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Abstract

Improving Inference Privacy for Large Language Models using Fully Homomorphic
Encryption

by

Rohit Mittal

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

As large language models (LLMs) become more and more prevalent in our lives, concerns
surrounding the privacy of their input and output data have been brought to the forefront
of the debate around the use of this technology. In order for large language models to realize
their full potential, solutions must be designed that protect the sensitive data in user queries.
This report explores a solution to private inference through fully homomorphic encryption.
The report showcases how fully homomorphic encryption (FHE) can be used to design a
model that offloads intensive query computation to a remote server, similar to present-day
LLM client-server models, while encrypting the query such that the server can compute over
it while being oblivious to the plaintext query itself, ensuring privacy by design without
having to trust the server. The report also discusses methods to increase the speed of the
computation without directly revealing the inference result and examines the impacts of
these methods on a working implementation of the Meta Llama 2 LLM where intensive
query computations are offloaded to a server while still ensuring the privacy of the inputs
and outputs.
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Chapter 1

Introduction

When designing products for the use of individuals, businesses, and governments, it is vital
for engineers to create a system that users can trust. This is especially true in the realm
of products that incorporate large language models (LLMs). The large language model is a
recent innovation that brings many novel product ideas to life, creating new opportunities
to save time, automate tasks, and derive new insights from data that would not have been
possible with older computation paradigms. However, in order for LLMs to reach their full
potential, products have to be designed so that users are assured of the confidentiality of
their data.

Privacy is a paramount concern in an increasingly digital world. The past decade has
introduced the world to the value of big data, and with it, the responsibilities one must have
for their own data. Users must now take into account the risk that data they provide to a
product can be used in ways they may not condone, or that it may be leaked to malicious
adversaries. Data breaches have a very tangible cost associated with them, with the legal fees
for the Target data breach in 2013 exceeding $150,000 alone[5]. In addition, they can have
additional costs both for the company and the overall economy when taking into account
the loss of customer trust and the increased risk of identity theft from adversaries gaining
access to private customer data. Privacy concerns have a measurable effect on the success of
a product, with studies[10] showing that users change their behavior and interact less with
products that they associate with breaches of privacy. Thus, ensuring that users can trust a
product is an important factor in making sure the product can succeed.

Large language models face unique challenges in assuring user trust. Their design strongly
depends on a user voluntarily providing data that may be sensitive, meaning that a user must
have very high confidence in the privacy of their data. This is especially true for institutional
use cases, where products incorporating LLMs may have to adhere to strict regulations on
handling user data in order to follow government or company policies. One of the risk
factors affecting the applicability of LLMs is the privacy concerns around data fed to it both
in training and in deployment[23]. While there are some privacy preserving solutions for
LLM training, there is still work to do in order to assure the privacy of user provided data
in the query. This is because LLMs by their nature are highly computationally intensive,
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meaning that in many use cases, users have to send their queries to remote servers with
purpose-built hardware. This client-server model bypasses the need for users to carry their
own hardware but introduces privacy concerns, as users must trust that the server they send
their data to is not compromised. In addition, the user must trust the server provider and
the LLM host to not leak or misuse their queries. This makes LLM products unsuitable
for scenarios where regulators or policy makers may require sensitive data not to be sent to
remote servers, limiting the use of LLMs in fields like health, finance, and other domains
that use sensitive data.

There has been some work in using cryptography to ensure the privacy of the query in
a client-server inference model. One example would be BOLT[22], which uses a combina-
tion of fully homomorphic encryption and secure multiparty computation (MPC) in order
to create an inference protocol where only the client can see the results of the inference.
There have been various iterations of using MPC for inference privacy, such as IRON[9]
(BOLT’s predecessor), and SecFormer[18]. Among the best performing contemporary MPC
augmented models is Bumblebee[17], which claims to generate a token every 14 minutes
on average when evaluating the LLaMA-7B model. However, these works only guarantee
privacy against a semi-honest adversary which controls one party in the multi-party compu-
tation but strictly adheres to the protocol while trying to glean private information. These
works do not guarantee privacy against a malicious adversary that does not need to follow
the protocol, limiting their applicability in situations where an adversary can corrupt the
protocol itself to learn private information.

In order to create a solution that works against a malicious adversary, this paper focuses
on exploring a solution to this challenge that involves incorporating fully homomorphic
encryption (FHE) into LLMs. FHE is a type of encryption that allows computations to
be performed directly on encrypted ciphertexts while remaining oblivious to the decrypted
plaintext. By incorporating FHE into LLMs, users can ensure that their encrypted queries
are private by design. When the user sends an encrypted query to the server, the server can
compute over it in FHE, but only the user has the ability to view the plaintext query and
result. Unlike previous purely FHE solutions such as NEXUS[30], which performs an end-
to-end FHE evaluation of a model, this paper will explore the idea of only offloading specific
operations to be done in FHE while preserving privacy by doing low intensity operations
on the client. This paper will explore the various possible methods of integrating these
FHE operations, as well as discuss some of its challenges, such as choosing an FHE scheme,
handling quantization, and choosing operations to perform in FHE. The paper will then
conclude with an analysis of the culmination of this work: An implementation of the Meta
LLaMA 2 LLM which offloads intensive query computation to a server while ensuring the
privacy of the query through FHE.
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Chapter 2

Background

2.1 Large Language Models

Large Language Models[21] are highly generalized artificial intelligence systems that can
interpret and generate natural language. There are many different LLMs today, with some
of the most popular including OpenAI’s ChatGPT, Google’s Gemini, and Facebook’s LLaMA
series of models. While still a relatively recent development in technology, they have quickly
found uses as chatbots, translators, interpreters, and classifiers with versatility that was not
possible with previous technology.

