscale-representative benchmarks for important domains, including Google HyperProto-
Bench and Google HyperCompressBench.

To answer the first question, we must understand what specialized hardware should be deployed
in next-generation datacenters. Given the ability to profile Google’s worldwide hyperscale dat-
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acenter fleet1, we employ the novel methodology shown in Figure 4.1. We use Google-Wide
Profiling [180] to collect fleet-wide data about CPU cycle consumption across Google’s datacenter
fleet to understand which domains to focus on when designing specialized hardware. We also use
(or develop and use) domain-specific, fleet-wide profilers at Google (protobufz, protodb, and
compressionz) to find insights about how specific accelerators should be designed for the hyper-
scale environment. Using this data, we also build and open-source representative benchmarks for
key domains on behalf of Google, HyperProtoBench [82] and HyperCompressBench [81], both of
which have now been upstreamed into Google’s Fleetbench suite [4].

4.2 An end-to-end data-driven co-design flow for hyperscale
systems

Reproduced by artifact 
evaluators and open-sourced.

ProtoAcc/CDPU RTL 
Generators as single 

source of truth

Update design with performance 
results and ASIC quality-of-result 

(QoR) feedback. DSE Loop

FireSim RTL Simulation 
running HyperProtoBench 
and HyperCompressBench

FPGA-accelerated cycle-exact simulation of 
generated ProtoAcc/CDPU RTL in complete 
RISC-V SoC, running HyperProtoBench and 
HyperCompressBench and sweeping design 
parameters.

Evaluate ASIC QoR Metrics

Run RTL through ECAD tools for 16nm-class commercial 
FinFET process with Hammer.

Figure 4.2: Using the agile HW/SW co-design methodologies developed in the first half of this
dissertation, we demonstrate an implementation-driven HW/SW co-design flow for hyperscale
systems, building RTL implementations of the complete Hyperscale SoC design, evaluating it us-
ing FireSim FPGA-accelerated simulation running hyperscaler-representative benchmarks, obtain
ASIC quality-of-results data for a 16nm-class commercial FinFET process, and finally tape-out
Hyperscale SoC in that same process.

Given the powerful hardware/software co-design tools we built earlier, we are then able to connect
this data-driven design methodology to our rigorous, implementation-based hardware/software co-
design flows, as shown in Figure 4.2. Given the collected hyperscaler insights, we design and

1The work in this dissertation was partially done while being affiliated with both Google and UC Berkeley.
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implement (in RTL) specialized hardware for the aforementioned domains and integrate it into a
customized Chipyard-generated RISC-V system-on-chip. We then run complete software stacks
(including the Google-representative benchmarks) on this Hyperscale SoC design pre-silicon using
FireSim. We also push our designs through ASIC ECAD tools to obtain ASIC quality-of-result
data for our novel hardware designs for a commercial 16nm-class FinFET process and eventu-
ally tape-out the design in this process. The next several chapters will discuss the details behind
building up Hyperscale SoC.
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Chapter 5

FirePerf: Agile cross-stack profiling and
co-design for end-host networking

In this chapter, we take the first step towards the broader goal of building Hyperscale SoC, by im-
proving our “vanilla” system-on-chip design to achieve high performance on important networking
tasks and introducing the first forms of hardware specialization into our server design1. In order to
do so in an agile team, we build several new high-fidelity profiling capabilities into FireSim. In the
case study, we demonstrate how we use these capabilities to rapidly co-design the hardware and
software in our SoC for the networking domain.

5.1 Introduction
As hardware specialization improves the performance of core computational kernels, system-level
effects that used to lurk in the shadows (e.g. getting input/output data to/from an accelerated sys-
tem) come to dominate workload runtime. Similarly, as traditionally “slow” hardware components
like networks and bulk storage continue to improve in performance relative to general purpose
computation, it becomes easy to waste this improved hardware performance with poorly optimized
systems software [29]. Due to scale and complexity, these system-level effects are considerably
more difficult to identify and optimize than core compute kernels.

To understand systems assembled from complex components, hardware architects and systems
software developers use a variety of profiling, simulation, and debugging tools. Software profiling
tools like perf [56] and strace [199] are common tools of the trade for software systems develop-
ers, but have the potential to perturb the system being evaluated (as demonstrated in Chapter 5.4).
Furthermore, because these tools are generally used post-silicon, they can only introspect on parts
of the hardware design that the hardware developer exposed in advance, such as performance coun-
ters. In many cases, limited resources mean that a small set of these counters must be shared across
many hardware events, requiring complex approaches to extrapolate information from them [144].

1For historical reasons (see Chapter 2), this chapter identifies the server design being developed as “FireChip
SoC”; this is an early version of Hyperscale SoC.
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Other post-silicon tools like Intel Processor Trace or ARM CoreSight trace debuggers can pull
short sequences of instruction traces from running systems, but these sequences are often too short
to observe and profile system behavior. While these tools can sometimes backpressure/single-step
the cores when buffers fill up, they cannot backpressure off-chip I/O and thus are incapable of
reproducing system-level performance phenomena such as network events.

Pre-silicon, hardware developers use software tools like abstract architectural simulators and
software RTL simulation to understand the behavior of hardware at the architectural or waveform
levels. While abstract architectural simulators are useful in exploring high-level microarchitectural
tradeoffs in a design, new sets of optimization challenges and bottlenecks arise when a design is
implemented as realizable RTL, since no high-level simulator can capture all details with full fi-
delity. In both cases, software simulators are too slow to observe end-to-end system-level behavior
(e.g. a cluster of multiple nodes running Linux) when trying to rapidly iterate on a design. Fur-
thermore, when debugging system integration issues, waveforms and architectural events are often
the wrong abstraction level for conveniently diagnosing performance anomalies, as they provide
far too much detail. FPGA-accelerated RTL simulation tools (e.g. [118]) and FPGA prototypes ad-
dress the simulation performance bottleneck but offer poor introspection capabilities, especially at
the abstraction level needed for system-level optimization. In essence, there exists a gap between
the detailed hardware simulators and traces used by hardware architects and the high-level profil-
ing tools used by systems software developers. But extracting the last bit of performance out of
complete hardware-software systems requires understanding the interaction of hardware and soft-
ware across this boundary. Without useful profiling tools or with noisy data from existing tools,
developers must blindly make decisions about what to optimize. Mistakes in this process can be
especially costly for small agile development teams.

To bridge this gap and enable agile system-level hardware-software optimization, we propose
and implement FirePerf, a set of profiling tools designed to integrate with FPGA-accelerated sim-
ulation platforms (e.g. the open-source FireSim platform discussed in Chapter 2), and provide
high-performance end-to-end system-level profiling capabilities without perturbing the system be-
ing analyzed (i.e. out-of-band). To demonstrate the power of FirePerf, we walk through an ex-
tensive case study that uses FirePerf to systematically identify and implement optimizations that
yield an 8× speedup in Ethernet network performance on a commodity open-source RISC-V SoC
design. Optimizing this stack requires comprehensive profiling of the operating system, applica-
tion software, SoC and NIC microarchitectures and RTL implementations, and network link and
switch characteristics. In addition to discovering and improving several components of this system
in FPGA-accelerated simulation, we deploy one particular optimization in the Linux kernel on a
commercially available RISC-V SoC. This optimization enables the SoC to saturate its onboard
Gigabit Ethernet link, which it could not do with the default kernel. Overall, with the FirePerf
profiling tools, a developer building a specialized system can improve not only the core compute
kernel of their application, but also analyze the end-to-end behavior of the system, including run-
ning complicated software stacks like Linux with complete workloads. This allows developers to
ensure that no new system-level bottlenecks arise during the integration process that prevent them
from achieving an ideal speedup.
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5.2 Background: Baseline system-on-chip design and
modeling flow

In this section, we introduce the tools we use to demonstrate FirePerf as well as the networked
RISC-V SoC-based system that we will optimize using FirePerf in our case study.

Target system design: FireChip SoC
In the case study in Chapter 5.4, we will use FirePerf to optimize network performance on a simu-
lated networked cluster of nodes where each simulated node is an instantiation of the open-source
FireChip SoC, the default SoC design included with FireSim. The FireChip SoC is derived from
the open-source Rocket Chip generator [22], which is written in parameterized Chisel RTL [25]
and provides infrastructure to generate Verilog RTL for a complete SoC design, including RISC-
V cores, caches, and a TileLink on-chip interconnect. Designs produced with the Rocket Chip
generator have been taped out over ten times in academia, and the generator has been used as the
basis for shipping commercial silicon, like the SiFive HiFive Unleashed [190] and the Kendryte
K210 SoC [122]. To this base SoC, FireChip adds a 200 Gbit/s Ethernet NIC and a block device
controller, both implemented in Chisel RTL. The FireChip SoC is also capable of booting Linux
and running full-featured networked applications.

Debugging networked system performance with FireSim
In our case study, we will use FireSim’s (Chapter 2 and [118, 117, 69]) network simulation ca-
pabilities, which allow users to harness multiple cloud FPGAs to simulate clusters of SoCs inter-
connected by Ethernet links and switches, while maintaining global cycle-accuracy. FireSim also
provides some hardware debugging capabilities, including hardware assertion checking, printf
synthesis [123], and automatic Integrated Logic Analyzer (ILA) insertion. However, these intro-
spection capabilities are generally targeted towards hardware-level waveform-style debugging or
functional checks and produce large amounts of output that is not at a useful abstraction level for
system-level profiling of hardware running complex software stacks.

Figure 5.1 shows an example FireSim simulation of two FireChip-based nodes running on two
cloud FPGAs on Amazon EC2 F1. We will later instrument this simulation with FirePerf to use
as the baseline for our case study. Because FireSim exactly simulates the cycle-by-cycle and bit-
by-bit behavior of the transformed RTL designs with realistic I/O timing and is sufficiently fast
to enable running complete software stacks (Linux + applications), the performance analyses and
optimizations we make with FirePerf directly translate to real silicon (that is based on the FireSim-
simulated RTL) as we demonstrate at the end of the case study.
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Figure 5.1: FireSim simulation of a networked 2-node, dual-core FireChip configuration on one
AWS f1.4xlarge instance with two FPGAs, which will form the basis of the system we will
instrument, analyze, and improve.
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5.3 FirePerf design and internals: High-fidelity pre-silicon
profiling tools

FirePerf makes two key contributions to the state-of-the-art in system-level hardware/software pro-
filing by automatically instrumenting FPGA-accelerated simulations to improve performance anal-
ysis at the systems software and hardware counter levels. This section details these two contribu-
tions.

Software-level Performance Profiling
FirePerf enables software-level performance analysis by collecting cycle-exact instruction commit
traces from FPGA simulations out-of-band (without perturbing the simulated system) and using
these traces to re-construct stack traces to feed into a framework that produces Flame Graphs [83,
38, 37] (e.g. Figure 5.2). These cycle-exact flame graphs allow users to see complete end-to-end
Linux kernel (or other software) behavior on simulated SoCs.

Instruction Commit Log Capture with TraceRV

As the first step in constructing flame graphs of software running on a simulated SoC, we imple-
ment TraceRV (pronounced “tracer-five”), a FireSim endpoint for extracting committed instruction
traces from the FPGA onto the host system. Endpoints in FireSim [118] are custom RTL modules
paired with a host-software driver that implement cycle-accurate models that interface with the
top-level I/Os of the transformed design, like the NIC endpoint shown in Figure 5.1. As a FireSim
endpoint, TraceRV is able to backpressure the FPGA simulation when the instruction trace is not
being copied to the host machine quickly enough. In essence, when the trace transport is backed-
up, simulated time stops advancing and resumes only when earlier trace entries have been drained
from the FPGA, maintaining the cycle-accuracy of the simulation. This backpressuring mechanism
is built into FireSim and uses its token-based simulation management features.

For the system we improve in the case study, TraceRV attaches to the standard TracedInst

ruction top-level port exposed by Rocket Chip and BOOM [46]. This port provides several
signals that are piped out to the top-level of the design for post-silicon debugging, including in-
struction address, raw instruction bits, privilege level, exception/interrupt status and cause, and a
valid signal. In the examples in this chapter, we configure TraceRV to only copy the committed
instruction address trace for each core in the simulated system to the host and omit all other trace-
port data, though this data remains visible to the TraceRV endpoint for triggering purposes. Since
trace ports are standard features integrated in most SoCs, we expect that we will similarly be able
to attach TraceRV to other RISC-V SoCs without any modifications to the SoCs.

Directly capturing and logging committed instruction traces has two significant drawbacks.
Firstly, with high-speed FPGA-simulators like FireSim, it is easy to generate hundreds of giga-
bytes to terabytes of instruction traces even for small simulations, which become expensive to
store and bottleneck simulation rate due to the performance overhead of transferring traces over
PCIe and writing the trace to disk. Furthermore, architects are usually interested in traces for
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a particular benchmark run, rather than profiling the entire simulation run, which frequently in-
volves booting the OS, running code to prepare data for a benchmark, running the benchmark,
post-processing data, and powering off cleanly. To address this problem, we provide trigger func-
tionality in TraceRV, which allows trace logging to begin/end when certain user-defined external or
internal conditions are satisfied. When trigger conditions are not satisfied, the TraceRV endpoint al-
lows the simulation to advance freely without the performance overhead of copying traces from the
FPGA to the host over PCIe, in addition to avoiding writing to disk. These trigger conditions can
be set entirely at runtime (without re-building FPGA images) and include cycle-count-based trig-
gers for time-based logging control, program-counter-based triggers, and instruction-value-based
triggers. Instruction-value-based triggers are particularly useful, as some RISC-V instructions do
not have side effects when the write destination is the x0 register and can essentially be used as
hints to insert triggers at specific points in the target software with single-instruction overhead. In
this particular example using the RISC-V ISA, the 12-bit immediate field in the addi instruction
can be used to signal 4096 different events to TraceRV or to scripts that are processing the trace
data. By compiling simple one-line programs which consist of these instructions, the user can
even manually trigger trace recording interactively from within the console of the simulated sys-
tem. When instruction addresses are known, program-counter based triggers can be used to start
and stop commit trace logging without any target-level software overhead. However, using this
requires re-analyzing the object code after re-compilation.

The other significant drawback with capturing complete committed instruction traces is that,
when initially profiling a system, instruction-level tracing is usually excessively detailed. Function-
level profiling and higher-level visualization of hotspots is more useful.

On-the-fly Call-stack Reconstruction

To this end, the TraceRV host-software driver is capable of ingesting per-core committed instruc-
tion traces from the FPGA and tracking the functions being called using DWARF debugging in-
formation [61] generated by the compiler for the RISC-V executable running on the system (e.g.,
the Linux kernel). The driver automatically correlates the instruction address with function names
and applies DWARF callsite information to construct cycle-exact stack traces of software running
on the system. Functions in the stack trace are annotated with the cycle at which they are called
and later return. Stack trace construction is done entirely on-the-fly and only function entry points,
returns, and cycle-counts are logged to disk by the TraceRV host driver, drastically reducing the
amount of data written and improving simulation performance.

Integration with Flame Graph

To visualize this stack trace data in a way that enables rapid identification of hotspots, we use the
open-source Flame Graph tool [38, 37]. This produces a flame graph, a kind of histogram that
shows the fraction of total time spent in different parts of the stack trace [83].

An example flame graph generated from FirePerf data is shown in Figure 5.2. The x-axis rep-
resents the portion of total runtime spent in a part of the stack trace, while the y-axis represents the
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stack depth at that point in time. Entries in the flame graph are labeled with and sorted by function
name (not time). Given this visualization, time-consuming routines can easily be identified: they
are leaves (top-most horizontal bars) of the stacks in the flame graph and consume a significant
proportion of overall runtime, represented by the width of the horizontal bars. While it cannot
be shown in the format of this work, these flame graphs are interactive and allow zooming into
interesting regions of the data, with each function entry labelled with a sample count. Tradition-
ally, flame graphs are constructed using samples collected from software profiling tools like perf.
In our case, the instruction traces collected with FirePerf allow us to construct cycle-exact flame
graphs; in essence, there is a sample of the stack trace every cycle.

Putting all of these pieces together, FirePerf can produce cycle-exact flame graphs for each
core in the simulated system that explain exactly where software executing on the core is spending
its time. Because of the cycle-exact nature of the stack-traces available to us, once we identify a
hotspot, we can immediately drill down to construct additional visualizations, like histograms of
the number of cycles spent in individual calls to particular functions, which is not possible with
only sampled data. In our case study, we will use flame graphs as well as custom visualizations
generated from data collected with FirePerf instrumentation extensively to understand how soft-
ware behaves and to identify and implement various optimizations in our system.

Hardware Profiling with AutoCounter Performance Counter Insertion
The second key contribution of FirePerf is AutoCounter, which enables automatic hardware per-
formance counter insertion via cover points for productive hardware-level performance profiling.
Like commit traces, these counters can be accessed out-of-band, meaning that reads do not affect
the state or timing of the simulated system—counters can be added easily and read as often as
necessary.

Cover points are existing boolean signals found throughout the Rocket Chip SoC generator
RTL that mark particular hardware conditions intended to be of interest for a verification flow. Un-
like assertions, which only trigger when something has gone wrong in the design, cover points are
used to mark signals that may be asserted under normal operation like cache hits/misses, coherency
protocol events, and decoupled interface handshakes. By default, Rocket Chip does not mandate
an implementation of cover points; the particular flow being used on the RTL can decide what to
“plug-in” behind a cover point. Unlike printfs, which print by default in most simulators, cover
points can be inserted into designs without affecting other users of the same RTL codebase. This
is especially important in open-source projects such as the Rocket Chip ecosystem. The cover API
can also be expanded to allow the designer to provide more context for particular covers.

Performance counters are a common profiling tool embedded in designs for post-silicon per-
formance introspection [155]. However, since these counters are included as part of the final sil-
icon design’s area, power, and other budgets, they are generally limited in number and frequently
shared amongst many events, complicating the process of extracting meaningful information from
them [144]. Pre-silicon use of performance counters in FPGA-simulation is not limited in this way.
These counters do not need to be present in the final production silicon, and an unlimited number
of counters can be read every cycle without perturbing the results of the simulated system (with the
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only trade-off being reduced simulation speed). To enable adding out-of-band performance coun-
ters to a design in an agile manner, AutoCounter interprets signals fed to cover points as events of
interest to which performance counters are automatically attached. AutoCounter also supports an
extended cover point API that allows the user to supply multiple signals as well as a function that
injects logic to decide when to increment the performance counter based on some combination of
those signals. This allows for a clean separation between the design and instrumentation logic.

AutoCounter’s automatic insertion of the performance counters is implemented by performing
a transform over the FIRRTL [103] intermediate representation of the target SoC design. With
a supplied configuration that indicates which cover points the user wishes to convert into perfor-
mance counters, FirePerf finds the desired covered signals in the intermediate representation of the
design and generates 64-bit counters that are incremented by the covered signals. The counters
are then automatically wired to simulation host memory mapped registers or annotated with syn-
thesizable printf statements [123] that export the value of the counters, the simulation execution
cycle, and the counter label to the simulation host.

By reducing the process of instrumenting signals to passing them to a function and automating
the rest of the plumbing necessary to pipe them off of the FPGA cycle-exactly, FirePerf reduces
the potential for time-consuming mistakes that can happen when manually wiring performance
counters. Unlike cases where mistakes manifest as functional incorrectness, improperly wired per-
formance counters can simply give confusingly erroneous results, hampering the profiling process
and worsening design iteration time. This is compounded by the fact that marking new counters to
profile does require re-generating an FPGA bitstream.

AutoCounter provides users with additional control over simulation performance and visibil-
ity. The rate at which counter values are read and exported by the simulation host can be config-
ured during simulation runtime. As exporting counter values requires communication between the
FPGA and the simulation host, this runtime configuration enables users to trade off frequency of
counter readings for simulation performance.

Also at runtime, collection of the performance counter data can be enabled and disabled out-
right by the same trigger functionality found in TraceRV. This enables designs to overcome the la-
tency of re-building FPGA bitstreams to switch between different counters—many counters can be
wired up at synthesis time, restricted only by FPGA routing resources, and can be enabled/disabled
at runtime. Altogether, triggers eliminate extraneous data and enable higher simulation speeds
during less relevant parts of the simulation, while enabling detailed collection during regions of
interest in the simulation.

Unlike conventional debugging techniques used in FPGA prototypes, such as Integrated Logic
Analyzers (ILAs), the FirePerf AutoCounter flow enables a more holistic view of execution, as
opposed to the limited capture window provided by ILAs. At the same time, the FirePerf-injected
counters still enable flexibility, determinism, and reproducibility (unlike post-silicon counters),
while maintaining the fidelity of cycle-exact simulation (unlike software architectural simulators).
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5.4 Using FirePerf to optimize Linux networking performance
In this case study, we demonstrate the capabilities of FirePerf by using the FirePerf tools to system-
atically identify optimization opportunities in the Linux networking stack with a two-node cluster
of Ethernet-connected RISC-V SoCs. We walk through, step-by-step, how an architect would har-
ness the FirePerf flow to make decisions about when and what to optimize to produce a specialized
hardware/software system for high-bandwidth networking. By using FirePerf, we attain an 8×
improvement in maximum achievable bandwidth on a standard network saturation benchmark in
comparison to the off-the-shelf open-source version of the SoC and software stack.

Baseline Hardware/Simulator Configuration
Cluster Configuration. We run network bandwidth saturation benchmarks on one and two-node
clusters simulated in FireSim. For two-node clusters, the Ethernet network outside of the nodes
is modeled with FireSim’s built-in network model. The two nodes connect to the same two-port
Ethernet switch model using simulated links with 200 Gbit/s bandwidth and 2 µs latency. For
reference, our two-node cluster simulations with FirePerf flame graph instrumentation (for two
cores on each SoC) and 15 AutoCounter-inserted performance counters run at ≈ 8− 10 MHz, in
contrast to the equivalent FireSim simulation without FirePerf which runs at ≈ 40 MHz.

SoC Nodes. Our baseline SoC nodes are instantiations of the open-source FireChip SoC,
described earlier in Chapter 5.2. We instantiate two configurations of FireChip, one with a single
in-order Rocket core and one with two in-order Rocket cores. Both configurations have private
16 KiB L1 I/D caches, a 1 MiB shared L2 cache, 16 GiB of DDR3 DRAM [34], and a 200
Gbit/s Ethernet NIC. Each design boots Linux and is capable of running complete Linux-based
applications.

The iperf3 benchmark
Our driving benchmark is iperf3 [64], a standard Linux-based benchmark for measuring the
maximum achievable network bandwidth on IP networks. The iperf3 benchmark is usually run
with one iperf3 process running as a server on one node and another iperf3 process running as
a client on a separate node, with the machines connected by some form of IP networking. In the
default configuration, which we use throughout this work, the iperf3 client is aiming to drive as
much network traffic over TCP to the iperf3 server as possible through one connection.

In our experiments, we configure iperf3 in two modes. In the networked mode, the iperf3

server and client processes are running on separate simulated nodes (using the previously described
two-node FireSim simulation). This measures performance across the Linux networking stack, the
Linux NIC driver, the NIC hardware, and the simulated network (links and switches). On the
other hand, in the loopback mode, both the iperf3 server and client processes are running on
the same simulated node. This allows us to isolate software-only overheads in Linux that do
not involve the NIC hardware implementation, the network simulation (links/switches), or the
NIC’s Linux driver. In essence, the loopback mode allows us to determine an approximate upper
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bound network performance achievable on the SoC (since only software overhead is involved in
loopback), independent of the particular NIC hardware used.

For all experiments, a flame graph and stack trace are generated for each core in each simulated
system. For example, a networked iperf3 run on dual-core nodes will produce 2 cores × 2 nodes
= four flame graphs. AutoCounter performance counter traces are also produced in a similar
manner, but are produced per simulated node. For both kinds of traces, only the relevant workload
is profiled in the trace—the software workload is preceded by a call to a start-trigger binary
and followed by a call to an end-trigger binary, which issue the special instructions described
earlier that allow starting/stopping tracing from within the simulation.

Linux 4.15 vs. Linux 5.3
The default Linux kernel version supplied with open-source FireSim is 4.15, the first upstream
release to officially support RISC-V. At time of writing, this is also the default kernel version that
ships with the SiFive HiFive Unleashed board [190], which we will later use to demonstrate one of
the improvements we discover with FirePerf on real silicon. As a precursor to the experimentation
in this case study, we first upgrade to 5.3-rc4, the latest mainline branch at time of writing. Un-
like 4.15, 5.3 also contains the necessary architecture-specific support for running the commonly
used perf software profiling tool on RISC-V systems. As we will see in the following baseline
comparison, 5.3 also provides a slight (albeit not sufficient) improvement in maximum achievable
bandwidth in iperf3.

Baseline Performance Results
Prior work [118] has demonstrated that the hardware system we are aiming to optimize is capable
of driving in excess of 150 Gbit/sec when running a bare-metal bandwidth-saturation benchmark.
However, this same work identifies that the system is only capable of driving 1.4 Gbit/sec over
TCP on Linux. We begin our case study by validating this baseline result when running iperf3 in
simulation and analyzing the information we collect with FirePerf.

iperf3 results on baseline hardware/software configurations

Table 5.1 outlines the sustained bandwidth achieved when running iperf3 in networked and loop-
back modes on the two off-the-shelf hardware configurations, single and dual core systems, with-
out any of the optimizations we will identify with FirePerf in this case study. Firstly, the results
demonstrate that bumping the kernel version was worthwhile—we see performance improvements
or similar performance across-the-board. Consequently, going forward we will only analyze the
system running Linux 5.3.

