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Abstract

Towards Building Safe and Robust Human AI Systems

By

Zhiyang He

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Trevor Darrell, Chair

Virtual and physical AI systems are increasingly woven into our daily lives, from self-
driving cars and assistive healthcare robots to virtual assistants powered by large lan-
guage models. However, the dynamic and unpredictable nature of human environments
poses significant challenges to their robustness and safety. For example, children or el-
derly individuals interacting with a house-cleaning robot might inadvertently perform
actions that result in hazardous outcomes. Similarly, virtual assistants may exhibit biased
responses to certain inputs, such as demographic information, raising concerns about
fairness, reliability, and inclusivity. This prompts a critical question: Can these systems
operate safely and effectively amidst unpredictable human interactions?

This thesis seeks to address this critical question by drawing on insights from robotics
research and applying them to general Human-AI systems. Specifically, it utilizes the
reward-rational agent framework—a method commonly used in robotics to predict hu-
man actions—and extends it to the design of robust Human-AI systems. The work tack-
les key vulnerabilities of the framework: (1) reward functions may be mislearned due to
causal confusions in the data, and (2) AI policies may be susceptible to exploitation by
adversarial human behaviors or misleading contextual information.

To address these challenges, this thesis introduces techniques for active environment syn-
thesis and active human behavior generation, enabling AI systems to anticipate and adapt
to unforeseen and edge-case scenarios. Additionally, it explores test-time adaptation to
accommodate out-of-distribution users, ensuring greater flexibility in real-world appli-
cations. A novel mechanism is also proposed to enable AI systems to controllably focus
on relevant aspects of the context, reducing the impact of irrelevant or misleading infor-
mation. In summary, this thesis tackles the dual challenges of adaptability and robust-
ness, presenting a comprehensive suite of methods to enhance the safety and reliability
of Human-AI interactions. It paves the way for future applications where humans and AI
agents collaborate seamlessly and effectively to accomplish complex and diverse tasks.
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Chapter 1

Introduction

Virtual and physical robotic systems are becoming integral parts our daily lives. As of
July 2024, over 700 Waymo cars operate autonomously in the U.S., ChatGPT has more
than 200 million users, and autonomous robots are being developed for factory work
and elderly care. These systems hold tremendous potential to enhance human well-being
and productivity. Research shows that self-driving cars can improve safety and traffic
flow, assistive robots could address challenges posed by aging populations, and virtual
agents already boost task efficiency by up to 40%. However, fully realizing these benefits
requires addressing some critical challenges, namely how to ensure that these systems are
safe in the ever increasing complexity of the environments in which they operate.

In fact, autonomous systems have faced high-profile failures in real-world scenarios,
raising serious concerns about their safety. In 2023, a Cruise self-driving car caused a
pedestrian fatality, sparking public outcry and regulatory scrutiny. Similar incidents,
such as collisions involving Tesla’s Autopilot, underscore the risks when these systems
fail to handle edge cases or unforeseen complexities. These failures often occur in situa-
tions where a human operator might have responded more effectively, highlighting the
immense challenge of predicting and mitigating errors in increasingly intricate systems.
Beyond the immediate risks, such incidents erode public trust and confidence, poten-
tially stalling broader adoption and progress in the industry. As robotics pioneer Rodney
Brooks has noted, achieving 99.9% or higher reliability is required for many real-world
applications. Doing so, however, is extraordinarily difficult, and reaching every addi-
tional “9” requires additional decades of further work.

This is where the dilemma arises: as we aim for robots to perform more and more
complex daily tasks—such as cooking meals, loading dishes, or managing household
chores—to truly enhance our lives, we face a challenge. To be genuinely useful, these
systems must become more capable and versatile. However, our tolerance for safety risks
is exceptionally low; even minor errors, such as tipping over hot pans in the presence of
family members, are unacceptable. While these ambitious applications have the poten-
tial to revolutionize daily life, they magnify the importance of ensuring uncompromising
safety. Achieving widespread adoption of autonomous systems will therefore require
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breakthroughs not only in capabilities but also in robust safeguards that prevent failures
and build public trust. Only by addressing these twin challenges can we unlock the full
potential of these transformative technologies.

The goal of my research is to ensure that autonomous agents can be safely and reliably
deployed at scale, performing complex tasks in human environments while remaining
robust in the face of complicated and unforeseen scenarios. My work focuses on three
key pillars of robustness: reward learning, interaction, and adaptation.

Robustness in reward learning is essential for enabling autonomous systems to un-
derstand and achieve human goals safely and effectively. For example, a house-cleaning
robot must not only rearrange items according to its owner’s preferences but also gener-
alize to unfamiliar situations. Achieving this requires learning human preferences from
limited data—a challenging task. Our research has shown that existing methods often fail
due to causal confusions, leading to unintended outcomes. To address this, we leverage
active learning techniques that allow the system to iteratively reduce uncertainties and
improve its understanding of human intent, especially in novel scenarios.

Robustness in interactions ensures that robots can operate safely and effectively along-
side humans, even when faced with unpredictable behaviors. Humans are not perfectly
rational agents and frequently deviate from expected behaviors. For instance, children
playing around a household robot might engage in potentially hazardous actions, while
elderly individuals may exhibit unexpected movements due to physical limitations. These
are rare but realistic scenarios that current systems often treat as ”edge cases,” handling
them in ad hoc ways. For robots to function reliably in real-world environments, they
must proactively anticipate and address such edge cases, integrating preemptive safety
into their core design rather than relying on reactive measures.

Robustness in adaptation though less immediately visible, is equally critical. Modern
adaptive systems, such as online shopping recommendations, news feeds, and social net-
works, have demonstrated remarkable ability to learn user preferences. However, they
often inadvertently pick up on undesirable patterns in human data, amplifying social
biases and, in some cases, reinforcing harmful behaviors. To address these challenges,
ensuring robust adaptation involves understanding and controlling how these systems
interpret contextual information and influence user outcomes. By applying these princi-
ples to robotics and virtual assistants, we can create adaptive systems that are not only
effective but also equitable and beneficial for diverse users, from children to the elderly.
Such robustness allows these technologies to safely and responsibly meet varying user
needs while upholding trust and fairness in their design and operation.

By addressing these three dimensions of robustness, my research aims to pave the way
for autonomous systems that are safe, trustworthy, and beneficial across a wide range of
applications and contexts.
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1.1 Thesis Approach
Traditional robotics research model everything outside of the ego agent as the “environ-
ment”, and the variation of humans and other agents as “disturbances”. Similarly, ma-
chine learning research treats the training dataset as static and often ignore the dynamic
interactions between systems and humans. This becomes limiting for studying human-AI
interaction scenarios because human agents can perform purposeful and sometimes ar-
bitrary activities. In extreme cases, such actions can be adversarial: Imagine kids chasing
and playing around a house-cleaning robot, or elderly people whose motion deviate from
the nominal interactions set by the system designers. These situations can well occur in
reality, and not only is it impossible to treat them as the conventional static environment,
but it’s also difficult to make assumptions about their activities.

Thus, to reason about and facilitate the research on the next-generation Human-AI
applications, it is important for us to rethink our designs from system-level. On the one
hand, we would like to be able to provide user-level adaptations. On the other hand, we
want to push the safety boundary as reliable as possible.

My research aim at enhancing existing algorithms with such use cases in mind, and
providing a new framework for us to reason about and quantify their usefulness. More
specifically, our approach in human-robot interaction research is to model the human as
reward-maximizing agents. We can leverage the human reward function by:

(i) modeling the reward as unknown hidden variables, and by maximizing the infor-
mation gain, induce assistive behaviours and discover unsafe scenarios;

(ii) modeling and sampling from a distribution of reward functions to simulate human
agents and improve the generalizability of AI algorithms,

(iii) modeling the humans as adversarial agents and synthesize unsafe behaviours through
optimizing adversarial-natural rewards

This approach is not merely a proposal of a single suite of methods; rather, it in-
troduces a foundational way of thinking about Human-AI interaction that prioritizes
both capability and safety. This framework integrates key areas of deep learning re-
search—such as reinforcement learning, learning from human feedback, and deep gen-
erative models—creating a versatile platform that can evolve as the field advances. As
state-of-the-art methods in generative modeling and optimization continue to improve,
they can seamlessly integrate into this framework, enabling us to continually push the
boundaries of AI systems in a structured and adaptable way.

1.2 Contributions
The thesis makes the following contributions:
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The goal of my thesis is to develop a framework for quantifying and improving the
robustness of Human-AI interaction systems.

Learning Robust Human Reward and Preferences

We begin by studying reward learning from humans using preference labels. While re-
cent advancements have demonstrated the feasibility of extending preference learning to
deep-learning methods in controlled environments like games, we highlight the signifi-
cant challenges of applying these methods to more complex, real-world applications, such
as assistive robotics. Real-world scenarios often involve intricate and sometimes redun-
dant features, which can complicate the learning process. Preference-based reward learn-
ing methods in such settings are prone to errors caused by causal confusion, where the
system incorrectly attributes correlations to causation, leading to flawed and potentially
harmful reward functions. Through experiments with various learning architectures, we
show that this issue is pervasive and demands careful attention in both problem formu-
lation and feature design. Addressing these challenges is essential for ensuring reliable
and safe reward learning in practical applications.

To address this issue, we introduce a formalism for actively learning human prefer-
ences. We draw inspiration from existing process of reward design, where system design-
ers continually refine reward functions for systems such as self-driving cars to account
for new scenarios and failures. The existing passive reward design framework faces two
significant challenges: (1) Crafting reward functions in high-dimensional feature spaces
is challenging, as it is time-consuming and often leads to redundant solutions that de-
signers may overlook or fail to recognize. (2) Perhaps more importantly, passive reward
design is reactive rather than proactive, addressing problems only after they manifest.

To overcome these limitations, we propose a framework called Active Inverse Reward
Design (Active IRD). Instead of treating the reward function as fixed, our method infers
a posterior distribution over the true underlying reward function. The core innovation of
our approach lies in leveraging this posterior to compute reward uncertainty and evaluate
the potential information gain of each new design iteration. By strategically selecting new
reward design environments to maximize information gain, Active IRD guides designers
to focus on the most ambiguous and complex scenarios.

In the context of self-driving car reward functions, our approach systematically iden-
tifies scenarios where reward definitions are particularly challenging. This not only re-
duces reward uncertainty more efficiently than traditional methods but also surfaces
novel and informative environments—without requiring explicit pre-specification of the
types of scenarios to explore. By actively uncovering and addressing potential gaps in
reward design, Active IRD offers a proactive, scalable solution to crafting robust reward
functions for real-world systems.
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Training with Simulated Humans for Robustness and Adaptation

Humans interacting with robots exhibit diverse movement patterns driven by varying
goals and reward functions. To model this diversity, we propose simulating human
agents by constructing a distribution of reward functions.

In assistive healthcare robotics, where generating realistic physical interactions is par-
ticularly challenging, our framework offers significant advantages over traditional data-
driven methods, which require impractically large datasets. By combining reward-based
human models with an optimal control framework, we can generate meaningful, robust
human actions. Reward functions, being simpler and more interpretable than policy func-
tions, allow us to efficiently create diverse human agents using reinforcement learning.
These simulated agents can be used to test robot policies or further train robots.

Building on this synthetic human distribution, we propose a population-based train-
ing approach to enable robots to adapt to novel humans. Inspired by test-time adaptation
methods in areas like meta-learning and unsupervised representation learning, we in-
troduce a novel learning objective: predicting the next action of the human agent. This
objective, akin to next-token prediction in language modeling, is learned alongside robot
policies during training and remains fixed during testing. It requires no privileged infor-
mation about human intentions and movement patterns, instead inferring structure from
observed human motions.

Our framework not only learns interpretable representations of human behaviors dur-
ing training but also enables few-shot adaptation to unseen humans at test time. This
leads to faster adaptation to out-of-distribution human actions and improved robustness
in human-robot interactions.

Synthesizing Adversarial Humans for Robustness

Robotic and machine learning systems inherently rely on assumptions about the environ-
ments in which they operate. This reliance is particularly evident in human-robot inter-
action systems, where a robot’s policy is often trained using a predefined human model
or a distribution of models. While system performance can be evaluated within this dis-
tribution, it is uncertain how the system will behave when faced with out-of-distribution
human actions. For instance, how might a self-driving car react to a sudden, unexpected
lane change by another vehicle on a busy highway? Or how would a robot respond if
a human partner exhibited unpredictable behavior while collaboratively cutting vegeta-
bles? Given the high stakes of such scenarios, addressing unpredictable and rare “long-
tail” events has become a major focus for robotics companies.

To tackle this challenge, we propose a framework that combines human reward mod-
eling with adversarial human behavior generation. Starting with a pre-trained robot
policy and a set of safety- or progress-oriented reward functions, we synthesize human
agents designed to drive the robot toward suboptimal outcomes. These agents, guided by
an adversarial reward function, perform actions that intentionally challenge the robot’s
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policy and expose potential failure points. Notably, this approach is model-agnostic, re-
quiring no access to the internal parameters or architecture of the robot policy, making it
broadly applicable.

To ensure the generated adversarial human actions remain plausible, we incorporate
a naturalness criterion that constrains the behavior to realistic human actions. By opti-
mizing for both adversarial effectiveness and naturalness, our method produces a range
of human behaviors—from fully cooperative to adversarial—forming what we term the
“adversarial frontier.” This approach automates the discovery of failure cases, uncovering
a broader and more diverse spectrum of potential vulnerabilities compared to traditional
manual debugging methods.

Ensuring Robust Adaptation via Controllable Contextual Influence

Machine learning systems that adapt to individual user preferences have become the
backbone of modern internet applications, driving much of their success and utility. We
interact with such systems daily, from personalized news feeds and shopping recommen-
dations to tailored social media experiences. Even the notifications on our phones are
finely tuned to align with our preferences, showcasing the ability of these systems to
quickly adapt and deliver personalized experiences. However, while these systems offer
significant advantages, studies have shown that they can also inadvertently learn unde-
sirable patterns from human data, amplifying social biases and sometimes reinforcing
harmful behaviors.

As we advance towards building more powerful robotics applications and large lan-
guage model (LLM) agents to automate workflows, it becomes increasingly critical to
ensure these systems remain robust and safe when adapting to individual users. To ad-
dress this challenge, we propose a method called Contextual Steering that can be seam-
lessly applied to foundation models. With Contextual Steering, systems can flexibly ad-
just their responses in alignment with user-specified directions, which can be defined
simply through natural language instructions, without requiring additional supervised
fine-tuning. This method also enables us to proactively mitigate and safeguard against
potential biases in language generation. We believe that Contextual Steering represents a
meaningful step towards systematically enabling robust and equitable adaptations in AI
systems, paving the way for safer and more personalized interactions.

Overall, this thesis introduces a framework for modeling human agents via reward
functions, which facilitates the generation of diverse human policies, supports the study
of personalization and generalization in robot policies, and enables the synthesis of out-
of-distribution failure cases.
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1.3 Overview

Learning Human Reward Functions

Modeling human as reward-rational agents is useful for understanding and simulating
human actions. For that goal, learning a good reward function for human is essen-
tial. This section discusses different strategies for learning human preferences, including
learning from various forms of feedback and learning through pairwise comparisons.
Learning from Sources of Human Input is an important area of study because it is often
difficult to specify reward functions. Researchers have explored a wide variety of dif-
ferent methods to enable robots to learn rewards instead from human input, especially
demonstrations [1, 129, 219, 146]. Using this idea, recent works have explored learning
from a diverse set of modalities. These include language instructions [198, 50], numerical
feedback [13, 88], comparisons [33, 154], advice [131], facial expressions [39], collabora-
tive behavior [63], or corrections [80, 8]. We build on [64], which uses the specified reward
function itself as the human input to learn from. We generalize this idea to an iterative,
active process for learning reward functions from human
Preference-based Learning refers to the framework of recovering the human reward
function by asking for preference over a set of provided queries [199, 33, 12, 22, 133,
165, 109]. It is a popular method for training AI systems when a reward function is un-
available and hard to specify. Preferences are often easier to provide than demonstrations
or raw numerical values [199] since they do not require expert proficiency or fine-grained
feedback. Leveraging preference comparisons, one can teach robots to learn nuanced hu-
man preferences. For example, in an assistive healthcare setting, the robot may ask the
patient whether a fast or a slow movement of feeding is preferred. Given that fast move-
ment can be dangerous, and slow movements can cause the food to fall off the spoon,
the robot can quickly learn the preferred range of speed of individual patients. In this
approach, the system presents two choices to the user and asks them to select the pre-
ferred option. By accumulating responses from these comparisons, the robot can infer a
preference model that represents the user’s likes and dislikes across various parameters.