While the models differ in implementation and training, they all follow a core set of
principles. Inputs to the models are tokenized into vectors of tokens, which can represent
input characters or words depending on the implementation. LLMs take the tokenized vector
and weigh each token by its perceived importance in order to emphasize the most relevant
tokens. Normalization functions are used to stabilize inputs and make them converge more
quickly. Activation functions fit their inputs to a non-linear function in order to assist
the model in representing non-linear relationships[11]. All of these are vital components to
the Transformer based architecture[26], and make up the layers that process the tokenized
inputs. These layers involve combining vectors of input and intermediate products from the
previous layers with pre-trained vectors to obtain the next layer’s output. These operations
generally involve linear transformations and other matrix-vector operations, which are very
computationally intensive.

As such, most LLM computation is done using specialized hardware in the form of GPUs
and TPUs. These allow for efficient and rapid parallel computation over large matrices and
vectors which would otherwise take a CPU a long time to do sequentially. However, many
applications of LLMs occur in environments without GPUs or TPUs, which limits their
applicability. To resolve this, LLMs can be run on remote servers where the client’s query is
sent to a server with the required hardware. The server then quickly and efficiently produces
a response with its stronger dedicated hardware. These servers are generally hosted by large
scale cloud providers and can be orchestrated and accessed by many parties, causing concerns
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for data privacy.
Work on privacy preservation in LLMs has led to some potential solutions in this space,

each with some trade-offs. The conceptually simplest solution is to remove the server from
the equation altogether. Local LLM computation can be done with many open source and
open weight models but generally requires the user to have access to the specialized hardware
needed to run the LLM on site. Server providers themselves can also provide some measures
of security to query data, such as running servers in secure data centers and communicating
with the client using secure protocols. However, these safeguards still require the user to
trust the LLM provider, as the server itself can still see the query in plaintext. In order to
preserve the secrecy of the plaintext from the provider, servers can integrate secure hardware
enclaves that the LLM runs inside, such as the Keystone[14] secure enclave. This allows for
remote attestation of the LLM’s integrity and hides the plaintext query from the server
itself, but requires the user to still trust the company and supply chain behind the secure
hardware, as the enclave is the root of trust for the computation.

Secure multi-party computation[16] can be used to create a system where a group of non-
colluding servers can compute over the query in a distributed fashion and no one server has
access to the plaintext itself. Bumblebee[17] and BOLT [22] use multi-party computations
in order to evaluate approximations of nonlinear functions, such as GELU and SoftMax.
From a performance standpoint, MPC is well suited for these kinds of privacy-preserving
computations and is able to do them with minimal communication overhead. However,
as explored in BOLT[22], MPC has significant communication costs that make evaluating
linear layers less performant. In addition, current works using MPC for secure inference only
explore a threat model with a semi-honest adversary. This makes MPC for secure inference
impractical in applications that require privacy guarantees against an adversary that is not
restricted to semi-honesty.

2.2 Fully Homomorphic Encryption

Overview

Fully Homomorphic Encryption[19] is a special kind of encryption that allows for manipula-
tion of the encrypted data without needing to decrypt it. At the highest level, FHE works
by creating an encryption scheme that is compatible with addition and multiplication and
is able to extrapolate those into mathematical and boolean operations.

There are many different schemes, but the ones this project focuses on are schemes that
work with numerical inputs and outputs. BFV[27] and BGV[2] are schemes that use ring
learning with errors (RLWE) to do integer and fixed-point arithmetic. To do this, the
plaintext is encrypted with a public key and some random noise. The encryption process
creates a ciphertext that can be represented as a first-degree polynomial. The polynomial is
chosen such that it will return the plaintext when given a specific input known only to the
client, also known as the secret key. Adding two ciphertexts together is as simple as adding
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together the coefficients of each polynomial. If one has two ciphertexts in the form of ax+ b
and cx + d, the addition of the two would be (a + c)x + b + d. When this is given back
to the secret key holder, they can compute the input by substituting the value of x for the
secret key. Similarly, multiplying the above ciphertexts involves creating a second-degree
polynomial (ac)x2 + (bc + ad)x + bd.. However, this creates a second-degree polynomial,
for which the existing homomorphic operations cannot be done on. While addition and
multiplication could be devised to work on second-degree polynomials as well, this process
does not scale very efficiently and can cause loss of performance. To prevent this, rounds
of communication with the secret key holder can be used to relinearize the polynomial to
only have one degree. BFV and BGV differ in their approaches to relinearization, and it is
considered the critical bottleneck for homomorphic operations. Coefficients for ciphertexts
are chosen to be congruent to some modulus chosen at the beginning of the scheme in order to
ensure the security of the scheme. In addition to this, the noise introduced when creating the
ciphertexts can accumulate with homomorphic operations. To handle this noise, coefficients
with noise can be shrunk by switching the modulus, both reducing the accumulated noise
and shrinking the coefficients of the polynomial, making future operations more performant.