2Reading flame graphs: The x-axis represents the portion of total runtime spent in a part of the stack trace, while
the y-axis represents the stack depth at that point in time. Entries in the flame graph are labeled with and sorted by
function name (not time). In these flame graphs, colors are not particularly meaningful—they simply help visually
distinguish bars.
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Figure 5.2: Flame graph2 for Baseline, Single Core, Loopback on Linux 5.3. This flame graph
shows that as a percentage of overall time spent in the workload, the asm copy {to,from}
user function in Linux dominates runtime. Furthermore, the userspace iperf3 code consumes

a negligible amount of time (it is one of the small, unlabeled bars on the bottom left). This flame
graph suggests that even prior to interacting with the NIC driver and NIC hardware, there is a
significant software bottleneck hampering network performance.

Linux 4.15-rc6 Linux 5.3-rc4

Single
(Gbit/s)

Dual
(Gbit/s)

Single
(Gbit/s)

Dual
(Gbit/s)

Networked 1.58 1.74 1.67 2.12
Loopback 1.54 2.95 4.80 3.01

Table 5.1: iperf3 maximum achieved bandwidth for the baseline open-source hardware/software
configuration on two versions of Linux.



CHAPTER 5. FIREPERF 64

Flame Graph Search

do_..

__do_soft..

ip_pro..

__netif_..

ksys_r..

copyout

ip_..

_copy..

irq_exit

copyout
handle..
handle..

__asm_copy_to_user

_..

__..
__..

csu..

do..

simpl..

d..

generic..
__do_..

skb_copy_datagram_iter

ip_rcv

ip_rcv

_..

__vfs_..
simple_copy_to_iter

__se_s..

ip_rcv

check_..
__netif_rec..

__sk..

__net..

c..

tcp_..

vfs_read
proce..

tcp_v..
tc..

tcp_ad..ip_..

ip_proto..
__net..

cs..

d..

__as..

_..

new_sy..

handle_..

tcp..

icene..

__skb_datagram_iter

process_back..

net_rx_ac..

__hand..

tcp_recvmsg

_copy_to_iter

inet_..

plic_ha..

__..

__asm..
cs..

__netif_rec..
a..

copy..

__sk..

csu..
c..

sock_r..

tcp_r..

__sk..
simp..

ip_loc..

process_b..

al..
__netif_..

_cop..
net_r..

__skb..

ip_local..

tcp_v4_rcv

skb_c..

do_IRQ

Baseline Design, Single Core, Networked (Server) iperf3, Linux 5.3 Flame Graph

Proportion of Total Benchmark Cycles

S
ta
ck

D
ep
th

Figure 5.3: Flame graph for Baseline, Single Core, Networked on Linux 5.3 (server-side). This
flame graph shows that while not as severe as the loopback case, in the networked case asm copy

{to,from} user still dominates runtime as a percentage of overall time spent during the work-
load. Due to space constraints, we elide the client-side flame graph. It has greater CPU idle time,
but asm copy {to,from} user similarly plays a significant role on the client.

Examining the baseline results for Linux 5.3, the best-case performance in the networked
case is observed on the dual-core configuration, giving 2.12 Gbit/s, approximately two orders-
of-magnitude lower than the hardware is capable of driving when running the bare-metal test. The
loopback test, which isolates software overhead and does not involve the NIC hardware or NIC
driver, does not fare much better, achieving 4.80 Gbit/sec in the single-core case. The fact that
single-core performs better than dual-core is startling. We will find that in this case, the system
happened to avoid a particular performance pathology that we will explore in Chapter 5.4. Once
this pathology is repaired, we will find that dual-core loopback performs better than single-core
loopback, as expected. Overall, this loopback result means that in its current state, regardless of
NIC hardware/driver implementations, this system is only capable of achieving around 4.80 Gbit/s
of network bandwidth. Flame graphs for two of these runs are shown in Figures 5.2 and 5.3—we
will explore these in-depth in later sections.

Is the NIC implementation a bottleneck?

Given that the bare-metal bandwidth test can drive 150 Gbit/s onto the network, we suspect that
the NIC hardware is not the primary bottleneck. To validate this and provide a framework for
understanding the performance of the NIC hardware for later use, we instrument several potential
bottlenecks in the NIC design. Figure 5.4 identifies key parts of the NIC microarchitecture. To
understand NIC behavior, we add counters with AutoCounter to track several of these potential
bottlenecks:
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Figure 5.4: FireChip NIC microarchitecture.

• Send request/send completion queue entry counts
• Receive request/receive completion queue entry counts
• Reader memory transactions in-flight
• Writer memory transactions in-flight
• Availability of receive frames and send buffer fullness
• Hardware packet drops
The request and completion queues in the controller are the principal way the device driver

interacts with the NIC. To initiate the sending or receipt of a packet, the driver writes a request to
the send or recv request queues. When a packet has been sent or received, a completion entry
is placed on the completion queue and an interrupt is sent to the CPU. The reader module reads
packet data from memory in response to send requests. It stores the data into the send buffer,
from which the data is then forwarded to the Ethernet network. Packets coming from the Ethernet
network are first stored in the receive buffer. The writer module pulls data from the receive buffer
in response to receive requests and writes the data to memory. If the receive buffer is full when a
new packet arrives, the new packet will be dropped.

Figure 5.5 shows that, at this point, the NIC hardware is not a bottleneck when running iperf3.
The histogram shows the number of cycles spent at different levels of send queue occupancy.
We clearly see that the NIC is hampered by software not supplying packets quickly enough, as
the queue is empty most of the time. Similarly low utilizations are visible in the other injected
performance counters in the NIC.

With this understanding, the following sections will first aim to optimize parts of the software
stack before we return to analyzing the hardware. As we optimize the software stack, we will return
to Figure 5.5 to demonstrate that our software improvements are improving hardware utilization
of the NIC.
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Figure 5.5: NIC send request queue occupancy analysis collected via AutoCounter performance
counter instrumentation.
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Loopback Single
(Gbit/s)

Baseline 4.80
Baseline straced 5.43
Software-optimized

asm copy {to,from} user 6.36
Hwacha-accelerated

asm copy {to,from} user 16.1

Table 5.2: iperf3 maximum achieved bandwidth on loopback, single-core for various asm copy

{to,from} user optimizations.

Optimizing asm copy {to,from} user in the Linux Kernel
As shown in Table 5.1, even our best-case result (loopback mode) falls orders-of-magnitude short
of what the NIC hardware is capable of driving, indicating that Linux-level software overhead is a
significant limiting factor. Before experimenting with the NIC hardware, in this section we identify
and improve a performance pathology in a critical assembly sequence in the Linux/RISC-V kernel
port that significantly improves loopback performance and to a lesser extent performance in the
networked case.

The flame graphs in Figures 5.2 and 5.3 show that one function in particular, asm copy

to user3, dominates the time spent by the processor in the loopback case and is nearly half the
time spent by the processor in the networked case. This is the assembly sequence4 in the Linux
kernel that implements user-space to kernel-space memory copies and vice-versa. Naturally, if this
system is to be optimized, significant improvements need to be made within this function.

Software-only optimization of asm copy {to,from} user

It turns out there is a key performance flaw in the code: When the source and destination buffers do
not share the same alignment, the original implementation resorts to a simple byte-by-byte copy,
thus severely under-utilizing memory bandwidth. We improve asm copy {to,from} user by
enabling word-oriented copies for the 8-byte-aligned subset of the destination. Data re-alignment
for 64-bit stores is handled by right-shifting the 64-bit load data and bitwise-ORing with the left-
shifted previous word.

Because this pathology is only triggered when the assembly sequence happens to receive un-
aligned buffers, we see wide variation in loopback performance depending on environmental and

3Collectively denoted throughout this work as asm copy {to,from} user, since asm copy to user and
asm copy from user are equivalent symbols that refer to the same assembly sequence.

4https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/riscv/

lib/uaccess.S?h=v5.3-rc4

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/riscv/lib/uaccess.S?h=v5.3-rc4
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/riscv/lib/uaccess.S?h=v5.3-rc4
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# Extract upper part of word i

srl %[temp0], %[data], %[offset]

# Load word i+1 from source

ld %[data], ((i+1)*8)(%[src])

# Extract lower part of word i+1

sll %[temp1], %[data], 64-%[offset]

# Merge

or %[temp0], %[temp0], %[temp1]

# Store to destination

sd %[temp0], (i*8)([%dest])

Figure 5.6: Realignment code for optimized asm copy {to,from} user implementation.

timing conditions. In Chapter 5.4, we will find that traditional profiling tools that run within the
simulated system can significantly perturb the outcome of iperf3 benchmarks, precisely because
they impact the proportion of unaligned vs. aligned buffers passed to the asm copy {to,from}
user function. The software-optimized row in Table 5.2 shows the overall speedup achieved by

the software fix. Because this is a generic software fix to the Linux kernel, it also improves net-
working performance on shipping commercial RISC-V silicon, as we will demonstrate in Chap-
ter 5.5.

An additional question is whether our new asm copy {to,from} user implementation is
close to an optimal implementation, i.e., have we exhausted the capabilities of the hardware
with our new software routine? To understand this, we add AutoCounter instrumentation with
fine-grained triggers inside the Rocket core to collect the following information about the new
asm copy {to,from} user implementation:

• 1.39 bytes are copied per cycle (compared to baseline of 0.847)

• IPC during copies is 0.636

• 56.1% of dynamic instructions are loads/stores during copies

• The blocking L1D cache is 51.1% utilized during copies

• The L1D cache has a 0.905% miss rate during copies

These numbers may not seem outwardly impressive, but for unaligned copies, it should be
noted that L1D bandwidth is not the fundamental limiting factor with a single-issue in-order
pipeline like Rocket. In the key unaligned block-oriented copy loop, each 64-bit data word re-
quires five instructions to perform realignment, shown in lightly stylized assembly in Figure 5.6.

Assuming an ideal IPC of 1, the maximum throughput is therefore 8/5 = 1.6 bytes per cycle.
The actual sustained performance is 86.9% of this peak, with losses due to the usual overhead of
loop updates, edge case handling, I-cache and D-cache misses, and branch mispredicts. Even
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Baseline Hwacha-accel.

Single
(Gbit/s)

Dual
(Gbit/s)

Single
(Gbit/s)

Dual
(Gbit/s)

Networked 1.67 2.12 2.82 3.21
Loopback 4.80 3.01 16.1 24.9

Table 5.3: iperf3 maximum achieved bandwidth for the Hwacha-accelerated system, as compared
to baseline. The Single and Dual columns refer to the number of cores

factoring in an additional 13.1% speed-up to hit peak, the pure software implementation falls
significantly short of the Hwacha-accelerated version we introduce in the following section.

Hardware acceleration of asm copy {to,from} user

Even with this software fix, the overall potential network performance is still capped at 6.36 Gbit/s.
Since the software fix is a relatively compact assembly sequence that we could analyze with in-
strumentation in the previous section, we know that we are approaching the best-case implemen-
tation for the in-order Rocket cores on which our system is based. To achieve further improve-
ment, we augment the system with the open-source Hwacha vector accelerator [137, 136, 135],
a co-processor that attaches to Rocket over the RoCC interface. Because we are able to capture
system-level profiling information pre-silicon, we can easily demonstrate that we have maximized
the capabilities of the baseline design and thus can trivially justify the inclusion of this accelera-
tor in our specialized system for network processing, assuming we see further speedups from its
inclusion.

We write a vectorized implementation of asm copy {to,from} user that dispatches the
copying to Hwacha, which can achieve a much higher memory bandwidth utilization than the
in-order Rocket cores. Table 5.3 shows the significant speedups achieved with the integration of
Hwacha into the design, across the two hardware configurations and two iperf3 modes. While
prior work has pointed out the need for systems-level accelerators for memcpy() [110], FirePerf
allows us to systematically identify and justify when such improvements are necessary, pre-silicon.
As we move forward to continue optimizing network performance on our system, we assume from
this point forward that we are running on a system with hardware-accelerated asm copy {to,
from} user calls with Hwacha.

Comparing with in-band tracing: Tracing with strace

As a brief aside, let us explore the challenges involved in solving the asm copy {to,from} user

performance pathology discussed in the previous section using an existing profiling/tracing tool.
As a post-silicon alternative to FirePerf, one common tool used to understand application behavior
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Figure 5.7: Flame graph for Hwacha-accelerated, Single Core, Networked on Linux 5.3 (server-
side). This flame graph shows that a previously insignificant software routine consumes a sig-
nificant number of cycles in the networked case once kernel-userspace copies are accelerated:
do csum. Due to space constraints, we again elide the client-side flame graph—it has greater CPU
idle time, but do csum similarly plays a significant role on the client.

is strace, a Linux utility that allows developers to inspect system calls made by a user program,
such as reads and writes to a network socket.

When running iperf3 within strace on our system without the optimizations introduced in
the previous section, we noticed a startling result: iperf3 performance improved under strace,
contrasting with the common wisdom that profiling tools introduce overheads that worsen the per-
formance of the system being measured. The “Baseline Loopback straced” row in Table 5.2
demonstrates this result. As it turns out, while running with strace, the buffers passed to the
asm copy {to,from} user sequence in the course of running iperf3 happen to be aligned

more often, avoiding the performance pathology we discovered in the previous section! We con-
firmed this result both by logging addresses within the kernel and observing flame graphs with
and without strace measuring the iperf3 run. The flame graphs confirm that asm copy {to,
from} user is able to move more bytes per cycle in the straced case, suggesting that the byte-
oriented copy is being avoided. Unlike strace, because FirePerf is an out-of-band tool, there is
no such danger of perturbing the outcome of the system being measured.

Checksum Offload
Now that asm copy {to,from} user has been optimized, there are no further obvious software
routines to optimize in the loopback-only iperf3 runs. Going forward, we will focus only on the
networked runs of iperf3 that involve the actual NIC hardware. Looking at the updated flame
graph for the Hwacha-accelerated networked iperf3 case in Figure 5.7, we find that one new soft-
ware routine appears to consume significant cycles—do csum, which implements checksumming
for network protocols in Linux. After implementing hardware checksum offload in the NIC, we
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see improved performance in the networked case, as shown in the “+Checksum Offload” row of
Table 5.4.

Interrupt Mitigation
Once do csum is optimized away, there is no clear hotspot function visible in the flame graphs.
Instead, we again analyze the performance counters for the NIC’s send-request queue to gauge the
impact of our current optimizations on NIC utilization. The “Optimized, No Interrupt Mitigation”
bars in Figure 5.5 reflect the queue utilization with Hwacha-accelerated copies and checksum
offload. We can see that it has improved somewhat from the baseline, implying that software
is doing a better job feeding the NIC, but still remains relatively low.

We examine the low-level function in the Linux device driver (icenet start xmit) respon-
sible for passing an outgoing packet to the NIC. By directly extracting information from the trace
itself about the timing and control flow through icenet start xmit, we find that the method by
which the NIC and driver acknowledge request completions introduces significant overhead. There
are almost exactly twice as many jumps entering the body of icenet start xmit as packets sent
and a bimodal distribution of call lengths centered around 2000 cycles and 8 cycles. Looking at the
detailed trace, the icenet start xmit function, which should be called repeatedly in a tight loop
for bulk packet transmission, is almost always interrupted by the NIC to trigger buffer reclamation
for completed sends. These frequent interrupt requests (IRQs) prevent packets from being batched
effectively.

With this insight, we modify the Linux NIC driver to support the Linux networking subsystem’s
NAPI facility, which adaptively disables device IRQs and switches to polling during high activity.
This significantly reduces IRQ load at the cost of some latency, allowing us to reach the results
shown in row “+Interrupt Mitigation” in Table 5.4. The “Optimized, With Interrupt Mitigation”
bars in Figure 5.5 represent NIC queue occupancy once interrupt mitigation is enabled. We see a
significant increase in queue occupancy which manifests as improved network performance.

Conversely, it would be difficult to observe this phenomenon with the standard perf tool,
whose sampling mechanism (being based on supervisor timer interrupts) lacks any visibility into
critical regions. In particular, “top-half” IRQ handlers, which run with interrupts globally disabled,
would be completely absent from the perf capture. Mitigating this deficiency requires repurposing
platform-specific non-maskable interrupts (NMIs). However, these are not supported generically
in the perf framework and are not enabled by all architectures. Since FirePerf is able to precisely
record all executed instructions out-of-band, the true IRQ overhead becomes obvious.

A curious result is the overall lack of improvement on the single-core system. We instrument
the FireSim switch model to dump all Ethernet traffic to a pcap file. Analysis of the TCP flow
and kernel SNMP counters indicate a higher transfer rate from the iperf3 client, but the server
becomes compute-bound and cannot keep pace. With very rare exceptions, all TCP segments
arrive in order, yet discontinuities in the Selective Acknowledgement (SACK) sequences suggest
that packets are being internally dropped by the server during upper protocol processing. This
leads to frequent TCP fast retransmissions (1% of packets) that degrade the effective bandwidth.
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Jumbo Frames
From the flame graph and performance counters at this point (not shown), we no longer see obvious
places for improvement in the software or hardware. With the understanding that the bottleneck
is the receive path in software, one further avenue for improvement is to amortize the overhead
of individual packet processing with a larger payload. By default, our system uses the standard
Ethernet Maximum Transmission Unit (MTU) size of 1500, which sets a limit on the length of an
Ethernet frame. However, the loopback driver, which produces the upper-bound result in excess
of 20 Gbit/s from Table 5.3, defaults to an MTU of 65536. The Ethernet equivalent is using
jumbo frames with a commonly chosen MTU of 9000. This is a standard optimization for high-
performance networking in datacenter contexts—for example, Amazon’s networking-focused EC2
instances default to an MTU of 9001 [157]. Given this insight, we implement jumbo frame support
in our NIC RTL and driver. The final speedup is shown in row “+Jumbo Frames” of Table 5.4. In
combination with earlier improvements, the system is now capable of 17.5 Gbit/s on iperf3.

Final performance results
Table 5.4 summarizes the optimizations discovered with FirePerf throughout the case study and
their respective contribution to the overall speedup. As is generally the case with system-integration-
level improvements, there is no silver-bullet—the overall speedup consists of several small speedups
compounded together.

To demonstrate that our final results are realistic, we compare against a real datacenter cluster
by running iperf3 with identical arguments as our prior simulations on two c5n.18xlarge in-
stances on Amazon EC2. These instances are optimized for networking, with AWS Nitro hardware
acceleration [28], and support 100 Gbit/s networking. We also place the instances in a placement
group to ensure that they are physically co-located. By default, these instances have jumbo frames
(9001 MTU) enabled and give a result of 9.42 Gbit/s on iperf3. Reducing the MTU to the stan-
dard Ethernet MTU (1500), we see a result of 8.61 Gbit/s. Returning to our simulated cluster,
when we configure our simulated nodes to have a similar end-to-end network latency as the two
nodes on EC2, we obtain results of 17.6 Gbit/s and 6.6 Gbit/s for jumbo frames and standard MTU,
respectively. Naturally, the EC2 instances have to contend with a less-controlled environment than
our simulated nodes. However, these results show that our achieved bandwidth is reasonable for a
single network flow between two datacenter nodes.

5.5 Applying findings to commercial chips
The software-only optimization in the Linux kernel asm copy {to,from} user function that we
developed in the case study applies to RISC-V systems in general, not only the FireChip SoC. To
demonstrate the impact of this improvement on real silicon, we apply our patch to the asm copy

{to,from} user function to the Linux kernel for the SiFive HiFive Unleashed board, a commer-
cially available RISC-V platform that includes a Cadence Gigabit Ethernet MAC. We then connect
the HiFive Unleashed board directly to an x86 host with an Intel Gigabit NIC and run iperf3 in the
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Single
Core
(Gbit/s)

Dual
Core
(Gbit/s)

Baseline 1.67 2.12
+Hwacha-accel.

asm copy {to,from} user 2.82 3.21
+Checksum Offload 4.86 4.24
+Interrupt Mitigation 3.67 6.73
+Jumbo Frames 12.8 17.5

Table 5.4: Final iperf3 maximum achieved bandwidth results for each optimization. Features are
cumulative (i.e. “+Interrupt Mitigation” also includes “+Checksum Offload”).

HiFive Role,
MTU

Baseline
asm copy

{to,from}
user

Optimized
asm copy

{to,from}
user

Speed-up

Server, 1500 572 Mbit/s 935 Mbit/s 1.63
Server, 3000 553 Mbit/s 771 Mbit/s 1.39
Client, 1500 719 Mbit/s 739 Mbit/s 1.03
Client, 3000 483 Mbit/s 829 Mbit/s 1.72

Table 5.5: iperf3 performance gain on commercial RISC-V silicon by deploying asm copy

{to,from} user fix discovered with FirePerf.

same networked mode as our case study. Table 5.5 shows the result of this benchmark, before and
after software asm copy {to,from} user optimization. We alternate between the HiFive and
x86 host being client/server and vice-versa, as well as trying a large MTU. We see improvements
in all cases, and in the “Server, 1500 MTU” case, the HiFive is now able to saturate its link.

5.6 Related work
Prior work has demonstrated the use of various profiling techniques to analyze system-level perfor-
mance bottlenecks, including using pre-silicon abstract software simulation, as well as post-silicon
software-level profiling and hardware tracing.

Abstract system-level simulators have long been used in the architecture and design automation
communities for performance estimation and analysis [36, 231, 156, 222, 174, 187, 163, 57, 104].
In particular, [35] used system simulation to evaluate the interaction between the OS and a 10
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Gbit/s Ethernet NIC. In contrast, our case study does not rely on timing models of particular
NIC components but rather optimizes a full SoC/NIC RTL implementation that can be taped-out.
FirePerf targets a different phase of the design flow. FirePerf focuses on optimizing the design
at the stage where it is being implemented as realizable RTL, after the high-level modeling work
has been done. Implementing a design exposes new bottlenecks, since no high-level simulator
can capture all details with full fidelity. Other prior work focuses on debugging in the context of
co-simulation frameworks [183, 6], rather than application performance analysis.

Sampling-based methods have also been widely used for profiling [148, 62, 169, 223]. These
are proficient at identifying large bottlenecks but may not capture more intricate timing interac-
tions, such as latency introduced by interrupts during the NIC transmit queuing routine as identified
using FirePerf.

At the post-silicon software profiling level, in addition to coarser-grained tools like strace

and perf, other work [126] has enabled cycle-accurate profiling of the FreeBSD networking stack.
This work measures function execution time on real hardware by using the processor timestamp
register, which is incremented each clock cycle. In order to reduce the overhead of reading the
timestamp register, they profile only functions that are specified by the user. In contrast, FirePerf’s
out-of-band instrumentation allows for cycle-accurate profiling of the entire software stack with no
overhead, and therefore does not require prior knowledge about details of the software networking
stack. Other work aims to perform out-of-band profiling post-silicon. [225] uses hardware tracing
of network frames and network emulation techniques to optimize a system for 10 Gbit/s Ether-
net but does not directly profile software on network endpoints. Additional case-studies demon-
strate the intricate methods required for system-level post-silicon profiling and performance de-
bugging [149].

Some methods to reduce the overhead of software profiling and debugging come in the form of
architectural support for software debugging such as IWatcher [232]. The triggers used in FirePerf
use similar concepts to those in IWatcher for targeted observability. Other techniques exploit
side channels for out-of-band profiling [188] at the cost of coarser granularity and non-negligible
imprecision.

Prior FPGA-accelerated simulators [216, 50, 49, 165, 204] do not directly simulate tapeout-
ready RTL like FireSim, but rather use handwritten FPGA-specific models of designs. Addi-
tionally, most of these works do not mention profiling or only suggest it as an area for future
exploration, with the exception of Atlas [216], which includes profiling tools particularly for trans-
actional memory, rather than automated general-purpose profiling. By adding TraceRV and Auto-
Counter within the FireSim environment, FirePerf addresses a common complaint against FPGA
prototypes and simulators, providing not just high fidelity and simulation performance (10s of
MHz with profiling features), but also high levels of introspection.

The results of our case study have also emphasized the importance of offloading networking
stack functions to hardware and support further research into balancing software and hardware flex-
ibility in SmartNICs [70], as well as specialization for network-centric scale-out processors [67].
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5.7 Discussion and future work
Open-sourcing. The FirePerf tools are open sourced as part of FireSim, which is available
on GitHub: https://github.com/firesim/firesim. Documentation that covers how to use
FireSim and FirePerf is available at https://docs.fires.im. The artifact appendix at the end
of this chapter also provides instructions for reproducing the experiments in this work.

Extensibility. Several opportunities exist to extend the FirePerf tools to gain even more in-
trospection capability into FPGA-simulated designs. For example, we describe FirePerf in this
chapter in the context of optimizing a networked RISC-V SoC. However, because the ISA-specific
components of FirePerf stack unwinding are provided by common libraries (e.g. libdwarf and
libelf), other ISA support is possible.

Furthermore, in this work we were primarily interested in analyzing OS-level overheads. As
shown in the flame graphs in the case study, time spent in userspace is a small fraction of our total
CPU cycles. Accordingly, the current stack trace construction code does not distinguish between
different userspace programs, instead consolidating them into one entry. Handling userspace more
effectively will require extensible plugin support per-OS.

Lastly, while the designs we simulate in the case study supply top-level trace ports, FIR-
RTL passes available in FireSim can also automatically plumb out signals (like committed in-
struction PC) from deep within arbitrary designs, removing the need to rely on having a standard
TracedInstruction port in the SoC design.