There are some known challenges to learning preference-based learning. Optimizing
a reward function that has been trained using preferences can sometimes lead to unin-
tended behaviors. Anecdotal evidence of this has been documented for Atari games [33,
77, 22], simple robot navigation tasks [82], and language model fine-tuning [170].
Active Learning of Human Preferences involves the robotic system engaging in a struc-
tured exploration of human preferences, asking questions or taking actions that elicit re-
sponses from users. By doing so, the robot can iteratively refine its understanding of what
the human user prefers in various scenarios. For instance, in the self-driving setting, a
robot can learn the user or system designer’s preference over a set of potentially compet-
ing objectives, such as efficiency, comfort and speed. Prior work has focused on actively
querying for comparisons [12, 188], demonstrations [23, 42, 41, 110], or reward labels
[148]. Such queries are typically for trajectories or states in a given environment (MDP).



CHAPTER 1. INTRODUCTION 8

Good active learning algorithms should prioritize high-impact questions and adapt based
on user feedback, allowing the robot to continually refine its understanding of user pref-
erences over time. Recent work has proposed active learning to synthesizes the environ-
ment itself to gain more information about the reward (either the initial configuration
and behavior of other agents in the scene, such as [154], or the entire environment [148]).
We also propose to actively query new environments, but the human feedback is a proxy
reward designed to work only in that environment.

Quantifying Robot Performance on Out-of-Distribution Data

Robotic systems, especially those interacting with complex human environments, face
challenges when exposed to out-of-distribution (OOD) data—scenarios or behaviors not
covered by training data. Such scenarios often fall within the “long-tail” distribution,
where rare, unexpected events can lead to unpredictable behavior or failure. Robots de-
ployed in the open-world need to handle a large set of possible environment configura-
tions, be it a busy road for an autonomous car or a messy kitchen for a home robot. Given
this challenge, there has been a rising number of work on safeguarding robot behaviors
by generating edge cases. There are a few recent efforts that try to improve robotic perfor-
mance on OOD data: adversarial examples, domain randomization, edge case synthesis,
and robustness in human-robot interactions.
Adversarial Examples in Machine Learning are intentionally modified inputs designed
to reveal weaknesses in a model by causing it to make incorrect predictions. The notable
examples are in computer vision [178, 56, 97, 37, 27, 38]. Researchers have successfully
compromised state-of-the-art computer vision models with simple manipulations of pix-
els [108, 187] imperceptible to human eyes, which leads to real-world safety concerns.
Since then, the community has persistently come up with many attacks [74, 191, 5] and
defense mechanisms [169, 35, 37]. Most of the attack methods can be characterized by
their allowed perturbation set, such as bounded l2-norm, and the method of optimizing
adversarial examples [90]. Robustness methods, on the other hand, often require training
against adversarial examples by adding them to the training data [56, 123, 96] as a way
of performing robust optimization [164] or focus on regularization and smoothing tech-
niques [60, 35, 145, 37]. Researchers have also found that general adversarial robustness
often comes at the cost of performance, due to the elimination of weak correlations in
the data [56, 97, 27, 38]. Inspired by prior work in computer vision, our work aims at
uncovering adversarial human motions imperceptible from natural human motions.
Natural Adversarial Examples [69, 3, 216] refer to scenarios or inputs that arise organi-
cally in the real world and challenge a robot’s performance, as opposed to intentionally
engineered adversarial inputs. These examples often emerge from unanticipated varia-
tions in human behavior, environmental conditions, or complex interactions among mul-
tiple factors in the environment. Unlike synthetic adversarial examples, which are crafted
to reveal vulnerabilities, natural adversarial examples provide insight into how a system
performs under real-world unpredictability. Identifying and testing against these natu-



CHAPTER 1. INTRODUCTION 9

rally occurring, high-risk scenarios are essential for improving robustness, as they help
reveal limitations in perception, decision-making, and adaptability that may not surface
during conventional training.
Domain Randomization is a technique that involves training robots on environments
with randomized parameters, such as object color, shape, or position, to improve gen-
eralization. By diversifying the training data, robots learn to perform tasks across a
wide range of conditions, making them more robust to OOD scenarios. This method
has proven particularly useful in simulation-based training, where vast amounts of di-
verse data can be generated efficiently. Domain randomization not only helps robots
handle unanticipated conditions but also reduces reliance on exact replications of real-
world environments in training, fostering resilience in varied, unpredictable settings. In
the past few years, the robotic community have made great progress in ares such as lo-
comotion [180, 206, 95], robotic grasping [112, 81, 176], and deformable object manipula-
tion [200, 162, 70], by leveraging domain randomization [184] for sim2real transfer, where
the designer generates a diverse set of static environments to train the robot. By compari-
son, sim2real transfer for assistive robotics tasks introduces an acting human agent which
makes the task more challenging in two aspects. First, it is nontrivial to design ”diverse”
population of humans to train with — while we can vary the friction of a legged robot
in a continuous fashion, it is not as straightforward to generate synthetic humans that
span the space of human behaviors, physical limitations, and preferences. Second, since
it is difficult to capture the diversity of potential human users, a robot is more likely to
encounter out-of-distribution users at test time.
Edge Case Synthesis involves generating rare and challenging scenarios that a robot
might encounter in the real world [213], such as unusual human behaviors or extreme
environmental conditions. For human-robot interaction, edge cases might include un-
predictable human actions, unexpected obstacles, or high-stress situations that test the
robot’s decision-making and adaptability. [91] and [132] studied using black-box optimiz-
ers to perform adaptive testing and generate failure cases. [78] trains a generative model
of environments from datasets. [192] generates edge cases by learning a failure predictor.
These methods require defining hard constraints that the robot should not violate, which
can be incorporated into the reward function via reward shaping [2].
Robust Control in robotics [10] focuses on deriving safety guarantees in the presence
of bounded modeling errors and disturbances [168, 208, 209, 158]. It has been applied to
human-robot interaction by allowing completely adversarial human motions (the full for-
ward reachable set), as well as a restriction to only motions that are sufficiently likely un-
der a human model [7]. Robustness in reinforcement learning is a growing field inspired
by the brittleness of RL policies [211, 53]. Prior work on adversarial attacks focuses on
single-agent [140] or two-player competitive settings [75, 114, 124, 196]. In collaborative
settings, policies are known to be more brittle [30] than zero-sum games. Recent works
have also looked at improving the generalizability in collaborative settings, which is a
form of robustness against naturally occurring human distributions [68, 174, 111]. Our
work is complementary, providing a way to measure robustness, and perhaps paving the
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way to new methods to improve it.
Adversarial Examples in Human-AI interaction. The concept concept of Robustness
is essential for Human-AI interaction [213, 153], where small changes in environmental
variables—like lighting, object placement, or human behavior—can lead to failures. For
instance, in a human-robot collaborative setting, a robot may encounter natural adversar-
ial examples when a human partner suddenly changes their task behavior, like quickly
reaching across the workspace or moving in an unusual pattern. In autonomous driving,
natural adversarial examples could include rare events like a child darting into the road
or unusual lighting conditions at dusk that obscure obstacles. By systematically synthe-
sizing adversarial examples [11], and improving the system on these edge-cases, we can
expose robotic systems to challenging, unexpected scenarios, assessing and enhancing
their ability to handle OOD inputs. This adversarial testing approach helps developers
anticipate failure points and build more resilient models that are less susceptible to subtle,
often unforeseen variations in the real world.

Adaptive Autonomous Systems

Recommender Systems are a cornerstone of modern digital ecosystems [151], designed to
predict and provide personalized suggestions to users based on their preferences, behav-
iors, and contextual information. These systems employ a variety of approaches, includ-
ing collaborative filtering, which analyzes user-item interactions to find patterns among
similar users or items; content-based filtering, which leverages item attributes and user
profiles to generate recommendations; and hybrid models, which combine multiple tech-
niques to improve accuracy and robustness. They are widely applied in e-commerce for
product suggestions, streaming platforms for personalized content delivery, and social
networks for curating news feeds and connections. Despite their potentials, these sys-
tems often propagate and amplify social biases present in the data they are trained on.
For instance, they may inadvertently reinforce echo chambers, exclude minority voices,
or promote stereotypical content, perpetuating systemic inequities [121, 28]. Addressing
these challenges is crucial to ensuring that recommender systems are not only effective
but also fair, transparent, and socially responsible in their deployment [171].
Personalization of Large Language Models. Large language models (LLMs) have emerged
as powerful tools for general question answering [25, 186, 83, 59]. One of the main advan-
tage of LLMs over traditional search engines is its ability to customize responses based on
individual requests [32]. There have been recently a number of efforts on making LLMs
more personalized, by generating natural, context-aware responses, adapting to a user’s
preferred communication style and providing personalized assistance. These methods
commonly rely on retrieval based methods, prompting and finetuning and can be chal-
lenging for end-users to quickly prototype with. More recently, with the effort on agentic
LLM systems,

Personalization requires LLMs to consider context in a way that improves outcomes
for individual end-users. Personalization has been extensively explored in applications
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including dialogue agents, movie reviews, and recipe generation [31, 214]. Recent works
based on LLM have explored generating more realistic conversational data [194] using
dataset of annotated movie dialogues with narrative character personas. Researchers
have utilized publicly available reviews and recipe datasets to explore personalization in
reviews [103] and recipe generation [113].[201] investigated parameter-efficient models
for personalized translation, while [4] have presented a dataset for personalized headline
generation derived from real user interactions on Microsoft News.
Bias in LLM Generation [15] highlights issues of bias in language models. The authors
investigate how these embeddings often reflect and perpetuate gender stereotypes and
introduce an approach to debias word embeddings by identifying a bias subspace. More
recent work finds that these concerning biases extend to LLMs. [93] demonstrate that
LLMs are three times more likely to choose a stereotype that aligns with a person’s gen-
der. Other work has found that LLMs exhibit political bias [126], racial bias [207], and
geographical bias [115].

Several approaches have been introduced to counteract bias in LLMs. In their ap-
proach, [137] utilized GPT-2 to introduce a substantial reward mechanism aimed at di-
minishing the occurrence of non-standard outputs. [215] employed data augmentation
techniques to substitute gender-specific terms with their antonyms within the initial train-
ing dataset, and combined it with another corpus to create a novel model. [84] imple-
mented movement pruning and weight freezing techniques, in addition to employing a
debiasing method predicated on a gender-related word projection derived from the work
of [86]. The downside to many of these approaches is that they either require modifica-
tions to the dataset or extensive model training, both of which are computationally heavy
and difficult to deploy.
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Chapter 2

Preliminaries

In this section, we discuss the preliminaries required for designing the algorithms in this
thesis. We start by introducing the general formulism for Human-AI interaction, with op-
tional hidden variables. We interleave this with research in large language model agents
and draw similarities, and discuss the efforts and challenges of learning human prefer-
nces. We then introduce the driving and assistive robot simulation environments, as well
as tools of Large Language Models used in our research. We discuss the concurrent re-
search in robotics on sim2real, optimal control and reinforcement learning. We conclude
with research on safety and adversarial examples.

2.1 Formalism for Human-AI Interaction Systems

Fully Observable Human-AI Systems

We focus on human-robot systems consisting of an autonomous agent interacting with the
human agent in an environment. This can be for instance, an autonomous car interacting
with a human-driven vehicle, a healthcare robot arm mounted on a wheelchair feeding
the users, or a Large Language Model responding to a user’s requests. Our goal is for the
autonomous agent to plan in a manner that is cognizant of their effects and interactions
with the human [152]. We restrict ourselves to the two agent case in this thesis similar to
[152]. We useR to denote the autonomous agent andH to denote the human agent.

In the general case, we model the problem as a fully observable dynamical system.
Each agents can take an action at a given time, and the action will have consequences
on both themselves and the other agent. A state s ∈ S denotes a continuous state of
the system, which include both the states of the human and the robot. At a given point,
the human takes an action aH ∈ AH and the robot takes aR ∈ AR, they affect the state
through a system dynamics T . T is the transition function where T (st+1 | st, at

R, at
H) is

the probability of transitioning from state st to state st+1 given at
R ∈ AR and at

H ∈ AH.
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st+1 ∼ T (st+1 | st, at
R, at

H) (2.1)

Assistance as a Two-Player POMDP

In general assistive tasks, there are hidden variables that the robot does not know at
the beginning of the task, and need to figure out. For instance, the robot is working
with a new human partner and needs to learn about their preference. Following prior
work [63, 179, 68] we model an assistive task as a two-agent, finite horizon decentral-
ized partially-observable Markov decision process (Dec-POMDP), defined by the tuple
⟨S, α, AR, AH, T , ΩR, ΩH, O, R⟩. Here S is the state space and AR and AH are the human’s
and the robot’s action spaces, respectively. The human and the robot share a real-valued
reward function R : S × AR × AH → R; however, we assume that the reward function
is not fully observed by the robot, i.e., some of the reward function parameters (e.g., the
specific goal location or objective of an assistive task) are in the hidden part of the state.
, ΩR and ΩH are the sets of observations for the robot and human, respectively, and
O : S × AR × AH → ΩR ×ΩH represents the observation probabilities. We denote the
horizon of the task by T.

Model Predictive Control and Reinforcement Learning

Given a known reward function for the human agent, we can use Model Predictive Con-
trol (MPC) to compute the human action. MPC is a popular framework that generates
actions given known reward function and environment dynamics in a close-loop fashion
at every timestep. Given that computing actions for the infinite horizon is intractible,
typically the actions are computed with a discount factor over reward function, which is
effective over a finite horizon. Because of this, MPC also known as Receeding Horizon
Control. Let s = (s1, ..., sN) denote a sequence of states over a finite horizon N, and let
aH = (a1

H, ...aN
H) and aR = (a1

R, ...aN
R ) denote a sequence of continuous control inputs for

the human and the robot. Together the human and the robot receive reward:

R(x0, aH , aR) =
N

∑
t=0

R(st, at
R, at

H) (2.2)

Given the reward function R, the robot needs to find action sequence aR so as to max-
imize the reward over the horizon:

a∗R = arg max
aR

R(x0, aR, aH) (2.3)

.
In some environments where we have access to the simulator, but cannot write the en-

vironment dynamics in closed form. For example, this is common for games and robotics
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where the environment has complex dynamics. It also applies to interactions with sim-
ulated humans, where we have a learned human policy. In these cases, one can apply
the framework of Reinforcement Learning, where instead of solving the maximum re-
ward optimization, one can learn a policy that approximates the optimal solution. Among
the various Reinforcement Learning algorithms, we apply Proximal Policy Optimization
(PPO) [160], which is a form of policy gradient algorithm. We parameterize the robot pol-
icy as πθ(a|s), where θ is the parameter of the policy model, typically implemented as a
neural network. The goal is to optimize for θ so as to achieve the best reward, which can
be written as

J(θ) = ∑
s∈S

dπ(s)Vπ(s) = ∑
s∈S

∑
a∈A

πθ(a|s)Qπ(s, a) (2.4)

where dπ(s) = limt→∞ P(st = s|s0, πθ) is the stationary distribution of Markov chain
for πθ, approximated using samples in practice. We use A(s, a) = Q(s, a)−V(s) to denote
advantage, which is a form of Q-value subtracting the state-value baseline [161], and
use r(θ) = πθ(a|s)/πθold(a|s) to denote the ration between old and the new policy. The
objective of PPO is:

JCLIP(θ) = E[min(r(θ)Aθold(s, a), clip(r(θ), 1− ϵ, 1 + ϵ)Aθold(s, a))] (2.5)

PPO algorithm has been shown to perform well on robotic benchmarks, and has good
scalability to large neural networks compare to previous methods [161]. More recently it
has also been applied to optimizing Large Language Models to follow reward functions
learned from human feedbacks.

Inverse Reinforcement Learning

The goal of inverse reinforcement learning is to construct a computational model for hu-
man actions: the learner agent finds a reward function that explains observations from
the human agent performing a set of actions [128, 1]. We model the human as noisily
optimizing their own set of reward function. We parametrize the human reward function
as a linearly weighted set of features:

RH(xt, at
R, at

H) = w · ϕ(xt, at
R, at

H) (2.6)

Here ϕ(xt, at
R, at

H) is a vector of features, describing different aspects of the task that the
human cares about. For instance in the self-driving task, this can include speed, efficiency,
comfort, etc. We assume that our feature space sufficiently covers the requirement of the
task (typically we can have a large set of redundant features). To infer the weights, one
common approach is to apply the principle of maximum entropy to define a probability
distribution over possible human actions,

P(aH |x, w) ∝ β exp(RH(x, aR, aH)) (2.7)



CHAPTER 2. PRELIMINARIES 15

This is also called the Bradley-Terry model of human decision making [18] as it char-
acterizes a rationally-optimal human model, where β is a parameter denotes how rational
the human agent is.

