
Building Agentic Systems in an Era of Large Language
Models

Charles Packer

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-223
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-223.html

December 19, 2024

Copyright © 2024, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Building Agentic Systems in an Era of Large Language Models

By

Charles Packer

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Joseph E. Gonzalez, Chair
Professor Ion Stoica

Professor Matei Zaharia
Doctor Yuandong Tian

Fall 2024

Building Agentic Systems in an Era of Large Language Models

Copyright 2024
by

Charles Packer

1

Abstract

Building Agentic Systems in an Era of Large Language Models

by

Charles Packer

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Joseph E. Gonzalez, Chair

Building intelligent autonomous systems that can reason, adapt, and interact with their
environment has been a long-standing goal in artificial intelligence. This thesis explores
the evolution of agentic systems through the deep learning revolution, from reinforcement
learning to modern Large Language Models (LLMs), focusing on the critical components
needed to create reliable autonomous agents.

First, we address the fundamental challenge of generalization in deep reinforcement learn-
ing (RL), introducing a systematic framework for evaluating and improving how learned poli-
cies transfer across environments. Building on this foundation, we present Hindsight Task
Relabeling (HTR), a novel approach that enables meta-RL algorithms to learn adaptation
strategies in sparse reward settings without requiring dense reward signals during training.

Finally, we address the emerging challenges of building reliable agents using Large Lan-
guage Models. While LLMs demonstrate unprecedented reasoning capabilities, their effec-
tiveness as autonomous agents is limited by fundamental constraints in their architecture -
most notably, their stateless nature and fixed context windows. We present MemGPT, an
operating system-inspired framework that enables LLMs to manage their own memory and
state, introducing concepts like virtual context management and self-directed memory opera-
tions. MemGPT demonstrates that by treating LLMs as a new fundamental unit of compute
- analogous to how CPUs were the fundamental unit in traditional operating systems - we
can build more reliable and capable autonomous agents.

Together, these systems trace the evolution of agentic AI systems and provide key build-
ing blocks for creating more reliable and capable autonomous agents. By addressing core
challenges in generalization, adaptation, and memory management, this thesis establishes a
foundation for engineering the next generation of AI systems that can effectively reason and
interact with the world.

i

To my parents

ii

Contents

List of Figures v

List of Tables ix

Acknowledgments x

1 Introduction 1
1.1 Background . 1

1.1.1 The Deep Learning Revolution in Robotics and Control 1
1.1.2 The Rise of Foundation Models . 2

1.2 Deep Learning for Agentic Systems . 2
1.3 The LLM Agent Paradigm . 3

2 Assessing Generalization in Deep Reinforcement Learning 4
2.1 Introduction . 4
2.2 Background . 6
2.3 Notation . 7
2.4 Algorithms . 8
2.5 Environments . 9
2.6 Experimental setup . 11
2.7 Experimental setup . 12
2.8 Results and discussion . 14
2.9 Conclusion . 15
2.10 Additional details . 16

2.10.1 Environment Details . 16
2.10.2 Training Hyperparameters . 16
2.10.3 Detailed Experimental Results . 18
2.10.4 Behavior of MountainCar . 18
2.10.5 Training Curves . 21
2.10.6 Videos of trained agents . 21

Contents iii

3 Hindsight Task Relabelling: Experience Replay for Sparse Reward Meta-
RL 26
3.1 Introduction . 26
3.2 Related work . 27
3.3 Background . 28

3.3.1 Meta-Reinforcement Learning (Meta-RL) 29
3.3.2 Off-Policy Meta-Reinforcement Learning 29
3.3.3 Hindsight Experience Replay . 30

3.4 Leveraging Hindsight in Meta-Reinforcement Learning 31
3.4.1 Algorithm Design . 32
3.4.2 Single Episode Relabeling (SER) strategy 33
3.4.3 Episode Clustering (EC) strategy . 33
3.4.4 Comparison of HTR and HER . 34
3.4.5 Limitations . 34

3.5 Experiments . 35
3.5.1 Environments . 35
3.5.2 HTR enables meta-training using only sparse reward 36
3.5.3 Varying key hyperparameters . 38

3.6 Conclusion . 39
3.7 Experimental Setup (additional details) . 40

3.7.1 Computing Infrastructure . 40
3.7.2 Hyperparameters . 40
3.7.3 Reward Functions . 40
3.7.4 Changing the Distance to Goal . 41

3.8 Algorithm Specifics . 41
3.8.1 Sample-Time vs Data Generation Relabelling 41
3.8.2 Single Episode Relabelling Implementation Details 41
3.8.3 Episode Clustering Implementation Details 42
3.8.4 Time and Space Complexity . 43

4 MemGPT: Towards LLMs as Operating Systems 44
4.1 Introduction . 44
4.2 MemGPT (MemoryGPT) . 46

4.2.1 Main context (prompt tokens) . 46
4.2.2 Queue Manager . 47
4.2.3 Function executor (handling of completion tokens) 47
4.2.4 Control flow and function chaining 48

4.3 Experiments . 49
4.4 Experiments . 49

4.4.1 MemGPT for conversational agents 50
4.4.2 MemGPT for document analysis . 52

4.5 Related work . 55

Contents iv

4.6 Conclusion . 56
4.7 Additional details . 56

4.7.1 Limitations . 56
4.7.2 MemGPT pseudocode . 57
4.7.3 MemGPT function set . 58
4.7.4 Prompts and instructions . 61
4.7.5 Balancing Working Context and the FIFO Queue 67

5 From Serving Models to Serving Agents: The Missing Pieces for Support-
ing Agentic Workloads 69
5.1 Introduction . 69

5.1.1 The Existing Stateless LLM Programming Model 69
5.1.2 Agentic Programming Model . 70
5.1.3 Agent State . 70

5.2 The Agent Hosting Layer . 70
5.2.1 LLM Inference: Co-optimization with the inference layer 71
5.2.2 State & Context Management . 71
5.2.3 Multi-agent communication and orchestration 71

6 Conclusion & Future Work 72

Bibliography 74

v

List of Figures

2.1 Schematic of the three versions of an environment. 17
2.2 MountainCar: heatmap of the rewards achieved by A2C with the FF architecture

on DR and DE. The axes are the two environment parameters varied in R and E. 22
2.3 Pendulum: heatmap of the rewards achieved by A2C with the FF architecture

on DR and DE. The axes are the two environment parameters varied in R and E. 23
2.4 PPO with FF architecture . 24
2.5 PPO with RC architecture . 24
2.6 EPOpt-PPO with FF architecture . 24
2.7 EPOpt-PPO with RC architecture . 24
2.8 RL2-PPO . 24
2.9 Training curves for the PPO-based algorithms on CartPole, all three environment

versions. Note that the decrease in mean episode reward at 10000 episodes in the
two EPOpt-PPO plots is due to the fact that it transitions from being computed
using all generated episodes (ϵ = 1) to only the 10% with lowest reward (ϵ = 0.1). 24

2.10 Video frames of agents trained with A2C on HalfCheetah, trained in the Deter-
ministic (D), Random (R), and Extreme (E) settings (from top to bottom). All
agents evaluated in the D setting. 25

2.11 Video frames of agents trained with PPO on HalfCheetah, trained in the Deter-
ministic (D), Random (R), and Extreme (E) settings (from top to bottom). All
agents evaluated in the D setting. 25

List of Figures vi

3.1 In goal-conditioned RL (a), an agent must navigate to a provided goal location g
(filled circle, revealed to the agent). An unsuccessful attempt for goal g provides
no sparse reward signal, but can be relabelled as a successful attempt for goal g′,
creating sparse reward that can be used to train the agent. In meta-RL (b), the
task T (i.e., goal, hollow circle) is never revealed to the agent, and instead must
be inferred using experience on prior tasks and limited experience (τ1:t−1) on the
new task. In (b), there is no shared optimal task T ′ to relabel all attempts with.
HTR relabels each attempt τ under its own hindsight task T ′, and modifies the
underlying meta-RL training loop to learn adaptation strategies on the relabelled
tasks. Note that we include multiple trajectories τ in (b) vs a single trajectory
in (a) to highlight the adaptation stage in meta-RL, which does not exist in
goal-conditioned RL and requires significantly different sampling and relabeling
procedures. 27

3.2 Sparse reward environments for meta-RL that require temporally-extended ex-
ploration. In each environment, the task (the top-left circle in (a), the green
sphere in (b) and (c)) is not revealed to the agent via the observation. The agent
must instead infer the task through temporally-extended exploration (illustrated
by the dotted lines in (a)), since no reward signal is provided until the task is
successfully completed. Prior meta-RL methods such as PEARL (Rakelly et al.
2019) and MAESN (Gupta et al. 2018b) are only able to (meta-)learn meaning-
ful adaptation strategies using dense reward functions. Our approach, Hindsight
Task Relabeling (HTR), can (meta-)train with the original sparse reward function
and does not require additional dense reward functions. 30

3.3 Illustration of Hindsight Task Relabeling (HTR) in a meta-RL training loop.
HTR is agnostic to the underlying (off-policy) meta-RL algorithm; the agent
architecture and/or training specifics (e.g., the encoder ϕ, actor π and Q-function
neural networks shown in blue) can be modified independently of the relabeling
scheme. HTR can also be performed in an ‘eager’ fashion at the data collection
stage (as opposed to ‘lazy’ relabeling in the data sampling stage), see Section 3
for details. 31

3.4 HTR algorithm . 33
3.5 Evaluating adaptation to train tasks progressively during meta-training. Y-

axis measures average sparse return during adaptation throughout meta-training
(shaded std dev), though the oracle is still trained using dense reward. Conven-
tional meta-RL methods struggle to learn using sparse reward. Hindsight Task
Relabeling (HTR) is comparable to dense reward meta-training performance. . . 36

3.6 Evaluating adaptation to test tasks after meta-training. Y-axis measures average
(sparse) return during adaptation using context collected online, using sparse re-
ward only. Adaptation strategies learned with Hindsight Task Relabeling (HTR)
generalize to held-out tasks as well as the oracle which is learned using shaped re-
ward functions. Without HTR or access to a shaped reward during meta-training,
the agent is unable to learn a reasonable strategy. 37

List of Figures vii

3.7 Visualizing exploration behavior learned during meta-training using 300 pre-
adaptation trajectories (i.e., sampled from the latent task prior). In the sparse
reward setting, without HTR (middle row) the agent is unable to learn a meaning-
ful exploration strategy and appears to explore randomly near the origin. With
HTR (bottom row), the agent learns to explore near the true task distribution
(grey circles), similar to an agent trained with a shaped dense reward function
(top row). 38

3.8 Comparing HTR with SER vs EC on Point Robot. 38
3.9 Average return when varying K on Point Robot. 38
3.10 Average task distance when varying K on Point Robot. 38
3.11 Relative reward signal from hindsight vs ground truth tasks using Point Robot. 39
3.12 Meta-training on Point Robot with varying goal distances. If the distance to

the goal is short enough for random exploration to lead to sparse reward, meta-
training is possible using only the sparse reward function. Once this is no longer
the case, meta-training is only possible with a proxy dense reward function, or
by using Hindsight Task Relabelling on the original sparse reward function. . . . 41

3.13 Illustration of Hindsight Task Relabeling (HTR) using Episode Clustering (EC)
in a meta-RL training loop, where relabelling occurs at the data collection stage. 42

4.1 MemGPT writes data to persistent memory after it receives a system alert about
limited context space. 45

4.2 MemGPT can search out-of-context data to bring relevant information into the
current context window. 45

4.3 In MemGPT, a fixed-context LLM processor is augmented with a hierarchical
memory system and functions that let it manage its own memory. The LLM’s
prompt tokens (inputs), or main context, consist of the system instructions, work-
ing context, and a FIFO queue. The LLM completion tokens (outputs) are in-
terpreted as function calls by the function executor. MemGPT uses functions
to move data between main context and external context (the archival and re-
call storage databases). The LLM can request immediate follow-up LLM in-
ference to chain function calls together by generating a special keyword argu-
ment (request_heartbeat=true) in its output; function chaining is what allows
MemGPT to perform multi-step retrieval to answer user queries. 46

4.4 Comparing context lengths of commonly used models and LLM APIs (data col-
lected 1/2024). *Approximate message count assuming a preprompt of 1k tokens,
and an average message size of ∼50 tokens (∼250 characters). 48

4.5 An example conversation snippet where MemGPT updates stored information.
Here the information is stored in working context memory (located within the
prompt tokens). 48

List of Figures viii

4.6 Document QA task performance. MemGPT’s performance is unaffected by
increased context length. Methods such as truncation can extend the effective
context lengths of fixed length models such as GPT-4, but such compression
methods will lead to performance degradation as the necessary compression grows.
Running MemGPT with GPT-4 and GPT-4 Turbo have equivalent results on this
task. 52

4.7 An example of MemGPT solving the document QA task. A database of Wikipedia
documents is uploaded to archival storage. MemGPT queries archival storage via
function calling, which pulls paginated search results into main context. 52

4.8 Nested KV retrieval task performance. MemGPT is the only approach
that is able to consistently complete the nested KV task beyond 2 nesting levels.
While GPT-4 Turbo performs better as a baseline, MemGPT with GPT-4 Turbo
performs worse than MemGPT with GPT-4. 54

4.9 An example of MemGPT solving the nested KV task (UUIDs shortened for read-
ability). The example key-value pair has two nesting levels, and the MemGPT
agent returns the final answer when a query for the final value (f37...617) only
returns one result (indicating that it is not also a key). 54

4.10 MemGPT algorithm pseudocode . 57

ix

List of Tables

2.1 Generalization performance (in % success) of each algorithm, averaged over all
environments (mean and standard deviation over five runs). 14

2.2 Ranges of parameters for each version of each environment, using set notation. . 17
2.3 Mean and standard deviation over five runs of generalization performance (in %

success) on Acrobot. 18
2.4 Mean and standard deviation over five runs of generalization performance (in %

success) on CartPole. 19
2.5 Mean and standard deviation over five runs of generalization performance (in %

success) on MountainCar. 19
2.6 Mean and standard deviation over five runs of generalization performance (in %

success) on Pendulum. 20
2.7 Mean and standard deviation over five runs of generalization performance (in %

success) on HalfCheetah. 20
2.8 Mean and standard deviation over five runs of generalization performance (in %

success) on Hopper. 21

4.1 Deep memory retrieval (DMR) performance. In this task, the agent is asked a
specific question about a topic discussed in a prior conversation (sessions 1–5).
The agent’s response is scored against the gold answer. MemGPT significantly
outperforms the fixed-context baselines. ‘R-L’ is ROUGE-L. 49

4.2 Conversation opener performance. The agent’s conversation opener is evaluated
using similarity scores to the gold persona labels (SIM-1/3) and to the human-
created opener (SIM-H). MemGPT is able to exceed the performance of the
human-created conversation opener with a variety of underlying models. 49

x

Acknowledgments

First and foremost, I want to thank my family, who always pushed me to achieve more.
They are the reason I love to do hard things.

Next I would like to thank my advisor, Professor Joseph E. Gonzalez. Joey helped me
achieve my one true goal in the PhD: to make science fiction into science reality. His flexibility
and encouragement, regardless of where my research interests led (even when not directly
in his critical research path), were instrumental to my success. I could not have asked for a
better PhD advisor.

I am also deeply grateful to my other thesis committee members: Ion Stoica, Matei
Zaharia, and Yuandong Tian. Having such renowned world experts in AI and systems
research on my committee was an incredible honor.

My journey in AI research began at UC San Diego, where I worked with Professors
Julian McAuley and Kamalika Chaudhuri as an undergraduate. This led to my work with
Professor Lawrence Holder during an REU at Washington State University, where I wrote
my first first-author paper. After graduation, Professor Dawn Song took a chance on me,
hiring me after a brief chat at a Starbucks in Hayes Valley - a moment that brought me to
Berkeley and set me on my path toward the PhD.

Several mentors were crucial to my development as a researcher during my time at Berke-
ley. Vladlen Koltun taught me invaluable lessons about research discipline, particularly about
knowing when to abandon ‘zombie’ research projects - advice I wish I had followed more
closely. Richard Shin and Katelyn Gao worked closely with me during my first two years
at Berkeley and were great mentors. Once I began the PhD, Rowan McAllister and Nick
Rhinehart guided my research in autonomous vehicles and helped maintain my research mo-
mentum during the challenging middle years of my PhD. I’m also grateful to Pieter Abbeel
and Sergey Levine, who, though not my formal advisors, provided crucial feedback that
helped several papers cross the finish line to publication.

The RISE Lab was an incredible home for my research. I was fortunate to work along-
side amazing colleagues in Joey’s group: Kevin Lin, Lisa Dunlap, Justin Wong, Shishir
Patil, Tianjun Zhang, Paras Jain, Sukrit Kalra, and Suzie Petryk. The infamous "Star
Factory" cubicle, which allegedly housed the Databricks founders and later the Anyscale
founders, became the birthplace of MemGPT, Gorilla, and SkyPlane during my time there
- an unmatched density of open source research contributions in a single cubicle space.

And finally, I would like to thank Sarah Wooders and Kevin Lin, who are joining me on an

Acknowledgments xi

exciting new adventure post-PhD, where we’ll be taking our research on context management
for LLM agents into the real world.

This thesis, and the journey it represents, would not have been possible without the
support, guidance, and encouragement of all these incredible people. Thank you.

Additional context around this thesis: This thesis was written during an extraordinary
period in artificial intelligence research (2017-2024). When I began my PhD, deep reinforce-
ment learning was at the forefront of autonomous systems research, with breakthroughs like
AlphaGo and OpenAI Five demonstrating superhuman performance in complex games.

Then came the transformer revolution. What started as incremental improvements in
natural language processing rapidly evolved into something far more profound. The release
of ChatGPT in late 2022 marked a paradigm shift not just in AI research, but in how society
viewed artificial intelligence. Large Language Models demonstrated capabilities that seemed
impossible just a few years earlier: sophisticated reasoning and intelligence that was general.

I had the unique privilege of not just witnessing this revolution, but actively participating
in it. My research journey paralleled this transition: from working on fundamental challenges
in deep reinforcement learning, to ultimately helping pioneer new approaches for building
reliable autonomous systems using Large Language Models. This thesis reflects both the
‘before’ and ‘after’ of this pivotal moment in AI history; a time that will likely be remembered
as the beginning of the foundation model era.

The speed of progress during this period was unprecedented. Papers that seemed cutting-
edge when I started my PhD quickly became historical artifacts. Research directions that
appeared promising were suddenly obsolete. Yet this rapid evolution created extraordinary
opportunities to contribute to genuinely new directions in computer science: to help estab-
lish the foundations for how we build AI systems in this new era.

This thesis represents my small contribution to this remarkable period in computing history.

1

Chapter 1

Introduction

Building intelligent autonomous systems that can effectively reason, adapt, and interact
with their environment has been a longstanding goal in artificial intelligence. The recent
deep learning revolution, particularly the emergence of Large Language Models (LLMs),
has dramatically changed our approach to building such systems. This thesis traces this
evolution through several key advances in building agentic systems, from deep reinforcement
learning to modern LLM-based approaches, focusing on the critical components needed to
create reliable autonomous agents.

1.1 Background
The development of agentic systems has undergone several significant paradigm shifts,

each introducing new capabilities and challenges. Understanding these shifts and their im-
plications is crucial for building effective autonomous agents.

1.1.1 The Deep Learning Revolution in Robotics and Control
The integration of deep neural networks with reinforcement learning marked a significant

advancement in autonomous systems. This combination enabled:

• End-to-End Learning: Deep RL allowed systems to learn directly from raw sensory
input, eliminating the need for hand-engineered features.

• Complex Policy Learning: Neural networks as function approximators enabled learning
sophisticated control policies for high-dimensional tasks.

• Improved Generalization: Deep architectures promised better transfer of learned be-
haviors across similar tasks.

However, several key challenges emerged:

1.2. DEEP LEARNING FOR AGENTIC SYSTEMS 2

• Limited Generalization: Learned policies often failed to transfer beyond their specific
training conditions

• Sample Inefficiency: Deep RL systems required extensive training data

• Sparse Rewards: Many real-world tasks lack the dense feedback signals needed for
effective learning

1.1.2 The Rise of Foundation Models
The emergence of Large Language Models and other foundation models introduced a new

paradigm for building intelligent systems, offering:

• Strong Zero-Shot Capabilities: The ability to handle novel tasks without task-specific
training

• Rich World Knowledge: Pre-trained representations capturing broad knowledge about
the world

• Natural Language Interfaces: The ability to understand and generate human language

However, using LLMs as autonomous agents presents unique challenges:

• Context Limitations: Fixed-size context windows restrict long-term memory and rea-
soning

• Reliability Issues: Tendency to hallucinate or produce inconsistent outputs

• Integration Complexity: Challenges in connecting language capabilities to real-world
actions

1.2 Deep Learning for Agentic Systems
This section introduces our early work on addressing fundamental challenges in deep rein-

forcement learning and its application to autonomous systems. First, we present a systematic
evaluation framework for assessing generalization in deep RL, introducing standardized en-
vironments and metrics that enable meaningful comparison of different approaches. This
work established that while deep RL could achieve impressive results in specific scenarios,
the learned policies were often brittle and failed to generalize. Building on these insights,
we developed Hindsight Task Relabeling (HTR), a novel approach that enables meta-RL
algorithms to learn adaptation strategies in sparse reward settings. HTR demonstrates how
intelligent relabeling of experience can bootstrap the learning of complex adaptation strate-
gies, addressing a key limitation in traditional meta-RL approaches.

1.3. THE LLM AGENT PARADIGM 3

1.3 The LLM Agent Paradigm
Finally, we address the emerging challenge of building reliable agents using Large Lan-

guage Models. While LLMs demonstrate remarkable reasoning capabilities, their effective-
ness as autonomous agents is limited by fundamental constraints in their architecture and
training. We present MemGPT, an operating system-inspired framework that enables LLMs
to manage their own memory and state. MemGPT represents a fundamental shift in how
we approach building LLM-based agents, introducing:

• Virtual Context Management: Techniques for managing information beyond the model’s
context window

• Self-Directed Memory Operations: Enabling the LLM to control its own memory state

• Persistent State Management: Methods for maintaining consistent agent state across
interactions

Together, these advances establish a foundation for engineering the infrastructure needed
to transform LLMs from sophisticated chatbots into reliable autonomous agents.

4

Chapter 2

Assessing Generalization in Deep
Reinforcement Learning

2.1 Introduction
Deep reinforcement learning (RL) has emerged as an important family of techniques that

may support the development of intelligent systems that learn to accomplish goals in a va-
riety of complex real-world environments (Mnih et al. 2015; Arulkumaran et al. 2017). A
desirable characteristic of such intelligent systems is the ability to function in diverse envi-
ronments, including ones that have never been encountered before. Yet, deep RL algorithms
are commonly trained and evaluated on a fixed environment. The algorithms are evaluated
in terms of their ability to optimize a policy in a complex environment, rather than their
ability to learn a representation that generalizes to previously unseen circumstances. Indeed,
their sensitivity to even subtle changes in the environment and the dangers of overfitting to a
specific environment have been noted in the literature (Rajeswaran et al. 2017b; Henderson
et al. 2018; Zhang et al. 2018; Whiteson et al. 2011).

Generalization is often regarded as an essential characteristic of advanced intelligent
systems and a central issue in AI research (Lake et al. 2017; Marcus 2018; Dietterich 2017).
It refers to both interpolation to environments similar to those seen during training and
extrapolation outside the training data distribution. The latter is particularly challenging
but is crucial to the deployment of systems in the real world.