Achieving Introspection Parity between FPGA and Software Simulation. Traditionally,
FPGA-simulators and open-source RTL have not been widely adopted in architecture research due
to the infrastructural complexity involved in deploying them. With cloud FPGAs and FireSim,
many of these difficulties are abstracted away from the end-user. However, prior to FirePerf,
there remained a gap between the level of introspection into design behavior available in FPGA-
simulation of open hardware vs. abstract software simulators. We believe that open-source tools
like FirePerf can make profiling of RTL designs in FPGA simulation as productive as software
simulation. Furthermore, cover points can provide a consistent interface for open-source hardware
developers to expose common performance metrics to FPGA simulation environments for use by
architecture researchers, bridging the gap between open-RTL and architecture research.

Full-system workloads vs. Microbenchmarks. A key case for FPGA-accelerated simulation
is that FPGA simulators have sufficiently high simulation rates to enable running real workloads.
As our case study has shown, the full range of emergent behavior of a pre-emptive multitasking
operating system is difficult to re-create in a microbenchmark that can be run on software simula-
tors. Instead, when feasible, running FPGA-accelerated simulation with introspection capabilities
is a productive way to rapidly understand system behavior.

5.8 Conclusion
In this work we proposed and implemented FirePerf, a set of profiling tools designed to integrate
with FPGA-accelerated simulation platforms, to provide high-performance end-to-end system-

https://github.com/firesim/firesim
https://docs.fires.im
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level profiling capabilities without perturbing the system being analyzed. We demonstrated FirePerf
with a case study that used FirePerf to systematically identify and implement optimizations to
achieve an 8× speedup in Ethernet network performance on an off-the-shelf open-source RISC-V
SoC design.

5.9 Retrospective
Further extending our goals of building an agile hardware/software co-design methodology, FirePerf
demonstrated that our new profiling tools could enable a few Ph.D. students to rapidly deep-dive
into a domain, even one with complicated interactions between software (the kernel) and a new
hardware design (our NIC), and implement a high-performance solution. Having been upstreamed
to FireSim in 2020, several FireSim users have since written peer-reviewed publications that use
the FirePerf tools and extend FirePerf’s capabilities. This work also underwent the ASPLOS con-
ference’s first-ever artifact evaluation process and received all available badges.
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Chapter 6

A hardware accelerator for protocol buffers

In this chapter, we employ the data-driven hardware/software co-design methodology described
earlier to understand and accelerate a critical system-level overhead (or datacenter tax) in hyper-
scale servers: software serialization and deserialization via frameworks such as Google’s Protocol
Buffers. Using insights from Google’s hyperscale datacenter fleet, we design custom hardware to
accelerate protocol buffers and evaluate it in the context of Hyperscale SoC. Note that represen-
tations of fleet data in this chapter are as they were in the original publication of this chapter at
MICRO 2021 [113].

6.1 Introduction
Building internet-scale applications for WSCs requires efficient communication between software
components (i.e., services) in a distributed environment, which is commonly achieved via remote
procedure call (RPC). Because the remote callee cannot directly access the caller’s memory space
to read arguments and supply a response, and may even be written in a different programming
language, exchanged data must undergo conversion to and from a shared interchange format, via
serialization and deserialization operations. In addition to inter-service communication via RPC,
serialization and deserialization are also commonly used when persisting data to durable storage.

To ensure that serialization and deserialization are handled in a principled way across the mul-
titude of services and data producers/consumers running in a warehouse-scale computer, service
developers employ a common serialization framework, which ensures interoperability between
components by pairing a standardized wire format with language-specific APIs that allow appli-
cations to produce and consume serialized objects. A vast number of these frameworks have been
created [173, 43, 17, 71, 72, 102, 65, 224], constituting a large design space encompassing trade-
offs in performance, flexibility, ease-of-use, backwards compatibility, and schema evolution. In a
hyperscale context, backwards compatibility and schema evolution become particularly important
to manage complexity, build reliable systems, and ensure long-term accessibility of data persisted
to durable storage [209, 5].

Naturally, this functionality comes at a performance cost—prior work has shown that around
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5% of fleet-wide cycles in Google’s Warehouse Scale Computers (WSCs) were spent in the Proto-
col Buffers (“protobuf”) serialization framework in 2015 [110]. In 2020, Facebook identified that
serialization and deserialization consume on average over 6% of cycles across seven key microser-
vices in their fleet [198].

Fortunately, the warehouse-scale context is a natural environment for hardware specializa-
tion [109, 73, 23, 178, 70, 31, 146] as the cost of building custom processors is amortized over
the high volume of deployed hardware systems. To understand the trade-offs and opportunities
in hardware acceleration for serialization frameworks, we present the first in-depth study of seri-
alization framework usage at scale by characterizing protobufs usage across Google’s datacenter
fleet (Chapter 6.3) and use this data to construct HyperProtoBench, an open-source1 benchmark
representative of key serialization-framework user services at scale (Chapter 6.5). In doing so, we
also identify key insights that challenge common assumptions about serialization framework usage
(Chapter 6.3).

We use these insights to co-design hardware and software to develop a novel hardware accel-
erator for protobuf message serialization and deserialization, implemented in Chisel RTL [25] and
integrated into a Linux-capable RISC-V SoC [14] (Chapter 6.4). Applications can easily harness
the accelerator, as it integrates with a modified version of the open-source protobuf library and is
wire-compatible with standard protobufs. We have fully open-sourced2 our RTL, which, to the
best of our knowledge, is the only such implementation currently available to the community.

We also present a first-of-its-kind end-to-end evaluation of our entire RTL-based system run-
ning hyperscale-derived benchmarks and microbenchmarks (Chapter 6.5 and Appendix B). We
boot Linux on the system using FireSim [118] to run these benchmarks and implement the design
in a commercial 16nm-class FinFET process to obtain area and frequency metrics. We demonstrate
an average 6.2× to 11.2× performance improvement vs. our baseline RISC-V SoC with BOOM
OoO cores [230] and despite the RISC-V SoC’s weaker uncore/supporting components, an average
3.8× improvement vs. a Xeon-based server.

In addition to advancing the state-of-the-art in serialization framework acceleration, this work
is the first to demonstrate the power of combining a data-driven hardware-software co-design
methodology based on large-scale profiling with the promise of agile, open hardware development
methodologies [88, 134]. In this vein, our entire evaluation flow (RTL, benchmarks, including
hyperscale-derived benchmarks, and supporting software and simulation infrastructure) has been
open-sourced for the benefit of the research community and our results have been reproduced by
external artifact evaluators (Appendix B).

6.2 Protobuf serialization library overview
The protobuf library is an open-source, schema-oriented, data and service description system [173].
Protobufs are widely used for service-oriented design in modern hyperscale systems, including at
Google. Protobufs are also used for in-memory data representation, persisting data to durable

1https://github.com/google/HyperProtoBench. See Appendix B for archival URL.
2https://github.com/ucb-bar/protoacc. See Appendix B for archival URL.

https://github.com/google/HyperProtoBench
https://github.com/ucb-bar/protoacc
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.proto

.cc

key len data
(varints)

code usage

message definition

wire format

Figure 6.1: Encodings with repeated and recursive types. Empty messages (inmost) take no bytes
in encoded form.

storage, and as a schema for columnar storage (e.g. Google’s Dremel/BigQuery [152, 151]). A
protobuf user defines the contents of a message in a .proto file written in the protobuf language,
either proto2 or proto33. The protobuf compiler (protoc) ingests .proto files and generates
language-specific code to allow user programs to populate, read, and perform other operations on
protobuf messages.

Message structure
Schema and message definition

A protobuf message is a collection of fields. In the protobuf schema, each message field has a type,
name, field number, and potential qualifiers including optional, required, and repeated (with
packed for a more efficient encoding). Scalar field types include doubles, floats, various variable
and fixed-width integer types, bools, strings, and bytes. The “Protobuf Type” column in Table 6.1
lists these types. A field’s type can also be a user-defined message type, allowing for messages to
contain sub-messages; messages may be nested arbitrarily deeply and recursively structured. The
repeated qualifier marks that a field is a vector of elements of its assigned type, which can also be
a user-defined message type. The top row of Figure 6.1 shows two example message definitions.

3As discussed in Chapter 6.3, the vast majority of protobuf usage in Google’s fleet is proto2. Thus, “protobufs”
implicitly refers to proto2 in the rest of this chapter.
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Performance-similar Types Protobuf Type (includes re-
peated of each type)

Sizes (bytes)

bytes-like bytes, strings See Fig. 6.4c buckets
varint-like {s,u}int{64,32},

int{64,32}, enum, bool
1-10, by 1

float-like float 4
double-like double 8
fixed32-like fixed32, sfixed32 4
fixed64-like fixed64, sfixed64 8

Table 6.1: Classification of protobuf field types.

This structure enables forward portability and schema evolution. Namely, fields are numbered
for stability across field name changes, and fields may be optionally present, enabling sparsity
for deprecated/unused fields. Schema evolution, upgrade paths, and host language integration are
critical for productively using a serialization framework at hyperscale, where services cannot be
monolithically upgraded, and persisted data must be highly available for long periods of time [5].

Wire format

Before we discuss the wire format, it is important to note that variable-length integers (“varints”)
are used heavily in the protobuf wire format. The protobuf varint algorithm repeatedly consumes 7
bits at-a-time in a loop from the least-significant side of a fixed-width input value until no non-zero
bits remain. For each 7-bit group, it outputs a byte containing the original bits and a continuation
bit, which if set, indicates that more bytes follow. As we will see, varint handling is a prime
candidate for acceleration—fixed-function hardware can easily handle varint encoding/decoding
in a single cycle.

On the wire, protobuf messages appear as a sequence of bytes containing a set of (key, value)
pairs that represent fields in the message. Each field’s key is a varint-encoded version of the field
number concatenated with a three-bit wire type. Wire types can be one of: varint (field types
{s,u}int{64,32}, int{64,32}, enum, and bool), 64-bit (field types double and (s)fixed64),
length-delimited (field types string, bytes, sub-messages, and packed repeated fields), start
group (deprecated), end group (deprecated), and 32-bit (field types float and (s)fixed32). A
critical observation from this mapping is that the wire type is not sufficient to determine the lan-
guage/schema type of a field. For the 32-bit and 64-bit wire types, C++ values are directly copied
into the wire format. For the varint wire type, the varint encoding is applied to the C++ values
before they are copied to the wire format. The values of the length-delimited wire type first con-
tain a varint-encoded length in bytes, which represents either the length of a string or byte array,
the length of a sub-message, or the length of a packed repeated field. This length is followed by
either the string or bytes data, the wire-format version of a sub-message, or encoded values in a
packed repeated field. Finally, unpacked repeated fields appear on the wire as multiple (key, value)
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pairs that all have the same key. The bottom row of Figure 6.1 shows examples of two messages
encoded in the wire format.

In-memory format

As previously mentioned, given a message schema, the protobuf compiler will generate language-
specific code for each message type. For example, for C++, the compiler generates a class for each
message type which encapsulates the field data. Users expect to work with protobuf messages as
standard C++ objects: scalar fields are stored as the expected C++ primitive type, string/byte fields
are stored as std::strings, repeated fields are stored similar to vectors, and sub-messages are
stored as pointers to objects of their corresponding type. All members are wrapped in accessors
(e.g., setters, getters). The middle row of Figure 6.1 shows examples of two messages used in C++
code.

Serialization and deserialization
The two key operations in protobufs are serialization and deserialization. Serialization converts the
in-memory, language-specific protobuf message representation (Chapter 6.2) to the standard proto-
buf wire format (Chapter 6.2). This wire-format version of a message can then be exchanged with
any other program that uses protobufs, regardless of programming language, host machine, operat-
ing system, and compiler. To unpack the wire format into a usable object again, the deserialization
process converts a wire-format message back to the in-memory language-specific protobuf object.

Serialization and deserialization are inverse operations, but deserialization is more complex for
two reasons. Firstly, deserialization is inherently a serial process: the deserializer receives a single
stream of bytes and the key (and potentially, value) of the Nth field in the encoded format must be
decoded before the (N+1)th field, as the location of the (N+1)th field is unknown until the size of
the Nth field is known (based on wire-type or explicit length). On the other hand, serialization has
ample opportunity for parallelism: serialization of individual fields can be performed in parallel
with one final serial step that concatenates the serialized fields into one output buffer.

Secondly, deserialization requires the accelerator to construct objects in the in-memory lan-
guage format (including e.g., std::string objects in C++) and allocate memory for them; serial-
ization only needs to traverse language-format objects.

Arena allocation
One notable performance optimization available in upstream protocol buffers is arena alloca-
tion [42], which reduces message construction/destruction overheads by pre-allocating a large
chunk of memory called the arena. Allocation of individual messages in the arena is simplified
to a pointer increment. The accelerator we implement uses its own form of arena allocation, as
discussed in Chapter 6.4.
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6.3 Profiling protobuf usage at hyperscale
In this section, we explore the usage of Protocol Buffers at scale across Google’s datacenter fleet to
motivate requirements for a hardware accelerator for serialization and deserialization and quantify
accelerator design trade-offs.

Data sources
We rely on three internal data sources at Google to glean insights on protobuf usage at scale:
Google-Wide Profiling (GWP) CPU cycle profiles, protobufz, and protodb.

Google-Wide Profiling (GWP) CPU cycle profiles

CPU cycle profiles are collected from machines across Google’s fleet using Google-Wide Profiling
(GWP) [180]. The collected profiles include workload names, stack traces, and cycle counts,
which allow us to identify where CPU time is spent in software. In particular, this data allows us
to identify how much time is spent in different operations inside the protobuf library and generated
code, including serialization, deserialization, and others.

protobufz

The protobufz sampler provides dynamic (i.e., runtime) information about the structure of proto-
buf messages that are serialized and deserialized throughout the software stack running on Google’s
datacenter fleet. GWP randomly chooses machines to visit; when a machine is visited, the protobuf
message sampler runs for several seconds and randomly selects top-level messages to be sampled.
A top-level message is defined as a message on which deserialize or serialize is called directly; that
is, a sub-message only appears in the data if its parent is also chosen. When a top-level message is
sampled, complete information about the message and its sub-messages is captured. This includes
sizes and types of all present fields, including fully qualified names for sub-message types. The
protobufz data also includes the path of the .proto file in which the protobuf message is de-
fined. This allows reconstruction of the complete hierarchy of a sampled message and joining the
dynamic protobuf structure data with other data sources.

protodb

The protodb database provides static information about all .proto files defined in Google’s code-
base. This allows us to collect detailed information about each defined message type, such as the
version of the protobufs language a message is defined against, whether repeated fields are packed,
and the range of field numbers defined in a message.
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Figure 6.2: Fleet-wide C++ protobuf cycles by operation.

What is the opportunity for fleet-wide CPU cycle savings?
Using GWP CPU cycle profiles, we find that protobuf operations constitute 9.6% of fleet-wide
CPU cycles in Google’s infrastructure. These cycles are dominated by C++ protobuf usage: 88%
of fleet-wide protobuf cycles are spent in C++ protobufs. As a result, we will focus on C++
protobufs in the rest of this work. Chapter 6.7 discusses future support for other languages.

Figure 6.2 shows the classification of cycles spent within C++ protobufs, by operation. A few
notable items are immediately visible. Firstly, deserialization alone is a significant contributor to
overall CPU cycles—2.2% of fleet-wide CPU cycles are spent in C++ protobuf deserialization.
Serialization cycles are also significant, with serialization in C++ consuming 1.25% of fleet-wide
CPU cycles4. Because these are relatively coarse-grained operations, they are natural avenues to
explore for acceleration opportunities. The “other” operator in Figure 6.2 represents a miscellany
of glue code that is not clearly amenable to acceleration. This work focuses on the task of accelerat-
ing C++ protobuf serialization and deserialization, presenting the opportunity to accelerate/offload
3.45% of CPU cycles across Google’s fleet. Chapter 6.7 discusses several other protobuf opera-
tions, which are relatively straightforward to accelerate once deserialization and serialization are
handled.

4Virtually all calls to Byte Size occur during serialization, so this accounts for Serialization’s 8.8% of protobuf
cycles and Byte Size’s 6.0% of protobuf cycles in Figure 6.2.
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Figure 6.3: Fleet-wide top-level message size distribution.

Which proto version should we implement?
As discussed in Chapter 6.2, two versions of the Protocol Buffers language are currently supported,
proto2 and proto3. Although proto3 was released in mid-2016, 96% of protobuf bytes serial-
ized/deserialized in Google’s fleet remain defined in the proto2 language. Therefore, we target
proto2 in our accelerator design. This also suggests that usage of serialization framework APIs
and formats tends to be stable over time, making hardware acceleration viable.

Should we optimize accelerator placement for the RPC stack?
To understand where to place a protobuf accelerator in the system (e.g., in-core, near-core, as a bus
peripheral, CXL, PCIe, etc.), we would like to know how serializations and deserializations are
initiated. One commonly assumed source of protobuf usage is the RPC stack. In Google’s fleet,
we find that only 16.3% of deserialization cycles are from the RPC stack and only 35.2% of seri-
alization cycles are from the RPC stack. This challenges the common assumption that a protobuf
accelerator should be placed on a PCIe-attached NIC. Instead, it is clear that other serialization
and deserialization users (e.g. storage users) must be accounted for when deciding where to place
a protobuf accelerator in the system.

What is the granularity of operations the accelerator needs to handle?
Another factor when deciding accelerator placement is understanding the offloading overhead that
can be tolerated, which depends on offload granularity. While we do not have a mechanism to
directly attribute cycle counts to individual serialization and deserialization operations, we can
observe the distribution of top-level message sizes (including their sub-messages) as a proxy.
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Figure 6.3 shows the distribution of message sizes observed in Google’s fleet. Buckets are la-
beled with their inclusive byte bounds; that is, the [0 - 8] bucket counts the number of messages
where the total encoded message size (including all sub-messages) was 0 to 8 bytes. Interestingly,
the vast majority of messages are very small: 24% of messages are 8 bytes or less, 56% of mes-
sages are 32 bytes or less, and 93% of messages are 512 bytes or less. Based on this distribution, a
near-core accelerator is likely necessary to efficiently handle the vast majority of messages. Also
notable is that protobuf benchmarks used by prior work [170] tend to focus on only a small part
(e.g., one bucket) of this distribution.

While message count is important, it is also important to keep in mind the volume of data in
each of the message-size buckets. While we cannot directly collect this data due to infrastructure
limitations, we can see that the [32769 - inf] bucket, which represents 0.08% of messages,
contains at least 13.7× as many message bytes as the [0 - 8] bucket. This volume of data
encoded in large messages could tolerate a higher offload overhead, while still observing a speedup.
We will return to the discussion of accelerator placement trade-offs in Chapter 6.3.

What types of data movement and field encodings should the accelerator
support?
In addition to the acceleration opportunities inherent in parsing or constructing protobuf message
structure in hardware, there may be opportunities to speed up the processing of individual field
values, depending on the commonly used field types in the fleet.

Which field types are most commonly used?

The various protobuf field types discussed in Chapter 6.2 present differing opportunities for accel-
eration. For example, handling an int64 field requires encoding or decoding two varints, the key
and value, which is expensive in compute-per-byte terms on a CPU. On the other hand, handling a
large bytes field is relatively cheap as it only requires encoding or decoding two varints, the key
and length, and then memcpy-ing a large amount of useful data.

Figure 6.4a shows the proportion of observed fields of the most frequently used primitive types
across Google’s fleet. In this plot, sub-messages are accounted for via the primitive fields they
contain but are not noted as separate fields themselves. Looking at field counts, we see very
promising avenues for acceleration. Firstly, over 56% of fields are a form of varint (int32, int64,
enum, bool, uint64), which are well-suited to acceleration. There are also a significant number
of string and bytes fields, which can benefit from acceleration depending on field size.

Which field types account for the most data volume?

Field counts do not necessarily present the full picture. Ideally, we would like to know the total
number of CPU cycles spent serializing and deserializing each field type. Unfortunately, the fleet-
wide profiling mechanisms do not provide this level of detail. However, as a proxy, we can instead
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(a) % of fields observed by type.

(b) % of message bytes observed by type.

(c) % of bytes fields observed by field size.

Figure 6.4: Fleet-wide field type and bytes field breakdowns.
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obtain the number of bytes of data attributed to each field type, fleet wide. Figure 6.4b presents
this data.

Startlingly, we see a very different picture when looking at the weighted (by bytes of data)
field-type breakdown. Bytes, string, and repeated bytes and string fields constitute over 92%
of the bytes of protobuf messages handled. If these fields tend to be very large, then the cost
of handling a varint (for the field’s key) is relatively small compared to the cost of performing a
memcpy and therefore there is less opportunity for acceleration beyond memcpy acceleration and
offloading.

How large are bytes fields?

To better understand the breakdown of this large amount of bytes and string data in proto-
buf messages, we collect data on the distribution of bytes field sizes, as shown in Figure 6.4c.
Figure 6.4c uses the same bucket bounds as Figure 6.3; a slice labeled 0-8 in Figure 6.4c repre-
sents the percentage of bytes fields that were 0 to 8 bytes (inclusive) in size. Not labeled are the
4097-32768 and 32769-inf buckets, which constitute 1.3% and 0.06% of observed fields respec-
tively. In this view, we can see that small bytes fields dominate in terms of count, but data volume
is a different story; the 32769-inf bucket contains at least 7.2× as many bytes of data as the 0-8

bucket.

Which field types are responsible for the most CPU cycles in serialization and
deserialization?

The data so far paints a murky picture of where opportunities for protobuf acceleration lie. To
better understand how time is spent in protobuf serialization and deserialization fleet-wide, we
develop a model that converts from counts and bytes of different field types into CPU cycles (or
time) spent handling each type. To enable this, we first group together protobuf field types that
require a similar amount of “work” to be serialized or deserialized, as shown in Table 6.1. Within
the bytes-like and varint-like groups, we subdivide by field size since as discussed earlier, size can
have a significant impact on serialization and deserialization performance. For varint-like fields,
the fleet-wide protobufz histogram data provides exact labels on size bins, so we can directly
determine how much data each of the varint sizes (1 to 10 bytes) contribute to the overall number
of protobuf message bytes. For bytes-like fields, the profiling system collects 10 buckets with
ranges shown in Figure 6.4c. To interpolate field sizes from the buckets for bytes-like fields, we
select the midpoint of each bucket to represent the size of each field in the bucket, and then adjust
the size of the largest bucket (32769 to infinity bytes) as necessary to obtain the total number
of bytes of bytes-like fields. Altogether, this process classifies the fleet-wide bytes-of-protobuf
message data into 24 slices based on pairs of [field-type-like, size].

Next, for each of these 24 pairs, we construct a protobuf microbenchmark to measure serializa-
tion and deserialization performance in terms of time spent per-byte of encoded data. Combining
these results with the fleet-wide bytes-per-field-type data, we obtain estimated deserialization and
serialization time (or cycles) spent per-field-type across Google’s fleet.
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Figure 6.5: Estimated deserialization time by field type, fleet wide.

Figure 6.5 shows the estimated breakdown of deserialization time across the fleet. Several
important insights can be derived from this analysis. Firstly, we notice that there is no single
silver-bullet—the accelerator will need to improve deserialization performance across the swath
of field types and sizes. Furthermore, the cases where the CPU performs best (large bytes-like
fields) are a relatively small proportion of overall deserialization cycles—only 14% of time is spent
deserializing protobuf data at higher than 1GB/s. While somewhat counter-intuitive, the difference
in bytes-percentage between Figure 6.4b (amount of data) and Figure 6.5 (cycles) arises precisely
because handling of large bytes-like fields on a CPU is so much faster per-byte than for example,
a small varint-like or small bytes-like field; in our microbenchmarks, the large bytes-like field is
100-500x faster to handle per-byte. Figure 6.6 paints a similar picture for serialization. Although
the largest byte bucket is relatively more significant than in the deserialization case, there is still
ample opportunity in other field types. Overall, this analysis demonstrates that there are significant
opportunities for acceleration in protobuf deserialization and serialization apart from fast memcpy.

What is the ideal accelerator programming interface?
To enable serialization frameworks to generate programming information for a serialization/de-
serialization accelerator, prior work [170] has suggested dynamically constructing per-message-
instance programming tables of type/address (with implicit field presence) information for each
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Figure 6.6: Estimated serialization time by field type, fleet wide.

Figure 6.7: Field number usage density distribution for all message types, weighted by # of ob-
served msgs. of each type.
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populated field in a message to be serialized. While this can simplify accelerator implementa-
tion, this requires the protobuf compiler to add computationally expensive schema-management
code to all generated field setters and clear methods that previously consisted of only cheap loads
and stores. In contrast, our approach is to produce one Accelerator Descriptor Table (ADT) per-
message-type (Chapter 6.4), resulting in a drastic reduction in programming table state. Our ADTs
are automatically generated by the protobuf compiler and fully populated when the program is
loaded, removing the need to inject costly schema-management code into all field setters and clear
methods.

With our fixed, per-message-type ADTs, however, separate state is required to maintain field-
presence information (i.e., whether or not a field has been set in a particular message object) for
serialization purposes. We modify the internal per-message-instance hasbits bit field already
generated by the protobuf compiler, to a sparse representation, so that the accelerator can directly
index into it by field number.