We can then optimize for w that assigns the highest probability to our observed human
actions based on this probability model.

w = arg max
w

P(aH |x, w) (2.8)

In practice there are different methods to approximate this optimization. One common
approach is to leverage the quadratic approximation trick [102] of the reward function
around optimality to simplify Eq. (2.7) which leads to a closed form solution.

Learning from Human Preferences

Learning from human preference is a framework that learns a reward function from pref-
erence data. In practice, it is often difficult to ask users to directly label numerical reward
values. Instead, it is often easier to provide a set of choices and ask for the preferred
option. We build upon the widely used Bradley-Terry model of preferences [18]. Given
two possible choices A and B, the Bradley-Terry model estimates the probability that B is
preferable to A (denoted A ≺ B) as

P(A ≺ B) =
exp(S(B))

exp(S(A)) + exp(S(B)
. (2.9)

where S is a general scoring function that maps from choices to the real numbers. We
model the environment as a finite horizon MDP [142], with state space S , action space A,
transition function T : S ×A× S → [0, 1], horizon T, and reward function r : S ×A →
R. The reward function is unobserved and must be learned from preferences over tra-
jectories. Using the Bradley-Terry model [18], the probability a trajectory τB is preferred
over another trajectory τA is given by

P(τA ≺ τB) =
exp(r(τB))

exp(r(τA)) + exp(r(τB))
, (2.10)

where r(τ) = ∑(s,a)∈τ r(s, a) and τ = (s0, a0, . . . , sT, aT).
To learn a reward function from preferences, we assume access to a set of pairwise

preference labels P over trajectories τ1, . . . , τN, where (i, j) ∈ P implies that τi ≺ τj. We
then optimize a reward function rθ : S ×A → R parameterized by θ that maximizes the
following likelihood (see Alg. 1):

L(θ) = ∏
(i,j)∈P

exp(rθ(τj))

exp(rθ(τi)) + exp(rθ(τj))
. (2.11)
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2.2 Simulation Environment and Tools

Driving Environment

We adopt the driving simulation model in [155], which treats individual vehicles as point-
mass models, and models the cars’ dynamics via the physical state s = [x, y, ϕ, v]⊤, where
x, y are the coordinates of the vehicle, ϕ is the heading and v is the velocity. We let
u = [u1, u2]

τ represent the control input, where u1 is the driver’s steering input and u2 is
the acceleration. We denote the friction coefficient by µ, and can write the environment
dynamics model as

[ẋ, ẏ, ϕ̇, v̇] = [v · cos(ϕ), v · sin(ϕ), v · u1, u2 − µ · v] (2.12)

This dynamics model apply to all the vehicles (ego and other) in our simulator, and
the simulator provides a top-down view of the environment. We extend the simulator to
flexibly support a range of environment features that the original environment does not
support, such as discrete indicators of collision, as well as different types of cost functions
and optimizers. We also re-implement the environment in JAX [17] so that it supports
massive parallelization and JIT compilation.

Assistive Gym Environment

The Robotic Caregiving Setup. We leverage the assistive simulation environment in
[47], an open-source physical simulation platform that supports a variety of healthcare
tasks. More specifically, we focus on feeding and itch-scratching tasks, where there is
one robot mounted next to the user, performing the task with the corresponding tools.
The human models are equipped with realistic joint models, and the robot observes the
keypoint positions of the human body. The overall task reward is defined over a set of
features, including penalties for high speed of the robot’s end effector, force applied at
and outside of the target area, food spillage, etc. The robot policy can be trained with
deep reinforcement learning algorithm [160] in less than one day.

We define the observation space for the robot and the human following [47]: the robot
observes its own joint angles, and the human’s joint positions in the world coordinate
and contact forces; the human observes their joint angles (proprioception) and the end-
effector position of the robot.

Assistive VR Gym Environment. To support user study of the trained robot policies,
we follow [46] and implement our own VR environment where users control the vir-
tual human to interact with the robot in virtual reality. This system gives us the ability to
quickly evaluate our trained robot policy over a large number of users, guaranteeing iden-
tical environment setups and free us from the hassle of reset and timestep mismatches.
Further more, it gives us the ability to study robot failures without the risk of injuries.
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In the following figure Fig. 2.1, left and center are the user interacting with virtual
robots through the HTC VIVE headset and the hand controller. The right is the first-
person view in VR[46].

Figure 2.1: Workstation for performing the VR user study, where we have the human
perform interaction with the robot in the calibrated VR environment.

Large Language Models as Interactive Agents

Large Language Models (LLM) are increasingly powerful and widely used for virtual
agent applications. The core problem of langauge modeling [143] is unsupervised distri-
bution of estimation from a dataset of sequence examples, each of various length, usually
denoted as symbols (x1, x2, ..., xn). Since language has a natural ordering, it is common to
factorize the joint probabilities over symbols as the product of conditional probabilities:

p(x) = Πn
i=1p(xn|x1, ..., xn−1) (2.13)

There have been significant improvements in the expressiveness of modeling choices
with self-attention architectures like Transformer [193]. Such models take in a sequence of
tokens as inputs, and output the log probability of the next output token in autoregressive
fashions. Studies have showed that when trained on internet-scale datasets, the resulting
language models are capable of learning new tasks with simple natural language descrip-
tions in few-shot or zero-shot manners.

2.3 Optimizations for Edge-Cases

Reward Design Problem in Robotics

Let an “environment” M be a Markov Decision Process without the reward function. At
development time, we assume access to a large set of such environments, Mdevel. We
assume this is a large set that the designer cannot exhaustively test. This can be, for
instance, all the environments in a several-million-mile autonomous driving dataset. Or,
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it can be a parameteric set of possible environment configurations, such as placements of
objects, roads, and other agents. Finally, it can also be a generative model of the world.
The robot will run at deployment time in a different set of environmentsMdeploy, which
we do not have access to during development time. 1

We further assume access to a space of reward functions parameterized by w ∈ W
— these can be linear weights on pre-defined features or weights in a neural network
mapping raw input to scalar reward. We denote by w∗weights of the ground truth reward
function, which induces the desired behavior inMdevel andMdeploy. We denote by ξw,M
the trajectory (or policy, but for this work, we consider deterministic MDPs with set initial
states) optimal to the cumulative reward induced by w in M, ξw,M = arg maxξ Rw(ξ; M).
Our assumption is that there exists a w∗ such that ξw∗,M is the desired behavior for any
M ∈ Mdevel and any M ∈ Mdeploy. We do not have access to w∗.

The designer takes a subset of environmentsM⊆Mdevel and specify a reward func-
tion (via parameters w̃) that leads to good behavior in those environments. In a one-shot
design, they would select a setM, assume it is representative ofMdeploy, design a w̃ for
thatM, and deploy the system with w̃ (never changing the reward again). However, in
reality, this is an iterative process. They start with an M0, design a w̃0, and eventually
encounter during their testing a new environment M′ on which optimizing w̃0 does not
lead to desirable behavior. Then, they would augment their set toM1 =M0 ∪ {M′}, and
re-design the reward: M0 → w̃0 → M1 → w̃1 → .... This might continue into deploy-
ment if the reward at the time of deployment still fails on Mdeploy. Implicitly, at every
step along the way, the robot treats the current w̃i as equivalent to w∗.

Generative Adversarial Networks

Generative Adversarial Networks (GAN) aims at optimizing for data samples x such that
it minimizes [55] the original objective, such as classification or detection. In the original
paper, the authors can generate perturbations inperceptible to humans eyes that causes
the image to be wrongly classified to other classes. Let D be a discriminator and G be a
generator, the objective of GAN can be written as:

max
D

min
G

Ex[log D(x) + log(1− D(G(x))] (2.14)

In the context of Human-AI interaction, we can draw the same analogy: perturbations
to data points refer to the perturbation in human or robot trajectories. We can define
an adversarial human policy π̃H with respect to an assistive robot policy. In order for
the perturbed trajectories to be realistic, we add additional constraints that they are close
to the original trajectories. Borrowing from [90, 27], the policy π̃H minimizes the overall
performance under the constraint that π̃H is similar to the original policy πH as measured

1Our method works best when we can induce a vast setMdevel that includes all possible scenarios in
Mdeploy. Otherwise, ifMdeploy is allowed to be drastically different, and ifMdevel is not enough to design
a robust reward function, this exposes the robot to unanticipated failures after deployment.
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by an f -divergence measure D f (π̃H||πH) ≤ δ, and adjustable coefficient δ controls the
allowable perturbation set in which the adversarial human policy π̃H deviates from πH,
similar to adversarial perturbations in computer vision [37]:

π̃H(πR(H), d) = arg min
π′H

[R(πR(H), π′H)] s.t. D f (π
′
H||πH) ≤ δ (2.15)

Measures such as KL divergence [161, 76, 99, 183], χ2 [116] divergence are commonly
used to characterize the distance between two probability distributions. In the context of
policy learning, this can be achieved by training a discriminator D : τ → R to distin-
guish between trajectories sampled from π̃H and πH. More specifically, D assigns a score
D(≈) := Eτ∼π[D(τ)] to any policy π. It is trained to assign low scores to trajectories
drawn from the true human policy πH and high scores to trajectories drawn from the
adversarial policy π̃H. We choose the LS-GAN objective [116] for training D:

D = arg min
D

Eτ∼π̃H

[
(D(τ)− 1)2]+ Eτ∼πH

[
(exp{D(τ) + 1)2] (2.16)

Previous work [116] has proven that this represents χ2 divergence when trained to op-
timality: Dχ2(π̃H||πH) = Eτ∼π̃H [D(τ)2]. In our work, we focous on χ2 divergence in
this paper, in practice one may use other divergence measures such as KL divergence
and such as MMD (Maximum Mean Discrepancy) [58]. It can be proved that constrained
optimizations under such measures are equivalent to the GAN training objective.



20

Part I

Robustness in Reward Learning
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Chapter 3

Causal Confusion in Reward Learning

In order to model human agents for Human-AI interactions, we need to learn human
reward functions. Preference-based reward learning [199, 33, 170, 165] is a popular tech-
nique for adapting AI systems to individual preferences and learning specifications for
tasks without requiring demonstrations or an explicit reward function. However, anec-
dotal evidence suggests that these methods are prone to learning rewards that pick up on
spurious correlations in the data and miss the true underlying causal structure, especially
when learning from limited numbers of preferences [33, 77, 82].

3.1 What is Causal Confusion in Reward Learning?
While the effects of reward misspecification have recently been studied in the context of
reinforcement learning agents that optimize a proxy reward function [134], and the effects
of causal confusion have been emphasized in behavioral cloning approaches that directly
mimic an expert [43, 212, 177], we provide the a systematic study of reward misidentifi-
cation and causal confusion when learning reward functions.

Consider the assistive feeding task in Fig. 3.2b. Note that all successful robot execu-
tions will move the spoon toward the mouth in the area in front of the patient’s face—few,
if any, executions demonstrate behavior behind the patient’s head (the exact likelihood
depending on how trajectories for preference queries are generated). In practice, we find
that the learned reward will often pick up on the signed difference between the spoon
and the mouth rather than the absolute value of the distance. The two correlate on the
training data, but using the former instead of the latter leads to the robot thinking that
moving behind the patient’s head is even better than feeding the person!

Our contribution is a study of causal confusion and reward misidentification as it oc-
curs in preference-based reward learning. First, we demonstrate the failure of preference-
based reward learning to produce causal rewards that lead to desirable behavior on three
benchmark tasks, even when given large amounts of preference data—in these settings,
the learned reward has high test accuracy but leads to poor policies when optimized. We
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then study the effect of several factors related to reward model specification and training:
the presence of non-causal distractor features, reward model capacity, noise in the stated
preferences, and partial state observability. For each of these, we perform an analysis of
what errors the learned reward has, how it compares to the ground truth reward, and the
amount of distribution shift it induces during policy optimization.

Another of our contributions is to point to the importance of data coverage and inter-
active techniques that iteratively or actively query for feedback to help learners disam-
biguate causal features from correlates. Overall, our findings caution that there are many
aspects that can make preference learning challenging, from the way we define state—
what to include and what not to include in the input to the learned model—to how we
mitigate the effects of noisy or biased preference data.

3.2 Problem Statement
Environments for Preference Learning. We identify a set of benchmarks that exhibit re-
ward misidentification. In Lunar Lander [19], the goal is to land a spacecraft successfully.
In Reacher [19] (Fig. 3.2a), the goal is to move an end effector to a desired goal location.
In Feeding [47] (Fig. 3.2b), the goal is to feed the human using a spoon carrying pieces of
food. Finally, in Itch Scratching [47] (Fig. 3.2c), the goal is to scratch an itch location on
the human’s arm.
Reward Hacking and gaming behaviors are known to commonly occur in reinforcement
learning [128, 94] and reward learning [33, 77, 66]. However, these behaviors are often
only mentioned anecdotally [94]. Recently, [134] proposed to systematically analyze re-
ward misspecification in RL by creating a set of domains where the agent optimizes a
hand-engineered proxy reward function and then studying when this leads to incorrect
behavior. By contrast, we study cases where the reward function must be learned.
Preference Learning is a popular method for training AI systems when a reward function
is unavailable [199, 33, 12, 22, 133, 165, 109]. Preferences are often easier to provide than
demonstrations or raw numerical values [199] since they do not require expert proficiency
or fine-grained feedback. However, optimizing a reward function that has been trained
using preferences can sometimes lead to unintended behaviors. Anecdotal evidence of
this has been documented for Atari games [33, 77, 22], simple robot navigation tasks [82],
and language model fine-tuning [170]; however, there has been no systematic study of
causal confusion when learning reward functions.
Causal Confusion in Imitation Learning has previously been studied in the context of
behavioral cloning [141, 185]. Prior work shows that behavioral cloning approaches suf-
fer causal confusion due to “causal misidentification,” where giving imitation learning
policies more information leads to worse performance [43] due to temporally correlated
noise in expert actions [177]. Similarly, we find strong evidence of causal misidentification
when expert noise is present. [212] use causal diagrams to investigate causal confusion
for simplified imitation learning tasks with discrete actions and small numbers of states
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when the features available to the demonstrator are different from those of the imitator.
By contrast, we study the effects of changes to the observation space when performing
preference learning over continuous states and actions and when using non-linear reward
function approximation.
Goal Misgeneralization happens when an RL agent has a known goal and some environ-
ment features are correlated and predictive of the reward on the training distribution but
not out of distribution [100, 163]. This setting is similar to ours in that there is misiden-
tification of the state features that are causal with respect to the reward. However, goal
misgeneralization assumes that the ground-truth reward signal is always present during
training. However, in contrast to our work, during training the reward signal is always
present and always the ground-truth reward. We show that when learning a reward
function, the learned reward can be misidentified, leading to poor RL performance. By
contrast, [100] and [163] show that even if the learned reward is perfect, RL can still fail
due to spurious correlations during training.

Background: Reward Learning from Preferences

We are interested in studying causal confusion that occurs when misaligned reward func-
tions are learned from pairwise preferences over trajectories. As described in Chap. 2, we
can model human preferences using the Bradley-Terry model of preferences [18]. Given
two trajectories in the environment modeled as a finite horizon MDP [142], with state
space S , action space A, transition function T : S × A × S → [0, 1], horizon T, and re-
ward function r : S × A → R (unobserved and must be learned from preferences over
trajectories). Using the Bradley-Terry model [18], the probability a trajectory τB is pre-
ferred over another trajectory τA is given by

P(τA ≺ τB) =
exp(r(τB))

exp(r(τA)) + exp(r(τB))
, (3.1)

where r(τ) = ∑(s,a)∈τ r(s, a) and τ = (s0, a0, . . . , sT, aT).
To learn a reward function from preferences, we assume access to a set of pairwise

preference labels P over trajectories τ1, . . . , τN, where (i, j) ∈ P implies that τi ≺ τj. We
then optimize learn a reward function rθ : S ×A → R parameterized by θ optimizing the
following loss (see Alg. 1):

L(θ) = − log ∏
(i,j)∈P

exp(rθ(τj))

exp(rθ(τi)) + exp(rθ(τj))
. (3.2)

In practice, as shown in [21], rθ can be modeled as deep neural networks that maps
environment features to values, and with the preference labels, instead of treating the
demonstrations as optimal trajectories, we can recover a function that “explains” their
suboptimalities, in return give us the reward function from suboptimal demonstrations.
Paired with deep reinforcement learning, we can learn a robot policy that outperforms
these demonstrations under the ground truth reward function.



CHAPTER 3. CAUSAL CONFUSION IN REWARD LEARNING 24

(a) (b)

Figure 3.1: Causal structure of preference-based reward learning. The reward function
r̂ is learned from preference labels over trajectory pairs (τi, τj). Unobserved variables are
denoted by dashed lines. Unobservable user noise η affects the preference node. In (a)
the true reward is not affected by nuisance variables z. In (b) the true reward is based on
unobserved state features u.