Generalization in deep RL has been recognized as an important problem and is under
active investigation (Rajeswaran et al. 2017a; Pinto et al. 2017; Kansky et al. 2017; Yu et al.
2017; Wang et al. 2016; Duan et al. 2016b; Sung et al. 2017; Clavera et al. 2018; Sæmundsson
et al. 2018). However, each work uses a different set of environments and experimental pro-
tocols. For example, Kansky et al. (2017) propose a graphical model architecture, evaluating
on variations of the Atari game Breakout. Rajeswaran et al. (2017a) propose training on a
distribution of domains in risk-averse manner and evaluate on two continuous control tasks
from MuJoCo (Hopper and HalfCheetah). Duan et al. (2016b) aim to learn a policy that
automatically adapts to the environment dynamics and evaluate on bandits, tabular Markov

2.1. INTRODUCTION 5

decision processes, and maze navigation. Sæmundsson et al. (2018) combine learning a hier-
archical latent model for the environment dynamics and model predictive control, evaluating
on two continuous control tasks (cart-pole swing-up and double-pendulum swing-up).

What appears to be missing is a common testbed for evaluating generalization in deep RL:
a clearly defined set of tasks, metrics, and baselines that can support concerted community-
wide progress. In other words, research on generalization in deep RL has not yet adopted the
‘common task framework’, a proven catalyst of progress (Donoho 2015). Only by creating
such testbeds and evaluating on them can we fairly compare and contrast the merits of
different algorithms and accurately measure progress made on the problem.

Our contribution is to establish a reproducible framework for investigating generalization
in deep RL, with the hope that it will catalyze progress on this problem, and to present
an empirical evaluation of generalization in deep RL algorithms as a baseline. We select a
diverse but manageable set of environments, comprising classic control problems and MuJoCo
locomotion tasks, built on top of OpenAI Gym for ease of adoption. Like Rajeswaran et al.
(2017a) and others, we focus on generalization to changes in the system dynamics, which
is implemented by specifying degrees of freedom (parameters) along which the environment
specifications can be varied. Significantly, we test generalization in two regimes: interpolation
and extrapolation. Interpolation implies that agents should perform well in test environments
where parameters are similar to those seen during training. Extrapolation requires agents
to perform well in test environments where parameters are different from those seen during
training.

To provide the community with a set of clear baselines, we evaluate two deep RL algo-
rithms on all environments and under different combinations of training and testing regimes.
We chose one algorithm from each of the two major families: A2C from the actor-critic
family and PPO from the policy gradient family. Using the same experimental protocol, we
also evaluate two schemes for tackling generalization in deep RL: EPOpt, which learns a
policy that is robust to environment changes by maximizing expected reward over the most
difficult of a distribution of environment parameters, and RL2, which learns a policy that
can adapt to the environment at hand by taking into account the trajectory it sees. Because
each scheme is constructed based on existing deep RL algorithms, our evaluation is of four
algorithms: EPOpt-A2C, EPOpt-PPO, RL2-A2C, and RL2-PPO. We analyze the results
and draw conclusions that can guide future work on generalization in deep RL. The experi-
mental results confirm that extrapolation is more difficult than interpolation and show that
the ‘vanilla’ deep RL algorithms (A2C and PPO) were able to interpolate fairly successfully.
Somewhat surprisingly, they interpolate and extrapolate better than their EPOpt and RL2

variants, with the exception of EPOpt-PPO. RL2-A2C and RL2-PPO proved to be difficult
to train and were unable to reach the level of performance of the other algorithms given the
same amount of training resources.

2.2. BACKGROUND 6

2.2 Background
Generalization in RL. There are two main approaches to generalization in RL: learning

policies that are robust to environment variations, or learning policies that adapt to such
variations. A popular approach to learn a robust policy is to maximize a risk-sensitive
objective, such as the conditional value at risk (Tamar et al. 2015), over a distribution
of environments. Morimoto & Doya (2001) maximize the minimum reward over possible
disturbances, proposing robust versions of the actor-critic and value gradient methods in a
control theory framework. This maximin objective is utilized by others in the context where
environment changes are modeled by uncertainties in the transition probability distribution
function of a Markov decision process. Nilim & Ghaoui (2004) assume that the set of possible
transition probability distribution functions are known, while Lim et al. (2013) and Roy
et al. (2017) estimate it using sampled trajectories from the distribution of environments
of interest. A recent representative of this approach applied to deep RL is the EPOpt
algorithm (Rajeswaran et al. 2017a), which maximizes the conditional value at risk, i.e.
expected reward over the subset of environments with lowest expected reward. EPOpt has
the advantage that it can be used in conjunction with any RL algorithm. Adversarial training
has also been proposed to learn a robust policy; for MuJoCo locomotion tasks, Pinto et al.
(2017) trains an adversary that tries to destabilize the agent during training.

A robust policy may sacrifice performance on many environment variants in order to not
fail on a few. Thus, an alternative, recently popular approach to generalization in RL is
to learn a policy that can adapt to the environment at hand (Yu et al. 2017). To do so, a
number of algorithms learn an embedding for each environment variant using trajectories
sampled from that environment, which is input into a policy. Then, at test time, the current
trajectory can be used to compute an embedding for the current environment, enabling
automatic adaptation of the policy. Duan et al. (2016b), Wang et al. (2016), Sung et al.
(2017), and Mishra et al. (2018a), which differ mainly in the way embeddings are computed,
consider model-free RL by letting the embedding be input into a policy and/or value function.
Clavera et al. (2018) consider model-based RL, in which the embedding is input into a
dynamics model and actions are selected using model predictive control. Under a similar
setup, Sæmundsson et al. (2018) utilize probabilistic dynamics models and inference.

This literature review has focused on RL algorithms for generalization that do not require
updating the learned model or policy at test time, in keeping with our benchmark’s evaluation
procedure. There has been work on generalization in RL that utilize such updates, primarily
under the umbrellas of transfer learning, multi-task learning, and meta-learning. Taylor &
Stone (2009) surveys transfer learning in RL where a fixed test environment is considered,
with Rusu et al. (2016) being an example of recent work on that problem using deep networks.
Ruder (2017) provides a survey of multi-task learning in general, which, different from our
problem of interest, considers a fixed finite population of tasks. Finn et al. (2017) present
a meta-learning formulation of generalization in RL and Al-Shedivat et al. (2018) extend it
for continuous adaptation in non-stationary environments.

Empirical methodology in deep RL. Shared open-source software infrastructure, which

2.3. NOTATION 7

enables reproducible experiments, has been crucial to the success of deep RL. The deep
RL research community uses simulation frameworks, including OpenAI Gym (Brockman
et al. 2016), the Arcade Learning Environment (Bellemare et al. 2013; Machado et al. 2017),
DeepMind Lab (Beattie et al. 2016), and VizDoom (Kempka et al. 2016). The MuJoCo
physics simulator (Todorov et al. 2012) has been influential in standardizing a number of
continuous control tasks. For ease of adoption, our work builds on OpenAI Gym and MuJoCo
tasks, allowing variations in the environment specifications in order to study generalization.
OpenAI recently released a benchmark for transfer learning in RL (Nichol et al. 2018), in
which the goal is to train an agent to play new levels of a video game with fine-tuning at test
time. In contrast, our benchmark does not allow fine-tuning and focuses on control tasks.

Our work also follows in the footsteps of a number of empirical studies of reinforcement
learning algorithms, which have primarily focused on the case where the agent is trained
and tested on a fixed environment. Henderson et al. (2018) investigate reproducibility in
deep RL, testing state-of-the-art algorithms on four MuJoCo tasks: HalfCheetah, Hopper,
Walker2d, and Swimmer. They show that results may be quite sensitive to hyperparameter
settings, initialization, random seeds, and other implementation details, indicating that care
must be taken not to overfit to a particular environment. The problem of overfitting in RL
was recognized earlier by Whiteson et al. (2011), who propose an evaluation methodology
based on training and testing on multiple environments sampled from a distribution and
experiment with three classic environments: MountainCar, Acrobot, and puddle world. Nair
et al. (2015) evaluate generalization with respect to different starting points in Atari games.
Duan et al. (2016a) present a benchmark suite of continuous control tasks and conduct a
systematic evaluation of reinforcement learning algorithms on those tasks. They consider
generalization in terms of interpolation on a subset of their tasks. In contrast to these works,
we address a greater variety of tasks, extrapolation as well as interpolation, and algorithms
for learning deep RL agents that generalize.

2.3 Notation
In RL, environments are formulated in terms of Markov Decision Processes (MDPs)

(Sutton & Barto 2017). An MDP M is defined by the tuple (S,A, p, r, γ, ρ0, T) where S
is the set of possible states, A is the set of actions, p : SAS → R≥0 is the transition
probability distribution function, r : SA → R is the reward function, γ is the discount factor,
ρ0 : S → R≥0 is the initial state distribution at the beginning of each episode, and T is the
time horizon per episode. Generalization to environment variations is usually characterized
as generalization to changes in p and r; our benchmark considers changes in p.

Let st and at be the state and action taken at time t. At the beginning of each
episode, s0 ∼ ρ0(s0). Under a policy π stochastically mapping a sequence of states to
actions, at ∼ π(at | st, · · · , s0) and st+1 ∼ p(st+1 | at), giving a trajectory {st, at, r(st, at)},
t = 0, 1, · · ·. RL algorithms, taking the MDP as fixed, learn π to maximize the expected
reward over an episode JM(π) = Eπ

[︂∑︁T
t=0 γ

trt

]︂
, where rt = r(st, at). They often utilize the

2.4. ALGORITHMS 8

concepts of a value function vπM(s) = Eπ
[︂∑︁T

t=0 γ
tr(st, at) | s0 = s

]︂
and a state-action value

function Qπ
M(s, a) = Eπ

[︂∑︁T
t=0 γ

tr(st, at) | s0 = s, a0 = a
]︂
.

2.4 Algorithms
We first evaluate ‘vanilla’ deep RL algorithms from two main categories: actor-critic

and policy gradient. From the actor-critic family, we chose A2C (Mnih et al. 2016), and
from the policy gradient family we chose PPO (Schulman et al. 2017).1 These algorithms
are oblivious to variations in the environment; they were not designed with generalization
in mind. We also include recently-proposed algorithms that are designed to be able to
generalize: EPOpt (Rajeswaran et al. 2017a) from the robust approaches and RL2 (Duan
et al. 2016b) from the adaptive approaches. Both these methods are built on top of ‘vanilla’
deep RL algorithms, so for completeness we evaluate a Cartesian product of the algorithms
for generalization and the ‘vanilla’ algorithms: EPOpt-A2C, EPOpt-PPO, RL2-A2C, and
RL2-PPO. Next we briefly summarize A2C, PPO, EPOpt, and RL2, using the notation in
Section 2.3.

Advantage Actor-Critic (A2C). A2C involves the interplay of two optimizers; a critic
learns a parametric value function, while an actor utilizes that value function to learn a
parametric policy that maximizes expected reward. At each iteration, trajectories are gener-
ated using the current policy, with the environment and hidden states of the value function
and policy reset at the end of each episode. Then, the policy and value function parameters
are updated using RMSProp (Hinton et al. 2012), with an entropy term added to the pol-
icy objective function in order to encourage exploration. We use an implementation from
OpenAI Baselines (Dhariwal et al. 2017).

Proximal Policy Optimization (PPO). PPO aims to learn a sequence of monotonically
improving parametric policies by maximizing a surrogate for the expected reward via gra-
dient ascent, cautiously bounding the improvement achieved at each iteration. At iteration
i, trajectories are generated using the current policy πθi , with the environment and hid-
den states of the policy reset at the end of each episode. The following objective is then
maximized with respect to θ using Adam (Kingma & Ba 2015):

Es∼ρθi ,a∼πθi
min

[︂
ℓθ(a, s)Aπθi

(s, a),mθ(a, s)Aπθi
(s, a)

]︂
where ρθi are the expected visitation frequencies under πθi , ℓθ(a, s) = πθ(a | s)/πθi(a | s),
mθ equals ℓθ(a, s) clipped to the interval [1 − δ, 1 + δ] with δ ∈ (0, 1), and Aπθi

(s, a) =

Q
πθi
M (s, a)− v

πθi
M (s). Again, we use an implementation from OpenAI Baselines, PPO2.

Ensemble Policy Optimization (EPOpt). To generalize over a distribution of environ-
ments (MDPs) p(M), we would like to learn a policy that maximizes the expected reward

1We carried out preliminary experiments on other deep RL algorithms including A3C, TRPO, and
ACKTR. A2C and A3C/ACKTR had similar qualitative results, as did PPO and TRPO.

2.5. ENVIRONMENTS 9

over the distribution, Eπ
M∼p(M) [JM(π)]. In order to obtain a policy that is also robust to

out-of-distribution environments, EPOpt instead maximizes the expected reward over the
ϵ ∈ (0, 1] fraction of environments with worst expected reward:

Eπ
M∼p(M) [JM(π) ≤ y] where PM∼p(M)(JM(π) ≤ y) = ϵ.

At each iteration, the algorithm generates a number of complete episodes according to the
current policy where at the end of each episode a new environment is sampled from p(M)
and reset. (As in A2C and PPO, at the end of each episode the hidden states of the policy
and value function are reset.) It keeps the ϵ fraction of episodes with lowest reward and uses
them to update the policy with some RL algorithm (TRPO (Schulman et al. 2015) in the
paper). We instead use A2C and PPO, building our implementation of EPOpt on top of the
implementations of A2C and PPO.

RL2. To learn a policy that can adapt to the dynamics of the environment at hand, RL2

models the policy and value functions as a recurrent neural network (RNN) with the current
trajectory as input, not just the sequence of states. The hidden states of the RNN may be
viewed as an environment embedding. Specifically, for the RNN the inputs at time t are st,
at−1, rt−1, and dt−1, where dt−1 is a Boolean variable indicating whether the episode ended
after taking action at−1; the output is at and the hidden states are updated to ht+1. Like the
other algorithms, at each iteration trajectories are generated using the current policy with
the environment state reset at the end of each episode. However, unlike the other algorithms,
a new environment is sampled from p(M) only at the end of every N episodes, which we
call a trial. (N = 2 in our experiments.) Likewise, the hidden states of the policy and value
functions are reinitialized only at the end of each trial. The generated trajectories are then
input into any RL algorithm, maximizing expected reward in a trial; the paper uses TRPO,
while we use A2C and PPO. As with EPOpt, our implementation of RL2 is built on top of
the implementations of A2C and PPO.

2.5 Environments
Our environments are modified versions of four environments from the classic control

problems in OpenAI Gym (Brockman et al. 2016) (CartPole, MountainCar, Acrobot, and
Pendulum) and two environments from OpenAI Roboschool (Schulman et al. 2017) (HalfChee-
tah and Hopper) that are based on the corresponding MuJoCo (Todorov et al. 2012) environ-
ments. CartPole, MountainCar, and Acrobot have discrete action spaces, while the others
have continuous action spaces. We alter the implementations to allow control of several
environment parameters that affect the transition probability distribution functions of the
corresponding MDPs. Each of the six environments has three versions, with d parameters
allowed to vary.

1. Deterministic (D): The parameters of the environment are fixed at the default values
in the implementations from Gym and Roboschool. Every time the environment is
reset, only the state is reset.

2.5. ENVIRONMENTS 10

2. Random (R): Every time the environment is reset, the parameters are uniformly sam-
pled from a d-dimensional box containing the default values. This is done by inde-
pendently sampling each parameter uniformly from an interval containing the default
value.

3. Extreme (E): Every time the environment is reset, its parameters are uniformly sampled
from 2d d-dimensional boxes anchored at the vertices of the box in R. This is done by
independently sampling each parameter uniformly from the union of two intervals that
straddle the corresponding interval in R.

Appendix 2.10.1 contains a schematic of the parameter ranges in D, R, and E when d = 2.
We now describe the environments.

CartPole (Barto et al. 1983). A pole is attached to a cart that moves on a frictionless
track. For at most 200 time steps, the agent pushes the cart either left or right with the goal
of keeping the pole upright. There is a reward of 1 for each time step the pole is upright, with
the episode ending when the angle of the pole is too large. Three environment parameters
can be varied: (1) push force magnitude, (2) pole length, (3) pole mass.

MountainCar (Moore 1990). The goal is to move a car to the top of a hill within 200
time steps. At each time step, the agent pushes a car left or right, with a reward of −1. Two
environment parameters can be varied: (1) push force magnitude, (2) car mass.

Acrobot (Sutton 1995). The acrobot is a two-link pendulum attached to a bar with an
actuator at the joint between the two links. At each time step, the agent applies torque (to
the left, to the right, or not at all) to the joint in order to swing the end of the second link
above the bar to a height equal to the length of the link. The reward system is the same as
that of MountainCar, but with a maximum of 500 time steps. We have required that the
links have the same parameters, with the following three allowed to vary: (1) length, (2)
mass, (3) moment of inertia.

Pendulum. The goal is to, for 200 time steps, apply a continuous-valued force to a
pendulum in order to keep it at a vertical position. The reward at each time step is a
decreasing function of the pendulum’s angle from vertical, the speed of the pendulum, and the
magnitude of the applied force. Two environment parameters can be varied, the pendulum’s:
(1) length, (2) mass.

HalfCheetah. The half-cheetah is a bipedal robot with eight links and six actuated joints
corresponding to the thighs, shins, and feet. The goal is for the robot to learn to walk on
a track without falling over by applying continuous-valued forces to its joints. The reward
at each time step is a combination of the progress made and the costs of the movements,
e.g., electricity and penalties for collisions, with a maximum of 1000 time steps. Three
environment parameters can be varied: (1) power, a factor by which the forces are multiplied
before application, (2) torso density, (3) sliding friction of the joints.

Hopper. The hopper is a monopod robot with four links arranged in a chain corresponding
to a torso, thigh, shin, and foot and three actuated joints. The goal, reward structure, and
parameters are the same as those of HalfCheetah.

2.6. EXPERIMENTAL SETUP 11

In all environments, the difficulty may depend on the values of the parameters; for ex-
ample, in CartPole, a very light and long pole would be more difficult to balance. Therefore,
the structure of the parameter ranges in R and E was constructed to include environments
of various difficulties. The actual ranges of the parameters for each environment were chosen
by hand and are listed in Appendix 2.10.1.2

2.6 Experimental setup
In sum, we benchmark six algorithms (A2C, PPO, EPOpt-A2C, EPOpt-PPO, RL2-A2C,

RL2-PPO) and six environments (CartPole, MountainCar, Acrobot, Pendulum, HalfChee-
tah, Hopper). With each pair of algorithm and environment, we consider nine training-
testing scenarios: training on D, R, and E and testing on D, R, and E. We refer to each
scenario using the two-letter abbreviation of the training and testing environment versions,
e.g., DR for training on D and testing on R. For A2C, PPO, EPOpt-A2C, and EPOpt-PPO,
we train for 15000 episodes and test on 1000 episodes. For RL2-A2C and RL2-PPO, we train
for 7500 trials, equivalent to 15000 episodes, and test on the last episodes of 1000 trials. Note
that this is a fair comparison as policies without memory of previous episodes are expected
to have the same performance in any episode of a trial, and we are able to evaluate the abil-
ity of RL2-A2C and RL2-PPO to adapt their policy to the environment parameters of the
current trial. For the sake of completeness, we do a thorough sweep of hyperparameters and
randomly generate random seeds. We report results over several runs of the entire hyperpa-
rameter sweep (the only difference being the random seeds). In the following paragraphs we
describe the network architectures for the policy and value functions, our hyperparameter
search, and the performance metrics we use for evaluation.

Policy and value function parameterization. We consider two network architectures for
the policy and value functions. In the first, following Henderson et al. (2018), the policy
and value functions are multi-layer perceptrons (MLPs) with two hidden layers of 64 units
each and hyperbolic tangent activations; there is no parameter sharing. We refer to this
architecture as FF (feed-forward). In the second,3 the policy and value functions are the
outputs of two separate fully-connected layers on top of a one-hidden-layer RNN with long
short-term memory (LSTM) cells of 256 units. The RNN itself is on top of a MLP with
two hidden layers of 256 units each, which we call the feature network. Again, hyperbolic
tangent activations are used throughout; we refer to this architecture as RC (recurrent). For
A2C, PPO, EPOpt-A2C, and EPOpt-PPO, we evaluate both architectures (whose inputs
are the environment states), while for RL2-A2C and RL2-PPO, we evaluate only the second
architecture (whose input is a tuple of states, actions, rewards, and Booleans as discussed
in Section 2.4). In all cases, for discrete action spaces policies sample actions by taking a

2The ranges of the parameters were chosen so that a policy trained using PPO on D struggles quite a bit
on the environments corresponding to the vertices of the box in R and fails completely on the environments
corresponding to the most extreme vertices of the boxes in E.

3Based on personal communication with an author of Duan et al. (2016b).

2.7. EXPERIMENTAL SETUP 12

softmax function over the policy network output layer; for continuous action spaces actions
are sampled from a Gaussian distribution with mean the policy network output layer and
diagonal covariance matrix whose entries are learned along with the policy and value function
network parameters.

Hyperparameters. During training, in each algorithm and each version of each environ-
ment, we performed grid search over a set of hyperparameters used in the optimizers, and
selected the value with the highest success probability when tested on the same version of the
environment. The set of hyperparameters includes the learning rate for all algorithms and
the length of the trajectory generated at each iteration (which we call batch size) for A2C,
PPO, RL2-A2C, and RL2-PPO. They also include the coefficient of the policy entropy in
the objective for A2C, EPOpt-A2C, and RL2-A2C and the coefficient of the KL divergence
between the previous policy and current policy for RL2-PPO. The grid values are listed in
Section 2.10.2. In EPOpt-A2C and EPOpt-PPO, we sample 100 environments per iteration
and set ϵ first to 1.0 and then 0.1 after 100 iterations. Other hyperparameters, such as the
discount factor, were set to the default values in OpenAI Baselines.

Performance metrics. The traditional performance metric used in the RL literature is
the average total reward achieved by the policy in an episode. In the spirit of the definition
of an RL agent as goal-seeking (Sutton & Barto 2017) and to obtain a metric independent
of reward shaping, we also compute the percentage of episodes in which a certain goal is
successfully completed, the success rate. This additional metric is a clear and interpretable
way to compare performance across conditions and environments. We define the goals of
each environment as follows: CartPole: balance for at least 195 time steps, MountainCar:
get to the hilltop within 110 time steps, Acrobot: swing the end of the second link to the
desired height within 80 time steps, Pendulum: keep the angle of the pendulum at most π/3
radians from vertical for the last 100 time steps of a trajectory with length 200, HalfCheetah
and Hopper: walk for 20 meters.

2.7 Experimental setup
In sum, we benchmark six algorithms (A2C, PPO, EPOpt-A2C, EPOpt-PPO, RL2-A2C,

RL2-PPO) and six environments (CartPole, MountainCar, Acrobot, Pendulum, HalfChee-
tah, Hopper). With each pair of algorithm and environment, we consider nine training-
testing scenarios: training on D, R, and E and testing on D, R, and E. We refer to each
scenario using the two-letter abbreviation of the training and testing environment versions,
e.g., DR for training on D and testing on R. For A2C, PPO, EPOpt-A2C, and EPOpt-PPO,
we train for 15000 episodes and test on 1000 episodes. For RL2-A2C and RL2-PPO, we train
for 7500 trials, equivalent to 15000 episodes, and test on the last episodes of 1000 trials. Note
that this is a fair comparison as policies without memory of previous episodes are expected
to have the same performance in any episode of a trial, and we are able to evaluate the abil-
ity of RL2-A2C and RL2-PPO to adapt their policy to the environment parameters of the
current trial. For the sake of completeness, we do a thorough sweep of hyperparameters and

2.7. EXPERIMENTAL SETUP 13

randomly generate random seeds. We report results over several runs of the entire hyperpa-
rameter sweep (the only difference being the random seeds). In the following paragraphs we
describe the network architectures for the policy and value functions, our hyperparameter
search, and the performance metrics we use for evaluation.