More quantitatively, while prior work [170] writes an extra 64 bits per-present-field (a con-
servative assumption for the size of a schema entry) compared to our design, our design reads an
extra bit per-field in the range of defined field numbers (due to the sparse hasbits representation)
compared to the prior work. Thus, a field number usage density (= average # of present fields for
a message type divided by the range of defined field numbers for that type) value of greater than
1
64 (which falls in the “0.00” bucket in Figure 6.7) favors our accelerator design; Figure 6.7 shows
that at least 92% of observed messages fleet-wide have a density greater than 1

64 , heavily favoring
our accelerator design. We will build on this discussion in Chapters 6.4 and 6.4, where we discuss
our accelerator programming tables and serializer frontend design.

How do we size sub-message metadata tracking structures in the
accelerator?
Another important question that will arise when designing a protobuf accelerator is that of handling
sub-messages. Recursing into a sub-message in hardware requires maintaining additional state per-
level of hierarchy (Chapter 6.4 and Chapter 6.4), which can become expensive. Fortunately, we
find that across Google’s fleet, 99.9% of bytes of protobuf data handled are at depth 12 or less,
with 99.999% at depth 25 or less. We also find that the maximum observed depth is less than 100.
This suggests that a small amount of state can be allocated on-chip in the accelerator to handle the
vast majority of message data, while trapping or spilling to DRAM is acceptable to handle less
common cases.

Key insights for accelerator design
To conclude this section, we outline the key insights from our profiling study that impact the design
of a protobuf accelerator:

• A hardware accelerator for protobuf serialization/deserialization could eliminate up to 3.45% of
fleet-wide cycles at Google, a significant savings at scale (Chapter 6.3).



CHAPTER 6. A HARDWARE ACCELERATOR FOR PROTOCOL BUFFERS 91

• Usage of serialization framework APIs and formats tends to be stable over time, making hard-
ware acceleration viable (Chapter 6.3).

• A protobuf accelerator is most amenable to being placed near the CPU core. A common proposal
is to place the accelerator on a PCIe-attached NIC. This is unlikely to be fruitful for several reasons:

– Over 83% of deserialization cycles and over 64% of serialization cycles in Google’s fleet are
not RPC-related and offloading them over PCIe would introduce significant unnecessary data
movement (Chapter 6.3).

– Accesses into the in-memory protobuf representation performed during serialization and de-
serialization are ill-suited to being performed over PCIe (due to its high latency [158]). The
accesses are commonly small and irregularly strided (e.g. ints, floats) or require multi-
ple chained pointer dereferences (strings/bytes/ repeated/sub-messages). This is particularly
problematic for deserialization, which must process the serialized input sequentially, field-
by-field (Chapter 6.3).

– The in-memory representation is commonly sparsely populated, so an optimization such as
bulk-copying an entire in-memory protobuf object over PCIe is too wasteful. In a similar
analysis as Chapter 6.3, we find that over 90% of messages fleet-wide only contain values for
less than 52% of their defined fields, on average.

– To make on-NIC acceleration truly worthwhile, a SmartNIC must also handle all encapsula-
tions between protobuf serialization/deserialization and frame egress/ingress.

• Trying to achieve acceleration at individual field-granularity (only accelerating varint processing
or memcpy) is unlikely to be fruitful—a protobuf accelerator will need to understand complete
message structure (e.g. processing fields in parallel during serialization), handle a wide variety of
field types efficiently (Chapter 6.3), and be able to handle fast memcpy (Chapter 6.3).

• To program our accelerator, we will use fixed, per-type schema tables combined with dynamic,
per-instance presence-tracking bit fields. This scheme is more memory and CPU efficient than
prior work [170] (Chapter 6.3).

• To handle submessages in our accelerator, we will only need to maintain on-chip sub-message
context stacks of depth 25 for most messages (Chapter 6.3).

6.4 Protobuf accelerator design and internals
This section details the design and implementation of our protobuf accelerator, consisting of the
deserializer and serializer units, as well as the software modifications required to exercise the
accelerator within the context of our complete accelerated RISC-V SoC design.
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Figure 6.8: Top-level block diagram of our RISC-V SoC with an OoO superscalar core and proto-
buf accelerator.

System overview
The protobuf accelerator is implemented in Chisel RTL [25] and incorporated into the Chipyard
RISC-V SoC generator ecosystem [14]. Figure 6.8 shows the overall architecture of the accelerated
SoC. We configure the SoC to use BOOM, an OoO superscalar RISC-V core with performance
comparable to ARM A72-like cores [230].

The accelerator receives commands directly from the BOOM application core in the SoC via
the RoCC interface [22, 40], which allows the CPU to directly dispatch custom RISC-V instruc-
tions in its instruction stream to the accelerator with low latency (ones-of-cycles). These RoCC
instructions [22] can supply two 64-bit register values from the core to the accelerator. The accel-
erator accesses the same unified main memory space as the CPU using the coherent 128 bit-wide
TileLink system bus [97]. Accesses to main memory made by accelerator components go through
the memory interface wrappers shown in Figures 6.9 and 6.10. These maintain TLBs and inter-
act with the page-table walker (PTW) to perform translation and thus allow the accelerator to use
virtual addresses. These also manage tracking OoO responses from the system bus and support
a configurable number of outstanding requests, depending on memory system characteristics and
resource constraints. Lastly, as shown in Figure 6.8, all memory accesses made by the accelerator
go through the L2 and LLC, which are shared with the application core. Putting these pieces to-
gether, offload overhead is minimal: apart from the custom instructions that perform a serialization
or deserialization, only a fence instruction is required between the user program operating on a
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protobuf and the accelerator operating on a protobuf.

Software changes to the protobuf library
We modify the protoc compiler to automatically generate Accelerator Descriptor Tables (ADTs),
which encode the layout of a protobuf message type in application memory and information about
its fields. There is one ADT per-message-type, rather than per-message-instance, and ADTs are
populated when the program is loaded, avoiding adding code to the critical path of setting or
clearing message fields in user code. When the serialization or deserialization of a message is
dispatched to the accelerator, the message’s type’s ADT is also passed to the accelerator.

Each ADT contains three regions. The 64B header region contains layout information at the
message-level, consisting of: (1) a pointer to a default instance (or vptr value) of the message
type, (2) the size of C++ objects of the message type, (3) an offset into message objects for an
array of field-presence bit fields (hasbits), and (4) the min and max field number defined in the
message. The second ADT region consists of 128-bit wide entries that represent each field in the
message type, indexed by field number. Each entry consists of the following details for a field:
(1) the field’s C++ type and whether the field is repeated, (2) the offset where the field begins in
the in-memory C++ representation of the message, and (3) for sub-message fields, a pointer to the
sub-message type’s ADT. The final ADT region is the is submessage bit field, an array of bits
that indicates if a field is a sub-message. This is used to reduce complexity in the serializer, since
it can know when it needs to switch contexts into a sub-message without waiting for a full ADT
entry read.

In addition to ADT information, the serialization unit in the accelerator must also know which
fields in a given C++ protobuf message are actually populated. The protobuf library tracks this
information using the private hasbits member of each C++ protobuf message object. Each bit in
the hasbits bit field represents the “presence” of a particular field. protoc represents hasbits
densely, but supporting a dense packing in the accelerator would require significant overhead (e.g.
a mapping table indexed by field number, introducing an additional 32-bit read per-field). Based
on our profiling insights in Chapter 6.3, we find that the dense packing optimization is not sig-
nificantly helpful in the common cases seen at scale. Thus, to improve accelerator efficiency, we
make a different hardware/software co-design trade-off for the accelerator context; we modify the
representation of the hasbits bit field such that the accelerator can directly index into it, based on
field number. To save memory in the common case where field numbers are contiguous but start at
a large number, we provide the accelerator with the minimum defined field number in a message
type, with respect to which it calculates field-number offsets.

Accelerator memory management
To remove the CPU from the critical path of serialization and deserialization, the accelerator will
need to manage a memory region in which it allocates and populates deserialized C++ message ob-
jects and serialized message outputs. Similar to how an arena is constructed in advance when using
arena allocation for software-only protobuf processing (Chapter 6.2), the application program pre-
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Figure 6.9: Deserializer unit top-level block diagram.

allocates arena memory regions for the accelerator and passes their pointers to the accelerator via
two custom RoCC setup instructions ({ser,deser} assign arena). In the rest of this chapter,
we will refer to standard upstream protobuf arenas (i.e., those from Chapter 6.2) as software arenas
and arenas given to the accelerator as accelerator arenas.

Deserializer unit
The deserializer unit is responsible for receiving a serialized protobuf (as a pointer to a sequence of
bytes) and decoding it to populate a corresponding C++ object of that message’s type. Figure 6.9
shows the block-level design of the deserializer unit.

To maintain compatibility with standard protobuf software APIs, we expect that the top-level
C++ protobuf message object is allocated by the user code (e.g. in the software arena). Any
internal objects (sub-messages, strings, and repeated fields) are allocated by the accelerator in the
accelerator arena.

Dispatching a deserialization from the CPU

To begin deserialization of a message, the CPU issues two custom instructions through the RoCC
interface. The first instruction, deser info, supplies a pointer to the ADT of the message type
being deserialized and a pointer to the top-level destination message object for the accelerator
to populate. The second instruction, do proto deser, supplies a pointer to the serialized input
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buffer, the smallest defined field number in the message type, and the length of the input buffer,
and kicks off deserialization in the accelerator. Once these instructions are issued, the CPU can
perform other work, issue more deser info and do proto deser pairs, or issue a block for

deser completion instruction, which is committed after all in-flight deserializations are com-
pleted. This is a flexible middle ground that allows for batching deserializations, without requiring
SW to unnecessarily poll for completion.

Memloader unit

Once a do proto deser instruction is dispatched to the accelerator, the accelerator begins loading
serialized buffer contents from memory using the memloader unit. The memloader exposes a
decoupled streaming interface to the rest of the pipeline that allows the consumer to accept a
consumer-dictated amount of data per-cycle, up to 16B. A full 16 bytes of buffered data are always
exposed on this interface, since the number of bytes the consumer will wish to consume is data-
dependent.

Field-handler unit

The field-handler unit implements the core parsing logic required to convert the serialized buffer
contents into an in-memory C++ object for the user program to consume. The field handler control
is implemented as a state machine that, in a loop, parses a field’s key (the parseKey state), blocks
for detailed type information from the ADT entry for the field (the typeInfo state), and then
moves into a set of states that handle parsing and writing the field’s value based on its detailed type
information.

Field-handler unit: parseKey state

Each key is encoded as a varint, which can be up to 10B wide. The field-handler unit contains a
combinational varint decoder, which can directly peek at the next 10B of the serialized buffer via
the memloader’s variable-width consumer interface. The varint parser emits the decoded key (as
a 64-bit-wide uint) and the encoded length N, so the memloader can discard the N-byte key at
the end of the cycle. As described in Chapter 6.2, the key consists of two components, the field
type and the field number. At the end of the parseKey cycle, the field handler dispatches a request
to the ADT loader containing the ADT base address for this message type and the field number
of the field. The field handler also dispatches a request to the hasbits writer, which will set the
appropriate bit in the C++ object’s hasbits bit field to indicate that the field is present in the
message.

Field-handler unit: typeInfo state

After the parseKey state, the accelerator moves to the typeInfo state. This state serves to block
on the response from the ADT loader in order to obtain detailed type information. Once the
response is received, the logic in this state dispatches to one of four state classes: final write states
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for scalar fields, string allocation and copy states, repeated-field handling states, or sub-message
handling states.

Field-handler unit: final write states for scalar fields

This set of states handles writes for scalar field types: the varint, 64-bit, and 32-bit protobuf wire
types. At the end of this stage, the decoded field data is written into memory. The write address is
available from the ADT entry previously received in the typeInfo state. The decoded value and
size depend on the detailed type being handled, which is known from the loaded ADT entry.

To handle the varint wire type, the same combinational varint parser from the parseKey state
generates a fixed-width value and supplies the number of bytes consumed back to the memloader
consumer interface. The ADT entry distinguishes whether the output type is 32-bits or 64-bits
wide and signed or unsigned. For signed varints, the decoded value is passed through an additional
combinational zig-zag [63] decoding unit.

Field-handler unit: string allocation and copy states

String and byte fields and the other field types we will discuss in the remainder of this section
introduce a new wrinkle into the deserialization process—instead of relying on user code to have
allocated destination memory, the accelerator must handle memory allocation in the accelerator
arena assigned to it by the user program.

Our accelerator constructs string objects that are compatible with modern versions of libstdc++,
which allows user code to directly operate on strings in the deserialized protobuf message as if it
were deserialized by the software protobuf library. The accelerator first decodes and consumes the
varint-encoded string length. It then constructs the string object and depending on the length, a
separate array for the string contents (i.e. the common small string optimization). A pointer to the
newly allocated string object is written into the offset in the C++ message object that is obtained
from reading the field’s ADT entry. Next, the accelerator consumes the string contents from the
memloader and writes them into the allocated buffer in memory.

Field-handler unit: repeated-field handling states

Our accelerator also handles packed and unpacked repeated fields. Packed repeated fields are
handled in a similar vein as strings, since they are also represented as length-delimited values.
Unpacked values are handled by creating a tagged open-allocation region when the first element
in an unpacked repeated field is seen. As more key-value pairs with the same tag are received in
the serialized representation, they are copied into the open allocation region. When the accelerator
encounters either the end of the current message or a different unpacked repeated field, it closes-out
the open allocation region and writes out a final length in elements into the repeated-field object in
application memory.
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Field-handler unit: sub-message handling states

As described in Chapter 6.2, protobuf messages can contain sub-messages. So far, the accelerator
has relied on several pieces of information that are supplied by the CPU via RoCC instructions to
perform deserialization: the ADT pointer for the top-level message’s type, a pointer to the user-
allocated C++ object in which the deserialized top-level message should be written, the smallest
defined field number in the message type, and the length of the serialized top-level message input
in bytes. Going forward, we will refer to these elements as message-level metadata.

The deserialization process for sub-messages requires consuming the serialized sub-message
content in a depth-first manner, which means we must preserve message-level metadata for each
message on the path between the current sub-message and the top-level message. Given the depth-
first parsing order, we maintain a hardware stack to track message-level metadata during deserial-
ization. The accelerator always uses the message-level metadata at the top of the metadata stack,
allowing reuse of the entire pipeline for sub-message decoding.

Putting these pieces together, the sub-message parsing state prepares the accelerator to con-
sume the serialized sub-message output by modifying the stack entries and by performing memory
allocation. In this state, the accelerator first decodes the serialized sub-message field’s header,
which contains the varint-encoded length of the serialized message in bytes. As with other fields,
the ADT entry for the field has already been fetched and contains a pointer to the ADT of the
sub-message’s type. Using this pointer, the accelerator fetches metadata from the aforementioned
header region of the ADT for the sub-message type, which contains a pointer to a default instance
(or vptr) of the type and the size of the type. Given this information, the accelerator allocates and
initializes a new C++ object for the deserialized sub-message data and writes a pointer to the newly
allocated object into the parent object’s field pointer. Finally, the accelerator pushes new entries
onto the message-level metadata stacks. When the setup is completed, the accelerator returns to
the parseKey state, where it begins parsing and populating the sub-message.

As the sub-message is being processed and input data is consumed, the accelerator updates the
total consumed serialized input length. When this length is equal to the top entry in the stack of
the serialized message lengths, the sub-message parsing is completed. Popping an entry from each
stack returns the accelerator to parsing the parent message.

Serializer unit
The protobuf accelerator’s serializer unit converts a C++ protobuf object populated by a user appli-
cation into a serialized sequence of bytes. Figure 6.10 shows the block-level design of the serializer
unit.

Field serialization order and serializer memory management

One counter-intuitive but critical note about field serialization order is that the accelerator iter-
ates through fields in reverse field number order and writes the serialized output from high-to-low
addresses. This produces byte-wise identical output as a software serializer serializing in increas-
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Figure 6.10: Serializer unit top-level block diagram.

ing field number order and writing output from low-to-high addresses, but drastically simplifies
the process of populating the length of sub-messages (which appear before the fields in a sub-
message). The accelerator arena internally contains two memory regions for serialization: (1)
a buffer in which to allocate and write serialized output data and (2) a buffer in which to store
pointers to the start of each serialized output in (1).

Dispatching a serialization from the CPU

To dispatch a serialization operation, like before, the user program issues two RoCC instructions.
The ser info instruction supplies the offset of the hasbits field in the C++ protobuf message
object to serialize and the largest and smallest defined field numbers for the message type. The
do proto ser instruction supplies a pointer to the top-level ADT of the protobuf message to se-
rialize and a pointer to the C++ representation of the protobuf message to serialize and kicks off
a serialization. Like deserialization, the CPU can perform other work, issue more ser info and
do proto deser pairs, or issue a block for ser completion instruction, which is committed
after all in-flight serializations are completed. After completion, the user program can call a func-
tion to get a pointer to the Nth serialized output (and its length) from the arena.
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Frontend

When the accelerator receives the RoCC instructions to initiate a serialization, the accelerator
frontend uses the supplied register values to initialize a set of stacks (for sub-message support) that
maintain context information for the message being serialized.

Next, the accelerator frontend loads the is submessage and hasbits bit fields from memory
in parallel, iterates through the fields bit-by-bit, and issues an ADT load request whenever a field
is present. For non-sub-message fields, the frontend simply loads ADT information and issues a
handle-field-op to the remainder of the pipeline. If a present field is a sub-message, the frontend
first updates the current message’s context information in the stack. Then, the frontend loads
the ADT entry for the sub-message field and the sub-message pointer itself. This information
is then pushed onto the context stacks. The handle-field-ops issued to the rest of the pipeline
contain a depth field, which allows the memwriter unit to determine when a new sub-message
has started. Once these housekeeping steps are completed, the frontend then resumes regular field
handling as described previously. After the frontend handles the message’s smallest defined field
number, it issues a special handle-field-op with field number zero (which the protobuf specification
prevents from being used for a user-defined field) to indicate to the remainder of the pipeline that
the (sub-)message has been completed. When the end of a (sub-)message is reached, the frontend
pops from the context stacks and continues with the parent message (or signals top-level message
completion).

Field serializer units

Next, the individual handle-field-ops from the frontend are dispatched round-robin to a set of field
serializer units, which produce serialized key, value pairs for individual fields. They load the C++
representation of the field data to serialize from memory, encode it if necessary (e.g. encoding
integers as varints), and then make the serialized field data available to their output ports in chunks
of parameterizable width. The field serializers also construct and emit the key for each non-sub-
message field that is part of the serialized output. Due to space constraints, we do not detail how
each individual field type is handled. However, the process of serializing values of each field
type is effectively the reverse of deserializing a field of the corresponding type (without needing
to perform allocation and C++ object construction), which is discussed in depth in Chapters 6.4
to 6.4.

Memwriter unit

The next stage of the pipeline consumes serialized field data from the parallel set of field serial-
izer units in round-robin fashion and sequences the output into one output stream to feed to the
memwriter unit, which writes data to memory. The memwriter also handles the aforementioned
special handle-field-ops that indicate the beginning and end of messages and sub-messages. The
memwriter maintains a stack of the lengths of the messages currently being handled and pushes
and pops from the stack as the handle-field-ops with a new depth or with field number zero are
received. When an op with field number zero is received (which signals end-of-message), the
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memwriter injects the sub-message’s key, which includes the sub-message’s serialized length. The
need to inject this key affirms why the output buffer is populated from high-to-low address—we
must see all serialized sub-message fields before we know the length of the entire serialized sub-
message. When an end-of-message op is received for a top-level-message, the memwriter also
writes the current output pointer (the address of the front of the completed serialized message) into
the next slot in the buffer of serialized message pointers.

6.5 Evaluation
We evaluate our complete accelerated system implemented in RTL using two sets of benchmarks:
(1) microbenchmarks that exercise a variety of protobuf features/types and (2) HyperProtoBench,
a benchmark suite representative of key serialization framework users at scale. To enable running
these benchmarks directly on our RTL design, we run FPGA-accelerated simulations of the design
using FireSim [118], which provides high-performance, deterministic, and cycle-exact5 modeling
of the design, while cycle-accurately modeling I/O, including DRAM [34].

For comparison, each benchmark is run on three systems: the baseline single-core BOOM-
based6 RISC-V system modeled at 2 GHz core frequency (“riscv-boom”), the same RISC-V sys-
tem with our accelerator attached (“riscv-boom-accel”), also modeled at 2 GHz core and acceler-
ator frequency (based on the critical path results in Chapter 6.5), and one core (2 HT) of a Xeon
E5-2686 v4-based server (“Xeon”), running at 2.3 GHz base/2.7 GHz turbo.

Microbenchmarks
To understand accelerator performance on the various field types supported by protobufs, we de-
veloped a set of microbenchmarks that test the performance-similar field types shown in Table 6.1.
We also created µbenchmarks to evaluate performance on messages containing sub-messages and
repeated fields. Where appropriate (e.g. varints and strings), we also break-down benchmarks by
field size. Each µbenchmark tests either serialization or deserialization of messages containing a
fixed number of fields of a particular protobuf field type. For varints, doubles, floats, and their
repeated equivalents, we set this to five fields per message, so that the middle-sized non-repeated
varint’s µbenchmark message falls roughly at the median of message sizes shown in Figure 6.3.
All other µbenchmarks use one field per-message. Each benchmark performs a timed batch of
deserializations and serializations, operating on a pre-populated set of serialized messages or C++
message objects respectively, and reports throughput by dividing the total amount of serialized
message data consumed/produced by the time to process the batch.

5All components of the RISC-V SoC written in RTL, including our accel. design, are modeled bit-by-bit and
cycle-by-cycle exactly as they would perform in silicon taped-out using the same RTL.

6In particular, we use a high-end configuration of SonicBOOM, which performs comparably on IPC with ARM
Cortex A72-like cores when running SPEC2017 and achieves higher CoreMarks/MHz than A72-like cores running
CoreMark [230].
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Figure 6.11: Protobuf microbenchmark results.
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Deserialization

Figure 6.11a shows the results of running deserialization µbenchmarks for field types that do not
require memory allocation in the accelerator. To some degree, all examined systems exhibit the
behavior that deserialization throughput of varints increases with the size of the varint field. This is
due to a variety of factors, including underutilization of memory bandwidth with small loads, fixed-
overhead of handling a field (e.g. key handling), and in the case of the accelerator, single-cycle
decoding of all varints. Summarizing these results, we find that our accelerated system performs
on average 7.0× faster than the BOOM-based system and 2.6× faster than the Xeon.

Figure 6.11c shows the results of running deserialization microbenchmarks for field types that
require the accelerator to perform memory allocation, including repeated fields, strings, and sub-
messages. In this figure we also see performance improvements across the board. A key reason for
improved performance in these benchmarks is the accelerator’s ability to directly allocate memory
without requiring CPU intervention. Also, as mentioned in Chapter 6.3, the long-string deserializa-
tion case essentially becomes a memcpy, which the accelerator handles well. Summarizing these
results, we find that the accelerated system performs on average 14.2× faster than the BOOM-
based system and 6.9× faster than the Xeon-based system.

Serialization

Figure 6.11b shows the results of running serialization µbenchmarks for field types that are “in-
line” in C++ message objects. In practice, this is the exact distinction between non-allocated and
allocated field types discussed in the deserializer results, however we do not re-use this terminol-
ogy for clarity. While other platforms show a less consistent increase in throughput based on varint
size, the accelerated system shows increased performance as varint size increases. This is similarly
due to the improved bandwidth utilization due to larger loads as well as the accelerator’s ability to
encode fixed-width C++ integer formats into a varint in a single-cycle. We also note that due to this
fact, floats and doubles perform similarly to equivalently sized varint fields. Summarizing these re-
sults, we find that the accelerated system performs on average 15.5× faster than the BOOM-based
system and 4.5× faster than the Xeon.

Figure 6.11d shows the results of running serialization µbenchmarks for field types that are
not “inline” in the top-level C++ message object. Similarly to deserialization, one notable result
is the very-long and long sizes of string fields, which both essentially become memcpy operations.
The accelerator again performs well here, but it is interesting to note that the Xeon also performs
extremely well on the very-long-string benchmark, notably better than the deserialization case.
Summarizing these results, we find that the accelerated system performs on average 10.1× faster
than the BOOM-based system and 2.8× faster than the Xeon.

Overall microbenchmark results

To get a sense of the overall performance improvement our accelerator achieves across a variety of
field types, we take the geometric mean of the results reported for the four classes of µbenchmark
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Figure 6.12: HyperProtoBench deserialization results.

shown above, for each of the two hosts we compare against. We find that on average, the ac-
celerated system performs 11.2× better than the BOOM-based system and 3.8× better than the
Xeon-based system.

HyperProtoBench: Open-source Google fleet-representative protobuf
benchmarks
To gain a better understanding of how our design behaves at scale and to enable more productive
research in serialization frameworks by providing insight on how these frameworks are used in
a hyperscale context, we have open-sourced HyperProtoBench, a collection of benchmarks that
represent a significant portion of fleet-wide protobuf deserialization and serialization cycles at
Google.

To construct these benchmarks, we collect samples from Google’s live production fleet that
describe the “shape” of protobuf messages used, per service, using the same mechanisms as de-
scribed in Chapter 6.3. This shape data includes information about which messages are being
serialized/deserialized, which fields are set in those messages, the sizes and types of those fields,
and the message hierarchy. Given this input, an internal synthetic protobuf benchmark generator
fits a distribution to the input data and then samples from it to produce a benchmark that is rep-
resentative of a selected production service. For each service, the generator produces a .proto

file with message definitions representative of those used in the production service and generates a
C++ benchmark that constructs, mutates, and serializes/deserializes the protobuf messages appro-
priately.