One limitation of integer based FHE is that it cannot be used directly for floating point
arithmetic. An alternative scheme is CKKS[3], which absorbs the error generated by FHE
operations into the error inherent in floating point operations. CKKS is approximate arith-
metic, meaning that some error will be generated in the result, but the scheme can be tuned
to have a larger or smaller modulus based on the need for performance or higher accuracy.
The relinearization operation for CKKS also consumes one of the polynomial moduli from
the ciphertext to relinearize the ciphertext. This introduces the concept of multiplicative
depth to CKKS. Because the number of linearization operations is depending on the num-
ber of moduli, a given ciphertext can only do a certain amount of multiplication operations
before exhausting its moduli.

One other important scheme for this project is TFHE[4]. TFHE is a high performance
integer based FHE scheme which leverages a torus shaped algebraic structure for its cipher-
texts. It aims to increase performance by making relinearization operations very performant
and has the ability to increase performance further by being able to do certain operations
simultaneously alongside relinearization for free through an operation called programmable
bootstrapping.

Tooling

There are a number of software implementations and frameworks for FHE, spanning from
high level APIs that abstract away the complexities of individual operations to low level
primitives that the user can use to build up more complex cryptographic operations. One
example is the Simple Encrypted Arithmetic Library from Microsoft[24]. SEAL provides
a set of libraries that implement an API for FHE operations. It has implementations of
the BFV, BGV, and CKKS encryption schemes and provides addition and multiplication
as well as a host of more complex vector operations, such as vector addition, selection, and
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rotation. SEAL itself is implemented in C++ but has ports to various other programming
languages. One such port is the TenSEAL library[1], which allows for SEAL operations to be
performed in Python through vectors that are based on the tensors used by the Tensorflow
and Pytorch libraries. TenSEAL includes some useful tensor operations such as matrix-
vector and matrix-matrix multiplication both in plaintext and ciphertext. Both SEAL and
TenSEAL still expose low level implementation details to the user. For CKKS, this means
the size of the polynomial modulus and the number of moduli are set by the user, and the
user must have a deep understanding of the underlying scheme to utilize the libraries.

Another FHE implementation is the HEaaN homomorphic encryption library[12], which
is a CKKS library implemented in C++ which can utilize general computing accelerators
in the CPU such as the AVX-512 extension on Intel processors, or even utilize GPUs to
accelerate homomorphic computation.

A lower level example of an FHE implementation is HElib[8], which implements BGV
and CKKS in C++. The goal of HELib is to provide assembly-like low level functions
for working with homomorphic ciphertexts, such as set, add, multiply, and shift. It also
supports automatic bootstrapping and multithreading for improved results. Operators are
also overloaded to work with plaintext objects as well to maximize interoperability.

Lattigo[13] is an FHE library implemented in Go that focuses on creating encrypted
distributed systems. The library allows for the creation of lattice based circuits that can
integrate both multiparty and homomorphic encryption together, with support for CKKS
and BFV/BGV. The implementation flexibility allows for significant performance gains and
circuits with a lot of capabilities.

Concrete ML

An implementation of interest to this project is the Concrete ML library[28]. Concrete ML
is an implementation of the TFHE scheme in Python. It is designed from the ground up to
be used in production FHE deployments that involve a client-server architecture for machine
learning applications. As such, it contains integrations with many popular Python libraries,
such as Numpy, Scikit-Learn, and Pytorch. Unlike SEAL, it abstracts away most of the
complexity of TFHE and provides the user with a workflow that is easier to integrate into
existing systems.

In order to create an FHE circuit using Concrete ML, a model is first compiled into
Concrete. Concrete[29] is the underlying library behind Concrete ML which implements
and runs FHE circuits. Compilation involves taking a set of FHE operations and converting
them into an intermediate representation in Concrete that encompasses an FHE circuit.
This compiled model can then be simulated in plaintext in order to judge the accuracy of
the model without having to run it in FHE, allowing for faster development cycles. Inference
can then be performed on the compiled model by calling it with the input, very similarly
to how one would call a plain Torch model. During inference, keys are generated using a
random number generator to encrypt the ciphertext, and then the ciphertext is operated
on in FHE before the result is decrypted. This operation can be easily split into a client-
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server model because Concrete ML also includes serialization of the compiled models and
ciphertexts. This allows for a flow where a client can send a server encrypted input alongside
a compiled model, and then the server can compute over the data in FHE before sending
the computed ciphertext back to the client to decrypt, without the server ever having access
to the unencrypted plaintext or the secret key.