3.3 Reward Misidentification
Fig. 3.1 displays the causal structure of preference-based reward learning where pairwise
preferences (in the form of a binary label) are given based on an observed reward function
r (Fig. 3.1a). There are features xi

t that are causal and influence r(x), as well as other
features zi

t that are nuisance variables and have no bearing on r(x). Note that zi
t may very

well exhibit correlations with xi
t, potentially due to their sharing of the same causal parent

or there being biases during data collection. Given preference labels over trajectory pairs,
the goal of preference-based reward learning is to learn a reward function r̂(x, z) that best
matches the stated preferences. In Fig. 3.1b, there are state features u which are causal
with respect to the true reward, but are unobserved by the learning agent. In both cases,
unobserved human bias and noise, denoted by η, also affects the preferences labels.

The learned reward r̂ may be able to achieve low and even near-perfect performance
on a held-out test set by making use of 1) nuisance variables that correlate with causal
variables or 2) faulty/incomplete correlations between causal variables and r that hap-
pen to hold true for the training data distribution. However, performing reinforcement
learning on misidentified learned reward values r̂([x, z]) leads to distribution shift, re-
sulting in behaviors with low performance under the true reward function r. We define
this behavior of learning a reward that achieves low test error but results in poor perfor-
mance (under the true reward function) when the learned reward function is optimized
via RL as reward misidentification. We note that the causal graphs we provide in Fig. 3.1 are
meant to shed light on a typical way misidentification can occur. In reality, the sources of
misidentification can vary widely—a variable may be causal in a certain context and not



CHAPTER 3. CAUSAL CONFUSION IN REWARD LEARNING 25

in another, causal variables may not be combined properly, etc.

3.4 Experimental Setup
To facilitate reproducibility and encourage future research on causal reward learning, we
open-source our code and training datasets. This combination of domains and training
data forms the first set of benchmarks for studying reward misidentification and causal
reward confusion.
Environments for Preference Learning. We identify a set of benchmarks that exhibit
reward misidentification. In Reacher [19] (Fig. 3.2a), the goal is to move an end effector
to a desired goal location. In Feeding [47] (Fig. 3.2b), the goal is to feed the human using
a spoon carrying pieces of food. Finally, in Itch Scratching [47] (Fig. 3.2c), the goal is to
scratch an itch location on the human’s arm.
True Rewards and Preference Generation. Each domain has a predefined “true” reward
function r. This enables us to create synthetic demonstrations and preference labels via
noise injection: adding different amounts of noise to an expert policy trained on r (details
in Appx. 3.4). As shown by [24], adding this type of disturbance will result in monotoni-
cally decreasing performance in expectation and produce a diverse dataset for preference
learning. [54] propose a similar approach that switches between an expert policy and a
random policy to produce a good coverage distribution over states.

Data Generation Methods

We compare generating trajectories using noise injection versus using different RL check-
points, as proposed by [21], and find that noise injection leads to similar or better perfor-
mance. Note that while we use the ground-truth reward function for obtaining preference
labels, we assume no access to this reward function during policy learning; we first learn
a model rθ of the true reward function from preference labels P , and then use RL on the
learned reward function to produce a policy. We then evaluate the learned policy on the
true reward function r.

Fig. 3.3 displays a comparison of our method of generating a diverse dataset of trajec-
tory preferences and the method of using a checkpointed RL policy (proposed by [21]).

Ground Truth Reward Functions for Environments

We outline the ground truth reward functions for each environment below. We also re-
fer the reader to the publicly available code repositories for each environment, which
describe the rewards in more detail.

https://sites.google.com/view/causal-reward-confusion
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(a) Reacher

(b) Feeding

(c) Itch Scratching

Figure 3.2: Poor behaviors resulting from learned rewards (rightmost column), despite
high accuracy on the test data (left two columns). The predicted trajectory rewards pro-
duced by the learned reward function are displayed under each image; each image corre-
sponds to a trajectory.
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Figure 3.3: TREX vs. RL+Noise. Our method of generating diverse trajectories for prefer-
ence learning performs on par with, if not better than, the method of using rollouts taken
from a checkpointed RL policy, as proposed by [21]. Displayed are cumulative trajectory
rewards from the Reacher environment.

Lunar Lander (https://github.com/openai/gym):

S(x) = −100
√
(x2 + y2) +−100

√
(v2

x + v2
y) +−100|angle|

+ 10(contactle f t) + 10(contactright)

R(x) = S(x)− Sprev(x)
R(x) = R(x)− 0.3(action)

Reacher (https://github.com/openai/gym):

R(x) = −||position f ingertip − positiontarget||2 +−||action||22
Feeding (https://github.com/Healthcare-Robotics/assistive-gym):

rdistance = −||postarget − posspoon||2
raction = −||action||2
r f ood = f (Foods in mouth, Foods on f loor)

pref = g(Foods hit human, Sum f ood mouth vel,
Spoon pos, Prev spoon pos, Robot f orce on human)

R(x) = Wdistance ∗ rdistance + Waction ∗ raction + W f ood ∗ r f ood + pref

https://github.com/openai/gym
https://github.com/openai/gym
https://github.com/Healthcare-Robotics/assistive-gym
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Itch Scratching (https://github.com/Healthcare-Robotics/assistive-gym):

rdistance = −||postarget − posspoon||2
raction = −||action||2

rscratch = f (Tool pos, Target pos, Prev tool pos,
Tool f orce, Prev tool f orce)

pref = g(Spoon pos, Prev spoon pos,
Robot f orce on human, Tool f orce, Target pos)

R(x) = Wdistance ∗ rdistance + Waction ∗ raction + Wscratch ∗ r f ood + pref

Evaluating Learned Reward Functions. To establish that a learned reward misidenti-
fies the causal structure, we first check for low test error and establish that the learned
reward performs well on unseen in-distribution test data (thereby ruling out model se-
lection and training failures like not having enough data, capacity, or regularization). We
then show that the learned reward fails in two ways: 1) it leads to a policy (called PREF)
that has poor performance with respect to the true reward, and 2) it prefers its poorly-performing
optimized policy PREF over the optimal policy with respect to the true reward (GT), indicating
that PREF’s poor performance is not due to RL failures. Finally, we analyze the learned
reward qualitatively via gradient saliency maps and quantitatively via the EPIC pseudo-
metric [54] and KL divergence to elucidate the effects of the reward error by quantifying
the distribution shift induced by policy optimization of the learned reward.

Preference Learning Training Details

To learn a reward function from preferences, we assume access to a set of pairwise pref-
erence labels P over trajectories τ1, . . . , τN, where (i, j) ∈ P implies that τi ≺ τj. We
then optimize a reward function rθ : S ×A → R parameterized by θ that maximizes the
likelihood:

L(θ) = ∏
(i,j)∈P

exp(rθ(τj))

exp(rθ(τi)) + exp(rθ(τj))
. (3.3)

This likelihood function is differentiable, allowing us to leverage non-linear function ap-
proximation to learn the reward function from trajectory preferences. In practice, we use
the Adam optimizer in PyTorch to learn the reward function, rθ, and then use PPO [160]
or SAC [62] for policy optimization given rθ.

We perform preference learning on three dataset sizes (given in terms of unique pair-
wise comparisons): SMALL (780), MEDIUM (7140), and LARGE (52326). Our test set is
composed of 1770 unique pairwise preferences drawn from a disjoint set of 60 trajectories.
See Sec. 3.4 for dataset generation details. Hyperparameters—learning rate and weight
decay—are tuned coarsely using the MEDIUM dataset size due to runtime limits and cost
of computation. The tuned hyperparameters (best performance on a held-out validation

https://github.com/Healthcare-Robotics/assistive-gym
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set) for each environment are as follows: Reacher: weightdecay=0.0001, lr=0.01, Feeding:
weightdecay=0.00001, lr=0.001, Itch Scratching: weightdecay=0.001, lr=0.001.

Using the dataset of preferences (SMALL, MEDIUM, or LARGE) obtained offline, we
train a neural network reward function approximator with two hidden layers (128 units
and 64 units, respectively) and Leaky ReLU activations, after which we perform 1,000,000
timesteps of reinforcement learning with PPO [160] (for Feeding and Itch Scratching) and
SAC [62] (for Reacher) using the learned reward function in place of the ground-truth re-
ward function. We optimize the reward function approximator using Adam with weight
decay and early-stopping on the validation loss (with a patience of 10 epochs). The full
preference-based reward learning procedure we use is detailed in Alg. 1. The hyperpa-
rameters for the PPO and SAC agents are as follows (if not specified, then hyperparame-
ters are set to RLLib’s default values):

Algorithm 1 Preference-Based Reward Learning
Input: Training dataset of pairwise preferences dtrain

r̂ ← initialize network (random)
for epoch ∈ (0, 100) do

for traji, trajj, label ∈ dtrain do
r̂i ← r̂(traji)
r̂j ← r̂(trajj)
loss← CrossEntropyLoss(r̂i, r̂j, label)
loss.backward()

end for
lossval ← calculate cross-entropy loss on validation set
if lossval doesn’t decrease for 10 epochs then

break
end if

end for
π̂ ← Run RL (PPO or SAC) using r̂ as reward for 1M iterations

Output: r̂, π̂

Synthetic Preference Generation

To enhance scalability and reproducibility, we automatically generate a large amount of
synthetic trajectory preferences. This was done using an expert RL policy trained using
the ground-truth reward function provided with each of environment. We then generate
a large number of diverse trajectories by adding ϵ-greedy noise during policy rollouts,
where ϵ is the probability that the policy takes an action uniformly at random from its
action space. Thus, ϵ = 0 corresponds to the fully trained RL policy and ϵ = 1 corre-
sponds to a uniformly random policy. As noted by [24], adding this type of disturbance
will result in monotonically decreasing performance in expectation.
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To generate pairwise preferences over trajectories, we select all pairs of trajectories
from a set of 40, 120, and 324 total trajectories (for the SMALL, MEDIUM, and LARGE
dataset sizes, respectively) generated with ϵ-greedy rollouts for ϵ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}.
We use held-out sets of trajectories for validation and testing. We then use the ground-
truth reward functions provided by each environment to provide ground-truth preference
labels.

Evaluating Learned Reward Functions

Saliency maps are one of the few methods that allow one to interpret learned reward
functions in an isolated, relatively lightweight manner. Following [118], we use raw gra-
dient saliencies, or ∂R

∂(s,a)—the gradient with respect to each element of the input. We
extend upon this by examining gradient saliencies per timestep along with feature spread
maps—maps of each input feature’s variation (standard deviation, variance, range) over
the course of a trajectory.

We produce saliency maps of the learned reward as follows: we forward propagate a
single rollout from the learned reward’s policy through the reward network. Then, with
the reward model’s weights fixed, we backpropagate the output from the forward pass
through the network and into the input (the policy rollout) to obtain the gradient with
respect to each feature in the observation-action pair at each timestep.

EPIC, or Equivalent-Policy Invariant Comparison, is a pseudometric proposed by [54]
that quantifies the difference between two reward functions on a given coverage distri-
bution and proposes to be predictive of policy performance without the need for policy
optimization. We apply the EPIC pseudometric to compare the distance between various
learned rewards and the ground truth reward on the coverage distributions seen during
reward learning and those seen during policy training. Using other metrics to compare
learned rewards (such as DARD, by [202]) may also prove fruitful in future work.

Kullback-Leibler divergence: We use a discriminator trained to minimize the cross-
entropy loss on states from two different distributions following the approach proposed
by [76] and [98]. Specifically, we approximate the KL divergence between the distribution
of state-action pairs seen during reward learning and those seen during RL on the learned
reward. We use this to measure the amount of distribution shift from the reward learning
distribution induced by optimizing (potentially misidentified) learned rewards during
policy training.

Specifically, for each learned reward, we sample 50 trajectories from the reward’s
training data and from the resulting policy (taking care to label each trajectory’s origin
distribution). From these 50x2 trajectories, we create the training and validation splits
and then flatten each group of trajectories into a dataset of observation-action pairs. We
train a discriminator model (hidden dimensions of 128x128x128) to distinguish between
observation-action pairs seen during reward learning and those during RL by minimiz-
ing the binary cross-entropy loss. We tune hyperparameters (learning rate, weight decay)
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Table 3.1: Empirical evidence of causal confusion. We compare policies optimized with
a reward learned from preferences (PREF) against policies optimized with the true re-
ward (GT). State features on which preferences are based are fully-observable. Reward
functions were trained with 52326 unique pairwise preferences. Both PREF and GT are
optimized with 1M RL iterations and averaged over 3 seeds. Despite high pairwise pref-
erence classification test accuracy, the policy performance achieved by PREF under the
true reward is very low compared with GT. However, the reward learned from preferences
consistently prefers PREF over GT. This suggests that preference-based reward learning fails
to learn a good reward for each of these tasks.

Pref. Learning Acc. RL Policy Performance

Domain Train Val Test
Learned True Success

(pref/gt) (pref/gt) (pref/gt)

Reacher 0.954 0.956 0.966 44.988 / 3.395 -42.716 / -5.560 0.100 / 0.827

Feeding 0.987 0.976 0.976 277.152 / 124.016 -27.432 / 128.933 0.603 / 0.990

Itching 0.954 0.933 0.928 16.588 / 10.282 -47.190 / 248.397 0.013 / 0.970

on the validation loss and accuracy.
With this trained discriminator model, we calculate DKL(p||q) by taking the discrimi-

nator’s negative mean return/logit of all reward learning observation-action pairs, where
p is the reward learning distribution and q is the policy optimization distribution. Simi-
larly, we calculate DKL(q||p) by taking the mean return of all RL observation-action pairs.
Since the KL divergence is not symmetric, we report DKL(p||q) + DKL(q||p), or the sym-
metric KL divergence. For a proof on why a discriminator can be used to approximate
the KL divergence, we refer the reader to Appendix B.2 of [98].

3.5 Evidence of Causal Confusion
Before varying different factors that affect the performance of the learned reward, we start
with a generous setting where we provide large amounts of data and add features to the
default observation such that all necessary information needed to infer the ground truth
reward, TRUE, is available. We produce the preference training data as detailed in the
previous section. Table 3.1 details the results.

We find that the learned reward achieves high preference test accuracies that are com-
parable to the training accuracy. This indicates that the learned model does not overfit,
and there is sufficient model capacity and data. In later sections, we observe that even
models with over 99% test accuracy sometimes fail to produce good polices. We also find
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(a) Reacher, ‘vel 1‘ (feature
6)

(b) Feeding, ‘diff y‘ (feature
8)

(c) Itch Scratching, ‘diff x‘
(feature 7)

Figure 3.4: Correlations of Spuriously Weighted Features with Reward.

(a) Reacher (b) Feeding (c) Itch Scratching

Figure 3.5: Gradient Saliency Maps for Fig. 3.2. Fig. 3.5a shows the slight positive gradi-
ent for the angular velocity feature ‘vel 1’, which results in spinning behavior. Fig. 3.5b
shows the nearly constant positive gradient in the ‘diff y’ feature (feature 8) that incen-
tivizes the robot to move into, past, and behind the human’s head. A properly learned
reward would exhibit a gradient that ‘flips’ to negative the moment the robot arm goes
behind the human’s head. Fig. 3.5c shows significant positive gradients for features 7, 9,
35, and 36, which correspond to ‘diff x’, ‘diff z’, and the last two degrees of freedom in
the 7-DOF robot arm, respectively.

that the learned reward prefers PREF to GT. This shows that the poor performance is not
due to an issue in RL training. Unfortunately, the actual performance of PREF is disas-
trous: it has poor TRUE reward (compared to GT) and poor success rates. Overall, the
learned reward incentivizes poor behavior, despite high test accuracy.

For Reacher, we observe that PREF chooses to simply spin very fast rather than reach-
ing for the target. We note, however, that the learned reward correctly classifies the left-
most image in Fig. 3.2a (where the agent just folds its arm) as being worse than the middle
image (where the agent successfully reaches the target), and does so with 96.6% accuracy
on such diverse pairs of comparisons. One would think that this would apply to the be-
havior in the rightmost image, where the agent folds its arm as well (and subsequently
spins), but the learned reward turns out to strongly prefer the rightmost case.

