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Abstract

Statistical Guarantees for Black-Box Models

by

Anastasios N. Angelopoulos

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Michael I. Jordan, Co-chair

Professor Jitendra Malik, Co-chair

Reliability has emerged as one of the most important challenges facing AI deployments. One
difficulty is the inability of standard theoretical tools to guarantee strong performance of
modern AI systems due to their complexity and ever-changing training and development
pipelines. Here, we take a different strategy: ensuring reliability of a black-box model—one
where we only have access to the inputs and outputs, and no knowledge of the mapping
between the two. The only way to ensure reliability of such models is by surrounding them
with a statistical infrastructure for measurement and calibration.

This thesis develops statistical guarantees for black-box AI models in the domains of pre-
diction and inference. The first part will deal with prediction: guaranteeing reliability on
a per-input basis. I will in particular focus on a line of work extending the model-agnostic
guarantees of conformal prediction to the realm of risk control and decision-making. The
second part will deal with inference, or aggregating predictions to produce estimators, con-
fidence intervals, and p-values to learn about the broader world. There, I will focus on
Prediction-Powered Inference, a tool for trustworthy AI-driven science, and its application
to automated evaluation of AI algorithms.
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Chapter 1

Introduction

This thesis is devoted to a single question:

How can we build reliable systems from black-box AI models?

Answering this question is difficult because modern AI models, though undeniably useful,
can be wrong in unpredictable ways. These models learn biases and spurious associations
that can lead them to make mistakes and output falsehoods. Meanwhile, these mistakes are
silent and difficult to debug due to their statistical nature, arising from the data on which
the models were trained. Worse yet, models are often black boxes, with the training data
and algorithm unknown. But to use AI in critical applications where they could have the
most positive impact—from power plants to hospitals, where safety and lives are at stake—
we need trust. Therein lies the contradiction: we have to trust AI models that we cannot
understand. We need new frameworks for calibrating AI software systems to achieve reliable
deployment, despite the fact that the model is a black-box. This problem is on the critical
path towards using AI for the greater good.

The key lies in rethinking the way we build larger systems that incorporate AI. Rather
than expecting good performance from models, this thesis focuses on building statistical
infrastructure that can anticipate and mitigate model failures. The black-box model is
treated as a module in an overall system, surrounded by statistical inference procedures that
identify errors, quantify uncertainty, and compensate for these in downstream decisions. This
infrastructure requires one core ingredient: new statistical methods that assume nothing
about the model’s structure, but nonetheless, ensure strong overall system performance,
whether that means maintaining safety standards, reducing costs, or obtaining valid scientific
conclusions.

The research in this thesis spans theory, experimentation, and deployment. Theoreti-
cally, it develops the language of model reliability through advances in the core statistical
framework of conformal prediction. The experiments serve to demonstrate the generality
of the approach, involve complex learning tasks, from emergency room stroke detection, to
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robotic planners and controllers, to object detection, to large language models, to biomedi-
cal foundation models, and beyond. Finally, although this thesis focuses on methodology, it
is worth mentioning that the techniques have found real use. Through collaborations with
hospitals and industry partners in the energy and insurance sectors, these methods have
been implemented in the United States at the national scale.

This thesis is based on works co-authored with Stephen Bates, Andrea Bajcsy, Pierre
Boyeau, Adam Fisch, Michael I. Jordan, Lihua Lei, Jordan Lekeufack, Jitendra Malik, Tal
Schuster, Clara Wong-Fannjiang, Nir Yosef, and Tijana Zrnic. The chapters are each meant
to be read independently, and introduce their own mathematical notation due to the spread
of topics covered.
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Part I

Distribution-Free Predictive
Guarantees



4

Chapter 2

Conformal Risk Control

2.1 Introduction

We seek to endow some pre-trained machine learning model with guarantees on its perfor-
mance as to ensure its safe deployment. Suppose we have a base model f that is a function
mapping inputs x ∈ X to values in some other space, such as a probability distribution over
classes. Our job is to design a procedure that takes the output of f and post-processes it
into quantities with desirable statistical guarantees.

Split conformal prediction [120, 156], which we will henceforth refer to simply as “confor-
mal prediction”, has been useful in areas such as computer vision [14] and natural language
processing [67] to provide such a guarantee. By measuring the model’s performance on a cal-
ibration dataset {(Xi, Yi)}

n

i=1 of feature-response pairs, conformal prediction post-processes
the model to construct prediction sets that bound the miscoverage,

P(Yn+1 ∉ C(Xn+1)) ≤ α, (2.1)

where (Xn+1, Yn+1) is a new test point, α is a user-specified error rate (e.g., 10%), and C is
a function of the model and calibration data that outputs a prediction set. Note that C is
formed using the first n data points, and the probability in (2.1) is over the randomness in
all n + 1 data points (i.e., the draw of both the calibration and test points).

In this chapter, we extend conformal prediction to prediction tasks where the natural no-
tion of error is not simply miscoverage. In particular, our main result is that a generalization
of conformal prediction provides guarantees of the form

E[ℓ(C(Xn+1), Yn+1)] ≤ α, (2.2)

for any bounded loss function ℓ that shrinks as C(Xn+1) grows. We call this a conformal risk
control guarantee. Note that (2.2) recovers the conformal miscoverage guarantee in (2.1)
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when using the miscoverage loss, ℓ(C(Xn+1), Yn+1) = 1{Yn+1 ∉ C(Xn+1)}. However, our algo-
rithm also extends conformal prediction to situations where other loss functions, such as the
false negative rate (FNR) or F1-score, are more appropriate.

As an example, consider multilabel classification, where the Yi ⊆ {1, ...,K} are sets com-
prising a subset of K classes. Given a trained multilabel classifier f ∶ X → [0,1]K , we
want to output sets that include a large fraction of the true classes in Yi. To that end, we
post-process the model’s raw outputs into the set of classes with sufficiently high scores,
Cλ(x) = {k ∶ f(X)k ≥ 1 − λ}. Note that as the threshold λ grows, we include more classes
in Cλ(x)—i.e., it becomes more conservative. In this case, conformal risk control finds a
threshold value λ̂ that controls the fraction of missed classes, i.e., the expected value of
ℓ(Cλ̂(Xn+1), Yn+1) = 1 − ∣Yn+1 ∩ Cλ(Xn+1)∣/∣Yn+1∣. Setting α = 0.1 would ensure that our algo-
rithm produces sets Cλ̂(Xn+1) containing ≥ 90% of the true classes in Yn+1 on average.

2.1.1 Algorithm and preview of main results

Formally, we will consider post-processing the predictions of the model f to create a function
Cλ(⋅). The function has a parameter λ that encodes its level of conservativeness: larger λ
values yield more conservative outputs (e.g., larger prediction sets). To measure the quality
of the output of Cλ, we consider a loss function ℓ(Cλ(x), y) ∈ (−∞,B] for some B < ∞. We
require the loss function to be non-increasing as a function of λ. Our goal is to choose λ̂
based on the observed data {(Xi, Yi)}

n

i=1 so that risk control as in (2.2) holds.

We now rewrite this same task in a more notationally convenient and abstract form.
Consider an exchangeable collection of non-increasing, random functions Li ∶ Λ → (−∞,B],
i = 1, . . . , n + 1. Throughout the chapter, we assume λmax ≜ supΛ ∈ Λ. We seek to use the
first n functions to choose a value of the parameter, λ̂, in such a way that the risk on the
unseen function is controlled:

E[Ln+1(λ̂)] ≤ α. (2.3)

We are primarily motivated by the case where Li(λ) = ℓ(Cλ(Xi), Yi), in which case the
guarantee in (2.3) coincides with risk control as in (2.2).

Now we describe the algorithm. Let R̂n(λ) = (L1(λ) + . . . +Ln(λ))/n. Given any desired
risk level upper bound α ∈ (−∞,B), define

λ̂ = inf {λ ∶ n

n + 1R̂n(λ) +
B

n + 1 ≤ α} . (2.4)

When the set is empty, we define λ̂ = λmax. Our proposed conformal risk control algorithm
is to deploy λ̂ on the forthcoming test point. Our main result is that this algorithm satis-
fies (2.3). When the Li are i.i.d. from a continuous distribution, the algorithm satisfies a
tight lower bound saying it is not too conservative,

E[Ln+1(λ̂)] ≥ α −
2B

n + 1 .
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We show the reduction from conformal risk control to conformal prediction in Section 2.2.3.
Furthermore, if the risk is non-monotone, then this algorithm does not control the risk; we
discuss this in Section 2.2.4. Finally, we provide both practical examples using real-world
data and several theoretical extensions of our procedure in Sections 2.3 and 2.4, respectively.

2.1.2 Related work

Conformal prediction was developed by Vladimir Vovk and collaborators beginning in the
late 1990s [155, 156], and has recently become a popular uncertainty estimation tool in the
machine learning community, due to its favorable model-agnostic, distribution-free, finite-
sample guarantees. See [13] for a modern introduction to the area or [141] for a more classical
alternative. As previously discussed, in this chapter we primarily build on split conformal
prediction [120]; statistical properties of this algorithm including the coverage upper bound
were studied in [100]. Recently there have been many extensions of the conformal algorithm,
mainly targeting deviations from exchangeability [19, 64, 72, 146] and improved conditional
coverage [14, 18, 75, 132, 133]. Most relevant to us is recent work on risk control in high
probability [6, 23, 153] and its applications [11, 12, 68, 122, 136, 138, 139, inter alia]. Though
these works closely relate to ours in terms of motivation, the algorithm presented herein
differs greatly: it has a guarantee in expectation, and neither the algorithm nor its analysis
share much technical similarity with these previous works.

To elaborate on the difference between our work and previous literature, first consider
conformal prediction. The purpose of conformal prediction is to provide coverage guarantees
of the form in (2.1). The guarantee available through conformal risk control, (2.3), strictly
subsumes that of conformal prediction; it is generally impossible to recast risk control as
coverage control. As a second question, one might ask whether (2.3) can be achieved through
standard statistical machinery, such as uniform concentration inequalities. Though it is
possible to integrate a uniform concentration inequality to get a bound in expectation, this
strategy tends to be excessively loose both in theory and in practice (see, e.g., the bound of
[15]). The technique herein avoids these complications; it is simpler than concentration-based
approaches, practical to implement, and tight up to a factor of 1/n, which is comparatively
faster than concentration would allow. Finally, herein we target distribution-free finite-
sample control of (2.3), but as a side-note it is also worth pointing the reader to the rich
literature on functional central limit theorems [51], which are another way of estimating risk
functions.

2.2 Theory

In this section, we establish the core theoretical properties of conformal risk control. All
proofs, unless otherwise specified, are deferred to Appendix 2.6.2.
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2.2.1 Risk control

We first show that the proposed algorithm leads to risk control when the loss is monotone.

Theorem 1. Assume that Li(λ) is non-increasing in λ, right-continuous, and

Li(λmax) ≤ α, sup
λ

Li(λ) ≤ B <∞ almost surely. (2.5)

Then
E[Ln+1(λ̂)] ≤ α.

Proof. Let R̂n+1(λ) = (L1(λ) + . . . +Ln+1(λ))/(n + 1) and

λ̂′ = inf {λ ∈ Λ ∶ R̂n+1(λ) ≤ α} .

Since infλLi(λ) = Li(λmax) ≤ α, λ̂′ is well-defined almost surely. Since Ln+1(λ) ≤ B, we know

R̂n+1(λ) = n
n+1R̂n(λ) + Ln+1(λ)

n+1 ≤ n
n+1R̂n(λ) + B

n+1 . Thus,

n

n + 1R̂n(λ) +
B

n + 1 ≤ αÔ⇒ R̂n+1(λ) ≤ α.

This implies λ̂′ ≤ λ̂ when the LHS holds for some λ ∈ Λ. When the LHS is above α for all
λ ∈ Λ, by definition, λ̂ = λmax ≥ λ̂′. Thus, λ̂′ ≤ λ̂ almost surely. Since Li(λ) is non-increasing
in λ,

E[Ln+1(λ̂)] ≤ E[Ln+1(λ̂′)]. (2.6)

Let E be the multiset of loss functions {L1, . . . , Ln+1}. Then λ̂′ is a function of E, or, equiv-
alently, λ̂′ is a constant conditional on E. Additionally, Ln+1(λ)∣E ∼ Uniform({L1, ..., Ln+1})
by exchangeability. These facts combined with the right-continuity of Li imply

E [Ln+1(λ̂′) ∣ E] =
1

n + 1
n+1
∑
i=1

Li(λ̂′) ≤ α.

The proof is completed by the law of total expectation and (2.6).

2.2.2 A tight risk lower bound

Next we show that the conformal risk control procedure is tight up to a factor 2B/(n + 1)
that cannot be improved in general. Like the standard conformal coverage upper bound,
the proof will rely on a form of continuity that prohibits large jumps in the risk function.
Towards that end, we will define the jump function below, which quantifies the size of the
discontinuity in a right-continuous input function l at point λ:

J(l, λ) = lim
ϵ→0+

l(λ − ϵ) − l(λ)
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The jump function measures the size of a discontinuity at l(λ). When there is a discontinuity
and l is non-increasing, J(l, λ) > 0. When there is no discontinuity, the jump function is
zero. The next theorem will assume that the probability that Li has a discontinuity at any
pre-specified λ is P(J(Li, λ) > 0) = 0. Under this assumption the conformal risk control
procedure is not too conservative.

Theorem 2. In the setting of Theorem 1, further assume that the Li are i.i.d., Li ≥ 0, and
for any λ, P (J(Li, λ) > 0) = 0. Then

E[Ln+1(λ̂)] ≥ α −
2B

n + 1 .

This bound is tight for general monotone loss functions, as we show next.

Proposition 3. In the setting of Theorem 2, for any ϵ > 0, there exists a loss function and
α ∈ (0,1) such that

E [Ln+1(λ̂)] ≤ α −
2B − ϵ
n + 1 .

Since we can take ϵ arbitrarily close to zero, we conclude that the factor 2B/(n + 1) in
Theorem 2 is required in the general case.

2.2.3 Conformal prediction reduces to risk control

Conformal prediction can be thought of as controlling the expectation of an indicator loss
function. Recall that the risk upper bound (2.2) specializes to the conformal coverage guar-
antee in (2.1) when the loss function is the indicator of a miscoverage event. The conformal
risk control procedure specializes to conformal prediction under this loss function as well.
However, the risk lower bound in Theorem 2 has a slightly worse constant than the usual
conformal guarantee. We now describe these correspondences.

First, we show the equivalence of the algorithms. In conformal prediction, we have
conformal scores s(Xi, Yi) for some score function s ∶ X × Y → R. Based on this score
function, we create prediction sets for the test point Xn+1 as

Cλ̂(Xn+1) = {y ∶ s(Xn+1, y) ≤ λ̂},

where λ̂ is the conformal quantile, a parameter that is set based on the calibration data. In
particular, conformal prediction chooses λ̂ to be the ⌈(n + 1)(1 − α)⌉/n sample quantile of
{s(Xi, Yi)}ni=1. To formulate this in the language of risk control, we consider a miscoverage

loss LCvg
i (λ) = 1{Yi ∉ Ĉλ(Xi)} = 1{s(Xi, Yi) > λ}. Direct calculation of λ̂ from (2.4) then
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shows the equivalence of the proposed procedure to conformal prediction:

λ̂ = inf {λ ∶ 1

n + 1
n

∑
i=1

1{s(Xi, Yi) > λ} +
1

n + 1 ≤ α} =

inf {λ ∶ 1
n

n

∑
i=1

1{s(Xi, Yi) ≤ λ} ≥
⌈(n + 1)(1 − α)⌉

n
}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
conformal prediction algorithm

.

Next, we discuss how the risk lower bound relates to its conformal prediction equivalent.
In the setting of conformal prediction, [100] proves that P(Yn+1 ∉ Cλ̂(Xn+1)) ≥ α − 1/(n + 1)
when the conformal score function follows a continuous distribution. Theorem 2 recovers
this guarantee with a slightly worse constant: P(Yn+1 ∉ Cλ̂(Xn+1)) ≥ α−2/(n+1). First, note
that our assumption in Theorem 2 about the distribution of discontinuities specializes to the
continuity of the score function when the miscoverage loss is used:

P (J(LCvg
i , λ) > 0) = 0⇐⇒ P(s(Xi, Yi) = λ) = 0.

However, the bound for the conformal case is better than the bound for the general case in
Theorem 2 by a factor of two, which cannot be improved according to Proposition 3. The fact
that conformal prediction has a slightly tighter lower bound than conformal risk control is
an interesting oddity of the binary loss function; however, it is of little practical importance,
as the difference between 1/(n + 1) and 2/(n + 1) is small even for moderate values of n.

2.2.4 Controlling general loss functions

We next show that the conformal risk control algorithm does not control the risk if the Li are
not assumed to be monotone. In particular, (2.3) does not hold. We show this by example.

Proposition 4. For any ϵ, there exists a non-monotone loss function such that

E [Ln+1(λ̂)] ≥ B − ϵ.

Notice that for any desired level α, the expectation in (2.3) can be arbitrarily close to
B. Since the function values here are in [0,B], this means that even for bounded random
variables, risk control can be violated by an arbitrary amount—unless further assumptions
are placed on the Li. However, the algorithms developed may still be appropriate for near-
monotone loss functions. Simply ‘monotonizing’ all loss functions Li and running conformal
risk control will guarantee (2.3), but this strategy will only be powerful if the loss is near-
monotone. For concreteness, we describe this procedure below as a corollary of Theorem 1.

Corollary 5. Allow Li(λ) to be any (possibly non-monotone) function of λ satisfying 2.5.
Take

L̃i(λ) = sup
λ′≥λ

Li(λ′), R̃n(λ) =
1

n

n

∑
i=1

L̃i(λ) and λ̃ = inf {λ ∶ n

n + 1R̃n(λ) +
B

n + 1 ≤ α} .
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Then,
E [Ln+1(λ̃)] ≤ α.

If the loss function is already monotone, then λ̃ reduces to λ̂. We propose a further algo-
rithm for picking λ in Appendix 2.6.1 that provides an asymptotic risk-control guarantee for
non-monotone loss functions. However, this algorithm again is only powerful when the risk
E[Ln+1(λ)] is near-monotone and reduces to the standard conformal risk control algorithm
when the loss is monotone.

2.3 Examples

To demonstrate the flexibility and empirical effectiveness of the proposed algorithm, we
apply it to four tasks across computer vision and natural language processing. All four loss
functions are non-binary, monotone losses bounded by 1. They are commonly used within
their respective application domains. Our results validate that the procedure bounds the
risk as desired and gives useful outputs to the end-user. We note that the choices of Cλ
used herein are only for the purposes of illustration; any nested family of sets will work. For
each example use case, for a representative α (details provided for each task) we provide
both qualitative results, as well as quantitative histograms of the risk and set sizes over
1000 random data splits that demonstrate valid risk control (i.e., with mean ≤ α). Code to
reproduce our examples is available at our GitHub (link removed for anonymity).

2.3.1 FNR control in tumor segmentation

In the tumor segmentation setting, our input is a d× d image and our label is a set of pixels
Yi ∈ ℘ ({(1,1), (1,2), ..., (d, d)}), where ℘ denotes the power set. We build on an image
segmentation model f ∶ X → [0,1]d×d outputting a probability for each pixel and measure
loss as the fraction of false negatives,

LFNR
i (λ) = 1 − ∣Yi ∩ Cλ(Xi)∣

∣Yi∣
, where Cλ(Xi) = {y ∶ f(Xi)y ≥ 1 − λ} . (2.7)

The expected value of LFNR
i is the FNR. Since LFNR

i is monotone, so is the FNR. Thus, we

use the technique in Section 2.2.1 to pick λ̂ by (2.4) that controls the FNR on a new point,
resulting in the following guarantee:

E[LFNR
n+1 (λ̂)] ≤ α. (2.8)

For evaluating the proposed procedure we pool data from several online open-source gut
polyp segmentation datasets: Kvasir, Hyper-Kvasir, CVC-ColonDB, CVC-ClinicDB, and
ETIS-Larib. We choose a PraNet [63] as our base model f and used n = 1000, and evaluated
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Figure 2.1: FNR control in tumor segmentation. The top figure shows examples of
our procedure with correct pixels in white, false positives in blue, and false negatives in red.
The bottom plots report FNR and set size over 1000 independent random data splits. The
dashed gray line marks α.

risk control with the 781 remaining validation data points. We report results with α = 0.1
in Figure 2.1. The mean and standard deviation of the risk over 1000 trials are 0.0987 and
0.0114, respectively.

2.3.2 FNR control in multilabel classification

In the multilabel classification setting, our input Xi is an image and our label is a set of
classes Yi ⊂ {1, . . . ,K} for some number of classes K. Using a multiclass classification model
f ∶ X → [0,1]K , we form prediction sets and calculate the number of false positives exactly
as in (2.7). By Theorem 1, picking λ̂ as in (2.4) again yields the FNR-control guarantee
in (2.8).

We use the Microsoft Common Objects in Context (MS COCO) computer vision dataset [104],
a large-scale 80-class multiclass classification baseline dataset commonly used in computer
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Figure 2.2: FNR control on MS COCO. The top figure shows examples of our procedure
with correct classes in black, false positives in blue, and false negatives in red. The bottom
plots report FNR and set size over 1000 independent random data splits. The dashed gray
line marks α.

vision, to evaluate the proposed procedure. We choose a TResNet [127] as our base model f
and used n = 4000, and evaluated risk control with 1000 validation data points. We report
results with α = 0.1 in Figure 2.2. The mean and standard deviation of the risk over 1000
trials are 0.0996 and 0.0052, respectively.

2.3.3 Control of graph distance in hierarchical image
classification

In the K-class hierarchical classification setting, our input Xi is an image and our label is a
leaf node Yi ∈ {1, ...,K} on a tree with nodes V and edges E . Using a single-class classification
model f ∶ X →∆K , we calibrate a loss in graph distance between the interior node we select
and the closest ancestor of the true class. For any x ∈ X , let ŷ(x) = argmaxk f(x)k be the
class with the highest estimated probability. Further, let d ∶ V × V → Z be the function that
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Figure 2.3: Control of graph distance on hierarchical ImageNet. The top figure
shows examples of our procedure with correct classes in black, false positives in blue, and
false negatives in red. The bottom plots report our minimum hierarchical distance loss and
set size over 1000 independent random data splits. The dashed gray line marks α.

returns the length of the shortest path between two nodes, let A ∶ V → 2V be the function
that returns the ancestors of its argument, and let P ∶ V → 2V be the function that returns
the set of leaf nodes that are descendants of its argument. We also let g(v, x) = ∑

k∈P(v)
f(x)k

be the sum of scores of leaves descended from v. Further, define a hierarchical distance

dH(v, u) = inf
a∈A(v)

{d(a, u)}.

For a set of nodes Cλ ∈ 2V , we then define the set-valued loss

LGraph
i (λ) = inf

s∈Cλ(Xi)
{dH(y, s)}/D, where Cλ(x) = ⋂

{a∈A(ŷ(x)) ∶ g(a,x)≥−λ}
P(a).

This loss returns zero if y is a child of any element in Cλ, and otherwise returns the minimum
distance between any element of Cλ and any ancestor of y, scaled by the depth D. Thus, it
is a monotone loss function and can be controlled by choosing λ̂ as in (2.4) to achieve the
guarantee

E[LGraph
n+1 (λ̂)] ≤ α.
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For this experiment, we use the ImageNet dataset [55], which comes with an existing
label hierarchy, WordNet, of maximum depth D = 14. We choose a ResNet152 [80] as our
base model f and used n = 30000, and evaluated risk control with the remaining 20000. We
report results with α = 0.05 in Figure 2.3. The mean and standard deviation of the risk over
1000 trials are 0.0499 and 0.0011, respectively.

2.3.4 F1-score control in open-domain question answering

what is the year round weather in dubai?

who was the 11th prime minister of canada?

when were cigarette ads banned from tv uk?

who told the story of the prodigal son?

{desert, desert climate, arid, …}

{richard bedford bennett, mike lake, …}

{1 august 1965, 1965, 11 january 2006, …}

{robert wilkins, jesus, david, keith green, …}

F1 = 1.0

F1 = 0.66

F1 = 0.40

F1 = 0.80

Answers = {1 august 1965, …}

Answers = {Jesus Christ}

Answers = {r.b. bennett, …}

Answers = {tropical desert climate}
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Figure 2.4: F1-score control on Natural Questions. The top figure shows examples of
our procedure with fully correct answers in green, partially correct answers in blue, and false
positives in gray. Note that due to the nature of the evaluation, answers that are technically
correct may still be down-graded if they do not match the reference. We treat this as part of
the randomness in the task. The bottom plots report the F1 risk and average set size over
1000 independent random data splits. The dashed gray line marks α.

In the open-domain question answering setting, our input Xi is a question and our label
Yi is a set of (possibly non-unique) correct answers. For example, the input

Xn+1 = “Where was Barack Obama Born?”

could have the answer set

Yn+1 = {“Hawaii”, “Honolulu, Hawaii”, “Kapo’olani Medical Center”}
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Formally, here we treat all questions and answers as being composed of sequences (up to size
m) of tokens in a vocabulary V—i.e., assuming k valid answers, we have Xi ∈ Z and Yi ∈ Zk,
where Z ∶= Vm. Using an open-domain question answering model that individually scores
candidate output answers f ∶Z × Z → R, we calibrate the best token-based F1-score of the
prediction set, taken over all pairs of predictions and answers:

LF1
i (λ) = 1 −max{F1(a, c)∶ c ∈ Cλ(Xi), a ∈ Yi},

where Cλ(Xi) = {y ∈ Vm ∶ f(Xi, y) ≥ λ} .

We define the F1-score following popular QA evaluation metrics [125], where we treat pre-
dictions and ground truth answers as bags of tokens and compute the geometric average of
their precision and recall (while ignoring punctuation and articles {“a”, “an”, “the”}). Since
LF1
i , as defined in this way, is monotone and upper bounded by 1, it can be controlled by

choosing λ̂ as in Section 2.2.1 to achieve the following guarantee:

E [LF1
n+1(λ̂)] ≤ α.

We use the Natural Questions (NQ) dataset [94], a popular open-domain question an-
swering baseline, to evaluate our method. We use the splits distributed as part of the
Dense Passage Retrieval (DPR) package [91]. Our base model is the DPR Retriever-Reader
model [91], which retrieves passages from Wikipedia that might contain the answer to the
given query, and then uses a reader model to extract text sub-spans from the retrieved
passages that serve as candidate answers. Instead of enumerating all possible answers to a
given question (which is intractable), we retrieve the top several hundred candidate answers,
extracted from the top 100 passages (which is sufficient to control all risks of interest). We
use n = 2500 calibration points, and evaluate risk control with the remaining 1110. We
report results with α = 0.3 (chosen empirically as the lowest F1 score which typically results
in nearly correct answers) in Figure 2.4. The mean and standard deviation of the risk over
1000 trials are 0.2996 and 0.0150, respectively.

2.4 Extensions

In this section, we discuss several theoretical extensions of our procedure.