This client-server approach allows for Concrete ML to create a circuit where operations
are split between the client and the server. The HybridFHEModel compiler is able to take a
Pytorch model along with a list of submodule names to compile and return a Pytorch module
where the listed submodules are replaced by a remote call to a server. This call homomor-
phically generates keys, encrypts its inputs with those keys, and sends the ciphertext along
with the compiled and serialized model to a server that implements the HybridFHEServer.
The server then de-serializes the model and homomorphically computes the input over the
provided model before sending the output back to the client. However, the server would not
be able to derive any useful information about the inputs or the outputs from the ciphertexts
due to the nature of FHE. It would have access to the ciphertext and would be able to modify
it, but because the server is not in possession of the keys used to encrypt the ciphertext, it
cannot access the plaintext inputs or outputs.

Concrete ML supports a great number of FHE operations out of the box. It supports
in-place FHE compilation for a number of Pytorch modules, from arithmetic torch.sum

and torch.mul operators to shape operators like torch.reshape and torch.transpose.
It also supports more complex matrix operators such as torch.nn.Linear, but some of
these operators only support combining ciphertext with unencrypted plaintext, limiting their
usability in an FHE application. In addition, Concrete ML only has a TFHE implementation,
and Concrete ML does not implement floating point operations, so floating point inputs
have to be quantized before being used. Quantization allows for the conversion of floats into
integers, and lowers the bit width of the input, allowing for higher performance. However,
it also necessarily lowers the resolution of the data, increasing the error of the computation.
Additionally, all intermediate operations in the circuit must stay under a maximum bit width
of 16 bits in order to avoid overflowing the underlying data types, which can mean requiring
further quantization to handle operations which increase the bit width of the output. To
aid in this, Concrete ML runs a pass through a model with provided sample inputs in a
calibration step. This calibration pass serves both to ensure the bit width limit is not
exceeded and to tune a quantizer in order to represent the most relevant parts of the input
space with higher resolution, decreasing error generated by quantization.

One other limitation of the TFHE scheme, as well as all numerical FHE schemes, is
that the polynomial implementation of the ciphertexts is not conducive to running non-
linear operations. One solution to non-linear operations in FHE is to find a linear operation
that directly approximates the non-linear one. This must be done by the user and can
be done in many ways such as creating a Taylor series approximation of the operation[25].
Concrete ML provides another solution in the form of lookup tables compiled for non-linear
operations. During calibration, the inputs and outputs of non-linear operations are recorded
in a table, which allows for approximation of the function when running it in FHE. This is
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used to implement operations such as activation functions in FHE. However, the compute
and memory overhead for FHE table lookups can be impractical, especially for large input
spaces.
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Chapter 3

Motivations

The goal of combining FHE with LLMs is to create a solution where a user can be assured
that their query is kept private in a client-server model. Other solutions require the user
to trust that a server is not compromised and that an LLM provider does not covertly
exfiltrate query data while computing it. FHE, despite its performance and applicability
limitations, allows a user to offload intensive operations to a server while not trusting it
with the plaintext query in any form. This opens up LLM applications that can run in low
compute environments with private information. An example of this would be using LLMs
in a medical context. Patient data protection regulations such as the Health Insurance
Portability and Accountability Act (HIPAA) can require patient data to be unreadable by
third parties, which hamstrings the implementation of client-server LLM interfaces that can
make inferences with patient data. An FHE model can allow for patient data to be used
without ever revealing its contents to anyone but the key holder. FHE models can also be
used to aid in privacy preserving LLM applications in low compute environments. A phone,
for example, may not have the resources to run LLM computations locally, but can encrypt
and decrypt vectors sent and received from an FHE inference server.

3.1 Performance

FHE performance is generally very slow, on the order of tens to thousands of times slower
than the equivalent plaintext operation. Solutions are in development for this, such as
FHE hardware accelerators like BASALISC[6], a hardware accelerator concept for the BGV
scheme. However, FHE hardware accelerators are not widely adopted, making their usage
less practical compared to software based optimizations. Therefore, this project focuses on
performance possible with current day general hardware.
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Chapter 4

Problem Definition

4.1 Threat Model

The project’s threat model involves two parties: the client and the server.

Client

Users interact with the LLM on a client device on which they enter their input and expect
their output. The client is assumed to not be compromised, and is trusted by the user.
However, only the client should be able to view private information such as the input or the
output. This includes any information that could be used to derive the plaintext input or
the output, such as the intermediate vectors created when performing an inference.

Server

The client is able to interact with a server through a secure channel in a computationally
rich environment in order to offload intensive LLM operations. The server is assumed to
have knowledge of the protocol, access to the model’s pre-trained weights, and any data sent
to it by the client in order to perform LLM inferences. However, the server is controlled by
an untrusted party and may be malicious. The server is assumed to able to act outside the
bounds of the protocol and manipulate its outputs in order to derive private information
from the data is it sent. Therefore, the server cannot be sent any information that could be
used to derive the plaintext input or output, and the protocol itself must be able to provide
these guarantees even if the server sends manipulated output to the client.