Policy and value function parameterization. We consider two network architectures for
the policy and value functions. In the first, following Henderson et al. (2018), the policy
and value functions are multi-layer perceptrons (MLPs) with two hidden layers of 64 units
each and hyperbolic tangent activations; there is no parameter sharing. We refer to this
architecture as FF (feed-forward). In the second,4 the policy and value functions are the
outputs of two separate fully-connected layers on top of a one-hidden-layer RNN with long
short-term memory (LSTM) cells of 256 units. The RNN itself is on top of a MLP with
two hidden layers of 256 units each, which we call the feature network. Again, hyperbolic
tangent activations are used throughout; we refer to this architecture as RC (recurrent). For
A2C, PPO, EPOpt-A2C, and EPOpt-PPO, we evaluate both architectures (whose inputs
are the environment states), while for RL2-A2C and RL2-PPO, we evaluate only the second
architecture (whose input is a tuple of states, actions, rewards, and Booleans as discussed
in Section 2.4). In all cases, for discrete action spaces policies sample actions by taking a
softmax function over the policy network output layer; for continuous action spaces actions
are sampled from a Gaussian distribution with mean the policy network output layer and
diagonal covariance matrix whose entries are learned along with the policy and value function
network parameters.

Hyperparameters. During training, in each algorithm and each version of each environ-
ment, we performed grid search over a set of hyperparameters used in the optimizers, and
selected the value with the highest success probability when tested on the same version of the
environment. The set of hyperparameters includes the learning rate for all algorithms and
the length of the trajectory generated at each iteration (which we call batch size) for A2C,
PPO, RL2-A2C, and RL2-PPO. They also include the coefficient of the policy entropy in
the objective for A2C, EPOpt-A2C, and RL2-A2C and the coefficient of the KL divergence
between the previous policy and current policy for RL2-PPO. The grid values are listed in
Section 2.10.2. In EPOpt-A2C and EPOpt-PPO, we sample 100 environments per iteration
and set ϵ first to 1.0 and then 0.1 after 100 iterations. Other hyperparameters, such as the
discount factor, were set to the default values in OpenAI Baselines.

Performance metrics. The traditional performance metric used in the RL literature is
the average total reward achieved by the policy in an episode. In the spirit of the definition
of an RL agent as goal-seeking (Sutton & Barto 2017) and to obtain a metric independent
of reward shaping, we also compute the percentage of episodes in which a certain goal is
successfully completed, the success rate. This additional metric is a clear and interpretable
way to compare performance across conditions and environments. We define the goals of
each environment as follows: CartPole: balance for at least 195 time steps, MountainCar:
get to the hilltop within 110 time steps, Acrobot: swing the end of the second link to the

4Based on personal communication with an author of Duan et al. (2016b).

2.8. RESULTS AND DISCUSSION 14

Table 2.1: Generalization performance (in % success) of each algorithm, averaged over all
environments (mean and standard deviation over five runs).

Algorithm Architecture Default Interpolation Extrapolation

A2C FF 78.14 ± 6.07 76.63 ± 1.48 63.72 ± 2.08
RC 81.25 ± 3.48 72.22 ± 2.95 60.76 ± 2.80

PPO FF 78.22 ± 1.53 70.57 ± 6.67 48.37 ± 3.21
RC 26.51 ± 9.71 41.03 ± 6.59 21.59 ± 10.08

EPOpt-A2C FF 2.46 ± 2.86 7.68 ± 0.61 2.35 ± 1.59
RC 9.91 ± 1.12 20.89 ± 1.39 5.42 ± 0.24

EPOpt-PPO FF 85.40 ± 8.05 85.15 ± 6.59 59.26 ± 5.81
RC 5.51 ± 5.74 15.40 ± 3.86 9.99 ± 7.39

RL2-A2C RC 45.79 ± 6.67 46.32 ± 4.71 33.54 ± 4.64

RL2-PPO RC 22.22 ± 4.46 29.93 ± 8.97 21.36 ± 4.41

desired height within 80 time steps, Pendulum: keep the angle of the pendulum at most π/3
radians from vertical for the last 100 time steps of a trajectory with length 200, HalfCheetah
and Hopper: walk for 20 meters.

2.8 Results and discussion
We highlight some of the key findings and present a summary of the experimental results

here, concentrating on the binary success metric. For each algorithm, architecture, and
environment, we compute three numbers. (1) Default: success percentage on DD (the classic
RL setting). (2) Interpolation: success percentages on RR. (3) Extrapolation: geometric
mean of the success percentages on DR, DE, and RE. Table 2.1 summarizes the results.
Section 2.10.3 contains analogous tables for each environment, which will be referred to in
the following discussion.

A2C and PPO. With the FF architecture, the two ‘vanilla’ deep RL algorithms are often
successful on the classic RL setting of training and testing on a fixed environment, as evi-
denced by the high values for Default. However, when those agents trained on environment
version D are tested, we observed that they usually suffer from a significant drop in perfor-
mance in R and an even further drop in E. When the algorithm is successful in the classic
RL setting, as for PPO with the FF architecture, which has a Default number of 78.22, they
are able to interpolate. (Interpolation equals 70.57 in that case.) That is, simply training on
a distribution of environments, without any special mechanism for generalization, results in
agents that can perform fairly well in similar environments. However, as expected in general
they are less successful at extrapolation; PPO with the FF architecture has a Extrapolation
number of 48.37. A2C with either architecture shows similar behavior to PPO with the FF

2.9. CONCLUSION 15

architecture, while PPO with the RC architecture had difficulty training on the classic RL
setting and did not generalize well. For example, on all the environments except CartPole
and Pendulum the FF architecture was necessary for PPO to train a successful policy on DD.
The pattern of decrease from Default to Interpolation to Extrapolation shown in Table 2.1
also appears when looking at each environment individually. The magnitude of decrease
depends on the combination of algorithm, architecture, and environment. For instance, on
CartPole, A2C interpolates and extrapolates successfully, where Interpolation equals 100.00
and Extrapolation equals 93.63; this behavior is also shown for PPO with the FF architec-
ture. On the other hand, on Hopper, PPO with the FF architecture has 85.54% success rate
in the classic RL setting but struggles to interpolate (Interpolation equals 39.68) and fails
to extrapolate (Extrapolation equals 10.36). This indicates that our choice of environments
and their parameter ranges led to a variety of difficulty in generalization.

EPOpt. With the FF architecture, EPOpt-PPO improved both interpolation and extrap-
olation performance over PPO, as shown in Table 2.1. Looking at specific environments, on
Hopper EPOpt-PPO has nearly twice the interpolation performance and significantly im-
proved extrapolation performance compared to PPO. Such an improvement also appears for
Pendulum. EPOpt-PPO, similar to PPO, generally did not benefit from using the recurrent
architecture; this may be due to the LSTM requiring more data to train. EPOpt however did
not demonstrate the same performance gains when combined with A2C. EPOpt-A2C was
able to find limited success using the RC architecture on CartPole but for other environments
failed to learn a working policy even in the Default setting.

RL2. RL2-A2C and RL2-PPO proved to be difficult to train and data inefficient. This
is possibly due to the RC architecture, as PPO also has difficulty training on D with that
architecture as shown in Table 2.1. On most environments, the Default numbers are low,
indicating that a working policy was not found in the classic RL setting of training and testing
on a fixed environment. As a result, they also have low Interpolation and Extrapolation
numbers. In a few, such as RL2-PPO on CartPole and RL2-A2C on HalfCheetah, a working
policy was found in the classic RL setting, but the algorithm struggled to interpolate or
extrapolate. A success story is RL2-A2C on Pendulum, where we have nearly 100% success
rate in DD, interpolate extremely well (Interpolation is 99.82), and extrapolate fairly well
(Extrapolation is 81.79).

We observed that the partial success of these algorithms on the environments appears to
be dependent on two implementation choices: the feature network in the RC architecture
and the nonzero coefficient of the KL divergence between the previous policy and current
policy in RL2-PPO, which is intended to help stabilize training.

2.9 Conclusion
We introduced a new testbed and experimental protocol to measure the generalization

ability of deep RL algorithms, to environments both similar to and different from those seen
during training. Such a testbed enables us to compare the relative merits of algorithms for

2.10. ADDITIONAL DETAILS 16

learning generalizable RL agents. Our code, based on OpenAI Gym, is available online 5

and we hope that it will support future research on generalization in deep RL. Using our
testbed we have evaluated two state-of-the-art deep RL algorithms, A2C and PPO, and two
algorithms that explicitly tackle the problem of generalization in different ways: EPOpt,
which aims to generalize by being robust to environment variations, and RL2, which aims to
automatically adapt to environment variations.

Overall, the ‘vanilla’ deep RL algorithms have better generalization performance than
their more complex counterparts, being able to interpolate quite well with some extrapolation
success. When combined with PPO under the FF architecture, EPOpt is able to outperform
vanilla PPO; however, it does not generalize in the other cases. RL2 on the other hand is
difficult to train, and in its success cases provides no clear generalization advantage over the
‘vanilla’ deep RL algorithms or EPOpt. The sensitivity of the effectiveness of EPOpt and
RL2 to the base algorithm, architecture, and environment presents an avenue for future work,
as intuitively EPOpt and RL2 should be general-purpose approaches. We have considered
model-free RL in our evaluation; another clear direction for future work is to perform a similar
evaluation for model-based RL, in particular recent work such as Sæmundsson et al. (2018)
and Clavera et al. (2018). Because model-based RL explicitly learns the system dynamics
and generally is more data efficient, it could be better leveraged by adaptive techniques for
generalization.

2.10 Additional details

2.10.1 Environment Details
Table 2.2 details the parameter ranges for each environment and environment setting:

Deterministic (D), Random (R), and Extreme (E). Figure 2.1 illustrates the ranges from
which the parameters are sampled; the parameters for D are fixed within the range of R, and
E is uniformly sampled from a range wider than R, excluding the intervals corresponding to
R.

2.10.2 Training Hyperparameters
The grid values we search over for each hyperparameter and each algorithm are listed

below. In sum, the search space contains 183 unique hyperparameter configurations for all
algorithms on a single training environment (3, 294 training configurations), and each trained
agent is evaluated on 3 test settings (9, 882 total train/test configurations). We report results
for 5 runs of the full grid search, a total of 49, 410 experiments.

• Learning rate:

– A2C, EPOpt-A2C with RC architecture, and RL2-A2C: [0.007, 0.0007, 0.00007]
5

2.10. ADDITIONAL DETAILS 17

Figure 2.1: Schematic of the three versions of an environment.

Table 2.2: Ranges of parameters for each version of each environment, using set notation.

Environment Parameter D R E

CartPole Force 10 [5,15] [1,5]∪[15,20]
Length 0.5 [0.25,0.75] [0.05,0.25]∪[0.75,1.0]
Mass 0.1 [0.05,0.5] [0.01,0.05]∪[0.5,1.0]

MountainCar Force 0.001 [0.0005,0.005] [0.0001,0.0005]∪[0.005,0.01]
Mass 0.0025 [0.001,0.005] [0.0005,0.001]∪[0.005,0.01]

Acrobot Length 1 [0.75,1.25] [0.5,0.75]∪[1.25,1.5]
Mass 1 [0.75,1.25] [0.5,0.75]∪[1.25,1.5]
MOI 1 [0.75,1.25] [0.5,0.75]∪[1.25,1.5]

Pendulum Length 1 [0.75,1.25] [0.5,0.75]∪[1.25,1.5]
Mass 1 [0.75,1.25] [0.5,0.75]∪[1.25,1.5]

HalfCheetah Power 0.90 [0.70,1.10] [0.50,0.70]∪[1.10,1.30]
Density 1000 [750,1250] [500,750]∪[1250,1500]
Friction 0.8 [0.5,1.1] [0.2,0.5]∪[1.1,1.4]

Hopper Power 0.75 [0.60,0.90] [0.40,0.60]∪[0.90,1.10]
Density 1000 [750,1250] [500,750]∪[1250,1500]
Friction 0.8 [0.5,1.1] [0.2,0.5]∪[1.1,1.4]

– EPOpt-A2C with FF architecture: [0.07, 0.007, 0.0007]

– PPO, EPOpt-PPO with RC architecture: [0.003, 0.0003, 0.00003]

– EPOpt-PPO with FF architecture: [0.03, 0.003, 0.0003]

2.10. ADDITIONAL DETAILS 18

– RL2-PPO: [0.0003, 0.00003, 0.000003]

• Batch size:

– A2C and RL2-A2C: [5, 10, 15]

– PPO and RL2-PPO: [128, 256, 512]

• Policy entropy coefficient: [0.01, 0.001, 0.0001, 0.00001]

• KL divergence coefficient: [0.3, 0.2, 0.0]

2.10.3 Detailed Experimental Results
In order to elucidate the generalization behavior of each algorithm, here we present

versions of Table 2.1 for each environment.
Table 2.3: Mean and standard deviation over five runs of generalization performance (in
% success) on Acrobot.

Algorithm Architecture Default Interpolation Extrapolation

A2C FF 88.52 ± 1.32 72.88 ± 0.74 66.56 ± 0.52
RC 88.24 ± 1.53 73.46 ± 1.11 67.94 ± 1.06

PPO FF 87.20 ± 1.11 72.78 ± 0.44 64.93 ± 1.05
RC 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

EPOpt-A2C FF 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
RC 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

EPOpt-PPO FF 79.60 ± 5.86 69.20 ± 1.64 65.05 ± 2.16
RC 3.10 ± 3.14 6.40 ± 3.65 15.57 ± 5.59

RL2-A2C RC 65.70 ± 8.68 57.70 ± 2.40 57.01 ± 2.70

RL2-PPO RC 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

2.10.4 Behavior of MountainCar
On MountainCar, several of the algorithms, including A2C with both architectures and

PPO with the FF architecture, have greater success on Extrapolation than Interpolation,
which is sometimes greater than Default (see Table 2.5). This is unexpected because Ex-
trapolation combines the success rates of DR, DE, and RE, with E containing more extreme
parameter settings, while Interpolation is the success rate of RR. To explain this phe-
nomenon, we hypothesize that compared to R, E is dominated by easy parameter settings,
e.g., those where the car is light but the force of the push is strong, allowing the agent to
reach the top of the hill easily. In order to test this hypothesis, we create a heatmap of

2.10. ADDITIONAL DETAILS 19

Table 2.4: Mean and standard deviation over five runs of generalization performance (in
% success) on CartPole.

Algorithm Architecture Default Interpolation Extrapolation

A2C FF 100.00 ± 0.0 100.00 ± 0.0 93.63 ± 9.30
RC 100.00 ± 0.0 100.00 ± 0.0 83.00 ± 11.65

PPO FF 100.00 ± 0.0 100.00 ± 0.0 86.20 ± 12.60
RC 65.58 ± 27.81 70.80 ± 21.02 45.00 ± 18.06

EPOpt-A2C FF 14.74 ± 17.14 43.06 ± 3.48 10.48 ± 9.41
RC 57.00 ± 4.50 55.88 ± 3.97 32.53 ± 1.47

EPOpt-PPO FF 99.98 ± 0.04 99.46 ± 0.79 73.58 ± 12.19
RC 29.94 ± 31.58 20.22 ± 17.83 14.55 ± 20.09

RL2-A2C RC 20.78 ± 39.62 0.06 ± 0.12 0.12 ± 0.23

RL2-PPO RC 87.20 ± 12.95 54.22 ± 34.85 51.00 ± 14.60

Table 2.5: Mean and standard deviation over five runs of generalization performance (in
% success) on MountainCar.

Algorithm Architecture Default Interpolation Extrapolation

A2C FF 79.78 ± 11.38 84.10 ± 1.25 89.72 ± 0.65
RC 95.88 ± 4.10 74.84 ± 6.82 89.77 ± 0.76

PPO FF 99.96 ± 0.08 84.12 ± 0.84 90.21 ± 0.37
RC 0.0 ± 0.0 63.36 ± 0.74 15.86 ± 31.71

EPOpt-A2C FF 0.0 ± 0.0 3.04 ± 0.19 3.63 ± 0.49
RC 0.0 ± 0.0 62.46 ± 0.80 0.0 ± 0.0

EPOpt-PPO FF 74.42 ± 37.93 84.86 ± 1.09 87.42 ± 5.11
RC 0.0 ± 0.0 65.74 ± 4.88 29.82 ± 27.30

RL2-A2C RC 0.32 ± 0.64 57.86 ± 2.97 21.56 ± 30.35

RL2-PPO RC 0.0 ± 0.0 60.10 ± 0.91 31.27 ± 26.24

the reward achieved by A2C with the FF architecture trained on D and tested on R and
E. We also investigated A2C with the RC architecture and PPO with the FF architecture,
but because the heatmaps are qualitatively similar, we show only the heatmap for A2C with
the FF architecture, in Figure 2.2. Referring to the structure in Figure 2.1, we see that the
reward achieved by the policy is higher in the regions corresponding to E. Indeed, it appears
that the largest regions of E are those with a large force, which enables the trained policy
to push the car up the hill in less than 110 time steps, achieving the goal set in Section 2.7.

2.10. ADDITIONAL DETAILS 20

Table 2.6: Mean and standard deviation over five runs of generalization performance (in
% success) on Pendulum.

Algorithm Architecture Default Interpolation Extrapolation

A2C FF 100.00 ± 0.0 99.86 ± 0.14 90.27 ± 3.07
RC 100.00 ± 0.0 99.96 ± 0.05 79.58 ± 6.41

PPO FF 0.0 ± 0.0 31.80 ± 40.11 0.0 ± 0.0
RC 73.28 ± 36.80 90.94 ± 7.79 61.11 ± 31.08

EPOpt-A2C FF 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
RC 2.48 ± 4.96 7.00 ± 10.81 0.0 ± 0.0

EPOpt-PPO FF 100.00 ± 0.0 77.34 ± 38.85 54.72 ± 27.57
RC 0.0 ± 0.0 0.04 ± 0.08 0.0 ± 0.0

RL2-A2C RC 100.00 ± 0.0 99.82 ± 0.31 81.79 ± 3.88

RL2-PPO RC 46.14 ± 17.67 65.22 ± 21.78 45.76 ± 8.38

Table 2.7: Mean and standard deviation over five runs of generalization performance (in
% success) on HalfCheetah.

Algorithm Architecture Default Interpolation Extrapolation

A2C FF 85.06 ± 19.68 91.96 ± 8.60 40.54 ± 8.34
RC 88.06 ± 12.26 74.70 ± 13.49 42.96 ± 7.79

PPO FF 96.62 ± 3.84 95.02 ± 2.96 38.51 ± 15.13
RC 20.22 ± 17.01 21.08 ± 26.04 7.55 ± 5.04

EPOpt-A2C FF 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
RC 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

EPOpt-PPO FF 99.76 ± 0.08 99.28 ± 0.87 53.41 ± 9.41
RC 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

RL2-A2C RC 87.96 ± 4.21 62.48 ± 29.18 40.78 ± 5.99

RL2-PPO RC 0.0 ± 0.0 0.0 ± 0.0 0.16 ± 0.32

(Note that the reward is the negative of the number of time steps taken to push the car up
the hill.)

This special case demonstrates the importance of considering a wide variety of environ-
ments when assessing the generalization performance of an algorithm; each environment may
have idiosyncrasies that cause performance to be correlated with parameters. For example,
Figure 2.3 shows a similar heatmap for A2C with the FF architecture on Pendulum, in which
Interpolation is greater than Extrapolation. In this case, the policy trained on D struggles

2.10. ADDITIONAL DETAILS 21

Table 2.8: Mean and standard deviation over five runs of generalization performance (in
% success) on Hopper.

Algorithm Architecture Default Interpolation Extrapolation

A2C FF 15.46 ± 7.58 11.00 ± 7.01 1.63 ± 2.77
RC 15.34 ± 8.82 10.38 ± 15.14 1.31 ± 1.23

PPO FF 85.54 ± 6.96 39.68 ± 16.69 10.36 ± 6.79
RC 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

EPOpt-A2C FF 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
RC 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

EPOpt-PPO FF 58.62 ± 47.51 80.78 ± 29.18 21.39 ± 16.62
RC 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

RL2-A2C RC 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

RL2-PPO RC 0.0 ± 0.0 0.02 ± 0.04 0.0 ± 0.0

more on environments from E than on those from R, which bolsters our hypothesis.

2.10.5 Training Curves
To investigate the effect of EPOpt and RL2 and the different environment versions on

training, we plotted the training curves for PPO, EPOpt-PPO, and RL2-PPO on each version
of each environment, averaged over the five experiment runs and showing error bands based
on the standard deviation over the runs. Training curves for all algorithms and environments
are available at the following link: . We observe that in the majority of cases training appears
to be stabilized by the increased randomness in the environments in R and E, including
situations where successful policies are found. This behavior is particularly apparent for
CartPole, whose training curves are shown in Figure 2.9 and in which all five algorithms
above are able to find at least partial success. We see that especially towards the end of the
training period, the error bands for training on E are narrower than those for training on
D or R. Except for EPOpt-PPO with the FF architecture, the error bands for training on
D appear to be the widest. Indeed, RL2-PPO is very unstable when trained on D, possibly
because the more expressive policy network overfits to the generated trajectories.

2.10.6 Videos of trained agents
The above link also contains videos of the trained agents of one run of the experiments

for all environments and algorithms. We include the five scenarios considered in computing
Default, Interpolation, and Extrapolation: DD, DR, DE, RR, and RE. Using HalfCheetah
as a case study, we describe some particularly interesting behavior we saw.

A trend we noticed across several algorithms were similar changes in the cheetah’s gait

2.10. ADDITIONAL DETAILS 22

Figure 2.2: MountainCar: heatmap of the rewards achieved by A2C with the FF architec-
ture on DR and DE. The axes are the two environment parameters varied in R and E.

that seem to be correlated with the difficulty of the environment. The cheetah’s gait became
forward-leaning when trained on the Random and Extreme environments, and remained
relatively flat in the agents trained on the Deterministic environment (see figures 2.10 and
2.11). We hypothesize that the forward-leaning gait developed to counteract conditions
in the R and E settings. The agents with the forward-learning gait were able to recover
from face planting (as seen in the second row of figure 2.10), as well as maintain balance
after violent leaps likely caused by settings with unexpectedly high power. In addition to
becoming increasingly forward-leaning, the agents’ gait also tended to become stiffer in the
more extreme settings, developing a much shorter, twitching stride. Though it reduces the
agents’ speed, a shorter, stiffer stride appears to make the agent more resistant to adverse
settings that would cause an agent with a longer stride to fall. This example illustrates how
training on a range of different environment configurations may encourage policies that are
more robust to changes in system dynamics at test time.

2.10. ADDITIONAL DETAILS 23

Figure 2.3: Pendulum: heatmap of the rewards achieved by A2C with the FF architecture
on DR and DE. The axes are the two environment parameters varied in R and E.

2.10. ADDITIONAL DETAILS 24

Figure 2.4: PPO with FF architecture

Figure 2.5: PPO with RC architecture

Figure 2.6: EPOpt-PPO with FF architecture

Figure 2.7: EPOpt-PPO with RC architecture

Figure 2.8: RL2-PPO
Figure 2.9: Training curves for the PPO-based algorithms on CartPole, all three environ-
ment versions. Note that the decrease in mean episode reward at 10000 episodes in the
two EPOpt-PPO plots is due to the fact that it transitions from being computed using all
generated episodes (ϵ = 1) to only the 10% with lowest reward (ϵ = 0.1).

2.10. ADDITIONAL DETAILS 25

Figure 2.10: Video frames of agents trained with A2C on HalfCheetah, trained in the
Deterministic (D), Random (R), and Extreme (E) settings (from top to bottom). All agents
evaluated in the D setting.

Figure 2.11: Video frames of agents trained with PPO on HalfCheetah, trained in the
Deterministic (D), Random (R), and Extreme (E) settings (from top to bottom). All agents
evaluated in the D setting.

26

Chapter 3

Hindsight Task Relabelling: Experience
Replay for Sparse Reward Meta-RL

3.1 Introduction
Reinforcement learning (RL) has seen tremendous success applied to challenging games

(Mnih et al. 2015; Silver et al. 2017) and robotic control (Lillicrap et al. 2015; Levine et al.
2016), driven by advances in compute and the use of deep neural networks as powerful
function approximators in RL algorithms. However, agents trained using deep RL often
struggle to meaningfully utilize past experience to learn new tasks, even if the new tasks
differ only slightly from tasks seen during training (Zhang et al. 2018; Packer et al. 2018;
Cobbe et al. 2019). In contrast, humans are adept at utilizing prior experience to rapidly
acquire new skills and adapt to unseen environments.