2.4.1 Risk control under distributional shift

Suppose the researcher wants to control the risk under a distribution shift. Then the goal
in (2.3) can be redefined as

E(X1,Y1),...,(Xn,Yn)∼Ptrain, (Xn+1,Yn+1)∼Ptest[Ln+1(λ̂)] ≤ α, (2.9)
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where Ptest denotes the test distribution that is different from the training distribution Ptrain

that (Xi, Yi)ni=1 are sampled from. Assuming that Ptest is absolutely continuous with respect
to Ptrain, the weighted objective (2.9) can be rewritten as

E(X1,Y1),...,(Xn+1,Yn+1)∼Ptrain
[w(Xn+1, Yn+1)Ln+1(λ̂)] ≤ α,

where w(x, y) = dPtest(x, y)
dPtrain(x, y)

.
(2.10)

When w is known and bounded, we can apply our procedure on the loss function L̃n+1(λ) =
w(Xn+1, Yn+1)Ln+1(λ), which is non-decreasing, bounded, and right-continuous in λ whenever
Ln+1 is. Thus, Theorem 1 guarantees that the resulting λ̂ satisfies (2.10).

In the setting of transductive learning, Xn+1 is available to the user. If the conditional dis-
tribution of Y given X remains the same in the training and test domains, the distributional
shift reduces to a covariate shift and

w(Xn+1, Yn+1) = w(Xn+1) ≜
dPtest(Xn+1)
dPtrain(Xn+1)

.

In this case, we can achieve the risk control even when w is unbounded. In particular,
assuming Li ∈ [0,B], for any potential value x of the covariate, we define

λ̂(x) = inf {λ ∶ ∑
n
i=1w(Xi)Li(λ) +w(x)B
∑n

i=1w(Xi) +w(x)
≤ α} .

When λ does not exist, we simply set λ̂(x) = maxΛ. It is not hard to see that λ̂(x) ≡ λ̂ in
the absence of covariate shifts. We can prove the following result.

Proposition 6. In the setting of Theorem 1,

E(X1,Y1),...,(Xn,Yn)∼Ptrain,(Xn+1,Yn+1)∼Ptest[Ln+1(λ̂(Xn+1))] ≤ α.

It is easy to show that the weighted conformal procedure [146] is a special case with
Li(λ) = 1{Yi /∈ Cλ(Xi)} where Cλ(Xi) is the prediction set that thresholds the conformity
score at λ. Thus, Proposition 6 generalizes [146] to any monotone risk. When the covari-
ate shift w(x) is unknown but unlabeled data in the test domain are available, it can be
estimated, up to a multiplicative factor that does not affect λ̂(x), by any probabilistic classifi-
cation algorithm; see [101] and [35] in the context of missing and censored data, respectively.
We leave the full investigation of weighted conformal risk control with an estimated covariate
shift for future research.

Total variation bound

Finally, for arbitrary distribution shifts, we give a total variation bound describing the way
standard (unweighted) conformal risk control degrades. The bound is analogous to that
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of [19]for independent but non-identically distributed data (see their Section 4.1), though
the proof is different. Here we will use the notation Zi = (Xi, Yi), and λ̂(Z1, . . . , Zn) to refer
to that chosen in (2.4).

Proposition 7. Let Z = (Z1, . . . , Zn+1) be a sequence of random variables. Then, under the
conditions in Theorem 1,

E [Ln+1(λ̂)] ≤ α +B
n

∑
i=1

TV(Zi, Zn+1).

If further the assumptions of Theorem 2 hold,

E [Ln+1(λ̂)] ≥ α −B (
2

n + 1 +
n

∑
i=1

TV(Zi, Zn+1)) .

2.4.2 Quantile risk control

[143] generalizes [23] to control the quantile of a monotone loss function conditional on
(Xi, Yi)ni=1 with probability 1− δ over the calibration dataset for any user-specified tolerance
parameter δ. In some applications, it may be sufficient to control the unconditional quantile
of the loss function, which alleviates the burden of the user to choose the tolerance parameter
δ.

For any random variable X, let

Quantileβ(X) = inf{x ∶ P(X ≤ x) ≥ β}.

Analogous to (2.3), we want to find λ̂ based on (Xi, Yi)ni=1 such that

Quantileβ (Ln+1(λ̂β)) ≤ α. (2.11)

By definition,

Quantileβ (Ln+1(λ̂β)) ≤ α⇐⇒ E [1{Ln+1(λ̂β) > α}] ≤ 1 − β.

As a consequence, quantile risk control is equivalent to expected risk control (2.3) with loss
function L̃i(λ) = 1{Li(λ) > α}. Let

λ̂β = inf {λ ∈ Λ ∶
1

n + 1
n

∑
i=1

1{Li(λ) > α} +
1

n + 1 ≤ 1 − β} .

Proposition 8. In the setting of Theorem 1, (2.11) is achieved.

[143] considers the high-probability control of a wider class of quantile-based risks which
include the conditional value-at-risk (CVaR). It is unclear whether those more general risks
can be controlled unconditionally. We leave this open problem for future research.
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2.4.3 Controlling multiple risks

Let Li(λ;γ) be a family of loss functions indexed by γ ∈ Γ for some domain Γ that may
have infinitely many elements. A researcher may want to control E[Li(λ;γ)] at level α(γ).
Equivalently, we need to find an λ̂ based on (Xi, Yi)ni=1 such that

sup
γ∈Γ

E [Li(λ̂;γ)
α(γ) ] ≤ 1. (2.12)

Though the above worst-case risk is not an expectation, it can still be controlled. Towards
this end, we define

λ̂ = sup
γ∈Γ

λ̂γ, where λ̂γ = inf {λ ∶
1

n + 1
n

∑
i=1

Li(λ;γ) +
B

n + 1 ≤ α(γ)} . (2.13)

Then the risk is controlled.

Proposition 9. In the setting of Theorem 1, (2.12) is satisfied.

2.4.4 Adversarial risks

We next show how to control risks defined by adversarial perturbations. We adopt the
same notation as Section 2.4.3. [23] (Section 6.3) discusses the adversarial risk where Γ
parametrizes a class of perturbations of Xn+1, e.g., Li(λ;γ) = L(Xi + γ, Yi) and Γ = {γ ∶
∥γ∥∞ ≤ ϵ}. A researcher may want to find an λ̂ based on (Xi, Yi)ni=1 such that

E[sup
γ∈Γ

Li(λ;γ)] ≤ α. (2.14)

This can be recast as a conformal risk control problem by taking L̃i(λ) = supγ∈ΓLi(λ;γ).
Then, the following choice of λ leads to risk control:

λ̂ = inf {λ ∶ 1

n + 1
n

∑
i=1

L̃i(λ) +
B

n + 1 ≤ α} .

Proposition 10. In the setting of Theorem 1, (2.14) is satisfied.

2.4.5 U-risk control

For ranking and metric learning, [23] considered loss functions that depend on two test
points. In general, for any k > 1 and subset S ⊂ {1, . . . , n + k} with ∣S ∣ = k, let LS(λ) be a
loss function. Our goal is to find λ̂k based on (Xi, Yi)ni=1 such that

E [L{n+1,...,n+k}(λ̂k)] ≤ α. (2.15)
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We call the LHS a U-risk since, for any fixed λ̂k, it is the expectation of an order-k U-statistic.
As a natural extension, we can define

λ̂k = inf
⎧⎪⎪⎨⎪⎪⎩
λ ∶ k!n!

(n + k)! ∑
S⊂{1,...,n},∣S ∣=k

LS(λ) +B (1 −
(n!)2

(n + k)!(n − k)!) ≤ α
⎫⎪⎪⎬⎪⎪⎭
. (2.16)

Again, we define λ̂k = λmax when the right-hand side is an empty set. Then we can prove the
following result.

Proposition 11. Assume that LS(λ) is non-increasing in λ, right-continuous, and

LS(λmax) ≤ α, sup
λ

LS(λ) ≤ B <∞ almost surely.

Then (2.15) is achieved.

2.5 Conclusion

This generalization of conformal prediction broadens its scope to new applications, as shown
in Section 2.3. The mathematical tools developed in Section 2.2, Section 2.4, and the Ap-
pendix may be of independent technical interest, since they provide a new and more general
language for studying conformal prediction along with new results about its validity.

2.6 Appendix for Conformal Risk Control

2.6.1 Monotonizing non-monotone risks

We next show that the proposed algorithm leads to asymptotic risk control for non-monotone
risk functions when applied to a monotonized version of the empirical risk. We set the
monotonized empirical risk to be

R̂↑n(λ) = sup
t≥λ

R̂n(t),

then define
λ̂↑n = inf {λ ∶ R̂↑n(λ) ≤ α} .

Theorem 12. Let the Li(λ) be right-continuous, i.i.d., bounded (both above and below)
functions satisfying (2.5). Then,

lim
n→∞

E[Ln+1(λ̂↑n)] ≤ α.
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Theorem 12 implies that an analogous procedure to 2.4 also controls the risk asymptoti-
cally. In particular, taking

λ̃↑ = inf {λ ∶ R̂↑n(λ) +
B

n + 1 ≤ α}

also results in asymptotic risk control (to see this, plug λ̃↑ into Theorem 12 and see that the
risk level is bounded above by α − B

n+1). Note that in the case of a monotone loss function,

λ̃↑ = λ̂. However, the counterexample in Proposition 4 does not apply to λ̃↑, and it is currently
unknown whether this procedure does or does not provide finite-sample risk control.

2.6.2 Proofs

The proof of Theorem 2 uses the following lemma on the approximate continuity of the
empirical risk.

Lemma 12.1 (Jump Lemma). In the setting of Theorem 2, any jumps in the empirical risk
are bounded, i.e.,

sup
λ

J(R̂n, λ)
a.s.≤ B

n
.

Proof of Jump Lemma, Lemma 12.1. By boundedness, the maximum contribution of any
single point to the jump is B

n , so

∃λ ∶ J(R̂n, λ) >
B

n
Ô⇒ ∃λ ∶ J(Li, λ) > 0 and J(Lj, λ) > 0 for some i ≠ j.

Call Di = {λ ∶ J(Li, λ) > 0} the sets of discontinuities in Li. Since Li is bounded monotone,
Di has countably many points. The union bound then implies that

P(∃λ ∶ J(R̂n, λ) >
B

n
) ≤∑

i≠j
P(Di ∩Dj ≠ ∅)

Rewriting each term of the right-hand side using tower property and law of total probability
gives

P (Di ∩Dj ≠ ∅) = E [P(Di ∩Dj ≠ ∅ ∣Dj)]

≤ E
⎡⎢⎢⎢⎢⎣
∑
λ∈Dj

P (λ ∈ Di ∣ Dj)
⎤⎥⎥⎥⎥⎦
= E
⎡⎢⎢⎢⎢⎣
∑
λ∈Dj

P (λ ∈ Di)
⎤⎥⎥⎥⎥⎦
,

Where the second inequality is because the union of the events λ ∈ Dj is the entire sample
space, but they are not disjoint, and the third equality is due to the independence be-
tween Di and Dj. Rewriting in terms of the jump function and applying the assumption
P (J(Li, λ) > 0) = 0,

E
⎡⎢⎢⎢⎢⎣
∑
λ∈Dj

P (λ ∈ Di)
⎤⎥⎥⎥⎥⎦
= E
⎡⎢⎢⎢⎢⎣
∑
λ∈Dj

P (J(Li, λ) > 0)
⎤⎥⎥⎥⎥⎦
= 0.
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Chaining the above inequalities yields P (∃λ ∶ J(R̂n, λ) > B
n
) ≤ 0, so

P (∃λ ∶ J(R̂n, λ) > B
n
) = 0.

Proof of Theorem 2. If Li(λmax) ≥ α−2B/(n+1), then E[Ln+1(λ̂)] ≥ α−2B/(n+1). Through-
out the rest of the proof, we assume that Li(λmax) < α − 2B/(n + 1). Define the quantity

λ̂′′ = inf {λ ∶ R̂n+1(λ) +
B

n + 1 ≤ α} .

Since Li(λmax) < α − 2B/(n + 1) < α −B/(n + 1), λ̂′′ exists almost surely. Deterministically,
n

n+1R̂n(λ) ≤ R̂n+1(λ), which yields λ̂ ≤ λ̂′′. Again since Li(λ) is non-increasing in λ,

E [Ln+1(λ̂′′)] ≤ E [Ln+1(λ̂)]

By exchangeability and the fact that λ̂′′ is a symmetric function of L1, . . . , Ln+1,

E [Ln+1(λ̂′′)] = E [R̂n+1(λ̂′′)]

For the remainder of the proof we focus on lower-bounding R̂n+1(λ̂′′). We begin with the
following identity:

α = R̂n+1(λ̂′′) +
B

n + 1 − (R̂n+1(λ̂′′) +
B

n + 1 − α).

Rearranging the identity,

R̂n+1(λ̂′′) = α −
B

n + 1 + (R̂n+1(λ̂′′) +
B

n + 1 − α).

Using the Jump Lemma to bound (R̂n+1(λ̂′′) + B
n+1 − α) below by − B

n+1 gives

R̂n+1(λ̂′′) ≥ α −
2B

n + 1 .

Finally, chaining together the above inequalities,

E[Ln+1(λ̂)] ≥ E[R̂n+1(λ̂′′)] ≥ α −
2B

n + 1 .

Proof of Proposition 3. Without loss of generality, assume B = 1. Fix any ϵ′ > 0. Consider
the following loss functions, which satisfy the conditions in Theorem 2:

Li(λ) i.i.d.∼
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 λ ∈ [0, Zi)
k

k+1 λ ∈ [Zi,Wi)
0 else

,
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where k ∈ N, the Zi
i.i.d.∼ Uniform(0,0.5), the Wi

i.i.d.∼ Uniform(0.5,1) for i ∈ {1, ..., n + 1} and
α = k+1−ϵ′

n+1 . Then, by the definition of λ̂, we know

R̂n(λ̂) ≤
k − ϵ′
n

. (2.17)

If n > k + 1, R̂(λ) ≥ k
k+1 > k

n whenever λ ≤ 1
2 . Thus, we must have λ̂ > 1

2 . Since k is an

integer and by (2.17), we know that ∣{i ∈ {1, ..., n} ∶ Li(λ̂) > 0}∣ ≤ ⌊(k+1)(k− ϵ′)/k⌋ ≤ k. This
immediately implies that

λ̂ ≥W(n−k+1),
where W(j) denotes the j-th order statistic. Notice that for all λ > 1

2 ,

R(λ) = E [Li(λ)] =
k

k + 1P(Wi > λ) =
k

k + 1 ⋅ 2(1 − λ),

so R(λ̂) ≤ k
k+1 ⋅2(1−W(n−k+1)). Let U(k) be the k-th smallest order statistic of n i.i.d. uniform

random variables on (0,1). Then, by symmetry and rescaling, 2(1 −W(n−k+1)) d= U(k),

R(λ̂) ⪯ k

k + 1U(k),

where ⪯ denotes the stochastic dominance. It is well-known that U(k) ∼ Beta(k,n + 1 − k)
and hence

E[R(λ̂)] ≤ k

k + 1 ⋅
k

n + 1 .

Thus,

α −E[R(λ̂)] ≥ k + 1 − ϵ
n + 1 − k2

(n + 1)(k + 1) =
1

n + 1 ⋅
(2 − ϵ′)k + 1 − ϵ′

k + 1 .

For any given ϵ > 0, let ϵ′ = ϵ/2 and k = ⌈2ϵ − 1⌉. Then

(2 − ϵ′)k + 1 − ϵ′
k + 1 ≥ 2 − ϵ,

implying that

α −E[R(λ̂)] ≥ 2 − ϵ
n + 1 .

Proof of Proposition 4. Without loss of generality, we assume B = 1. Assume λ̂ takes values
in [0,1] and α ∈ (1/(n + 1),1). Let p ∈ (0,1), N be any positive integer, and Li(λ) be i.i.d.
right-continuous piecewise constant (random) functions with

Li(N/N) = 0, (Li(0/N), Li(1/N), . . . , Li((N − 1)/N)) i.i.d.∼ Ber(p).
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By definition, λ̂ is independent of Ln+1. Thus, for any j = 0,1, . . . ,N − 1,

{Ln+1(λ̂) ∣ λ̂ = j/N} ∼ Ber(p), {Ln+1(λ̂) ∣ λ̂ = 1} ∼ δ0.

Then,

E[Ln+1(λ̂)] = p ⋅ P(λ̂ ≠ 1)

Note that

λ̂ ≠ 1⇐⇒ min
j∈{0,...,N−1}

1

n + 1
n

∑
i=1

Li(j/N) ≤ α −
1

n + 1 .

Since α > 1/(n + 1),

P(λ̂ ≠ 1) = 1 − P(λ̂ = 1) = 1 − P(for all j, we have
1

n + 1
n

∑
i=1

Li(j/N) > α −
1

n + 1)

= 1 −
⎛
⎝

n

∑
k=⌈(n+1)α⌉

(n
k
)pk(1 − p)(n−k)

⎞
⎠

N

= 1 − (1 −BinoCDF(n, p, ⌈(n + 1)α⌉ − 1))N

As a result,

E[Ln+1(λ̂)] = p
⎛
⎝
1 − (1 −BinoCDF(n, p, ⌈(n + 1)α⌉ − 1))N

⎞
⎠
.

Now let N be sufficiently large such that

⎛
⎝
1 − (1 −BinoCDF(n, p, ⌈(n + 1)α⌉ − 1))N

⎞
⎠
> p.

Then
E[Ln+1(λ̂)] > p2

For any α > 0, we can take p close enough to 1 to render the claim false.

Proof of Theorem 12. Define the monotonized population risk as

R↑(λ) = sup
t≥λ

E[Ln+1(t)]

Note that the independence of Ln+1 and λ̂↑n implies that for all n,

E[Ln+1(λ̂↑n)] ≤ E[R↑(λ̂↑n)].
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Since R↑ is bounded, monotone, and one-dimensional, a generalization of the Glivenko-
Cantelli Theorem given in Theorem 1 of [54] gives that uniformly over λ,

lim
n→∞

sup
λ
∣R̂n(λ) −R(λ)∣

a.s.→ 0.

As a result,
lim
n→∞

sup
λ
∣R̂↑n(λ) −R↑(λ)∣

a.s.→ 0,

which implies that
lim
n→∞
∣R̂↑n(λ̂↑) −R↑(λ̂↑)∣

a.s.→ 0.

By definition, R̂↑(λ̂↑) ≤ α almost surely and thus this directly implies

lim sup
n→∞

R↑(λ̂↑n) ≤ α a.s..

Finally, since for all n, R↑(λ̂↑n) ≤ B, by Fatou’s lemma,

lim
n→∞

E[Ln+1(λ̂↑n)] ≤ lim sup
n→∞

E[R↑(λ̂↑n)] ≤ E[lim sup
n→∞

R↑(λ̂↑n)] ≤ α.

Proposition 6. Let

λ̂′ = inf {λ ∶ ∑
n+1
i=1 w(Xi)Li(λ)
∑n+1

i=1 w(Xi)
≤ α} .

Since infλLi(λ) ≤ α, λ̂′ exists almost surely. Using the same argument as in the proof of
Theorem 1, we can show that λ̂′ ≤ λ̂(Xn+1). Since Ln+1(λ) is non-increasing in λ,

E[Ln+1(λ̂(Xn+1))] ≤ E[Ln+1(λ̂′)].

Let E be the multiset of loss functions {(X1, Y1), . . . , (Xn+1, Yn+1)}. Then λ̂′ is a function of
E, or, equivalently, λ̂′ is a constant conditional on E. Lemma 3 of [146] implies that

(Xn+1, Yn+1) ∣ E ∼
n+1
∑
i=1

w(Xi)
∑n+1

j=1 w(Xj)
δ(Xj ,Yj)Ô⇒ Ln+1 ∣ E ∼

n+1
∑
i=1

w(Xi)
∑n+1

j=1 w(Xj)
δLi

where δz denotes the Dirac measure at z. Together with the right-continuity of Li, the above
result implies

E [Ln+1(λ̂′) ∣ E] =
∑n+1

i=1 w(Xi)Li(λ̂′)
∑n+1

i=1 w(Xi)
≤ α.

The proof is then completed by the law of total expectation.
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Proposition 7. Define the vector Z ′ = (Z ′1, . . . , Z ′n, Zn+1), where Z ′i
i.i.d.∼ L(Zn+1) for all i ∈ [n].

Let

ϵ =
n

∑
i=1

TV(Zi, Z
′
i).

By sublinearity,
TV(Z,Z ′) ≤ ϵ. (2.18)

It is a standard fact that (2.18) implies

sup
f∈F1
∣E[f(Z)] −E[f(Z ′)]∣ ≤ ϵ,

where F1 = {f ∶ Z ↦ [0,1]}. Let ℓ ∶ Z ×Λ→ [0,B] be a bounded loss function. Furthermore,
let g(z) = ℓ(zn+1; λ̂(z1, . . . , zn)). Since g(Z) ∈ [0,B],

∣E[g(Z)] −E[g(Z ′)]∣ ≤ Bϵ.

Furthermore, since Z ′1, . . . , Z
′
n+1 are exchangeable, we can apply Theorems 1 and 2 to E[g(Z ′)],

recovering

α − 2B

n + 1 ≤ E[g(Z
′)] ≤ α.

A final step of triangle inequality implies the result:

α − 2B

n + 1 −Bϵ ≤ E[g(Z)] ≤ α +Bϵ.

Proposition 8. It is left to prove that L̃i(λ) satisfies the conditions of Theorem 1. It is clear
that L̃i(λ) ≤ 1 and L̃i(λ) is non-increasing in λ when Li(λ) is. Since Li(λ) is non-increasing
and right-continuous, for any sequence λm ↓ λ,

Li(λm) ↑ Li(λ)Ô⇒ 1{Li(λm) > α}→ 1{Li(λ) > α} .

Thus, L̃i(λ) is right-continuous. Finally, Li(λmax) ≤ α implies L̃i(λmax) = 0 ≤ 1 − β.

Proposition 9. Examining (2.13), for each γ ∈ Γ, we have

E [L(λ̂, γ)] ≤ E [L(λ̂γ, γ)] ≤ α(γ).

Thus, dividing both sides by α(γ) and taking the supremum, we get that supγ∈ΓE [L(λ̂,γ)α(γ) ] ≤ 1,
and the worst-case risk is controlled.

Proposition 10. Because Li(λ, γ) is bounded and monotone in λ for all choices of γ, it is
also true that L̃i(λ) is bounded and monotone. Furthermore, the pointwise supremum of
right-continuous functions is also right-continuous. Therefore, the L̃i satisfy the assumptions
of Theorem 1.
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Proposition 11. Let

λ̂′k = inf
⎧⎪⎪⎨⎪⎪⎩
λ ∶ k!n!

(n + k)! ∑
S⊂{1,...,n+k},∣S ∣=k

LS(λ) ≤ α
⎫⎪⎪⎬⎪⎪⎭
.

Since LS(λmax) ≤ α, λ̂′k exists almost surely. Since LS(λ) ≤ B, we have

k!n!

(n + k)! ∑
S⊂{1,...,n+k},∣S ∣=k

LS(λ)

≤ k!n!

(n + k)! ∑
S⊂{1,...,n},∣S ∣=k

LS(λ) +B ⋅ ∑
S∩{n+1,...,n+k}≠∅,∣S ∣=k

1

= k!n!

(n + k)! ∑
S⊂{1,...,n},∣S ∣=k

LS(λ) +B
⎛
⎝
1 − k!n!

(n + k)! ∑
S⊂{1,...,n},∣S ∣=k

1
⎞
⎠

= k!n!

(n + k)! ∑
S⊂{1,...,n},∣S ∣=k

LS(λ) +B (1 −
(n!)2

(n + k)!(n − k)!) .

Since LS(λ) is non-increasing in λ, we conclude that λ̂′k ≤ λ̂k if the right-hand side of (2.16)

is not empty; otherwise, by definition, λ̂′k ≤ λmax = λ̂k. Thus, λ̂′k ≤ λ̂k almost surely. Let E
be the multiset of loss functions {LS ∶ S ⊂ {1, . . . , n + k}, ∣S ∣ = k}. Using the same argument
in the end of the proof of Theorem 1 and the right-continuity of LS , we can show that

E [L{n+1,...,n+k}(λ̂′k) ∣ E] =
k!n!

(n + k)! ∑
S⊂{1,...,n+k},∣S ∣=k

LS(λ) ≤ α.

The proof is then completed by the law of iterated expectation.
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Chapter 3

Conformal Decision Theory

3.1 Introduction

Autonomous systems increasingly rely on complex learned models to supply predictions that
are the basis for decision-making. Self-driving cars rely on deep neural networks [3, 87, 135,
151] to plan paths around nearby pedestrians, robotic manipulators leverage learned grasp
models [111] to plan high-throughput pick-and-place maneuvers in factories, and AI-enabled
trading agents optimize the financial future of investors [169]. There is a conceptual gap
between prediction and decision-making, and it remains a challenge to ensure that systems
make good decisions despite imperfect predictions.

Conformal Controller
Aggressive
Conservative

!

Figure 3.1: Robot planner using a conformal controller on the Stanford Drone Dataset [129]. The future trajectories
of humans are predicted online by a machine learning algorithm (not visualized). The robot planner finds an optimal
spline through the scene and is penalized for being close to humans. This penalty is proportional to a conformal
control variable, λt, which is adjusted online by the conformal controller so the average distance from a human is no
less than two meters. The orange, red, and blue curves are the robot trajectory with different planners: the conformal
controller, an aggressive planner with λ = 0 (i.e., no reward for avoiding humans), and a conservative planner with a
large negative value of λ (i.e., a large reward for avoiding humans). The darkness of the lines indicates the passage of
time. Illustrative pedestrian trajectories are plotted as arrows; only the yellow pedestrians affect the spline planner.
Details in Section 3.5.1 and videos on project website† .

https://conformal-decision.github.io
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One increasingly popular strategy is to quantify the uncertainty in the predictions in-
dependently of their downstream effect on the decision via conformal prediction (CP) [4,
66, 73, 154, 156, 172]. This approach has become popular because, when used to provide
simultaneous prediction sets on all outcomes, conformal prediction provides statistical guar-
antees of safe autonomous behavior without any assumption on the underlying distribution
or model. This application of CP has shown impact in robot navigation [48, 58, 105, 115],
early warning systems [110], out-of-distribution detection [33, 142], probabilistic pose esti-
mation [168], and for large language models [126]. However, the requirement of simultaneous
coverage is challenging to satisfy and for many decision systems is excessive. What if we
could provide statistical guarantees, as in CP, directly on our decisions, bypassing the need
to construct prediction sets?

This chapter presents Conformal Decision Theory, a theoretical and algorithmic frame-
work that unifies predictive uncertainty and safe decision-making. Our key idea is

instead of calibrating prediction sets for coverage, we directly calibrate deci-
sions for low risk.

Our main algorithmic innovation is a class of algorithms called conformal controllers. A con-
formal controller starts with a conformal control variable, λt, which determines the decision-
maker’s conservatism or aggressiveness. Then, it dynamically adjusts λt to balance risk and
performance in such a way that guarantees a low risk. The main practical benefit of this
approach is its emergent ability to ignore irrelevant uncertainty, only accounting for that
which affects decisions. This can be much less conservative than the prediction-set strategy.
For example, in Figure 3.1, the planner only considers the humans that pose a collision risk.

The contributions of this chapter are threefold:

• We introduce Conformal Decision Theory, the idea of directly calibrating decisions with
conformal controllers. This extends the line of work in online adversarial conformal
prediction [5, 22, 66, 73] to the decision-making setting.

• We prove finite-time risk bounds for conformal controllers. Even when applied to
prediction sets, these results are stronger than any previously known results for online
adversarial conformal prediction.

• We show the utility of the framework in three simulations where Conformal Decision
Theory is applied to robot navigation: the Stanford Drone Dataset [129], a stock
trading simulation, and a robot manufacturing example.