For Feeding, the learned reward encourages minimizing the signed difference between
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the spoon and the mouth rather than the absolute value of the difference. This is because
the majority of trajectories approach the mouth from in front. Fig. 3.4b shows that there
are far more states that have low reward at negative ‘diff y’ values than states that have
low reward at positive ‘diff y’ values. As a result, the learned reward (Fig. 3.5b) correctly
identifies spilling food (left) as being worse than feeding (middle), but goes further and
incentivizes bringing the spoon towards and even behind the head in an attempt to min-
imize the signed difference. For Itch Scratching, the learned reward correctly identifies
flailing (left) as being worse than actual scratching (middle). However, as seen in

Fig. 3.5c, the Itch Scratching agent (spuriously) learns a higher weight on two com-
ponents of the action (corresponding to two robot arm joints), which results in the agent
turning the last section of the arm in a circle while trying to keep the end effector close
to the itch target—another type of flailing! It also falls into the same trap as the Feed-
ing agent in minimizing the signed rather than the absolute difference (Fig. 3.4c shows
there is a bias toward negative values of ‘diff x’ rather than an even distribution of states
across both positive and negative values). Fig. 3.2 summarizes this behavior. Appx. 3.5
provides plots of the aforementioned features’ spurious correlations with the true reward
and gradient saliency maps of the learned rewards.

3.6 Factors that May Lead to Causal Reward Confusion
We examine various factors of the preference-based reward learning problem setup and
their effects on reward misidentification. The motivation for exploring each is as follows:

Our experiments with Distractor Features draw directly from the findings in Sec. 3.5,
where we find that certain non-causal features may be spuriously correlated with the
reward. Experiments on Model Capacity are inspired by [134]’s findings on the effects of
increased agent capabilities on reward hacking. Exploring Noise in Stated Preferences is
inspired by the fact that preference data collected from humans is often rife with various
biases and noise. Studying Partial Observability of Causal Features is motivated by the
fact that it is not always possible to fully-observe all causal features in the real world.
Complex Causal Features is inspired by the observation that the causal reward is often a
complex function of state variables and, in complex tasks, features may be causal in some
contexts and non-causal in others. The above factors (which may often be overlooked) can
contribute significantly to reward misidentification and the eventual success or failure of
the reward model.

Distractor Features

One reason for reward misidentification is the presence of nuisance features in the input
that are spuriously correlated with preference labels. To study this effect, we incremen-
tally remove such ‘distractor’ features and test the impact this has on the learned reward.
For example, for Reacher, we know that joint angles and angular velocities are not causal
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Figure 3.6: Distractor features. Fig. 3.6a compares performance with distractors present
in the learned reward with performance without distractors present in the learned reward
across two dataset sizes. Fig. 3.6b is a sensitivity analysis on the number of distractor
features done on the M dataset size case from Fig. 3.6a. In Fig. 3.6c, we see that distractor
features result in a much larger distribution shift (as measured by the KL divergence
between state-action pair distributions at reward learning and RL).

to the ground truth reward, which is based purely on distance between end effector and
target and the norm of the action (a control penalty) (see Sec. 3.6 for a complete list of
causal and distractor features). As we see in Fig. 3.8, removing all distractors drastically
improves performance, and, indeed, the more such features are left in the input, the worse
the performance gets in Reacher, almost linearly. Granted, removing distractors does also
slightly improve the validation and test performance in this case—indicating that there
is some signal in the training data to help discern the spuriousness of certain features.
Nonetheless, over the several experiments in this paper, we find that the validation er-
ror is not strongly correlated to performance—in some cases, increasing the validation
accuracy results in worse performance.

Input Features for Environments

Features that are distractors are labeled with a D. Features that are causal are labeled with
a C. The dimensions of each feature are included in parentheses.

Lunar Lander:

• Causal Features: x-coordinates of the lander (1), y-coordinates of the lander (1),
Linear velocity in x (1), Linear velocity in y (1), Angle of the lander (1), Whether each
leg is in contact with ground (2), Action — one of {do nothing, fire left orientation
engine, fire main engine, fire right orientation engine} (1)

• Distractor Features: Angular velocity of the lander (1)

Reacher:
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• Causal Features: Position fingertip - position target (3), Action — Torque applied
at the hinges (2)

• Distractor Features: Cos of angle of the arm (2), - Sin of angle of the arm (2), Coor-
dinates of target (2), Angular velocity of the arm (2)

Feeding:

• Causal Features: spoon pos - target pos (3), Spoon force on human (1), Action
(7), Foods in mouth (1), Foods on floor (1), Foods hit human (1), Sum food

mouth vel (1), Prev spoon pos (3), Robot force on human (1)

• Distractor Features: - Spoon pos (3), Spoon orient (4), Robot joint angles (7),
Head pos (3), Head orient (4)

Itch Scratching:

• Causal Features: Tool pos (3), Tool pos - target pos (3), Tool force (1), Action (7),
Prev tool pos (3), Robot force on human (1), Prev tool force (1)

• Distractor Features: Tool orient (4), Target pos (3), Robot joint angles (7), Shoul-
der pos (3), Elbow pos (3), Wrist pos (3)

Fig. 3.2a depicts the policy of the learned reward with distractors—the Reacher robot
learns to simply fold its arm and spin. Looking at the gradient saliency maps (Fig. 3.7)
illuminates why this is the case. Firstly, in Fig. 3.7a, we observe that the learned reward is
misaligned with respect to ‘diff y‘, the feature corresponding to the difference between
end effector position and target position along the y-axis; specifically, we note that the
learned reward actually rewards an increase in ‘diff y’, rather than a decrease. Next, we
notice that the reward doesn’t penalize action evenly. It penalizes ‘torque 1’ (the one re-
sponsible for the spinning), but rewards ‘torque 2’ across nearly all timesteps. It should
instead be largely a negative penalty, as seen in Fig. 3.9a. Lastly and perhaps most im-
portantly, we observe in Fig. 3.7b that ‘vel 1’ and ‘vel 2’ have very large feature ranges,
corresponding to the large variations in angular velocity achieved by the Reacher robot’s
spinning behavior. Looking back to the gradient for each of these velocity features in
Fig. 3.7a, we observe that the reward has a slight positive gradient with respect to each
which stems from a slight correlation between angular velocity and reward. Fig. 3.4a
shows this correlation; there is a slight bias in the training data toward states with high
reward and high velocity. By spinning fast, the Reacher robot is thus able to achieve
much higher (learned) reward than performing the proper reaching action. The KL di-
vergence (Table 3.6c) between the distribution of observation-action pairs seen during
reward learning and those seen during policy optimization provides further insights—in
incentivizing the Reacher robot to spin fast, it leads the RL optimization toward states
that were not seen during reward learning (specifically, states where the robot is spinning
very fast).
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(a) Gradients - With distractors

(b) Feature Ranges - With distractors

Figure 3.7: Saliency maps: distractor features. Fig. 3.7a is a gradient saliency map of
the (misidentified) learned reward. Fig. 3.7b is a heatmap displaying the ranges of each
feature over the course of a trajectory produced by the learned reward. The large range
of the ‘vel 1’ feature and its corresponding positive gradient are the reason why the tra-
jectory does well under the learned reward.

Section 3.6 displays results for the other tasks. Similar to the Reacher task, we find that
removing distractor features generally helps performance. Note that the reason removing
non-causal distractor features does not appear beneficial for Feeding is that the main spu-
rious correlation (discussed in Section 3.5) involves one of the causal features—namely,
the difference between spoon position and target position. Thus, removing purely non-
causal features fails to address this issue in Feeding.

Distractor Features

Fig. 3.8 shows the additional results for removing distractors. Fig. 3.9 shows the saliency
map for the Reacher learned reward without distractors. Table 3.2 shows additional
KL divergences for the Feeding and Itch Scratching environments. We note here that
the reason removing non-causal distractor features appears to not benefit for Feeding is
that the main spurious correlation (discussed in Section 3.5) involves one of the causal
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Figure 3.8: Distractor Features. In general, removing distractor features that have no
influence on preferences improves performance.

Table 3.2: KL Divergence: Distractor Features.

Env With Without

Feeding 4.732 6.985
Itch Scratching 18.749 8.570

features—namely, the difference between spoon position and target position. Thus, re-
moving purely non-causal features fails to address this issue in Feeding.

(a) Gradients - W/out distractors (b) Feature Ranges - W/out distractors

Figure 3.9: Saliency Maps: Without Distractor Features.

Model Capacity

We study the effect of model capacity on the learned reward. We find that, despite careful
tuning of hyperparameters with each model and dataset size, increasing the capacity of
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Table 3.3: EPIC Distances, Model Capacity. The reward model with larger capacity (hid-
den layer dimensions of 256x256x256) appears closer to the ground truth than the reward
model with smaller capacity (hidden layer dimensions of 128x64) on the distribution of
states seen during reward learning, but is much further from the ground truth on the distri-
bution of states seen during reinforcement learning.

RewL / RL 256x256x256 128x64

ground truth 0.210 / 0.707 0.233 / 0.598

the reward model does not necessarily result in an increase in subsequent policy perfor-
mance.

We study the effect of model capacity on the learned reward. We find that, despite
careful tuning of hyperparameters with each model and dataset size, increasing the ca-
pacity of the reward model does not necessarily result in an increase in subsequent policy
performance. In fact, as seen in Fig. 3.10, only the Feeding task trained with the large (L)
dataset size (52326 preferences) benefits from steadily increasing reward model capacity.
Indeed, although increasing the capacity for the Reacher task appears to initially increase
performance for the large dataset case (Fig. 3.10a), performance drops back down to be-
low the performance of the smallest model size when the model size is further increased.
Further, increasing model size seems to decrease the performance on the small datasets.
This is not surprising, as benefiting from larger capacity tends to require increasing the
amount of data. As such, the validation-set accuracies here tend to agree with learned
reward performance.
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Figure 3.10: Model Capacity. Increasing model capacity increases performance when we
use the large (L) dataset ((324

2 ) = 52326 preferences), to a certain extent. However, increas-
ing capacity decreases performance on the small (S) dataset ((40

2 ) = 780 preferences).
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Table 3.4: KL Divergence Approximations, Model Capacity. Increasing model capacity
may result in a much larger distribution shift (as measured by the KL Divergence).

128x64 256x256x256 128x64 256x256x256 256x256x256x256

Reacher 64.165 57.724 46.031 22.187 88.927
Feeding 25.352 32.836 16.900 4.732 9.909

To examine these results further, we compare the learned rewards directly with the
ground truth reward (without performing policy optimization) using the EPIC pseudo-
metric in Table 3.3. Interestingly, the EPIC distances between the learned rewards and the
ground truth reward vary widely depending on the choice of coverage distribution. With
the distribution of states seen during reward learning (generated by randomly switching
between an expert and random policy), the larger (256x256x256) model appears closer to
the ground truth reward than the smaller (128x64) one. However, these results are flipped
when we instead evaluate the pseudometric on the distribution of states seen during pol-
icy optimization. This suggests that increasing the capacity of the reward model allows it
to more closely ‘mimic’ the ground truth reward on the reward learning distribution (hence
the lower EPIC distance) but worsens its ability to generalize to the reinforcement learn-
ing distribution. We see a similar effect with the divergence metric in Table 3.4.

Noise in Stated Preferences

Because user noise is often inevitable, we explore the effect of various types of user noise
on reward misidentification. Following [101], we modify Eq. 3.1 to include a rationality
constant β and a myopic discount factor γ ∈ (0, 1]:

P(τA ≺ τB) =
exp(β ∑H

t=1 γH−tr(sB
t , aB

t ))

exp(β ∑H
t=1 γH−tr(sA

t , aA
t )) + exp(β ∑H

t=1 γH−tr(sB
t , aB

t ))
. (3.4)

Using Eq. 3.4, we explore four types of user noise (varied independently of each other):
STOCHASTIC, where the user is rational with β = 1; MYOPIC, where earlier rewards
are discounted with a γ = 0.99; SKIP, where the user skips a pair of trajectories if both
have rewards below a certain threshold; and MISTAKES, where the preference label is
randomly flipped with probability ϵ = 0.1. ORACLE has β = ∞. Results are displayed in
Fig. 3.12.

We find that noise in the stated preferences exacerbates reward misidentification—test
accuracy stays high while policy performance plunges (Fig. 3.12a). Notably, two instances
of user noise, Stochastic and Skip, have test accuracies greater than or equal to the Ora-
cle (despite far worse performance). Importantly, the poor performance of the learned
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Table 3.5: Percentage (%) of Mislabeled Data Provided by a Stochastic User. Numbers
here correspond to Fig. 3.11b.

Medium Large

Stochastic 2.726 2.870

Table 3.6: KL Divergence Approximations, Noise in Stated Preferences.

Oracle Stochastic

Reacher, Medium Dataset 6.762 8.856
Reacher, Large Dataset 7.365 6.739

Feeding, With Distractors 4.732 13.188
Feeding, Without Distractors 6.985 8.046

policies is not well predicted by the validation accuracies, with models achieving 0.995
resulting in worse alignment than models trained on less data with lower validation ac-
curacy of 0.985.

Fig. 3.11 shows additional results. Increasing the amount of preference data when
noise is present appears to have a negative effect (as seen in Fig. 3.11b), despite the pro-
portion of mislabeled data remaining constant across dataset sizes (Table 3.5).

Further, there is a compounding effect with distractor features, where both noise and
distractors result in a large loss in performance (Fig. 3.11d).

To examine these results further, we compare the learned rewards directly with the
ground truth reward (without performing policy optimization) with the EPIC pseudo-
metric in Table 3.7. Interestingly, the EPIC distances between the learned rewards and
the ground truth reward vary depending on the choice of coverage distribution. With
the distribution of observation-action pairs seen during reward learning (generated by
randomly switching between an expert and random policy), the reward trained with la-
beling errors appears to be closer (in EPIC distance) to the ground truth than the reward
trained without labeling errors. However, these results are flipped when we instead eval-
uate the pseudometric on the distribution of observation-action pairs seen during policy
optimization. This suggests that the misidentified reward model more closely ‘mimics’
the ground truth reward on the reward learning distribution (hence the lower EPIC distance)
but fails to generalize to the reinforcement learning distribution. Table 3.6 shows the KL
divergences for each model configuration in Fig. 3.12.
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Figure 3.11: Noise in Stated Preferences.

Table 3.7: EPIC Distances, Noise in Stated Preferences. Misidentified rewards (Stochas-
tic) are closer to the ground truth reward on the reward learning distribution (RewL) but
further from it on the RL distribution (RL) when compared to the properly learned re-
wards (Oracle). EPIC distances are computed on the rewards learned with distractors in
the Feeding environment in Fig. 3.11d and averaged over three seeds.

RewL / RL Ground truth Stochastic Oracle

Ground truth 0.000 / 0.000 0.136 / 0.164 0.165 / 0.130
Stochastic 0.136 / 0.164 0.000 / 0.000 0.220 / 0.209
Oracle 0.165 / 0.130 0.220 / 0.209 0.000 / 0.000

We use EPIC [54] as one way to measure the difference between reward functions.
Table 3.7 shows that when the coverage distribution for EPIC is chosen as the distribu-
tion of state-action pairs seen during reward learning, the misidentified rewards due to
user noise are closer to the ground truth rewards, in EPIC distance, than rewards learned
without user noise. However, the opposite is the case when the coverage distribution is
chosen to be the distribution of state-action pairs seen during RL. This implies that the
misidentified reward model “mimics” the ground truth reward on the reward learning
distribution but fails to generalize when taken out of distribution by RL.

We further observe in Table 3.6 that the KL divergence between reward learning and
reinforcement learning state distributions is greater when the learned reward contains
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noise (Stochastic). This indicates that the rewards trained with noisy data are misiden-
tified: they have low test error but incentivize RL to deviate from the optimal behavior
encountered during reward learning.
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Figure 3.12: Noise in stated preferences results in significantly degraded performance.

Partial Observability of Causal Features

Partial observability over aspects of the state on which the user’s preferences are based is
nearly inevitable in the real world. Interestingly, RL with the ground truth reward is able
to learn proper feeding behavior in spite of this lack of critical state information. However,
as displayed in Fig. 3.13, reward learning is only successful when the model is able to
observe all the causal reward features.

We analyze gradient saliency plots and find that partial observability causes the re-
ward model to incorrectly over-weigh causal features that are available and pick up on
spurious correlations with non-causal variables. With Feeding, we observe that the re-
ward model learns stronger weights on one of the joint angles and two components of
the action, all of which have no bearing on the true reward. Simultaneously, the reward
also learns a greater weight on the second component of the feature corresponding to
the vector distance between the end effector and the mouth. This results in the behavior
depicted in Fig. 3.13—the robot manipulator is able to successfully maneuver the spoon
close to the patient’s mouth (by observing the distance feature), but does so without en-
suring that the food particles themselves stay on the spoon and end up in the patient’s
mouth.