To cover as many of the total fleet-wide protobuf serialization and deserialization cycles as
possible, we use fleet-wide profiling data to determine the five heaviest users of protobuf deseri-
alization and the five heaviest users of protobuf serialization. In aggregate, these services cover
over 13% of fleet-wide deserialization cycles and 18% of fleet-wide serialization cycles. For each
of these services, we construct a synthetic benchmark representative of its protobuf usage. This
collection of benchmarks comprises HyperProtoBench.

Figures 6.12 and 6.13 show the results of running the HyperProtoBench deserialization and se-
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Figure 6.13: HyperProtoBench serialization results.

rialization benchmarks respectively, on the same collection of three systems (“riscv-boom”, “riscv-
boom-accel”, and “Xeon”). We find that our accelerated system achieves on average 6.2× perfor-
mance improvement compared to our baseline RISC-V SoC with OoO (ARM A72-like) cores and
3.8× performance improvement compared to the Xeon-based system. Extrapolating from the fleet-
wide cycles spent in serialization and deserialization, this would result in a savings of over 2.5%
of fleet-wide cycles, which at scale translates to hundreds of millions of dollars in savings, across
the industry [24, 198].

ASIC critical path and area
To estimate the ASIC critical path and area results for our accelerator design, we run the design
through synthesis for a commercial 16nm-class process. The deserializer achieves a frequency of
1.95 GHz with a silicon area of 0.133 mm2. The serializer achieves a frequency of 1.84 GHz with
a silicon area of 0.278 mm2.

6.6 Related work
Optimus Prime [170] presents an accelerator for serialization/deserialization. Their design re-
quires adding code to all protobuf setters and clear methods to construct/manage their per-message-
instance schema tables for accelerator programming, which introduces significant memory/com-
pute overhead. As discussed in-depth in Chapters 6.3, 6.4, and 6.4, our work instead uses per-
message-type ADTs (created once at program load-time) for accelerator programming and uses
the existing per-message-instance hasbits bit field in protobufs to track field presence, avoid-
ing the overheads introduced by Optimus Prime. Further in contrast to our work, Optimus Prime
focuses on the serialization process and does not cover the deserialization process in-depth, es-
pecially the complexity of managing memory and allocating/constructing C++ objects. Also, our
work produces an open-source RTL design which is used as the single source of truth for all eval-
uation purposes; the RTL design is simulated at high performance using FireSim to gather bench-
mark performance data and evaluated for area/critical path. Finally, Optimus Prime uses three
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microbenchmarks for protobufs, part of the DeathStarBench benchmark [75] for Apache Thrift,
and compares against ARM A57 cores while our work runs protobuf benchmarks derived from
key Google services and compares against an (ARM A72-like) OoO RISC-V core and a Xeon
server. As discussed earlier, the real-world data suggest several non-intuitive design trade-offs.

Cereal [105] presents an accelerator for serialization/deserialization of Java objects. Cereal
requires modifications to the JVM and uses a custom wire format that is amenable to hardware
acceleration. In contrast, our work maintains compatibility with the existing protobuf wire format
and does not require modifications to the language implementation. Additionally, directly serializ-
ing language objects is not practical in a production-WSC running many services, since backwards
compatibility becomes challenging. For example, fields are commonly added or removed from a
message over time, which would alter object layout, requiring services to update in lock-step. The
schema and compiler-based design of protobufs (Chapter 6.2) prevents these issues.

Two recent proposals, Zerializer [221] and Breakfast of Champions [177], suggest adding seri-
alization and deserialization support to PCIe-attached NICs. The former suggests adding (but does
not implement) a custom hardware accelerator, while the latter implements a proof-of-concept that
re-uses existing NIC scatter-gather functionality to handle serialization and deserialization, but re-
quires a custom zero-copy-friendly serialization API/format. While we place our accelerator near
the CPU, it could easily be placed on a PCIe-attached NIC. We discuss placement trade-offs in
Chapter 6.3.

HGum [227] and Fletcher [166] generate serialization/deserialization hardware for FPGA-
CPU/FPGA communication. Unlike our work, HGum implements a custom serialization format
while Fletcher generates hardware pipelines specific to a message schema that must be specified
when hardware is constructed.

6.7 Discussion and future work
Instruction cache and branch predictor benefits. Reduced I$ pressure and reduced pressure on
branch-prediction resources are often overlooked as benefits of protobuf offloading. protoc gen-
erates large amounts of branch-heavy code to handle serializations and deserializations in software.
In some cases, a call to serialize or deserialize can even effectively act like an I$ and branch pre-
dictor flush. Offloading serialization and deserialization to an accelerator eliminates both of these
pressures. This can save significant CPU cycles, potentially as many as accelerating protobufs
itself.

Accelerating other protobuf operations. Figure 6.2 shows several other protobuf operations that
consume a non-trivial number of CPU cycles, including merge, copy, clear, constructors, and de-
structors. Re-using the hardware building blocks from serialization and deserialization and adding
new custom instructions for each, a future version of our accelerator would be able to handle merge,
copy, and clear, addressing another 17.1% of fleet-wide C++ protobuf cycles. While we did not
claim constructors (6.4% of fleet-wide protobuf cycles) as part of the fleet-wide acceleration op-
portunity for our accelerator, the accelerator does address some of these cycles, by constructing
sub-message objects during deserialization. A small change to the protobuf API (software accept-
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ing a top-level message pointer from the accelerator) would allow the accelerator to fully offload
all deserialization-related constructor cycles. Destructor cost (13.9% of protobuf cycles) can be
addressed in software by fully migrating to arenas, which the accelerator already supports.

Future support for proto3 and non-C++ host languages. To our knowledge, the only change
needed for proto3 support in our accelerator is adding support for UTF-8 validation of string fields
during deserialization. Adding support for other host languages would require the accelerator to
understand the layout of and construct in-memory protobuf message objects for new languages and
their standard library components, like strings.

6.8 Conclusion
This work presented an end-to-end study of profiling and accelerating serialization and deseri-
alization, two key datacenter tax components. To understand the trade-offs and opportunities in
hardware acceleration for serialization frameworks, we presented the first in-depth study of serial-
ization framework usage at scale by characterizing Protocol Buffers usage across Google’s WSC
fleet and used this data to construct HyperProtoBench, an open-source benchmark representative
of key serialization-framework user services at scale. In doing so, we identified key insights that
challenge prevailing assumptions about serialization framework usage.

We used these insights to develop a novel hardware-accelerator for protobufs, implemented in
RTL and integrated into a RISC-V SoC. We have fully open-sourced our RTL, which, to the best
of our knowledge, is the only such implementation currently available to the community.

We also presented a first-of-its-kind, end-to-end evaluation of our entire RTL-based system
running hyperscale-derived benchmarks and microbenchmarks. We booted Linux on the system
using FireSim to run these benchmarks and pushed the design through a commercial 16nm-class
process to obtain area and frequency metrics. We demonstrated an average 6.2× to 11.2× per-
formance improvement (sometimes up to 15.5×) vs. our baseline RISC-V SoC with BOOM OoO
(ARM A72-like) cores and despite the RISC-V SoC’s weaker uncore/supporting components, an
average 3.8× improvement (sometimes up to 6.9×) vs. a Xeon-based server.

In addition to advancing the state of the art in serialization framework acceleration, this work
is the first to demonstrate the power of combining a data-driven hardware-software co-design
methodology based on large-scale profiling with the promise of agile, open hardware development
methodologies. In this vein, our entire evaluation flow (RTL, benchmarks, including hyperscale-
derived benchmarks, and supporting software and simulation infrastructure) has been open-sourced
for the benefit of the research community.

6.9 Retrospective
This work is a key enabler for future hyperscale HW research and is seeing re-use in several
ongoing hyperscale HW research projects, as many domain-specific architectures for hyperscale
systems see Amdahl bottlenecks if (de)serialization is not accelerated (e.g., [80]). As the push to-
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wards microservices continues, we also expect further growth in usage of RPC stack components
like protobufs. This work has also influenced industry, including various silicon vendors and un-
derwent MICRO’s artifact evaluation process and received all available badges, including results
being reproduced. This work received the Distinguished Artifact Award at MICRO ’21 and was
selected as an IEEE Micro Top Picks 2021 Honorable Mention.
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Chapter 7

CDPU: Accelerating general-purpose
lossless (de)compression at scale

In this chapter, we employ the data-driven hardware/software co-design methodology described
earlier to understand and accelerate another critical system-level overhead in hyperscale servers:
general-purpose lossless compression and decompression. Using insights from Google’s hyper-
scale datacenter fleet, we design custom hardware to accelerate multiple compression and decom-
pression algorithms and perform a design-space exploration of our accelerators in the context of
Hyperscale SoC. Note that representations of fleet data in this chapter are as they were in the
original publication of this chapter at ISCA 2023 [114].

7.1 Introduction
General-purpose lossless data compression and decompression (referred to as “(de)compression”
in this work) are another set of critical system-level overheads (or “datacenter taxes” [110, 198])
in hyperscale contexts. Most datacenter taxes implement critical functionality like inter-service
communication, security, or memory movement. In contrast, (de)compression is unique in that
its purpose is not to add functionality, but to enable a trade-off between the consumption of two
classes of WSC resources: runtime (CPU cycles) and storage/communication capacity (persistent
storage capacity, memory capacity [129, 217], and network bandwidth). Unlike other datacenter
taxes, service developers must first decide whether to compress at all, and then select an algorithm
that achieves satisfactory compression quality within their constraints.

This presents an interesting opportunity for hardware acceleration: an accelerator that radically
outperforms software implementations can not only reduce existing CPU cycles in the fleet, but
also increase compression usage in general, leading to additive savings in storage, memory, and
network bandwidth. However, introducing specialized hardware complicates the design space; the
total cost of ownership (TCO) calculation must now account for hardware complexity, area vs.
performance, and more.

In this work, we present the first large-scale data-driven analysis of lossless data (de)comp-
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ression usage at a major cloud provider by profiling Google’s datacenter fleet. We find that
(de)compression consumes 2.9% of fleet CPU cycles and 10% to 50% of CPU cycles in key ser-
vices at Google. This demand is also artificially limited; 95% of bytes compressed in Google’s
fleet forgo more aggressive forms of compression because of the high compute cost, motivating
HW acceleration that changes time vs. data size trade-offs. While profiling fleet usage is helpful,
we also find that true co-design for (de)compression processing units (CDPUs) requires a compre-
hensive evaluation environment, due to the large number of high-level design parameters and their
impact on end-to-end performance.

A large body of prior work has improved the microarchitectural state-of-the-art for CDPUs
supporting various algorithms in fixed contexts [176, 47, 185, 74, 7, 186, 171, 101, 172, 210, 3,
48, 211, 53, 130, 162, 99, 100]. While these improvements are important, we find that higher-level
design parameters like accelerator placement, hash-table sizing, history window sizes, and more
can have just as significant of an impact on the value and feasibility of CDPU integration, but
are not well-studied in the literature. Thus, we present the first end-to-end design and evaluation
framework for CDPUs, which includes: 1. An RTL-based CDPU generator that supports many
run-time and compile-time configurable parameters. 2. Integration into a RISC-V SoC for rapid
performance and silicon area evaluation with varying CDPU placements and configurations. 3. A
(de)compression benchmark, HyperCompressBench, that is representative of (de)compression us-
age in Google’s fleet. All components of this framework are open source1, enabling the community
to build and evaluate CDPUs for both hyperscale systems and their own use cases.

Using our CDPU design framework, we perform an extensive design space exploration running
HyperCompressBench. Our exploration spans a 46× range in accelerator speedup, 3× range in
silicon area (for a single pipeline), and evaluates a variety of accelerator integration techniques to
better understand optimal CDPU designs for hyperscale contexts. Our final hyperscale-optimized
accelerator instances are up to 10× to 16× faster than a single Xeon core, while consuming a small
fraction (as little as 2.4% to 4.7%) of the area.

7.2 General-purpose lossless compression and decompression
fundamentals

Compression algorithms are used to produce a reduced-size representation of source data that can
later be fed to a decompressor to exactly reproduce the original data. While the functional goal is
only to minimize the output size (maximizing the compression ratio, equal to uncompressed di-
vided by compressed size), algorithms must also account for metrics like latency, throughput, and
CPU/memory consumption, resulting in a vast design space. In a hyperscale context, compres-
sion reduces the consumption of several resources, including storage (bytes written to disk/SSD),
network bandwidth (e.g., RPC traffic), and memory (transparently [129, 217] or via application

1CDPU generator, custom Chipyard, custom FireSim: https://github.com/ucb-bar/compress-acc,
HyperCompressBench: https://github.com/google/HyperCompressBench, Archival URLs: See Artifact
appendix: CDPU (Appendix C)

https://github.com/ucb-bar/compress-acc
https://github.com/google/HyperCompressBench
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managed compression). Compression can also implicitly save other resources such as caches,
network-on-chip capacity, etc., but we do not explore these in this work.

Compression algorithm fundamentals
Compression algorithms generally contain two main components: a dictionary-coding stage and
an entropy-coding stage. During dictionary coding, data size is reduced by searching for matches
between the input data and a “dictionary” of known values, then encoding the input in terms of
the “best” match in the dictionary, de-duplicating repeated strings in the input. LZ77 [233] is a
widely used dictionary coding algorithm that uses a sliding window of already processed input
data as the dictionary. Matches are encoded as triplets of (offset, length, literal). Such
a triplet indicates to the decompressor that length bytes should be copied to the output starting
from offset bytes back in the window of output generated so far. Then, the raw literal is also
copied to the output, for example to encode data when no matches were found in the dictionary.

Entropy coding compresses symbols (e.g. (offset, length, literal) triplets produced
by LZ77) by representing more commonly occurring symbols with fewer bits. Popular techniques
include Huffman coding [94], arithmetic coding, and Asymmetric Numerical Systems (ANS) [60,
68]. Huffman and arithmetic coding trade-off compression ratio and performance—Huffman is
cheaper in CPU cycle cost, but arithmetic coding generally achieves a better compression ratio.
ANS (such as tANS/FSE [60, 68]) combines the best of both worlds, with low CPU cost and high
compression ratio.

Compression algorithm taxonomy
Compression algorithm developers trade-off compression ratio vs. performance by combining
these components in novel ways and tuning parameters within them. For example, they can choose
how much effort to expend trying to find an “optimal” match during LZ77-style dictionary coding
or change the size of the sliding history window. A larger window size typically yields better
compression ratios but must be bounded to limit memory consumption. Many algorithms accept a
compression-level parameter, which also allows users to tune algorithm performance.

In Chapter 7.3, we will analyze six algorithms that are used in Google’s fleet. We qualitatively
group these into “heavyweight” and “lightweight” classes (which we will justify quantitatively in
Chapter 7.3):

Heavyweight algorithms: These prioritize compression ratio over speed. They generally have
a large space of parameters and use sophisticated LZ77/entropy-coding techniques.

• ZStd [235, 51]: LZ77/Huff./FSE. Params: comp. level + window size.

• Flate [234, 59]: LZ77/Huff. Params: comp. level + window size.

• Brotli [39, 8]: LZ77/Huff./context modeling/static dictionary [9]. Params: compression level +
window size.
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Lightweight algorithms: These prioritize speed over compression ratio. They generally use
“LZ77-inspired” dictionary coding, little or no entropy coding, and have few parameters.

• Snappy [197, 195]: LZ77-inspired, no entropy coding. Fixed window size (64 KiB), no com-
pression levels.

• Gipfeli [79, 138]: LZ77-inspired, simple entropy coding. Fixed window size (64 KiB), no
compression levels.

• LZO [145, 206]: LZ77-inspired dictionary coding, no entropy coding. Supports compression
levels.

ZStd and Brotli can also become more lightweight by setting a low compression level. We will
explore this in Chapter 7.3.

7.3 Profiling (de)compression usage at hyperscale
In this section, we profile the fleet-wide usage of (de)compression in Google’s datacenters to mo-
tivate the design of a CDPU and understand design constraints.

Data Sources
Fleet-wide CPU Cycle Data

Google’s infrastructure provides fleet-wide runtime information about CPU-cycle consumption
using a sampling framework, Google-Wide Profiling (GWP) [180], that randomly samples fleet
servers. When a server is profiled, the sampler collects profiles including workload names, stack
traces, and cycle counts, enabling determination of where time is spent in the software stack. We
use this to classify fleet-wide CPU-cycles spent in (de)compression by algorithm.

Fleet-wide compression/decompression call sampling

An extension of this sampling framework also enables detailed profiling of (de)compression calls
in userspace, including collecting the algorithm used, input and output sizes, window sizes, and
compression levels. Given the additional engineering effort this requires, data is only collected
for the Snappy, ZStd, Flate, and Brotli algorithms, which, as Figure 7.1 shows, are the dominant
algorithms in the fleet.

Opportunity for (De)compression Acceleration
WSCs today spend significant compute on (de)compression. In Google’s infrastructure, 2.9%2 of
fleet-wide CPU cycles are spent in (de)compression; 56% of these cycles are spent in decompres-
sion and the rest in compression.

2At hyperscale, this can translate to 100s of millions of dollars [24, 198].
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Figure 7.1: Percentage of (de)compression cycles in Google’s fleet over several years, broken down
by algorithm and normalized to each month. C = compression, D = decompression.

For large services, (de)compression can be a much greater proportion of total cycle consump-
tion. We find that a total of sixteen services constitute around half of all fleet-wide cycles for
Snappy and ZStd3 (de)compression. Out of these, one service spends nearly 50% of its total cycles
on (de)compression, another spends over 35%, and eight more spend between 10% and 25% of
their cycles each on (de)compression. Even ignoring potential growth in demand, these represent
a significant acceleration opportunity at hyperscale.

Can accelerators change WSC resource tradeoffs?
While reducing the existing CPU cycles spent on (de)compression is a useful goal, it is important
to note that this usage is a function of the performance constraints imposed by current software li-
braries. When considering the introduction of specialized hardware, we must keep in mind that the
accelerator is likely to change the “space” (storage/memory bytes, network bandwidth) vs. “time”
(runtime, CPU cycles) trade-off involved in selecting a compression algorithm, that algorithm’s
parameters, or indeed, choosing to compress at all in a given situation.

In an ideal scenario, the accelerator would sufficiently reduce the performance overhead of
“heavyweight” forms of (de)compression such that services can always choose them over “light-
weight” techniques (or even no compression), and reduce storage, memory, and network bandwidth
consumption for “free”. To understand this opportunity, we must answer four key questions:

3In the rest of the chapter, we focus on Snappy and ZStd as dominant representatives of “lightweight” and “heavy-
weight” algorithms in the fleet respectively.
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Figure 7.2: Google fleet-wide (de)compression algorithm breakdowns. C = compression, D =
decompression.
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Do existing services prefer to use heavyweight or lightweight algorithms?

Figure 7.1 shows a detailed breakdown of CPU time spent in the fleet on compression and decom-
pression by algorithm, self-normalized to each month. In this sub-section, we focus only on the
final time slice, which is summarized in the legend. In addition to cycle consumption, we would
also like to understand the amount of data that each algorithm is invoked on. Figure 7.2a thus
differentiates algorithms based on the number of uncompressed bytes they handle in the fleet (i.e.,
compression inputs and decompression outputs).

We find several interesting trends from this data. For compression, where the heavyweight
vs. lightweight distinction is most significant, we see that slightly more cycles, 56%, are spent
in heavyweight compression. However, from the perspective of bytes handled, the outcome is re-
versed: heavyweight compression only accounts for 36% of the total. This foreshadows the differ-
ence in cost-per-byte-compressed between heavyweight and lightweight compression, explored in
greater detail in Chapter 7.3. In decompression, the CPU consumption imbalance between heavy-
weight and lightweight is far more stark, but the cost-per-byte is closer: heavyweight algorithms
comprise 63% of fleet decompression cycles, while producing 49% of uncompressed bytes.

As an aside, Figure 7.2a also shows an interesting insight: on average, each byte that is com-
pressed in the fleet is decompressed 3.3 times. So, despite a lower cost-per-byte, decompres-
sion remains a worthy target for hardware acceleration. Further, decompression is often more
performance-sensitive, naturally appearing on client-visible read paths, rather than usually non-
critical write paths.

Are heavyweight algorithms used to their full potential?

Generally, this requires supplying a larger compression-level argument to the algorithm, instructing
it to spend more cycles improving the compression ratio. Consider ZStd compression, which
currently supports levels from negative infinity to 22. Figure 7.2b shows the distribution of bytes
passed to ZStd compression calls in the fleet, binned by the associated compression level specified
by the caller. We find that even services that use ZStd tend to avoid high compression levels: 88%
of bytes are compressed at level 3 (the default) or lower, while over 95% of bytes are compressed
at level 5 or lower. Fewer than 0.002% of bytes are compressed at levels ≥12.

Combining the data in Figures 7.2a and 7.2b we glean a critical insight: over 95% of bytes
compressed in the fleet are handled either by a lightweight algorithm (Snappy) or a heavyweight
algorithm at low compression level (ZStd at level ≤ 3). This suggests that there is significant
opportunity for an accelerator that can achieve higher compression ratios within existing perfor-
mance bounds to produce significant savings in storage, network, and memory consumption.

Do high compression levels result in improved compression ratio?

Of course, the goal of using heavyweight algorithms configured to high compression levels is to
achieve a better compression ratio. Therefore, we must understand whether this improvement is
indeed notable.
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Before we present this data, it is important to caveat that extrapolating from this data is gen-
erally difficult due to the highly data-dependent nature of both compression ratio and cycles-per-
byte terms. While the data gives the reader an estimate of possible improvements and is valuable
because it is based on large fleet byte volumes, a true comparison of algorithms/levels requires
running the same sets of representative data through algorithms/levels of interest. We will address
this in Chapter 7.4 when we construct our benchmark suites.

Figure 7.2c shows the aggregate fleet-wide compression ratio achieved by each compression
algorithm (total uncompressed bytes divided by total compressed bytes). ZStd bins are further
separated by the user-specified compression level. We can see that compression is clearly beneficial
across the fleet, with no algorithm having an aggregate compression ratio less than 2. Furthermore,
the data aligns with expectations from the taxonomy we established in Chapter 7.2. ZStd and Flate
clearly belong in the heavyweight category, exceeding Snappy’s compression ratio even at the
lowest compression levels. Brotli results do not align with our taxonomy because most of its usage
in the fleet is at low compression levels.

Quantitatively, we observe a favorable trend in the data to justify hardware acceleration. Ser-
vices that use ZStd at a low compression level achieve a 1.46× improved compression ratio over
services that use Snappy. Services that use ZStd at a high compression level achieve an additional
1.35× improved compression ratio over services that use it at a low compression level. It is also
important to note that this is likely under-representing the potential of ZStd’s highest compression-
levels, since Figure 7.2b showed that the vast majority of bytes in the [4, 22] bin in Figure 7.2c
are compressed at level 4, due to the aforementioned performance constraints.

In a hyperscale context, the corresponding reductions in demand for storage, network, and
memory capacity that arise from these differences in compression ratio can translate to a further
potential savings of hundreds of millions of dollars across the industry [24, 198, 113], in addi-
tion to the savings from CPU-cycle reduction/offloading: most hyperscaler customers are big-data
companies who spend as much on storage as compute [178], while memory has been shown to
be 50% of WSC TCO [31], and providing sufficient network bandwidth at low cost is a perpetual
concern for hyperscalers [193].

What is the cycle cost in software of using heavyweight algorithms at high compression level
in the fleet? Is hardware acceleration necessary?

Given the marked difference in achieved compression ratio using different algorithms/levels, one
might ask: why not simply migrate to heavyweight algorithms at high compression levels in soft-
ware?

To answer this question, we collect data on the aggregate cost-per-byte observed in the fleet for
each algorithm, operation, and compression level of interest thus far. We find that our taxonomy
from Chapter 7.2 is largely validated: both heavyweight compression and decompression are more
expensive per-byte than lightweight compression and decompression respectively. We also find
that services that use ZStd compression at lower compression levels pay 1.55× the cost-per-byte
for compression as compared to those that use Snappy, and services that use ZStd compression at
higher compression levels over lower compression levels pay an additional 2.39× cost-per-byte.
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Extrapolating from this data (and keeping in mind caveats about the data-dependent nature
of compression), if a service spends 25% of its cycles on Snappy compression (e.g., the services
described in Chapter 7.3), switching to the highest ZStd levels would result in a 67% increase
in the service’s cycle consumption, a non-starter. There is also a significant additional cost for
decompression, when the data is accessed later; ZStd decompression is 1.63× more costly than
Snappy decompression, partially due to the entropy decoding.

Altogether, this profiling data suggests that there is significant headroom for services to achieve
improved compression ratios for the deployed algorithms, but the cost of these algorithms in soft-
ware is too high for services to adopt them. This suggests that hardware-accelerated compression
has the opportunity to save not only CPU cycles, but also to save storage/memory/network re-
sources by changing the trade-off space between performance and compression ratio.

Algorithm evolution vs. hardware accelerator design cycles
Even when hardware acceleration is well-motivated by projected resource savings, a significant
roadblock to adoption is the opportunity cost of “ossification” of logic in hardware, since hardware
design cycles are significantly longer than software development cycles. However, given the need
for long-term stability of compression algorithms (e.g. for data written to cold storage), significant
algorithm change generally only occurs when a completely new algorithm is adopted by a service.
Referring back to Figure 7.1, we can observe the introduction of the ZStd algorithm in Google’s
fleet, which took roughly a year from being introduced to consuming 10% of fleet (de)compression
cycles. While this broadly aligns with hardware design cycles, starting a design from scratch and
deploying it in this timeframe would be challenging.