The main potential impact of this chapter is to broaden the scope of conformal prediction.
Our methods are more appropriate for disciplines that focus on decision-making, such as
control theory, reinforcement learning, and logistics. In these disciplines, algorithms are
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ultimately evaluated by the decisions, not the predictions, that they make. Furthermore,
there are many settings where it does not make sense to construct prediction sets, and our
technique can provide a distribution-free outlook for such problems (see, e.g., Section 3.5.2).

3.2 Related Work

Decision-Making Under Predictive Uncertainty. Within the machine learning and
statistics community, uncertainty quantification of prediction models has been studied widely,
from conformal prediction to Bayesian neural networks to ensembles [70, 74, 93, 96, 97].
Instead of focusing on prediction calibration alone, the controls and optimization commu-
nity have coupled prediction uncertainty with safe (i.e., risk bounded) decision-making via
chance-constrained optimal control [31, 59] and scenario optimization [34, 53]. The former
typically constructs prediction sets that are used as constraints while the latter safeguards
against samples drawn from the prediction model. Instead of directly calibrating the output
of upstream prediction modules or solving decision-making problems under probabilistic con-
straints, this chapter presents a theoretical and algorithmic approach to tuning the robot’s
decision risk directly as a function of historical decision-making performance.

Online Learning & Nonstochastic Control. The method herein is reminiscent of online
learning, and specifically the online gradient descent (OGD) update of [179]. The connection
is most apparent when examining the forthcoming Equation (3.2) with ℓt = 1{yt ∈ C(xt)};
this recovers the ACI algorithm of [73], which is OGD on the quantile loss [93]. However, the
update in (3.2) is substantially more general because it incorporates arbitrary decision rules,
and reframing it as OGD on an analytic loss function is generally impossible. Furthermore,
the guarantees in [73] are not to our knowledge recoverable by existing regret analyses from
online convex optimization and nonstochastic control, e.g., [29, 78, 79]. However, the guar-
antees do share a retrospective flavor, in that, like regret analyses, they provide guarantees
on average over the observed history.

3.3 Conformal Decision Theory

Conformal Decision Theory (CDT) is an approach for calibrating an agent’s decisions to
achieve statistical guarantees for the realized average loss of those decisions. Consider a
decision-making agent whose input space is X and action space is U . In our running exam-
ple of robot navigation, xt ∈ X captures the current state of the robot, the current scene
information (e.g., environment geometry), and the agent information (e.g., pedestrian pre-
dictions) while ut ∈ U is the action that the ego vehicle plans at the current time t. At time
t, the agent has access to a family of decision functions

Dt ∶= {Dλ
t ∶ X → U , λ ∈ R} ,
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parameterized by λ, which we call a conformal control variable. One should think of λ
as indexing the decisions from least to most conservative. In Figure 3.1, Dt is the set of
dynamically feasible splines at time t, λ is the coefficient of the reward term for avoiding
humans, and Dλ

t is the spline maximizing the total reward given λ.

Assessing the quality of an agent’s decision depends on a space of targets Y. Importantly,
the realizations of these targets are unknown at the time of the decision; the agent only
observes them at deployment time, after decisions are made, and in an online fashion. For
example, the robot in Figure 3.1 does not know the true future state of nearby pedestrians;
at any current time t, it only knows the (potentially erroneous) pedestrian predictions. In
this example, Y is the space of pedestrian states (e.g., 2D positions) and yt ∈ Y is the true
state that the pedestrian moves to at time t.

Mathematically, the quality of the decision-making is quantified by a loss function L ∶
U × Y → [0,1].1 Often, the loss is more likely to be large when aggressive decisions are
taken—i.e., when λ is large. Aggressive decisions can be unsafe, but taking λ too small
yields conservative and under-performing decisions.

We seek an algorithm for adapting λt (and thus the corresponding decision Dλ
t ) at each

time step such that the average loss is controlled in hindsight for any realization of an
input-target sequence {(xt, yt)}Tt=1. This is commonly known as the adversarial sequence
model [52, 73]. Here, our goal is to set λ1∶T to achieve a long-term risk bound :

find λ1∶T s.t. R̂T (D1∶T , λ1∶T ) ≤ ε +
C ⋅ h(T )

T
, (3.1)

where ε is a pre-defined risk level in [0,1], C is a (small) constant, h(T ) is any sublinear
function; i.e., one where h(T )/T → 0 as T →∞, and

R̂T (D1∶T , λ1∶T ) ∶=
1

T

T

∑
t=1
L(Dλt

t (xt), yt) and R̂0 = 0.

We will omit D1∶T in the notation of risk when the sequence of family of decision functions
is clear from the context

3.4 Theory & Conformal Controller Algorithm

In this section, we prove the core theoretical results behind Conformal Decision Theory.
Specifically, we show that any sequence of families of decision functions D1∶T that are even-
tually safe can be calibrated online to achieve bounded long-term risk. We then introduce
an example of a conformal controller which solves Equation (3.1) under the assumption of
eventual safety.

1The framework works for any bounded loss, but we assume the loss to be in [0,1] for simplicity.
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Definition 1 (Eventually Safe). In the setting above, we say that D1∶T is eventually safe if
∃ εsafe ∈ [0,1], λsafe ∈ R and a time horizon K > 0 such that uniformly over all sequences λ1∶K
and {(x1, y1), . . . , (xk, yk)} ∈ X × Y,

{∀k ∈ [K], λk ≤ λsafe}

Ô⇒ 1

K

K

∑
k=1
L (Dλk

k (xk), yk) ≤ εsafe.

Intuitively, this condition says that there exists a safe value λsafe such that if the conformal
control variable lands below that value, it will incur a low risk εsafe after no more thanK time
steps. For example, even the most conservative robot planner may not be able to change
its trajectory fast enough in a single timestep, but it could possibly do so in K time steps.
For general decision-making, the existence of a safe decision function is not guaranteed,
and requires domain-specific knowledge (e.g., when the loss function captures the distance
between agents [17, 83, 157]). But when the decision is a prediction set, a safe decision
function is trivial because you can always output the entire space. Note that the eventually
safe is a strictly weaker assumption than that used for the proofs in other works, such
as [5, 24, 73], which require K = 1. Moreover, conformal controllers are simple yet efficient
algorithms that solve the Conformal Decision Theory problem stated in Equation (3.1). An
example is below.

Theorem 13 (Conformal Controller). Consider the following update rule for λ1∶T :

λt+1 = λt + η (ε − ℓt) ,∀t ∈ [T ] (3.2)

where η > 0 and ℓt ∶= L(Dλt
t (xt), yt).

If λ1 ≥ λsafe − η and D1∶T satisfies Definition 1 for a given K ≥ 1 and εsafe ≤ ε, then for
any realization of the data, the empirical risk is bounded:

R̂t(λ1∶t) ≤ ε +
(λ1 − λsafe)/η +K

t
,

for all t ∈ [K, ..., T ].

The update in (3.2) resembles ACI [73] and is a hybrid between the RollingRC update [66],
and the P-controller update [5]. The difference is that the update is applied to λ and not
the conformal quantile or quantile level.

Proof of Theorem 13. By the definition of the update rule,

λt+1 = λ1 + η
t

∑
s=1
(ε − ℓs).
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By isolating ∑t
s=1 ℓs on one side and moving all other terms to the right-hand side, we obtain:

R̂t(λ1∶t) =
1

t

t

∑
s=1

ℓs = ε +
λ1 − λt+1

ηt
.

To conclude, we just need to lower bound λt by a constant w.r.t t which is done in the
following Lemma 13.1.

Lemma 13.1. For the sequence in Equation 3.2, with λ1 ≥ λsafe − η we have that the
parameter λt is bounded below by λt ≥ λsafe −Kη, for all t ∈ [T + 1].

Proof. First note that the maximal change in the parameter is sups∈[T ] ∣λs+1−λs∣ < η, because
ℓs ∈ [0,1] and ε ∈ [0,1]. We will then proceed by contradiction: Assume that infs∈[T+1] λs <
λsafe−Kη. Denote t = argmins∈[T+1]{s ∶ λs < λsafe−Kη}. That is, t is the first instant when the
parameter goes below that lower bound. Then, by definition of t, ∀s < t, λt < λsafe −Kη ≤ λs.

Because the max difference between successive steps is η, we can prove recursively that
∀k ∈ {0, . . . ,K}, λt−k < λsafe−(K−k)η. Note that, from those inequalities, we deduce that t >
K since λ1 ≥ λsafe−η. By recursively applying the update rule λt = λt−K+Kη(ε− 1

K ∑
K
k=1 ℓt−k),

we have:

(∀k ∈ {0, . . . ,K − 1}, λt−k < λsafe)

Ô⇒ 1

K

K

∑
k=1

ℓt−k ≤ εsafe (Definition 1)

Ô⇒ λt = λt−K +Kη (ε − 1

K

K

∑
k=1

ℓt−k)

Ô⇒ λt ≥ λt−K +Kη(ε − εsafe)
Ô⇒ λt ≥ λt−K .

Since t is the first ever timestep to go below λsafe −Kη, this is a contradiction.

Remark 1. The assumption λ1 ≥ λsafe−η is not necessary to prove that R̂t(λ1∶t) ≤ ε+O(1/t).
Intuitively, two scenarios can occur:

1. If ∀k ∈ [K], λk ≤ λsafe, then the empirical risk over the first K steps will be upper
bounded by εsafe. In this case, we need only to upper bound the risk between K + 1 and
T , which can be achieved using the previous theorem or this remark.

2. If there exists a k ∈ [K] such that λk > λsafe, we can apply the previous theorem to
upper bound the risk between k and T + 1. The cumulative loss between 1 and k is
upper bounded by k, which is o(1).
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Conformal Decision Theory in Batch

Conformal decision theory can also be applied in the so-called batch setting, wherein a
separate calibration dataset is available for learning a safe decision. Here, a dataset or
simulator allows for offline experimentation to quantify the risk of different decisions, e.g.,
offline RL. This requires a different statistical setup. Consider the case of n+1 exchangeable
decision functions D1(λ), . . . ,Dn+1(λ) and an associated loss function L taking a decision
and returning a value in [0,1]. The first n decision functions will be used for calibration of
a parameter λ̂ that will be used in the final decision. These exchangeable decision functions
may be produced, for example, by applying a single decision function to a sequence of
exchangeable data points. For the sake of simplicity, we assume that the decisions have
monotone loss, i.e., that for all i,

λ1 ≤ λ2 Ô⇒ L (Di(λ1)) ≤ L (Di(λ2)) .

Following [9], the conformal control variable can be chosen as

λ̂ = sup{λ ∶ 1
n

n

∑
i=1
L (Di(λ)) ≤ ϵ −

1 − ϵ
n
} .

This will give a risk guarantee as a corollary of Theorem 1 of [9].

Corollary 14. With the choice of λ̂ above,

E [L (Dn+1(λ̂))] ≤ ϵ.

Though the validity of the algorithm follows from the theory of conformal risk control, it is
substantially different in practice and deserves further study. Specifically, unlike the previous
methods, in order to calculate λ̂, one must iterate through a sequence of counterfactual
decisions (possible values of λ) and evaluate what the loss would have been. This restricts
the applications of the batch algorithm and also presents an opportunity for future work to
make it more efficient and expand its scope.

3.5 Experiments

We demonstrate Conformal Decision Theory in three autonomous decision-making domains,
which exhibit three different ways in which a conformal controller can be instantiated. First,
we consider a robot-navigation-around- humans example in the Stanford Drone Dataset
[129], where CDT tunes the robot’s reward function in an online manner to be safe but
efficient. Next, we model a manufacturing setting where CDT directly calibrates the speed
of the conveyor belt under a robot to achieve high-throughput and successful robot grasps.
Finally, we study an automated high-frequency trading example where CDT must optimize
the buying and selling of stocks.
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3.5.1 Robot Navigation in Stanford Drone Dataset

Robot navigation around people must balance safety (i.e., not colliding with humans) and
efficiency (i.e., the robot makes progress towards a goal). To ensure that the risk of collision
is low while still making progress to the goal, the robot will calibrate its cost function at
run-time using a conformal controller (CC).
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Figure 3.2: Stanford Drone Dataset: Qualitative Results. Visualization of interaction
over time (left to right). (Top) With our conformal controller (CC), the robot always makes
progress towards its goal while remaining safe, even when blocked by crowds of people.
(Bottom) The ACI baseline calibrates the prediction sets. As soon as a mis-prediction
happens, ACI expands the prediction sets to obtain coverage, but this frequently blocks the
robot from moving anywhere (see t = 10s), even though the mis-predictions occurred for a
pedestrian who was far away and not interfering with the robot’s plan.

Decision Function & Parameterization. The robot plans via model predictive control,
where at each timestep it fits a minimum-cost spline subject to its dynamic constraints,
which are modeled as a nonlinear Dubins car [158]. Let g ∶= [gx, gy] ∈ R2 be the robot’s goal
location. Let t be the current time, H < T be the planning horizon, and ut∶t+H ∈ RH×3 be a
spline consisting of the robot’s planar position and orientation. The robot also gets as input
the current set of short-horizon predictions of each human’s state, xt∶t+H ∈ Pt, generated by
an autoregressive predictive model [85]. Note that this set Pt can include predictions for
multiple humans in the scene (as shown in Figure 3.1). The robot’s planning objective is

J(ut∶t+H ;Pt, λ) ∶=
t+H

∑
τ=t
∥upos

τ − g∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Goal distance

+λ ⋅ (− inf
xτ ∈Pt

∥upos
τ − xτ∥)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Human avoidance

,

where the notation upos
τ ∈ R2 indicates the xy-positional entries of the robot’s state at time τ .

Note that the conformal control variable λ scales the cost of staying far away from predicted
human states: if λ = 0 the robot only cares about reaching the goal; if λ > 0 then the robot
is increasingly penalized for intersecting with predicted human trajectories. The decision
function outputs the minimum-cost trajectory for the robot

Dλ
t ∶= arg min

ut∶t+H∈U
J(ut∶t+H ;Pt, λ),

where U is the set of feasible splines (ones that are dynamically feasible for the robot and also
do not intersect with environment obstacles). At the next timestep, the robot re-predicts
the human trajectory (i.e., generates Pt+1) and re-plans the decision Dλ

t+1.
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Figure 3.3: Stanford Drone Dataset. (Top) Trajectories of λt (calibrated by CC) and
αt (from ACI to calibrate sets). When αt ≤ 0, ACI returns infinite set and the robot stops.
(Bottom) Distance to the nearest human over time. λt is large when the robot is close to
human, while αt is unrelated. The λt trajectory is shorter because it reaches the goal faster.

Loss Function. Let Y ⊂ R2 and the targets y1t , . . . , y
M
t ∈ Y be the actual xy positions of

each of the M humans that the robot observes at time t. The loss function is defined as the
negative distance to the nearest human,

L ∶= − inf
i∈[M]
∥yit − upos

t ∥2,

where upos
t is the robot’s current position. To make this value bounded, we clip the loss to

the size of the video. Note that because we use a negative loss, we also changed λ so that
the larger λ, the more conservative the decision.

Metrics. We measure a boolean safe variable indicating if the robot did not ever collide with
a human. We also measure a boolean success variable if the robot reached the goal location by
the end of the interaction episode (i.e., length of video in the dataset). We also measure the
time to reach the goal location and the minimum, mean, and {5%,10%,25%,50%} quantiles
of the distance to the nearest human.

Experimental Setup. All methods are evaluated on interactions from the nexus 4 video
in the Stanford Drone Dataset (SDD) [129]. The risk threshold is ε = 2m (i.e., radius
around human). The robot always starts from the same initial condition and moves to the
same goal. This scenario has a high density of pedestrians, making the risk-performance
tradeoff for the robot nontrivial. Our approach (CC) adapts the reward weight λt on the
human collision cost based on Equation 3.2 so that the decision risk is calibrated. Our
baseline robot planners: conservative which always uses the safe decision function Dλ=1

t ,
aggressive which uses Dλ=0

t , and ACI [58] which first uses adaptive conformal prediction
to calibrate prediction sets and then plans to avoid these sets.

Results. Quantitative results shown in Table 3.1 and qualitative results in Figure 3.1. Be-
cause the conformal controller calibrates the robot’s decisions directly, it is substantially
(∼ 29%) faster at reaching the goal than the ACI algorithm (see visualization over time in
Figure 3.2). While the aggressive baseline reaches the goal fastest, it consistently violates
the safety threshold. On the other hand, the conservative baseline never completes the
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Figure 3.4: Manufacturing Assembly Line Robot: Quantitative Results. (Left)
Illustrative example: Robot must adjust the speed so that it grasps the most items while
minimizing grasp failure. (Right) Empirical risk ,R̂T , and average utility (i.e., successful
grasps), V̂T on 1000 runs. Our method is denoted by (CC). Dashed red line is target risk
ε = 0.05.

task, getting stuck far away from the crowds of pedestrians. The conformal controller
ensures safety so long as the learning rate is fast enough for the robot planner to quickly
adapt to changes in nearby human behavior (see Figure 3.3). Note that ACI can result
in collisions for two reasons: 1) the prediction sets do not adapt fast enough for the spline
planner to react and swerve out of the way of the pedestrian, 2) if the prediction sets become
so large that there is no feasible spline and the robot must stand in place, the pedestrians
sometimes run into the robot. This issue was independently observed in [58].

3.5.2 Manufacturing Assembly Line Robot

Consider a factory assembly line where a robot has to grab items from a conveyor belt (left,
Figure 3.4). As the speed increases, the throughput of items increases but so does the ratio
of robot grasp failures. The agent must calibrate the speed so that the ratio of failures over
time stays below ε.

Decision Function & Parameterization. The agent directly modifies the speed, thus
the action is defined as ut ∶= λt. Here we take λt ∈ [0,1].

Risk Function. For a given conveyor belt speed λ, the robot will attempt to grab n(λ)
items, among which d(λ) are failed grasps. The loss received by the robot will be L(λ) ∶=
d(λ)/n(λ).

Metrics. We measure average utility (i.e., # of successful grasps), V̂T ∶= 1
T ∑

T
t=1 V (λt), and

empirical risk, R̂T (λ1∶T ).

Experimental Setup. We assume that the number of items n(λ) the robot attempts to
grab is drawn as Pois(C ⋅

√
λ). The number of failed grasps conditioned on the total number

of items is d(λ)∣n ∼ Bin(n,C ′ ⋅λ). Importantly, the distributions of n, d, and the parameters
C,C ′ are all unknown to the agent. Our conformal controller method (CC) adjusts the speed
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λt based on the update rule from Equation 3.2. In addition to the risk function, we also
track a utility function which is the number of successful grasps V (λ) ∶= n(λ) − d(λ).

We compare our method with two baselines: A bandit algorithm running the upper
confidence bound algorithm (UCB) [98] to maximize the utility V and another algorithm
running the lower confidence bound algorithm (LCB) to minimize the loss L. We also add
two methods with oracle access to the otherwise unknown parameters: Oracle-Value selects
the best speed to maximize grasp success λ∗V ∶= argmaxλE[V (λ)] and Oracle-Loss selects
the best speed λ∗L such that E[L(λ∗L)] ∶= ε. The values selected for the parameters are in
Figure 3.4. We run all methods for a horizon T = 2000, set C = 10, C ′ = 0.2, and the target
risk is ε = 0.05 (i.e., ≤ 5% failed grasp).

Results. We run the simulation N = 1000 times, and calculate the average empirical risk
and the average number of successful grasps. In Figure 3.4, we find that our method performs
as well as the Oracle-Loss, ensuring that the empirical risk of grasps never exceeds ε = 0.05,
while still ensuring high throughput of successfully grasped items. UCB and LCB both
violate the empirical risk threshold: UCB incurs this risk but achieves a higher number of
successful grasps, while LCB is slow to learn its target, resulting in a higher risk over the
time horizon.

3.5.3 Stock Trading Agent

We consider an automated trading agent that trades a stock at high frequency. We model
the agent as able to either buy or short-sell the stock, with no trading cost. When buying
the stock at time t, the agent receives return rt. When short-selling the stock, the agent
receives a return −rt. The agent must calibrate its trading decisions so the annualized loss
is at or beneath the investor’s loss threshold of ε%.

Decision Function & Parameterization. At every timestep, t, the agent has access to
the past history of returns and its own actions. The agent can use it to construct a confidence
set Ĉλ where λ is the conformal control variable. Given a predicted set, the agent can decide
to either buy if the entire set is above zero, short-sell if the entire set is below zero, and not
do anything if zero is in the set:

Dλ
t ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if min(Ĉλ) > 0
−1 if max(Ĉλ) < 0
0 o.w.

Risk Function. The agent’s action is u ∈ {−1,0,1} which incurs a loss L(u, r) ∶= −u⋅r⋅1{u⋅r <
0}, i.e., the agent suffers a loss equal to the amount of money lost by that decision. We clip
the loss to make it bounded.

Experimental Setup. We simulate stock returns using a geometric Brownian motion. We
assume that we observe returns every hour, so we have n = 252(days) × 7(hours per day)
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Figure 3.5: Stock Trading: Quantitative Results. All results over 5 year period. The
yearly loss threshold ε = 25%. (left) Despite a poor prediction model of return (negative
correlation), the CC achieves bounded loss at the user’s threshold (bottom, dashed red
line overlaps with orange CC line) but is not the best at keeping the return the highest.
(right) With a strong prediction model on the return (positive correlation), the CC is able
to achieve high yearly returns (second only to Greedy) while simultaneously respecting the
loss threshold (which the Greedy violates).

steps per year:
rt ∶= µ∆ + σ

√
∆Zt where ∆ = 1/n.

We assume that at time t−1, the agent has access to a prediction r̂t and we assume that the
correlation corr(rt, r̂t) ∶= ρ. The higher ρ the better the predicted returns r̂t. The predicted
interval is

Ĉλ(r̂t) ∶= [r̂t − σ
√
∆zλ/2, r̂t + σ

√
∆z1−λ/2],

where zλ is the quantile of level λ of the normal distribution.

Metrics. In addition to the loss, we also measure return V (u, r) ∶= u ⋅ r when the agent’s
action is u.

Results. We run N = 100 simulations over five years. We set µ = 0.08, σ = 0.2, which are
approximately the historical values for the S&P 500. We compare our CC method with:
the Buy-and-Hold strategy that simply buys the stock at each timestep, the Greedy
strategy that buys the stock whenever the prediction is above zero and short-sells it when
the prediction is below zero (equivalent to D(λ = 1)), and ACI that adjusts λ online using
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the ACI algorithm. We set the target coverage for ACI at 90% and our annualized loss
threshold to be less than ε = 25% (the threshold per time-step is therefore ε/n). For the
prediction of returns, we simulate another geometric Brownian motion,

r̂t ∶= µ∆ + σ
√
∆Wt where where corr(Wt, Zt) = ρ.

The results for the different methods are in Figure 3.5. We plot the cumulative return and
cumulative loss for all methods and for two models: ρ = 0.1 (good model) and ρ = −0.05
(bad model). In both cases, our CC quickly adapts the parameter to stay below the loss
threshold, while having good returns when the predictive model is good (ρ = 0.1). The
Greedy approach has more extreme returns (negative when the model is bad, positive
when the model is good) with a high level of loss. ACI is highly conservative, resulting
in smaller loss, significantly below the threshold. By being so conservative, the algorithm
limits its potential gain when the predictive model is actually good. Buy-and-hold also
has high cumulative loss as it moves with the stock, and has a more consistent return, as it
is independent of the model quality.

3.6 Discussion & Conclusion

In this chapter, we introduce Conformal Decision Theory, a theoretical and algorithmic
framework for producing safe decisions despite being based on imperfect machine-learning
predictions. We have described our method in both the online adversarial setting, and also
the batch exchangeable setting. The main difference between the two is that the online
algorithms we present are computationally trivial, while the batch setting can require evalu-
ating a large amount of counterfactual decisions (indexed by different choices of λ) on every
calibration point. Though this can be done with binary search, it still presents operational
challenges. One path for future work may be to test the method in settings where simulators
or data sets can support this form of offline policy evaluation. Another may be to develop
formally valid approximations of the batch technique which preserve risk control while being
more practical. Furthermore, extensions of the batch technique to non-exchangeable settings
are readily available, e.g., by use of the techniques in [65], and could be evaluated.

Finally, despite λ being 1-dimensional, our procedure can index an arbitrary set of de-
cisions. Consider a set of decisions D, a utility predictor û(d;x) where d ∈ D, and a loss
predictor L̂(d;x), we can maximize utility subject to the constraint that our predicted loss
is controlled:

Dt = argmax
d∈D

û(d;xt)

s.t. L̂(d;xt) ≤ λt.

This will work as long as we revert to a safe decision if λt ≤ λsafe; where the sequence λt is
defined in Equation 3.2. However, no guarantees on utility are provided. This topic would be
a great avenue for future work, bringing conformal prediction closer to the classical statistical
decision theory of Lehmann [99], von Neumann and Morgenstern [152], and others.
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Part II

Prediction-Powered Inference
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Chapter 4

Core Methodology

4.1 Introduction

Imagine a scientist has a machine-learning system that can supply accurate predictions
about a phenomenon far more cheaply than any gold-standard experimental technique. The
scientist may wish to use these predictions as evidence in drawing scientific conclusions.
For example, accurate predictions of three-dimensional structures have been made for a
vast catalog of known protein sequences [89, 148] and are now being used in proteomics
studies [20, 25]. Such machine-learning systems are increasingly common in modern scientific
inquiry, in domains ranging from cancer prognosis to microclimate modeling. Predictions
are not perfect, however, which may lead to incorrect conclusions. Moreover, as predictions
beget other predictions, these imperfections may cumulatively amplify. How can modern
science leverage machine-learning predictions in a statistically principled way?

One way to use predictions is to follow the imputation approach: proceed as if they are
gold-standard measurements. Although this lets the scientist draw conclusions cheaply and
quickly due to the high-throughput nature of the machine-learning system, the conclusions
may be invalid because the predictions may have biases.

Another approach is to apply the classical approach: ignore the machine-learning pre-
dictions and only use the available gold-standard measurements, which are typically far
less abundant than predictions. The resulting discoveries will be statistically valid, but the
smaller amount of data will limit the scope of possible discoveries.

This chapter presents prediction-powered inference, a framework that achieves the best
of both worlds: extracting information from the predictions of a high-throughput machine-
learning system, while guaranteeing statistical validity of the resulting conclusions. Prediction-
powered inference provides a protocol for combining predictions, which are abundant but not
always trustworthy, with gold-standard data, which is trusted but scarce, to compute confi-
dence intervals and p-values. The resulting confidence intervals and p-values are statistically
valid, as in the classical approach, but also leverage the information contained in the pre-
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dictions, as in the imputation approach, to make the confidence intervals smaller and the
p-values more powerful.

Prediction-powered inference can be used with any machine-learning system. As such, it
absolves the need for case-by-case analyses dependent on the machine-learning algorithm on
hand. The proposed protocol thereby enables researchers to report and assess the evidence
for their conclusions in a fully standardized way.

4.1.1 General principle

We now overview prediction-powered inference. The goal is to estimate a quantity θ∗, such
as the mean or median value of a random outcome over a population of interest. Towards
this goal, we have access to a small gold-standard dataset of paired features and outcomes,
(X,Y ) = ((X1, Y1), . . . , (Xn, Yn)), as well as the features from a large unlabeled dataset,

(X̃, Ỹ ) = ((X̃1, Ỹ1), . . . , (X̃N , ỸN)), where we do not observe the true outcomes Ỹ1, . . . , ỸN .
We care about the case where N ≫ n. For both datasets, we have predictions of the
outcome made by a machine-learning algorithm f , denoted f(X) = (f(X1), . . . , f(Xn)) and
f(X̃) = (f(X̃1), . . . , f(X̃N)).