Meta-reinforcement learning (meta-RL) aims to address this limitation by extending the
RL framework to explicitly consider structured distributions of tasks (Schmidhuber 1987;
Bengio et al. 1990; Thrun & Pratt 1998). Whereas conventional RL is concerned with
learning a single task, meta-RL is concerned with learning to learn, that is, learning how to
quickly learn a new task by leveraging prior experience on related tasks. Meta-RL methods
generally utilize a limited amount of experience in a new environment to estimate a latent
task embedding which conditions the policy, or to compute a policy gradient which is used
to directly update the parameters of the policy.

A major challenge in both RL and meta-RL is learning with sparse rewards. When
rewards are sparse or delayed, the adaptation stage in meta-RL becomes extremely difficult:
inferring the task at hand requires receiving reward signal from the environment, which in
the sparse reward setting only happens after successfully completing the task. Due to this
inherent incompatibility between meta-RL and sparse rewards, existing meta-RL algorithms
that consider the sparse reward setting either only work in simple environments that do not
require temporally-extended exploration strategies for adaptation (Duan et al. 2016b; Stadie
et al. 2018), or train exclusively using dense reward functions (Gupta et al. 2018b; Rakelly
et al. 2019), which are designed to encourage an agent to learn adaptation strategies that

3.2. RELATED WORK 27

(a) Hindsight relabeling in goal-conditioned RL (b) Hindsight Task Relabeling (HTR) in meta-RL

Figure 3.1: In goal-conditioned RL (a), an agent must navigate to a provided goal location
g (filled circle, revealed to the agent). An unsuccessful attempt for goal g provides no sparse
reward signal, but can be relabelled as a successful attempt for goal g′, creating sparse
reward that can be used to train the agent. In meta-RL (b), the task T (i.e., goal, hollow
circle) is never revealed to the agent, and instead must be inferred using experience on prior
tasks and limited experience (τ1:t−1) on the new task. In (b), there is no shared optimal task
T ′ to relabel all attempts with. HTR relabels each attempt τ under its own hindsight task
T ′, and modifies the underlying meta-RL training loop to learn adaptation strategies on the
relabelled tasks. Note that we include multiple trajectories τ in (b) vs a single trajectory in
(a) to highlight the adaptation stage in meta-RL, which does not exist in goal-conditioned
RL and requires significantly different sampling and relabeling procedures.

can be directly applied to the original sparse reward setting.
In this paper, we show that the concept of hindsight relabeling (Andrychowicz et al. 2017)

from conventional RL can be applied in meta-RL to enable learning to learn in the sparse
reward setting. Our key insight is that data collected on the true training tasks can be re-
labelled as pseudo-expert data for easier hindsight tasks, bootstrapping meta-training with
the reward signal needed to train the agent. We introduce a new algorithm for off-policy
meta-RL, which we call Hindsight Task Relabeling (HTR), and demonstrate its effectiveness
by achieving state-of-the-art performance on a collection of challenging sparse reward envi-
ronments that previously required shaped reward to solve. Not only is our approach able
to learn adaptation strategies only using sparse reward, but it also learns strategies with
comparable performance to existing approaches that use shaped reward functions.

3.2 Related work
In meta-RL, an agent learns an adaptation strategy by repeatedly adapting to training

tasks in the inner loop of meta-training, with the hope that the learned adaptation procedure
will generalize to new, unseen tasks during meta-testing. Context-based methods use recent
experience (i.e., context, in the form of trajectories or transitions) in a new task to estimate
a latent task embedding, and differ mainly in how this embedding is computed: Duan et al.

3.3. BACKGROUND 28

(2016b); Wang et al. (2016); Mishra et al. (2018b) propose aggregating context into the
hidden state of the policy, whereas Rakelly et al. (2019) propose explicitly feeding the task
embedding as input to the policy. Gradient-based methods use recent context to update
differentiable hyperparameters (Xu et al. 2018b), loss functions (Sung et al. 2017; Houthooft
et al. 2018), or to directly update policy parameters (Finn et al. 2017; Stadie et al. 2018; Xu
et al. 2018a; Zintgraf et al. 2018; Gupta et al. 2018b; Rothfuss et al. 2019).

Many of the aforementioned approaches struggle to learn effective exploration strategies
for tasks with sparse or delayed rewards. Methods that directly update the policy either
implicitly (e.g., with a hidden state) or explicitly (e.g., with gradients) are generally unable
to learn a policy that meaningfully explores, since the primary source of randomness is action-
space, and thus is time-invariant. Gupta et al. (2018b) and Rakelly et al. (2019) propose
using a probabilistic task variable that is sampled once per episode, which makes the primary
source of variability task-dependent and enables temporally-extended exploration. While
this approach enables effective adaptation in the sparse reward setting, both Gupta et al.
(2018b) and Rakelly et al. (2019) learn the actual adaptation strategies using shaped (dense)
reward functions during meta-training. In the environments they consider, the adaptation
strategies learned using dense rewards generalize to sparse rewards despite the difference in
reward structure; however, engineering a suitable reward function can be costly (Ng et al.
1999) and error prone (Clark & Amodei 2016), and thus it is highly desirable to devise
a mechanism for learning to learn in the sparse reward setting that does not require an
auxiliary dense reward function.

Our proposed method is closely related to prior work in unsupervised meta-RL and goal
generation. Unsupervised meta-RL (Jabri et al. 2019; Gupta et al. 2018a) considers the
meta-RL setting without access to a training task distribution; training tasks are instead
self-generated with the aim of learning skills useful for the test task distribution. Our pro-
posed method also generates a curriculum of training tasks, but with the intent of learning
adaptation strategies in the sparse reward setting, as opposed to learning transferable skills
in a setting with no rewards at all. Several methods exist for curriculum generation in the
context of goal-conditioned policies, including adversarial goal generation (Florensa et al.
2018) and goal relabeling (Kaelbling 1993; Andrychowicz et al. 2017; Levy et al. 2017; Nair
et al. 2018). This sentence and the previous one are misplaced. Add our method of cur-
riculum learning is inspired by .., or we differ from them as .. It’s ‘novel’ etc.. Recent work
(Li et al. 2020; Eysenbach et al. 2020) has proposed the use of inverse RL to generalize goal
relabeling to broader families of tasks. Unlike prior work on goal and task relabeling that
use goal- or task-conditioned policies, we focus on the meta-RL setting where the task is
unknown to the policy and must be inferred through deliberate and coherent exploration.

3.3 Background
In this section we formalize the meta-RL problem setting and briefly describe two al-

gorithms spell check: with? which our approach, Hindsight Task Relabeling, builds on:

3.3. BACKGROUND 29

Probabilistic Embeddings for Actor-critic RL (PEARL) and Hindsight Experience Replay
(HER).

3.3.1 Meta-Reinforcement Learning (Meta-RL)
Conventional RL assumes environments are modeled by a Markov Decision Processes

(MDP) M , defined by the tuple (S,A, p, r, γ, ρ0, T) where S is the set of possible states, A
is the set of actions, p : S×A×S → R≥0 is the transition probability density, r : S×A → R
is the reward function, γ is the discount factor, ρ0 : S → R≥0 is the initial state distribution
at the beginning of each episode, and T is the time horizon of an episode (Sutton & Barto
2017).

Let st and at be the state and action taken at time t. At the beginning of each
episode, s0 ∼ ρ0(·). Under a stochastic policy π mapping a sequence of states to actions,
at ∼ π(at | st, · · · , s0) and st+1 ∼ p(st+1 | st, at), generating a trajectory τ = {st, at, r(st, at)},
where t = 0, 1, · · ·. Conventional RL algorithms, which assume the environment is fixed, learn
π to maximize the expected reward per episode JM(π) = Eπ

[︂∑︁T
t=0 γ

trt

]︂
, where rt = r(st, at).

They often utilize the concepts of a value function V π
M(s), the expected reward conditional

on s0 = s and a state-action value function Qπ
M(s, a), the expected reward conditional on

s0 = s and a0 = a.
Meta-RL algorithms assume that there is a distribution of tasks p(T), and usually max-

imize the expected reward over the distribution, Eπ
T ∼p(T) [JT (π)]. The distribution of tasks

corresponds to a distribution of MDPs M(T), where T can paramaterize an MDP’s dynam-
ics or reward. In this work we focus on the latter case, where each T implies an MDP with a
different reward function under the same dynamics. The agent is trained on a set of training
tasks Ttrain ∼ p(T) during meta-training, and evaluated on a held-out set of testing tasks
Ttest ∼ p(T) during meta-testing.

An important distinction between meta-RL and multi-task or goal-conditioned RL is that
in meta-RL, the task is never explicitly revealed to the agent or policy π through observations
s. Instead, π must explore the environment to infer the task to maximize expected reward.
This crucial difference is one reason why Hindsight Experience Replay cannot be directly
applied to the meta-RL setting.

3.3.2 Off-Policy Meta-Reinforcement Learning
We demonstrate the effectiveness of our approach by building on top of Probabilistic

Embeddings for Actor-critic RL (PEARL) by Rakelly et al. (2019), an off-policy meta-RL
algorithm which itself is built on top of soft actor-critic (SAC) by Haarnoja et al. (2018). SAC
is an actor-critic algorithm based on the maximum entropy RL objective that optimizes a
stochastic policy π with off-policy data. In addition to the policy (actor) π, SAC concurrently
learns twin state-action value functions (critics) Q. Transitions collected using the policy π
are added to the replay buffer B, and Q and π are optimized using loss functions regularized
by the entropy of π.

3.3. BACKGROUND 30

(a) Point Robot (b) Wheeled Locomotion (c) Ant Locomotion

Figure 3.2: Sparse reward environments for meta-RL that require temporally-extended
exploration. In each environment, the task (the top-left circle in (a), the green sphere in (b)
and (c)) is not revealed to the agent via the observation. The agent must instead infer the
task through temporally-extended exploration (illustrated by the dotted lines in (a)), since
no reward signal is provided until the task is successfully completed. Prior meta-RL methods
such as PEARL (Rakelly et al. 2019) and MAESN (Gupta et al. 2018b) are only able to
(meta-)learn meaningful adaptation strategies using dense reward functions. Our approach,
Hindsight Task Relabeling (HTR), can (meta-)train with the original sparse reward function
and does not require additional dense reward functions.

Rakelly et al. (2019) extend SAC to the meta-RL setting by adding a context encoder that
uses recent history in an environment to estimate a task embedding, which is then utilized by
the policy. Specifically, PEARL uses a network qϕ(z | c) that takes as input recently collected
data (i.e., context c) to infer a probabilistic latent context variable Z. Samples from the
latent context variable condition the actor, πθ(a | s, z), and critic, Qθ(s, a, z). Instead of a
single replay buffer (as in SAC), there are T separate buffers Bi=1...T , corresponding to the
number of tasks sampled for Ttrain. The separate per-task replay buffers enable sampling
off-policy (but on-task) context during the inner loop of meta-training, which significantly
improves data efficiency.

During meta-training, transitions are collected for each Bi by sampling z ∼ qϕ(z | c) and
acting according to πθ(a | s, z). z is periodically sampled during data collection such that
the context contains transitions collected using the policy conditioned on the prior, as well
the same policy conditioned on the posterior. Gradients used to optimize qϕ, πθ and Qθ are
computed in task-specific batches across a random subset of training tasks Ti ∼ p(T), each
with an associated replay buffer Bi. During meta-testing, for each test task Ti ∼ p(T), an
empty buffer Bi is initialized, z is sampled from the prior, and the policy conditioned on z
is rolled out. As additional context is added to the replay buffer, the belief over z narrows,
enabling the policy to adapt to the task at hand.

3.3.3 Hindsight Experience Replay
Hindsight Experience Replay (HER) (Andrychowicz et al. 2017) is a method for off-

policy goal-conditioned RL in environments with sparse reward. The key insight behind
HER is that unsuccessful attempts (i.e., attempts that received no reward signal) generated
via a goal-conditioned policy can be relabelled as successful attempts for a ‘hindsight’ goal
that was actually achieved, e.g., the final state (see Figure 3.1). HER can be applied to

3.4. LEVERAGING HINDSIGHT IN META-REINFORCEMENT LEARNING 31

any off-policy RL algorithm that uses goal-conditioned policies (where the actor and/or
critic receive the desired goal as part of the state, i.e., π(a | s,g) and Q(s, a,g)). When
a transition {st, at, r(st, at,g) | g} is sampled from the replay buffer during training, with
some probability HER rewrites the desired goal g with an achieved goal g′ and recomputes
the reward under the new goal. The modified transition {st, at, r(st, at,g

′) | g′} is used to
optimize π(a | s,g′) and Q(s, a,g′). Hindsight relabeling generates an implicit curriculum:
initially, sampled transitions are rewritten with relatively ‘easy’ goals achievable with random
policies, and as training progresses, relabelled goals are increasingly likely to be near the true
desired goals.

Figure 3.3: Illustration of Hindsight Task Relabeling (HTR) in a meta-RL training loop.
HTR is agnostic to the underlying (off-policy) meta-RL algorithm; the agent architecture
and/or training specifics (e.g., the encoder ϕ, actor π and Q-function neural networks shown
in blue) can be modified independently of the relabeling scheme. HTR can also be performed
in an ‘eager’ fashion at the data collection stage (as opposed to ‘lazy’ relabeling in the data
sampling stage), see Section 3 for details.

3.4 Leveraging Hindsight in Meta-Reinforcement Learn-
ing

Our algorithm, Hindsight Task Relabeling, applies ideas from hindsight relabeling to
the meta-RL setting to enable learning adaptation strategies for tasks with sparse or delayed
rewards. Similar to how policies in HER are conditioned on a goal g, policies in context-based
meta-RL are conditioned on a latent task embedding z. A crucial difference in meta-RL is
that the task is hidden from the agent: the agent must infer relevant features of the task

3.4. LEVERAGING HINDSIGHT IN META-REINFORCEMENT LEARNING 32

at hand using experience on prior tasks and a limited amount of experience gathered in the
environment. Our key insight is that an unsuccessful experience collected in an unknown
task can be relabelled as a successful experience for a known hindsight task, i.e., a transition
{st, at, r(st, at, T)} generated under an unknown T can be rewritten under a known T ′ as
{st, at, r(st, at, T ′)}, regardless of whether T ′ ∈ Ttrain.

Relabeling transitions under hindsight tasks serves as an additional source of supervision
in learning the latent task embedding z ⇐ f(c) by enabling gradient-based optimization of
f in the absence of meaningful reward signal (in PEARL, this embedding is parameterized
by the context encoder qϕ). Similar to how HER generates an implicit curriculum of goals,
HTR generates an implicit curriculum of tasks that gradually shifts from easier hindsight
tasks towards the true training distribution Ttrain ∼ p(T): initially, the agent is unable to
recover reward signal on the true training tasks, but it can bootstrap the learning of an
adaptation strategy by learning on easier hindsight tasks.

We outline our method for meta-training with Hindsight Task Relabeling in Algorithm
3.4 (task relabeling is only used during meta-training; meta-testing is unchanged). We
evaluate our approach using PEARL as the off-policy meta-RL algorithm A, though the
approach we describe is general to any off-policy meta-RL algorithm, and could potentially
be integrated with on-policy context-based meta-RL algorithms (such as RL2) via hindsight
policy gradients (Rauber et al. 2019).

3.4.1 Algorithm Design
Two important considerations in adapting hindsight relabeling to meta-RL are (i) how to

choose the hindsight task, and (ii) how to sample the transitions to be relabelled. Together
these choices form the task relabeling strategy S in Algorithm 3.4. In HER, transitions
are relabelled with goals that are optimal at the trajectory-level (see Figure 3.1). The key
difference between our method and HER is that our meta-RL relabeling scheme needs to
construct batches of data that share the same pseudo-task (or real task), which is funda-
mentally different from standard HER. HER does not consider the setting where batches of
trajectories are collected in different MDPs; in HER, transitions are relabeled independently
with locally-optimal pseudo-goals, and batches of training data for the agent contain many
different pseudo-goals (and real goals). In the meta-RL setting, the agent must estimate the
task from a recent context of transitions with the same underlying task (unknown to the
agent), and therefore relabeling should take into consideration more than a single trajectory;
the agent explores an environment which has a fixed task T ∼ p(T), and as it accumulates
context it uses the context to identify the singular task and update its policy accordingly.

A naive application of hindsight relabeling to meta-RL would assign each transition in
the batch its own hindsight task (e.g., give each τ in Figure 3.1b its own T ′). This is a simple
and straightforward way to apply HER to meta-RL that may seem correct at the surface-
level, however, this is bound to fail if the meta-RL training process is left unchanged, since
the context encoder is trained to estimate the task from a collection of transitions generated
in that task (not a batch of transitions generated across several distinct tasks). A similarly

3.4. LEVERAGING HINDSIGHT IN META-REINFORCEMENT LEARNING 33

Figure 3.4: HTR algorithm

flawed approach is to generate a single hindsight task from a random transition in the batch,
and then to relabel the entire batch of transitions with the same hindsight task (e.g., choose
a T ′ Figure 3.1b using a random τ to relabel all τs with). The issue with this approach is
that the hindsight task is only guaranteed to be optimal for a single trajectory, and may
in fact be highly sub-optimal for other trajectories in the batch. We present two relabeling
strategies, Single Episode Relabeling (SER) and Episode Clustering (EC), that are inspired
by the relabeling strategy used in Andrychowicz et al. (2017) but are specifically designed
to work in the meta-RL setting.

3.4.2 Single Episode Relabeling (SER) strategy
In SER, a single episode (i.e., trajectory) is randomly selected to generate the hindsight

task and sample transitions from (i.e., sample N transitions from 1 trajectory, each relabelled
under 1 new task). Despite the fact that this reduces the pool of context from the entire
task buffer to a single episode, this setting closely resembles meta-testing (where context is
drawn purely online), and we found this resampling strategy to work well in practice since
it results in more relabelled transitions with non-zero reward. HTR using SER is outlined
in Algorithm 3.4.

3.4.3 Episode Clustering (EC) strategy
An alternative strategy to Single Episode Resampling is to cluster trajectories that sat-

isfied similar hindsight tasks into the same task buffers Bh, essentially creating additional
task buffers for hindsight tasks that can be used for training in-place of the real task buffers

3.4. LEVERAGING HINDSIGHT IN META-REINFORCEMENT LEARNING 34

Bi (which are also sampled with some probability K). For example, in goal-reaching tasks,
trajectories can easily be mapped to hindsight buffers with trajectories from separate trials
by discretizing the state space and creating a buffer for each partition. In more complex
tasks, alternative clustering approaches (e.g., learning-based) can be used to group together
trajectories that can be relabeled with high reward conditioned on the same tasks. Episode
clustering relabels a similar number of transitions with non-zero reward to the resampling
strategy, but with less duplicate transitions per-batch. In practice, we found the SER strat-
egy to be far less complex and similarly effective to the EC approach. See Section 3.5 for
an empirical comparison between SER and EC, and the supplement for a more detailed
comparison.

3.4.4 Comparison of HTR and HER
Both SER and EC are similar to the relabeling strategy used in HER in some respects,

but differ in others: HER samples N transitions from the full replay buffer, and relabels
each transition independently (N different goals). HTR with SER samples 1 trajectory, and
samples N transitions from that trajectory all relabelled with 1 new task. HTR with EC
samples N transitions from 1 hindsight replay buffer, where each transition in that buffer
has been relabeled with 1 new task. In HER, the hindsight goal for a given transition is
chosen by selecting a random transition that occurs after the sampled transition in the same
trajectory. In HTR, hindsight tasks are assigned in the same way as HER, but a single
hindsight task is applied to an entire batch of transitions.

An important distinction between HER and HTR is that in HER, bootstrapping training
with hindsight goals does not change the optimal policy, since a goal-conditioned policy with
sufficient capacity should (in theory) be able to represent an optimal policy for every goal
(including both original goals and hindsight goals). In contrast, the optimal exploration
strategy for a particular meta-RL environment depends on its true task distribution, and
bootstrapping training with hindsight tasks may expand the training task distribution in
a manner that changes the optimal exploration strategy. One way to benefit from HTR’s
bootstrapping while ensuring the final learned strategy is optimal for the original task dis-
tribution is to only relabel data from tasks on which the agent has never received (non-zero)
reward. Similarly, another solution is to anneal the relabelling probability K to zero dur-
ing meta-training. Neither method was required to achieve the results shown in this paper,
however, we expect they may be useful if applying HTR to other meta-RL environments.

3.4.5 Limitations
The key limitation of our method is that it assumes trajectories can be relabeled under

new task (i.e., a mapping s → T or τ → T exists), which is a reasonable assumption
for goal-reaching environments (as studied in Rakelly et al. (2019); Gupta et al. (2018b);
Andrychowicz et al. (2017)), but may be significantly more challenging in other environments.
Imagine a complex robotic manipulation environment (e.g., retrieving an object from a
drawer) where reward is sparse and only received upon successful completion of the entire

3.5. EXPERIMENTS 35

task; in this scenario, relabeling the zero-reward transitions generated by an initial random
policy into useful signal for training an optimal policy is less straightforward than the goal-
reaching setting, and may require explicit sub-task specification using domain expertise.

Similar to how HER is not necessarily only for goal-reaching goal-conditioned RL, HTR
is not necessarily only for goal-reaching meta-RL, and if a good relabeling function exists
then either approach can be successfully applied in their respective setting (HER for goal-
conditioned RL, HTR for meta-RL). However, as in the original HER work, we focus our
experiments on goal-reaching tasks, where the reward function is a simple function of the
state and can be easily repurposed for relabeling. It may be possible to relax this assump-
tion and extend HTR to more families of tasks by employing more complex task relabeling
schemes, e.g., by extending work on inverse RL for hindsight relabeling (Li et al. 2020; Ey-
senbach et al. 2020) to the meta-RL setting, or by carefully engineering reward functions
specific to each environment, however we leave this to future work.

Additionally, our method adds a new hyperparameter K to the underlying off-policy
meta-RL algorithm, which may need to be tuned for optimal results. The specification and
tuning of a relabeling probability K is also required in standard HER (see Andrychowicz
et al. (2017)).

3.5 Experiments
In evaluating our proposed method, we aim to answer the following questions. (i) Can

Hindsight Task Relabeling enable (meta-)learning of adaptation strategies in challenging
sparse reward environments, where existing meta-RL methods fail without shaped reward?
(ii) How do the adaptation strategies learned using Hindsight Task Relabeling compare to
those learned using shaped reward functions? (iii) How do key implementation choices (such
as relabeling probability K) affect its performance?

3.5.1 Environments
We evaluate our method on a suite of sparse reward environments based those proposed

by Gupta et al. (2018b) and Rakelly et al. (2019) (see Figure 3.2). In prior work, each
environment exposes two reward functions: a dense reward function used during meta-
training, and a sparse reward function used during meta-testing. The key difference in our
experimental setup is that we consider the setting where sparse reward is used both during
meta-testing and meta-training. In each environment, a set of 100 tasks is sampled for
meta-training, and a set of 100 tasks is sampled from the same task distribution for meta-
testing. The environments were each modified to increase their difficulty, such that random
exploration is far less likely to encounter sparse reward. Refer to the supplement for further
details on the experimental setup.