This suggests that an agile hardware development approach is necessary, with early hard-
ware/software co-design with algorithm developers and utilization of (de)compression accelerator
generators that provide high-performance primitives that are common across multiple algorithms,
alleviating the need to write entire accelerators from scratch. For example, transitioning from Flate
to ZStd would mostly entail adding an FSE module. This methodology is explored in Chapter 7.5.

When compared to other datacenter taxes, (de)compression also has a qualitative advantage
when considering hardware acceleration feasibility: the user API for compression and decompres-
sion has been essentially unchanged since the first compression tools were created—a stateless,
buffer-in, buffer-out API, sometimes with a separate dictionary, and a streaming equivalent.

(De)Compression Accelerator Placement
In this section, we discuss the factors impacting an important choice in CDPU design: where to
place it in the system: on-die, on a PCIe-attached device, or on a chiplet.

(De)compression call granularity

The granularity of offloaded work—in this case, the number of bytes to be (de)compressed—
is a key factor in determining placement, since any overhead per accelerator invocation is only
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Figure 7.3: Cumulative call-size distributions for Snappy/ZStd (de)compression. The x-axis bins
calls by log2(callsize), using uncompressed sizes. The y-axis is weighted by call size.
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amortized over each payload size.
Figures 7.3a and 7.3b show the cumulative distribution of call granularities for Snappy and

ZStd compression. Snappy’s distribution is slightly more biased towards smaller calls: 24% of
bytes compressed are from calls of size 32 KiB or smaller; for ZStd only 8% fall in this group.
Interestingly, the distributions align near the median, with the 50th percentile of uncompressed
bytes falling between 64 and 128 KiB calls in both. For ZStd, much of this jump comes from the
(32 KiB, 64 KiB] bin, which represents 28% of bytes compressed. Apart from the 16.8% of
bytes compressed by Snappy in the (2 MiB, 4 MiB) bin, both distributions increase uniformly
until reaching a maximum size of 64 MiB.

Figures 7.3c and 7.3d show the corresponding data for decompression. Immediately, we see
that Snappy’s decompression distribution is slightly more biased towards smaller calls than its
compression distribution, with 62% of bytes handled in calls smaller than 128 KiB and 80% of
bytes handled in calls smaller than 256 KiB. On the other hand, the ZStd decompression distribu-
tion shifts drastically towards larger sizes, with the median size between 1 MiB and 2 MiB, rather
than between 64 KiB and 128 KiB as for compression.

A back of the envelope projection of accelerator performance ranges shows that these distribu-
tions are insufficiently skewed to immediately fix accelerator placement. In contrast, if hypothet-
ically most calls were 32 MB, a PCIe-attached accelerator would be a natural choice. As we will
see in Chapter 7.6, both call sizes and various accelerator tuning parameters play important roles
in determining accelerator placement; a comprehensive design-space exploration will be necessary
to make a final determination.

Interaction with Related Accelerators

With increasing hardware specialization, we envision a future where our (de)compression ac-
celerator is invoked in conjunction with related accelerators (e.g., a hardware protocol buffer
(de)serializer [113, 105, 170]) as part of a larger data-access operation. While the hardware bene-
fits of such a system are self-evident, the corresponding software services and libraries need to be
architected appropriately as well.

Figure 7.4 shows fleet (de)compression cycles classified by the codebase (e.g. a library) that
directly called the (de)compression operation. Note that 49% of cycles are derived from “file for-
mats”. Upon closer examination, we notice that even if these formats are internally “serializing and
compressing protobufs” before writing to file, there are often small, unrelated book-keeping oper-
ations between the two accelerated operations. Services may also expect to pass in a sequence of
serialized protobufs that are accumulated and compressed periodically. Handling these in hardware
introduces significant complexity due to file-format specific logic and the need to track outstanding
state, and can also limit file-format evolution.

This argues for placing both accelerators close to the CPU cores, utilizing the CPU caches or
even main memory as the intermediate storage, allowing the general-purpose cores to sequence
data movement between them in the normal course of program execution, without undue commu-
nication overhead. If the accelerators are far away, for example across PCIe, the operation would
incur substantial offload overhead multiple times, making the use of each accelerator less attrac-
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Figure 7.4: Percent of Google fleet-wide (de)compression cycles by the library that led to the
(de)compression call.

tive. In the long run, the potential performance gains may justify additional software engineering
effort in file formats to enable the exploitation of sequences of hardware accelerators; this is left to
future work.

Window Size Requirements
A compression algorithm’s window size determines the amount of recent history the algorithm
will keep when searching for matches during LZ77-style de-duplication. Correspondingly, during
decompression, the window size represents the maximum offset into the recently produced output
from which a copy command can read data.

Our first algorithm of interest, Snappy, has a fixed window size of 64 KiB for compression and
decompression [197]. For ZStd compression, Figure 7.5a shows the per-call fleet-wide window-
size distribution. We see that slightly over 50% of bytes compressed by ZStd use a window size of
32 KiB or less. However, the upper 50% of the distribution quickly grows, with a 75th percentile
between 512 KiB and 1 MiB and tails as high as 16 MiB. The distribution for ZStd decompression
is shown in Figure 7.5b, with a median of 1 MiB.

This parameter can affect accelerator design and performance. For compression, the window
is commonly kept in SRAM, registers, or even expensive CAM structures. For decompression, the
window is commonly kept in SRAM. However, beyond for example 32 KiB, on-chip storage can
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Figure 7.5: Window size distributions for ZStd (de)compression in Google’s fleet. The x-axis bins
calls by log2(windowsize). The y-axis is weighted by call size.

become prohibitively expensive. Notably, the existing state-of-the-art compression accelerator for
a heavyweight algorithm, IBM’s z15 compression accelerator [3], offers a window size of 32 KiB,
meaning it would not be able to handle 50% of these compression calls in Google’s fleet.

This further argues for a near-core accelerator with access to the memory hierarchy, which
would allow the accelerator to “fall back” to accessing the history from the L2 cache or main
memory. This design space is further explored in Chapter 7.6.

Do existing open-source compression benchmarks represent hyperscale
requirements?
Several of our analyses thus far have motivated the need to perform a design-space exploration of
(de)compression acceleration within the context of a complete system. However, performing such
an exploration requires representative (de)compression benchmarks used as input to the accelera-
tors.

Many benchmark suites exist that aim to provide a standard set of input files to evaluate com-
pression algorithms. The most well-known of these is Silesia [58], which, for example, is used
to provide the “default” results in the READMEs of both ZStd and lzbench, a common compres-
sion benchmarking tool. Other commonly used benchmarks (e.g., in [3]) include Canterbury [19],
Calgary [32], and several benchmarks included with Snappy (we will refer to the collection as
SnappyFiles) [196].

Unfortunately, we find that they are not representative of Google’s fleet usage of (de)comp-
ression. As one dimension of comparison, we can bin these open benchmarks by call size as we
did for fleet-wide compression calls in Figure 7.3. Figure 7.6 shows this call-size distribution
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Figure 7.6: Call size distribution from four popular open-source compression benchmarks.

for open-source benchmarks, which we can see is vastly different from the fleet distribution. For
example, the median call sizes of the distributions differ by an astounding 256×. More work is
clearly needed to realistically evaluate compression in a hyperscale fleet. We will describe the
construction of representative benchmarks in Chapter 7.4.

Key Cloud Provider Fleet Profiling Lessons for Hyperscale CDPUs
Before continuing, we summarize the key profiling insights gleaned thus far and highlight the
important questions that remain:

1. Significant headroom exists in fleet compression usage for accelerators that improve compres-
sion ratio vs. compute tradeoffs:

a) Lightweight algorithms dominate compression usage, handling 64% of compressed bytes.

b) Heavyweight algorithms are primarily used at lower compression levels: 88% of bytes
compressed with ZStd are handled at level 3 (the default) or lower.

c) Services using heavyweight algorithms at high levels achieve higher compression ratios
(1.35-1.97×), but at a significantly higher cost-per-byte (1.55-3.70×).

d) For many services, this increased CPU cost is untenable, presenting an opportunity for
accelerators that achieve higher compression ratios within service performance bounds.
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2. Change in (de)compression algorithm usage in Google’s fleet over time (e.g., ZStd’s 0% →
10% of fleet (de)compression cycles in 1 year) aligns with agile hardware design cycles and
motivates a re-usable CDPU generator over point designs.

3. Fleet call sizes are not sufficiently biased towards small/large calls to immediately determine
accelerator placement.

a) Instead, understanding placement requires design-space exploration of an implementation
running representative benchmarks.

4. Accelerator chaining between serialization and compression, which could ease placement re-
quirements, is non-trivial.

a) At a minimum, chaining will require re-architecting file format libraries, which are re-
sponsible for invoking 49.2% of fleet (de)compression cycles, and the ability to maintain
multiple contexts in the accelerator.

b) On the other hand, both of these concerns can be avoided while maintaining most chaining
benefits if the accelerator is placed close to the CPU, with direct access to caches or main
memory.

5. History window sizes in the fleet are also insufficiently biased to make a clear recommendation
for on-accelerator history window sizing.

a) Like accelerator placement, this will require design-space exploration of an accelerator
implementation.

6. Existing open-source (de)compression benchmarks used by prior work do not represent hyper-
scale compression usage.

a) For example, call-size distributions differ greatly between open-source benchmarks and
Google’s fleet, even at a high-level; the median call size in popular open-source bench-
marks is 256× the fleet’s median call size.

While hyperscale fleet profiling has provided several insights about CDPU design require-
ments, a few critical questions remain that are difficult to explore without a concrete implementa-
tion evaluated in the context of a complete system. In the rest of this chapter, we will build a param-
eterized CDPU generator and a hyperscale-representative (de)compression benchmark suite, then
answer the open CDPU design questions by performing an extensive design-space exploration.

7.4 Building open-source hyperscale-representative
(de)compression benchmarks

To produce (de)compression benchmarks representative of Google’s fleet requirements, while pre-
serving privacy in Google’s datasets, we build an open-source (de)compression benchmark gen-
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erator that produces representative benchmarks from summary statistics about a private data set.
By supplying this generator with profiles of Google’s fleet, we produce the open-source Hyper-
CompressBench, a benchmark suite representative of (de)compression requirements in Google’s
fleet.

The generator starts by breaking all files from the Silesia, Canterbury, Calgary, and SnappyFiles
benchmarks into fixed-size chunks. Each chunk is individually run through all combinations of
supported algorithms and parameters (window size, compression level) to obtain a compression
ratio for that chunk for each algorithm/parameters pair. This data is stored in lookup tables indexed
by the compression ratio.

The generator then ingests metrics such as call size, compression ratio, window size, and com-
pression level from the aforementioned fleet profiling data, constructs distributions from these met-
rics, and samples from the distributions to produce a set of target parameters for a single benchmark
file.

For each such set of target parameters, the generator walks through the lookup table, greedily
selecting chunks with the closest compression ratio and adding them to the output file until the
target call size is reached. At various points during this process, the generator evaluates the file
assembled so far and adjusts the target ratio accordingly. To avoid pathological sequences, random
shuffles are introduced both within the lookup table and the output. The completed file is saved
along with the parameters (level and window size) that should be applied when it is used. This
process is repeated until we have a sufficient number of benchmark files to represent the overall
distribution of calls across various dimensions. We find around 8,000 to 10,000 files to be a suitable
number for this work.

The entire process is repeated for each algorithm/operation pair of interest, in our case, (Snappy
and ZStd) × (Compress and Decompress). In the rest of the chapter, we refer to this suite of around
35,000 generated files as HyperCompressBench.

HyperCompressBench validation
We validate the suite across the swath of previously discussed metrics. For example, consider the
distributions for call size, shown in Figure 7.7. We can see that these line-up very well with the
fleet distributions from Figure 7.3 and preserve the shape of each algorithm/operation pair’s unique
distribution, in stark contrast to the existing open-source benchmark suite call-size distributions.
Between each pair of distributions, the only significant difference is in the largest size bins—this is
because these call sizes represent an extremely small proportion of uncompressed fleet bytes and
thus are unlikely to be included in an 8,000 to 10,000 benchmark sample. Comparing compression
ratios, we find that on average for each suite, achieved compression ratios are within 5%-10% of
fleet compression ratios. While elided due to space constraints, the distributions for compression
level and window sizes are also extremely similar to the fleet distributions shown in Figures 7.2b
and 7.5 respectively.
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Figure 7.7: Call-size distributions for HyperCompressBench.
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7.5 A parameterized generator for compression and
decompression processing units (CDPUs)

Our open-source CDPU generator is implemented in Chisel RTL [25] and incorporated into the
Chipyard RISC-V SoC generator ecosystem [14]. Figure 7.8 shows the overall architecture of
the accelerated SoC, which is configured to use BOOM, an OoO superscalar RISC-V core with
performance comparable to ARM A72-like cores [230].

The generated accelerators receive commands directly from the BOOM application core in
the SoC via the RoCC interface [22], which allows the CPU to directly dispatch custom RISC-V
instructions in its instruction stream to the accelerator within a few cycles. These RoCC instruc-
tions [22] can supply two 64-bit register values from the core to the accelerator. The accelerator
accesses the same unified main memory space as the CPU through the 256 bit-wide TileLink-
based NoC [97] and can issue memory requests with virtual addressing. As shown in Figure 7.8,
all memory accesses made by the accelerator go through the L2 and LLC, which are shared with
the application cores in the system.

Figures 7.9 and 7.10 show the block diagrams of complete decompressors and compressors
respectively. Both handle the Snappy and ZStd algorithms. In these diagrams, components used
by both algorithms are shown with a solid outline, components used only by Snappy with a dotted
outline, and components used only by ZStd with a dashed outline. In the following subsections,
we will outline the generator’s library of reusable components used to build the aforementioned
compressors and decompressors and give an overview of high-level parameters that can be modi-
fied.
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Figure 7.9: Block diagram for CDPU decompressor with support for Snappy and ZStd.
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System Interface Blocks
Our generator uses three types of blocks to interface accelerators to the rest of the system. Mem-
loaders support streaming from the L2 cache, Memwriters support streaming to the L2 cache, and
CommandRouters dispatch incoming commands to the appropriate sub-blocks. These are visible
in both Figures 7.9 and 7.10.

LZ77 Decoder
The LZ77 Loader, Off-Chip History Lookup, and LZ77 Writer in Figure 7.9 comprise the LZ77
Decoder. This unit consumes sequences of (offset, length, literal) from a compressed
input and produces the final stream of decompressed output data. The block primarily consists of
a history window SRAM used to lookup matches based on offset and length, with the ability to fall
back to making memory requests for matches that are further away than the configured size of the
history SRAM.

Huffman Expander
The Huff Table Builder, Reader, and Control in Figure 7.9 comprise the Huffman Expander. De-
coding Huffman-encoded streams is inherently serial because the starting position of a code cannot
be known before decoding the previous code. The Huffman expander performs speculative decod-
ing by issuing decode-table look-ups for a configurable number of starting bit positions, similar to
the IBM z15 decompressor [3].

Finite-State Entropy (FSE) Expander
The FSE Expander (consisting of FSE Table Builder, SRAM, and Reader in Figure 7.9) first builds
a decode table based on the normalized count statistics of each symbol by reading the input file
stream. Then, the FSE expander reads the table to produce the decoded symbol, which is the sum
of bits from the input file stream and the base value. The base value, number of bits to read from
the input, and the next table entry to read are indicated in the table entry.

LZ77 Encoder
The LZ77 encoder (consisting of the LZ77 Hash Matcher and LitLen Injector blocks in Fig-
ure 7.10) performs streaming dictionary encoding of raw input data and produces output in the
common (offset, length, literal) format. It primarily consists of a configurable hash table
SRAM and a history window SRAM. This unit iterates over the data, checking the hash table for
matches in the history and then checking the history buffer to find the extent of the match. If no
match is available, the data is emitted as a literal.
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Huffman Compressor
The Huffman compressor consists of two main modules, the Huffman dictionary builder and the
Huffman encoder (Figure 7.10). The dictionary builder collects symbol statistics and writes the
dictionary into memory. The encoder performs compression by performing look-ups into the dic-
tionary builder.

Finite-State Entropy (FSE) Compressor
The FSE compressor is shown as part of Figure 7.10 and consists of three separate dictionary
builders for each of literal length, match length, and offset and an FSE encoder that performs
dictionary lookups to perform compression. The input stream is passed to the combinational Se-
qToCodeConverter which feeds the dictionary builders with the correct inputs while the encoder
consumes the raw input stream.

Parameterization
Our framework supports two parameterization methods:

1. Runtime configurable (RunT): These are parameters that can be changed after hardware is built,
either for programmability or for rapid design space exploration.

2. Compile-time configurable (CompileT): These are traditional hardware parameters that are
fixed when the design is compiled.

The parameters available in our framework include:

CDPU-wide parameters:

1. Accelerator placement (CompileT), including:

a) Near-core RoCC/on-NoC; no latency injection

b) Chiplet; 25ns latency injection

c) PCIeLocalCache: PCIe+DDIO, assuming PCIe card has large SRAM cache and on-
board DRAM; 200ns latency injection (measurements from [158]) for raw input +
final output, no latency injection for intermediate reads/writes

d) PCIeNoCache: PCIe+DDIO, assuming PCIe card does not have on-board cache/DRAM;
200ns latency injection for all requests

2. Algorithm support (RunT & CompileT)

LZ77 decoder parameters:

3. History Window Size (RunT & CompileT)
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LZ77 encoder parameters:

4. History Window Size (RunT & CompileT)

5. Hash-table number of entries (RunT & CompileT)

6. Hash-table associativity (RunT & CompileT)

7. Hash-table contents (CompileT)

8. Hash Function (CompileT)

Huffman expander parameters:

9. Number of speculations (CompileT)

Huffman compressor parameters:

10. Number of Bytes per cycle to collect symbol stats (CompileT)

FSE compressor parameters:

11. Number of Bytes per cycle to collect symbol stats (CompileT)

12. Max accuracy of FSE compression tables (CompileT)

7.6 CDPU design space exploration

Evaluation Methodology
We perform design-space exploration (DSE) of our accelerated systems implemented in RTL run-
ning HyperCompressBench using FireSim [118], which provides high-performance, deterministic,
and cycle-exact4 modeling of designs, while providing cycle-accurate abstract models for I/O, in-
cluding DRAM [34].

Each benchmark is run on two systems: a single-core RISC-V system with CDPUs attached,
modeled at 2 GHz core/CDPU frequency, and one core (2 HT) of a Xeon E5-2686 v4-based server,
running at 2.3 GHz base/2.7 GHz turbo.

Performance results for our accelerated systems are reported by measuring end-to-end opera-
tion time from the perspective of software (i.e. the time taken by an entire compression or decom-
pression call, without overlapping requests). Performance results for the Xeon are collected using
lzbench [194], a standard tool for in-memory (de)compression algorithm benchmarking. In Hy-
perCompressBench, a suite’s aggregate performance metric is the total amount of time required to

4All components of the RISC-V SoC written in RTL, including our accelerator design, are modeled bit-by-bit and
cycle-by-cycle exactly as they would perform in silicon taped-out using the same RTL.
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Figure 7.11: CDPU speedup running Snappy Decompression on HyperCompressBench across
accelerator placements and History SRAM Sizes. Area is normalized vs. the 64KB history SRAM
accelerator.

(de)compress each benchmark file in the suite. Lastly, we report ASIC area estimates by pushing
designs through synthesis [214] for a commercial 16nm-class process.

Snappy Decompressor
Figure 7.11 shows speedup and area results from a CDPU generated for Snappy Decompression,
configured with a range of on-accelerator history windows (given on the x-axis) and in a variety of
placements in the system. In this design, offsets beyond the on-accelerator SRAM fall back to the
L2 cache. We see that the CDPU placed near-core (RoCC) with the largest on-accelerator window
size (equal to Snappy’s SW maximum of 64 KB), achieves the highest speedup; it is over 10×
faster than the Xeon (11.4 GB/s accelerated vs. 1.1 GB/s Xeon), while consuming 0.431mm2 of
silicon area in 16nm. As a comparison, this is less than 2.4% of the area of a single modern Xeon
Core Tile (17.98mm2 in 14nm, reported in [220]). If we instead shrink the on-CDPU history to
2 KB, we find a potentially more fruitful design point: we can achieve a 38% reduction in area for
only a 4.3% reduction in speedup (i.e., 9.8× speedup vs. Xeon while consuming 1.5% of the area).

As discussed in Chapter 7.5, we also model integrating the CDPU over PCIe+DDIO and re-
run the sweep of on-accelerator SRAM size, which is shown by the “PCIeNoCache” series in
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Figure 7.11. Even with a 64K SRAM (no off-accelerator history lookups), we see that even the
cost of loading/writing input/output data once over PCIe results in a significant (5.6×) slowdown
vs. the near-core CDPU, due to the large number of small decompressions in the fleet (Fig. 7.3c).

The increased latency of PCIe also means that the accelerator cannot take advantage of the same
performance vs. history SRAM-size tradeoff as the near-core accelerator: the PCIe-attached 32K
SRAM design loses most of the performance advantage of the already degraded PCIe 64K design,
and performance only degrades further from there. The “PCIeLocalCache” series in Figure 7.11
somewhat mitigates this by modeling a shared on-die SRAM cache and local DRAM attached to
the PCIe card. In this situation, we can see that the SRAM optimization continues to work, albeit
with an identical starting speedup (at the 64K size) as “PCIeNoCache”.

Chiplet integration techniques and new protocols like CXL, UCIe, CCIX, and CAPI offer a new
“intermediate” placement option for accelerators; accelerators can be manufactured in a separate
die, reducing integration cost, while still remaining on the same package as the core. As discussed
in Chapter 7.5, we can model this integration technique in our framework. The results of running
the Snappy decompressor in this placement are shown in the “Chiplet” series in Figure 7.11. Con-
sidering the configuration with 64K history size, we can see that Chiplet integration is an attractive
solution for a Snappy accelerator; it still achieves a 9.5× speedup vs. the Xeon, despite the added
latency. However, we can see that performance suffers as more requests are forced to cross the
Chiplet interconnect; at the smallest history window sizes, speedups drop such that they are on par
with PCIe-based integration.

Snappy Compressor
Figure 7.12 shows speedup, compression ratio, and area results for the Snappy Compress accelera-
tor, covering a range of on-accelerator history windows (on the x-axis). Area results are normalized
to the largest version of the accelerator, which has a 64K History SRAM and 214 hash table entries
(“64K14HT” on plots). This design consumes 0.851 mm2 in a 16nm process or about 4.7% the
area of a Xeon Core [220]. Reducing the history SRAM size restricts the maximum matching off-
set that can be identified, and large offset matching does not fall back to the L2 cache since history
checking is necessarily serial in compression. Interestingly, the 64 KB SRAM design achieves a
1.1% higher compression ratio than Snappy SW. This is because the software implements a skip-
ping mechanism that avoids hash-table lookups when data appears incompressible to save cycles.
In a hardware implementation, this optimization is not useful. Therefore, the accelerator has more
“chances” to find a match than SW. As the SRAM size is reduced, we do see a drop-off in the
achieved compression ratio as compared to software, ranging from an 8% loss at 2 KB (with 20%
area savings) to a 0.5% loss at 32 KB (with 10% area savings).

We also see that across the swath of history window sizes, the accelerator achieves significant
speedup compared to the Xeon. For example, the 64 KB configuration achieves over 16× speedup
compared to the Xeon (5.84 GB/s accel. vs. 0.36 GB/s Xeon). The various smaller configurations
achieve between 14.8× and 15.5× speedup, losing performance only because of the increased
amount of data they must write due to the lower achieved compression ratio.
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Figure 7.12: CDPU speedup/area running Snappy Compression on HyperCompressBench across
CDPU placements and History SRAM Sizes. Area is norm-ed vs. the 64K history SRAM and 214

hash table entry Snappy CDPU.

Figure 7.12 also shows various compression accelerator placements. We see again that a
Chiplet-integrated design performs very well, achieving less than 1.7% loss of speedup vs. the
near core design across the swath of SRAM sizes. PCIe again struggles, but fares much better than
in the decompression case, with speedups shrinking to around 6.6×. Note that PCIeNoCache and
PCIeLocalCache are identical for compression, given that there are no intermediate data accesses.

Given that Snappy is a lightweight algorithm, we can ask an interesting question: how small of
a Snappy accelerator can we build while still achieving meaningful compression and high perfor-
mance? In Figure 7.12 we can see that reducing the history window size to 2K for compression can
result in negligible loss of speedup and a small, but potentially tolerable 8% loss in compression ra-
tio, while reducing accelerator area by 20%. Figure 7.13 shows the results of tuning another design
knob: the number of hash table entries. Reducing the number of entries increases the likelihood
of collisions and reduces the chance of finding optimal matches in the history window. However,
we can see that reducing the number of hash table entries can provide drastic area wins: a snappy
compression accelerator with 29 hash table entries and a 2K history SRAM consumes only 34% of
the area of the full-size design (and only 1.6% of the area of a Xeon Core), with a negligible loss
of speedup and while only increasing compression ratio loss by 3% compared to the 2K history,
214 hash table entry design.
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Figure 7.13: CDPU speedup/area running Snappy Compression on HyperCompressBench across
CDPU placements and History SRAM Sizes, with only 29 Hash Table Entries. Area is norm-ed
vs. the 64K history SRAM and 214 hash table entry Snappy CDPU.