Prediction-powered inference builds confidence intervals that are guaranteed to contain
θ∗. Imagine we have an estimator θ̂ of θ∗. One feasible but naive way to estimate θ∗, which
we call the imputation approach, is to treat the predictions as gold-standard outcomes and
compute θ̃f = θ̂(X̃, f(X̃)). If the predictions are accurate, meaning f(X̃i) ≈ Ỹi, then θ̃f is
close to θ∗. However, θ̃f will generally be biased due to errors in the predictions. Instead,
our key idea is to use the gold-standard dataset to quantify how the prediction errors affect
the imputed estimate, and then construct a confidence set for θ∗ by adjusting for this effect.

More systematically, the first step is to introduce a problem-specific measure of prediction
error called the rectifier, denoted as ∆. The rectifier captures how errors in the predictions
lead to bias in θ̃f . Intuitively, ∆ recovers θ∗ by “rectifying” θ̃f . The appropriate rectifier
depends on the estimand of interest θ∗, and we show how to derive it for a broad class
of estimands. Next, we use the gold-standard data to construct a confidence set for the
rectifier, R. Finally, we form a confidence set for θ∗ by taking θ̃f and rectifying it with each
possible value in the set R. The collection of these rectified values is the prediction-powered
confidence set, CPP, which is guaranteed to contain θ∗ with high probability.
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Prediction-Powered Inference

1. Define rectifier

Define the rectifier, ∆,
a measure of prediction

error.

2. Rectifier confidence
set

With labeled data, create
R, a confidence set for the

rectifier.

3. Prediction-powered
confidence set

Construct confidence set CPP by
rectifying θ̃f with each value in R.

Prediction-powered inference leads to powerful and provably valid confidence intervals
and p-values for a broad class of statistical problems, enabling researchers to reliably incor-
porate machine learning into their analyses. We provide practical algorithms for construct-
ing prediction-powered confidence intervals for means, quantiles, modes, linear and logistic
regression coefficients, as well as other inferential targets. For conciseness, our technical
statements and algorithms will focus on constructing confidence intervals; however, note
that through the duality between confidence intervals and hypothesis tests, our intervals
directly imply valid prediction-powered p-values and hypothesis tests as well.

4.1.2 Further preliminaries

We use (X,Y ) ∈ (X × Y)n to denote the labeled dataset, where X = (X1, . . . ,Xn) and
Y = (Y1, . . . , Yn). We use the terms “labeled” and “gold-standard” interchangeably. We
use analogous notation for the unlabeled dataset, (X̃, Ỹ ) ∈ (X × Y)N , where the outcomes
Ỹ are not observed. For now we assume that (X,Y ) and (X̃, Ỹ ) are independently and
identically distributed samples from a common distribution, P. We generalize our results to
settings with distribution shift and finite populations in Section 4.4.2 and Appendix 4.5.2,
respectively. By θ∗ we denote the estimand of interest, which will typically be an underlying
property of P, such as the mean outcome.



CHAPTER 4. CORE METHODOLOGY 46

Next, we have a prediction rule, f ∶ X → Y, that is independent of the observed data.
For example, it may have been trained on other data independent from both the labeled
and the unlabeled data. Thus, f(Xi) denote the predictions for the labeled data and f(X̃i)
denote the predictions for the unlabeled data. We let f(X) = (f(X1), . . . , f(Xn)) and
f(X̃) = (f(X̃1), . . . , f(X̃N)). We will treat X,Y, X̃, Ỹ , f(X), f(X̃) as vectors and matrices
where appropriate.

Our key conceptual innovation is the rectifier ∆: a measure of the prediction rule’s error.
We formally define the rectifier in Section 4.2. We use ∆̂ to denote an estimate of the rectifier
based on labeled data, which we call the empirical rectifier.

4.1.3 Warmup: Mean estimation

Before presenting our main results, we use the example of mean estimation to build intuition.
Our goal is to give a valid confidence interval for the average outcome, θ∗ = E[Yi]. The
classical estimate of θ∗ is the sample average of the outcomes on the labeled dataset, θ̂class =
1
n ∑

n
i=1 Yi. We construct a prediction-powered estimate, θ̂PP, and show that it leads to tighter

confidence intervals than θ̂class if the prediction rule is accurate. Consider

θ̂PP = 1

N

N

∑
i=1

f(X̃i)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
θ̃f

− 1

n

n

∑
i=1
(f(Xi) − Yi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∆̂

.

The key idea is that if the predictions are accurate, we have ∆̂ ≈ 0 and θ̂PP ≈ 1
N ∑

N
i=1 Ỹi,

which has a much lower variance than θ̂class since N ≫ n.

Notice θ̂PP is unbiased for θ∗ and it is a sum of two independent terms. Thus, we can
construct 95% confidence intervals for θ∗ as

θ̂PP ± 1.96
√

σ̂2
f−Y

n
+
σ̂2
f

N
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
prediction-powered interval

or θ̂class ± 1.96
√

σ̂2
Y

n
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

classical interval

,

where σ̂2
Y , σ̂

2
f−Y , and σ̂2

f are the estimated variances of the Yi, f(Xi) − Yi, and f(X̃i), re-
spectively. The prediction-powered confidence interval is smaller than the classical interval
when the model is good. Because N ≫ n, the width of the prediction-powered interval is
primarily determined by the term σ̂2

f−Y . Furthermore, when the model has small errors, we
have σ̂2

f−Y ≪ σ̂2
Y . Thus, the width of the prediction-powered interval will be smaller than

the width of the classical interval. This estimator exists in many forms in the literature—
see Section 4.1.4. This variance reduction is why prediction-powered confidence intervals are
smaller than their classical counterparts in a broad range of settings beyond mean estimation.
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4.1.4 Related work

Our technical results generalize tools from the model-assisted survey sampling literature [e.g.,
137], which provides methods to improve inference from surveys in the presence of auxiliary
information. In particular, the mean estimator in Section 4.1.3 is the difference estimator,
closely related to generalized regression estimators [38]. It has long been recognized that
model predictions can be leveraged as auxiliary data [166], and much work has gone into
producing asymptotically valid confidence intervals when the predictive model is fit on the
same data that is used for inference—see [28] for a recent overview. Our work is also
related to the statistical literature on semiparametric inference, missing data, and multiple
imputation [e.g., 107]. In particular, Robins et al. [131], Robins and Rotnitzky [130],
Chen and Breslow [44], Yu and Nan [171] study regression with missing data. The rectifier
resembles debiasing strategies that are pervasive in this literature, an example being the
AIPW estimator [130]. Likewise, our setting is related to measurement error [e.g., 37],
particularly to Chen et al. [47], who study the estimation of parameters defined as solutions
to many estimating equations, as we will in this chapter. Prediction-powered inference aims
to provide simple, broadly applicable algorithms using similar debiasing tricks, while allowing
the use of state-of-the-art black-box machine-learning systems.

Recently, a body of work on estimation with many unlabeled data points and few la-
beled data points has been developed [16, 45, 124, 144, 160, 174], focusing on efficiency
in semiparametric or high-dimensional regimes. In particular, Chakrabortty and Cai [40]
study efficient estimation of linear regression parameters, Chakrabortty et al. [41, 42] study
efficient quantile estimation and quantile treatment effect estimation with high-dimensional
covariates, Zhang and Bradic [175] study mean estimation in a high-dimensional setting,
Deng et al. [56] study linear regression parameters in a high-dimensional setting, and Hou
et al. [82] study an imputation approach to improving generalized linear models. Finally,
Song et al. [144] study M-estimation, using a projection-based correction to the classical
M-estimator loss based on simple statistics (e.g. low-order polynomials) of the features.
Prediction-powered inference continues in this vein but focuses on the setting where the sci-
entist has access to a good predictive model fit on separate data and makes no assumptions
about the model (such as consistency). The confidence intervals and resulting p-values from
previous work rely on asymptotic approximations, while prediction-powered inference has
both asymptotic and nonasymptotic variants. Furthermore, prediction-powered inference
goes beyond random sampling and considers certain forms of distribution shift.

More distantly, our setting, in which we have access to some labeled data alongside
unlabeled data, also appears in semisupervised learning [e.g., 177, 178], which studies the
question of how to improve prediction accuracy with unlabeled data. We also refer the
reader to the related literatures on transfer learning [e.g., 21, 103, 145, 167] and surrogates
in causal inference [e.g., 90]. Thematically, our work is most similar to the work of Wang et
al. [159], who also introduce a method to correct machine-learning predictions for the purpose
of subsequent inference. However, our work provides confidence intervals that are provably
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valid under minimal assumptions about the data-generating distribution, whereas Wang et
al. require certain parametric assumptions about the relationship between the prediction
model and the true response. We compare against this baseline in Appendix 4.5.24.

4.2 Main theory: Convex estimation

Our main contribution is a technique for inference on estimands that can be expressed as the
solution to a convex optimization problem. In addition to means, this includes medians, other
quantiles, linear and logistic regression coefficients, and many other quantities. Formally, we
consider estimands of the form

θ∗ = argmin
θ∈Rp

E [ℓθ(Xi, Yi)] ,

for a loss function ℓθ ∶ X × Y → R that is convex in θ ∈ Rp, for some p ∈ N. Throughout,
we take the existence of θ∗ as given. If the minimizer is not unique, our method will return
a confidence set guaranteed to contain all minimizers. Under mild conditions, convexity
ensures that θ∗ can also be expressed as the value solving

E [gθ∗(Xi, Yi)] = 0, (4.1)

where gθ ∶ X ×Y → Rp is a subgradient of ℓθ with respect to θ. We will call convex estimation
problems where θ∗ satisfies (4.1) nondegenerate, and we will later discuss mild conditions
that ensure this regularity.

Defining the rectifier. Following the outline in Section 4.1.1, the first step in prediction-
powered inference is to define a rectifier. As in the mean estimation case, the rectifier
captures a notion of prediction error. In the general setting of convex estimation problems,
the relevant notion of error is the bias of the subgradient gθ computed using the predictions:

∆θ = E [gθ(Xi, Yi) − gθ(Xi, f(Xi))] . (4.2)

Rectifier confidence set. The second step is to create a confidence set for the rectifier,
Rδ(θ), satisfying

P (∆θ ∈Rδ(θ)) ≥ 1 − δ.
Because the rectifier is an expectation for each θ, Rδ(θ) can be constructed using standard,
off-the-shelf confidence intervals for the mean, which we review in Appendix 4.5.21.

Prediction-powered confidence set. The final step is to form a confidence set for θ∗.
We do so by combining Rδ(θ) with a term that accounts for finite-sample fluctuations due to
having N unlabeled data points. In particular, for every θ, we want a confidence set Tα−δ(θ)
for gfθ = E[gθ(Xi, f(Xi))], satisfying

P (gfθ ∈ Tα−δ(θ)) ≥ 1 − (α − δ).
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Again, since gfθ is a mean, constructing Tα−δ(θ) is easy and can be done with off-the-shelf
tools.

We put all the steps together in Theorem 15.

Theorem 15 (Convex estimation). Suppose that the convex estimation problem is nonde-
generate as in (4.1). Fix α ∈ (0,1) and δ ∈ (0, α). Suppose that, for any θ ∈ Rp, we can
construct Rδ(θ) and Tα−δ(θ) satisfying

P (∆θ ∈Rδ(θ)) ≥ 1 − δ; P (gfθ ∈ Tα−δ(θ)) ≥ 1 − (α − δ).

Let CPPα = {θ ∶ 0 ∈Rδ(θ) + Tα−δ(θ)}, where + denotes the Minkowski sum.1 Then,

P (θ∗ ∈ CPPα ) ≥ 1 − α.

This result means that we can construct a valid confidence set for θ∗, without assump-
tions about the data distribution or the machine-learning model, for any nondegenerate
convex estimation problem. We also present an asymptotic counterpart of Theorem 15 in
Appendix 4.5.6.

Most practical problems are nondegenerate (4.1). For example, if the loss is differentiable
for all θ ∈ Rp, then the problem is immediately nondegenerate. Furthermore, if the data
distribution does not have point masses and, for every θ, ℓθ(x, y) is nondifferentiable only
for a measure-zero set of (x, y) pairs, then the problem is again nondegenerate.

We have focused on convex estimation problems, since this is a broad class of estimands
addressed by prediction-powered inference. Nonetheless, we highlight that the general prin-
ciples for prediction-powered inference from Section 4.1.1 are applicable more broadly, and
lead to additional results and algorithms for other estimands and some forms of distribution
shift; see Section 4.4 for such extensions.

4.2.1 Algorithms

In this section we present prediction-powered algorithms for several canonical inference prob-
lems. We defer the proofs of their validity to Appendix 4.5.9. The algorithms rely on confi-
dence intervals derived from the central limit theorem. We implicitly assume the standard,
mild regularity conditions required for the asymptotic validity of such intervals, which we
overview in Appendix 4.5.8. We also present a parallel set of algorithms that are obtained
via nonasymptotic constructions in Appendix 4.5.7. In the algorithms we use z1−δ to denote
the 1− δ quantile of the standard normal distribution, for δ ∈ (0,1). All algorithms are tech-
nically simplified versions of Algorithm 5 with different choices of gradients and rectifiers;
see Table 4.1 for the correspondence.

1The Minkowski sum of two sets A and B is equal to {a + b ∶ a ∈ A, b ∈ B}.
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Mean estimation. We begin by returning to the problem of mean estimation:

θ∗ = E[Yi]. (4.3)

The mean can alternatively be expressed as the solution to a convex optimization problem
by writing it as the minimizer of the average squared loss:

θ∗ = argmin
θ∈R

E[ℓθ(Yi)] = argmin
θ∈R

E [1
2
(Yi − θ)2] .

The squared loss ℓθ(y) is differentiable, with gradient equal to gθ(y) = θ − y. Applying this
in the definition of the rectifier (4.2), we get ∆θ ≡∆ = E[f(Xi)−Yi]. Note that this rectifier
has no dependence on θ. We provide an explicit algorithm for prediction-powered mean
estimation and its guarantee in Algorithm 1 and Proposition 16, respectively.

Proposition 16 (Mean estimation). Let θ∗ be the mean outcome (4.3). Then, the prediction-
powered confidence interval in Algorithm 1 has valid coverage: lim infn,N→∞P (θ∗ ∈ CPPα ) ≥
1 − α.

Quantile estimation. We now turn to quantile estimation. For a pre-specified level q ∈
(0,1), we wish to estimate the q-quantile of the outcome distribution:

θ∗ =min{θ ∶ P (Yi ≤ θ) ≥ q} . (4.4)

To simplify the exposition, we assume that the distribution of Yi does not have point masses;
this ensures that the problem is nondegenerate (4.1), though it is possible to generalize
beyond this setting with a standard construction. It is well known [93] that the q-quantile
can be expressed in variational form as

θ∗ = argmin
θ∈R

E [ℓθ(Yi)] = argmin
θ∈R

E [q(Yi − θ)1{Yi > θ} + (1 − q)(θ − Yi)1{Yi ≤ θ}] ,

where ℓθ is called the quantile loss (or “pinball” loss). The quantile loss has subgradient
gθ(y) = −q1{y > θ} + (1 − q)1{y ≤ θ} = −q + 1{y ≤ θ}. Plugging the expression for gθ(y)
into the definition (4.2), we get the relevant rectifier: ∆θ = P (Yi ≤ θ) − P (f(Xi) ≤ θ) =
E [1{Yi ≤ θ} − 1{f(Xi) ≤ θ}]. In Algorithm 2 we state an algorithm for prediction-powered
quantile estimation; see Proposition 17 for a statement of validity.

Proposition 17 (Quantile estimation). Let θ∗ be the q-quantile (4.4). Then, the prediction-
powered confidence set in Algorithm 2 has valid coverage: lim infn,N→∞P (θ∗ ∈ CPPα ) ≥ 1 − α.

Logistic regression. In logistic regression, the target of inference is defined by

θ∗ = argmin
θ∈Rd

E[ℓθ(Xi, Yi)] = argmin
θ∈Rd

E [−Yiθ
⊺Xi + log(1 + exp(θ⊺Xi))] , (4.5)
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where Yi ∈ {0,1}. The logistic loss is differentiable and hence the optimality condition (4.1)
is ensured. Its gradient is equal to gθ(x, y) = −xy + xµθ(x), where µθ(x) = 1/(1+ exp(−x⊺θ))
is the predicted mean for point x ∈ X based on parameter vector θ. Other generalized linear
models (GLMs) have the same gradient form, and thus also optimality condition (4.1), but
for a different mean predictor µθ(x) (see Chapter 3 of Efron [61]). For example, Poisson
regression uses µθ(x) = exp(x⊺θ). In view of our general solution for convex estimation, the
rectifier is constant for all θ and equal to ∆θ ≡∆ = E [Xi(f(Xi) − Yi)]. In Algorithm 3 we
state a method for prediction-powered logistic regression and in Proposition 18 we provide
its guarantee. We use Xi,j to denote the j-th coordinate of point Xi. Poisson regression is
handled in essentially the same way: concretely, in Algorithm 3 we simply change the choice
of µθ(x) defined in line 5.

Proposition 18 (Logistic regression). Let θ∗ be the logistic regression solution (4.5). Then,
the prediction-powered confidence set in Algorithm 3 has valid coverage: lim infn,N→∞P (θ∗ ∈ CPPα ) ≥
1 − α.

Linear regression. Finally, we consider inference for linear regression:

θ∗ = argmin
θ∈Rd

E[ℓθ(Xi, Yi)] = argmin
θ∈Rd

E[(Yi −X⊺i θ)2]. (4.6)

While it is possible to obtain an algorithm for linear regression based on Theorem 15, one
can derive a more powerful solution by using the fact that the natural estimator for problem
(4.6) is linear in Y . We exploit these further properties in Algorithm 4 and Proposition 19,
where we state a method for prediction-powered linear regression and establish its validity,
respectively.

Proposition 19 (Linear regression). Let θ∗ be the linear regression solution (4.6) and fix
j∗ ∈ [d]. Then, the prediction-powered confidence interval in Algorithm 4 has valid coverage:
lim infn,N→∞P (θ∗j∗ ∈ CPPα ) ≥ 1 − α.

Algorithm 1 Prediction-powered mean estimation

Input: labeled data (X,Y ), unlabeled features X̃, predictor f , error level α ∈ (0,1)
1: θ̂PP ← θ̃f − ∆̂ ∶= 1

N ∑
N
i=1 f(X̃i) − 1

n ∑
n
i=1(f(Xi) − Yi) ▷ prediction-powered estimator

2: σ̂2
f ← 1

N ∑
N
i=1(f(X̃i) − θ̃f)2 ▷ empirical variance of imputed estimate

3: σ̂2
f−Y ← 1

n ∑
n
i=1(f(Xi) − Yi − ∆̂)2 ▷ empirical variance of empirical rectifier

4: wα ← z1−α/2

√
σ̂2
f−Y

n +
σ̂2
f

N ▷ normal approximation

Output: prediction-powered confidence set CPPα = (θ̂PP ±wα)
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Algorithm 2 Prediction-powered quantile estimation

Input: labeled data (X,Y ), unlabeled features X̃, predictor f , quantile q ∈ (0,1), error
level α ∈ (0,1)

1: Construct fine grid Θgrid between mini∈[N] f(X̃i) and maxi∈[N] f(X̃i)
2: for θ ∈ Θgrid do

3: ∆̂θ ← 1
n ∑

n
i=1(1{Yi ≤ θ} − 1{f(Xi) ≤ θ}) ▷ empirical rectifier

4: F̂ (θ)← 1
N ∑

N
i=1 1{f(X̃i) ≤ θ} ▷ imputed CDF

5: σ̂2
∆(θ)← 1

n ∑
n
i=1 (1{Yi ≤ θ} − 1{f(Xi) ≤ θ} − ∆̂θ)

2 ▷ empirical variance of empirical
rectifier

6: σ̂2
g(θ)← 1

N ∑
N
i=1 (1{f(X̃i) ≤ θ} − F̂ (θ))

2 ▷ empirical variance of imputed CDF

7: wα(θ)← z1−α/2

√
σ̂2
∆(θ)
n + σ̂2

g(θ)
N ▷ normal approximation

Output: prediction-powered confidence set CPPα = {θ ∈ Θgrid ∶ ∣F̂ (θ) + ∆̂θ − q∣ ≤ wα(θ)}

Algorithm 3 Prediction-powered logistic regression

Input: labeled data (X,Y ), unlabeled features X̃, predictor f , error level α ∈ (0,1)
1: Construct fine grid Θgrid ⊂ Rd of possible coefficients

2: ∆̂j ← 1
n ∑

n
i=1Xi,j(f(Xi) − Yi), j ∈ [d] ▷ empirical rectifier

3: σ̂2
∆,j ← 1

n ∑
n
i=1 (Xi,j(f(Xi) − Yi) − ∆̂j)

2
, j ∈ [d] ▷ empirical variance of empirical

rectifier
4: for θ ∈ Θgrid do

5: ĝfθ,j ← 1
N ∑

N
i=1 X̃i,j (µθ(X̃i) − f(X̃i)) , j ∈ [d], where µθ(x) = 1

1+exp(−x⊺θ) ▷ imputed
gradient

6: σ̂2
g,j(θ)← 1

N ∑
N
i=1(X̃i,j(µθ(X̃i) − f(X̃i)) − ĝfθ,j)2, j ∈ [d] ▷ empirical variance of

imputed gradient

7: wα,j(θ)← z1−α/(2d)

√
σ̂2
∆,j

n +
σ̂2
g,j(θ)
N , j ∈ [d] ▷ normal approximation

Output: prediction-powered confidence set CPPα = {θ ∈ Θgrid ∶ ∣ĝfθ,j + ∆̂j ∣ ≤ wα,j(θ),∀j ∈ [d]}
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Algorithm 4 Prediction-powered linear regression

Input: labeled data (X,Y ), unlabeled features X̃, predictor f , coefficient j∗ ∈ [d], error
level α ∈ (0,1)

1: θ̂PP ← θ̃f − ∆̂ ∶= X̃†f(X̃) −X†(f(X) − Y ) ▷ prediction-powered estimator
2: Σ̃← 1

N X̃⊺X̃, M̃ ← 1
N ∑

N
i=1(f(X̃i) − X̃⊺i θ̃f)2X̃iX̃

⊺
i

3: Ṽ ← Σ̃−1M̃Σ̃−1 ▷ “sandwich” variance estimator for imputed estimate
4: Σ← 1

nX
⊺X, M ← 1

n ∑
n
i=1(f(Xi) − Yi −X⊺i ∆̂)2XiX

⊺
i

5: V ← Σ−1MΣ−1 ▷ “sandwich” variance estimator for empirical rectifier

6: wα ← z1−α/2

√
Vj∗j∗

n + Ṽj∗j∗

N ▷ normal approximation

Output: prediction-powered confidence set CPPα = (θ̂PPj∗ ±wα)

Algorithm 5 Prediction-powered convex estimation

Input: labeled data (X,Y ), unlabeled features X̃, predictor f , error level α ∈ (0,1)
1: Construct fine grid Θgrid

2: for θ ∈ Θgrid do

3: ∆̂θ,j ← 1
n ∑

n
i=1(gθ(Xi, Yi)j − gθ(Xi, f(Xi))j) ▷ empirical rectifier

4: ĝfθ,j =← 1
N ∑

N
i=1 gθ(X̃i, f(X̃i))j ▷ imputed gradient

5: σ̂2
∆(θ)← 1

n ∑
n
i=1 (gθ(Xi, Yi)j − gθ(Xi, f(Xi))j − ∆̂θ)

2 ▷ empirical variance of
empirical rectifier

6: σ̂2
g(θ)← 1

N ∑
N
i=1 (gθ(X̃i, f(X̃i))j − ĝfθ,j)

2 ▷ empirical variance of imputed gradient

7: wα(θ)← z1−α/2

√
σ̂2
∆(θ)
n + σ̂2

g(θ)
N ▷ normal approximation

Output: prediction-powered confidence set CPPα = {θ ∈ Θgrid ∶ ∣ĝfθ,j + ∆̂θ∣ ≤ wα(θ)}

Estimand Prediction-based gradient ĝfθ Rectifier ∆̂θ Procedure

Mean θ − 1
N ∑

N
i=1 f(X̃i) 1

n ∑
n
i=1(f(Xi) − Yi) Alg. 1

Median 1
2N ∑

N
i=1 sign(θ − f(X̃i)) 1

n ∑
n
i=1 (1{f(Xi) ≤ θ} − 1{Yi ≤ θ}) Alg. 2

q-quantile −q + 1
N ∑

N
i=1 1{f(X̃i) ≤ θ} 1

n ∑
n
i=1 (1{f(Xi) ≤ θ} − 1{Yi ≤ θ}) Alg. 2

Logistic regres-
sion

1
N ∑

N
i=1 X̃

T
i ( 1

1+e−θ̂T X̃i
− f(X̃i)) 1

n ∑
n
i=1Xi(f(Xi) − Yi) Alg. 3

Linear regres-
sion

θ − X̃T f(X̃) X+(f(X) − Y ) Alg. 4

Convex mini-
mizer

1
N ∑

N
i=1∇ℓθ(X̃i, f(X̃i)) 1

n ∑
n
i=1 (∇ℓθ(Xi, f(Xi)) −∇ℓθ(Xi, Yi)) Alg. 5

Table 4.1: Prediction-powered inference for common statistical problems.
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Figure 4.1: Comparison of prediction-powered, classical, and imputation ap-
proaches. Each row (A-G) is a different application. Panel (1) plots five randomly chosen
intervals and (2) plots the width for varying n.
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Problem Prediction-powered Classical
A Proteomic analysis with AlphaFold n = 316 n = 799
B Galaxy classification with computer vision n = 189 n = 449
C Gene expression analysis with transformers n = 764 n = 900
D Deforestation analysis with computer vision n = 21 n = 35
E Health insurance analysis with boosted trees n = 5569 n = 6653
F Income analysis with boosted trees n = 177 n = 282

Table 4.2: Number of labeled examples needed to make a discovery with prediction-powered
inference and classical inference. The rows (A to F) correspond to the application domains
from Figure 4.1. For each application, a null hypothesis about θ∗ is tested at level 95%.

4.3 Applications

We demonstrate prediction-powered inference on real tasks. In each, we compute a prediction-
powered confidence interval for an estimand and compare it to intervals obtained through
the classical approach and the imputation approach. In all cases, we show that the impu-
tation approach, which uses machine-learning predictions without accounting for prediction
errors, does not contain the true value of the estimand. We compare the widths of the two
valid approaches, prediction-powered and classical, as a function of the amount of labeled
data used. In addition, we compare the number of labeled examples needed to reject a null
hypothesis at level 1 − α = 95% with high probability. Each trial randomly splits the data
into a labeled dataset and an unlabeled dataset. The results are given in Figure 4.1 and
Table 4.2.

See [8] for a Python package implementing prediction-powered inference, which contains
code for reproducing the experiments. Each application below comes with a corresponding
Jupyter notebook that can be accessed by clicking these icons: . We packaged the data in
such a way that the reader can run the notebooks on their local machine without downloading
large datasets.

4.3.1 Relating protein structure and post-translational

modifications

The goal is to characterize whether various types of post-translational modifications (PTMs)
occur more frequently in intrinsically disordered regions (IDRs) of proteins [86]. Recently,
Bludau et al. [25] studied this relationship on an unprecedented proteome-wide scale by
using structures predicted by AlphaFold [89] to predict IDRs, in contrast to previous work
which was limited to far fewer experimentally derived structures.