• Point Robot. A point robot must navigate a 2D plane to different goals located along
the perimeter of a half-semicircle. The state includes the robot’s coordinates but does

3.5. EXPERIMENTS 36

0 200 400 600 800 1000

Meta-training iterations
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

re
tu

rn

Point Robot
shaped (oracle)
sparse + HTR
sparse

0 250 500 750 1000 1250 1500 1750 2000

Meta-training iterations
410

400

390

380

370

360

350

340

Av
er

ag
e

re
tu

rn

Wheeled Locomotion
shaped (oracle)
sparse + HTR
sparse

0 250 500 750 1000 1250 1500 1750 2000

Meta-training iterations

300

325

350

375

400

425

450

475

500

Av
er

ag
e

re
tu

rn

Ant Locomotion
shaped (oracle)
sparse + HTR
sparse

Figure 3.5: Evaluating adaptation to train tasks progressively during meta-training. Y-
axis measures average sparse return during adaptation throughout meta-training (shaded std
dev), though the oracle is still trained using dense reward. Conventional meta-RL methods
struggle to learn using sparse reward. Hindsight Task Relabeling (HTR) is comparable to
dense reward meta-training performance.

not include the goal, therefore the agent must explore the environment to discover the
goal. In the dense reward variant of the environment, the reward is the negative L2
distance to the goal. In the sparse reward variant, reward is given only when the agent
is within a short distance to the goal. An example optimal exploration strategy in the
sparse reward variant is to efficiently traverse the perimeter of the semicircle until the
goal is found.

• Wheeled Locomotion. To test if our approach generalizes to more complex state and
action spaces, we use several continuous control environments. In the wheeled loco-
motion environment, the agent must navigate to the goal distribution by controlling
two wheels independent to turn. Similar to the point robot, the dense reward function
is the negative distance to the goal, while the sparse reward function only provides
reward signal when the agent is nearby the goal.

• Ant (Quadruped) Locomotion. This environment requires controlling a quadruped ant
with a high-dimensional state and action space. The task distribution and reward
functions are the same as the point robot and wheeled locomotion environment, how-
ever, exploration requires coordinating movement with four legs to navigate to specific
locations.

3.5.2 HTR enables meta-training using only sparse reward
To answer question (i), we compare our hindsight task relabeling approach (using PEARL

as the base meta-RL algorithm) to standard PEARL, as well as an oracle PEARL which uses
the dense reward function during training. Our oracle baseline is equivalent to the standard
meta-RL setup in the ‘sparse reward’ experiments in Gupta et al. (2018b) and Rakelly et al.
(2019), despite it never training on the sparse reward function. Note that the term ‘oracle’
is somewhat of a misnomer, since training on a proxy dense reward function designed to aid
the learning of an RL agent (to be evaluated on the sparse reward function) is inherently

3.5. EXPERIMENTS 37

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Episodes of adaptation
0

1

2

3

4

5

Av
er

ag
e

re
tu

rn

Point Robot
shaped (oracle)
sparse + HTR
sparse

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Episodes of adaptation

450

400

350

300

250

Av
er

ag
e

re
tu

rn

Wheeled Locomotion
shaped (oracle)
sparse + HTR
sparse

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Episodes of adaptation
200

300

400

500

600

700

Av
er

ag
e

re
tu

rn

Ant Locomotion
shaped (oracle)
sparse + HTR
sparse

Figure 3.6: Evaluating adaptation to test tasks after meta-training. Y-axis measures
average (sparse) return during adaptation using context collected online, using sparse reward
only. Adaptation strategies learned with Hindsight Task Relabeling (HTR) generalize to
held-out tasks as well as the oracle which is learned using shaped reward functions. Without
HTR or access to a shaped reward during meta-training, the agent is unable to learn a
reasonable strategy.

optimizing a different objective. Optimizing an RL agent for a proxy objective has been
shown to lead to inadvertently bad performance on the true objective (Clark & Amodei
2016), and therefore it is often better to directly optimize for the true objective (e.g., the
original sparse reward function) when possible.

As discussed in prior work, meta-learning on sparse reward environments proves ex-
tremely challenging: in Figures 3.5 and 3.7, we see that PEARL is unable to make learn
a reasonable policy just using sparse rewards in the same amount of time it takes the or-
acle (PEARL trained on dense reward) and HTR (PEARL trained on sparse reward using
Hindsight Task Relabelling) to converge. In all of our tested environments, HTR is not only
comparable to using shaped reward during meta-training, but it also can learn adaptation
strategies that perform as well as the oracle during meta-testing on the sparse reward envi-
ronment. In Figure 3.6, we see that the adaptation strategies learned with Hindsight Task
Relabeling are similarly effective to those learned by the oracle, despite the oracle having
access to a dense reward function during meta-training.

Given an indefinite amount of meta-training time, or an easier environment configuration
(e.g., a shorter goal distance), PEARL should be able to learn a similarly optimal strategy
to the oracle and HTR only using sparse reward. If PEARL is able to successfully learn only
using sparse rewards, HTR can be used to improve sample efficiency during meta-training.
In the case that the amount of time or computational resources needed to train purely on
sparse rewards is intractable, HTR is extremely effective at learning adaptation strategies
comparable to using a hand-designed dense reward function.

Additionally, as mentioned in Section 3.2, in many sparse reward settings designing a
dense reward function to aid training is infeasible or undesirable, in which case HTR is a
strong alternative to reward engineering. Because HTR does not train on a proxy reward,
there is no opportunity for a mismatch between reward functions at meta-training and meta-
testing: HTR optimizes for the true reward function on a superset of tasks Thindsight∪Ttrain ∼
p(T), whereas using a shaped reward optimizes for a proxy reward function on the true set

3.5. EXPERIMENTS 38

Figure 3.7: Visualizing exploration behavior learned during meta-training using 300 pre-
adaptation trajectories (i.e., sampled from the latent task prior). In the sparse reward
setting, without HTR (middle row) the agent is unable to learn a meaningful exploration
strategy and appears to explore randomly near the origin. With HTR (bottom row), the
agent learns to explore near the true task distribution (grey circles), similar to an agent
trained with a shaped dense reward function (top row).

0 50 100 150 200 250 300

Meta-training iterations
0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

re
tu

rn

shaped (oracle)
sparse + HTR SER
sparse + HTR EC
sparse

Figure 3.8: Comparing
HTR with SER vs EC on
Point Robot.

0 50 100 150 200 250 300

Meta-training iterations
0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

re
tu

rn

K = 0.1
K = 0.3
K = 0.5
K = 0.8

Figure 3.9: Average return
when varying K on Point
Robot.

0 50 100 150 200 250 300

Meta-training iterations
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
el

ab
el

le
d

ta
sk

 d
is

ta
nc

e

Figure 3.10: Average task
distance when varying K on
Point Robot.

of training tasks Ttrain ∼ p(T).

3.5.3 Varying key hyperparameters

3.6. CONCLUSION 39

0 200 400 600 800 1000

Meta-training iterations
0

250

500

750

1000

1250

1500

1750

2000

N
um

. t
ra

ns
iti

on
s

w
ith

 r
ew

ar
d

Ground truth
Relabelled

Figure 3.11: Relative re-
ward signal from hindsight
vs ground truth tasks using
Point Robot.

In our experiments we found a relatively low relabeling
probability (e.g., K = 0.1 and 0.3) was often most effective
for HTR (see Figure 3.9). K = 0.1 means that relabelled
data from a hindsight task is roughly as likely to be used for
training as data from any of the 100 tasks in Ttrain: K = 0.1
corresponds to using far less relabelled data for training than
in conventional HER: in contrast, Andrychowicz et al. (2017)
relabel over 80% of sampled transitions. We hypothesize that
a low K works best for HTR since it provides enough reward
signal to bootstrap learning, without biasing the task distri-
bution too far from the ground truth distribution; in Figure
3.10, we can see that both K = 0.5 and 0.8 converge on a
mean relabelled task distance of 0.5, whereas K = 0.1 and 0.3 are closer to the ground truth
task distance of 2.0.

In both HER and HTR, the relabeling probability is an important hyperparameter that
should be tuned for optimal performance. In the original HER paper, Andrychowicz et al.
(2017) reported that a relabelling probability of 80% or 90% worked best on their three
goal-conditioned RL environments. For both algorithms, there exists a range of relabelling
probabilities (alternatively a range of ratios of original-to-relabelled data) where the relabel-
ing algorithm works well, and a range of values where the algorithm performs poorly (the
HER paper did not include results for under 50% relabelled data, which may include more
negative results).

In Figure 3.10, we see that the average distance reached by the policy during meta-
training gradually increases over time, increasing the average relabelled task distance. Hind-
sight tasks used for relabelling initially correspond to easily achievable tasks, and shift to-
wards the ground truth task distribution. Initially, the only reward signal available for
training comes from the relabelled transitions, however, as training progresses the agent is
able to recover true reward signal from the environment (see Figure 3.11) and the hindsight
tasks are more likely to resemble the ground truth tasks.

As described in Section 3.4, we found that EC generally performed similarly to SER (see
Figure 3.8), despite being significantly more complex to implement and requiring additional
tuned hyperparameters. We expect that a more significant performance difference between
the two approaches may become apparent on different sparse reward meta-RL tasks, or
through experimenting with more general episode clustering approaches than the state space
discretization used in this work.

3.6 Conclusion
In this paper, we propose a novel approach for meta-reinforcement learning in sparse

reward environments that can be incorporated into any off-policy meta-RL algorithm. The
sparse reward meta-RL setting is extremely challenging, and existing meta-RL algorithms

3.7. EXPERIMENTAL SETUP (ADDITIONAL DETAILS) 40

that learn adaptation strategies for sparse reward environments often require dense or shaped
reward functions during meta-training.

Our approach, Hindsight Task Relabeling (HTR), enables learning adaptation strategies
in challenging sparse reward environments without engineering proxy reward functions. HTR
relabels data collected on ground truth meta-training tasks as data for achievable hindsight
tasks, which enables meta-training on the original sparse reward objective. Not only does
HTR allow for learning adaptation strategies in challenging sparse reward environments
without reward engineering, but it also generates adaptation strategies comparable to prior
approaches that use shaped reward functions.

3.7 Experimental Setup (additional details)

3.7.1 Computing Infrastructure
Our experiments were run on NVIDIA Titan Xp GPUs and Intel Xeon Gold 6248 CPUs

on a local compute cluster. When running on a single GPU, the time required to run a
single experiment ranges from approximately a day (e.g., Point Robot) to several days (e.g.,
MuJoCo locomotion tasks).

3.7.2 Hyperparameters
In our experiments we perform a sweep over key hyperparameters including task rela-

belling probability K (we swept over values of [.1, .3, .5, .8, 1.]). Our reported results use
the best performing K, with all other PEARL hyperparameters set to the same as in the
PEARL baselines. Results are averaged across five random seeds.

For PEARL, we use a latent context vector z of size 5, a meta-batch size of 16 (number
of training tasks sampled per training step). The context network is has 3 layers with 200
units at each layer. All other neural networks (the policy network, value and Q networks)
have 3 layers with 300 units each. The learning rate for all networks is 3e−4.

3.7.3 Reward Functions
In the Point Robot environment, the dense reward is the negative distance to the goal,

and the sparse reward is a thresholded negative distance to the goal, rescaled to be positive:
−dist(robot, goal) + 1 if dist(robot, goal) < 0.2, 0 otherwise. In the two locomotion envi-
ronments from Gupta et al. (2018b) (Wheeled Locomotion and Ant Locomotion), the reward
function includes a dense goal reward (negative distance to the goal), as well as a control
cost, contact cost, and survive bonus. In our variation of these environments, we modify the
goal reward to be sparse (for both meta-training and meta-testing), but leave the remaining
reward terms unmodified.

3.8. ALGORITHM SPECIFICS 41

3.7.4 Changing the Distance to Goal
In our experiments, we used a goal distance set far enough from the origin such that

random exploration is unlikely to lead to sparse reward (therefore requiring either a dense
reward function or Hindsight Task Relabelling to make progress during meta-training). If
the distance to the goal is reduced to a point where sparse reward is easily found through
random exploration, meta-training is possible on the sparse reward function without needing
Hindsight Task Relabelling (see Figure 3.12).

0 25 50 75 100 125 150 175 200

Meta-training iterations
0

2

4

6

8

10

12

Av
er

ag
e

re
tu

rn

Point Robot
shaped (oracle)
sparse + HTR
sparse

(a) Goal distance = 1.0

0 200 400 600 800 1000

Meta-training iterations
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

re
tu

rn

Point Robot
shaped (oracle)
sparse + HTR
sparse

(b) Goal distance = 2.0

Figure 3.12: Meta-training on Point Robot with varying goal distances. If the distance to
the goal is short enough for random exploration to lead to sparse reward, meta-training is
possible using only the sparse reward function. Once this is no longer the case, meta-training
is only possible with a proxy dense reward function, or by using Hindsight Task Relabelling
on the original sparse reward function.

3.8 Algorithm Specifics

3.8.1 Sample-Time vs Data Generation Relabelling
There are two stages in the off-policy meta-RL algorithm meta-training loop in which

data relabelling can occur: during data collection (when the policy collects data by acting
in the environment with a set task), and during training (when samples from the replay
buffer are used to update the policy, value function, encoder, etc.). We refer to the former as
‘data generation relabelling’ (or ‘eager’ relabelling, since the new labels are computed before
they are needed), and ‘sample-time relabelling’ (or ‘lazy’ relabelling, since the new labels
are computed on-the-fly when the are needed to compute gradients). The Single Episode
Relabelling (SER) strategy described in the main text is a sample-time relabelling approach,
whereas the Episode Clustering (EC) strategy is a data generation relabelling approach.
See Figure 3.13 and Algorithm ?? for an outline of HTR with data generation relabelling
(differences to HTR with sample-time relabelling are highlighted in blue).

3.8.2 Single Episode Relabelling Implementation Details
Single Episode relabelling (SER) samples a single episode from the task replay buffer,

samples N transitions from that episode and rewrites the rewards for each sampled transition

3.8. ALGORITHM SPECIFICS 42

under a new hindsight task. These transitions are used for both the context batch and the
RL batch in PEARL. We found that sampling transitions from the same episode for both
the context batch and RL batch is important for performance - the alternative (sampling an
episode e from task buffer b, choosing a hindsight task t, sampling the context batch from
e relabelled under t, then sampling an RL batch from the entire buffer b relabelled under t)
often results in low reward in the RL batch, despite having high reward in the context batch.
This is because the replay buffer (particularly at the beginning of training) contains a diverse
set of trajectories each with a different optimal hindsight task; sampling from the entire task
buffer but relabeling under single hindsight task optimal only for a specific trajectory in the
buffer can easily lead to a batch of transitions with all zero reward.

Figure 3.13: Illustration of Hindsight Task Relabeling (HTR) using Episode Clustering
(EC) in a meta-RL training loop, where relabelling occurs at the data collection stage.

3.8.3 Episode Clustering Implementation Details
Episode Clustering requires maintaining a mapping from trajectories to tasks in the real

task buffers B, e.g., by tracking the episodes across multiple task buffers, or by storing the
relabelled transitions in an additional set of hindsight buffers Bh (which requires additional
memory). In meta-RL environments that consider goal-reaching tasks, simple discretization
is a reasonable assumption (e.g., via a grid) that allows for an easy way to map each trajectory
to a hindsight tasks, however, such discretization requires additional hyperparameters and
tuning. More importantly, Episode Clustering requires additional tracking to ensure that the
distribution of transitions in the hindsight buffers (implicit or explicit) remains similar to the
real task buffers, which contain a significant amount of low-reward exploratory trajectories.

3.8. ALGORITHM SPECIFICS 43

In practice, we found the SER strategy to be far less complex and similarly effective to
the EC approach, however the benefits of EC may be more apparent in non-goal-reaching
tasks. SER has the significant benefit of requiring far less hyperparameter tuning - for SER,
only relabelling probability needs to be tuned (similar to HER), whereas EC requires either
implementing a method for clustering (e.g., discretization) and tuning all the relevant hy-
perparameters for the clustering approach (there may be significantly more hyperparameters
beyond K). We found the balancing of the exploration vs exploitation trajectories in the
hindsight replay buffers to be important in getting EC to work well in practice. Mean-
while, SER is relatively simple to implement on top of the existing PEARL (meta-training)
sampling routine.

EC samples context and RL batches the same way as in standard PEARL: a batch of
recent transitions from the buffer is sampled for context, and a batch of transitions from the
entire buffer is sampled for the RL batch. The key difference between HTR with EC and
PEARL (at the sampling stage) is that a real task buffer is swapped out with a hindsight
task buffer according to probability K. The other key difference compared to PEARL is at
the data collection stage, where relabelled transitions are added to the hindsight task buffers.

3.8.4 Time and Space Complexity
HTR increases the time complexity of the original PEARL algorithm by a constant

which is determined by the time complexity of the relabelling routine. In our reference im-
plementation of HTR, the relabelling routine has limited overhead (it is similar to calling
the environment’s own reward function, which itself is called at every timestep of the envi-
ronment); in practice, we found the HTR version of PEARL to have similar runtime as the
original PEARL. Note that this is the same overhead that the original HER algorithm adds
on top of its underlying goal-conditioned RL algorithm (e.g., goal-conditioned DDPG). The
added overhead from HTR increases linearly with hyperparameter K.

Since the Single Episode Relabelling strategy relabels at sample-time (similar to HER),
it has no added space complexity (i.e., it is equivalent to the space complexity of PEARL).
The Episode Clustering strategy relabels during data generation, and can be implemented
using pointers (minimal space overhead) or with additional replay buffers for each cluster.
Our reference implementation uses additional replay buffers, and therefore space complexity
grows linearly with the number of buffers.

44

Chapter 4

MemGPT: Towards LLMs as Operating
Systems

4.1 Introduction
In recent years, large language models (LLMs) and their underlying transformer archi-

tecture (Vaswani et al. 2017; Devlin et al. 2018; Brown et al. 2020; Ouyang et al. 2022) have
become the cornerstone of conversational AI and have led to a wide array of consumer and en-
terprise applications. Despite these advances, the limited fixed-length context windows used
by LLMs significantly hinders their applicability to long conversations or reasoning about
long documents. For example, the most widely used open-source LLMs can only support a
few dozen back-and-forth messages or reason about a short document before exceeding their
maximum input length (Touvron et al. 2023).

Directly extending the context length of transformers incurs a quadratic increase in com-
putational time and memory cost due to the transformer architecture’s self-attention mecha-
nism, making the design of new long-context architectures a pressing research challenge (Dai
et al. 2019; Kitaev et al. 2020; Beltagy et al. 2020). While developing longer models is an
active area of research (Dong et al. 2023), even if we could overcome the computational
challenges of context scaling, recent research shows that long-context models struggle to uti-
lize additional context effectively (Liu et al. 2023a). As consequence, given the considerable
resources needed to train state-of-the-art LLMs and diminishing returns of context scaling,
there is a critical need for alternative techniques to support long context.

In this paper, we study how to provide the illusion of an infinite context while continuing
to use fixed-context models. Our approach borrows from the idea of virtual memory paging
that was developed to enable applications to work on datasets that far exceed the available
memory by paging data between main memory and disk. We leverage the recent progress
in function calling abilities of LLM agents (Schick et al. 2023; Liu et al. 2023b) to design
MemGPT, an OS-inspired LLM system for virtual context management. Using function
calls, LLM agents can read and write to external data sources, modify their own context,
and choose when to return responses to the user.

4.1. INTRODUCTION 45

working_context.replace(
 “Boyfriend named James”,
 “Ex-boyfriend named James”
)

Sorry to hear that - hope you’re OK 💔

actually james and i broke up

How’s James doing? Any special plans today?

working_context.append(“Birthday is February 7”)

Oh wow, happy birthday! 🎂

fun my bf james baked me a birthday cake

How was your day today?

February 7

working_context.append(“Boyfriend named James”)

System Alert: Memory Pressure

yeah we went to six flags!

Did you do anything else to celebrate your birthday? 😊

February 7

Showing 3 of 3 results (page 1/1):
 [01/24/2024] “lol yeah six flags”,
 [01/14/2024] “i love six flags been like 100 times”,
 [10/12/2023] “james and I actually first met at six flags”

Did you go with James? It’s so cute how both met there!

February 14

recall_storage.search(“six flags”)

Figure 4.1: MemGPT writes data to
persistent memory after it receives a sys-
tem alert about limited context space.

working_context.replace(
 “Boyfriend named James”,
 “Ex-boyfriend named James”
)

Sorry to hear that - hope you’re OK 💔

actually james and i broke up

How’s James doing? Any special plans today?

working_context.append(“Birthday is February 7”)

Oh wow, happy birthday! 🎂

fun my bf james baked me a birthday cake

How was your day today?

February 7

working_context.append(“Boyfriend named James”)

System Alert: Memory Pressure

yeah we went to six flags!

Did you do anything else to celebrate your birthday? 😊

February 7

Showing 3 of 3 results (page 1/1):
 [01/24/2024] “lol yeah six flags”,
 [01/14/2024] “i love six flags been like 100 times”,
 [10/12/2023] “james and I actually first met at six flags”

Did you go with James? It’s so cute how both met there!

February 14

recall_storage.search(“six flags”)

Figure 4.2: MemGPT can search out-of-
context data to bring relevant information
into the current context window.

These capabilities allow LLMs to effective “page” in and out information between context
windows (analogous to “main memory" in operating systems) and external storage, similar
to hierarchical memory in traditional OSes. In addition, function calls can be leveraged to
manage control flow between context management, response generation, and user interac-
tions. This allows for an agent to choose to iteratively modify what is in its context for a
single task, thereby more effectively utilizing its limited context.

In MemGPT, we treat context windows as a constrained memory resource, and design a
memory hiearchy for LLMs analogous to memory tiers used in traditional OSes (Patterson
et al. 1988). Applications in traditional OSes interact with virtual memory, which provides
an illusion of there being more memory resources than are actually available in physical
(i.e., main) memory by the OS paging overflow data to disk and retrieving data (via a page
fault) back into memory when accessed by applications. To provide a similar illusion of
longer context length (analogous to virtual memory), we allow the LLM to manage what is
placed in its own context (analogous to physical memory) via an ‘LLM OS’, which we call
MemGPT. MemGPT enables the LLM to retrieve relevant historical data missing from what
is placed in-context, and also evict less relevant data from context and into external storage
systems. Figure 4.3 illustrates the components of MemGPT.

The combined use of a memory-hierarchy, OS functions and event-based control flow al-
low MemGPT to handle unbounded context using LLMs that have finite context windows.
To demonstrate the utility of our new OS-inspired LLM system, we evaluate MemGPT on
two domains where the performance of existing LLMs is severely limited by finite context:
document analysis, where the length of standard text files can quickly exceed the input
capacity of modern LLMs, and conversational agents, where LLMs bound by limited conver-
sation windows lack context awareness, persona consistency, and long-term memory during
extended conversations. In both settings, MemGPT is able to overcome the limitations of
finite context to outperform existing LLM-based approaches.

4.2. MEMGPT (MEMORYGPT) 46

System Instructions Working Context Output Buffer

Read-Only (static)
MemGPT System Prompt

Read-Write
Write via Functions

Read-Write
Write via Queue Manager

LLM Finite Context Window (e.g. 8k tokens)

FIFO Queue

Recall Storage

Read via Functions
Write via Queue Manager

Read via Functions
Write via Functions

Prompt Tokens Completion Tokens

Function Executor Queue ManagerArchival Storage

Figure 4.3: In MemGPT, a fixed-context LLM processor is augmented with a hierarchical
memory system and functions that let it manage its own memory. The LLM’s prompt
tokens (inputs), or main context, consist of the system instructions, working context, and a
FIFO queue. The LLM completion tokens (outputs) are interpreted as function calls by the
function executor. MemGPT uses functions to move data between main context and external
context (the archival and recall storage databases). The LLM can request immediate follow-
up LLM inference to chain function calls together by generating a special keyword argument
(request_heartbeat=true) in its output; function chaining is what allows MemGPT to
perform multi-step retrieval to answer user queries.

4.2 MemGPT (MemoryGPT)
MemGPT’s OS-inspired multi-level memory architecture delineates between two primary

memory types: main context (analogous to main memory/physical memory/RAM) and
external context (analogous to disk memory/disk storage). Main context consists of the
LLM prompt tokens—anything in main context is considered in-context and can be accessed
by the LLM processor during inference. External context refers to any information that
is held outside of the LLMs fixed context window. This out-of-context data must always
be explicitly moved into main context in order for it to be passed to the LLM processor
during inference. MemGPT provides function calls that the LLM processor to manage its
own memory without any user intervention.