ZStd Decompressor
Figure 7.14 shows speedup and area results from a CDPU generated for ZStd Decompression,
configured with a range of on-accelerator history windows (given on the x-axis) and in a variety of
placements in the system. The largest design in this plot (64K SRAM) achieves 4.2× speedup vs.
the Xeon (3.95 GB/s accelerated vs. 0.94 GB/s Xeon).

We can see that overall performance is reduced compared to the Snappy accelerator. While this
is not directly comparable since the Snappy/ZStd suites in HyperCompressBench are different, we
can broadly see the cost of the additional entropy decoding steps on the accelerator’s performance,
especially since the LZ77 decoding block is re-used between Snappy and ZStd accelerators. This
added cost attenuates both the area savings and performance impact of reducing history SRAM
compared to the Snappy decompressor; the overall savings moving from the 64K SRAM design
(1.9 mm2 in 16nm) to the 2K SRAM design of the ZStd compressor is only 8.6%.

An additional parameter that can be swept in the ZStd decompressor as compared to Snappy
is the amount of speculation allowed in the Huffman Decoder. All results in Figure 14 used a
speculation of 16. To better understand the design space, we explored two additional speculation
design points: 32 (similar to IBM z15) and 4 (as a minimum reasonable design point), while keep-
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Figure 7.14: CDPU speedup running ZStd Decompression on HyperCompressBench across ac-
celerator placements and History SRAM Sizes. Area is normalized vs. the 64KB history SRAM
accelerator.

ing history SRAM size fixed at 64K. The 32-speculation design increases speedup over Xeon to
5.64×, while requiring an additional 18% area as compared to the 16-speculation design. The
4-speculation design reduces speedup over Xeon to 2.11×, while requiring 10% less area as com-
pared to the 16-speculation design. As we can see, for the ZStd decompressor, tuning the specula-
tion amount produces a much larger swing in design quality-of-result than history SRAM size.

ZStd Compressor
Figure 7.15 shows speedup, compression ratio, and area results for the ZStd Compress accelerator,
covering a range of on-accelerator history windows (on the x-axis). Area results are normalized to
the largest version of the accelerator, which has a 64K History SRAM and 214 hash table entries
(“64K14HT” on plots). This design consumes 3.48mm2 in a 16nm process. As this accelerator
re-uses the LZ77 encoder block from the Snappy accelerator, restricting history SRAM size sim-
ilarly restricts the maximum matching offset that can be identified. Looking first at compression
ratio, we see that the accelerator achieves only 84% of the compression ratio of software, likely
primarily due to the fact that we are re-using the LZ77 encoder block as configured for Snappy.
We leave exploring more complicated LZ77 encoding techniques to future work. With the caveat
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Figure 7.15: CDPU speedup/area running ZStd Compression on HyperCompressBench across
CDPU placements and History SRAM Sizes. Area is norm-ed vs. the 64K hist. and 214 hash table
entry ZStd CDPU.

that compression ratio is reduced, the largest configuration of accelerator achieves a 15.8x speedup
compared to the Xeon (3.5 GB/s accelerated vs. 0.22 GB/s Xeon).

Key Implementation-Based Design-Space Exploration Lessons for
Hyperscale CDPUs
Our design space exploration shows the importance of focusing not only on the microarchitectural
design of CDPUs, but also their high-level parameters. By tuning these high-level parameters in
the previous section, we observed for example, 46× differences in speedups and 66% savings in
silicon area. Here, we summarize our key findings:

1. Decompression accelerator feasibility is very heavily affected by accelerator placement. Given
data sizes observed in Google’s fleet, near-core accelerators (10× speedup for Snappy, 4×
speedup for ZStd) perform over 3 to 5.6 times better than PCIe attached accelerators (1.8×
speedup for Snappy, 1.4× speedup for ZStd). Chiplets offer a reasonable middle ground for
Snappy, with our chiplet-integrated accelerator (9.5× speedup) performing only 1.1× worse
than the near-core accelerator.



CHAPTER 7. CDPU 136

2. In contrast, compression is less sensitive to accelerator placement; we observe over 6.6×
speedup (Snappy) or 8.2× speedup (ZStd) in the PCIe attached cases. However, the biggest
performance gains are still seen for near-core and chiplet-integrated designs (around 15 to 16×
speedup for both Snappy and ZStd).

3. Snappy decompression accelerator area is dominated by history size, which also affects speedup
(but not compression ratio). Given data characteristics in Google’s fleet, a 38% silicon area
savings can be achieved by slightly sacrificing speedup (9.8× vs. 10× speedup).

4. ZStd decompression accelerator area is dominated by varying the amount of speculation in the
Huffman stage. Given data characteristics in Google’s fleet, there is a 31% silicon area cost in-
crease between speculation amounts of 4 and 32, but this comes with a significant corresponding
improvement in speedup (2.1× vs. 5.6× speedup).

5. Snappy compression accelerator area is dominated by history buffer size and hash table size.
When both are reduced, a negligible sacrifice in speedup and a 12% sacrifice in compression
ratio can result in reducing accelerator silicon area by 66%.

7.7 Related work
A few prior studies have presented (de)compression metrics as part of broader hyperscaler fleet
characterizations [110, 198, 106]. Our study is the first to take a fleet-wide, multi-year deep-
dive into (de)compression usage at a major cloud provider by profiling Google’s fleet and derives
several novel insights for CDPU design. Furthermore, we use the insights gained to build a param-
eterized generator for CDPUs that supports hyperscale use-cases, and translate our profiling data
into open-source, hyperscaler-representative (de)compression benchmarks that can be used by the
community.

Many prior studies have explored implementing hardware accelerators for lossless block-level
(de)compression, both in academia [176, 47], industrial research [185, 74], and commercial prod-
ucts [7, 186, 171, 101, 172, 210, 3]. However, all of these studies only explore a single point in
the design space; they focus on a single algorithm (usually Flate or ZStd), in a single placement
(PCIe, NoC-attached, on-chipset, etc.), and sometimes only a single direction (decompress or com-
press). Furthermore, these studies usually run existing open-source benchmarks, which, as shown
in Chapter 7.4, are not representative of hyperscale workloads. To our knowledge, we are the first
study to build a highly parameterized CDPU generator that supports multiple algorithms using a
common set of high-performance, re-usable primitives. Our generator integrates into a RISC-V
SoC framework that allows for rapid evaluation of CDPUs across system placements and configu-
ration parameters. Furthermore, we evaluate our generated designs with HyperCompressBench, a
(de)compression benchmark that is representative of hyperscale workloads.

However, for our design space evaluations to produce realistic results, it is important to con-
textualize and validate our observed results with those published in prior studies. To that end,
we compare against the current state of the art, the NXU accelerator for the IBM POWER9 and
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z15 [3]. While the NXU study does not provide a directly comparable performance result using
open-source benchmarks, we can extrapolate from its performance vs. data size plots and the size
distribution of input files in HyperCompressBench. This calculation projects performance of the
NXU on HyperCompressBench of 5.6 to 7.1 GB/s for compression and 6.7 to 7.7 GB/s for decom-
pression. Our results for compression (5.8 GB/s Snappy, 3.5 GB/s ZStd) and decompression (11.4
GB/s Snappy, 5.3 GB/s ZStd) are comparable, given our RISC-V SoC’s weaker memory system
and algorithmic differences. In area terms, our academic prototype is similar, but could benefit
from greater tuning/engineering effort, with our design consuming around 1.3 mm2 (Snappy) or
5.7 mm2 (ZStd) in a 16nm process, while the IBM NXU consumes around 3.5 mm2 in the GF14
process (extrapolated from [3, 219]).

To our knowledge, the state-of-the-art open-source compression and decompression imple-
mentation is Project Zipline [172, 210, 48, 53] from Microsoft, which has also been fabricated in
the Corsica ASIC [211, 48]. The ASIC version of this design is limited to 25 Gbps for single re-
quests (3.125 GB/s) [48]. Also in contrast, our design is heavily parameterized, supporting several
compile-time and run-time configurable parameters, and is integrated into a complete system for
evaluation.

FPGAs have also been proposed as a host platform for compression and decompression accel-
erators constructed using handwritten RTL or high-level synthesis tools [74, 176, 47, 130]. Unfor-
tunately, FPGAs as a basis technology are insufficiently performant to support (de)compression as
compared to ASIC designs—our generated accelerators are significantly faster than the state-of-
the-art handwritten [47] and HLS-generated [130] FPGA-hosted implementations. In Chapter 7.3,
we also demonstrated that the flexibility of FPGAs is unnecessary for the pace of (de)compression
algorithm evolution in WSCs. Lastly, the Corsica ASIC’s compression engine has also been shown
to achieve improved performance over FPGA-hosted solutions [48].

Several interesting industrial products are also on the horizon, including NVIDIA’s DPU [162],
Intel’s IPU [99], and Intel Sapphire Rapids/QAT [100]. At time of writing, little commercial
benchmarking data is available publicly for these systems.

7.8 Conclusion

In this work, we presented a detailed fleet-wide characterization of (de)compression usage at a
major cloud provider by profiling Google’s datacenter fleet. We showed that (de)compression con-
sumes significant fleet CPU cycles, even though services under-utilize the most aggressive forms of
compression, presenting an opportunity for hardware acceleration to save resources beyond merely
CPU cycles.

We then presented the first end-to-end design/evaluation framework for CDPUs, including:
1. An open-source RTL-based CDPU generator that supports many run-time and compile-time
parameters. 2. Integration into an open-source RISC-V SoC for rapid performance and silicon area
evaluation with varying CDPU placements and configurations. 3. An open-source (de)compression
benchmark, HyperCompressBench, that represents (de)compression usage in Google’s fleet.
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While a large body of prior work has improved the microarchitectural state-of-the-art for CD-
PUs supporting various algorithms in fixed contexts [176, 47, 185, 74, 7, 186, 171, 101, 172, 210,
3, 48, 211, 53, 130, 162, 99, 100], we found that higher-level design parameters like accelerator
placement, hash table sizing, history window sizes, and more are as critical when considering the
feasibility of CDPU integration, but were previously not well-studied in the literature.

Using our CDPU design framework, we performed an extensive design space exploration run-
ning HyperCompressBench. Our design-space exploration spanned a 46× range in accelerator
speedup, 3× range in silicon area (for a single pipeline), and explored a variety of accelerator inte-
gration techniques to better understand optimal CDPU designs for hyperscale contexts. Our final
hyperscale-optimized accelerator instances are up to 10× to 16× faster than a single Xeon core,
while consuming a small fraction (as little as 2.4% to 4.7%) of the area.

7.9 Retrospective
This work has influenced product design at Google and various silicon vendors. This work under-
went the ISCA conference’s artifact evaluation process and received all available badges, including
results being reproduced.
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Chapter 8

Conclusion

In this dissertation, we bridged the gap between agile hardware-software co-design methodology
and the world’s largest compute platforms. With FireSim and Chipyard, we enabled small teams
to rapidly co-design hardware and software for these hyperscale cloud systems (Figure 8.1, Theme
1) and demonstrated the potential of these methodologies by architecting and building a cloud-
optimized server system-on-chip, Hyperscale SoC (Figure 8.1, Theme 2).

As there is no sign of the exponential demand for cloud compute slowing, there remains much
work to do in improving the performance, efficiency, sustainability, and total-cost-of-ownership of
these massive compute platforms. Below, we summarize important next-steps and trends that must

Theme 1: Develop radical new agile end-to-end HW/SW co-design 
tools, including for hyperscale cloud systems.

Theme 2: Leverage tools + data-driven co-design to architect SoTA 
domain-specific HW to address key efficiency challenges in 
hyperscale cloud systems.

S. Karandikar, et. al., ISCA ’18
Micro Top Picks ’18
ISCA@50 25-Year Retrospective
Widely used Open-Source Project:
Used in 60+ pubs from 25+ institutions
Used in commercial chip development
Standard host platform in DARPA/IARPA programs 

Alphabetical, including 
S. Karandikar, et. al., 
IEEE Micro 2020.4
DAC ’20 (invited)
Widely used Open-
Source Project

S. Karandikar, et. al., 
ASPLOS ’20

S. Karandikar, et. al., MICRO ’21
MICRO ’21 Distinguished Artifact Award
Honorable Mention, Micro Top Picks ’21

S. Karandikar, et. al., 
ISCA ’23

S. Karandikar, et. al., Pre-publication.

Hyperscale SoC

FirePerf ProtoAcc CDPU Hyperscale Chip

Figure 8.1: A review of overarching themes of this dissertation.
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be accounted for when designing next-generation hyperscale systems, looking from the perspective
of the key themes highlighted in this dissertation.

8.1 Open problems in agile design methodologies for
hyperscale systems

Unsurprisingly, technology trends are continuing to push the scale of individual server designs as
well as machine-learning training and inference platforms. While device scaling continues, albeit
at a slower pace than in the past, the new name-of-the-game is the construction of massive system-
in-package (SiP) designs, building on this dissertation’s focus on systems-on-chip (SoCs). These
SiP designs consist of many large compute, memory, and I/O dies packaged on a substrate that
provides high-bandwidth and low-latency communication between them. This opens up numerous
scalability challenges for both the generation, simulation, verification, and tape-out of these large
systems, especially when working in small, agile teams. At a macro scale, inter-system network
bandwidths and latencies continue to improve both for general-purpose server interconnection and
the construction of machine-learning “supercomputers”, increasing the challenge of modeling and
co-designing large scale-out systems. From a methodological perspective, machine learning is a
relatively new tool in our toolbox that can be used to further improve the agility of these flows.
ML can already perform well on tasks such as assisting humans with RTL implementation, but
continued efforts are needed to build a unified ecosystem that can help realize the larger-scale
potential of machine learning for hardware design in agile teams.

8.2 Open problems in specialization for hyperscale cloud
datacenters

The hyperscale system-on-chip design proposed and implemented in this dissertation is just the
start. As a first step, while we enabled the acceleration of critical datacenter tax operations in
our server design, it is important now to take a step back and focus on the integration of large
collections of these accelerator designs into accelerator complexes. These accelerator complexes
need to enable, for example, the chaining of datacenter tax accelerators into larger operations such
as remote procedure call and storage processing without CPU intervention. When designing these
complexes, there are important questions about partitioning functionality, understanding system
balance requirements, and maintaining flexibility and programmability that must be addressed.
Given the shift towards SiP designs discussed earlier, a new question also arises: how do these
kinds of accelerators fit into the network-on-package topology? As we did for individual datacenter
taxes in this dissertation, new fleet-wide profiling mechanisms need to be developed and deployed
to better understand the interactions between frequently exercised code that may be amenable to
acceleration and the rest of the systems software stack. Similarly, as system scale increases, it
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becomes critical to not only build representative benchmarks for individual datacenter taxes, but to
build and share workload mixes that represent everything happening on a server at a given time.

From a higher-level perspective, researchers need to continue to understand the limits of spe-
cialization in hyperscale contexts. While the datacenter taxes represent key “heavy-hitter” oper-
ations that are good candidates for acceleration, continuing to think in this fashion quickly leads
to a long tail of acceleration candidates that are unlikely to bear fruit. Using machine-learning
platforms as a key example, focusing on more vertically optimized approaches to acceleration and
specialization may be fruitful, but again require careful analysis to understand whether hardware
development timelines can keep pace with the demands on the evolution of service functionality.

8.3 Parting words
Given hardware industry trends, these two themes/open-problems will continue to go hand-in-
hand: Greater specialization will motivate agility in hardware design flows and greater agility in
hardware design flows will enable easier specialization. Whoever can deploy the most effective
specialized systems the fastest will be able to drive the greatest societal impact.
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[22] Krste Asanović et al. The Rocket Chip Generator. Tech. rep. UCB/EECS-2016-17. EECS
Department, University of California, Berkeley, Apr. 2016.

[23] AWS Nitro System. https://aws.amazon.com/ec2/nitro/.

[24] Grant Ayers et al. “AsmDB: Understanding and Mitigating Front-End Stalls in Warehouse-
Scale Computers”. In: Proceedings of the 46th International Symposium on Computer
Architecture. ISCA ’19. Phoenix, Arizona: Association for Computing Machinery, 2019,
pp. 462–473. ISBN: 9781450366694. DOI: 10.1145/3307650.3322234. URL: https:
//doi.org/10.1145/3307650.3322234.

[25] Jonathan Bachrach et al. “Chisel: Constructing hardware in a Scala embedded language”.
In: DAC Design Automation Conference 2012. 2012, pp. 1212–1221. DOI: 10 . 1145 /
2228360.2228584.

[26] Jonathan Balkind et al. “OpenPiton: An Open-Source Manycore Research Framework”.
In: Proceedings of the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS ’16. Atlanta, Georgia, USA:
ACM, 2016, pp. 217–232. ISBN: 978-1-4503-4091-5. DOI: 10.1145/2872362.2872414.

[27] Jeff Barr. EC2 F1 Instances with FPGAs. https://aws.amazon.com/blogs/aws/ec2-
f1-instances-with-fpgas-now-generally-available/. 2017.

https://doi.org/10.1109/MM.2020.2996616
https://doi.org/10.1109/MM.2020.2996616
https://doi.org/10.1109/MM.2020.2996616
https://doi.org/10.1109/ISCAS51556.2021.9401515
https://doi.org/10.2200/S00586ED1V01Y201407CAC029
https://doi.org/10.2200/S00586ED1V01Y201407CAC029
https://doi.org/10.2200/S00586ED1V01Y201407CAC029
https://thrift.apache.org/
https://doi.org/10.1109/DCC.1997.582019
https://doi.org/10.1109/DCC.1997.582019
https://aws.amazon.com/ec2/nitro/
https://doi.org/10.1145/3307650.3322234
https://doi.org/10.1145/3307650.3322234
https://doi.org/10.1145/3307650.3322234
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2872362.2872414
https://aws.amazon.com/blogs/aws/ec2-f1-instances-with-fpgas-now-generally-available/
https://aws.amazon.com/blogs/aws/ec2-f1-instances-with-fpgas-now-generally-available/


BIBLIOGRAPHY 144

[28] Jeff Barr. New C5n Instances with 100 Gbps Networking. https://aws.amazon.com/
blogs/aws/new-c5n-instances-with-100-gbps-networking/. 2018.

[29] Luiz Barroso et al. “Attack of the Killer Microseconds”. In: Commun. ACM 60.4 (Mar.
2017), pp. 48–54. ISSN: 0001-0782. DOI: 10.1145/3015146. URL: http://doi.acm.
org/10.1145/3015146.
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Appendix A

Artifact appendix: FirePerf

This artifact appendix describes how to reproduce results demonstrated in Chapter 5 by running
FirePerf/FireSim simulations on Amazon EC2 F1 instances.

A.1 Artifact checklist (meta-information)
• Run-time environment: AWS FPGA Developer AMI 1.6.0

• Hardware: AWS EC2 Instances (c5.4xlarge/f1.4xlarge)

• Metrics: Bandwidth Results (Gbits/s)

• Output: Bandwidth Results, TraceRV Flame Graphs, AutoCounter Queue Occupancy Graphs

• Experiments: iperf3 benchmarks

• How much disk space required?: 75GB (on EC2 instance)

• How much time is needed to prepare workflow?: 1.5 hours (scripted installation)

• How much time is needed to complete experiments?: 1 hour

• Publicly available?: Yes

• Code licenses: Several, see download

• Archived: https://doi.org/10.5281/zenodo.3561040

A.2 Description

How delivered.
A version of FirePerf that reproduces the results in this chapter is available openly on Zenodo;
its use is described in this artifact appendix. FirePerf is also open-sourced within the FireSim

https://doi.org/10.5281/zenodo.3561040
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project. Those intending to use the FirePerf tools for their own designs should use FireSim directly:
https://github.com/firesim/firesim.

Hardware dependencies.
One c5.4xlarge instance (also referred to as the “manager” instance) and at least one f1.4xlarge
instance on Amazon EC2 are required.

Software dependencies.
Installing mosh (https://mosh.org/) on your local machine is highly recommended for reliable
access to EC2 instances.

A.3 Installation
First, follow the instructions on the FireSim website to create a manager instance on AWS: https:
//docs.fires.im/en/1.6.0/Initial-Setup/index.html. You must complete up to and in-
cluding Section 2.3.1.2, “Key Setup, Part 2”, with the following changes in Section 2.3.1:

1. When instructed to launch a c4.4xlarge instance, choose a c5.4xlarge instead.

2. When instructed to copy a long script into the text box in “Advanced Details,” instead copy only
the following script:

#!/bin/bash

sudo yum install -y mosh

echo "PS1=’\u@\H:\w\\$ ’" >> /home/centos/.bashrc

3. When entering the root EBS volume size, use 1000GB rather than 300GB.

At this point, you should have a manager instance setup, with an IP address and key. Use either
ssh or mosh to login to the instance. From this point forward, all commands should be run on the
manager instance. Begin by pulling the FirePerf codebase from Zenodo onto the instance, like so:

# Enter the wget as a single line:

$ wget -O fireperf.zip

https://zenodo.org/record/3561041/files/fireperf.zip

$ unzip fireperf.zip

Next, from the home directory, run the following to install some basic dependencies:

$ ./fireperf/scripts/machine-launch-script.sh

This step should take around 3 minutes. At the end, the script will print:

https://github.com/firesim/firesim
https://mosh.org/
https://docs.fires.im/en/1.6.0/Initial-Setup/index.html
https://docs.fires.im/en/1.6.0/Initial-Setup/index.html
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Setup complete. You should log out and log back in now.

At this point, you need to log out and log back into the manager instance. Once logged into the
manager again, run:

$ cd fireperf

$ ./scripts/first-clone-setup-fast.sh

This step should take around 1 hour. Upon successful completion, it will print:

first-clone-setup-fast.sh complete.

To finish-up the installation process, run the following:

$ source sourceme-f1-manager.sh

$ cd deploy

$ firesim managerinit

A.4 Experiment workflow
For rapid exploration, we provide a short workload that runs a FirePerf/FireSim simulation for
the baseline, single-core, networked result in our work (the 1.67 Gbit/s number in Table 5.1),
incorporating both TraceRV/Flame Graph construction and AutoCounter logging. The included
infrastructure will automatically dispatch simulations to an f1.4xlarge instance, which has two
Xilinx FPGAs. The target design consists of two nodes simulated by FireSim (one on each FPGA),
each with a NIC, that communicate through a simulated two-port Ethernet switch. To run the
experiment, first we build target-software for the simulation, which should take approximately 2
minutes:

$ cd workloads

$ make iperf3-trigger-slowcopy-cover

Next, we must make a change to the run-ae-short.sh script to support running on your own
EC2 instances. Open run-ae-short.sh (located in the workloads directory you are currently
in) in a text editor. You will need to uncomment line 40 and comment out line 41, so that they look
like so:

runserialwithlaunch $1

#runserialnolaunch $1

Now, we can run the simulation:

$ ./run-ae-short.sh
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This process will take around 1 hour. Upon completion, it will print:

AE run complete.

A.5 Evaluation and expected result
Results from the run of run-ae-short.sh will be located in a subdirectory in ~/fireperf/

deploy/results-workload/ on your manager instance. The subdirectory name will look like
the following, but adjusted for the date/time at which you run the workload:
2020-01-18--06-00-00-iperf3-trigger-slowcopy-cover-singlecore

We will refer to this subdirectory as your “AE Subdirectory” in the rest of this document. Once
in this subdirectory, there are three results we are interested in looking at, described in the following
subsections.

Overall performance result.
Within your “AE Subdirectory”, open iperf3-client/uartlog in a text editor and search for
“Gbits”. You will be taken to a section of the console output from the simulated system that is
produced by iperf3 running on the system. The number we are interested in will be listed in the
“Bitrate” column, with “sender” written in the same row. This is the workload used to produce the
Linux 5.3-rc4, Single-core, Networked number in Table 5.1 (with a result of 1.67 Gbits/s).

Generated Flame Graph.
The generated flame graph from this run (constructed with FirePerf/TraceRV trace collection) is
available in iperf3-server/TRACEFILE0.svg in your “AE Subdirectory”. This flame graph
should be very similar to that shown in Figure 5.3 , since it is generated from your run of the
same workload.

AutoCounter output.
As this workload was running, AutoCounter results were also being collected from the simulations.
The scripts post-process these into a graph that will be similar to Figure 5.5, but will contain a
single bar. Your generated version of this graph will be located in iperf3-client/nic_queue_

send_req.pdf, relative to your “AE Subdirectory”. You should expect a single bar at queue-
occupancy 1, with around 900000 cycles., close to the Baseline bar in Figure 5.5.

A.6 Experiment customization
FirePerf is heavily customizable as a result of being integrated into the FireSim environment,
which itself provides a vast number of configuration options. FirePerf’s TraceRV/stack unwinding
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feature works with any RISC-V processor simulated in FireSim that can pipe out its PC trace to the
top level. FirePerf’s AutoCounter feature is more general—it can be added to any Chisel design
simulated in FireSim. The FireSim documentation describes the extensive customization options
available: https://docs.fires.im

We provide pre-built FPGA images for the designs in this work, encoded in the configuration
files included in the artifact. Regenerating the supplied FPGA images is also possible, by running
firesim buildafi in ~/fireperf/deploy/.

Extended Benchmarks.
We also include a script in the artifact to reproduce the other FirePerf workloads in this chapter,
covering Tables 5.1, 5.2, 5.3, and 5.4 and Figures 5.2, 5.3, 5.7, and 5.5.