Goals

The goal of this project is to design a system where the threat actor is not able to glean any
private information from the user. Private information includes the input contents and the
output. This means that any information sent to the server cannot be used by the server



CHAPTER 4. PROBLEM DEFINITION 11

to derive this information. This will be done by only sending the server FHE ciphertexts of
information that could be used to derive the input, intermediate products, or the output.
However, it is not a goal of the project to protect the pre-trained weights or information
about the model protocol itself, as these are considered to be public information known to all
parties. Additionally, it is not a goal for the protocol to guarantee correctness or availability
when it is under attack. As such, a threat actor is allowed to corrupt the model outputs or
deny service to the user as long as this does not lead to the disclosure of private information.
It is also not a goal of the project to hide potentially sensitive information unrelated to the
inference itself, such the IP address of the client or the frequency of requests. The length of
the input itself is also not protected by the system.
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Chapter 5

Methodology

5.1 FHE Scheme Selection

CKKS

As detailed in Chapter 2, many different FHE schemes can be employed for the design
of this project. The LLaMA model works with floating point operations, so the project
initially employed the use of CKKS (a floating point FHE scheme) to approximate the model.
This was done using the TenSEAL library mentioned in Section 2.2. Some initial success
was made in successfully implementing LLaMA’s apply rotary embeddings function into the
model, which encodes positional data into the initial embeddings. This was possible because
apply rotary embeddings was composed of simple vector additions and multiplications, and
operated on relatively low size inputs. In testing, the encryption of inputs took 6.04 seconds,
the decryption of inputs took 10.17 seconds, and the operation itself took 21.64 seconds on
average.

However, approaching the problem with CKKS ended up being impractical due to its
slow performance. The smallest release of LLaMA 2 features seven billion parameters, and
the linear transformation operations in its attention and feed forward operations can work
with matrices up to 4096 by 11008 elements. Attempting to implement these using TenSEAL
was impossible, as the library would attempt to create one CPU thread for each element
in the result vector, causing resource thrashing on the test machine. However, a smaller
matrix multiplication of two 10 by 10 matrices took 0.8 seconds on average, with a larger
15x15 matrix operation taking 4.9 seconds. Even with an overly optimistic assumption that
matrices have a time complexity of O(n2) relative to their input size, extrapolating this to
a 4096 by 11008 matrix leads to extremely high estimated times measuring in the millions
of days for the operation to complete. However, in reality, this would take even longer than
the estimate. This is because of the limited multiplicative depth of a CKKS ciphertext. The
multiplicative depth of a ciphertext can be increased by adding more polynomial moduli to
it, but this comes at a significant performance cost. Alternatively, the ciphertext can be
sent back to the client, decrypted, and re-encrypted to reset its multiplicative depth, but
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each of these rounds of communication would take many seconds to encrypt and decrypt the
ciphertext. These limitations make it even more impractical to use CKKS.

TFHE

The Concrete ML library described in section 2.2 was used to integrate a TFHE based
scheme into the model. TFHE has significant performance gains over CKKS due to the
increased efficiency of arithmetic operations on the ciphertext structure and the increased
speed of lower precision arithmetic. When running the same linear transformation operations
mentioned above, a 4096x11008 matrix multiplication can be done in 70-100 seconds using
16 bit precision. These metrics make TFHE very suited to handle the bulk of the model’s
operations. However, it is important to note that TFHE dramatically increases ciphertext
sizes compared to CKKS. In addition, it is an integer based scheme and using it in the model
requires quantizing the inputs.

Conclusion: Using the TFHE scheme allows for doing intensive computations in a feasible
amount of time. However, it is an integer based scheme and requires quantization in order
to use in LLaMA, which has floating point operations.

5.2 Quantization

As detailed in section 2.2, Concrete ML supports the quantization of inputs during compi-
lation, where the sample inputs given during compilation help to calibrate a quantizer for
the circuit. In order to determine the best quantization, the model was run with several
samples to determine how best to quantize the inputs with the highest granularity possi-
ble for a given bit width. These inputs were generated using the Datasets[15] library from
HuggingFace which provides many different datasets for ML purposes. Specifically, the cal-
ibration process was done on random samples from the Wikipedia dataset in to get a good
sample of natural language. The calibrated quantizer is then included with the compiled
model so that the client has access to it when generating ciphertexts from the floating point
vectors. Once an output is received from the server, the ciphertext is then reconstructed
into its associated floating point tensor, allowing the client to continue computing on the
output tensor using floating point operations. This serves to minimize the error propagated
from quantization by only using it where it is needed. The bit width of the quantization is
important, as a larger bit width means less error while a smaller one improves performance
both in lowering the amount of computational intensity as well as bandwidth usage when
transmitting the ciphertext. After some trials, it was determined that 16 bits would be
the best performance-accuracy trade-off for the hybrid model (see section 6.5 for detailed
results).