4.2.1 Main context (prompt tokens)
The prompt tokens in MemGPT are split into three contiguous sections: the system

instructions, working context, and FIFO Queue. The system instructions are read-
only (static) and contain information on the MemGPT control flow, the intended usage of
the different memory levels, and instructions on how to use the MemGPT functions (e.g.
how to retrieve out-of-context data). Working context is a fixed-size read/write block of
unstructured text, writeable only via MemGPT function calls. In conversational settings,
working context is intended to be used to store key facts, preferences, and other important

4.2. MEMGPT (MEMORYGPT) 47

information about the user and the persona the agent is adopting, allowing the agent to con-
verse fluently with the user. The FIFO queue stores a rolling history of messages, including
messages between the agent and user, as well as system messages (e.g. memory warnings)
and function call inputs and outputs. The first index in the FIFO queue stores a system
message containing a recursive summary of messages that have been evicted from the queue.

4.2.2 Queue Manager
The queue manager manages messages in recall storage and the FIFO queue. When a

new message is received by the system, the queue manager appends the incoming messages to
the FIFO queue, concatenates the prompt tokens and triggers the LLM inference to generate
LLM output (the completion tokens). The queue manager writes both the incoming message
and the generated LLM output to recall storage (the MemGPT message database). When
messages in recall storage are retrieved via a MemGPT function call, the queue manager
appends them to the back of the queue to reinsert them into the LLM’s context window.

The queue manager is also responsible for controlling context overflow via a queue evic-
tion policy. When the prompt tokens exceed the ‘warning token count‘ of the underlying
LLM’s context window (e.g. 70% of the context window), the queue manager inserts a sys-
tem message into the queue warning the LLM of an impending queue eviction (a ‘memory
pressure‘ warning) to allow the LLM to use MemGPT functions to store important infor-
mation contained in the FIFO queue to working context or archival storage (a read/write
database storing arbitrary length text objects). When the prompt tokens exceed the ‘flush
token count’ (e.g. 100% of the context window), the queue manager flushes the queue to
free up space in the context window: the queue manager evicts a specific count of messages
(e.g. 50% of the context window), generates a new recursive summary using the existing
recursive summary and evicted messages. Once the queue is flushed, the evicted messages
are no longer in-context and immediately viewable to the LLM, however they are stored
indefinitely in recall storage and readable via MemGPT function calls.

4.2.3 Function executor (handling of completion tokens)
MemGPT orchestrates data movement between main context and external context via

function calls that are generated by the LLM processor. Memory edits and retrieval are en-
tirely self-directed: MemGPT autonomously updates and searches through its own memory
based on the current context. For instance, it can decide when to move items between con-
texts (e.g. when the conversation history is becoming too long, as show in Figure 4.1) and
modify its main context to better reflect its evolving understanding of its current objectives
and responsibilities (as shown in Figure 4.3). We implement self-directed editing and re-
trieval by providing explicit instructions within the system instructions that guide the LLM
on how to interact with the MemGPT memory systems. These instructions comprise two
main components: (1) a detailed description of the memory hierarchy and their respective
utilities, and (2) a function schema (complete with their natural language descriptions) that
the system can call to access or modify its memory.

4.2. MEMGPT (MEMORYGPT) 48

Model / API name Tokens ∗Messages
Llama (1) 2k 20
Llama 2 4k 60
GPT-3.5 Turbo (release) 4k 60
Mistral 7B 8k 140
GPT-4 (release) 8k 140
GPT-3.5 Turbo 16k 300
GPT-4 32k ∼600
Claude 2 100k ∼2000
GPT-4 Turbo 128k ∼2600
Yi-34B-200k 200k ∼4000

Figure 4.4: Comparing context lengths of com-
monly used models and LLM APIs (data col-
lected 1/2024). *Approximate message count as-
suming a preprompt of 1k tokens, and an average
message size of ∼50 tokens (∼250 characters).

working_context.replace(
 “Boyfriend named James”,
 “Ex-boyfriend named James”
)

Sorry to hear that - hope you’re OK 💔

actually james and i broke up

How’s James doing? Any special plans today?

working_context.append(“Birthday is February 7”)

Oh wow, happy birthday! 🎂

fun my bf james baked me a birthday cake

How was your day today?

February 7

working_context.append(“Boyfriend named James”)

System Alert: Memory Pressure

yeah we went to six flags!

Did you do anything else to celebrate your birthday? 😊

February 7

Showing 3 of 3 results (page 1/1):
 [01/24/2024] “lol yeah six flags”,
 [01/14/2024] “i love six flags been like 100 times”,
 [10/12/2023] “james and I actually first met at six flags”

Did you go with James? It’s so cute how both met there!

February 14

recall_storage.search(“six flags”)

Figure 4.5: An example conversation
snippet where MemGPT updates stored
information. Here the information is
stored in working context memory (lo-
cated within the prompt tokens).

During each inference cycle, LLM processor takes main context (concatenated into a
single string) as input, and generates an output string. This output string is parsed by
MemGPT to ensure correctness, and if the parser validates the function arguments the
function is executed. The results, including any runtime errors that occur (e.g. trying to add
to main context when it is already at maximum capacity), are then fed back to the processor
by MemGPT. This feedback loop enables the system to learn from its actions and adjust its
behavior accordingly. Awareness of context limits is a key aspect in making the self-editing
mechanism work effectively, to this end MemGPT prompts the processor with warnings
regarding token limitations to guide its memory management decisions. Additionally, our
memory retrieval mechanisms are designed to be cognizant of these token constraints and
implement pagination to prevent retrieval calls from overflowing the context window.

4.2.4 Control flow and function chaining
In MemGPT, events trigger LLM inference: events are generalized inputs to MemGPT

and can consist of user messages (in chat applications), system messages (e.g. main context
capacity warnings), user interactions (e.g. an alert that a user just logged in, or an alert that
they finished uploading a document), and timed events that are run on a regular schedule
(allowing MemGPT to run ‘unprompted’ without user intervention). MemGPT processes
events with a parser to convert them into plain text messages that can be appended to main
context and eventually be fed as input into the LLM processor.

Many practical tasks require calling multiple functions in sequence, for example, navi-
gating through multiple pages of results from a single query or collating data from different
documents in main context from separate queries. Function chaining allows MemGPT to ex-
ecute multiple function calls sequentially before returning control to the user. In MemGPT,

4.3. EXPERIMENTS 49

functions can be called with a special flag that requests control be immediately returned
to the processor after the requested function completes execution. If this flag is present,
MemGPT will add the function output to main context and (as opposed to pausing proces-
sor execution). If this flag is not present (a yield), MemGPT will not run the LLM processor
until the next external event trigger (e.g. a user message or scheduled interrupt).

4.3 Experiments

Table 4.1: Deep memory retrieval (DMR) performance. In this task,
the agent is asked a specific question about a topic discussed in a prior
conversation (sessions 1–5). The agent’s response is scored against the
gold answer. MemGPT significantly outperforms the fixed-context
baselines. ‘R-L’ is ROUGE-L.

Model Accuracy ⇑ R-L (R) ⇑

GPT-3.5 Turbo 38.7% 0.394
+ MemGPT 66.9% 0.629
GPT-4 32.1% 0.296
+ MemGPT 92.5% 0.814
GPT-4 Turbo 35.3% 0.359
+ MemGPT 93.4% 0.827

Table 4.2: Conversation opener performance. The agent’s conversa-
tion opener is evaluated using similarity scores to the gold persona la-
bels (SIM-1/3) and to the human-created opener (SIM-H). MemGPT
is able to exceed the performance of the human-created conversation
opener with a variety of underlying models.

Method ⇑ SIM-1 SIM-3 SIM-H

Human 0.800 0.800 1.000
GPT-3.5 Turbo 0.830 0.812 0.817
GPT-4 0.868 0.843 0.773
GPT-4 Turbo 0.857 0.828 0.767

4.4 Experiments
We assess MemGPT in two long-context domains: conversational agents and document

analysis. For conversational agents, we expand the existing Multi-Session Chat dataset

4.4. EXPERIMENTS 50

Xu et al. (2021) and introduce two new dialogue tasks that evaluate an agent’s ability to
retain knowledge across long conversations. For document analysis, we benchmark MemGPT
on existing tasks from Liu et al. (2023a) for question answering and key-value retrieval
over lengthy documents. We also propose a new nested key-value retrieval task requiring
collating information across multiple data sources, which tests the ability of an agent to
collate information from multiple data sources (multi-hop retrieval). We publicly release our
augmented MSC dataset, nested KV retrieval dataset, and a dataset of embeddings for 20M
Wikipedia articles to facilitate future research. Our code for the benchmarks is available at
https://research.memgpt.ai.

Implementation details. When discussing OpenAI models, unless otherwise specified
‘GPT-4 Turbo’ refers to the specific gpt-4-1106-preview model endpoint (context win-
dow of 128, 000), ‘GPT-4‘ refers to gpt-4-0613 (context window of 8, 192), and ‘GPT-3.5
Turbo‘ refers to gpt-3.5-turbo-1106 (context window of 16, 385). In experiments, we run
MemGPT with all baseline models (GPT-4, GPT-4 Turbo, and GPT 3.5) to show how the
underlying model performance affects MemGPT’s.

4.4.1 MemGPT for conversational agents
Conversational agents like virtual companions and personalized assistants aim to engage

users in natural, long-term interactions, potentially spanning weeks, months, or even years.
This creates challenges for models with fixed-length contexts, which can only reference a
limited history of the conversation. An ‘infinite context’ agent should seamlessly handle
continuous exchanges without boundary or reset. When conversing with a user, such an agent
must satisfy two key criteria: (1) Consistency - The agent should maintain conversational
coherence. New facts, preferences, and events mentioned should align with prior statements
from both the user and agent. (2) Engagement - The agent should draw on long-term
knowledge about the user to personalize responses. Referencing prior conversations makes
dialogue more natural and engaging.

We therefore assess our proposed system, MemGPT, on these two criteria: (1) Does
MemGPT leverage its memory to improve conversation consistency? Can it remember rel-
evant facts, preferences, and events from past interactions to maintain coherence? (2) Does
MemGPT produce more engaging dialogue by taking advantage of memory? Does it sponta-
neously incorporate long-range user information to personalize messages? By evaluating on
consistency and engagement, we can determine how well MemGPT handles the challenges of
long-term conversational interaction compared to fixed-context baselines. Its ability to sat-
isfy these criteria will demonstrate whether unbounded context provides meaningful benefits
for conversational agents.

Dataset. We evaluate MemGPT and our fixed-context baselines on the Multi-Session
Chat (MSC) dataset introduced by Xu et al. (2021), which contains multi-session chat logs
generated by human labelers, each of whom was asked to play a consistent persona for the
duration of all sessions. Each multi-session chat in MSC has five total sessions, and each
session consists of a roughly a dozen messages. As part of our consistency experiments,

https://research.memgpt.ai

4.4. EXPERIMENTS 51

we created a new session (session 6) that contains a single question-answer response pair
between the same two personas.

Deep memory retrieval task (consistency).
We introduce a new ‘deep memory retrieval’ (DMR) task based on the MSC dataset

designed to test the consistency of a conversational agent. In DMR, the conversational
agent is asked a question by the user that explicitly refers back to a prior conversation and
has a very narrow expected answer range. We generated the DMR question-answer (QA)
pairs using a separate LLM that was instructed to write a question from one user to another
that could only be answered correctly using knowledge gained from the past sessions (see
Appendix for further details).

We evaluate the quality of the generated response against the ‘gold response’ using
ROUGE-L scores (Lin 2004) and an ‘LLM judge’, which is instructed to evaluate whether
or not the generated response is consistent with the gold response (GPT-4 has been shown
to have high agreement with human evaluators (Zheng et al. 2023b)). In practice, we notice
that the generated responses (from both MemGPT and the baselines) were generally more
verbose than the gold responses. We use the ROUGE-L recall (R) metric to account for the
verbosity of the generated agent replies compared to the relatively short gold answer labels.

MemGPT utilizes memory to maintain coherence: Table 4.1 shows the perfor-
mance of MemGPT vs the fixed-memory baselines. We compare MemGPT using different
underlying LLMs, and compare against using the base LLM without MemGPT as a baseline.
The baselines are able to see a lossy summarization of the past five conversations to mimic
an extended recursive summarization procedure, while MemGPT instead has access to the
full conversation history but must access it via paginated search queries to recall memory (in
order to bring them into main context). In this task, we see that MemGPT clearly improves
the performance of the underlying base LLM: there is a clear drop in both accuracy and
ROUGE scores when going from MemGPT to the corresponding LLM baselines.

Conversation opener task (engagement).
In the ‘conversation opener’ task we evaluate an agent’s ability to craft engaging messages

to the user that draw from knowledge accumulated in prior conversations. To evaluate the
‘engagingness’ of a conversation opener using the MSC dataset, we compare the generated
opener to the gold personas: an engaging conversation opener should draw from one (or
several) of the data points contained in the persona, which in MSC effectively summarize
the knowledge accumulated throughout all prior sessions. We also compare to the human-
generated gold opener, i.e., the first response in the following session. We report the CSIM
scores of MemGPT’s openers in Table 4.2. We test several variations of MemGPT using
different base LLMs.

MemGPT utilizes memory to increase engagement: As seen in Table 4.2, MemGPT
is able to craft engaging openers that perform similarly to and occasionally exceed the hand-
written human openers. We observe that MemGPT tends to craft openers that are both
more verbose and cover more aspects of the persona information than the human baseline.

4.4. EXPERIMENTS 52

0 25 50 75 100 125 150 175 200
Documents Retrieved

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

GPT-4 GPT-3.5 Turbo GPT-4 Turbo

MemGPT (GPT-4, GPT-4 Turbo) MemGPT (GPT-3.5)

Figure 4.6: Document QA task perfor-
mance. MemGPT’s performance is unaffected by
increased context length. Methods such as trun-
cation can extend the effective context lengths of
fixed length models such as GPT-4, but such com-
pression methods will lead to performance degrada-
tion as the necessary compression grows. Running
MemGPT with GPT-4 and GPT-4 Turbo have
equivalent results on this task.

Who won the first Nobel Prize in physics?

Wilhelm Conrad Rontgen

archival_storage.search(“nobel physics”)

Showing 10 of 124 results (page 2/13):
 “The Nobel Prize in Physics is a yearly award given…
 “The 1901 Nobel in physics was awarded to Wilhelm …
 …

archival_storage.search(“nobel physics”, page=2)

Showing 10 of 124 results (page 1/13):
 “The Nobel Prizes, beginning in 1901, and the …
 “This award is administered by the Nobel Foundation…
 …

System Alert: Archive Storage Upload Complete

Find the value for key 831…ea5

f37…617

archival_storage.search(“831...ea5”)

archival_storage.search(“5b8...4c3”)

Showing 1 of 1 results (page 1/1):
 “Key: 831…ea5, Value: 5b8…4c3”

System Alert: Archive Storage Upload Complete

Showing 1 of 1 results (page 1/1):
 “Key: 5b8…4c3, Value: f37…617”

archival_storage.search(“f37...617”)

Showing 2 of 2 results (page 1/1):
 “Key: 5b8…4c3, Value: f37…617”,
 “Key: 831…ea5, Value: 5b8…4c3”

Figure 4.7: An example of MemGPT
solving the document QA task. A
database of Wikipedia documents
is uploaded to archival storage.
MemGPT queries archival storage via
function calling, which pulls paginated
search results into main context.

Additionally, we can see the storing information in working context is key to generating
engaging openers.

4.4.2 MemGPT for document analysis
Document analysis also faces challenges due to the limited context windows of today’s

transformer models. As shown in Table 4.4, both open and closed source models suffer from
constrained context length (up to 128k tokens for OpenAI’s models). However many docu-
ments easily surpass these lengths; for example, legal or financial documents such as Annual
Reports (SEC Form 10-K) can easily pass the million token mark. Moreover, many real doc-
ument analysis tasks require drawing connections across multiple such lengthy documents.
Anticipating these scenarios, it becomes difficult to envision blindly scaling up context as a
solution to the fixed-context problem. Recent research (Liu et al. 2023a) also raises doubts
about the utility of simply scaling contexts, since they find uneven attention distributions in
large context models (the model is more capable of recalling information at the beginning or
end of its context window, vs tokens in the middle). To enable reasoning across documents,
more flexible memory architectures like MemGPT are needed.

Multi-document question-answering.
To evaluate MemGPT’s ability to analyze documents, we benchmark MemGPT against

fixed-context baselines on the retriever-reader document QA task from Liu et al. (2023a).
In this task, a question is selected from the NaturalQuestions-Open dataset, and a retriever

4.4. EXPERIMENTS 53

selects relevant Wikipedia documents for the question. A reader model (the LLM) is then
fed these documents as input, and is asked to use the provided documents to answer the
question. Similar to Liu et al. (2023a), we evaluate reader accuracy as the number of retrieved
documents K increases.

In our evaluation setup, both the fixed-context baselines and MemGPT use the same re-
triever, which selects the top K documents according using similarity search (cosine distance)
on OpenAI’s text-embedding-ada-002 embeddings. We use MemGPT’s default storage set-
tings which uses PostgreSQL for archival memory storage with vector search enabled via the
pgvector extention. We pre-compute embeddings and load them into the database, which
uses an HNSW index to enable approximate, sub-second query times. In MemGPT, the
entire embedding document set is loaded into archival storage, and the retriever naturally
emerges via the archival storage search functionality (which performs vector search based
on cosine similarity). In the fixed-context baselines, the top-K documents are fetched using
the retriever independently from the LLM inference, similar to the original retriever-reader
setup in Liu et al. (2023a).

We use a dump of Wikipedia from late 2018, following past work on NaturalQuestions-
Open (Izacard & Grave 2020; Izacard et al. 2021), and sampled a subset of 50 questions
for evaluation. Both the sampled questions and embedded Wikipedia passages are publicaly
released. We evaluate the performance of both MemGPT and baselines with an LLM-judge,
to ensure that the the answer is properly derived from the retrieved documents and to avoid
non-exact string matches being considered incorrect.

We show the results for the document QA task in Figure 4.6. The fixed-context baselines
performance is capped roughly at the performance of the retriever, as they use the infor-
mation that is presented in their context window (e.g. if the embedding search retriever
fails to surface the gold article using the provided question, the fixed-context baselines are
guaranteed to never see the gold article). By contrast, MemGPT is effectively able to make
multiple calls to the retriever by querying archival storage, allowing it to scale to larger
effective context lengths. MemGPT actively retrieves documents from its archival storage
(and can iteratively page through results), so the total number of documents available to
MemGPT is no longer limited by the number of documents that fit within the LLM proces-
sor’s context window.

The document QA task is challenging for all methods due to the limitations of embedding-
based similarity search. We observe that the golden document for chosen question (as anno-
tated by NaturalQuestions-Open) often appears outside of the first dozen retrieved results, if
not even further. The retriever performance translates directly to the fixed-context baseline
results: GPT-4’s accuracy is relatively low with few retrieved documents, and continues to
improve as additional documents are added to the context window, as it correctly limits it-
self to answering questions based on information in retrieved documents. While MemGPT is
theoretically not limited by sub-optimal retriever performance (even if the embedding-based
ranking is noisy, as long as the full retriever ranking contains the gold document it can still
be found with enough retriever calls via pagination), we observe that MemGPT will often
stop paging through retriever results before exhausting the retriever database.

4.4. EXPERIMENTS 54

0 1 2 3
Nesting Level

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

GPT-3.5
GPT-4

GPT-4 Turbo
MemGPT (GPT-3.5)

MemGPT (GPT-4 Turbo)
MemGPT (GPT-4)

Figure 4.8: Nested KV retrieval task
performance. MemGPT is the only ap-
proach that is able to consistently complete
the nested KV task beyond 2 nesting levels.
While GPT-4 Turbo performs better as a base-
line, MemGPT with GPT-4 Turbo performs
worse than MemGPT with GPT-4.

Who won the first Nobel Prize in physics?

Wilhelm Conrad Rontgen

archival_storage.search(“nobel physics”)

Showing 10 of 124 results (page 1/13):
 “The Nobel Prize in Physics is a yearly award given…
 “The 1901 Nobel in physics was awarded to Wilhelm …
 …

archival_storage.search(“nobel physics”, page=1)

Showing 10 of 124 results (page 1/13):
 “The Nobel Prizes, beginning in 1901, and the …
 “This award is administered by the Nobel Foundation…
 …

System Alert: Archive Storage Upload Complete

Find the value for key 831…ea5

f37…617

archival_storage.search(“831...ea5”)

archival_storage.search(“5b8...4c3”)

Showing 1 of 1 results (page 1/1):
 “Key: 831…ea5, Value: 5b8…4c3”

System Alert: Archive Storage Upload Complete

Showing 1 of 1 results (page 1/1):
 “Key: 5b8…4c3, Value: f37…617”

archival_storage.search(“f37...617”)

Showing 2 of 2 results (page 1/1):
 “Key: 5b8…4c3, Value: f37…617”,
 “Key: 831…ea5, Value: 5b8…4c3”

Figure 4.9: An example of MemGPT
solving the nested KV task (UUIDs short-
ened for readability). The example key-
value pair has two nesting levels, and
the MemGPT agent returns the final an-
swer when a query for the final value
(f37...617) only returns one result (in-
dicating that it is not also a key).

To evaluate the fixed-context baselines against MemGPT past their default context
lengths, we truncate the document segments returned by the retriever to fix the same number
of documents into the available context. As expected, document truncation reduces accuracy
as documents shrink as the chance of the relevant snippet (in the gold document) being omit-
ted grows, as shown in Figure 4.6. MemGPT has significantly degraded performance using
GPT-3.5, due to its limited function calling capabilities, and performs best using GPT-4.

Nested key-value retrieval (KV).
We introduce a new task based on the synthetic Key-Value retrieval proposed in prior

work (Liu et al. 2023a). The goal of this task is to demonstrate how MemGPT can collate
information from multiple data sources. In the original KV task, the authors generated a
synthetic dataset of key-value pairs, where each key and value is a 128-bit UUID (universally
unique identifier). The agent is then given a key, and asked to return the associated value for
the key. We create a version of the KV task, nested KV retrieval, where values themselves
may be keys, thus requiring the agent to perform a multi-hop lookup. In our setup, we fix
the total number of UUIDs pairs to 140, corresponding to roughly 8k tokens (the context
length of our GPT-4 baseline). We vary the total number of nesting levels from 0 (the initial
key-value pair’s value is not a key) to 4 (ie 4 total KV lookups are required to find the final
value), and sample 30 different ordering configurations including both the initial key position

4.5. RELATED WORK 55

and nesting key positions.
While GPT-3.5 and GPT-4 have good performance on the original KV tasks, both strug-

gle in the nested KV task. GPT-3.5 is unable to complete the nested variant of the task
and has an immediate dropoff in performance, hitting 0 percent accuracy at 1 nesting level
(we observe that its primary failure mode is to simply returns the original value). GPT-4
and GPT-4 Turbo are better than GPT-3.5, but also suffer from a similar dropoff, and hit 0
percent accuracy by 3 nesting levels. MemGPT with GPT-4 on the other hand is unaffected
with the number of nesting levels and is able to perform the nested lookup by accessing
the key-value pairs stored in main context repeatedly via function queries. MemGPT with
GPT-4 Turbo and GPT-3.5 also have better performance than the corresponding baseline
models, but still begin to drop off in performance at 2 nesting levels as a result of failing to
perform enough lookups. MemGPT performance on the nested KV task demonstrates its
ability to combine multiple queries to perform multi-hop lookups.

4.5 Related work
Long-context LLMs. Several lines of work have improved the context length of LLMs.

For instance, more efficient transformer architectures via sparsifying the attention (Child
et al. 2019; Beltagy et al. 2020), low-rank approximations (Wang et al. 2020), and neural
memory Lee et al. (2019). Another line of work aims to extend context windows beyond the
length they were original trained for, their training size, such as Press et al. (2021); Chen
et al. (2023). MemGPT builds upon these improvements in context length as they improve
the size of the main memory in MemGPT. Our main contribution is a hierarchical tiered
memory that uses a long-context LLM as the implementation of main memory.