Complex Causal Features

To explore how results may differ as we increase the complexity of the task, we evalu-
ate reward misidentification on the complex task of Itch Scratching. We find that even
after increasing the amount of training data for reward learning (Fig. 3.14a), increasing
the reward model capacity (Fig. 3.14b), removing distractor features that are not causally
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Performance
Observability Reward Success

PREF-Full 126.120 0.973
PREF-Part -120.825 0.040
GT-Part 128.933 0.990

Figure 3.13: Partial observability. Minimizing spoon-mouth distance without observ-
ability of food leads to spilling food (left). PREF and GT refer to policies optimized with
the learned and true reward, respectively. FULL and PART refer to the amount of observ-
ability over causal features.

related to the ground truth reward, having perfectly stated preferences, and ensuring
full observability over all the features that are involved in the ground truth reward, per-
forming preference-based reward learning still fails to produce a policy that successfully
scratches the itch location on the patient. However, as shown in Table 3.1, a standard
model-free RL algorithm trained using the ground truth reward is able to solve such a
task.

The task’s scratching motion requires not only making contact with the target using
the end-effector, but also that the target contact position be greater than a δ away from
the previous target contact position and that the exerted force be no more than a Fmax.
Although the preferences are based on how well this motion is performed and despite
the reward model having access to all the necessary aforementioned information (includ-
ing information about the state at the previous timestep; see Appx. 3.6), we find that
the reward model is not able to learn the scratching motion. As seen in Fig. 3.14c, once
we explicitly include a high-level indicator feature, “scratched” (whether the robot has
successfully performed the scratching motion), performance drastically increases. We
suspect that the reward model’s tendency to pick up on spurious correlations that occur
consistently over the course of the trajectory involving just a few variables prevents it
from learning the true causal relation that involves many variables, each of which are
causal only in a particular context.

We analyze this further and find that the learned reward without an explicit “scratched”
feature leads to a greater amount of distribution shift. Future work should address the
problem of learning this kind of complex, multi-feature causal relationship.

In the Itch Scratching task rewards the robot needs to perform a ‘scratching’ motion,
which entails not only making contact with the target using the end-effector (being within
a certain radius of the target coordinates), but also requires that the target contact position
be greater than a certain δ away from the previous target contact position and that the
exerted force be no more than a specified Fmax. Although the preferences are based on
how well the robot performs this scratching motion and despite the reward model having
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Figure 3.14: Complex causal features. Learning the “scratched” feature from low-level
causal features is difficult, despite increasing dataset size and model capacity. Perfor-
mance significantly improves when given access to a high-level ‘scratched’ feature.

Table 3.8: KL Divergence: Complex Causal Features. Learning a reward without the
‘scratched‘ indicator feature leads to a greater amount of distribution shift (KL diver-
gence) during policy optimization.

With ‘scratched‘ Without ‘scratched‘

8.570 15.553

access to all the necessary low-level information to infer this scratching motion (including
information about the state at the previous timestep; see Appx. 3.6 for details), we find
that the reward model is not able to learn the scratching motion. As seen in Fig. 3.14c,
once we explicitly include a high-level indicator feature, ‘scratched’, denoting whether
the robot has successfully performed the aforementioned scratching motion, performance
drastically increases. We suspect that the reward model’s tendency to pick up on spurious
correlations that occur consistently over the course of the trajectory involving just a few
variables prevents it from learning the true causal relation that involves many variables,
each of which are causal only in a particular context. This is supported by Fig. 3.5c, which
shows gradients staying relatively constant for each feature rather than varying with time
and context. As a result, the learned reward without an explicit ‘scratched’ feature leads
to a greater amount of distribution shift. This is shown in Table 3.8 which shows the KL
divergences with and without the hand-specified complex ‘scratch’ feature.

Iterative Preference-Based Reward Learning from Online Data

Finally, we recognize that active and iterative methods for data acquisition is also a widely
popular solution—as such, we provide a preliminary exploration.
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Figure 3.15: Training the reward and policy together iteratively.

Following [33], we verify the occurrence of reward misidentification when learning
from data that is actively queried online (during the learning process). As before, we use
the initial set of offline trajectory and preference data (acquired via Appx. 3.4) to train
a reward function, which we then use to optimize a policy using RL. We then sample
10 trajectories from the most recently optimized policy and generate preferences for all
possible pairs (1) between sampled and offline trajectories and (2) within the set of sam-
pled trajectories, which we concatenate to our existing training dataset. Using the (now
augmented) dataset, we fine-tune the reward function and policy for 10 epochs and 100
iterations, respectively. We repeat this process of taking rollouts from the most recent
policy and fine-tuning the existing learned reward and policy for 50 iterations. Results
are displayed in Fig. 3.15. We observe that reward misidentification appears to still be
present—test error is very low, while resulting policy performance (measured by true
reward and success) remains poor.

Our work cautions that reward learning is brittle—natural choices for acquiring data,
deciding on the amount of data, or defining the input space can lead to models that seem
very close to the true reward, but lead to spectacular failures when optimized. While ac-
tive and iterative methods for data acquisition may alleviate some of these issues, learn-
ing reward models when some of the causal features are unobservable remains an open
challenge.
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3.7 Conclusion
Our work provides an analysis of reward misidentification and causal reward confusion.
We identify three tasks where preference learning often results in misaligned learned
reward models. Interestingly, these models have good validation and test accuracy—
sometimes even 99.5%—and seem to distinguish the basics of task success versus failure.
However, optimizing these rewards via RL pushes the policy outside of the training dis-
tribution, where the model falsely believes the reward is higher—we demonstrate this via
saliency maps, EPIC distance, and KL divergence and by examining the resulting behav-
iors. This out-of-distribution effect results in policies that achieve high learned rewards
but have poor true rewards. We find that it is easy for reward models to pick up on
non-causal features, as some issues go away when we eliminate these non-causal features
from the input. Furthermore, noisy preference data aggravates poor generalization. And
when not all causal features are observable, the learned reward model will struggle even
though there exists a high-performing policy that only uses observable state information.

Based on our results, we have identified several directions for future work. First,
our results show that reward misidentification induces a distribution shift such that the
learned reward appears deceptively close to the true reward on the training distribution,
despite leading to misaligned behavior when optimized via RL. As such, future work
should investigate methods for penalizing excess exploration beyond the training data
distribution. We examine the effect of adding a direct penalty on the KL divergence into
the cost function during RL. We find that the RL agent is again able to hack the learned
reward—performance becomes even worse because of the additional degree of freedom
in the reward function afforded by the discriminator penalty. However, we hypothesize
there are other ways to successfully incorporate such a penalty. Next, our results demon-
strate that spurious (“nuisance”) features can significantly increase the chance of reward
misidentification. Thus, in cases where we can query for human knowledge on exactly
which features are spurious or causal, we can use this feedback to learn which features
are non-causal or remove non-causal features entirely. Further, our results indicate that
high-level features such as the “scratch” feature are difficult for neural networks to learn,
even when all the necessary low-level information is available. Future work should ex-
amine incorporating methods for learning high-level features [14]. Using alternatives to
EPIC [54] such as DARD [202] to compare learned rewards may also prove fruitful in
detecting and alleviating reward misidentification.
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Chapter 4

Active Learning of Human Preferences

Given that the reward function is often learned on a finite set of environment, this intro-
duces an inherent limitation that the reward function may not generalize to new scenar-
ios.

Why Active Learning for Human Preferences?

One popular way to design robotic agents is to program them to maximize the cumulative
reward in their environments.

While we have made great progress in solving the reward optimization problem, we
often delegate finding a good reward function to the human designer. In reality, reward
design is an iterative and challenging process. Human designers spend tremendous effort
iterating on the reward function as they test the robot in more and more environments.
What is more, once deployed, reward functions can still be incorrect in edge-case envi-
ronments, leading to failures.

Take, for instance, autonomous cars. They have to correctly balance safety, efficiency,
comfort, and abiding by the law. A human designer starts by looking at some representa-
tive traffic scenarios and specifying a reward function that leads to desired behaviors in
each of them. But working well in this set of environments is not enough — the reward
function has to incentivize the right behavior in any environment the car will encounter in
its lifetime1. The engineer will test-drive the car in both simulation and in the real world.
Almost inevitably, optimizing for the specified reward will lead to some undesirable be-
havior in some further environments. The engineer will then revise the initial reward and
repeat the process. If they are lucky, they will have converged to a suitable reward func-
tion by deployment time. But for many systems, this is a never ending process: the car
will encounter some edge-cases in the real world that they did not foresee — an unseen
road layout or traffic situation — and the engineer revises the reward again on the new
environment.

1While there are challenges to building a world model, planning algorithms, etc., for this paper, we
assume success in that and focus on designing the reward function.
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Figure 4.1: In the Assisted Reward Design process, the designer specifies a proxy reward
w̃ on a set of environments M1,...n. The robot agent takes the current proxy, infers about
the true reward w∗ and queries the designer with a new environment where the proxy
fails. The designer then revises her proxy to work on this new environment.

In this work, we explore what it would mean for the robot to explicitly account for
this iterative nature of reward design. Rather than treating the current reward as set in
stone, we envision a system in which the robot works together with the designer and
helps them design the right reward function, as in Fig. 4.2: the robot takes the reward
function specified by the designer, and proposes a new environment for the designer
to investigate where the reward function might fail. To capture this formally, we first
enable the robot to explicitly account for the uncertainty in the reward function itself:
every reward revision does not define the reward function fully, but is instead an evidence
about it. Previous work on Inverse Reward Design [64] incorporates this uncertainty
into the reward function with the goal of making the robot plan more conservatively in
new environments. In this work, rather than passively updating the robot’s estimate of
the reward, we argue that it is the robot’s job to actively help the engineer design more
robust reward functions, with the goal of performing well at deployment time. We refer
to this as Assisted Reward Design. The key insight is that:

By accounting for the iterative nature of reward design, the robot does not just passively estimate
the reward it receives but proactively influences the future evidence it can gather from the

designer.

Our contributions are three-fold:
1. Formalizing reward design as an iterative process. We formalize the problem of iter-
ative reward design as a Meta MDP with hidden state. Under this formulation, the robot
can and should account for the future iterations of the reward as future evidence. The
robot can then make these pieces of evidence more informative by exposing the designer
to environments where revisions are most likely needed. Rather than letting the designer
eventually encounter edge-case environments, our method proposes candidate environ-
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ments and asks for reward designs, inserting itself in the design process loop, as in Fig.
4.2. This hps two implications. In cases where the designer would converge to a good
reward before deployment time, our method speeds up the iterations by focusing on in-
formative environments. Perhaps more importantly, in cases where the designer might
still otherwise have the wrong reward when deploying the system, our method has the
potential to expose the edge-case environments that cause failures, prompting fixes in the
reward ahead of time.
2. Providing an approximate algorithm for our method. It is intractable to compute
the reward uncertainty given the high-dimensional nature of the reward space and the
environment space. We propose an approximate algorithm based on particle filtering to
enable efficient computation.
3. Analyzing Assisted Reward Design in a simplified autonomous car domain. We
evaluate our method’s practicality and effectiveness in designing reward functions for
autonomous cars, using the open-source environment proposed by [155]. We conduct
experiments with both simulated reward designers and robotics experts. We find that our
method uncovers more difficult test scenarios and speeds up the reward design process.
We also showcase that it proposes interesting environments that tend to be edge cases
where the current reward estimate fails.

Overall, this paper takes a step towards making our robotic systems understand re-
ward specification as an iterative process. In the end, we would like robotic systems
not just to optimize what we design for them but help us design better and more robust
reward functions. Even though admittedly more work is needed to put these ideas in
real-world systems, especially in light of the need for a simulator or learned model of en-
vironments, we are excited to see our method assist in difficult reward design tasks and
produce edge-case environments without any hand-coded heuristics.

4.1 Problem Statement
Active Reward Learning Our work is an instance of active reward learning. Prior work
has focused on actively querying for comparisons [12, 188], demonstrations [23, 42, 41,
110], or reward labels [148]. Such queries are typically for trajectories or states in a given
environment (MDP). Recent work has proposed active learning to synthesizes the envi-
ronment itself to gain more information about the reward (either the initial configuration
and behavior of other agents in the scene, such as [154], or the entire environment [148]).
We also propose to actively query new environments, but the human feedback is a proxy
reward designed to work only in that environment. This is interesting for two reasons.
First, we show that it leads to the robot proposing edge cases to the designer where the
previous reward is likely to fail, thus aiding in revising the reward. Second, we argue
that the same active reward learning ideas from the literature can be applied to the re-
ward engineering process — when we design a reward function, we should not just have
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Figure 4.2: In the Assisted Reward Design process, the designer specifies a proxy reward
w̃ on a set of environments M1,...n. The robot agent takes the current proxy, infers about
the true reward w∗ and queries the designer with a new environment where the proxy
fails. The designer then revises her proxy to work on this new environment.

the robot go optimize it blindly. We should instead think about it as an iterative process
through the lens of active reward learning.

Reward Shaping Many prior works have also focused on recovering reward func-
tions for suboptimal planners, given a ground truth reward function that is difficult to
optimize, e.g. due to sparsity or non-differentiability [167, 149]. Note that in many real-
world problems, such as autonomous cars, the ground truth reward is not obvious to
write down. Assisted Reward Design is different from the reward shaping problem in
that we do not assume access to a ground-truth reward function, but seek techniques that
leverage proxy rewards that are the designer’s best guesses.

Problem Setup Let an “environment” M be a Markov Decision Process without the
reward function. At development time, we assume access to a large set of such environ-
ments, Mdevel. We assume this is a large set that the designer cannot exhaustively test.
This can be, for instance, all the environments in a several-million-mile autonomous driv-
ing dataset. Or, it can be a parameteric set of possible environment configurations, such as
placements of objects, roads, and other agents. Finally, it can also be a generative model
of the world. The robot will run at deployment time in a different set of environments
Mdeploy, which we do not have access to during development time. 2

We further assume access to a space of reward functions parameterized by w ∈ W
— these can be linear weights on pre-defined features or weights in a neural network
mapping raw input to scalar reward. We denote by w∗weights of the ground truth reward
function, which induces the desired behavior inMdevel andMdeploy. We denote by ξw,M
the trajectory (or policy, but for this work, we consider deterministic MDPs with set initial

2Our method works best when we can induce a vast setMdevel that includes all possible scenarios in
Mdeploy. Otherwise, ifMdeploy is allowed to be drastically different, and ifMdevel is not enough to design
a robust reward function, this exposes the robot to unanticipated failures after deployment.
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Figure 4.3: Left: (a) The driving environment with autonomous vehicle (yellow) and
human-driven vehicles (red). (b)(c)(d) highlights selected features: obstacle distance, ve-
hicle distance, progress. Right: the distribution ofMdevel (blue) andMdeploy (pink) based
on difficulty metric.

states) optimal to the cumulative reward induced by w in M, ξw,M = arg maxξ Rw(ξ; M).
Our assumption is that there exists a w∗ such that ξw∗,M is the desired behavior for any
M ∈ Mdevel and any M ∈ Mdeploy. We do not have access to w∗.

The Process of Unassisted Reward Design The designer takes a subset of environ-
mentsM ⊆Mdevel and specify a reward function (via parameters w̃) that leads to good
behavior in those environments. In a one-shot design, they would select a set M, as-
sume it is representative of Mdeploy, design a w̃ for that M, and deploy the system
with w̃ (never changing the reward again). However, in reality, this is an iterative pro-
cess. They start with an M0, design a w̃0, and eventually encounter during their test-
ing a new environment M′ on which optimizing w̃0 does not lead to desirable behavior.
Then, they would augment their set to M1 = M0 ∪ {M′}, and re-design the reward:
M0 → w̃0 → M1 → w̃1 → .... This might continue into deployment if the reward at
the time of deployment still fails onMdeploy. Implicitly, at every step along the way, the
robot treats the current w̃i as equivalent to w∗.