Conclusion: The calibrated quantization used by the Concrete ML library helps achieve
the best accuracy for operator quantization. Maximizing the quantization bit width is im-
portant for minimizing error.
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5.3 Operation Selection

The selection of operations to do in FHE is a critical design choice. FHE has varying levels
of compatibility and performance for each operation, and some low computation operations
may be trivial for the client to do in plaintext, but take significantly more resources for the
server to do in FHE. Thus, the following section is an investigation of LLaMA operations
and how well they perform when done in TFHE.

Linear Transformation

In LLaMA, linear transformations are used extensively in both the self attention and feed
forward mechanisms. In self attention, they are used to project the input into query, key,
and value vectors, as well as to project the attention values back into an output. In the
feed forward operation, linear transformations are used to transform the input and output
for the feed forward layers. All of these operations involve a large matrix multiplication
of inputs with the pre-trained weights. For a seven billion parameter implementation of
LLaMA2, each token of output requires 32 layers of seven different linear transformations that
multiply their inputs by a cumulative total of 7 billion parameters total per token. Loading
these parameters into memory is what is responsible for the vast majority of LLaMA’s
memory requirement, and being able to offload these to a server would decrease the clientside
computational intensity and memory requirements of the model greatly. Fortunately, as seen
in the benchmarks done previously, TFHE is well equipped to do large matrix multiplications.
Additionally, the pre-trained weights themselves can be used in plaintext, as they are not a
private part of the model. This allows for even better performance and lower memory usage
by the server. The final implementation features all linear transformations in the model
done serverside in FHE, greatly decreasing the compute and memory needs for the client
(see section 6.1 for memory usage in detail).

Attention KV Cache and Weighting

LLaMA incorporates linear transformations in its Attention block, which then stores the
calculated attention weights in a key value cache in order to pre-compute all the attention
weights at once and save on duplicated work for each token. While the key value projections
are done in FHE on the server, the rest of the scoring is done clientside, as scoring involves
much fewer computationally intensive operations (some fairly small matrix multiplications
and a softmax). Additionally, the sizes of the ciphertexts mean that it would take much
more memory to have the cache on the server compared to on the client. Therefore, it makes
the most sense to keep the KV cache and the rest of the scoring on the client, as it saves
on server memory usage and allows the client to perform some lighter computations. While
computing operations in plaintext means that parts of the protocol could be readable to
a threat actor, this is acceptable because these operations are done purely on the client,
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meaning that the threat actor is unable to read the plaintext and only receives ciphertext
from the client for the linear transformations to be computed over FHE.

Non-Linear Operations

One of the core operations in LLaMA is the SwiGLU activation function in the feed for-
ward part of the model. It serves the purpose of introducing non-linearity into the model
computations. This portion of the model, as well as other non linear operations such as
softmax and RMSNorm, are very difficult to do in FHE. SwiGLU is non-monotonic, making
it difficult to find an accurate linear approximation of the operation. Concrete ML provides
table lookups to approximate the operator, but using them dramatically increases the error
of the function’s output, causing the final output to be garbled. As such, SwiGLU, alongside
other non-linear functions such as RMSNorm, are computed clientside. These operators are
acceptable to run clientside because of their low computational intensity. Activation and
normalization functions have a linear runtime complexity with respect to the size of their
inputs, which means that they can still be computed quickly in a low compute environment
such as the client.

Conclusion: Offloading the linear transformation operations to do in FHE on the server
provides a good trade-off of FHE performance and client computational intensity. It runs
fairly quickly on the server and removes a significant amount of the memory requirement for
the client (see 6.1 for details). Keeping non-linear operations and the KV cache clientside
allows the client to perform some low intensity operations that do not require a large amount
of memory, such as activation functions with a linear runtime.

5.4 Final Model

Below is a diagram of the final model, where the client is a LLaMA2 model augmented with
remote FHE calls for the linear transforms. To offload these calls to the server, the client
quantizes and encrypts its inputs before sending them and the compiled FHE circuit to the
server. The server implements a REST API which accepts these calls and computes the
circuit over the ciphertext, sending the output ciphertext back to the server. The client then
decrypts these ciphertexts back into floats for local computation. This hybrid client-server
model offloads the most computationally intensive parts of the inference while always pre-
serving the privacy of the inputs, intermediate vectors, and outputs.

The names of the modules that are computed in FHE on the server are as follows:

1. Attention.wq

2. Attention.wk

3. Attention.wv
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4. Attention.wo

5. FeedForward.w1

6. FeedForward.w2

7. FeedForward.w3

The operations and modules that are computed in plaintext on the client are as follows:

1. Transformer.tok_embeddings

2. Transformer.norm

3. Transformer.output

4. TransformerBlock.attention_norm

5. TransformerBlock.ffn_norm

6. The SwiGLU operator and the matrix multiplication within the FeedForward block.

7. The KV caches within the Attention block.

8. The transpose, softmax, and matmul operator used to calculate the scores within the
Attention block.

Figure 5.1: A diagram of the hybrid client-server model
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Chapter 6

Results

Experimental Questions

This chapter focuses on finding results for the following experimental questions. These
questions provide context for measurements taken while experimenting with the model’s
design, and illustrate how the model’s design affects its performance and practicality.