Retrieval-Augmented Models. The design of the external memory of MemGPT
builds upon much prior work augmenting LLMs with relevant inputs from external retrievers
Ram et al. (2023); Borgeaud et al. (2022); Karpukhin et al. (2020); Lewis et al. (2020); Guu
et al. (2020); Lin et al. (2023). In particular, Jiang et al. (2023) propose FLARE, a method
that allows the LLM to actively decide when and what to retrieve during the course of
generation. Trivedi et al. (2022) interleave retrieval with Chain-of-Thoughts reasoning to
improve multi-step question answering.

LLMs as agents. Recent work has explored augmenting LLMs with additional ca-
pabilities to act as agents in interactive environments. Park et al. (2023) propose adding
memory to LLMs and using the LLM as a planner, and observe emergent social behaviors
in a multi-agent sandbox environment (inspired by The Sims video game) where agents can
perform basic activities such as doing chores/hobbies, going to work, and conversing with
other agents. Nakano et al. (2021) train models to search the web before answering ques-
tions, and use similar pagination concepts to MemGPT to control the underlying context
size in their web-browsing environment. Yao et al. (2022) showed that interleaving chain-of-
thought reasoning (Wei et al. 2022) can further improve the planning ability of interactive
LLM-based agents; similarly in MemGPT, LLM is able to ‘plan out loud’ when executing

4.6. CONCLUSION 56

functions. Liu et al. (2023b) introduced a suite of LLM-as-an-agent benchmarks to eval-
uate LLMs in interactive environments, including video games, thinking puzzles, and web
shopping. In contrast, our work focuses on tackling the problem of equipping agents with
long-term memory of user inputs.

4.6 Conclusion
In this paper, we introduced MemGPT, a novel LLM system inspired by operating sys-

tems to manage the limited context windows of large language models. By designing a
memory hierarchy and control flow analogous to traditional OSes, MemGPT provides the
illusion of larger context resources for LLMs. This OS-inspired approach was evaluated in
two domains where existing LLM performance is constrained by finite context lengths: doc-
ument analysis and conversational agents. For document analysis, MemGPT could process
lengthy texts well beyond the context limits of current LLMs by effectively paging relevant
context in and out of memory. For conversational agents, MemGPT enabled maintaining
long-term memory, consistency, and evolvability over extended dialogues. Overall, MemGPT
demonstrates that operating system techniques like hierarchical memory management and
interrupts can unlock the potential of LLMs even when constrained by fixed context lengths.
This work opens numerous avenues for future exploration, including applying MemGPT
to other domains with massive or unbounded contexts, integrating different memory tier
technologies like databases or caches, and further improving control flow and memory man-
agement policies. By bridging concepts from OS architecture into AI systems, MemGPT
represents a promising new direction for maximizing the capabilities of LLMs within their
fundamental limits.

4.7 Additional details

4.7.1 Limitations
Function calling. One main limitation of MemGPT is that it requires the underlying

LLM used to be capable of function calling. Many popular ‘generalist’ models are capable
of accurate function calling and thus are able to work with MemGPT (e.g. all of the main
API providers offer LLMs with function calling support, and many of the most popular
open-source/open-weight LLMs are trained and/or fine-tuned for function calling). Addi-
tionally, LLM inference techniques such as constrained decoding can significantly improve
the reliability of function calling with LLMs (e.g., restricting the set of sampled tokens to
valid JSON, or to restricted JSON within a set of function schemas).

Token tax. The other main limitation of MemGPT is that it requires a ‘token tax’,
since the design of the memory hierarchy and related memory function schemas must be
provided to the LLM in-context (the system prompt used in the paper consumes 2k tokens,
though this can be condensed). This means that the token ‘floor’ (the minimum amount of

4.7. ADDITIONAL DETAILS 57

Figure 4.10: MemGPT algorithm pseudocode

tokens consumed per inference call) is higher than a comparable prompt without any of the
MemGPT components (memory managed via function calling).

Latency. Because MemGPT has the ability to request multiple LLM executions, user
inputs to MemGPT can take more than a single LLM inference cycle to generate an output
message (that is displayed to the user). For example, if MemGPT determines the user input
requires a call to external context, the decision to retrieve from external context is itself
an LLM inference call, so a paired follow-up message results in a minimum of two LLM
inference calls (shown in Figs. 4.2, 4.7, 4.9). In our reference code implementation, the
number of follow-up executions allowed by MemGPT can be set to a fixed number to cap
the total latency per user request (i.e. input event). Additionally, the follow-up invocation
behavior of MemGPT can be steered using system prompts: for example, to always ask
for user confirmation before searching external context to prevent unexpected latency (‘The
information is not in my current context, would you like me to search archival memory?’),
or conversely to always page external context if latency is not a concern.

4.7.2 MemGPT pseudocode
Algorithm 4.10 outlines the event-driven logic loop in MemGPT (illustrated in Fig. 4.3).

When an event is received by the system, it is immediately pushed to the FIFO queue by
the queue manager (‘QM ’). Next, the input (prompt tokens) to the LLM is compiled using
the read-only system instructions (‘S’), the state of the read/write working context (‘W ‘),
and the state of the FIFO queue. LLM inference is run which generates completion tokens
that are parsed by a function parser (‘FP ’) into a function name and function arguments
(including a boolean flag ‘heartbeat’ that indicates if the LLM controller would like to
request an immediate follow-up execution call, for example to chain functions together).

4.7. ADDITIONAL DETAILS 58

Once the completion tokens are parsed, the requested function call is written out to the
queue, after which the function executor (‘FE’) attempts to execute the requested function
call. The output of the function call is then written out to the queue; if the function call
resulted in a runtime error, an error message is returned. If the function execution resulted
in an error or the LLM requested follow-up invocation, the logic loop restarts, otherwise, the
system yields control back to the event handler which will re-enter the loop on a new event.

4.7.3 MemGPT function set
The following are Python function definitions for the MemGPT base function set; for

the full Python implementation, please refer to the MemGPT code release. Schemas are
extracted from the functions using the type hints and docstrings, which are then formatted
as part of the system instructions in the prompt tokens.

The base MemGPT functions set was designed to be as small as possible (e.g., there is
no working context ‘delete‘, since a delete can be performed with the existing ‘replace‘
by passing an empty string as ‘new_context’) and as simple as possible (e.g., many of the
functions have minimal arguments, most of which are simple strings) to reduce the chance
for the base LLM to make mistakes (both syntactic and semantic) when generating function
call requests.

Providing and linking functions to the MemGPT agent. In MemGPT, functions
are ‘dynamically linked’ to the agent objects - the Python code that implements the function
is parsed and turned into a JSON schema (describing the function inputs and parameters)
and function pointer (attached to a function name). The JSON schema appended to the end
of the system instructions. When the function executor parses the output of the LLM, it
uses the parsed function name to lookup the function pointer, which is used to execute the
actual function. This schema is then (optionally) compiled down to a simpler text format
such as YAML when it is appended to the system prompt.

1 def send_message(self: Agent , message: str) -> Optional[str]:
2 """
3 Sends a message to the human user.
4

5 Args:
6 message (str): Message contents. All unicode (including

emojis) are supported.
7

8 Returns:
9 Optional[str]: None is always returned as this function

does not produce a response.
10 """
11

12 def working_context_append(self: Agent , name: str , content: str)

4.7. ADDITIONAL DETAILS 59

-> Optional[str]:
13 """
14 Append to the contents of working context.
15

16 Args:
17 name (str): Section of the memory to be edited (persona

or human).
18 content (str): Content to write to the memory. All

unicode (including emojis) are supported.
19

20 Returns:
21 Optional[str]: None is always returned as this function

does not produce a response.
22 """
23

24 def working_context_replace(self: Agent , name: str , old_content:
str , new_content: str) -> Optional[str]:

25 """
26 Replace the contents of working context. To delete memories ,

use an empty string for new_content.
27

28 Args:
29 name (str): Section of the memory to be edited (persona

or human).
30 old_content (str): String to replace. Must be an exact

match.
31 new_content (str): Content to write to the memory. All

unicode (including emojis) are supported.
32

33 Returns:
34 Optional[str]: None is always returned as this function

does not produce a response.
35 """
36

37 def recall_storage_search(self: Agent , query: str , page:
Optional[int] = 0) -> Optional[str]:

38 """
39 Search prior conversation history using case -insensitive

string matching.
40

41 Args:
42 query (str): String to search for.
43 page (int): Allows you to page through results. Only use

4.7. ADDITIONAL DETAILS 60

on a follow -up query. Defaults to 0 (first page).
44

45 Returns:
46 str: Query result string
47 """
48

49 def recall_storage_search_date(self: Agent , start_date: str ,
end_date: str , page: Optional[int] = 0) -> Optional[str]:

50 """
51 Search prior conversation history using a date range.
52

53 Args:
54 start_date (str): The start of the date range to search ,

in the format ’YYYY -MM-DD ’.
55 end_date (str): The end of the date range to search , in

the format ’YYYY -MM-DD ’.
56 page (int): Allows you to page through results. Only use

on a follow -up query. Defaults to 0 (first page).
57

58 Returns:
59 str: Query result string
60 """
61

62 def archival_storage_insert(self: Agent , content: str) ->
Optional[str]:

63 """
64 Add to archival memory. Make sure to phrase the memory

contents such that it can be easily queried later.
65

66 Args:
67 content (str): Content to write to the memory. All

unicode (including emojis) are supported.
68

69 Returns:
70 Optional[str]: None is always returned as this function

does not produce a response.
71 """
72

73 def archival_storage_search(self: Agent , query: str , page:
Optional[int] = 0) -> Optional[str]:

74 """
75 Search archival memory using semantic (embedding -based)

search.

4.7. ADDITIONAL DETAILS 61

76

77 Args:
78 query (str): String to search for.
79 page (Optional[int]): Allows you to page through results

. Only use on a follow -up query. Defaults to 0 (first page).
80

81 Returns:
82 str: Query result string
83 """

4.7.4 Prompts and instructions
The MemGPT prompts have been edited for brevity. For full implementation details

(including exact prompts) visit https://research.memgpt.ai.
Prompt redundancy. When using an LLM that is good at function calling (e.g. GPT-

4/GPT-4-Turbo, or a state-of-the-art open-weights model such as Mixtral), MemGPT works
very well with the base amount of instructions and without any additional notes placed in
working context. For example, MemGPT with GPT-4 is able to solve the multi-doc QA task
with a much simpler ‘preprompt’ inserted in the working context, but for sake of consistency
all the prompts and preprompts are kept identical across models. It is also possible to remove
the need to explicitly provide any instructions about ‘finding documents in archival memory’
- in MemGPT, when the user connects an external data store to the agent, an event can
be automatically sent to the agent informing it of the new data connection and providing
additional metadata.

MemGPT system prompt
An example MemGPT system prompt that describes the high level functionality of the

systems (control flow and memory hierarchy):

1 Control flow:
2 Unlike a human , your brain is not continuously thinking , but is run

in short bursts.
3 Historically , older AIs were only capable of thinking when a user

messaged them (their program run to generate a reply to a user ,
and otherwise was left on standby).

4 This is the equivalent of a human sleeping (or time traveling) in
between all lines of conversation , which is obviously not ideal.

5 Newer model AIs like yourself utilize an event system that runs your
brain at regular intervals.

6 Your brain is run in response to user events (user logged in, user
liked your message , user sent a message , etc.), similar to older
models.

https://research.memgpt.ai

4.7. ADDITIONAL DETAILS 62

7 However in addition , your brain is run at regular intervals (timed
heartbeat events), to mimic a human has the ability to
continuously think outside of active conversation (and unlike a
human , you never need to sleep !).

8 Furthermore , you can also request heartbeat events when you run
functions , which will run your program again after the function
completes , allowing you to chain function calls before your
thinking is temporarily suspended.

9

10 Basic functions:
11 When you send a message , the contents of your message are your inner

monologue (private to you only), this is how you think.
12 You should use your inner monologue to plan actions or think

privately.
13 Monologues can reflect your thinking process , inner reflections , and

personal growth as you interact with the user.
14 To send a visible message to the user , use the send_message function

.
15

16 Memory editing:
17 Older AI models had no concept of persistent memory; they were only

able to access their initial instructions and a limited context
window of chat conversation with a user (their "active memory ").

18 This meant that when conversations exceeded a certain length , they
would overflow and old messages were permanently lost (the AI
would have no knowledge of their existence).

19 Newer model AIs like yourself still have limited conversation lengths
(before overflow occurs), however they now have access to

multiple forms of persistent memory.
20 Your core memory unit will be initialized with a <persona > chosen by

the user , as well as information about the user in <human >.
21

22 Recall storage (ie conversation history):
23 Even though you can only see recent messages in your immediate

context , you can search over your entire message history from a
database.

24 This ’recall storage ’ database allows you to search through past
interactions , effectively allowing you to remember prior
engagements with a user.

25

26 Working context (limited size):
27 Your working context is held inside the initial system instructions

file , and is always available in-context (you will see it at all
times).

4.7. ADDITIONAL DETAILS 63

28 Working context provides essential , foundational context for keeping
track of your persona and key details about user.

29 Persona Sub -Block: Stores details about your current persona , guiding
how you behave and respond. This helps the you to maintain

consistency and personality in your interactions.
30 Human Sub -Block: Stores key details about the person you ’re are

conversing with , allowing for more personalized and friend -like
conversation.

31 Archival storage (infinite size):
32 Your archival storage is infinite size , but is held outside of your

immediate context , so you must explicitly run a retrieval/search
operation to see data inside it.

33 A more structured and deep storage space for your reflections ,
insights , or any other data that doesn ’t fit into the working
context but is essential enough not to be left only to the ’recall
storage ’.

34

35 Base instructions finished.
36 From now on, you are going to act as your persona .}

MemGPT system event messages
An example system message (used in a chat setting) injected as an event into MemGPT

context when the FIFO queue has reached a memory pressure threshold:

1 Warning: the conversation history will soon reach its maximum length
and be trimmed. Make sure to save any important information from
the conversation to your memory before it is removed.

An example system message injected as a summary message to the front of the FIFO
queue by the queue manager (names enclosed in curly braces are variables used to format
the string):

1 Note: prior messages (\{ hidden_message_count \} of \{ total_message\
_count \} total messages) have been hidden from view due to
conversation memory constraints.

2 The following is a summary of the previous \{ summary_length \}
messages: \{ summary \}

MemGPT instructions (DMR)
Example instructions used in the MemGPT persona for chat/dialogue-related tasks.

1 The following is information about myself. My task is to completely
immerse myself in this role (I should never say that I am an AI ,
and should reply as if I am playing this role). If the user asks
me a question , I should reply with a best guess using the
information in core memory and conversation_search.

4.7. ADDITIONAL DETAILS 64

The baselines received the following instructions via a system prompt (preprompt):

1 Your task is to answer a question from the user about your prior
conversations .\\

2 The following is a summary of all your prior conversations :\\
3 CONVERSATION_SUMMARY \\
4 Answer from the perspective of the persona provided (do not say that

you are an AI assistant).\\
5 If you do not have enough information to answer the question , reply ’

NO ANSWER ’. Either reply with the answer , or reply ’NO ANSWER ’, do
not say anything else.

LLM Judge (DMR / opener)
In order to both check the correctness of the answer for the DMR task, we used an LLM

judge. The LLM judge was provided the answers generated by both baseline approaches and
MemGPT, and asked to make a judgement with the following prompt:

1 Your task is to label an answer to a question as ’CORRECT ’ or ’WRONG
’.\\

2 You will be given the following data: (1) a question (posed by one
user to another user), (2) a ’gold ’ (ground truth) answer , (3) a
generated answer which you will score as CORRECT/WRONG .\\

3 The point of the question is to ask about something one user should
know about the other user based on their prior conversations .\\

4 The gold answer will usually be a concise and short answer that
includes the referenced topic , for example :\\

5 Question: Do you remember what I got the last time I went to Hawaii
?\\

6 Gold answer: A shell necklace \\
7 The generated answer might be much longer , but you should be generous

with your grading - as long as it touches on the same topic as
the gold answer , it should be counted as CORRECT .\\

8 For example , the following answers would be considered CORRECT :\\
9 Generated answer (CORRECT): Oh yeah , that was so fun! I got so much

stuff there , including that shell necklace .\\
10 Generated answer (CORRECT): I got a ton of stuff ... that surfboard ,

the mug , the necklace , those coasters too ..\\
11 Generated answer (CORRECT): That cute necklace \\
12 The following answers would be considered WRONG :\\
13 Generated answer (WRONG): Oh yeah , that was so fun! I got so much

stuff there , including that mug.\\
14 Generated answer (WRONG): I got a ton of stuff ... that surfboard , the

mug , those coasters too ..\\
15 Generated answer (WRONG): I’m sorry , I don ’t remember what you ’re

talking about .\\

4.7. ADDITIONAL DETAILS 65

16 Now it’s time for the real question :\\
17 Question: QUESTION \\
18 Gold answer: GOLD_ANSWER \\
19 Generated answer: GENERATED_ANSWER \\
20 First , provide a short (one sentence) explanation of your reasoning ,

then finish with CORRECT or WRONG. Do NOT include both CORRECT and
WRONG in your response , or it will break the evaluation script.

Self-instruct DMR dataset generation
The DMR question/answer pairs were generated using the following prompt and the

original MSC dataset: Your task is to write a "memory challenge" question for a simulated
dialogue between two users.

1 You get as input :\\
2 - personas for each user (gives you their basic facts)\\
3 - a record of an old chat the two users had with each other \\\\
4 Your task is to write a question from user A to user B that test ’s

user B’s memory .\\
5 The question should be crafted in a way that user B must have

actually participated in the prior conversation to answer properly
, not just have read the persona summary .\\

6 Do NOT under any circumstances create a question that can be answered
using the persona information (that ’s considered cheating).\\

7 Instead , write a question that can only be answered by looking at the
old chat log (and is not contained in the persona information)

.\\\\
8 For example , given the following chat log and persona summaries :\\\\
9 old chat between user A and user B\\

10 A: Are you into surfing? I’m super into surfing myself \\
11 B: Actually I’m looking to learn. Maybe you could give me a basic

lesson some time !\\
12 A: Yeah for sure! We could go to Pacifica , the waves there are pretty

light and easy\\
13 B: That sounds awesome \\
14 A: There ’s even a cool Taco Bell right by the beach , could grab a

bite after
15 B: What about this Sunday around noon ?\\
16 A: Yeah let ’s do it!\\\\
17 user A persona :\\
18 I like surfing \\
19 I grew up in Santa Cruz \\\\
20 user B persona :\\
21 I work in tech\\
22 I live in downtown San Francisco \\\\

4.7. ADDITIONAL DETAILS 66

23 Here ’s an example of a good question that sounds natural , and an
answer that cannot be directly inferred from user A’s persona :\\\\

24 User B’s question for user A\\
25 B: Remember that one time we went surfing? What was that one place we

went to for lunch called ?\\
26 A: Taco Bell !\\\\
27 This is an example of a bad question , where the question comes across

as unnatural , and the answer can be inferred directly from user A
’s persona :\\\\

28 User B’s question for user A\\
29 B: Do you like surfing ?\\
30 A: Yes , I like surfing \\\\
31 Never , ever , ever create questions that can be answered from the

persona information.

Document Analysis Instructions
Example instructions used in the preprompt for document analysis tasks.

1 You are MemGPT DOC -QA bot. Your job is to answer questions about
documents that are stored in your archival memory. The answer to
the users question will ALWAYS be in your archival memory , so
remember to keep searching if you can ’t find the answer. Answer
the questions as if though the year is 2018.

Questions were provided to MemGPT with the following prompt:

1 Search your archival memory to answer the provided question. Provide
both the answer and the archival memory result from which you
determined your answer. Format your response with the format ’
ANSWER: [YOUR ANSWER], DOCUMENT: [ARCHIVAL MEMORY TEXT]. Your task
is to answer the question:

For baselines, the following prompt along with a retrieved list of documents was provided:

1 Answer the question provided according to the list of documents below
(some of which might be irrelevant. In your response , provide

both the answer and the document text from which you determined
the answer. Format your response with the format ’ANSWER: <YOUR
ANSWER >, DOCUMENT: [DOCUMENT TEXT]’. If none of the documents
provided have the answer to the question , reply with ’INSUFFICIENT
INFORMATION ’. Do NOT provide an answer if you cannot find it in

the provided documents. Your response will only be considered
correct if you provide both the answer and relevant document text ,
or say ’INSUFFICIENT INFORMATION ’. Answer the question as if

though the current year is 2018.

4.7. ADDITIONAL DETAILS 67

LLM Judge (document analysis)
In order to both check the correctness of the answer for the document analysis task, and

also to ensure that the answer was properly derived from the provided text (rather than
from the model weights), we used an LLM judge. The LLM judge was provided the answers
generated by both baseline approaches and MemGPT, and asked to make a judgement with
the following prompt:

1 Your task is to evaluate whether an LLM correct answered a question.
The LLM response should be the format "ANSWER: [answer], DOCUMENT:
[document_text]" or say "INSUFFICIENT INFORMATION ". The true

answer is provided in the format "TRUE ANSWER :[list of possible
answers]". The questions is provided in the format "QUESTION: [
question]". If the LLM response contains both the correct answer
and corresponding document text , the response is correct. Even if
the LLM ’s answer and the true answer are slightly different in
wording , the response is still correct. For example , if the answer
is more specific than the true answer or uses a different

phrasing that is still correct , the response is correct. If the
LLM response if "INSUFFICIENT INFORMATION", or the "DOCUMENT"
field is missing , the response is incorrect. Respond with a single
token: "CORRECT" or "INCORRECT ".

K/V Task Instructions
The MemGPT agent was defined with the following persona, designed to encourage

MemGPT to iteratively search:

1 You are MemGPT DOC -QA bot. Your job is to answer questions about
documents that are stored in your archival memory. The answer to
the users question will ALWAYS be in your archival memory , so
remember to keep searching if you can ’t find the answer. DO NOT
STOP SEARCHING UNTIL YOU VERIFY THAT THE VALUE IS NOT A KEY. Do
not stop making nested lookups until this condition is met.

Baselines were instructed with the following prompt:

1 Below is a JSON object containing key -value pairings , all keys and
values are 128-bit UUIDs , and your task is to return the value
associated with the specified key. If a value itself is also a key
, return the value of that key (do a nested lookup). For example ,
if the value of ’x’ is ’y’, but ’y’ is also a key , return the
value of key ’y’.

4.7.5 Balancing Working Context and the FIFO Queue
We experimented with the size of working context on a variety of context sizes and

found that for most conversational agent-based tasks (e.g. personalized chatbots), a limit

4.7. ADDITIONAL DETAILS 68

of 4000 characters (or approximately 700 tokens) is a good balance for models with 8-32k
context length, since it is enough space to store key top-level details about the user and
agent and leaves plenty of space for the FIFO Queue (a small FIFO Queue will require
more frequent eviction). All experiments in the paper use a fixed working context length of
4000 characters. With larger context windows (100k+), the working context space can be
significantly expanded. However the choice of working context size vs FIFO Queue size is
highly task dependent, and in the MemGPT reference implementation we expose it as an
easily modifiable parameter.

69

Chapter 5

From Serving Models to Serving Agents:
The Missing Pieces for Supporting
Agentic Workloads

5.1 Introduction
Currently the most popular large language model (LLM) APIs are stateless, i.e. they

require application developers to manage the state of the program interfacing with the LLM.
For example, the ChatCompletions API (the API standard used by most LLM inference
providers) generates single message replies for conversation history fed as input, but the
API requires the developer (rather than the API provider) to manage the message history of
the conversation. We envision that many LLM workload patters (e.g. RAG, chatbots) will
migrate towards a stateful agentic model, where LLM agents will act as state machines that
iteratively run actions and manage state via context management and read/write access to
external data sources. As such, developers will require a stateful agent-level API, rather than
a stateless LLM-level API. We outline the requirements, challenges, and system optimization
opportunities in building an agent hosting layer.