To quantify the association between PTMs and IDRs, the authors applied the impu-

https://github.com/aangelopoulos/ppi_py
https://github.com/aangelopoulos/ppi_py/blob/main/examples/alphafold.ipynb
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tation approach: they computed the odds ratio between AlphaFold-based IDR predictions
and PTMs on a dataset of hundreds of thousands of protein sequence residues [149]. Using
prediction-powered inference, we can combine AlphaFold-based predictions together with
gold-standard IDR labels to give a confidence interval for the true odds ratio that is statis-
tically valid, in contrast with the interval constructed with the imputation approach, and
smaller than the interval constructed using the classical approach.

We use the fact that the odds ratio, θ∗, between whether or not a protein residue is part
of an IDR, Y ∈ {0,1}, and whether or not it has a PTM, Z ∈ {0,1}, can be written as a
function of two means:

θ∗ = µ1/(1 − µ1)
µ0/(1 − µ0)

, (4.7)

where µ1 = P (Y = 1 ∣ Z = 1) and µ0 = P (Y = 1 ∣ Z = 0). We therefore proceed by constructing
1 − α/2 prediction-powered confidence intervals for µ0 and µ1, denoted CPP0 = [l0, u0] and
CPP1 = [l1, u1], respectively. We then propagate CPP0 and CPP1 through the odds-ratio formula
(4.7) to get the following confidence interval:

CPP = { c1
1 − c1

⋅ 1 − c0
c0
∶ c0 ∈ CPP0 , c1 ∈ CPP1 } = (

l1
1 − l1

⋅ 1 − u0

u0

,
u1

1 − u1

⋅ 1 − l0
l0
) .

By a union bound, CPP contains θ∗ with probability at least 1 − α.
We have 10803 data points from Bludau et al. [25]. For each of 100 trials, we randomly

sample n points to serve as the labeled dataset and treated the remaining N = 10803 − n
points as the unlabeled dataset for which we do not observe the IDR labels. For all values
of n, the prediction-powered confidence intervals were smaller than classical intervals; see
row A in Figure 4.1. Often, the classical intervals were large enough that they contained the
odds ratio value of one, which means the direction of the association could not be determined
from the confidence interval. On the other hand, the imputed confidence interval was far too
small and significantly overestimated the true odds ratio. To reject the null hypothesis that
the odds ratio is no greater than one, prediction-powered inference required n = 316 labeled
observations, and the classical approach required n = 799 labeled observations; see row A in
Table 4.2.

4.3.2 Galaxy classification

The goal is to determine the demographics of galaxies with spiral arms, which are correlated
with star formation in the discs of low-redshift galaxies, and therefore, contribute to the
understanding of star formation in the Local Universe. A large citizen science initiative called
Galaxy Zoo 2 [165] has collected human annotations of roughly 300000 images of galaxies
from the Sloan Digital Sky Survey [170] with the goal of measuring these demographics. We
seek to explore the use of machine learning to improve the effective sample size and decrease
the requisite number of human-annotated galaxies.

https://github.com/aangelopoulos/ppi_py/blob/main/examples/galaxies.ipynb
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We focus on estimating the fraction of galaxies with spiral arms. We have 1364122 labeled
galaxy images from Galaxy Zoo 2, from which we simulate labeled and unlabeled datasets as
follows. For each of 100 trials, we randomly sample n points to serve as the labeled dataset
and use the remaining N = 1364122 − n points as the unlabeled dataset. We then use the
algorithm for prediction-powered mean estimation to construct intervals. The prediction-
powered confidence intervals for the mean are consistently much smaller than the classical
intervals while retaining validity, and the imputation strategy fails to cover; see Figure 4.1,
row B. To reject the null hypothesis that the fraction of galaxies with spiral arms is at most
0.2, prediction-powered inference requires n = 189 labeled examples, and classical inference
requires n = 449 examples; see Table 4.2, row B.

4.3.3 Distribution of gene expression levels

Next, we construct prediction-powered confidence intervals on quantiles that characterize
how a population of promoter sequences affects gene expression. Recently, Vaishnav et
al. [150] trained a state-of-the-art transformer model to predict the expression level of a
particular gene induced by a promoter sequence. They used the model’s predictions to study
the effects of promoters—for example, by assessing how quantiles of predicted expression
levels differ between different populations of promoters.

Here we focus on estimating different quantiles of gene expression levels induced by native
yeast promoters. We have 61150 labeled native yeast promoter sequences from Vaishnav et
al. [150], from which we simulate labeled and unlabeled datasets as follows. For each of 100
trials, we randomly sample n points to serve as the labeled dataset and use the remaining
N = 61150 − n points as the unlabeled dataset. We then use the second and third row of
Table 1 to construct prediction-powered intervals for the median, as well as the 25%- and
75%-quantiles, of the expression levels. The prediction-powered confidence intervals for all
three quantiles are much smaller than the classical intervals for all values of n. See row C in
Figure 4.1 for the results for the median, and Figure 4.7 in Appendix 4.5.35 for the other two
quantiles. We also evaluate the number of labeled examples required by prediction-powered
inference and classical inference, respectively, to reject the null hypothesis that the median
gene expression level is at most five. Prediction-powered inference requires n = 764 examples
and classical inference requires n = 900 examples; see row C in Table 4.2.

4.3.4 Estimating deforestation in the Amazon

The goal is to estimate the fraction of the Amazon rainforest lost between 2000 and 2015.
Gold-standard deforestation labels for parcels of land are scarce, having been collected largely
through field visits, an expensive process impractical for large areas [32]. However, machine-
learning predictions of forest cover based on satellite imagery are readily available for the
entire Amazon [140].

https://github.com/aangelopoulos/ppi_py/blob/main/examples/gene_expression.ipynb
https://github.com/aangelopoulos/ppi_py/blob/main/examples/forest.ipynb
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We begin with 1596 gold-standard deforestation labels for parcels of land in the Amazon.
For each of 100 trials, we randomly sample n data points to serve as the labeled dataset
and use the remaining data points as the unlabeled dataset. We use the first row of Table
1 to construct the prediction-powered intervals. The imputation approach yields a small
confidence interval that fails to cover the true deforestation fraction. The classical approach
does cover the truth at the expense of a wider interval and, accordingly, diminished inferential
power. The prediction-powered intervals are smaller than the classical intervals and retain
validity; see row D in Figure4.1. We also compare the number of gold-standard deforestation
labels required by prediction-powered inference and the classical approach to reject the null
hypothesis that there is no deforestation. We obtain n = 21 labels for prediction-powered
inference and n = 35 labels for the classical approach; see row D in Table 4.2.

4.3.5 Relationship between income and private health insurance

The goal is to investigate the quantitative effect of income on the procurement of private
health insurance using US census data. Concretely, we use the Folktables interface [57] to
download census data from California in the year 2019 (378817 individuals).

As the labeled dataset with the health insurance indicator, we randomly sample n census
entries. The remaining data is used as the unlabeled dataset. We use a gradient-boosted tree
[46] trained on the previous year’s data to predict the health insurance indicator in 2019.
We construct a prediction-powered confidence interval on the logistic regression coefficient
using the fifth row of Table 4.1. Results in row E in Figure4.1 show that prediction-powered
inference covers the ground truth, the classical interval is wider, and the imputation strategy
fails to cover. We also compare the number of gold-standard labels required by prediction-
powered inference and the classical approach to reject the null hypothesis that the logistic
regression coefficient is no greater than 1.5 ⋅ 10−5. We observe a significant sample size
reduction with prediction-powered inference, which requires n = 5569 labels, whereas classical
inference requires n = 6653 labels.

4.3.6 Relationship between age and income in a covariate-shifted

population

The goal is to investigate the relationship between age and income using US census data.
We use the same dataset as in the previous experiment, but the features are age and sex, and
the target is yearly income in dollars. Furthermore, we introduce a shift in the distribution
of the covariates between the gold-standard and unlabeled datasets by randomly sampling
the unlabeled dataset with sampling weights 0.8 for females and 0.2 for males.

We used a gradient-boosted tree [46] trained on the previous year’s raw data to predict the
income in 2019. We construct a prediction-powered confidence interval on the ordinary least

https://github.com/aangelopoulos/ppi_py/blob/main/examples/census_healthcare.ipynb
https://github.com/aangelopoulos/ppi_py/blob/main/examples/census_income_covshift.ipynb
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squares regression coefficient using the covariate-shift-robust version of prediction-powered
inference from Corollary 21. Results in row F in Figure4.1 show that prediction-powered
inference covers the ground truth, the classical interval is wider, and the imputation strategy
fails to cover. We also compare the number of gold-standard labels required by prediction-
powered inference and the classical approach to reject the null hypothesis that the OLS
regression coefficient is no greater than 800. We observe a significant sample size reduction
with prediction-powered inference, which requires n = 177 labels, whereas classical inference
requires n = 282 labels.

4.3.7 Counting plankton

Assessment of the increases in phytoplankton growth during springtime warming is important
for the study of global biogeochemical cycling in response to climate change. We counted
the number of plankton observed by the Imaging FlowCytobot [118, 119], an automated,
submersible flow cytometry system, at Woods Hole Oceanographic Institution in the year
2014. We have access to data from 2013, which are labeled, and we impute the 2014 data with
machine-learning predictions from a state-of-the-art ResNet fine-tuned on all data up to and
including 2012. The Xi are images of organic matter taken by the FlowCytobot and the Yi

are one of {detritus, plankton}, where detritus represents unspecified organic matter.
The labeled dataset consist of 421238 image–label pairs from 2013 and we receive 329832
labeled images from 2014. We use the data from 2014 as our unlabeled data and confirm our
results against those that were hand-labeled. The years 2013 and 2014 have a distribution
shift, primarily caused by the change in the base frequency of plankton observations with
respect to detritus. To apply prediction-powered inference to count the number of plankton
recorded in 2014, we use the label-shift-robust technique described in Theorem 22. The
results in row G in Figure 4.1 show that prediction-powered inference covers the ground
truth and the imputation strategy fails to cover.

4.4 Extensions

We demonstrate that the framework of prediction-powered inference is applicable beyond
inference under i.i.d. observations and convex losses studied in Section 4.2. First, we provide
a strategy for prediction-powered inference when θ∗ can be expressed as the optimum of any
optimization problem, not necessarily a convex one. Then, we discuss prediction-powered
inference under certain forms of distribution shift. We end with a brief discussion of a natural
estimation strategy suggested by prediction-powered inference.

4.4.1 Beyond convex estimation

The tools developed in Section 4.2 were tailored to unconstrained convex optimization prob-
lems. In general, however, inferential targets can be defined in terms of nonconvex losses

https://github.com/aangelopoulos/ppi_py/blob/main/examples/plankton.ipynb
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or they may have (possibly even nonconvex) constraints. For such general optimization
problems, we cannot expect the condition (4.1) to hold. In this section we generalize our
approach to a broad class of risk minimizers:

θ∗ = argmin
θ∈Θ

E[ℓθ(Xi, Yi)], (4.8)

where ℓθ ∶ X × Y → R is a possibly nonconvex loss function and Θ is an arbitrary set of
admissible parameters. As before, if θ∗ is not a unique minimizer, our method will return a
set that contains all minimizers.

The problem (4.8) subsumes all previously studied settings. Indeed, when the loss ℓθ
is convex and subdifferentiable and Θ = Rp for some p—which is the case for all problems
previously studied—θ∗ can be equivalently characterized via the condition (4.1). In this
section we provide a solution that can handle problems of the form (4.8) in full generality.
We note, however, that the solution does not reduce to the one in Section 4.2 for convex
estimation problems, and we expect the method from Section 4.2 to be more powerful for
convex estimation problems with low-dimensional rectifiers.

To correct the imputation approach, we rely on the following rectifier:

∆θ = E [ℓθ(Xi, Yi) − ℓθ(Xi, f(Xi))] . (4.9)

Notice that the rectifier (4.9) is always one-dimensional, while the rectifier (4.2) was p-
dimensional.

One key difference relative to the approach of Section 4.2 is that we have an additional
step of data splitting. We need the additional step because, unlike in convex estimation where
we know E[gθ∗(Xi, Yi)] = 0, for general problems we do not know the value of E[ℓθ∗(Xi, Yi)].
To circumvent this issue, we estimate E[ℓθ∗(Xi, Yi)] by approximating θ∗ with an imputed
estimate on the first N/2 unlabeled data points (for simplicity, take N to be even). To state
the main result, we define

θ̃f = argmin
θ∈Θ

2

N

N/2
∑
i=1

ℓθ(X̃i, f(X̃i)), L̃f(θ) ∶= 2

N

N

∑
i=N/2+1

ℓθ(X̃i, f(X̃i)).

Theorem 20 (General risk minimization). Fix α ∈ (0,1) and δ ∈ (0, α). Suppose that, for

any θ ∈ Θ, we can construct (Rl
δ/2(θ),Ru

δ/2(θ)) and (T l
α−δ
2

(θ),T u
α−δ
2

(θ)) such that

P (∆θ ≤Ru
δ/2(θ)) ≥ 1 − δ/2; P (∆θ ≥Rl

δ/2(θ)) ≥ 1 − δ/2;

P (L̃f(θ) −E[ℓθ(Xi, f(Xi))] ≤ T u
α−δ
2

(θ)) ≥ 1 − α − δ
2

;P (L̃f(θ) −E[ℓθ(Xi, f(Xi))] ≥ T l
α−δ
2

(θ)) ≥ 1 − α − δ
2

.

Let

CPPα = {θ ∈ Θ ∶ L̃f(θ) ≤ L̃f(θ̃f) −Rl
δ/2(θ) +Ru

δ/2(θ̃f) + T u
α−δ
2

(θ) − T l
α−δ
2

(θ̃f)} .
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Then, we have
P (θ∗ ∈ CPPα ) ≥ 1 − α.

For example, if the loss ℓθ(x, y) takes values in [0,B] for all x, y, then we can set Tα−δ(θ) =
B
√

log(1/(α−δ))
N . The validity of this choice follows by Hoeffding’s inequality.

Mode estimation. A commonplace inference task that does not fall under convex es-
timation is the problem of estimating the mode of the outcome distribution. When the
outcome takes values in a discrete set Θ, this can be done by using the loss function
ℓθ(y) = 1{y ≠ θ} , θ ∈ Θ. A generalization of this approach to continuous outcome distri-
butions is obtained by defining the loss ℓθ(y) = 1{∣y − θ∣ > η}, for some width parameter
η > 0. The target of inference is thus the point θ ∈ R that has the most probability mass in
its η-neighborhood, θ∗ = argminθ∈RP (∣Yi − θ∣ > η). Theorem 20 applies directly in both the
discrete and continuous cases.

Tukey’s biweight robust mean. The Tukey biweight loss function is a commonly used
loss in robust statistics that results in an outlier-robust mean estimate. It behaves approxi-
mately like a quadratic near the origin and is constant far away from the origin. Formally,
Tukey’s biweight loss function is given by

ℓθ(y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

c2

6 (1 − (1 −
(y−θ)2

c2 )
3

) , ∣y − θ∣ ≤ c,
c2

6 , otherwise,

where c is a user-specified tuning parameter. It is not hard to see that the function ℓθ(y)
is nonconvex and hence not amenable to the analysis in Section 4.2; however, Theorem 20
applies.

Model selection. Nonconvex risk minimization problems are ubiquitous in model selec-
tion. For example, a common model selection strategy is best subset selection, which opti-
mizes the squared loss, ℓθ(x, y) = (y−x⊺θ)2, subject to the constraint Θ = {θ ∈ Rd ∶ ∥θ∥0 ≤ k}.
Here, Θ is the space of all k-sparse vectors for a user-chosen parameter k. Even though the
loss function is convex, Θ is a nonconvex constraint set and hence we cannot rely on the
condition (4.1) to find the minimizer. However, Theorem 20 still applies.

4.4.2 Inference under distribution shift

In Section 4.2 we focused on forming prediction-powered confidence intervals when the la-
beled and unlabeled data come from the same distribution. Herein, we extend our tools to
the case where the labeled data (X,Y ) comes from P and the unlabeled data (X̃, Ỹ )—which
defines the target of inference θ∗—comes from Q, and these are related by either a label
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shift or a covariate shift. For covariate shift, we handle all estimation problems previously
studied; for label shift, we handle certain types of linear problems.

We will write EQ,EP, etc to indicate which distribution the data inside the expectation
is sampled from.

Covariate shift

First, we assume thatQ is a known covariate shift of P. That is, if we denote byQ = QX ⋅QY ∣X
and P = PX ⋅ PY ∣X the relevant marginal and conditional distributions, we assume that
QY ∣X = PY ∣X . As in previous sections, we consider estimands of the form

θ∗ = argmin
θ∈Θ

EQ[ℓθ(Xi, Yi)]. (4.10)

Estimands of the form (4.10) can be related to risk minimizers on P using the Radon-
Nikodym derivative. In particular, suppose that QX is dominated by PX and assume that
the Radon-Nikodym derivative w(x) = QX

PX
(x) is known. Then, we can rewrite (4.10) as

θ∗ = argmin
θ∈Θ

EP[ℓwθ (Xi, Yi)],

where ℓwθ (x, y) = w(x)ℓθ(x, y). In words, risk minimizers on Q can simply be written as risk
minimizers on P, but with a reweighted loss function. This permits inference on the rectifier
to be based on data sampled from P as before. For concreteness, we explain the approach
in detail for convex risk minimizers. Let

∆w
θ = EP [gwθ (Xi, Yi) − gwθ (Xi, f(Xi))] ,

where gwθ (x, y) = gθ(x, y) ⋅w(x) and gθ is a subgradient of ℓθ as before. A confidence set for
the above rectifier suffices for prediction-powered inference on θ∗.

Corollary 21 (Covariate shift). Suppose that the problem (4.10) is a nondegenerate convex
estimation problem. Fix α ∈ (0,1) and δ ∈ (0, α). Suppose that, for any θ ∈ Rp, we can
construct Rδ(θ) and Tα−δ(θ) satisfying

P (∆w
θ ∈Rδ(θ)) ≥ 1 − δ; P (E[gwθ (Xi, f(Xi))] ∈ Tα−δ(θ)) ≥ 1 − (α − δ).

Let CPPα = {θ ∶ 0 ∈Rδ(θ) + Tα−δ(θ)}, where + denotes the Minkowski sum. Then,

P (θ∗ ∈ CPPα ) ≥ 1 − α.

The same reweighting principle can be used to handle nonconvex risk minimizers as in
Section 4.4.1.
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Label shift

Next, we analyze classification problems where the proportions of the classes in the labeled
data is different from those in the unlabeled data. This problem has been studied before in
the literature on domain adaptation, e.g. by Lipton et al. [106], but our treatment focuses
on the formation of confidence intervals. Formally, let Y = {1, ...,K} be the label space and
assume that QX ∣Y = PX ∣Y . We consider estimands of the form

θ∗ = EQY
[ν(Y )],

where ν ∶ Y → R is a fixed function. For example, choosing ν(y) = 1{y = k} for some k ∈ [K]
asks for inference on the proportion of instances that belong to class k.

Using an analogous decomposition to the one for mean estimation, we can write

θ∗ = EQf
[ν(f)] + (EQY

[ν(Y )] −EQf
[ν(f)]) = θf +∆,

where Qf denotes the distribution of f(X),X ∼ QX . The quantity θf can be estimated using
the unlabeled data from Q and the model. Estimating the quantity ∆ using observations
from P will require leveraging the structure of the distribution shift. Central to our analysis
will be the confusion matrix

Kj,l = Q (f(X) = j ∣ Y = l) , j, l ∈ [K].

The label-shift assumption implies that Kj,l = P (f(X) = j ∣ Y = l), which can be estimated
from labeled data sampled from P. In particular, we estimate K from the labeled data as

K̂j,l =
1

n(l)
n

∑
i=1

1{f(Xi) = j, Yi = l} , where n(l) =
n

∑
i=1

1{Yi = l} .

Similarly, we can estimate Qf(k), k ∈ [K] as

Q̂f(k) =
1

N

N

∑
i=1

1{f(X̃i) = k} .

Treating Qf and QY as vectors, notice that we can write Qf = KQY , and hence QY = K−1Qf .

This leads to a natural estimate of QY , Q̂Y = K̂−1Q̂f . Below, we use these quantities to
construct a prediction-powered confidence interval for θ∗ = EQY

[ν(Y )].

Theorem 22 (Label shift). Fix α ∈ (0,1) and δ ∈ (0, α). Let

CPPα =
⎛
⎝
EQ̂Y
[ν(Y )] ±

⎛
⎝
max
l,k∈[K]

max
p∈Cl,k

∣K̂l,k − p∣ +
√

1

2N
log

2

α − δ
⎞
⎠
⎞
⎠
,

where

Cl,k = {p ∶ n(k)K̂l,k ∈ [F −1Binom(n(k),p) (
δ

2K2
) , F −1Binom(n(k),p) (1 −

δ

2K2
) ]}

and FBinom(n(k),p) denotes the Binomial CDF. Then,

P (θ∗ ∈ CPPα ) ≥ 1 − α.
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Naturally, the confidence interval becomes more conservative as the number of classes grows.
Also, the power of the bound depends on the smallest number of instances observed for a
particular class.

4.4.3 Prediction-powered point estimate

Prediction-powered inference suggests a natural approach to constructing point estimates as
well. Define the rectified loss function as

LPP(θ) = 1

N

N

∑
i=1

ℓθ(X̃i, f(X̃i)) +
1

n

n

∑
i=1
(ℓθ(Xi, Yi) − ℓθ(Xi, f(Xi))) .

The expected value of the rectified loss is equal to the true population loss that θ∗ minimizes:
E[LPP(θ)] = E[ℓθ(Xi, Yi)]. We define the prediction-powered point estimate as the minimizer
of the rectified loss:

θ̂PP = argmin
θ

LPP(θ).

The confidence intervals formed in Algorithms 1- 5 were implicitly based on the gradient of
the rectified loss, ∇LPP(θ) = ĝfθ + ∆̂θ. More precisely, they all used ∇LPP(θ) as a statistic
for testing whether E[∇ℓθ(Xi, Yi)] = 0. Notice that the prediction-powered point estimate
is always contained in the constructed confidence intervals, since it satisfies ĝfθ + ∆̂θ = 0.

4.5 Appendix for Prediction-Powered Inference

4.5.1 Prediction-powered p-values

By relying on the standard duality between confidence intervals and p-values, we can imme-
diately repurpose the presented theory to compute valid prediction-powered p-values.

To formalize this, suppose that we want to test the hull hypothesis H0 ∶ θ∗ ∈ Θ0, for some
set Θ0 ∈ Rp (for example, a common choice when p = 1 is Θ0 = R≤0). Let Cα be a valid
confidence interval. Then, we can construct a valid p-value as

P = inf{α ∶ θ0 /∈ Cα,∀θ0 ∈ Θ0}.

A p-value P is valid if it is super-uniform under the null, meaning P (P ≤ u) ≤ u for all
u ∈ [0,1]. This is indeed the case for the p-value defined above, because when θ∗ ∈ Θ0, we
have

P (P ≤ u) ≤ P (θ∗ /∈ Cu) ≤ u.
The first inequality follows by the definition of P and the fact that θ∗ ∈ Θ0, and the second
inequality follows by the validity of Cu at level 1 − u. We are implicitly using the fact that
Cu ⊆ Cu′ when u ≥ u′.



CHAPTER 4. CORE METHODOLOGY 65

The above derivation is a general recipe for deriving p-values from confidence intervals.
For the prediction-powered confidence intervals stated in Algorithms 1-5 (derived from The-
orem 33), the corresponding prediction-powered p-value is given by:

PPP = inf {α ∶ ∣ĝfθ0 + ∆̂θ0 ∣ > wα(θ0), ∀θ0 ∈ Θ0} .

Below we state analogues of Algorithms 1-4 when the goal is to compute a prediction-
powered p-value.

Algorithm 6 Prediction-powered p-value for the mean

Input: labeled data (X,Y ), unlabeled features X̃, predictor f , null set Θ0

1: θ̂PP ← θ̃f − ∆̂ ∶= 1
N ∑

N
i=1 f(X̃i) − 1

n ∑
n
i=1(f(Xi) − Yi)

2: σ̂2
f ← 1

N ∑
N
i=1(f(X̃i) − θ̃f)2

3: σ̂2
f−Y ← 1

n ∑
n
i=1(f(Xi) − Yi − ∆̂)2

4: Define wα ∶= z1−α/2
√

σ̂2
f−Y

n +
σ̂2
f

N

Output: prediction-powered p-value PPP = inf{α ∶ θ0 /∈ (θ̂PP ±wα),∀θ0 ∈ Θ0}

Algorithm 7 Prediction-powered p-value for the quantile

Input: labeled data (X,Y ), unlabeled features X ′, predictor f , quantile q, null set Θ0

1: for θ ∈ Θ0 do
2: ∆̂θ ← 1

n ∑
n
i=1 (1{Yi ≤ θ} − 1{f(Xi) ≤ θ})

3: F̂θ ← 1
N ∑

N
i=1 1{f(X̃i) ≤ θ}

4: σ̂2
∆(θ)← 1

n ∑
n
i=1 (1{Yi ≤ θ} − 1{f(Xi) ≤ θ} − ∆̂θ)

2

5: σ̂2
g(θ)← 1

N ∑
N
i=1 (1{f(X̃i) ≤ θ} − F̂θ)

2

6: Define wα(θ) ∶= z1−α/2
√

σ̂2
∆(θ)
n + σ̂2

g(θ)
N

Output: prediction-powered p-value PPP = inf {α ∶ ∣F̂θ0 + ∆̂θ0 − q∣ > wα(θ0),∀θ0 ∈ Θ0}

Algorithm 8 Prediction-powered p-value for logistic regression coefficients

Input: labeled data (X,Y ), unlabeled features X̃, predictor f , null set Θ0

1: ∆̂j ← 1
n ∑

n
i=1Xi,j(f(Xi) − Yi), j ∈ [d]

2: σ̂2
∆,j ← 1

n ∑
n
i=1 (Xi,j(f(Xi) − Yi) − ∆̂j)

2
, j ∈ [d]

3: for θ ∈ Θ0 do
4: ĝfθ,j ← 1

N ∑
N
i=1 X̃i,j (µθ(X̃i) − f(X̃i)) , j ∈ [d], where µθ(x) = 1

1+exp(−x⊺θ)

5: σ̂2
g,j(θ)← 1

N ∑
N
i=1 (X̃i,j(µθ(X̃i) − f(X̃i)) − ĝfθ,j)

2
, j ∈ [d]

6: Define wα,j(θ) ∶= z1−α/(2d)
√

σ̂2
∆,j

n +
σ̂2
g,j(θ)
N , j ∈ [d]

Output: prediction-powered p-value PPP = inf {α ∶ ∣gfθ0,j + ∆̂j ∣ > wα,j(θ0),∀j ∈ [d], θ0 ∈ Θ0}
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Algorithm 9 Prediction-powered p-value for linear regression coefficients

Input: labeled data (X,Y ), unlabeled features X̃, predictor f , coefficient j∗, null set Θ0

1: θ̂PP ← θ̃f − ∆̂ ∶= X̃†f(X̃) −X†(f(X) − Y )
2: Σ̃← 1

N X̃⊺X̃, M̃ ← 1
N ∑

N
i=1(f(X̃i) − X̃⊺i θ̃f)2X̃iX̃

⊺
i

3: Ṽ ← (Σ̃)−1M̃(Σ̃)−1
4: Σ← 1

nX
⊺X, M ← 1

n ∑
n
i=1(f(Xi) − Yi −X⊺i ∆̂)2XiX

⊺
i

5: V ← Σ−1MΣ−1

6: Define wα ∶= z1−α/2
√

Vj∗j∗

n + Ṽj∗j∗

N

Output: prediction-powered confidence set CPPα = inf{α ∶ θ0 /∈ (θ̂PPj∗ ±wα),∀θ0 ∈ Θ0}

Corollary 23 (Mean p-value). Let θ∗ be the mean outcome:

θ∗ = E[Yi].