1. How much memory is saved by the client when using the hybrid model compared to
running the model on the client? How much memory is required by the server to
complete an inference?

2. How much network bandwidth is used for the inference operation?

3. How much time does the inference operation take?

4. How does changing the size of the input change the runtime and the network band-
width?

5. How does changing the quantized bit width of the FHE operation change the accuracy,
runtime, and network bandwidth of the model?

6. How does adding more processors change the runtime of the inference operation?

Data Collection

Results were collected on a machine with an AMD EPYC 9654 96-Core Processor alongside
1.5 Tb of memory. While GPU acceleration is possible on the client side, the client does not
use GPU acceleration, as the encryption and decryption happens on the CPU, meaning the
time spent transferring data to and from the GPU was longer than the time saved running
low intensity operations on the GPU. Unless otherwise specified, the FHEModelServer was
run on 12 cores. The client ran on the same machine and they communicated on a local
network socket in order to maximize bandwidth. All results were collected for the LLaMA2
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model with seven billion parameters. Unless specified, the model is instructed to complete
the 7 token input ”Computations over encrypted data can help” with a temperature of 0.8,
top p of 0.95, and FHE portions of the model quantized to 16 bits.

6.1 Memory Usage

Because the pretrained weights for the linear transformations no longer needed to be on the
client, the model’s memory usage was lowered to approximately 2 gigabytes on the clientside
for the model itself. While the client also had to store the compiled FHE model data (ap-
proximately 40 gigabytes) to transmit to the FHEModelServer, in a production deployment
of this project the server could cache the compiled models knowing they would always be
the same for each query, meaning the client would not need to load them into memory to
send to the server. Each token has to be stored in the KV cache, but the amount stored per
token is negligible at less than ten megabytes per token. Thus, the client’s memory usage
goes down from approximately 14 gigabytes of memory to 2 gigabytes when removing the
compiled FHE model data.

The maximum amount of memory used by the FHE server was 201 gigabytes. This means
that for every gigabyte of memory saved by the client, the server uses approximately 16.5
gigabytes. This significant increase in total memory usage is likely related to the larger sizes
of ciphertext vectors, as well as the need for large keys for programmable bootstrapping and
relinearization operations.

6.2 Bandwidth Usage

Figure 6.1: Bandwidth per token on a five token output from a seven token input
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For a five token output from a seven token input, the model used approximately 283 gigabytes
of bandwidth, the vast majority of which was used to download the ciphertext back to the
client from the server. The first token required around twice the bandwidth as the remaining
tokens combined due to the increased size of the inputs for self attention.

6.3 Token Inference Speed

Figure 6.2: Time per token on a five token output from a seven token input.

• Load time is the amount of time the FHEModelServer spends to load the MLIR circuit
generated by the compiler and sent to the server.

• Inference time is the time actually spent running FHE linear projections on the cipher-
text.

• Client time encompasses time spent by the client to run the clientside part of the
model, as well as encrypt and decrypt the ciphertext.

For a five token output from a seven token input, the model took 34,631 seconds to generate
an output. Of this time, the vast majority was spent on the first two tokens waiting for
the server to load the FHE circuits needed for computing the linear transformations. For
example, the attention.wo transform needs to load a circuit to accommodate an input with
shape (1, 8, 4096) for the first token. For the second and subsequent tokens, it loads a
circuit to accommodate an input with shape (1, 1, 4096). This results in no load time
needed for subsequent tokens as the circuit is already loaded from the previous iteration.
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Figure 6.3: Total time spent on each FHE operator

When breaking down the total time spent per FHE operation, each attention operator
takes around 8.5% of the total time. The the feed forward operations take between 21% and
23% of the total time each. The time spent on each operator itself scales roughly linearly
with the size of the input, with the 11008 element feed-forward linear transformations taking
roughly three times as long to run as the 4096 element linear attention transformations.

6.4 Input Size Impact

The size of the input has a significant impact on model speed, much more than the output
size. This is consistent with the findings above where tokens after the first and second token
have a greatly diminished runtime due to not needing to load a new circuit. However, increas-
ing the input increases the size of the first ciphertexts that are run by the FHEModelServer,
both increasing bandwidth and inference time. Bandwidth scales from 137 gigabytes with a
one token input to 283 gigabytes with an seven token input. Inference time scales similarly
from 21,804 to 34,630 seconds.

6.5 Quantization Impact

Accuracy

Changing the bit width of the ciphertexts has a significant impact on the accuracy of the
output. This was measured by compiling the model for each bit width on the same calibra-
tion input and getting the output logits for the first token of the output. Below shows the
mean squared error (MSE) when comparing these logits to the output logits of an unmodified
LLaMA2-7b model, with no hybrid FHE model. The MSE metric allows us to quantify how
different the logits are in a way that emphasizes the impact of larger differences between
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Figure 6.4: Total time and bandwidth spent on a five token output based on the size of the
input, scaling from one to seven tokens

individual logits. This is important because large differences between individual logits in-
creases the chance of the hybrid model selecting a different token than the unmodified model
would have selected, which impacts the accuracy of the output as observed by the user.