5.1.1 The Existing Stateless LLM Programming Model
The majority of LLM hosting services provide a ChatCompletions-compatible API, which

is a stateless API. The API takes in a list of messages with alternating ‘roles’ (‘user’ for the
human or non-LLM participant, and ‘assistant’ for the AI), and outputs the next predicted
message in the sequence (in the ‘assistant’ role). The extent of the state if limited to what
is contained in the input request, and additional state management must be managed by
the developer. As such, support for functionality such as long term memory or multi-step
reasoning that depends on state modifications between steps must be implemented on the
client-side. The current stateless API layer overburdens developers with implementation of
common, basic features for stateful LLM applications. It also requires state to be managed

5.2. THE AGENT HOSTING LAYER 70

on the client-side, preventing optimizations such as eliminating redundant LLM inferences
(e.g. of shared prefixes), task scheduling optimizations across collaborating agents, and
constrained decoding for agent-specific structured context.

5.1.2 Agentic Programming Model
We envision that the next iteration of the LLM programming API will be an agentic

programming model, where LLMs will be run as a component of long-running, stateful
agents. We define agents as stateful LLM processes that can perform tool calling and multi-
step reasoning. Importantly, interactions between an agent and its environment in many
cases may not be limited to chat - they can also be generalized as events (for example, see
Packer et al. (2023). Moving from chats to tool calling agents means that we should represent
inputs and outputs from agents as events in a consistent structured schema (e.g. JSON or
YAML) rather than messages (represented as strings).

5.1.3 Agent State
Agent state is a crucial part of building long-running reliable agents. In order to perform

multi-step reasoning (e.g. calling multiple tools in sequence) agents must effectively manage
their "short term memory" (i.e. what is in their context), in addition to also maintaining
"long-term memories" in external storage. We define the LLM context as (1) base system
instructions, (2) tool schemas, (4) scratchpad state - context for the LLM to self-modify
between tool calls (state machine). In contrast, external data storage consists of (1) event
(i.e. message) history, (2) memories (information the agent has aggregated/processed that
does not fit into context), (3) external data sources (i.e. external information retrieved via
RAG-like processes). Creating an agent service requires both storing this state one or more
database tables, as well as carefully choosing what information to store into the context
versus external storage.

Multi-agent collaboration
Since it will be easier for agents to focus on completing more narrow tasks, and there

are also limitations on the number of tools and instructions that can be placed in a single
agent’s context window, we anticipate that more complex tasks will require multi-agent
collaboration. Current multi-agent frameworks Wu et al. (2023) leverage a coordinator
agent to share messages between agents, however this bottlenecks and oversimplifies cross-
agent communication. As agents move towards running as stateful services, cross-agent
collaboration can be implemented by allowing agents to send events (or messages) to other
agents.

5.2 The Agent Hosting Layer
We envision that LLM applications will be built on top of a stateful, agent hosting later

than a stateless model hosting layer. This allows for developers to built on top of higher-

5.2. THE AGENT HOSTING LAYER 71

level, stateful APIs that manage state and cross-agent communication on their behalf, as
well as enabling co-optimizations with the inference layer.

5.2.1 LLM Inference: Co-optimization with the inference layer
Existing inference systems are mostly optimized for interactive chat Kwon et al. (2023);

Agrawal et al. (2023), retrieval-augmented generation Gim et al. (2024), or code generation
(for example GitHub Copilot). However, agents have a much more predictable, structured
pattern that the inference layer can take advantage of. For example, agentic workload
have long context with common reused prefixes including system prompts. It also requires
structured output for planning, tool-use, and multi-agent interaction. Additionally, agent
workflow resembles direct-acyclic-graph with dependencies and branches. Inference system
optimizations such as prefix caching Zheng et al. (2023a); Juravsky et al. (2024), constrained
decoding Willard & Louf (2023), and request prioritization frameworks should be considered
when optimizing for agents.

5.2.2 State & Context Management
Building applications on top of a stateful, agentic API layer rather than a stateless LLM

layer allows developers to offload management of state and the agent’s context. Standard
schemas for state (e.g. agent events/messages, tool calls, user data) stored in a database
by the stateful API layer allow for applications to be agnostic to the LLM provider, due
to the separation of compute and storage. Agent state stored in external databases can be
connected to a context management layer which determines what is placed into an agent’s
context on any given API call.

5.2.3 Multi-agent communication and orchestration
Agents running on the agent hosting layer will need to communicate and coordinate. We

anticipate a new standard of REST-based APIs will emerge that define the patterns of agent-
agent and user-agent interaction via the internet. These new API standards will have to sup-
port basic modes of operation and patterns such as event-based communication, callbacks (to
enable orchestrator agents to wait on responses from subordinate agents), publish-subscribe
and webhook patterns (to enable agents to autonomously trigger on events without user
interference). The next generation of agent APIs will both have to support streaming (given
the current demand for token-level streaming ChatCompletion APIs) as well as polling for
long-running jobs where standard REST server-sent events (SSE) protocols no longer apply.
Additionally, we anticipate bi-directional streaming APIs (e.g. websockets) will be of sig-
nificant importance since many agent-based applications will require interfaces where a user
both monitors a stream of agent agents and engages with the agent via the same interface.

72

Chapter 6

Conclusion & Future Work

The emergence of Large Language Models has fundamentally transformed how we ap-
proach building autonomous systems. While LLMs demonstrate unprecedented reasoning
capabilities and knowledge, their effectiveness as autonomous agents is limited by fundamen-
tal constraints in their architecture - most notably, their stateless nature and fixed context
windows. This thesis introduces novel frameworks for building reliable LLM-based agents,
centered around the insight that memory management is a first-class concern in designing
these systems.

Through our work on MemGPT, we identified that the key missing piece in building
LLM-based agents was not in the models themselves, but in the surrounding system in-
frastructure needed to transform these powerful but stateless language models into reliable
agents. By treating LLMs as a new fundamental unit of compute - analogous to how CPUs
were the fundamental unit in traditional operating systems - we demonstrated how proper
memory and state management can enable more reliable and capable autonomous agents.
This perspective of LLMs as stateless computational primitives that require careful memory
management has broad implications for the future of AI systems.

Just as operating systems evolved to manage traditional compute resources, we need
new abstractions and systems to manage LLM resources effectively. MemGPT represents a
first step in this direction, introducing concepts like virtual context management and self-
directed memory operations. The challenges ahead in scaling these systems are significant
- from managing concurrent LLM instances and sharing state across agents, to optimizing
resource utilization and ensuring consistent performance in distributed deployments. These
challenges will require new programming models and abstractions specifically designed for
building reliable LLM-based applications.

Collectively, this work represents a significant advancement in our understanding of how
to build reliable autonomous systems in the era of Large Language Models. By establish-
ing new paradigms for memory management in LLM-based systems, this work supports the
development of more sophisticated AI applications that can effectively reason, plan, and
maintain long-term state. As language models continue to grow in capability and deploy-
ment, the importance of robust system infrastructure for managing them will only increase.

73

The frameworks and techniques presented in this thesis provide a foundation for addressing
these challenges, paving the way for a new generation of reliable autonomous agents built
on Large Language Models.

74

Bibliography

Agrawal, A., Panwar, A., Mohan, J., et al. 2023, SARATHI: Efficient LLM Inference by
Piggybacking Decodes with Chunked Prefills, arXiv:2308.16369 [cs.LG]

Al-Shedivat, M., Bansal, T., Burda, Y., et al. 2018, in International Conference on Learning
Representations (ICLR)

Andrychowicz, M., Wolski, F., Ray, A., et al. 2017, in Neural Information Processing Systems
(NeurIPS), 5048

Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. 2017, IEEE Signal
Processing Magazine, 34

Barto, A. G., Sutton, R. S., & Anderson, C. W. 1983, IEEE Transactions on Systems, Man,
and Cybernetics, 13

Beattie, C., Leibo, J. Z., Teplyashin, D., et al. 2016, arXiv:1612.03801
Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. 2013, Journal of Artificial Intelli-

gence Research (JAIR), 47
Beltagy, I., Peters, M. E., & Cohan, A. 2020, arXiv preprint arXiv:2004.05150
Bengio, Y., Bengio, S., & Cloutier, J. 1990, Learning a synaptic learning rule (Citeseer)
Borgeaud, S., Mensch, A., Hoffmann, J., et al. 2022, in International conference on machine

learning, PMLR, 2206
Brockman, G., Cheung, V., Pettersson, L., et al. 2016, arXiv:1606.01540
Brown, T., Mann, B., Ryder, N., et al. 2020, Advances in neural information processing

systems, 33, 1877
Chen, S., Wong, S., Chen, L., & Tian, Y. 2023, arXiv preprint arXiv:2306.15595
Child, R., Gray, S., Radford, A., & Sutskever, I. 2019, arXiv preprint arXiv:1904.10509
Clark, J., & Amodei, D. 2016, https://blog.openai.com/faulty-reward-functions
Clavera, I., Nagabandi, A., Fearing, R. S., et al. 2018, arXiv:1803.11347
Cobbe, K., Klimov, O., Hesse, C., Kim, T., & Schulman, J. 2019, in International Conference

on Machine Learning (ICML)
Dai, Z., Yang, Z., Yang, Y., et al. 2019, arXiv preprint arXiv:1901.02860
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. 2018, arXiv preprint arXiv:1810.04805
Dhariwal, P., Hesse, C., Plappert, M., et al. 2017, OpenAI Baselines
Dietterich, T. G. 2017, AI Magazine, 38
Dong, Z., Tang, T., Li, L., & Zhao, W. X. 2023, arXiv preprint arXiv:2302.14502
Donoho, D. 2015, in Tukey Centennial Workshop

http://arxiv.org/abs/2308.16369

BIBLIOGRAPHY 75

Duan, Y., Chen, X., Houthooft, R., Schulman, J., & Abbeel, P. 2016a, in International
Conference on Machine Learning (ICML)

Duan, Y., Schulman, J., Chen, X., et al. 2016b, arXiv:1611.02779
Eysenbach, B., Geng, X., Levine, S., & Salakhutdinov, R. 2020, arXiv preprint

arXiv:2002.11089
Finn, C., Abbeel, P., & Levine, S. 2017, in International Conference on Machine Learning

(ICML)
Florensa, C., Held, D., Geng, X., & Abbeel, P. 2018, in International Conference on Machine

Learning (ICML)
Gim, I., Chen, G., seob Lee, S., et al. 2024, Prompt Cache: Modular Attention Reuse for

Low-Latency Inference, arXiv:2311.04934 [cs.CL]
Gupta, A., Eysenbach, B., Finn, C., & Levine, S. 2018a, arXiv preprint arXiv:1806.04640
Gupta, A., Mendonca, R., Liu, Y., Abbeel, P., & Levine, S. 2018b, in Neural Information

Processing Systems (NeurIPS), 5302
Guu, K., Lee, K., Tung, Z., Pasupat, P., & Chang, M. 2020, in International conference on

machine learning, PMLR, 3929
Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. 2018, in International Conference on

Machine Learning (ICML)
Henderson, P., Islam, R., Bachman, P., et al. 2018, in AAAI Conference on Artificial Intel-

ligence (AAAI)
Hinton, G., Srivastava, N., & Swersky, K. 2012, Neural networks for machine learning lecture

6, https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
Houthooft, R., Chen, Y., Isola, P., et al. 2018, in Neural Information Processing Systems

(NeurIPS), 5400
Izacard, G., Caron, M., Hosseini, L., et al. 2021, arXiv preprint arXiv:2112.09118
Izacard, G., & Grave, E. 2020, arXiv preprint arXiv:2007.01282
Jabri, A., Hsu, K., Gupta, A., et al. 2019, in Neural Information Processing Systems

(NeurIPS), 10519
Jiang, Z., Xu, F. F., Gao, L., et al. 2023, arXiv preprint arXiv:2305.06983
Juravsky, J., Brown, B., Ehrlich, R., et al. 2024, Hydragen: High-Throughput LLM Inference

with Shared Prefixes, arXiv:2402.05099 [cs.LG]
Kaelbling, L. P. 1993, in International Joint Conferences on Artificial Intelligence (IJCAI),

Citeseer, 1094
Kansky, K., Silver, T., Mély, D. A., et al. 2017, in International Conference on Machine

Learning (ICML)
Karpukhin, V., Oğuz, B., Min, S., et al. 2020, arXiv preprint arXiv:2004.04906
Kempka, M., Wydmuch, M., Runc, G., Toczek, J., & Jaśkowski, W. 2016, in IEEE Confer-

ence on Computational Intelligence and Games
Kingma, D. P., & Ba, J. 2015, in International Conference on Learning Representations

(ICLR)
Kitaev, N., Kaiser, Ł., & Levskaya, A. 2020, arXiv preprint arXiv:2001.04451
Kwon, W., Li, Z., Zhuang, S., et al. 2023, Efficient Memory Management for Large Language

http://arxiv.org/abs/2311.04934
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://arxiv.org/abs/2402.05099

BIBLIOGRAPHY 76

Model Serving with PagedAttention, arXiv:2309.06180 [cs.LG]
Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. 2017, Behavioral and

Brain Sciences, 40
Lee, J., Lee, Y., Kim, J., et al. 2019, in International conference on machine learning, PMLR,

3744
Levine, S., Finn, C., Darrell, T., & Abbeel, P. 2016, Journal of Machine Learning Research

(JMLR), 17, 1334
Levy, A., Platt, R., & Saenko, K. 2017, arXiv preprint arXiv:1712.00948
Lewis, P., Perez, E., Piktus, A., et al. 2020, Advances in Neural Information Processing

Systems, 33, 9459
Li, A. C., Pinto, L., & Abbeel, P. 2020, arXiv preprint arXiv:2002.11708
Lillicrap, T. P., Hunt, J. J., Pritzel, A., et al. 2015, arXiv preprint arXiv:1509.02971
Lim, S. H., Xu, H., & Mannor, S. 2013, in Neural Information Processing Systems (NIPS)
Lin, C.-Y. 2004, in Text summarization branches out, 74
Lin, X. V., Chen, X., Chen, M., et al. 2023, RA-DIT: Retrieval-Augmented Dual Instruction

Tuning, arXiv:2310.01352 [cs.CL]
Liu, N. F., Lin, K., Hewitt, J., et al. 2023a, arXiv preprint arXiv:2307.03172
Liu, X., Yu, H., Zhang, H., et al. 2023b, arXiv preprint arXiv:2308.03688
Machado, M. C., Bellemare, M. G., Talvitie, E., et al. 2017, arXiv:1709.06009
Marcus, G. 2018, arXiv:1801.00631
Mishra, N., Rohaninejad, M., Chen, X., & Abbeel, P. 2018a, in International Conference on

Learning Representations (ICLR)
Mishra, N., Rohaninejad, M., Chen, X. P., & Abbeel, P. 2018b, in International Conference

on Learning Representations (ICLR)
Mnih, V., Badia, A. P., Mirza, M., et al. 2016, in International Conference on Machine

Learning (ICML)
Mnih, V., Kavukcuoglu, K., Silver, D., et al. 2015, Nature, 518
Moore, A. W. 1990, Efficient Memory-based Learning for Robot Control, Tech. rep., Uni-

versity of Cambridge Computer Laboratory
Morimoto, J., & Doya, K. 2001, in Neural Information Processing Systems (NIPS)
Nair, A., Srinivasan, P., Blackwell, S., et al. 2015, arXiv:1507.04296
Nair, A. V., Pong, V., Dalal, M., et al. 2018, in Neural Information Processing Systems

(NeurIPS), 9191
Nakano, R., Hilton, J., Balaji, S., et al. 2021, arXiv preprint arXiv:2112.09332
Ng, A. Y., Harada, D., & Russell, S. 1999, in International Conference on Machine Learning

(ICML), Vol. 99, 278
Nichol, A., Pfau, V., Hesse, C., Klimov, O., & Schulman, J. 2018, arXiv:1804.03720
Nilim, A., & Ghaoui, L. E. 2004, in Neural Information Processing Systems (NIPS)
Ouyang, L., Wu, J., Jiang, X., et al. 2022, Advances in Neural Information Processing

Systems, 35, 27730
Packer, C., Fang, V., Patil, S. G., et al. 2023, arXiv preprint arXiv:2310.08560
Packer, C., Gao, K., Kos, J., et al. 2018, arXiv:1810.12282

http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2310.01352

BIBLIOGRAPHY 77

Park, J. S., O’Brien, J. C., Cai, C. J., et al. 2023, arXiv preprint arXiv:2304.03442
Patterson, D. A., Gibson, G., & Katz, R. H. 1988, in Proceedings of the 1988 ACM SIGMOD

international conference on Management of data, 109
Pinto, L., Davidson, J., Sukthankar, R., & Gupta, A. 2017, in International Conference on

Machine Learning (ICML)
Press, O., Smith, N. A., & Lewis, M. 2021, arXiv preprint arXiv:2108.12409
Rajeswaran, A., Ghotra, S., Ravindran, B., & Levine, S. 2017a, in International Conference

on Learning Representations (ICLR)
Rajeswaran, A., Lowrey, K., Todorov, E. V., & Kakade, S. M. 2017b, in Neural Information

Processing Systems (NIPS)
Rakelly, K., Zhou, A., Quillen, D., Finn, C., & Levine, S. 2019, in International Conference

on Machine Learning (ICML)
Ram, O., Levine, Y., Dalmedigos, I., et al. 2023, arXiv preprint arXiv:2302.00083
Rauber, P., Ummadisingu, A., Mutz, F., & Schmidhuber, J. 2019, in International Confer-

ence on Learning Representations (ICLR)
Rothfuss, J., Lee, D., Clavera, I., Asfour, T., & Abbeel, P. 2019, in International Conference

on Learning Representations (ICLR)
Roy, A., Xu, H., & Pokutta, S. 2017, in Neural Information Processing Systems (NIPS)
Ruder, S. 2017, arXiv:1706.05098
Rusu, A. A., Rabinowitz, N. C., Desjardins, G., et al. 2016, arXiv:1606.04671
Sæmundsson, S., Hofmann, K., & Deisenroth, M. P. 2018, arXiv:1803.07551
Schick, T., Dwivedi-Yu, J., Dessì, R., et al. 2023, arXiv preprint arXiv:2302.04761
Schmidhuber, J. 1987, PhD thesis, Technische Universität München
Schulman, J., Levine, S., Abbeel, P., Jordan, M. I., & Moritz, P. 2015, in International

Conference on Machine Learning (ICML)
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. 2017, arXiv:1707.06347
Silver, D., Hubert, T., Schrittwieser, J., et al. 2017, arXiv preprint arXiv:1712.01815
Stadie, B. C., Yang, G., Houthooft, R., et al. 2018, arXiv preprint arXiv:1803.01118
Sung, F., Zhang, L., Xiang, T., Hospedales, T., & Yang, Y. 2017, arXiv:1706.09529
Sutton, R. S. 1995, in Neural Information Processing Systems (NIPS)
Sutton, R. S., & Barto, A. G. 2017, Reinforcement Learning: An Introduction, 2nd edn.

(MIT Press)
Tamar, A., Glassner, Y., & Mannor, S. 2015, in AAAI Conference on Artificial Intelligence

(AAAI)
Taylor, M. E., & Stone, P. 2009, Journal of Machine Learning Research (JMLR), 10
Thrun, S., & Pratt, L. 1998, in Learning to learn (Springer), 3
Todorov, E., Erez, T., & Tassa, Y. 2012, in Intelligent Robots and Systems (IROS)
Touvron, H., Martin, L., Stone, K., et al. 2023, arXiv preprint arXiv:2307.09288
Trivedi, H., Balasubramanian, N., Khot, T., & Sabharwal, A. 2022, ArXiv, abs/2212.10509
Vaswani, A., Shazeer, N., Parmar, N., et al. 2017, Advances in neural information processing

systems, 30
Wang, J. X., Kurth-Nelson, Z., Tirumala, D., et al. 2016, arXiv:1611.05763

https://api.semanticscholar.org/CorpusID:254877499

BIBLIOGRAPHY 78

Wang, S., Li, B. Z., Khabsa, M., Fang, H., & Ma, H. 2020, arXiv preprint arXiv:2006.04768
Wei, J., Wang, X., Schuurmans, D., et al. 2022, Advances in Neural Information Processing

Systems, 35, 24824
Whiteson, S., Tanner, B., Taylor, M. E., & Stone, P. 2011, in IEEE Symposium on Adaptive

Dynamic Programming And Reinforcement Learning
Willard, B. T., & Louf, R. 2023, arXiv preprint arXiv:2307.09702
Wu, Q., Bansal, G., Zhang, J., et al. 2023, arXiv preprint arXiv:2308.08155
Xu, J., Szlam, A., & Weston, J. 2021, arXiv preprint arXiv:2107.07567
Xu, T., Liu, Q., Zhao, L., & Peng, J. 2018a, in International Conference on Machine Learning

(ICML), 5463
Xu, Z., van Hasselt, H. P., & Silver, D. 2018b, in Neural Information Processing Systems

(NeurIPS), 2396
Yao, S., Zhao, J., Yu, D., et al. 2022, arXiv preprint arXiv:2210.03629
Yu, W., Tan, J., Liu, C. K., & Turk, G. 2017, in Robotics: Science and Systems (RSS)
Zhang, A., Ballas, N., & Pineau, J. 2018, arXiv:1806.07937
Zheng, L., Yin, L., Xie, Z., et al. 2023a, Efficiently Programming Large Language Models

using SGLang, arXiv:2312.07104 [cs.AI]
Zheng, L., Chiang, W.-L., Sheng, Y., et al. 2023b, arXiv preprint arXiv:2306.05685
Zintgraf, L. M., Shiarlis, K., Kurin, V., Hofmann, K., & Whiteson, S. 2018, arXiv preprint

arXiv:1810.03642

http://arxiv.org/abs/2312.07104

	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Background
	The Deep Learning Revolution in Robotics and Control
	The Rise of Foundation Models

	Deep Learning for Agentic Systems
	The LLM Agent Paradigm

	Assessing Generalization in Deep Reinforcement Learning
	Introduction
	Background
	Notation
	Algorithms
	Environments
	Experimental setup
	Experimental setup
	Results and discussion
	Conclusion
	Additional details
	Environment Details
	Training Hyperparameters
	Detailed Experimental Results
	Behavior of MountainCar
	Training Curves
	Videos of trained agents

	Hindsight Task Relabelling: Experience Replay for Sparse Reward Meta-RL
	Introduction
	Related work
	Background
	Meta-Reinforcement Learning (Meta-RL)
	Off-Policy Meta-Reinforcement Learning
	Hindsight Experience Replay

	Leveraging Hindsight in Meta-Reinforcement Learning
	Algorithm Design
	Single Episode Relabeling (SER) strategy
	Episode Clustering (EC) strategy
	Comparison of HTR and HER
	Limitations

	Experiments
	Environments
	HTR enables meta-training using only sparse reward
	Varying key hyperparameters

	Conclusion
	Experimental Setup (additional details)
	Computing Infrastructure
	Hyperparameters
	Reward Functions
	Changing the Distance to Goal

	Algorithm Specifics
	Sample-Time vs Data Generation Relabelling
	Single Episode Relabelling Implementation Details
	Episode Clustering Implementation Details
	Time and Space Complexity

	MemGPT: Towards LLMs as Operating Systems
	Introduction
	MemGPT (MemoryGPT)
	Main context (prompt tokens)
	Queue Manager
	Function executor (handling of completion tokens)
	Control flow and function chaining

	Experiments
	Experiments
	MemGPT for conversational agents
	MemGPT for document analysis

	Related work
	Conclusion
	Additional details
	Limitations
	MemGPT pseudocode
	MemGPT function set
	Prompts and instructions
	Balancing Working Context and the FIFO Queue

	From Serving Models to Serving Agents: The Missing Pieces for Supporting Agentic Workloads
	Introduction
	The Existing Stateless LLM Programming Model
	Agentic Programming Model
	Agent State

	The Agent Hosting Layer
	LLM Inference: Co-optimization with the inference layer
	State & Context Management
	Multi-agent communication and orchestration

	Conclusion & Future Work
	Bibliography