Then, the prediction-powered p-value in Algorithm 6 is valid: under the null,

lim inf
n,N→∞

P (PPP ≤ u) ≤ u,∀u ∈ [0,1]

.

Corollary 24 (Quantile p-value). Let θ∗ be the q-quantile:

θ∗ =min{θ ∶ P (Yi ≤ θ) ≥ q}.

Then, the prediction-powered p-value in Algorithm 7 is valid: under the null,

lim inf
n,N→∞

P (PPP ≤ u) ≤ u,∀u ∈ [0,1]

.

Corollary 25 (Logistic regression p-value). Let θ∗ be the logistic regression solution:

θ∗ = argmin
θ∈Rd

E [−Yiθ
⊺Xi + log(1 + exp(θ⊺Xi))] .

Then, the prediction-powered p-value in Algorithm 8 is valid: under the null,

lim inf
n,N→∞

P (PPP ≤ u) ≤ u,∀u ∈ [0,1]

Corollary 26 (Linear regression p-value). Fix j∗ ∈ [d]. Let θ∗ be the linear regression
solution:

θ∗ = argmin
θ∈Rd

E[(Yi −X⊺i θ)2].

Then, the prediction-powered p-value in Algorithm 9 is valid: under the null,

lim inf
n,N→∞

P (PPP ≤ u) ≤ u,∀u ∈ [0,1]

.
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4.5.2 Inference on a finite population

The techniques developed in this chapter directly translate to the finite-population setting.
Here, we treat (X̃, Ỹ ) as a fixed finite population consisting of N feature-outcome pairs,
without imposing any distributional assumptions on the data points. Analogously to the
i.i.d. setting, we observe all features X̃ and a small set of outcomes. Specifically, we assume
that we observe (Ỹi)i∈I , where I = {i1, . . . , in} is a uniformly sampled subset of [N] of size
n≪ N . In this section we adapt all our main results to the finite-population context.

Given a loss function ℓθ and parameter space Θ, the target estimand is the risk minimizer
we would compute if we could observe the whole population:

θ∗ = argmin
θ∈Θ

1

N

N

∑
i=1

ℓθ(X̃i, Ỹi). (4.11)

The following two subsections mirror the results for convex and nonconvex estimation from
the main body of the chapter. All results in this section are proved essentially identically as
their i.i.d. counterparts.

In what follows, we construct prediction-powered confidence sets CPPα assuming a valid
confidence set around the rectifier (defined below for the finite-population context). The
confidence set for the rectifier can be constructed from (X̃i, Ỹi)i∈I via a direct application of
off-the-shelf results outlined in Appendix 4.5.21. In particular, in Proposition 40 we state an
asymptotically valid interval for the mean based on a finite-population version of the central
limit theorem, and in Proposition 39 we state a nonasymptotically valid interval for the
mean for finite populations due to Waudby-Smith and Ramdas [161]. The only assumption
required to apply the latter is that gθ(X̃i, Ỹi) − gθ(X̃i, f(X̃i)) has a known bound valid for
all i ∈ [N].

4.5.3 Convex estimation

In the finite-population setting, the mild nondegeneracy condition ensured by convexity takes
the form

1

N

N

∑
i=1

gθ∗(X̃i, Ỹi) = 0, (4.12)

where gθ is a subgradient of ℓθ. The rectifier is thus:

∆θ =
1

N

N

∑
i=1
(gθ(X̃i, Ỹi) − gθ(X̃i, f(X̃i))) .

Theorem 27 (Convex estimation, finite population). Suppose that the convex estimation
problem is nondegenerate (4.12). Fix α ∈ (0,1). Suppose that, for any θ ∈ Rp, we can
construct Rα(θ) satisfying

P (∆θ ∈Rα(θ)) ≥ 1 − α.
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Let CPPα = {θ ∶ − 1
N ∑

N
i=1 gθ(X̃i, f(X̃i)) ∈Rα(θ)}. Then,

P (θ∗ ∈ CPPα ) ≥ 1 − α.

We apply Theorem 27 in the context of mean estimation, quantile estimation, logistic
regression, and linear regression. The target estimand θ∗ is defined as in (4.11) with the loss
function chosen appropriately, as discussed in Section 4.2.1. We remark that, just like in the
i.i.d. case, the analysis for linear regression follows a more refined approach, as in the proof
of Proposition 19.

Corollary 28 (Mean estimation, finite population). Let θ∗ be the mean outcome. Fix
α ∈ (0,1). Suppose that, for any θ ∈ R, we can construct an interval (Rl

α,Ru
α) such that

P (∆ ∈ (Rl
α,Ru

α)) ≥ 1 − α, where

∆ = 1

N

N

∑
i=1
(f(X̃i) − Ỹi) .

Let

CPPα = (
1

N

N

∑
i=1

f(X̃i) −Ru
α,

1

N

N

∑
i=1

f(X̃i) −Rl
α) .

Then,
P (θ∗ ∈ CPPα ) ≥ 1 − α.

Corollary 29 (Quantile estimation, finite population). Let θ∗ be the q-quantile. Fix α ∈
(0,1). Suppose that, for any θ ∈ R, we can construct an interval (Rl

α(θ),Ru
α(θ)) such that

P (∆θ ∈ (Rl
α(θ),Ru

α(θ))) ≥ 1 − α, where

∆θ =
1

N

N

∑
i=1
(1{Ỹi ≤ θ} − 1{f(X̃i) ≤ θ}) .

Let

CPPα = {θ ∈ R ∶
1

N

N

∑
i=1

1{f(X̃i) ≤ θ} ∈ (q −Ru
α(θ), q −Rl

α(θ))} .

Then,
P (θ∗ ∈ CPPα ) ≥ 1 − α.

Corollary 30 (Logistic regression, finite population). Let θ∗ be the logistic regression so-
lution. Fix α ∈ (0,1). Suppose that we can construct Rl

α,Ru
α ∈ Rd such that P (∆j ∈

(Rl
α,j,Ru

α,j),∀j ∈ [d]) ≥ 1 − α, where

∆ = 1

N

N

∑
i=1

X̃i(f(X̃i) − Ỹi).
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Let

CPPα = {θ ∈ Rd ∶ 1
N

N

∑
i=1

X̃i,j (f(X̃i) −
1

1 + exp(−X̃⊺i θ)
) ∈ (Rl

α,j,Ru
α,j) ,∀j ∈ [d]} .

Then,
P (θ∗ ∈ CPPα ) ≥ 1 − α.

Corollary 31 (Linear regression, finite population). Let θ∗ be the linear regression solution.
Fix α ∈ (0,1). Suppose that we can construct Rl

α,Ru
α ∈ Rd such that P (∆j ∈ (Rl

α,j,Ru
α,j),∀j ∈

[d]) ≥ 1 − α, where
∆ = X̃†(f(X̃) − Ỹ ).

Let
CPPα = (X̃†f(X̃) −Ru

α, X̃
†f(X̃) −Rl

α) .
Then,

P (θ∗ ∈ CPPα ) ≥ 1 − α.

4.5.4 Beyond convex estimation

We now consider general risk minimizers in the finite-population context. The rectifier is
equal to:

∆θ =
1

N

N

∑
i=1
(ℓθ(X̃i, Ỹi) − ℓθ(X̃i, f(X̃i))) .

Unlike in the i.i.d. setting, there is no need for data splitting because the imputed
estimate is deterministic. We let:

L̃f(θ) ∶= 1

N

N

∑
i=1

ℓθ(X̃i, f(X̃i)); θ̃f = argmin
θ∈Θ

L̃f(θ).

Theorem 32 (General risk minimization, finite population). Fix α ∈ (0,1). Suppose that,
for any θ ∈ Θ, we can construct (Rl

α/2(θ),Ru
α/2(θ)) such that

P (∆θ ≤Ru
α/2(θ)) ≥ 1 − α/2; P (∆θ ≥Rl

α/2(θ)) ≥ 1 − α/2.

Let
CPPα = {θ ∈ Θ ∶ L̃f(θ) ≤ L̃f(θ̃f) −Rl

α/2(θ) +Ru
α/2(θ̃f)} .

Then, we have
P (θ∗ ∈ CPPα ) ≥ 1 − α.

4.5.5 Deferred theoretical details

We state an asymptotic counterpart of Theorem 15 that is used to prove the propositions
in Section 4.2.1. Then, we provide nonasymptotically-valid counterparts of the algorithms
in Section 4.2.1. Finally, we state the regularity conditions necessary for the guarantees
presented in Section 4.2.1.
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4.5.6 Asymptotic counterpart of Theorem 15

The following is an asymptotic counterpart of Theorem 15 that uses the central limit theorem
in the confidence set construction. We note the error budget splitting used in Theorem
15 is in fact not necessary, but we believe that it facilitates exposition when presenting
nonasymptotic guarantees. The asymptotic result below is stated without the splitting of
the error budget. The proof is stated in Appendix 4.5.9.

Theorem 33 (Convex estimation: asymptotic version). Suppose that the convex estimation
problem is nondegenerate as in (4.1) and that n

N → p, for some p ∈ (0,1). Fix α ∈ (0,1). For
all θ ∈ Rp, define

∆̂θ =
1

n

n

∑
i=1
(gθ(Xi, Yi) − gθ(Xi, f(Xi))) ; ĝfθ =

1

N

N

∑
i=1

gθ(X̃i, f(X̃i)).

Further, denoting by gθ,j(x, y) the j-th coordinate of gθ(x, y), let

σ̂2
∆,j(θ) =

1

n

n

∑
i=1
(gθ,j(Xi, Yi) − gθ,j(Xi, f(Xi)) − ∆̂θ,j)

2
; σ̂2

g,j(θ) =
1

N

N

∑
i=1
(gθ,j(X̃i, f(X̃i)) − ĝfθ,j)

2
,

for all j ∈ [p]. Let wα,j(θ) = z1−α/(2p)
√

σ̂2
∆,j(θ)
n + σ̂2

g,j(θ)
N and

CPPα = {θ ∶ ∣∆̂θ,j + ĝfθ,j ∣ ≤ wα,j(θ), ∀j ∈ [p]} .

Then,
lim inf
n,N→∞

P (θ∗ ∈ CPPα ) ≥ 1 − α.

4.5.7 Algorithms with nonasymptotic validity

We state nonasymptotically-valid algorithms for prediction-powered mean estimation, quan-
tile estimation, and logistic regression. Like the methods in Section 4.2.1, the algorithms rely
on the abstract recipe from Theorem 15. The proofs of validity are included in Appendix
4.5.9.

The following algorithms rely on any off-the-shelf method for computing confidence in-
tervals for the mean. We choose a variance-adaptive confidence interval for the mean due to
Waudby-Smith and Ramdas [161], which we state in Algorithm 13. We opt to present this
construction as the default nonasymptotic confidence interval for the mean because of its
strong practical performance. The only assumption required to apply Algorithm 13 is that
the observations are almost surely bounded within a known interval.
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Algorithm 10 Prediction-powered mean estimation (nonasymptotic)

Input: labeled data (X,Y ), unlabeled features X̃, predictor f , error levels α, δ ∈ (0,1),
bound B

1: (f l
α−δ, f

u
α−δ)← MeanCI({f(X̃i)}Ni=1, err = α − δ, range = [0,B])

2: (Rl
δ,Ru

δ )← MeanCI({f(Xi) − Yi}ni=1, err = δ, range = [−B,B])
Output: prediction-powered confidence set CPPα = (f l

α−δ −Ru
δ , f

u
α−δ −Rl

δ)

Corollary 34 (Mean estimation). Let θ∗ be the mean outcome (4.3). Suppose that Yi, f(Xi) ∈
[0,B] almost surely. Then, the prediction-powered confidence set in Algorithm 10 has valid
coverage: P (θ∗ ∈ CPPα ) ≥ 1 − α.

Algorithm 11 Prediction-powered quantile estimation (nonasymptotic)

Input: labeled data (X,Y ), unlabeled features X̃, predictor f , quantile q ∈ (0,1), error
levels α, δ ∈ (0,1)

1: Construct fine grid Θgrid between mini∈[N] f(X̃i) and maxi∈[N] f(X̃i)
2: for θ ∈ Θgrid do

3: (Rl
δ(θ),Ru

δ (θ))← MeanCI({1{Yi ≤ θ} − 1{f(Xi) ≤ θ}}ni=1 , err = δ, range = [−1,1])

4: (F̂ l
α−δ(θ), F̂ u

α−δ(θ))← MeanCI({1{f(X̃i) ≤ θ}}
N

i=1 , err = α − δ, range = [0,1])

Output: prediction-powered confidence set

CPPα = {θ ∈ Θgrid ∶ q ∈ (F̂ l
α−δ(θ) +Rl

δ(θ), F̂ u
α−δ(θ) +Ru

δ (θ))}

Corollary 35 (Quantile estimation). Let θ∗ be the q-quantile (4.4). Then, the prediction-
powered confidence set in Algorithm 11 has valid coverage: P (θ∗ ∈ CPPα ) ≥ 1 − α.
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Algorithm 12 Prediction-powered logistic regression (nonasymptotic)

Input: labeled data (X,Y ), unlabeled features X̃, predictor f , error levels α, δ ∈ (0,1),
bound B = (Bj)dj=1

1: Construct fine grid Θgrid ⊂ Rd of possible coefficients
2: (Rl

δ,j,Ru
δ,j)← MeanCI ({Xi,j(f(Xi) − Yi)}ni=1, err = δ, range = [−Bj,Bj]) , j ∈ [d]

3: for θ ∈ Θgrid do
4: (glα−δ,j(θ), guα−δ,j(θ))← MeanCI ({X̃i,j (µθ(X̃i) − f(X̃i))}Ni=1, err = α−δ

d , range = [−Bj,Bj]) , j ∈ [d],
5: where µθ(x) = 1

1+exp(−x⊺θ)

Output: prediction-powered confidence set

CPPα = {θ ∈ Θgrid ∶ 0 ∈ [glα−δ,j(θ) +Rl
δ,j, g

u
α−δ,j(θ) +Ru

δ,j] ,∀j ∈ [d]}

Corollary 36 (Logistic regression). Let θ∗ be the logistic regression solution (4.5). Suppose
that ∣X1,j ∣ ≤ Bj and Yi, f(Xi) ∈ [0,1] almost surely. Then, the prediction-powered confidence
set in Algorithm 12 has valid coverage: P (θ∗ ∈ CPPα ) ≥ 1 − α.

We note that there exists an analogous nonasymptotic algorithm for linear regression,
however we do not recommend it in practice. The reason is that the refined (but asymptotic)
analysis used to prove Proposition 19 shows that it is sufficient to analyze a one-dimensional
rectifier, while directly invoking Theorem 15 would require analyzing a d-dimensional rectifier
and thus yields more conservative intervals.

Algorithm 13 MeanCI (see Proposition 37)

Input: data points {Z1, . . . , Zn}, error level α ∈ (0,1), range [L,U] s.t. Zi ∈ [L,U]
1: For all i ∈ [n], let Zi ← (Zi −L)/(U −L) ▷ normalize data to interval [0,1]
2: Construct fine grid Mgrid of interval [0,1]
3: Initialize active set A =Mgrid

4: for t ∈ 1, . . . , n do

5: Set µ̂t ←
0.5+∑t

j=1 Zj

t+1 , σ̂2
t ←

0.25+∑t
j=1(Zj−µ̂t)2
t+1 , λt ←

√
2 log(2/α)

nσ̂2
t−1

6: for m ∈ A do
7: M+

t (m)← (1 +min (λt,
0.5
m
) (Zt −m))M+

t−1(m)
8: M−

t (m)← (1 −min (λt,
0.5
1−m) (Zt −m))M−

t−1(m)
9: Mt(m)← 1

2 max{M+
t (m), M−

t (m)} ▷ construct test martingale for m ∈ [0,1]
10: if Mt(m) ≥ 1/α then
11: A← A ∖ {m} ▷ Remove m from active set

Output: Confidence set for the mean Cα = {m(U −L) +L ∶m ∈ A}
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4.5.8 Regularity conditions

All algorithms stated in Section 4.2 rely on confidence intervals derived from the central limit
theorem. For such intervals to be asymptotically valid, we require that the two quantities
whose mean is being estimated, namely gθ(Xi, Yi) − gθ(Xi, f(Xi)) and gθ(Xi, f(Xi)), have
at least the first two moments (see Proposition 38).

For Proposition 19 to hold, we need the same conditions as those required for classical
linear regression intervals to cover the target. We note that these conditions are very weak;
in particular, it is not required that the true data-generating process be linear or the errors
be homoskedastic. See Buja et al. [30] for a detailed discussion. The following are the
required conditions, as stated in Theorem 3 of Halbert White’s seminal paper [164]. The
data (X1, Y1), . . . , (Xn, Yn) is generated as Xi = h(Zi), Yi = g(Zi) + ϵi, where (Zi, ϵi) are
mean-zero i.i.d. random draws from some distribution such that E[ZiZ

⊺
i ] and E[XiX

⊺
i ] are

finite and nonsingular, and E[ϵ2i ], E[Y 2
i XiX

⊺
i ], and E[X2

ijXiX
⊺
i ] are all finite. In addition,

we assume that h and g are measurable. Under these conditions,
√
n(θ̂OLS − θ∗)⇒ N (0,Σ−1V Σ−1),

where θ∗ = argminθ E[(Yi −X⊺i θ)2], θ̂OLS = argminθ
1
n ∑

n
i=1(Yi −X⊺i θ)2, Σ = E[XiX

⊺
i ], V =

E[(Yi −X⊺i θ∗)2XiX
⊺
i ]. Moreover, 1

nX
⊺X → Σ and 1

n ∑
n
i=1(Yi −X⊺i θ̂OLS)2XiX

⊺
i → V almost

surely.

4.5.9 Proofs

4.5.10 Proof of Theorem 15

We show that θ∗ ∈ CPPα with probability at least 1−α; that is, with probability at least 1−α
it holds that

0 ∈Rδ(θ∗) + Tα−δ(θ∗).
Consider the event E = {∆θ∗ ∈Rδ(θ∗)}∩{E[gθ∗(Xi, f(Xi))] ∈ Tα−δ(θ∗)}. By a union bound,
P (E) ≥ 1 − α. On the event E, we have that

E[gθ∗(Xi, Yi)] = E[gθ∗(Xi, Yi)] −E[gθ∗(Xi, f(Xi))] +E[gθ∗(Xi, f(Xi))]
=∆θ∗ +E[gθ∗(Xi, f(Xi))] ∈Rδ(θ∗) + Tα−δ(θ∗).

The theorem finally follows by invoking the nondegeneracy condition, which ensures that
E[gθ∗(Xi, Yi)] = 0, so we have shown 0 ∈Rδ(θ∗) + Tα−δ(θ∗).

4.5.11 Proof of Theorem 33

We show that θ∗ /∈ CPPα with probability at most α in the limit; that is,

lim sup
n,N→∞

P
⎛
⎜
⎝
∣∆̂θ∗,j + ĝfθ∗,j ∣ > z1−α/(2p)

√
σ̂2
∆,j(θ∗)
n

+
σ̂2
g,j(θ∗)
N

, ∀j ∈ [p]
⎞
⎟
⎠
≤ α.
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For each j ∈ [p], the central limit theorem implies that

√
n(∆̂θ∗,j −E[∆̂θ∗,j])⇒ N (0, σ2

∆,j(θ∗));
√
N(ĝfθ∗,j −E[ĝ

f
θ∗,j])⇒ N (0, σ2

g,j(θ∗)),

where σ2
∆,j(θ∗) is the variance of gθ∗,j(Xi, Yi) − gθ∗,j(Xi, f(Xi)) and σ2

g,j(θ∗) is the variance
of gθ∗,j(Xi, f(Xi)). Therefore, by Slutsky’s theorem, we get

√
N(∆̂θ∗,j + ĝfθ∗,j −E[∆̂θ∗,j + ĝfθ∗,j]) =

√
n(∆̂θ∗,j −E[∆̂θ∗,j])

√
N

n
+
√
N(ĝfθ∗,j −E[ĝ

f
θ∗,j])

⇒ N (0, 1
p
σ2
∆,j(θ∗) + σ2

g,j(θ∗)) .

This in turn implies

lim sup
n,N→∞

P (∣∆̂θ∗,j + ĝfj (θ∗) −E [∆̂θ∗,j + ĝfj (θ∗)]∣ > z1−α/(2p)
σ̂j√
N
) ≤ α

p
, (4.13)

where σ̂2
j is a consistent estimate of the variance 1

pσ
2
∆,j(θ∗)+σ2

g,j(θ∗). We take σ̂2
j = σ̂2

∆,j(θ∗)Nn +
σ̂2
g,j(θ∗); this estimate is consistent since the two terms are individually consistent estimates

of the respective variances. Now notice that

E [∆̂θ∗ + ĝfθ∗] = E [gθ∗(Xi, Yi) − gθ∗(Xi, f(Xi)) + gθ∗(X̃i, f(X̃i))] = E[gθ∗(Xi, Yi)] = 0, (4.14)

where the last step follows by the nondegeneracy condition. Putting together (4.13), (4.14),
and the choice of σ̂j derived above, and applying a union bound, we get

lim sup
n,N→∞

P
⎛
⎜
⎝
∃j ∈ [p] ∶ ∣∆̂θ∗,j + ĝfj (θ∗)∣ > z1−α/(2p)

√
σ̂2
∆,j(θ∗)
n

+
σ̂2
g,j(θ∗)
N

⎞
⎟
⎠

≤
p

∑
j=1

lim sup
n,N→∞

P
⎛
⎜
⎝
∣∆̂θ∗,j + ĝfj (θ∗)∣ > z1−α/(2p)

√
σ̂2
∆,j(θ∗)
n

+
σ̂2
g,j(θ∗)
N

⎞
⎟
⎠

=
p

∑
j=1

lim sup
n,N→∞

P (∣∆̂θ∗,j + ĝfj (θ∗) −E [∆̂θ∗,j + ĝfj (θ∗)]∣ > z1−α/(2p)σ̂j)

≤
p

∑
j=1

α

p

= α.

4.5.12 Proof of Proposition 16

We show that the prediction-powered confidence set constructed in Algorithm 1 is a special
case of the prediction-powered confidence set constructed in Theorem 33. The proof then
follows directly by the guarantee of Theorem 33.
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Since gθ(y) = θ − y, we have

∆̂θ ≡ ∆̂ =
1

n

n

∑
i=1
(f(Xi) − Yi); ĝfθ = θ −

1

N

N

∑
i=1

f(X̃i).

Therefore, the set CPPα from Theorem 33 can be written as

CPPα = {θ ∶ ∣θ −
1

N

N

∑
i=1

f(X̃i) +
1

n

n

∑
i=1
(f(Xi) − Yi)∣ ≤ wα(θ)}

= ( 1
N

N

∑
i=1

f(X̃i) −
1

n

n

∑
i=1
(f(Xi) − Yi) ±wα(θ)) .

This is exactly the set constructed in Algorithm 1, which completes the proof.

4.5.13 Proof of Proposition 17

Like in the proof of Proposition 16, we proceed by showing that the prediction-powered con-
fidence set constructed in Algorithm 2 is a special case of the prediction-powered confidence
set constructed in Theorem 33. Then, we simply invoke Theorem 33.

Since gθ(y) = −q + 1{y ≤ θ}, we have

∆̂θ =
1

n

n

∑
i=1
(1{Yi ≤ θ} − 1{f(Xi) ≤ θ}) ; ĝfθ = −q + F̂ (θ),

where F̂ (θ) = 1
N ∑

N
i=1 1{f(X̃i) ≤ θ}. Therefore, the set CPPα from Theorem 33 can be written

as

CPPα = {θ ∶ ∣
1

n

n

∑
i=1
(1{Yi ≤ θ} − 1{f(Xi) ≤ θ}) − q + F̂ (θ)∣ ≤ wα(θ)}

= {θ ∶ ∣F̂ (θ) + ∆̂θ − q∣ ≤ wα(θ)} .
This is exactly the set constructed in Algorithm 2. Therefore, the guarantee of Proposition
17 follows by the guarantee of Theorem 33.

4.5.14 Proof of Proposition 18

The proof follows a similar pattern as the previous two propositions, by arguing that
the prediction-powered confidence set constructed in Algorithm 3 is a special case of the
prediction-powered confidence set constructed in Theorem 33.

Since gθ(x, y) = x(µθ(x) − y), we have

∆̂θ ≡ ∆̂ =
1

n

n

∑
i=1

Xi(f(Xi) − Yi); ĝfθ =
1

N

N

∑
i=1

X̃i(µθ(X̃i) − f(X̃i)).

These quantities are explicitly computed in Algorithm 3. Moreover, the set CPPα constructed
in Algorithm 3 exactly follows the recipe of Theorem 33, so the proof immediately follows.
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4.5.15 Proof of Proposition 19

For linear regression, we can derive more powerful prediction-powered confidence intervals
than those implied by Theorem 15 by exploiting the linearity of the least-squares estimator.

Recall that Theorem 33 assumes that n
N → p, for some fraction p ∈ (0,1).

Theorem 3 of White [163] implies that
√
n(∆̂ −∆)⇒ N (0,W );

√
N(θ̃f − θf)⇒ N (0,W ′),

for appropriately defined coviariance matricesW andW ′, where θf = (E[XiX
⊺
i ])−1E[Xif(Xi)]

and ∆ = (E[XiX
⊺
i ])−1E[Xi(f(Xi) − Yi)]. With this, we can write the target estimand as

θ∗ = (E[XiX
⊺
i ])−1E[XiYi] = θf −∆.

Combining Theorem 3 of White with Slutsky’s theorem, we get

√
N(θ̂PP − θ∗) =

√
N(θ̃f − θf) −

√
n(∆̂ −∆)

√
N

n
⇒ N (0,W 1

p
+W ′) .

White also shows that V and Ṽ , as defined in Algorithm 4, are consistent estimates of W
and W ′, respectively. Therefore, θ̂PP is asymptotically normal and consistent, and we have
a consistent estimate of its covariance. In particular,

Vj∗j∗
N

n
+ Ṽj∗j∗ →Wj∗j∗

1

p
+W ′

j∗j∗ .

This means that we can construct asymptotically valid confidence intervals via a normal

approximation by choosing width z1−α/2

√
Vj∗j∗

N
n + Ṽj∗j∗

√
1
N = z1−α/2

√
Vj∗j∗

n + Ṽj∗j∗

N , and this

is precisely what Algorithm 4 accomplishes.

4.5.16 Proof of Theorem 20

Define
L(θ) = E[ℓθ(Xi, Yi)], Lf(θ) = E[ℓθ(Xi, f(Xi))].

By the definition of θ∗, we have

L̃f(θ∗) = (L̃f(θ∗) −L(θ∗)) + (L(θ∗) −L(θ̃f)) + (L(θ̃f) − L̃f(θ̃f)) + L̃f(θ̃f)
≤ (L̃f(θ∗) −L(θ∗)) + (L(θ̃f) − L̃f(θ̃f)) + L̃f(θ̃f).