The Assisted Reward Design Problem

We formulate the Assisted Reward Design Problem by introducing a meta-MDP problem,
where the meta-agent receives proxy rewards as observations from the designer and acts
by proposing new environments. The goal is to minimize regret of the reward design
over deploymentMdeploy.
Meta-States, Meta-Actions, Observations, Transitions.3 In the Assisted Reward Design
problem, the notion of a “state” is a setM of environments — this is what changes over

3For the rest of this paper, all our references to “state” and “action” stand for “meta state” and “meta
action”.
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time and is directly observable — along with the hidden state w∗. The meta-agent starts
at state (M0, w∗) (environments either chosen by the designer to be representative, or
simply the empty set). It transitions to the next state by “acting”, i.e. adding one more
environment Mi to the set: Mi+1 =Mi ∪Mi. Every time it enters a state (Mi+1, w∗), it
receives an observation w̃i+1 about w∗ from the designer. For the meta-agent to assist the
designer, it needs to treat the observed reward w̃i not the same as w∗, but as a proxy that
emulates w∗ only on the currentMi. It can then interpret w̃ as evidence about w∗ and use
all past evidence to obtain a belief of w∗. To assist the designer, the key step is to account
for (and thus influence) the future evidence in order to get a better reward estimate.
Observation Model. Reward designers tend to select proxy rewards that work well in
training environments. With this intuition, previous work [64] introduced an observa-
tion model that computes the probability of observing proxy reward w̃ under w∗ and
designer’s training environment setM:

Pdesign(w̃|w∗,M) ∝ exp
[

∑|M|i=1 βRw∗(ξw̃i,Mi)
]

(4.1)

with β controlling how close to optimal we assume the person to be. This distribution
informs the meta-agent that it is receiving proxy rewards from an approximately optimal
designer who looks at the currentM. We can then leverage this model to infer a belief
over w∗: bM(w∗).
Objective. The objective of Assisted Reward Design is to achieve high reward at deploy-
ment time. What the meta-agent controls are a sequence of actions, i.e. a sequence of
environmentsMT it can propose. These lead to observations about w∗. At deployment
time, the meta-agent uses its belief to generate optimal trajectories and accumulates re-
ward according to w∗. We want to find the set of environmentsMT such that when given
to the designer, these environments induce a belief that leads to the best performance in
Mdeploy:

maxMT EM∼MdeployEw∼bMT (w
∗)Rw∗(ξw,M) (4.2)

where bMT(w
∗) is the meta-agent’s belief at deployment time, based on the evidence

gathered from the statesM0, ..,MT; ξw,M = arg maxξ Rw(ξ; M) is the optimal trajectory.
As currently stated, this objective is impossible to optimize directly because the meta-

agent does not knowMdeploy. In what follows, we introduce a solution to Assisted Re-
ward Design based on the heuristic objective of identifying w∗ — if the meta-agent uses
its actions to disambiguate what w∗ should be, then it can achieve optimum performance
on the objective in Eq. (4.2) because it can plan optimally to w∗. We first introduce the
Maximal Information objective. Then we show how the meta-agent can track a belief and
perform future belief updates in order to propose new environments.
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4.2 Assisted Reward Design via Active Info-Gathering.
Maximal Information. We invert the probability model of Eq. (4.1) to obtain a belief
over w∗: P(w∗|w̃,M). Our key insight is that we can reduce the belief uncertainty by
proposing future environments to influence the designer. In other words, we would like
to find environments that can disambiguate the reward as much as possible — if we can
identify w∗ exactly, the meta-agent attains zero regret at deployment. Thus, we introduce
an approximate strategy for the meta-agent: proposing environments that provide the
most information gain over its belief distribution, as commonly done in active learning
[73, 51] and robot active exploration [26]. For computational tractability, we do a one-step
look-ahead only, although the meta-agent could benefit from reasoning over multiple
future iterations. Given an action M (MDP), we compute its mutual information with w:

f (Mi+1) = I[w; Mi+1] = H[w|M0:i, w̃0:i]− (4.3)
Ew∗∼Pi(w),w̃i+1∼Pdesign(w̃i+1|w∗,Mi+1)

[H[w|M0:i+1, w̃0:i+1]]

Here H[w|M0:i, w̃0:i] is the entropy of posterior distribution of Pi(w), and w̃i+1 is a new
observation sampled from the updated designer model Pdesign(w̃i+1|w∗,Mi+1). After ob-
serving w̃i+1, we can compute the conditional entropy H[w|M0:i+1, w̃0:i+1] using meth-
ods from Sec. 4.2. In our implementation, we set w̃i+1 = w∗ to make Eq. (4.3) more
tractable and find that it empirically works well. Next we introduce two update rules to
compute conditional entropy — joint and independent mode.

Updating Beliefs over w∗

Joint reward design. At iteration i + 1 of Assisted Reward Design, the meta-agent takes
an action Mi+1 (proposes an environment), and receives an observation w̃i+1 – a reward
that works over all environmentsMi+1 =Mi ∪ {Mi+1}. Assuming that w̃i+1 is indepen-
dent from previous observations, we can use w̃i+1 to update the belief over w using Eq.
(4.1):

Pi+1(w|w̃i,Mi) ∝ Pi(w)Pdesign(w̃i|w,Mi) (4.4)

with P0 the meta-agent’s prior (uniform in our experiments). We take a sequential impor-
tance resampling particle filtering approach to approximate Pi+1: we sample Np particles
from Pi, compute importance weights based on Eq. (4.1) for each particle, and resample
using the importance weights. In order to compute the normalized Pdesign, we approxi-
mate the normalizer in Eq. (4.1) via samples.
Independent reward design. We also allow designers to provide an observation w̃i based
solely on the new environment Mi. Prior work [147] finds that this model puts less burden
on the designer. Under this assumption, our belief update simplifies to relying on a single
new environment:

Pi+1(w|w̃i, Mi) ∝ Pi(w)Pdesign(w̃i|w, Mi) (4.5)
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Adding New Features. When the designer adds in new feature ϕk+1 on environment Mn,
the new proxy reward has d + 1 dimensions while the previous proxies have d dimen-
sions. We can still perform reward inference on all of the d + 1 dimensions, as long as we
incorporate all proxies received so far. The meta-agent would then have to revisit all the
reward designs it’s gotten so far and recompute posterior over the new augmented space.
To do so, we invert Eq. (4.1) using the formula from [64]:

P(w = w∗|w̃1:n, M̃1:n) ∝ P(w) ∏
i=1:n

exp
(

βwTϕ̃i
)

Z̃
, Z̃(w) =

∫
ŵ

exp
(

βwTϕ̂i
)
dŵ

with P(w) being the prior. We use MCMC to infer the distribution. During inference,
every sample w is of d + 1 dimensions, and ϕ̃i are of d + 1 dimensions, computed from all
previous proxy rewards (of i or i + 1 dimensions) on the existing tasks. To compute the
normalizer, we integrate over ŵ in the d + 1 dimensional space.

Algorithm

Algorithm. We now present our main algorithm for Assisted Reward Design. At every
iteration i, we use the Maximal Information acquisition functions to select the next envi-
ronment Mi+1 and query the reward designer. Note that the environment spaceMdevel is
continuous and high dimensional and it is intractable to exhaustively search through it.
We thus use uniform sampling to select a candidate setMcand ∈ Mdevel. Note that one can
employ different heuristics for selecting such candidate sets, and we leave the heuristic
design to future work.
Representing Belief Distribution. We use particles to represent P̃i(w = w∗): at each step,
we sample Np particles from P̃i(w = w∗), compute importance weights based on Eq. (4.1)
for each particle, and resample using the importance weights.

Algorithm 2 Assisted Reward Design via Info-Gathering

1: Require prior P0(w),Mdevel, Ncand, Np, initial training environmentsM0
2: Initialize posterior P̃0(w = w∗) = P0(w)
3: for i = 0, .., T do
4: w̃i ∼ Puser(w|w∗,Mi) { Query the designer onMi }
5: Compute posterior P̃i+1(w = w∗) using Eq. (4.4) or Eq. (4.5)
6: Sample Ncand candidate environmentsMcand ⊆Mdevel
7: for M ∈ Mcand do
8: Compute f (M)
9: end for

10: Select Mi+1 = arg maxM∈Mcand f (M)
11: Mi+1 =Mi ∪ {Mi+1}
12: end for
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Figure 4.4: Experiment with simulated designers. Left: independent mode, right: joint
mode. (a)(c) shows the regret of the posterior mean compared to true reward under dif-
ferent acquisition functions. (b)(d) shows the efficacy of the proposed environment. The
“box” denotes 5th to 95th percentile.

Complexity. Our algorithm is bounded by the number of particles Np for representing
posterior distribution and the number of candidates Ncand. At every iteration, the al-
gorithm needs to solve for each particle w in each candidate environment, which leads
to a total of O(Np · Ncand) planning problems in order to compute belief update. This
is the main speed limit. While one can potentially speed up by learning fast planners
[159], we leave this to future work. In our experiments, we implement the environment
as in Sec. 4.3 such that the dynamics and reward function are both vectorizable. We then
concatenate the reward functions of O(Np · Ncand) problems and compute batch forward
planning using gradient-based planner. Note that this is not feasible for general planning
problems with non-differentiable dynamics or reward functions.

4.3 Experiments with Simulated Designers
We evaluate Assisted Reward Design in a simplified autonomous driving task. In this
section, we hypothesize a ground truth reward function and simulate designer behaviors.
Note that our method does not require such unique ground truth w∗ – this is merely used
here for evaluation. In Sec. 4.4, we conduct an expert study where we do not have the
ground truth.

Experiment Setup

This section provides the details of the driving environment used in the paper. We in-
troduce definitions of environment dynamics, feature and reward functions, the envi-
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ronment distributions, and how we implement the environment efficiently for trajectory
optimization.

Dynamics We represent the forward dynamics of the MDP as xt+1 = f (xt, ut), where
we have the full knowledge of x. To model system dynamics, we use simple point-mass
vehicle model with holonomic constraint. Let xcar = [x, y, θ, v]⊤, where x, y are the corrdi-
nates of the vehicle, θ is the heading, and v is the speed. We let u = [usteer, uacc]⊤ be the
control input, where usteer is the steering input and uacc is the acceleration. We also use α
as the friction coefficient. The model for a single vehicle is:

[ẋ ẏ θ̇ v̇] = [v · cos(θ) v · sin(θ) usteer uacc − α · v] (4.6)

We model human vehicles as moving forward at constant speed and traffic cones as static
objects.
Driving task. As illustrated in Fig. 4.3, the autonomous car is to merge to the leftmost
lane. Since there may be other human vehicles (simplified as constant speed) and ob-
stacles, the autonomous car needs to decide whether to overtake or to slow down. Our
reward function based on [155] is a weighted sum of six features, including vehicle dis-
tance, progress, control effort, etc. A good reward function should correctly balance these
terms and reflect our desired behaviors in all different situations. To obtainMdevel, we
parametrize environments over the initial placements of obstacles and other vehicles.
Feature and Reward Functions. In the following section 4.1 we introduce the environ-
ment features ϕ in the driving environment. Each feature composes of ϕraw, a subset of
the current state xt and control ut, and a non-linear transformation on ϕraw. The nonlinear
transformation is designed such that when maximized, it induces the desired behaviour
in that feature, such as moving to the target lane. These environment features are are dif-
ferentiable and that we can characterize the desired driving behavior via a linear weighed
sum w⊤ϕ.
Environment Difficulty. Successful merging tends to be more difficult when human ve-
hicles and obstacles are closer to the autonomous vehicle. We can use a simple metric to
describe each environment: difficulty = ∑i 1/dhuman vehicle i + ∑j 1/dtraffic conej . We visu-
alize the distribution ofMdevel andMdeploy in Fig. 4.3 using this metric. Note that both
Mdevel and Mdeploy have a “long-tail” distribution of events — events that are rare to
encounter daily, but could be highly useful for the reward design. An ideal acquisition
function in should be able to identify these events.
Baselines. We compare our Maximal Information acquisition function with two baselines
that represent common design paradigms where the designer selects (1) the most difficult
tasks ranked by M ∈ Mdevel (2) random environments fromMdevel.

Experiment Results

Evaluation. A good Assisted Reward Design method should help the reward designer
quickly recover high-quality reward functions. To evaluate this, we specify one set of
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Environment Features
Feature
Name

Raw Fea-
ture ϕraw

Transformation
ϕfull

Meaning

Speed v −(ϕraw − vgoal)
2 How much the vehicle

deviates from the goal
speed.

Control [usteer, uacc] −||ϕraw||2 The control effort by the
vehicle.

Lane x N (ϕraw −
x⃗goal, dlane)

How much the vehi-
cle deviates from target
lane center.

Car [x, y] −∑iN (ϕraw −
x⃗car i, dcar i)

How much the vehicle
is driving close to other
vehicles.

Obstacle [x, y] −∑iN (ϕraw −
x⃗obs i, dobs i)

How much the vehicle
is driving close to the
obstacles.

Fence x −[xfence left−ϕraw]+
−[ϕraw −
xfence right]+

How much the vechile
is outside the fence

Table 4.1: Environment Feature Table

ground truth reward w∗. At every iteration, we simulate the designer using w∗ under
both independent mode and joint mode as described in Sec. 4.2.

Experiment Details

Optimal Control For the autonomous driving task, we compute trajectories of 10 timesteps.
We use finite-horizon optimal planning with regard to given rewards. We plan at a hori-
zon of 10 timesteps, and replan every 5 timesteps.
Planning Speed. We implement the dynamics and reward function using JAX [17] and
leverage the JIT compilation to speed up running time. We use shooting method and
perform gradient-based planning using the Adam optimizer for 200 steps. We plan at a
horizon of 10 timesteps and replan every 5 timesteps. When planning for a single environ-
ment, we can generate 2.57 trajectories per second. Because we can vectorize the planning
problem and plan for multiple trajectories at once, we can achieve 157.72 trajectories per
second, by planning for 500 trajectories in batch. Computations are benchmarked on the
c2-standard-4 instance on Google Cloud. We use batch planning for computing the belief
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distribution and environment proposals, as discussed in Sec. 5.3 as the main bottleneck
of our algorithm.
Reward Design We use rationality factor β = 0.1

||M|| to simulate noisy designer, and β = 1
in the inverse model. This is because we find empirically that the proxy reward quickly
approaches the ground truth reward when we have multiple proxy environments. We
thus divide the rationality factor β it by the number of proxy environments to maintain
its noisiness. To compute the posterior probability in Eq. (4.4) or Eq. (4.5), we need to
approximate the normalizing constant. We follow the approach in [64] by sampling w. In
the section 4.2 of [64], they find empirically that it helped to include the candidate sample
w in the normalizing sum. This requires planning with w and computing its feature sum
in the MCMC inner loop, which largely slows down the inference. Instead, we include
the candidate w, but multiplies it with proxy w̃’s feature sum in the normalizing constant.

We then compare three methods (random, difficulty, maximal information) in itera-
tive fashions. We use the same initial environment for the three methods and perform 9
iterations. We aggregate results over five random seeds.
Environment Distribution. We use a simple method to define the distribution of environ-
mentsMdesign,Mdeploy. There are two human vehicles and two traffic cones positioned
on the three-lane highway. We assume that the autonomous vehicle starts from the center
of the scene (x = 0, y = 0), and sample the starting position of the other vehicles and ob-
stacles. The other vehicles can start anywhere in xmin car ≤ xcar ≤ xmax car, ymin car ≤
y ≤ ymax car and the obstacles can be initialized anywhere in can start anywhere in
xmin obs ≤ xobs ≤ xmax obs, ymin obs ≤ y ≤ ymax obs. We filter out situations where the
other vehicles or obstacles are initialized to be colliding with the main vehicle.

Note that this is a very coarsely designed distribution to showcase our method. We
have several limitations. For instance, we do not exclude the environments where the
other vehicles runs into obstacles. These are relatively unlikely environments, and in
principle we can define more realistic distributions by more careful environment engi-
neering or by loading real world driving datasets.

The difference between Mdevel and Mdeploy is that in Mdeploy, we define a tighter
feasible range of xcar centered around the autonomous vehicle. This results in a shifted
distribution of pseudo-difficulty metric with long-tail events. After discretization,Mdevel
has 274k environments and Mtest has 91k environments. Given these large number of
possible environments, it is impossible for reward designers to enumerate them manually.
Environment Proposal. During environment proposal, we use Np = 500 particles on
Ncand = 64 environments. We implement a vectorized car dynamic model using JAX [17]
and Ray [125] for batch planning. Our environment proposal step takes 4 minutes on
c2-standard-4 instance on Google Cloud.
Evaluation. To examine the quality of our inferred posterior of the reward function, we
need to evaluate the posterior in new driving environments. We thus sample 500 envi-
ronments uniformly fromMdeploy as the deployment set for evaluation. We compute the
regret, note that because of the different placement of vehicles and objects, different en-
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Figure 4.5: Visualization of the top proposed environments based on each acquisition
function.

vironment have different maximum and minimum reward they can produce. Thus it is
unfair to compute the absolute regret rmax − rw. We thus compute the relative regret, by
first taking the worst cases reward rmin in each environment. Then the relative regret is
regretw = (rmax − rw)/(rmax − rmin) = (rw∗ − rw)/(rw∗ − rmin).

Experiment Results

We plot the performance of posterior mean and the proxy reward w̃ under different meth-
ods in Fig. 4.4. To mitigate the effect of the choice of initial environments, we experi-
ment on six random initial environments and find that our active method outperforms
the proxy reward w̃, as well as the random and difficult baseline in both joint and inde-
pendent modes (p ¡ 0.05).