Before running this script, it is first required to run the following in ~/fireperf/deploy/

workloads to build all target-software images:

$ make all-iperf3

Next, we must make a change to the run-all-iperf3.sh script to support running on your
own EC2 instances. Open run-all-iperf3.sh (located in the workloads directory you are cur-
rently in) in a text editor. You will need to uncomment line 39 and comment out line 41, so that
lines 39-41 look like so:

runparallelwithlaunch $1

#runserialwithlaunch $1

#runserialnolaunch $1

Next, ensure that your results directory (~/fireperf/deploy/results-workload/) does
not contain existing results from a previous run. Finally, to start all 21 simulations, run the follow-
ing:

$ cd fireperf-dataprocess

$ ./full-runner.sh

Once this script completes, final results will be located in: ~/fireperf/deploy/workloads/
fireperf-dataprocess/02_covered/. This directory contains the following:

• generated-tables/: Contains LATEX source for Tables 5.1, 5.2, 5.3, and 5.4, populated with
bandwidth results from this run.

• generated-flamegraphs/: Contains newly generated PDFs for the flame graphs in this chap-
ter: Figures 5.2, 5.3, and 5.7.

• nic queue send req.pdf: A newly generated version of Figure 5.5.

https://docs.fires.im
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A.7 Methodology
Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-20190109.html

• http://cTuning.org/ae/reviewing-20190109.html

• https://www.acm.org/publications/policies/artifact-review-badging

http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
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Appendix B

Artifact appendix: A hardware accelerator
for protocol buffers

This artifact appendix describes how to reproduce the protobuf accelerator evaluation results in
Chapter 6. As in Chapter 6.5, we will use FireSim FPGA-accelerated simulations to cycle-exactly
simulate the entire RISC-V SoC containing the protobuf accelerator. We will boot Linux on this
system and run both microbenchmarks and HyperProtoBench to collect accelerator performance
metrics.

B.1 Artifact checklist (meta-information)
• Run-time environment: AWS FPGA Developer AMI 1.6.1.

• Hardware: AWS EC2 instances: 1× c5.9xlarge, 1× f1.16xlarge, 1× m4.large.

• Metrics: Protobuf serialization/deserialization throughput (Gbits/s).

• Output: Serialization/deserialization performance plots.

• Experiments: FireSim simulations of protobuf accelerator incorporated into a RISC-V SoC, running
serialization/deserialization microbenchmarks and HyperProtoBench.

• How much disk space is required?: 200 GB (on EC2 instance).

• How much time is needed to prepare workflow?: 2 hours (scripted installation).

• How much time is needed to complete experiments?: 3.5 hours (scripted run).

• Publicly available: Yes.

• Code licenses: Several, see download.

• Archived: https://doi.org/10.5281/zenodo.5433464, https://doi.org/10.5281/zenodo.
5433448, https://doi.org/10.5281/zenodo.5433434, https://doi.org/10.5281/zenodo.
5433410, and https://doi.org/10.5281/zenodo.5433364.

https://doi.org/10.5281/zenodo.5433464
https://doi.org/10.5281/zenodo.5433448
https://doi.org/10.5281/zenodo.5433448
https://doi.org/10.5281/zenodo.5433434
https://doi.org/10.5281/zenodo.5433410
https://doi.org/10.5281/zenodo.5433410
https://doi.org/10.5281/zenodo.5433364
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B.2 Description

How to access
The artifact consists of five git repositories preserved on Zenodo:

1. firesim-protoacc-ae: Top-level FireSim simulation environment. (https://doi.org/10.
5281/zenodo.5433464)

2. chipyard-protoacc-ae: Chipyard RISC-V SoC generation environment. (https://doi.
org/10.5281/zenodo.5433448)

3. protoacc-ae: Protobuf accelerator design, software, and scripts. (https://doi.org/10.
5281/zenodo.5433434)

4. protobuf-library-for-accel-ae: Fork of protobuf library modified for accelerator sup-
port. (https://doi.org/10.5281/zenodo.5433410)

5. HyperProtoBench: Protobuf serialization/deserialization benchmarks representative of key
serialization-framework user services at scale, open-sourced for this work. This is a fork of our
upstream release (https://github.com/google/HyperProtoBench) customized for accelera-
tor benchmarking. (https://doi.org/10.5281/zenodo.5433364)

Users need not download the latter four repositories manually—they will be obtained automat-
ically from Zenodo when the first repository is set up in the next section.

Hardware dependencies
One AWS EC2 c5.9xlarge instance (also referred to as the “manager” instance), one f1.16xlarge
instance, and one m4.large instance are required. The latter two will be launched automatically
by FireSim’s manager.

To optionally run FPGA builds (see Appendix B.6), two additional z1d.6xlarges are re-
quired, however we provide pre-built FPGA images to avoid the long latency (˜10 hours) of this
process.

Software dependencies
Installing mosh (https://mosh.org/) on your local machine is highly recommended for reli-
able access to EC2 instances. All other requirements are automatically installed by scripts in the
following sections.

https://doi.org/10.5281/zenodo.5433464
https://doi.org/10.5281/zenodo.5433464
https://doi.org/10.5281/zenodo.5433448
https://doi.org/10.5281/zenodo.5433448
https://doi.org/10.5281/zenodo.5433434
https://doi.org/10.5281/zenodo.5433434
https://doi.org/10.5281/zenodo.5433410
https://github.com/google/HyperProtoBench
https://doi.org/10.5281/zenodo.5433364
https://mosh.org/
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B.3 Installation
First, follow the instructions on the FireSim website1 to create a manager instance on EC2. You
must complete up to and including “Section 2.3.1.2: Key Setup, Part 2”, with the following changes
in “Section 2.3.1”:

1. When instructed to launch a c5.4xlarge instance, choose a c5.9xlarge instead.

2. When entering the root EBS volume size, use 1000GB rather than 300GB.

Once you have completed up to and including “Section 2.3.1.2” in the FireSim docs, you should
have a manager instance set up, with an IP address and key. Use either ssh or mosh to login to the
instance.

From this point forward, all commands should be run on the manager instance.
Begin by downloading the top-level repository from Zenodo, like so:

$ cd ~/

# Enter as a single line:

$ wget -O firesim-protoacc-ae.zip https://zenodo.org/

record/5433465/files/firesim-protoacc-ae.zip

$ unzip firesim-protoacc-ae.zip

Next, run the following, which will initialize all dependencies and run basic FireSim and Chip-
yard setup steps (RISC-V toolchain installation, matching host toolchain installation, etc.):

$ cd firesim-protoacc-ae

$ ./scripts/first-clone-setup-fast.sh

This step should take around 1.5 hours. Upon successful completion, it will print:

first-clone-setup-fast.sh complete.

Once this is complete, run:

$ source sourceme-f1-manager.sh

Sourcing this file will have set up your environment to run the protobuf accelerator simulations.
Finally, in the FireSim docs, follow the steps in (only) “Section 2.3.3: Completing Setup Using

the Manager”2. Once you have completed this, your manager instance is fully set up to run protobuf
accelerator simulations.

1https://docs.fires.im/en/1.12.0/Initial-Setup/index.html
2https://docs.fires.im/en/1.12.0/Initial-Setup/Setting-up-your-Manager-Instance.html#

completing-setup-using-the-manager

https://docs.fires.im/en/1.12.0/Initial-Setup/index.html
https://docs.fires.im/en/1.12.0/Initial-Setup/Setting-up-your-Manager-Instance.html#completing-setup-using-the-manager
https://docs.fires.im/en/1.12.0/Initial-Setup/Setting-up-your-Manager-Instance.html#completing-setup-using-the-manager
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B.4 Experiment workflow
Now that our environment is set up, we will run the full artifact evaluation script, which does the
following:

1. On the manager instance, build the FireSim host-side drivers required to drive the FPGA
simulation.

2. On the manager instance, build our modified protobuf library, cross-compile all benchmarks
we will run, and construct a Buildroot-based Linux distribution containing these bench-
marks, which will be booted on the accelerated system.

3. For isolated Xeon runs, launch an m4.large, run benchmarks on it and collect results, and
terminate the m4.large.

4. Run FireSim simulations, repeat the following for the three classes of benchmarks (acceler-
ated serialization, accelerated deserialization, and plain BOOM):

a) Launch an f1.16xlarge instance.

b) Copy all simulation infrastructure to the F1 instance.

c) Run the set of benchmarks on 6 or 7 simulated systems in parallel (one f1.16xlarge

has 8 FPGAs).

d) Copy results back to the manager instance.

e) Terminate the f1.16xlarge instance.

5. On the manager instance, re-generate the accelerator performance plots in this chapter, with
data collected from your runs.

Note that this script will not rebuild FPGA images for the system by default, since each build
takes around 10 hours. We instead provide pre-built images by default (see config hwdb.ini in
$PROTOACC FSIM). If you would like to build your own images, see Appendix B.6, then return
here.

Now, let’s run the aforementioned full artifact evaluation script:

$ cd $PROTOACC_FSIM

$ ./run-ae-full.sh

This will take around 3.5 hours. When complete, it will print:

run-ae-full.sh complete.

The FireSim manager will have automatically terminated any instances it launched during this
process, but please confirm in your AWS EC2 management console that no instances remain be-
sides the manager.
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B.5 Evaluation and expected results
Next, we will step through the plots generated from your run of run-ae-full.sh in the previous
section.

Microbenchmark results
Results from your run will be located in the $UBENCH RESULTS directory:

1. Figure 6.11a: nonalloc.pdf

2. Figure 6.11c: allocd.pdf

3. Figure 6.11b: nonalloc-serializer.pdf

4. Figure 6.11d: allocd-serializer.pdf

5. Final speedup results: at the end of process.py.log and process-serialize.py.log

HyperProtoBench results
Results from your run will be located in the $HYPER RESULTS directory:

1. Figure 6.12: hyper-des.pdf

2. Figure 6.13: hyper-ser.pdf

3. Final speedup results for serialization and deserialization: near the end of the SPEEDUPS file

Once your evaluation is complete, manually terminate your manager instance in the EC2 man-
agement console and confirm that no other instances from the evaluation process are left running.

B.6 Experiment customization

Customizing the design
Since the protobuf accelerator is written in Chisel RTL, incorporated into the Chipyard RISC-V
SoC generator ecosystem, and modeled at high-performance using FireSim, it can be experimented
with in a wide-variety of contexts, including in multi-core systems, attached to in-order processors
(instead of the superscalar OoO BOOM used here), and with different memory hierarchy config-
urations, to name a few. These parameters are too numerous to list here; see the FireSim docs3,
Chipyard docs4, and tutorial slides5 for these configuration options.

3https://docs.fires.im/en/1.10.0/
4https://chipyard.readthedocs.io/en/1.3.0/
5https://fires.im/isca-2021-tutorial/

https://docs.fires.im/en/1.10.0/
https://chipyard.readthedocs.io/en/1.3.0/
https://fires.im/isca-2021-tutorial/
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The protobuf accelerator RTL is located in the $PROTOACC SRC directory and can be cus-
tomized and improved as necessary.

Rebuilding FPGA images
We provide pre-built FPGA images for the designs in this work (generated from the included RTL),
encoded in the configuration files in the artifact.

Regenerating the supplied FPGA images can also be done by modifying the S3 bucket name in
$PROTOACC FSIM/config build.ini to an unused bucket name (that the manager will create),
then running ./buildafi.sh in the $PROTOACC FSIM directory. This will take around 10 hours,
require two z1d.6xlarge instances, generate two new AGFIs (i.e., FPGA bitstreams on EC2
F1), and place their config hwdb.ini entry in $BUILT HWDB ENTRIES/[config name]. To use
the new AGFI, replace the existing entry in the config hwdb.ini file in $PROTOACC FSIM (or,
for a new config, add it). If generating your own FPGA images, you must also set the correct
value for customruntimeconfig in the config hwdb.ini entry to obtain correct memory system
performance:

customruntimeconfig=2GHz-runtime-conf-32MBLLC-qc.conf

When an FPGA build completes, the FireSim manager will automatically terminate the in-
stances it launched during the build process, but please confirm in your AWS EC2 management
console that no instances remain besides the manager. More details about the FireSim FPGA build
process can be found in the FireSim docs6. Note that many of the FireSim manager build con-
figuration files are in a non-standard location to simplify scripting for artifact evaluation. Open
buildafi.sh to see their locations.

B.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

6https://docs.fires.im/en/1.10.0/Building-a-FireSim-AFI.html

https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://docs.fires.im/en/1.10.0/Building-a-FireSim-AFI.html
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Appendix C

Artifact appendix: CDPU

This artifact appendix describes how to reproduce the CDPU Design Space Exploration results
from Chapter 7. As in Chapter 7.6, we will use FireSim FPGA-accelerated simulations to cycle-
exactly simulate the entire RISC-V SoC containing the RTL implementations of CDPUs (com-
pression and decompression accelerators). We will run HyperCompressBench, the benchmark
suite we created from fleet-wide profiling at Google, on both a Xeon system (for the baseline)
and our RISC-V SoC augmented with CDPUs. We will sweep the design parameters explored in
Chapter 7.6 to collect accelerator performance metrics and reproduce the accelerator trade-offs and
insights discussed earlier.

C.1 Artifact checklist (meta-information)
• Run-time environment: AWS FPGA Developer AMI 1.12.1.

• Hardware: AWS EC2 instances: 1× c5.9xlarge, 16× f1.2xlarge, 1× m4.large.

• Metrics: Compression and decompression throughput (GB/s), compression ratio.

• Output: Compression and decompression performance and compression ratio plots. HyperCompress-
Bench call-size distribution plots. Re-generation of chapter text that contains data.

• Experiments: FireSim simulations of compression and decompression accelerators incorporated into a
RISC-V SoC, running HyperCompressBench.

• How much disk space is required?: 2000GB (on EC2 instance).

• How much time is needed to prepare workflow?: 1 hour (scripted installation).

• How much time is needed to complete experiments?: 6 hours for Snappy, 110 hours for ZStd (both
fully automated).

• Publicly available: Yes.

• Code licenses: Several, see download.
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• Archived:

– https://doi.org/10.5281/zenodo.7812634

– https://doi.org/10.5281/zenodo.7812577

– https://doi.org/10.5281/zenodo.7812573

– https://doi.org/10.5281/zenodo.7812563

C.2 Description

How to access
The artifact consists of four git repositories preserved on Zenodo.

1. chipyard-compress-acc-ae: Chipyard RISC-V SoC generation environment, customized
for CDPU evaluation. Zenodo: https://doi.org/10.5281/zenodo.7812634

2. firesim-compress-acc-ae: FireSim simulation environment, customized for CDPU evalua-
tion. Zenodo: https://doi.org/10.5281/zenodo.7812577

3. compress-acc-ae: Compression and decompression accelerator implementation (RTL), soft-
ware, and scripts. Zenodo: https://doi.org/10.5281/zenodo.7812573

4. HyperCompressBench: Compression and decompression benchmarks representative of com-
pression and decompression usage in Google’s datacenter fleet, created and open-sourced for this
work. Zenodo: https://doi.org/10.5281/zenodo.7812563

Users need not download the latter three repositories manually—they will be obtained auto-
matically from Zenodo when the first repository is set up in the next section.

Hardware dependencies
One AWS EC2 c5.9xlarge instance (also referred to as the “manager” instance), 16 f1.2xlarge

instances, and one m4.large instance are required. The latter two instance types will be launched
automatically by FireSim’s manager.

To optionally run FPGA builds (see Appendix C.6), seven additional z1d.6xlarges are re-
quired, however we provide pre-built FPGA images to avoid the long latency (≈ 18 hours) of this
process.

Software dependencies
Installing mosh (https://mosh.org/) on your local machine is highly recommended for reli-
able access to EC2 instances. All other requirements are automatically installed by scripts in the
following sections.

https://doi.org/10.5281/zenodo.7812634
https://doi.org/10.5281/zenodo.7812577
https://doi.org/10.5281/zenodo.7812573
https://doi.org/10.5281/zenodo.7812563
https://doi.org/10.5281/zenodo.7812634
https://doi.org/10.5281/zenodo.7812577
https://doi.org/10.5281/zenodo.7812573
https://doi.org/10.5281/zenodo.7812563
https://mosh.org/
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C.3 Installation
First, follow the instructions on the FireSim website1 to create a manager instance on EC2. You
must complete up to and including “Section 1.3.1.2: Key Setup, Part 2”, with the following changes
in “Section 1.3.1”:

1. When instructed to launch a c5.4xlarge instance, choose a c5.9xlarge instead.

2. When entering the root EBS volume size, use 2000GB rather than 300GB.

Once you have completed up to and including “Section 1.3.1.2” in the FireSim docs, you should
have a manager instance set up, with an IP address and key. Use either ssh or mosh to login to the
instance.

# Option 1: USE SSH

$ ssh -i KEY.pem centos@IP_ADDR

# Option 2: USE MOSH

$ mosh --ssh="ssh -i KEY.pem" centos@IP_ADDR

From this point forward, all commands should be run on the manager instance.
If using ssh, be sure to start screen or tmux on the manager so that the artifact continues

running even if your network connection is interrupted.
Begin by fetching the top-level repository from Zenodo, like so:

$ cd $HOME

# Enter as a single line:

$ curl -Ls -w %{url_effective} -o a https://doi.org/

10.5281/zenodo.7812634 > DL_url

$ wget $(cat DL_url)/files/chipyard-compress-acc-ae.zip

$ unzip chipyard-compress-acc-ae.zip

Next, run the following, which will initialize all dependencies and run basic Chipyard and
FireSim setup steps (RISC-V toolchain installation, host toolchain installation, etc.):

$ cd chipyard-compress-acc-ae

$ ./scripts/first-clone-setup-fast.sh

This step should take around 45 minutes. Upon successful completion, it will print:

first-clone-setup-fast.sh complete.

1https://docs.fires.im/en/1.15.2/Initial-Setup/index.html

https://docs.fires.im/en/1.15.2/Initial-Setup/index.html
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Once this is complete, run:

$ source env.sh

$ cd sims/firesim

$ source sourceme-f1-manager.sh

Finally, run the following to finish setting up FireSim. You can enter your email address when
prompted if you plan to run the optional FPGA builds in Appendix C.6, otherwise just hit Enter.

$ firesim managerinit

Now, your manager instance is fully set up to run CDPU sims.

C.4 Experiment workflow
Now that our manager is set up, we will run the full artifact evaluation script, which will automat-
ically do the following:

1. On the manager instance, extract HyperCompressBench and compile RISC-V/CDPU bench-
marks for the ≈35,000 benchmark files we need.

2. For isolated Xeon baseline runs, launch an m4.large, run HyperCompressBench on it using
lzbench, collect results, and terminate the m4.large.

3. On the manager instance, build FireSim host-side drivers required to drive each FPGA-
accelerated simulation.

4. Launch sixteen f1.2xlarge instances, which provide a total of sixteen FPGAs to run simu-
lations on in parallel.

5. Run FireSim simulations, repeating the following for the 16 workloads of interest:

a) Copy all simulation infrastructure to the F1 instances.

b) Run the set of benchmarks on 16 simulated systems in parallel (one f1.2xlarge has 1
FPGA).

c) Copy results back to the manager instance.

6. Terminate the sixteen f1.2xlarge instances.

7. On the manager, re-generate accelerator performance plots from the chapter (and sections of
the chapter text that use this data), using data collected from your runs.
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Note that this script will not rebuild FPGA images for the system by default, since each build
takes around 18 hours. We instead provide pre-built images by default (see $COMPRESSACC FSIM/

config others/config hwdb.yaml). If you would like to build your own images, see Ap-
pendix C.6, then return here.

Now, run the aforementioned full artifact evaluation script:

$ cd $COMPRESSACC_FSIM

$ ./run-ae-full.sh

This takes around 6 hours for Snappy and 110 hours for ZStd. When complete, it will print:

run-ae-full.sh complete.

The FireSim manager will automatically terminate any instances it launched during this pro-
cess.

C.5 Evaluation and expected results
Next, we will step through the plots generated from your run of run-ae-full.sh in the previous
section. The following results generated from your run will be located in the $HYPER RESULTS

directory:

1. Figures 7.7a, 7.7b, 7.7c, and 7.7d:
[Snappy,ZSTD]-[C,D]-callsizes.pdf

2. Figure 7.11: snappy-decompression.pdf

3. Figure 7.12: snappy-compression-ht14.pdf

4. Figure 7.13: snappy-compression-ht9.pdf

5. Figure 7.14: zstd-decompression.pdf

6. Figure 7.15: zstd-compression-ht14.pdf

7. FINAL TEXT SUMMARIES.txt contains chapter text re-generated with data obtained from
these simulations. This excludes the single ZStd-Decomp-32spec data point, which requires
≈100 additional machine-days of software simulation.

8. Raw results are located in the five *.csv files
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C.6 Experiment customization

Customizing the design
Since the compression and decompression accelerators are written in Chisel RTL, incorporated into
the Chipyard RISC-V SoC generator ecosystem, and modeled at high-performance using FireSim,
they can be experimented with in a wide-variety of contexts, including in multi-core systems,
attached to various kinds of processors, and with different memory hierarchy configurations, to
name a few. These parameters are too numerous to list here; see the FireSim docs2, Chipyard
docs3, and tutorial slides4 for these configuration options.

The compression and decompression accelerator RTL is located in the $COMPRESSACC SRC

directory and can be customized as necessary, including using the runtime and compile-time con-
figurable parameters outlined in Chapter 7.5, several of which we swept in this artifact evaluation.

Rebuilding FPGA images
We provide pre-built FPGA images for designs in this chapter (generated from the included RTL),
encoded in the configuration files in the artifact.

Rebuilding the supplied FPGA images can also be done by running ./buildafi.sh in the
$COMPRESSACC FSIM directory. This will take around 18 hours, require seven z1d.6xlarge in-
stances, generate seven new AGFIs (i.e., FPGA bitstreams on EC2 F1), and place their config
hwdb.yaml entries in $BUILT HWDB ENTRIES/[config name]. To use the new AGFIs, replace
existing entries in the $COMPRESSACC FSIM/config others/config hwdb.yaml file (or, for a
new config, add it).

When an FPGA build completes, the FireSim manager will automatically terminate the in-
stances it launched during the build process. More details about the FireSim FPGA build process
can be found in the FireSim docs5. Note that many of the FireSim manager build configuration
files are in a non-standard location to simplify scripting for artifact evaluation. Open buildafi.sh

to see their locations.

C.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

2https://docs.fires.im/en/1.15.2/
3https://chipyard.readthedocs.io/en/1.8.1/
4https://fires.im/asplos-2023-tutorial/
5https://docs.fires.im/en/1.15.2/Building-a-FireSim-AFI.html

https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://docs.fires.im/en/1.15.2/
https://chipyard.readthedocs.io/en/1.8.1/
https://fires.im/asplos-2023-tutorial/
https://docs.fires.im/en/1.15.2/Building-a-FireSim-AFI.html

	Contents
	List of Figures
	List of Tables
	Introduction
	Chasing exponentials in the post-Moore era with agile hardware design at-scale
	Addressing hyperscale datacenter inefficiencies with data-driven co-design of a cloud-optimized server system-on-chip (SoC)
	Incorporation of previously published work

	FireSim: Fast simulation of novel datacenter designs with RTL-level fidelity
	Introduction
	Harnessing FPGAs in the public cloud
	FireSim design and internals
	Validating FireSim's modeling fidelity
	Characterizing FireSim simulation rates across system scale and configuration
	A preliminary case-study of scale-out acceleration: Building a page-fault accelerator
	Related work
	Conclusion
	A retrospective on six years of FireSim

	Chipyard: Agile generation of RISC-V systems-on-chip
	Use cases and philosophy
	Chipyard's curated library of hardware components
	Managing software for the SoC design
	Chipyard output flows
	A retrospective on five years of Chipyard

	Hyperscale SoC: A server system-on-chip optimized for cloud datacenters
	Profiling a hyperscale datacenter fleet to influence hardware designs and construct representative benchmarks
	An end-to-end data-driven co-design flow for hyperscale systems

	FirePerf: Agile cross-stack profiling and co-design for end-host networking
	Introduction
	Background: Baseline system-on-chip design and modeling flow
	FirePerf design and internals: High-fidelity pre-silicon profiling tools
	Using FirePerf to optimize Linux networking performance
	Applying findings to commercial chips
	Related work
	Discussion and future work
	Conclusion
	Retrospective

	A hardware accelerator for protocol buffers
	Introduction
	Protobuf serialization library overview
	Profiling protobuf usage at hyperscale
	Protobuf accelerator design and internals
	Evaluation
	Related work
	Discussion and future work
	Conclusion
	Retrospective

	CDPU: Accelerating general-purpose lossless (de)compression at scale
	Introduction
	General-purpose lossless compression and decompression fundamentals
	Profiling (de)compression usage at hyperscale
	Building open-source hyperscale-representative (de)compression benchmarks
	A parameterized generator for compression and decompression processing units (CDPUs)
	CDPU design space exploration
	Related work
	Conclusion
	Retrospective

	Conclusion
	Open problems in agile design methodologies for hyperscale systems
	Open problems in specialization for hyperscale cloud datacenters
	Parting words

	Bibliography
	Artifact appendix: FirePerf
	Artifact checklist (meta-information)
	Description
	Installation
	Experiment workflow
	Evaluation and expected result
	Experiment customization
	Methodology

	Artifact appendix: A hardware accelerator for protocol buffers
	Artifact checklist (meta-information)
	Description
	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Methodology

	Artifact appendix: CDPU
	Artifact checklist (meta-information)
	Description
	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Methodology