By applying the validity of the confidence bounds, a union bound implies that with proba-
bility 1 − α we have

L̃f(θ∗) ≤ (Lf(θ∗) −L(θ∗)) + (L(θ̃f) −Lf(θ̃f)) + L̃f(θ̃f) + T u
α−δ
2

(θ∗) − T l
α−δ
2

(θ̃f)

= −∆θ∗ +∆θ̃f + L̃f(θ̃f) + T u
α−δ
2

(θ∗) − T l
α−δ
2

(θ̃f)

≤ −Rl
δ/2(θ∗) +Ru

δ/2(θ̃f) + L̃f(θ̃f) + T u
α−δ
2

(θ∗) − T l
α−δ
2

(θ̃f).
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Therefore, with probability 1 − α we have that θ∗ ∈ CPPα , as desired.

4.5.17 Proof of Theorem 22

Notice that we can write EQY
[ν(Y )] = ν⊺QY , where on the right-hand side we are treating

ν = (ν(1), . . . , ν(K)) and QY = (QY (1), . . . ,QY (K)) as vectors of length K. We can write
similar expressions for Qf , Q̂Y , etc. Using this notation, by triangle inequality we have

∣θ∗ − ν⊺Q̂Y ∣ = ∣ν⊺QY − ν⊺Q̂Y ∣ ≤ ∣ν⊺K̂−1(Qf − Q̂f)∣ + ∣ν⊺K−1Qf − ν⊺K̂−1Qf ∣ . (4.15)

We bound the first term using Hölder’s inequality,

∣ν⊺K̂−1(Qf − Q̂f)∣ ≤ ∥ν⊺K̂−1∥1∥Qf − Q̂f∥∞.

For the second term, we write

∣ν⊺K−1Qf − ν⊺K̂−1Qf ∣ = ∣ν⊺K̂−1(K̂ −K)K−1Qf ∣ .

In the above equation, the factor on the right, K−1Qf , is exactly equal to QY , and thus lives
on the simplex, which we denote by ∆. Using this fact and Hölder’s inequality,

∣ν⊺K̂−1(K̂ −K)K−1Qf ∣ ≤ sup
q∈∆
∣ν⊺K̂−1(K̂ −K)q∣ ≤ ∥ν⊺K̂−1∥

1
sup
q∈∆
∥(K̂ −K)q∥∞ .

Next, we have
sup
q∈∆
∥(K̂ −K)q∥∞ = max

k∈[K]
∥K̂k −Kk∥∞,

where Kk indexes the k-th column of K. This yields the expression

∥ν⊺K̂−1∥
1
sup
q∈∆
∥(K̂ −K)q∥∞ = ∥ν

⊺K̂−1∥
1
max
k∈[K]

∥K̂k −Kk∥∞.

Putting everything together and going back to (4.15), we have

∣ν⊺QY − ν⊺Q̂Y ∣ ≤ ∥ν⊺K̂−1∥1 (∥Qf − Q̂f∥∞ +max
k∈[K]

∥K̂k −Kk∥∞) . (4.16)

Since ∥ν⊺K̂−1∥1 can be evaluated empirically, it remains to bound the distributional distances
∥Qf − Q̂f∥∞ and maxk∈[K] ∥K̂k −Kk∥∞.

For the first term, we can simply apply the DKWM inequality [60, 113], which gives

∥Qf − Q̂f∥∞ ≤
√

2

N
log

2

α − δ (4.17)

with probability 1 − (α − δ). See [36] for details.
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For the second term, maxk∈[K] ∥K̂k −Kk∥∞, since we only have n observations for estima-

tion, we use a more adaptive concentration result. In particular, for each l, k ∈ [K], n(k)K̂l,k

(conditional on the k-th column) follows a binomial distribution with n(k) draws and success
probability Kl,k. Therefore, if we let

Cl,k = {p ∶ n(k)K̂l,k ∈ (F −1Binom(n(k),p) (
δ

2K2
) , F −1Binom(n(k),p) (1 −

δ

2K2
))} ,

where FBinom(n(k),p) denotes the Binomial CDF, then by a union bound:

P (max
k∈[K]

∥K̂k −Kk∥∞ ≥ max
l,k∈[K]

max
p∈Cl,k

∣K̂l,k − p∣) ≤ δ. (4.18)

Combining equations (4.16), (4.17) and (4.18) yields the final result.

4.5.18 Proof of Corollary 34

The proof follows by instantiating the terms in Theorem 15. In particular, we have E[gθ(f(Xi))] =
θ −E[f(Xi)], hence it is valid to construct Tα−δ(θ) as:

E[gθ(f(Xi))] ∈ Tα−δ(θ) = θ − (f l
α−δ, f

u
α−δ).

Therefore, the condition 0 ∈Rδ + Tα−δ(θ) becomes

0 ∈ (Rl
δ,Ru

δ ) + θ − (f l
α−δ, f

u
α−δ),

which after rearranging and simplifying is equivalent to

θ ∈ (f l
α−δ −Ru

δ , f
u
α−δ −Rl

δ) .

This set exactly matches the set CPPα constructed in Algorithm 10.

4.5.19 Proof of Corollary 35

The proof follows by instantiating the terms in Theorem 15. First, we have E[gθ(f(Xi))] =
−q + P (f(Xi) ≤ θ); therefore, it is valid to construct Tα−δ(θ) as:

E[gθ(f(Xi))] ∈ Tα−δ(θ) = −q + (F̂ l
α−δ(θ), F̂ u

α−δ(θ)) .

Therefore, the condition 0 ∈Rδ(θ) + Tα−δ(θ) becomes

q ∈ (F̂ l
α−δ(θ) +Rl

δ(θ), F̂ u
α−δ(θ) +Ru

δ (θ)) ,

which matches the condition used to form CPPα in Algorithm 11.
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4.5.20 Proof of Corollary 36

We instantiate the relevant terms in Theorem 15. Here, we have that E[gθ(Xi, f(Xi))] =
E [−Xif(Xi) +Xi

1
1+exp(−X⊺i θ)

]. Note that, becauseXi is coordinatewise bounded, and because

Yi,
1

1+exp(−X⊺i θ)
∈ [0,1], we have ∣(gθ(Xi, f(Xi)))j ∣ ≤ Bj almost surely. Therefore, we can

construct Tα−δ(θ) as:

E[gθ(Xi, f(Xi))] ∈ Tα−δ(θ) = (glα−δ(θ), guα−δ(θ))
= (glα−δ,1(θ), guα−δ,1(θ)) × ⋅ ⋅ ⋅ × (glα−δ,d(θ), guα−δ,d(θ)) .

Since the rectifier has no dependence on θ, the condition 0 ∈Rδ(θ) + Tα−δ(θ) becomes

0 ∈ (Rl
δ,j,Ru

δ,j) + (glα−δ,j(θ), guα−δ,j(θ)) , ∀j ∈ [d],

which matches the condition in CPPα in Algorithm 12.

4.5.21 Confidence intervals for the mean

We give an overview of off-the-shelf confidence intervals for the mean. We state the results
for two observation models: first for the i.i.d. sampling model considered in the main body
and then for the finite-population setting discussed in Appendix 4.5.2. In both cases, we
provide a construction with nonasymptotic guarantees and one with asymptotic guarantees.

For the nonasymptotic confidence intervals, we rely on the results of Waudby-Smith and
Ramdas [161], specifically their Theorem 3 and Theorem 4. We opt for these results because
of their strong practical performance, which is primarily driven by variance adaptivity. These
results assume that the observed random variables are bounded within a known interval.
Without loss of generality we assume that the observations are bounded in [0,1] (otherwise
we can always normalize the observations to [0,1]).

For the asymptotic confidence intervals, we rely on the central limit theorem (CLT) and
its variant for sampling without replacement; see [62, 81] for classical references.

4.5.22 Inference with i.i.d. samples

In the following two results, assume that we observe Z1, . . . , Zn
i.i.d.∼ P and let µ = E[Zi].

Proposition 37 (Nonasymptotic CI: Theorem 3 in [161]). Assume supp(P) ⊆ [0,1]. Let

µ̂t =
0.5 +∑t

j=1Zj

t + 1 , σ̂2
t =

0.25 +∑t
j=1(Zj − µ̂t)2
t + 1 , λt =

¿
ÁÁÀ2 log(2/α)

nσ̂2
t−1

.

For every m ∈ [0,1], define the supermartingale:

Mt(m) =
1

2
max{

t

∏
j=1
(1 +min(λj,

0.5

m
) (Zj −m)) ,

t

∏
j=1
(1 −min(λj,

0.5

1 −m) (Zj −m))} .
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Let

C =
n

⋂
t=1
{m ∈ [0,1] ∶Mt(m) < 1/α} .

Then,
P (µ ∈ C) ≥ 1 − α.

Intuitively, the supermartingale Mt(m) should be thought of as the amount of evidence
against m being the true mean. That is, Mt(m) being big suggests that m is unlikely to be
the true mean, so the final confidence set is the collection of all m for which the amount of
such evidence is small.

For large n, computing the intersection in the definition of C can be intractable, so we
conservatively choose a subsequence of 1, . . . , n for the computation.

Proposition 38 (Asymptotic CI: CLT interval). Assume P has a finite second moment. Let

C = ( 1
n

n

∑
i=1

Zi ± z1−α/2
σ̂√
n
) ,

where σ̂ =
√

1
n ∑

n
i=1(Zi − 1

n ∑
n
j=1Zj)2. Then,

lim inf
n→∞

P (µ ∈ C) ≥ 1 − α.

4.5.23 Inference on a finite population

In the following two results, we assume that there exists a fixed sequence Z1, . . . , ZN , and we
observe {Zi ∶ i ∈ I}, where I = {i1, . . . , in} is a uniform random subset of [N] with cardinality
n. We let µ = 1

N ∑
N
i=1Zi. For the asymptotic result, we assume that Z1, . . . , ZN is the first N

entries of an infinite underlying sequence Z1, Z2, . . . .

Proposition 39 (Nonasymptotic CI: Theorem 4 in [161]). Assume Zi ∈ [0,1], i ∈ [N]. Let

µ̂t =
0.5 +∑t

j=1Zij

t + 1 , σ̂2
t =

0.25 +∑t
j=1(Zij − µ̂t)2
t + 1 , λt =

¿
ÁÁÀ2 log(2/α)

nσ̂2
t−1

.

For every m ∈ [0,1], define the supermartingale:

Mt(m) =
1

2
max{

t

∏
j=1
(1 +min(λj,

0.5

µt(m)
) (Zij − µt(m))) ,

t

∏
j=1
(1 −min(λj,

0.5

1 − µt(m)
) (Zij − µt(m)))},
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where µt(m) =
Nm−∑t−1

j=1 Zij

N−t+1 is the putative mean. Let

C =
n

⋂
t=1
{m ∈ [0,1] ∶Mt(m) < 1/α} .

Then,
P (µ ∈ C) ≥ 1 − α.

Proposition 40 (Asymptotic CI: CLT for sampling without replacement). Let σ2 = 1
N ∑

N
i=1(Zi−

µ)2, and σ̂2 = 1
n ∑i∈I(Zi − µ̂)2. Assume that µ and σ have a limit and that n/N → p for some

p ∈ (0,1). Let

C =
⎛
⎝
1

n
∑
i∈I

Zi ± z1−α/2
σ̂√
n

√
N − n
N

⎞
⎠
.

Then,
lim inf
n,N→∞

P (µ ∈ C) ≥ 1 − α.

4.5.24 Comparison to baseline procedures

We compare prediction-powered inference with two baseline procedures that also combine
labeled and unlabeled data in performing statistical inference. The baselines are:

1. Post-prediction inference. We use the post-prediction inference procedure of Wang
et al. [159] to estimate ordinary least-squares (OLS) coefficients. The procedure first
fits a regression r to predict Yi from f(Xi) on the gold-standard dataset. Subsequently,
the regression function is used to correct the imputed labels on the unlabeled dataset.
Confidence intervals are formed using the r(f(X̃i)) as if they were gold-standard data.
This procedure has no theoretical guarantees in general and requires strong distribu-
tional assumptions on the relationship between Yi and f(Xi) to provide coverage. Our
experiments indicate that this approach fails to cover in realistic conditions.

2. Semi-supervised mean estimation. The semi-supervised mean estimation proce-
dure of Zhang and Bradic [175] involves cross-fitting a (possibly-regularized) linear
model on K distinct folds of the gold-standard dataset. The average of the K model
predictions on each unlabeled data point is taken as its corresponding prediction Ŷ ,
and the average bias Ŷ − Y of the K models is also computed and used to debias the
resulting mean estimate. The formal validity of this approach applies to mean estima-
tion and requires the cross-fitting of linear models; it does not have formal guarantees
for more flexible model classes. For this reason, it provides little improvement over the
classical confidence interval in our experiments, since the variance reduction possible
with linear models is typically limited.
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Figure 4.2: Comparison to the post-prediction inference procedure. On the left
are five independent random draws of intervals with n = 1000. On the right is a line plot of
interval width as a function of n, averaged over 100 independent trials. Five draws of interval
widths are shown as a scatter plot at their respective n. The post-prediction inference
approach is shown in red, the classical approach is in gray, and the prediction-powered
approach is in green. The post-prediction inference approach has diminishing coverage in
the experiment.

4.5.25 Experimental protocol

We evaluate the methods on an income prediction task on the same census dataset used for
the logistic regression experiments in the main text. In the case of the semi-supervised base-
line, the goal is to estimate the mean income in California in the year 2019 among employed
individuals using a small amount of labeled data and a large amount of covariates. In the
case of the post-prediction inference baseline, the target of inference is the OLS coefficient be-
tween age and income. The setup is the same as the logistic regression experiment described
in the main text (including the use of the Folktables [57] interface and the gradient-boosted
tree [46] as the predictor).

4.5.26 Comparison to post-prediction inference

Results of the post-prediction inference protocol as compared to the classical and prediction-
powered approaches are shown in Figure 4.2 for the previously-described OLS coefficient
between age and income. The procedure does not cover at the proper rate and the intervals
are biased.

4.5.27 Comparison to semi-supervised mean estimation

Results of the semi-supervised mean estimation protocol as compared to the classical and
prediction-powered approaches are shown in Figure 4.3 for the previously described mean
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Figure 4.3: Comparison to the semi-supervised mean estimation procedure. The
plot is the same as in Figure 4.2, but with semi-supervised inference shown in red. The
semi-supervised intervals have a similar width to the classical ones in this experiment, while
the prediction-powered intervals dominates.

income estimation task. The prediction-powered intervals dominate both the semi-supervised
intervals and the classical ones in the experiment for all values of n.

4.5.28 Cases where prediction-powered inference is
underpowered

Since standard confidence intervals scale with the standard error of the estimator, prediction-
powered inference is powerful when a machine-learning model can provide a reduction in the
estimator variance. At a high level, this happens when N is large enough relative to n and
the model is accurate enough. This was the case in all the experiments shown in the main
text. This section precisely quantifies what it means to have an accurate enough model and
large enough N . Corroborating the theory, we present two cases where classical inference
outperforms prediction-powered inference: one where the model is not good enough and
another where N is too small.

4.5.29 Mathematical derivation

Consider the case of mean estimation, θ∗ = E[Yi]. The widths of the classical confidence
interval based on the central limit theorem and the prediction-powered confidence interval
based on Algorithm 1 scale with Var(θ̂class) and Var(θ̂PP), respectively, where θ̂class and θ̂PP

are defined in Section 4.1.3. The classical estimator has variance equal to

Var(θ̂class) = 1

n
Var(Yi).
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The variance of the prediction-powered estimator equals

Var(θ̂PP) = 1

N
Var(f(Xi)) +

1

n
Var(f(Xi) − Yi).

Therefore, the prediction-powered confidence interval will be tighter when

1

N
Var(f(Xi)) +

1

n
Var(f(Xi) − Yi) <

1

n
Var(Yi).

Since the predictions f(Xi) will typically have a variance that is of the same order as the
variance of Yi, if N ≈ n one should not expect prediction-powered inference to help. Gains
are expected when N ≫ n. In that case, 1

NVar(f(Xi)) ≪ 1
nVar(f(Xi) − Yi), and thus

prediction-powered inference helps when

Var(f(Xi) − Yi) < Var(Yi).

In other words, prediction-powered inference gives tighter confidence intervals when the
predictions explain away some of the outcome variance.

To gain further intuition, suppose that the outcomes are binary, Yi ∼ Bern(p), where
Bern(p) denotes the Bernoulli distribution with parameter p. In this case, θ∗ = p. For
simplicity, suppose that P (f(Xi) = 0∣Yi = 1) = P (f(Xi) = 1∣Yi = 0) = η. Then, a direct
variance calculation gives Var(f(Xi) − Yi) = η − η2(1 − 2p)2 and Var(Yi) = p(1 − p). This
allows for a direct comparison of the variances in terms of the outcome bias p and model
error η. For example, when p = 0.5, the model error η has to be smaller than 25% for
prediction-powered inference to yield smaller intervals; when p = 0.1, meaning the outcomes
themselves have low variance, the model error η has to be smaller than about 9.5%. In
general, the lower the variance of the outcome, the lower the model error has to be for
prediction-powered inference to be helpful.

Putting everything together, the main takeaway is as follows: prediction-powered infer-
ence should only be applied when N is (preferably substantially) larger than n, and when
the model has a high enough predictive accuracy to explain away some of the outcome vari-
ance. While this derivation focused on mean estimation, a similar intuition holds for other
estimation problems.

4.5.30 Inaccurate machine-learning model

We repeat the deforestation analysis experiment from the main text. However, instead
of a gradient-boosted tree, we use a linear regression model for prediction. This degrades
predictive performance enough that the classical baseline outperforms the prediction-powered
approach. See Figure 4.4 for the results. Due to the reduction of power, for the same null
hypothesis tested in the main text, the prediction-powered approach requires n = 40 data
points to reject, while the classical baseline requires n = 35.
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Figure 4.4: Deforestation analysis with a linear model. This is the same figure as
Figure 4.1D, with the same color coding; the prediction-powered approach is green, the
classical approach is gray, and the imputation approach is gold. However, the gradient-
boosted tree is replaced with an ordinary linear regression. The drop in performance causes
the classical intervals to outperform the prediction-powered intervals in terms of power.

4.5.31 Unlabeled dataset is too small

We repeat the AlphaFold-based proteomic analysis from the main text. However, N = 1000
data points are randomly chosen as the unlabeled dataset. The rest of the procedure is
performed exactly the same way as described in the main text. The decrease in the unlabeled
sample size leads to a reduction in power, and in the regime n > N , the classical baseline
outperforms the prediction-powered approach. See Figure 4.5 for the results. For the same
null hypothesis as in the main text, the prediction-powered approach requires n = 869 data
points to reject, while the classical baseline requires n = 652.

4.5.32 Experimental particulars

4.5.33 Relating protein structure and post-translational
modifications

The predictive model of whether a sequence position is in an intrinsically disordered region
(IDR), f , is a logistic regression model that maps the relative solvent-accessible surface
area (RSA) of each position, computed based on the AlphaFold-predicted structure using
Bio.PDB [76], to a probability that the position is in an IDR. Following Bludau et al. [25],
the RSA was locally smoothed with a window of 5,10,15,20,25,30, or 35 amino acids, and a
sigmoid function was used to predict disorder from this smoothed RSA quantity. To fit the
sigmoid, we used the data in [25] that had IDR labels but no PTM labels. The smoothing
window size used for the final model was the value that resulted in the lowest variance of
the bias, Y − f , on this data.
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Figure 4.5: AlphaFold analysis with a small unlabeled dataset. This is the same
figure as Figure 4.1A, with the same color coding; the prediction-powered approach is green,
the classical approach is gray, and the imputation approach is gold. However, here N is
taken to be 1000. It can be seen that, when n > N , the classical baseline outperforms the
prediction-powered one.

Figure 4.1A in the main text presents results on estimating the odds ratio between
intrinsic disorder and phosphorylation, a common type of post-translational modification
(PTM). Figure 4.6 shows analogous results on estimating the odds ratio between intrinsic
disorder and two other types of PTMs, ubiquitination and acetylation. The confidence
intervals shown in the left panel of Figure 4.6 and Figure 4.1A in the main text were computed
with n = 400 labeled data points.

4.5.34 Galaxy classification

We fine-tune a ResNet50 [80] on the training split of the Galaxy Zoo 2 data with a batch
size of 32 and a learning rate of 0.0001 using Adam [92]. We tune the entire backbone, not
just the last layer. We use the remaining validation split as our labeled and unlabeled data,
taking n ∈ {50,100,200,300,500,750,1000}. We use Algorithm 1 for the prediction-powered
approach, and Proposition 38 for the classical and imputation approaches. The confidence
intervals shown in the left panel of Figure 4.1B in the main text were computed with n = 366
labeled data points.

4.5.35 Distribution of gene expression levels

We used the transformer model developed and trained by Vaishnav et al. [150] to predict
gene expression level, with the following modification that we found improved predictive
performance. Given n labeled data points, five were randomly selected and used to train an
affine (two-parameter) function mapping the scalar prediction of the transformer in [150] to a
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Figure 4.6: Confidence intervals on odds ratio between intrinsic disorder and
two types of post-translational modifications, ubiquitination (top) and acetylation
(bottom). Following Figure 4.1 in the main text, the left panel shows prediction-powered
(green) and classical (gray) confidence intervals computed with five random splits of labeled
and unlabeled data, as well as the imputation (gold) confidence interval computed using all
the unlabeled data. The true value is denoted by the dashed orange line. The right panel
shows the average interval width for varying values of n, the number of labeled data points,
and the width for five randomly chosen trials.

prediction of the conditional median of the label, using quantile regression. The predictions
of this final model were used for the unlabeled dataset, and the remaining n − 5 data points
that were not used to fine-tune the transformer model were used as the labeled dataset. The
confidence intervals shown in the left panel of Figure 4.1C in the main text were computed
with n = 2000 labeled data points.

We plot results analogous to Figure 4.1C in the main text for the 0.25- and 0.75-quantiles
in Figure 4.7.

4.5.36 Estimating deforestation in the Amazon

The machine-learning model given by [140] outputs forest-cover predictions at 30m resolu-
tion for 3192 data points. We correspond these by latitude and longitude with gold-standard
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Figure 4.7: Confidence intervals on gene expression quantiles for q = 0.25 (top) and
q = 0.75 (bottom). Following Figure 4.1 in the main text, the left panel shows prediction-
powered (green) and classical (gray) confidence intervals computed with five random splits
of labeled and unlabeled data. The right panel shows the average interval width for varying
values of n, the number of labeled data points, as well as the width for five randomly chosen
trials.

data points labeled as one of {deforestation, no deforestation} from [32]. In the first
step, we split off half of the data to train a histogram-based gradient-boosted tree to predict
deforestation labels from the forest-cover predictions. We take a random sample of n = 100
data points as the gold-standard data, and try to cover the true fraction of deforestation
events on the N = 1596 remaining data points. We use Algorithm 1 and Proposition 38 to
produce the prediction-powered confidence interval and the classical and imputation inter-
vals, respectively. The confidence intervals shown in the left panel of Figure 4.1D in the
main text were computed with n = 200 labeled data points.

4.5.37 Relationship between income and private health insurance

We train a gradient-boosted tree [46] on the California Census data from 2018 acquired using
the Folktables [57] interface. The tree takes as input several covariates such as income, race,
and sex, to predict whether an individual has private health insurance coverage. In the new
year, 2019, we use n ∈ {200,300,500,1000,2000,5000,10000} labeled data points. We use
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Algorithm 3 to produce the prediction-powered confidence interval and the standard CLT
confidence interval for the classical and imputation approaches. The confidence intervals
shown in the left panel of Figure 4.1E in the main text were computed with n = 2000 labeled
data points.

4.5.38 Relationship between age and income

The setting is the same as the above experiment on income and private health insurance,
the main difference being that income is used as the target, and not as a covariate. We used
Algorithm 4 to produce the prediction-powered confidence interval and the standard CLT
confidence interval for the classical and imputation approaches. The confidence intervals
shown in the left panel of Figure 4.1F in the main text were computed with n = 2000 labeled
data points.

4.5.39 Counting plankton

We fine-tune a ResNet152 [80] on the WHOI-Plankton dataset [119] in the years 2006-2013 for
two epochs with a batch size of 32 and a learning rate of 0.0001 using AdamW [109], with 5%
of the data saved for validation. We tune the entire backbone, not just the last layer. Then we
test in the year 2014, using all available data. We use Theorem 22 to produce the prediction-
powered intervals and Proposition 38 for the imputation approach. The confidence intervals
shown in the left panel of Figure 4.1G in the main text were computed with n = 89471 labeled
data points.
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Chapter 5

Using Synthetic Data for Model
Evaluation

5.1 Introduction

Our goal is to evaluate machine learning systems—assessing their accuracy, fairness, and
other metrics—with as few data points as possible. This goal is important for reducing the
human effort required to collect extensive validation datasets [77] for such tasks. Towards
that end, we will explore an approach called autoevaluation, wherein we evaluate models in
a two-stage procedure: (i). Produce synthetic labels using AI on a large unlabeled dataset,
and (ii). evaluate AI models using the synthetic labels.
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Figure 5.1: Eff. sample sizes
of our approach vs. a classi-
cal test to infer the average win
rate of gpt-3.5-turbo against
other LLMs in the Chatbot
Arena [43].

Autoevaluation can save months or years of time and
potentially millions of dollars in annotation costs; see, e.g.,
Scale AI, or the recent work of Zheng et al. [176] using
gpt-4 to rank alternative language models’ answers to
questions with high agreement with human annotators.
However, the synthetic labels may not be trustworthy,
especially for the purpose of certifying a model’s worst-
case safety, multi-group accuracy and fairness, or to un-
derstand if observed differences between models are sig-
nificant. This motivates the need for serious statistical
inquiry on the general question of autoevaluation.

This chapter introduces methods for autoevaluation
done right. Given a small amount of human data and
a large amount of synthetic data, we will construct auto-
evaluation procedures that combine these datasets to get
better estimates of performance.

In other words, our methods will increase the effective sample size of human data with-
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out compromising statistical validity. Intuitively, we use the limited human data in order to
measure the bias of the synthetic data. Then, we evaluate the model on the synthetic data
and correct the bias using this estimate. The core statistical tool used for this debiasing
is called prediction-powered inference (PPI) [7]; we will describe this tool in detail in the
coming text. Figure 5.1 illustrates that our approach, applied to rank language models on
the Chatbot Arena dataset [49, 176], effectively increases effective sample sizes by up to
50% compared to a classical test. This approach can improve both metric-based evalua-
tions (Section 5.2) and pairwise-comparison-based evaluations (Section 5.3), and can readily
be applied using an existing Python software.1 We will include code snippets throughout
for producing more precise unbiased evaluations. These lower-variance evaluations are also
accompanied by confidence intervals.

5.1.1 Related Work

Autoevaluation has been a subject of interest, particularly in language modeling, well before
the current wave of progress in machine learning [1, 50, 71]. Since the development of
powerful machine learning systems such as gpt-4, the accuracy of the annotations that these
systems produce has started to approach that of humans [176], giving substantial credence
to autoevaluation as an alternative to human evaluations. The prohibitive cost of human
annotation has also encouraged the development of automatic metrics used to evaluate model
performance without human aid [102, 121], representing a distinct be related approach to
autoevaluation. Automatic metrics can be computed on the fly, rely on more data points
and are hence less noisy, which can be more informative than human evaluations when the
latter are scarce [162]. Standard autoevaluation methods are generally ad hoc, and resulting
estimates of model performance can systematically differ from those obtained by human
evaluation [71]. In parallel, classical solutions for generating confidence intervals, such as
rank-sets [2], cannot take advantage of the AI-generated data. It has been unclear how
AI-generated data can be combined with human data to improve the quality of evaluations.
Towards this end, [39] produced lower-variance estimates of machine translation performance
by combining human preferences with automated metrics via control variates.