Bit Width MSE
16 0.0068
14 0.0243
12 0.4754
10 0.2688
8 1.2974
6 137.0635

Table 6.1: MSE of first token logits of models with various bit widths for quantized cipher-
text.

The error grows exponentially as the bit width shrinks, reflecting the expected exponential
error growth inherent of noisy inputs to a feedback loop. Because error in the logits affects
the selection of the next token, error in selecting one token led to increased error when
computing subsequent tokens, meaning that even a 14 bit quantized model had a significantly
lower quality than a 16 bit model.
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Performance

Figure 6.5: Total time and bandwidth spent on a five token output from a seven token input
based on the quantization of the model

The bit width of the ciphertexts had an impact on both total bandwidth usage and inference
speeds on the server. While load times were unaffected (except for the 16 bit width, possibly
due to the limitations in serializing 16 bit ciphertexts), the inference time scaled linearly
based on the bit width of the encrypted inputs. The bandwidth also scaled linearly with the
bit width.

6.6 Parallelization Impact

While parallelization had no impact on the circuit load times for the FHEModelServer, it had
a significant impact on inference speed itself, with total inference time going from 19,394
seconds with 12 processors to 5,504 seconds with 192 processors. The impact of adding
more processors has diminishing returns, and after 96 processors it generally does not make
sense to continue adding any more. This is likely because of Amdahl’s law[7], which states
that the parallelizable part of a task has an exponentially decreasing marginal speedup for
each processor added to the task. FHE inference is likely composed of inherently sequential
tasks which do not take advantage of additional processors, as well as a parallelizable tasks
which can take advantage of the processors, but only to a certain extent before the marginal
speedup is negligible.
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Figure 6.6: Total load and inference time spent on a five token output from a seven token
input based on the number of processors assigned to the server

6.7 Conclusions

The answers to the experimental questions at the start of the section are as follows:

1. The client saves 12 gigabytes of memory usage compared to regular inference. There
is additional memory usage to store the compiled FHE model data, but it is trivially
possible to remove this by caching the model on the server. The server requires 201
gigabytes to complete an inference, meaning there is approximately a 16.5:1 ratio
between memory used by the server and memory saved by the client.

2. For the default experimental parameters, the model used approximately 283 gigabytes
of bandwidth, with the majority being used for the first token self attention.

3. For the default experimental parameters, the model took approximately 9.6 hours to
generate an output with the experimental parameters. The majority of this time was
spent on the first and second tokens to load the compiled models and run self attention.

4. The runtime and bandwidth requirements scale roughly linearly with the size of the
input.

5. The runtime and bandwidth requirements scale roughly linearly with the bit-width
of the FHE inputs. The error scales exponentially as the bit width shrinks, with
noticeable loss of output quality happening for any bit width under 16 bits.

6. Adding more processors has no impact on the time spent loading the FHE circuits,
but does speed up the inference. However, this speedup has diminishing returns and
stops being significant after 96 total processors.
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6.8 Future Work

This model has significant opportunities for improvement in order to reach practicality and
applicability in a wide variety of use cases.

Circuit Load Optimizations

A lot of duplicate work is being done in this model to load duplicate circuits, as the underlying
server implementation does not optimize for the fact that the same circuits are used for
layers 0 through 31, and reloads the same circuits for each one. De-duplicating that work by
reusing the same circuit each time would lead to a potential 32x optimization of load times.
In addition, a production deployment of this model could pre-load the FHE circuits needed
for various inputs, optimizing out the load time entirely.

Fully Serverside FHE

One potential opportunity is to make a fully end to end FHE model, rather than a hybrid
one. This would require being able to create linear approximations of the activation functions
and increase work needed serverside, but would mean that the client only has to encrypt
the tokenized input and decrypt the output received from the server, greatly decreasing
clientside computational intensity. End-to-end FHE would also decrease the bandwidth
required, as only one round of communication would be needed between the client and
the server. However, reaching this ideal would require significant improvements to FHE
performance and more methods of handling error accumulation.

Different FHE Schemes

A way to improve performance in the hybrid model would be to use different FHE schemes
based on what is the most performant for a given module. This could include changing the
quantization bit width on a block by block basis rather than setting them all to sixteen bits.
It could also involve potentially using other protocols entirely such as BGV or CKKS if they
would be more practical for a given block.

Different Models

Some LLMs may be more conducive to being implemented in FHE. This would depend on
how many parameters they have as well as the nature of their activation functions and other
non-linear operations.

Hardware Acceleration

An FHE server with hardware accelerators may be able to do computations over ciphertext
with greater speed and accuracy. Some implementations of FHE accelerators require custom
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hardware but others can run on typical datacenter GPUs and take advantage of their large
vectorized operations[20]. Integrating these with the hybrid model may increase inference
speeds.

Network Optimization

Practical uses of hybrid models require significant amounts of bandwidth in order to transfer
ciphertexts between the client and server. Finding ways of compressing ciphertexts or caching
ones that may repeat would increase the speed of the model, especially in low bandwidth
environments.
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