Prediction-powered inference (PPI) is a set of estimators that incorporate predictions
from machine learning models [7] to get lower-variance estimators that remain unbiased. In
our case, we employ an optimized variant, PPI++ [10], in order to estimate metrics using
synthetic data. From a statistical perspective, PPI is closely related to the fields of multi-
ple imputation and semiparametric inference, perhaps most notably the augmented inverse
propensity weighting (AIPW) estimator [130, 147] (see [10] for a careful review). Indeed,
we are not the first to notice this application of PPI; the work of Saad-Falcon et al. [134]
describes an autoevaluation method for evaluating and ranking language models from pair-
wise comparisons for the purpose of retrieval-augmented generation. A preprint by Chatzi
et al. [43], posted concurrently with ours, also considers the problem of ranking models from

1https://github.com/aangelopoulos/ppi_py

https://github.com/aangelopoulos/ppi_py
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pairwise comparisons, and constructs approximate rankings with coverage guarantees. Our
approach is complementary to these existing works. Our specific contribution is to develop
an instantiation of PPI that is practical and yields tight confidence intervals, is easy to im-
plement using existing software, and is compatible with existing evaluation systems such
as Chatbot Arena [49, 108]. Moreover, we evaluate our PPI method on real data. Along
the way, we develop an interesting extension of the PPI algorithms to the case where the
annotation model outputs not just a single synthetic Y , but a distribution over Y .

5.2 Autoevaluating Accuracy and other Metrics

We begin by describing how to use prediction-powered inference for estimating metrics. The
most commonly used metrics are accuracy and loss, so we focus on these; however, our tools
will be general and allow autoevaluation of any metric.

5.2.1 Defining the Goal

Basic notation We observe inputs X in some space X , such as the space of natural images,
natural language, and so on. We seek to predict labels Y in some space Y, such as the space
of classes, next tokens, actions, etc. Towards this end, let f1, . . . , fM denote M pretrained
models mapping inputs in X to label estimates in some third space Ŷ. We often have Ŷ = Y,
in which case the model directly outputs predictions of the label. However, we leave open
the possibility that Ŷ is some other space—such as the space of softmax scores in the case
of classification. The appropriate output space for f(X) will be easy to infer from context.

Metrics We will evaluate the performance of the models by estimating the expectation
of some metric function ϕ ∶ Ŷ × Y → R; in other words, the metric of model m will be

µm = E [ϕ(fm(X), Y )]

for some metric function ϕ and every m = 1, . . . ,M . We are interested in estimating the
M -length vector µ = (µ1, . . . µM). For example, in the case of the accuracy, we would want
to measure

accuracym = E [ϕacc(fm(X), Y )] , where ϕacc(y, y′) =
⎧⎪⎪⎨⎪⎪⎩

1 y = y′
0 otherwise,

for every m ∈ 1, . . . ,M .

Accuracy is not the only quantity that can be framed within this setup. As another
example, when the predictors are multilabel classifiers, one performance metric of interest
could be the average precision of the model, that is, ϕAP (ŷ, y) ∶= ∣ŷ∩y∣∣ŷ∣ . In the case of
regression, µm could correspond to the mean squared or absolute error of model m, in which
case ϕ(ŷ, y) ∶= (ŷ − y)2 or ϕ(ŷ, y) ∶= ∣ŷ − y∣, respectively. Finally, one can imagine estimating
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multiple losses at once; for example, for the purpose of assessing fairness, one may want to
evaluate accuracy across many groups.

Data We assume access to two datasets: a small human-annotated dataset, {(Xi, Yi)}ni=1,
and a large amount of unlabeled data points, {Xu

i )}Ni=1, whose ground-truth labels {Y u
i }Ni=1

are unavailable. Importantly, both datasets are i.i.d.; extensions to some limited non-i.i.d.
regimes are handled in [7], but we will not discuss them here. One should think of the regime
where N ≫ n: we have far more synthetic labels than real ones. For both datasets and every
model, we also assume access to a synthetic label distribution that approximates p(Y ∣ X).
We denote {P̃i,m}ni=1 and {P̃ u

i,m}Ni=1 as the set of synthetic label distributions conditioned on
the labeled and unlabeled input data points, respectively. For each i and m, we will use the
notation dP̃i,m(y) to represent the estimated PDF or PMF evaluated at label y.

For the sake of intuition, we make a few remarks regarding this data generating process.
First, the synthetic data distributions can be seen as distributions over labels produced by
one or several “annotator models”, that can either be related or different from the models
to evaluate. In the latter case, the synthetic label distribution, for a given input, is the same
for each model f1, . . . , fM . We do not need the subscript m in this scenario, and can simply
denote the synthetic label distribution as P̃i. However, the general case of P̃i,m allows for each
model to have a different annotator model, and possibly allow models to self-annotate, that
is, to themselves produce synthetic labels. Second, we note that the framework we described
applies directly to the case where the annotator model produces single predictions of Y
instead of distributions, by setting up dP̃i,m(y) to be a delta function at the prediction (the
distribution is entirely concentrated on the prediction of Y ).

5.2.2 The Algorithm

We combine the labeled and unlabeled data to estimate µ. In particular, we seek to benefit
from the large sample size of the automatically annotated dataset to produce an estimator
with low variance, while ensuring that this estimator remains unbiased. We will begin with
the case of estimating accuracy, and then generalize our algorithm to arbitrary metrics.

Warm-Up: Model Accuracy

The classical approach to estimating model accuracy is to compute the fraction of correct
labels:

µ̂classical
m = 1

n

n

∑
i=1

1(Ŷi,m = Yi),

where Ŷi,m = argmaxy fm(Xi)y and fm(Xi) is the softmax output of model m. Instead,
we propose estimating the accuracy of a classifier differently: by using the classifier’s own
confidence on the unlabeled data as a signal of its accuracy. Let pi,m = fm(Xi)Ŷi,m

denote the

top softmax score of model m on labeled example i, and pui,m, Ŷ
u
i,m be defined analogously.
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Snippet 1 Python code to produce CIs and point estimates for model accuracy. The variable
meanings are explained in the code comments.

We will use the estimator

µ̂m ∶= λ
1

N

N

∑
i=1

pui,m

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
estimated accuracy

+ 1

n

n

∑
i=1
(1{Ŷi,m = Yi} − λpi,m)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
bias correction

, (5.1)

where λ is a tuning parameter—for the time being, think of λ = 1. The above estimator
decomposes into two natural components. Interpreting the top softmax score as the proba-
bility of correctness, the first term captures the model’s internal estimate of its accuracy on
the unlabeled data. The second term is the bias of the first term.

This estimator has two beneficial properties: unbiasedness and variance reduction. Un-
biasedness means that E[µ̂] = µ. This implies that the inclusion of machine learning pre-
dictions in our estimator does not introduce systematic errors for estimating the accuracy.
Variance reduction means that the use of synthetic data reduces the variance of our estima-
tor: Var (µ̂m) ≤ Var (µ̂classical

m ) .
This is formally true for the optimally chosen parameter λ; indeed, the optimal choice

of λ ensures that our estimator is always better than µ̂classical (in an asymptotic sense).
See [10] for details and a formal proof; the software in Snippet 1 automatically calculates
this parameter.

General Metrics

The approach we have presented for evaluating classifier accuracy is an instance of a more
general framework for evaluating properties of machine learning models. In particular, we
can use our annotator model to output an approximate expectation of each label {Yi}ni=1 and
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{Y u
i }Ni=1 in the following way:

Êi,m = ∫
y∈Y

ϕ(fm(Xi), y)dP̃i(y) Êu
i,m = ∫

y∈Y
ϕ(fm(Xu

i ), y)dP̃ u
i (y).

This expression looks complicated, but it has a simple interpretation: the annotator model,
given Xi, thinks the distribution of Yi is dP̃i, and we are simply calculating the expected
metric under that estimated distribution. This explains the hats on the expectation symbols;
these are not real expectations, but rather, estimated expectations according to the annotator
model. Indeed, in the case of classification, we can directly see that, as is intuitive, the
expected accuracy of the mth model on the ith data point is just equal to its top softmax
score:

Êi,m = ∑
y∈Y

ϕacc(Ŷi,m, y)dP̃i,m(y) = dP̃i,m(Ŷi,m) = pi,m.

Along the same lines, our previous estimator can be generalized to the case of arbitrary
metrics as

µ̂m ∶= λ
1

N

N

∑
i=1

Êu
i,m

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
metric on synthetic data

+ 1

n

n

∑
i=1
(ϕ(fm(Xi), Yi) − λÊi,m)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
bias correction

. (5.2)

The first sum in the above expression is the average metric predicted by model m over all
synthetic labels. If the annotator model is near-perfect and N is large, then this term will
almost exactly recover the metric. However, if the synthetic label distribution is not good,
this can bias our estimate of the metric. The second term corrects this bias by calculating
it on the labeled dataset and subtracting it off.

Returning to the role of the tuning parameter: λ ∈ [0,1] is a discount factor on our
synthetic data. When the synthetic data is very good, we can set λ = 1; when it is bad,
setting λ = 0 will throw it away entirely. One can asymptotically optimize the variance of µ̂
in order to set λ, as in [10].

Again, it is straightforward to see that for any fixed value of λ, our estimator in (5.2) is
unbiased, meaning E[µ̂] = µ, and will be strictly lower-variance than its classical counterpart
when λ is optimally chosen.

Variance and Confidence Intervals

As we have explained above, the main benefit of AutoEval is to reduce the number of human-
labeled data points to achieve a particular variance. We can formalize this by analyzing the
variance of µ̂m and µ̂classical

m . In particular, we can write the covariance matrix of µ̂ as

1

n
V = 1

N
λ2Cov(Lu

i ) +
1

n
Cov(∆λ

i ),
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where ∆λ
i =
⎛
⎝
ϕ(f1(Xi), Yi) − λÊi,1, . . . , ϕ(fM(Xi), Yi) − λÊi,M

⎞
⎠
.

This expression admits a simple plug-in estimator; it also indicates that we should pick λ
to minimize V in the appropriate sense. It also allows for the production of non-asymptotic
confidence intervals using concentration. We opt to use asymptotic confidence intervals for
µ. In particular, we have that as n and N approach infinity,

√
nV̂ −1/2 (µ̂ − µ)→ N (0, IM) ,

where V̂ = n
Nλ2Ĉov(Lu

i )+ Ĉov(∆i), Lu
i = (Êu

i,1, . . . , Êu
i,M) .. V̂ is the plug-in estimator of V ,

computable from the data.

Note that when λ = 0, we exactly recover µ̂classical—but this may not be the parameter
that minimizes the variance V̂ . Indeed, we can explicitly choose λ to minimize the variance
(an explicit expression for this estimate can be found in [10]).

Another beneficial aspect of the asymptotic analysis is that it allows us to construct
confidence intervals with which we can reliably rank models. For example, coordinatewise,
the following is an asymptotically valid 1 − α confidence interval marginally for each µ̂m:

Cm = (µ̂m ±
z1−α/2√

n
V̂m,m) . (5.3)

The above interval comes with the following (standard) guarantee for all m = 1, . . . ,M :
limn,N→∞ P(µm ∈ Cm) = 1 − α.

As an alternative to producing confidence intervals for a single coordinate µm based on
Equation (5.3), we might want to create confidence sets that contains the entire vector µ,
that is, simultaneously valid intervals. The simultaneous interval can be constructed using
the chi-squared distribution as

Cχ = {µ ∶ n ∥V̂ −1/2(µ̂ − µ)∥2
2
≤ χ2

1−α,M} ,

where χ2
1−α,M denotes the 1 − α quantile of the chi-squared distribution with M degrees of

freedom. This interval has the following (standard) guarantee:

lim
n,N→∞

P(µ ∈ Cχ) = 1 − α,

and thus, it can be used to rank the models by checking whether the m and m′ coordinates
of Cχ overlap for each model m and m′ in 1, . . . ,M .

5.2.3 Application to Rank computer Vision Models

We applied the described methodology applies for evaluating computer vision models. We
considered five trained computer vision models (ResNet-18, ResNet-34, ResNet-50, ResNet-101,
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Figure 5.2: ImageNet experiment. For every approach, we built confidence intervals
around the average accuracy of different ResNet architectures. a. MSE of the point estimates
of the model accuracies. b. ESS of PPI and PPI++ against the classical approach. c.
Correlation between the estimated and true model rankings. Here, and in all following
figures, obtained metrics are averaged across 250 random splits of the validation data into
labeled and unlabeled data.

and ResNet-152) optimized over the training set of ImageNet and sourced from PyTorch [123].
We considered the task of estimating their accuracy on the validation set of ImageNet in a
low-data regime.

We considered two different approaches to estimate the accuracy of these models. The
first is referred to as PPI [7], and corresponds to (5.1) with λ = 1. The second strategy,
PPI++ [10] optimizes λ to minimize the variance. These approaches were benchmarked
against µ̂classical along with a standard z-test confidence interval.

To reflect a low-data regime, we randomly sampled a small number n of observations to
be used as labeled data points available for these approaches. The rest of the observations
in the validation data were used as unlabeled data points for PPI and PPI++. Our synthetic
label distribution dP̃i,m is the softmax vector of model m on data point i, and dP̃ u

i,m is
analogous. Ground-truth model accuracies were computed as the mean accuracies evaluated
over the entire validation dataset.

The mean-squared error of our estimates of the model accuracies improved over the
classical baseline (Figure 5.2a). Both PPI and PPI++ had lower mean-squared errors than the
baseline, no matter the size of the labeled set. Little to no difference was observed between
PPI and PPI++, which probably means that the imputed accuracy scores are reliable proxies
for the true quantities. Our approach hence provided more accurate point estimates of the
model accuracies. When uncertainty quantification does matter, PPI and PPI++ provided
calibrated confidence intervals across all labeled set sizes, and produced tighter confidence
intervals than the baseline (Supplement 5.4.1).

The benefit of using unlabeled data can be measured by computing the effective sample
size (ESS) of PPI and PPI++ relative to the classical approach (Figure 5.2b). This value can
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be interpreted as the equivalent number of labeled data points for the classical approach
that would be required to achieve the same level of precision as PPI or PPI++. Our ESS
exceeds that of the classical approach by approximately 50%, which demontrates the utility
of unlabeled data for evaluating model performance.

Here, and in the other experiments, we also evaluated our approach for the purpose of
model ranking, by ranking models based on their confidence intervals after Bonferroni correc-
tion. Models with overlapping confidence intervals were considered tied. Figure 5.2c shows
the correlation of the estimated model ranks with the ground truth ranking (computed on
all data) for different n and averaged across labeled-unlabeled data splits. This experiment
showed dramatic differences between the approaches. PPI++ showed much stronger correla-
tions with the ground truth than the other approaches, meaning that its rankings were more
accurate and less prone to ties.

5.2.4 Application to Evaluate Protein Fitness Prediction Models
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Figure 5.3: Protein fitness experiment for building confidence intervals and point esti-
mates for the Pearson correlation of seven protein language models with the experimental
fitness scores, using a held-out model to produce synthetic labels. a. MSE of the point esti-
mates of the model correlations. b. ESS of PPI and PPI++ against the classical approach.
c. Correlation between the estimated and true model rankings.

We also used AutoEval to rank regression models, and more specifically, protein fitness
prediction models. Protein fitness prediction is a crucial task in computational biology,
aiming to predict the biological relevance of protein mutations based on their amino acid
sequences. The recent development of deep learning models for protein language modeling
has enabled the emergence of powerful models, trained on millions of protein sequences, used
to predict protein fitness in a zero-shot manner [114]. Unfortunately, evaluating these models
for a specific task remains challenging due to the scarcity of experimental data that can be
used for evaluation, typically requiring expensive, time-consuming, and poorly scalable wet-
lab experiments [95, 128].

We applied AutoEval on ProteinGym [116], which gathers several assays containing both
experimental fitness measurements (that can be used as ground-truth labels), and predicted
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fitness scores from a variety of models. We focused on ranking protein language models for
predicting the fitness of mutations in the IgG-binding domain mutations of protein G based
on an assay of N = 536,962 pairwise mutations [117]. We considered a scenario where one
aims to select the best model for zero-shot fitness prediction for a specific protein, using a
small experimental dataset and a large set of potential mutaions for which fitness is not mea-
sured. To rank models, we focused on evaluating the Pearson correlation rm = E[Y fm(X)],
where Y,X, fm are the experimental fitness, the protein sequence, and the m-th fitness pre-
dictor, respectively, assuming that Y and fm(X) have zero mean and unit variance.2 Unlike
the ImageNet experiment, however, models did not produce internal confidence scores like
the softmax scores of the classification models. Instead, we relied on a held-out model used
as annotator, VESPA [112], to produce synthetic labels and allow us to leverage the unlabeled
data. In this context, the general estimator in (5.2) takes the simple form

µ̂m = λ
1

N

N

∑
i=1

fm(Xu
i )fVESPA(Xu

i ) +
1

n

n

∑
i=1
(fm(Xi)Yi − λfm(Xi)fVESPA(Xi))
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Figure 5.4: ESS of PPI++

against annotator model
performance for n = 500 la-
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classical.

The results of this experiment are shown in Figure 5.3. The
effective sample sizes of PPI++ were systematically higher than
the classical approach (Figure 5.3b), by approximately 50%.
Furthermore, the ranks obtained by our approach were also
much closer to the true model ranks than the classical ap-
proach (Figure 5.3c), with a five-fold improvement for n = 1000.

PPI++ confidence intervals for models’ correlations with the
experimental fitness scores were also slightly tighter than the
classical approach, yet remained calibrated (Supplement 5.4.1).
The PPI estimator performed worse than the classical ap-
proach. This is a known issue of this estimator, that PPI++

mitigates.

A question remains: how good does the annotator model
need to be to allow AutoEval to work well? Figure 5.4 compares
the effective sample size of PPI++ obtained with different an-
notator models. As expected, the better the annotator model,
the higher the effective sample size. We importantly note that
even with a very poor annotator model, PPI++ performs at
least as well as the classical approach. When the annotator la-
bels do not correlate with the true labels, PPI++ falls back to the classical approach (λ = 0),
effectively ignoring the synthetic labels. That being said, we observe that even mediocre
annotator models, such as CARP, provide a 10% increase in effective sample size compared
to the classical approach. Altogether, these observations suggest that AutoEval can provide

2In practice, we standarized ground-truth labels and model predictions.
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better point estimates and tighter confidence intervals compared to the classical approach
even when the annotator model is mediocre.

5.3 Evaluating Model Performance from Pairwise

Comparisons

Characterizing the absolute performance of ML models for the purpose of ranking them
is challenging. The previous section described a methodology to compare models based
on a common performance metric. Unfortunately, metrics serving as proxies for model
performance might either not exist, or diverge from human judgment [88].

In such cases, assessing relative model performance might be more appropriate. This
can typically be done by comparing different model predictions to each other. The Chatbot
Arena project [108], for instance, allows human annotators to state preferences over different
LLM predictions to the same prompt. Comparison-based evaluation is also an exciting
opportunity for autoevaluation [176]. In particular, an external LLM, prompted to serve as
an annotatator, agrees with human annotators with high fidelity. Still, it is unclear how
biased an AI annotator might be, which drastically limits the usefulness of the validation
data it produces. This section describes how to leverage such AI-generated preferences while
making statistically valid inferences about model performance.

5.3.1 A Model to Assess Relative Performance

The canonical model for assessing relative performance of models based on pairwise com-
parisons, as in a tournament, is called the Bradley-Terry (BT) model [27, 69, 173]. The BT
model is used in the Chatbot Arena [49], by the World Chess Federation, the European Go
Federation, and many other competitive organizations as a tool for ranking players.

Now we describe the BT model. Imagine, among M models, we are trying to compare
the strength of model A to the strength of model B. Towards this end, we give a prompt Q
to both models, and they give us an answer. We show this answer to a human, who gives us
Y = 1 if the answer of model B is better than the answer of model A, and vice versa. The
assumption of the BT model is that Y follows a logistic relationship,

P (Y = 1 ∣ A,B) = 1

1 + eζA−ζB , (5.4)

with some parameter vector ζ of length M , whose entries are called the Bradley-Terry
coefficients. Each model m has a BT coefficient ζm which, when large relative to the other
coefficients, signifies that it is more likely to win the pairwise comparison. (Also, because
the model in (5.4) is invariant to addition of a constant to every coordinate of ζ, we can,
without loss of generality, set ζ1 = 0, making the model identifiable.)
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It is well-known that, given a labeled dataset of n pairwise comparisons, {Ai,Bi,Qi, Yi},
the maximum-likelihood estimator of the BT coefficients is a logistic regression [84]. Let Xi

be the vector of all zeros except at indexes Ai and Bi, where it is −1 and 1 respectively. The
logistic regression estimate of the BT coefficients is

ζ̂classical = argmin
ζ∈RM−1,ζ1=0

1

n

n

∑
i=1

ℓζ(Xi, Yi),

where ℓ is the binary cross-entropy loss.

5.3.2 Autoevaluation of Relative Performance

Prediction-powered inference can be applied out-of-the-box to the BT model, making it
possible to leverage large numbers of AI-generated preferences while controlling for their
potential bias. In addition to the set of human preferences defined above, additionally define
the unlabeled dataset {(Au

i ,B
u
i ,Q

u
i )}Ni=1. On both the labeled and unlabeled datasets, we

have the prompt and both models’ answers; we use gpt-4 in place of the human to choose
between the answers. This gives us a prediction Ŷi and Ŷ u

i of the pairwise comparison on
both datasets. The PPI++ estimator of the BT coefficients is given by

ζ̂ = argmin
ζ∈RM−1

ζ1=0

1

n

n

∑
i=1
(ℓζ(Xi, Yi) − λℓζ(Xi, Ŷi)) +

λ

N

N

∑
i=1

ℓζ(Xu
i , Ŷ

u
i ),

where λ ∈ [0,1] controls the weight we give to the AI-generated preferences. Although this es-
timator departs from the arguments given in Section 5.2, it has a very similar interpretation;
it constructs an unbiased and lower-variance loss function for the true logistic regression,
and then minimizes it.

The resulting BT coefficient estimates have the same appealing properties as above. In
particular, they are unbiased for any fixed λ, an d one can construct confidence intervals
around them using PPI and PPI++; see [7, 10] for this and other generalized linear models,
as well as methods for optimally choosing λ. Snippet 2 provides Python code to produce
these CIs.

5.3.3 Autoevaluation of LLMs from Pairwise Preferences

We evaluated our approach on the Chatbot Arena dataset [49, 176]. Each observation con-
tains an initial prompt, responses from two different LLMs, and a binary preference over
these responses, either from a human expert or from another LLM, gpt-4. Conveniently,
the same prompts are used to collect both types of preferences, allowing us to easily bench-
mark our approach. In total, the dataset contains paired expert and gpt-4 preferences for
3,355 data points, each corresponding to a question, as well as answers from two different
LLMs (out of six in total).
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Snippet 2 Python code to produce CIs for the Bradley-Terry coefficients (without multi-
plicity correction). The variable meanings are explained in the code comments. For clarity,
the matrix X labeled has one row per pairwise comparison. The ith row is a two-hot vector,
with −1 at position Ai and +1 at position Bi. The matrix X unlabeled is analogous. Note
that X labeled and X unlabeled have only M − 1 columns, since ζ1 does not need to be
estimated.
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Figure 5.5: LLM experiment for building confidence intervals and point estimates for the
BT coefficients of different LLMs. a. MSE of the point estimates of the BT coefficients. b.
ESS of PPI and PPI++ against the classical approach. c. Correlation between the estimated
and true model rankings.
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We observed that the BT coefficients were better estimated by PPI++ than by the classi-
cal approach, hinting that the point estimates of AutoEval are more accurate (Figure 5.5a).
We also observed ESS showing a 20 to 25% improvement over the classical approach (Fig-
ure 5.5b). Finally, we observed that the estimated rankings of the models were more cor-
related with the true rankings when using PPI++ (Figure 5.5c). Supplement 5.4.1 and Fig-
ure 5.1 provide results for the simpler task of estimating the win rate of gpt-3.5-turbo

against other LLMs, showing again a substantial improvement over the classical approach
due to the use of gpt-4 preferences.

5.4 Supplementary Material

Experimental details

Data acquisition and preprocessing

ImageNet We downloaded model weights from Pytorch’s model zoo for the different
ResNet models, trained on the training set of ImageNet. We then computed the differ-
ent models’ predictions on the validation set of ImageNet on a high-performance computing
cluster.

Protein fitness We relied on ProteinGym3 to access both the ground-truth fitness values
and the predictions of the different protein language models for a specific assay corresponding
to IgG-binding domain mutations of protein G [117] (SPG1 STRSG Olson 2014). All fitness
scores were normalized as a preprocessing step.

LLM We considered the MT-bench dataset [176], containing more than 3K human pref-
erences over pairs of LLM answers to the same prompts, along with gpt-4 preferences for the
same exchanges, for a total of six LLMs (gpt-4,gpt-3.5-turbo, claude-v1, vicuna-13b-v1.2,
alpaca-13b, and llama-13b) The data contains questions/exchanges that were evaluated by
multiple human annotators; we used the average of these annotations as the ground truth.

Methodological details

Monte Carlo trials In all experiments, we randomly split the data into labeled and
unlabeled sets 250 times, and computed all point estimates in the main text and in this
supplementary material as the average estimate over these splits.

Model ranking To rank models with the different estimators, we computed 90% confi-
dence intervals for the different approaches after Bonferroni correction. Models with over-
lapping confidence intervals were assigned the same rank.

3https://github.com/OATML-Markslab/ProteinGym

https://github.com/OATML-Markslab/ProteinGym
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Experimental setup

All AutoEval experiments were run on a workstation with 12th generation Intel (R)Core
(TM) i9-12900KF, 128GB of RAM, and on a compute cluster relying on CPU notes with
four cores. We relied on the Python package ppi py [7], except for the LLM experiment, for
which we relied on Jax [26] to implement PPI and PPI++ for the Bradley-Terry model.

Table 5.1: Running times for the different experiments (in seconds). Displayed are the
times to produce confidence intervals for PPI++, PPI, and the classical approach on a single
labeled-unlabeled split.

ImageNet ProteinGym LLM

Execution time 2.3×10−2s 2.6×10−1s 8.4s

5.4.1 Additional experiments
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Figure S1: Interval metrics for the different experiments. a. and b. Coverage and
width of the 90%-confidence intervals (without multiplicity correction). Each experiment is
described in the main text and focuses on the estimation of a different metric.
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This section provides additional experiments for the different experiments presented in
the main text.

Interval metrics

We here show that the proposed methodology provides calibrated and tight confidence in-
tervals for the various measurements of model performance described in the main text.
Figure S1 displays the coverage and width of the 90%-confidence intervals for the different
experiments, all of which show that both PPI and PPI++ are calibrated, as well as showing
that PPI++ provides tighter confidence intervals than the classical approach.

Average win rate in the LLM experiment

As an alternative to the BT model, our approach can also be used to estimate a simpler
metric, the average win rate of a model against other models, which corresponds to the
probability that the model wins a pairwise comparison. Figures 5.1 and S2 respectively
show the ESS and MSE for the estimation of the average win rate of gpt-3.5-turbo against
other LLMs in the Chatbot Arena, both showing that AutoEval compares favorably to the
classical approach.
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Figure S2: Mean-squared errors for the estimation of the average win rate of gpt-3.5-turbo
against other LLMs in the Chatbot Arena.
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