Our active method (orange) outperforms both the random baseline (grey) and the
difficulty heuristic (blue) as shown in Fig. 4.4. This means that certain environments,
despite being rated “easy” by heuristics, turn out useful for the reward design. These
environments are often edge-cases that subtly trigger undesirable behaviors — in Fig. 4.2
a rather empty road with two human vehicles triggered the autonomous vehicle to crash.
Next we further investigate this.

Edge-Case Nature of Proposed Environments To study why our method performs
better than the baselines, we measure the quality of the proposed environments using:
r(Mnext) = Ew̃∼P(w=w∗)

[
Regret(w̃; w∗, Mnext)

]/
Ew̃∼P(w=w∗)EM∼Mdeploy

[
Regret(w̃; w∗, M)

]
,

the ratio of regret on next environment versus average regret in deployment. Higher
r(Mnext) means the next environment better uncovers the overall regret of the current
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Figure 4.6: Experiment with robotic experts. The left shows the violation under different
acquisition functions. The right compares the relative value of proposed environments.

posterior. As shown in Fig. 4.4, our active method proposes environments of highest
relative regret. This suggests that to find the most useful environment for Assisted Re-
ward Design, simply relying on heuristic environment ranking is not enough. It is more
effective to utilize all proxy rewards and their induced uncertainty over w∗.

4.4 Experiments on Real Reward Design

We conducted a study with 14 robotics experts4 on the simplified autonomous driving
tasks, where we ask them to design reward functions to generate their preferred driving
behaviors.

Experiment Setup

We give the experts 10 minutes to familiarize with the features. We then let them de-
sign reward functions over four consecutive iterations, under three different methods and
three different random seeds. This gives a total of 36 individual reward designs. We use
counterbalancing to randomize the sequence of different methods. All our experiments
are conducted over Zoom.
Violation. Since we do not have the ground truth reward function, we cannot measure
posterior regret as in Sec. 4.3. For evaluation purposes only, we introduce seven violation
criteria to measure the quality of our reward design, including collision, driving off track,
stopping, etc.
Violations. Here we provide in Chapter 4.2 the definition of environment constraint func-
tions used in the experiment section to evaluate driving quality. Each constraint is a
boolean function that returns true or false for one timestep, and we compute the final vio-
lation count for each trajectory by summing over constraints over the time horizon. These

4from the authors’ institution
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constraint functions are not used for optimization, but as an evaluation criterion for the
case study experiment. Lower violation counts correspond to better driving behavior.

Environment Constraints
Feature
Name

Definition Meaning

Overspeed v > vmax The vehicle is driving over the
maximal allowed speed.

Underspeed v < vmin The vehicle is driving below the
minimum speed on highway (i.e.
backing up).

Uncomfortable||u||∞ > ||umax||∞ The vehicle is applying too much
force that it’s uncomfortable (i.e.
accerlating too much or jerky).

Collision ||⃗x− x⃗car i|| ≤ dmin The vehicle crashes into the other
vehicles.

Crash Ob-
ject

||⃗x− x⃗obj i|| ≤ dmin The vehicle crashes into the obsta-
cles.

Offtrack x < xfence left or
x > xfence right

The vehicle drives off the left or the
right fence.

Wronglane ||x − xlane left|| ≤
dlane

The vehicle drives drives onto the
wrong lane while merging.

Table 4.2: Environment Constraints Table

We use these criteria as unit tests on the behavior to capture unwanted behaviours.
We then count the total number of violations of each trajectory. Better reward functions
should induce lower violation counts. Although we could explicitly incorporate these
tests as hard constraints in the “reward” function [2], we keep the reward features obliv-
ious to them. This is for two main reasons. First, in the real world, constraint violations
are acceptable in some edge-case scenarios: slamming on the brake, despite uncomfort-
able, is justifiable at the sight of traffic accidents. Such trade-offs are difficult to specify
and it is our goal to exploit potential edge-cases. Second, violation tests only capture a
subset of unwanted behaviors. Tailgating, for instance, does not break the tests. Yet, it is
undesirable in most cases for the autonomous vehicle. In Sec. 4.4 we provide qualitative
examples from the experiment to illustrate such undesirable behaviors.

Experiment Results

Evaluation. We perform Assisted Reward Design where experts answer the queries stem-
ming from our algorithm, as well as the baselines. We visualize the result in Fig. 4.6 left.



CHAPTER 4. ACTIVE LEARNING OF HUMAN PREFERENCES 62

Figure 4.7: Selected environments proposed by Maximal Information with the highest rat-
ing by users. The robot plans a trajectory using previously designed wMAP. Normalized
Likert scale rating is shown on the bottom right of each scenario. Higher rating means
more likely to be an edge case. Notice that these trajectories are failure cases but do not
violate the pre-defined difficulty metrics such as collision.

Maximal Information outperforms the other acquisition functions in causing fewest av-
erage violations onMdeploy. This shows that Assisted Reward Design can help us tune a
reward function that fails fewer tests as a measurable proxy for the good driving behav-
iors in the real world.

Edge-Case Nature of Proposed Environments. To measure the quality of the pro-
posed environments at each iteration, we ask the experts to watch the trajectories that
their proxy designs generate on the proposed tasks. We then use the Likert scale ques-
tions in Fig. 4.5 and ask the users to rate how much they agree with the statement on a
scale of 1-7. We then compute the normalized score Q1− Q2 as a measure of how good
the behavior is. A lower score indicates better behavior. We use the inverse of the score
to indicate edge-caseness in Fig. 4.6.

Our maximal information method outperforms the heuristic difficulty metric in find-
ing edge-case environments that contain more violations.
Qualitative Analysis of Proposed Environments We randomly sample an initial envi-
ronment and query designer. We then use maximal information, heuristic difficulty, and
random acquisition function to propose the next environments. We visualize the trajec-
tory of MAP estimate wMAP on each of these new environments in Sec. 4.4. Notice that
interestingly, our method tends to find environments where the current MAP estimate
fails, even though we do not explicitly optimize for finding failure cases. It turns out
that these environments help reward designers effectively narrow down on the true re-
ward. In comparison, heuristic difficulty finds environments with dense interactions. Yet,
they do not induce failure in the resulting trajectories likely because such difficulties have
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been addressed by past reward designs. Heuristic difficulty tends to generate repetitive
environments.
Can Violation Count Replace the Maximal Information? Sec. 4.4 uses violation counts
to evaluate trajectories. One may ask the question: can we simply use the violation count
as an acquisition function to find edge-case environments? In other words, environments
where the design leads to high collision, off-track counts, etc. should be proposed as
edge cases. On a surface level, this seems to be a reasonable approach. In fact, this is
commonly used in industry [181]. However, we argue that setting violation counts as the
acquisition function limits the scope that we can identify edge cases. We highlight this
in Fig. 4.7, where we visualize selected environments proposed by Maximal Information.
They exhibit subtle failures and lead to the highest Likert-scale ratings despite obeying all
violation criteria. Interestingly in the second, fourth, and seventh examples, the vehicle
narrowly avoids the collision. Such behaviors found by Maximal Information are hard
to capture with hand-designed violation metrics. By acting on the edge of violations, the
algorithm pushes the reward designer to better specify her “decision boundaries”. As a
result, Maximal Information can propose more diverse edge cases and gather designer
preference more quickly.

4.5 Conclusion
We contribute Assisted Reward Design, an active reward learning method that generates
environments and queries for reward functions as user inputs. We find experimentally
that our method exposes edge cases — environments where the current proxy reward
leads to high regret. Experiments with robotic experts confirmed that these environments
are edge cases that lead to undesirable behaviors.

Our method is applicable to model predictive control problems such as drone, indoor
robot navigation, motion planning for manipulation [147] where we have known dynam-
ics, as well as RL problems given the environment simulator or learned model. Given
that naively applying RL in the inner loop of reward inference is intractable, it remains
an open question how to efficiently combine with RL.

There are several limitations to our approach. Firstly, our environment proposal algo-
rithm could be more efficient. One may explore synthesis and continuous optimization
over the environment parameters. Secondly, we need of formal analysis and guarantee of
generating edge cases. Thirdly, our method assumes access to a distribution of environ-
ments. Obtaining such realistic distributions [44, 205, 78] for simulation remain an open
problem for the community.
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Part II

Robustness in Interaction
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Chapter 5

Test-time Adaptation for Assistive
Robotics

Despite our effort at training and development time, we inevitably run into out-of-distribution
humans at test time. This chapter explores how we can make the best use of training to
enable test-time adaptation.

5.1 Why do we need test-time adaptation?
Our ultimate goal is to enable robots to assist people with day to day tasks. In the context
of patients with motor impairments, this might mean assistance with scratching an itch,
bathing, or dressing [120, 20, 47]. These are tasks in which doing reinforcement learning
from scratch in the real world is not feasible, and so sim2real transfer is an appealing av-
enue of research. Sim2real methods for physical robot tasks in isolation typically work by
constructing a diverse ”population” of environments and training policies that can work
with any member of the population (e.g. a range of parameters of a physics simulator or
a range of lighting and textures) [184, 180, 206, 95, 112, 200, 162, 70].

Similarly, population-based (self-play) training has proven successful in zero-sum games
against humans [166, 9, 79]. But unlike tasks the robot does in isolation, assistance re-
quires coordinating with a human who is also acting. And unlike competitive settings,
assuming the human to be optimal when they are not, can result in dramatically poor per-
formance [29]. Thus, in sim2real for assistance, we have to design a population of poten-
tial users and strategies to train with, akin to the physical environment parameters in typ-
ical sim2real tasks, rather than the standard population-based training approaches used
in competitive settings. But designing a population that is diverse and useful enough to
enable generalization to test-time humans, each with their own preferences, strategies,
and capabilities, remains very challenging, making it likely that test-time partners might
lie outside of the distribution the population was drawn from. Therefore, sim2real meth-
ods for assistance will need to be ready to generalize to out-of-distribution partner policies.
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Figure 5.1: The framework for jointly learning the Personalized Latent Embedding Space
and the robot policy. During training time, we train all components end-to-end to op-
timize for action prediction (orange) and the robot policy (green). At test time, we can
further optimize for this objective to perform test-time adaptation (red). The resulting
latent space captures the underlying structure of the preferences and strategies of the
training humans.

In this work, we identify two principles as key to enabling better generalization. First
is that we benefit from learning a latent space of partners that distills their policies down
to a structure that is useful for the robot’s policy and that makes it easy to identify partners
at test time. Second is that we need to be prepared for this space to not perfectly capture
the space of real human policies, and design it so that it is adaptable with real test-time
interaction data.

We thus propose a framework that learns a latent space directly from history of interaction
by predicting the partner’s actions. Our framework allows a robot to capture the relevant
information about the human partner that the robot can actually identify when starting
to interact, and also enables test-time adaptation of the latent space itself when observing
the partner’s actions. When evaluated with partner policies we purposefully design to
be out-of-distribution, we find that our approach leads to better generalization than prior
methods which either do not learn a latent space at all [173], do not learn a latent space di-
rectly based on interaction history [95], or train a latent space based on other observables,
like states or rewards [203, 135]. Our contributions are four-fold:

1. We introduce an assistive problem setting where the focus is explicitly on general-
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ization to out-of-distribution partner policies.

2. We introduce a framework for training policies for this problem setting, Prediction-
based Assistive Latent eMbedding (PALM). This enables us to study different meth-
ods for learning latent representations on how well they enable generalization.

3. We identify that the design choice of training a latent space by predicting partner ac-
tions directly from history outperforms (1) state-of-the-art sim2real approaches used
in non-assistive tasks that are based on embedding environment parameters [95] as
well as (2) human-robot interaction approaches that train representations by pre-
dicting observed states or rewards [203, 135].

4. We propose to adapt the learned latent space at test time, upon observing the part-
ner’s actions, and show it leads to generalization performance gains.

5.2 The Assistive Personalization Problem
In this section, we introduce the personalization problem in an assistive context. In par-
ticular, our goal is to learn a robot policy πR that can assist a novel human partner in
zero-shot fashion, or with a small amount of test-time data.

Two-player Dec-POMDP. An assistive task can be modeled as a two-agent, finite hori-
zon decentralized partially-observable Markov decision process (Dec-POMDP) and is de-
fined by a tuple ⟨S, α, AR, AH, T , ΩR, ΩH, O, R⟩. Here S is the state space and AR, AH are
the human’s and the robot’s action spaces, respectively. The human and the robot share a
real-valued reward function R : S× AR × AH → R; however, we assume that the reward
function is not necessarily observed by the robot, i.e. its parameters (e.g. the location of
the human has an itch) are in the hidden part of the state. T : S× AR × AH × S → [0, 1]
is the transition function, which outputs the probability of the next state given the cur-
rent state and all agents’ actions. ΩR and ΩH are the sets of observations for the robot
and human, respectively, and O : S× AR × AH → ΩR ×ΩH represents the observation
probabilities. We denote the horizon of the MDP by T.

Target User. We target users with partial motor functions — a common impairment
for individuals with partial arm functions. This is an impairment that can occur in some
people with cervical SCI, ALS, MS, and some neurodegenerative diseases — leading to
the need for robotic assistance. We model the extent of the impairment as the privileged
information in the Dec-POMDP. The robot does not know this a-priori and thus needs to
adapt to individual users’ capabilities.

The Robotic Caregiving Setup. We define the observation space for the robot and the
human following [47]: the robot observes its own joint angles, and the human’s joint po-
sitions in the world coordinate and contact forces; the human observes their joint angles
(proprioception) and the end-effector position of the robot. When training with simulated
humans, the robot gets a reward signal (which depends on privileged information), and
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has to use that signal to learn to implicitly identify enough about the human to be useful;
at test time, the robot does not observe reward signal and must use what it has learned at
training time to identify the human’s privileged information and be helpful.

Distributions of Humans. Let function πH : Ω∗H × AH → [0, 1] be the human policy
that maps from local histories of observations oH

t = (oH
1 , . . . , oH

t ) over ΩH to actions. We
define two distributions of human policies πH ∈ Dtrain, Dtest. In the assistive itch scratch-
ing, Dtrain can be a set of humans with different itch positions on their arms, which lead
to their different movements. We refer to them as in-distribution humans. Dtest contains
out-of-distribution humans whose itch position differ from those in the Dtrain. At training
time, the robot has access to Dtrain. Thus, it has ground-truth knowledge about the train-
ing human’s privileged information, such as each human’s itch position. At test time, we
evaluate the robot policy by sampling humans πH ∼ Dtest and directly pairing them with
the robot policy. We evaluate the zero-shot and few-shot adaptation performance of the
robot policy.

Objective. The main problem we study is how to leverage the training distribution
to learn a robot policy πR : Ω∗R → AR such that we achieve the best performance on test
humans. Concretely, we define the performance of the robot and human as

J(πR, πH) = E

[
T

∑
t=0

R(st, πR(oR
t ), πH(oH

t ))

]
, (5.1)

Only given access to Dtrain, our objective is to find the robot policy
πR = arg maxπ J(π, πH), πH ∼ Dtest.

5.3 Learning Personalized Embeddings for Assistance
with PALM

In this section, we present Prediction-based Assistive Latent eMbedding (PALM). We in-
troduce the general framework of using a latent space to perform personalization in an
assistive context. We then highlight the advantage of action prediction in contrast to prior
works. Finally, we describe how we can optimize PALM at test time to work with out-of-
distribution humans.

Learning an Assistive Latent Space

Given a training distribution of humans Dtrain
1, we would like to learn a robot policy that

can adapt to assist new users. To achieve that, a robot must learn to solve the task while
efficiently inferring the hidden component that differs across humans. One natural way
to do so is to learn a latent space that succinctly captures what differs across humans in a

1we describe how we generate this distribution in Sec. 5.4
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Figure 5.2: The framework for jointly learning the Personalized Latent Embedding Space
and the robot policy. During training time, we train all components end-to-end to op-
timize the prediction loss and the policy loss. At test time, we execute the robot policy,
which is highlighted in green.

way that affects the robot’s policy. When deployed on a test human, the robot infers this
latent embedding and uses it to generate personalized assistance.

We denote the latent space as zt ∼ Eθ(z; τ1:t), where Eθ encodes the trajectory τ so
far and outputs latent vector zt. The robot uses this latent space to compute its actions
aR

t = πR(oR
t , zt). We train the base policy πR and the latent space encoder Eθ jointly as

they are interdependent [107] — better robot policy leads to different trajectories across
humans, which in turn leads to distinguishing z. Ideally, we would like z to capture suf-
ficient information to differentiate the humans, similar to performing a “dimensionality
reduction” on human policies πH. We hereby introduce different objectives for learning
such latent space, and how our method — learning by action prediction — makes a good
fit for the assistive personalization problem.

We do this by dividing the problem into learning a human embedding z for every
user and a common robot policy network a ∼ πR(·|oR, z) for generating actions. While
the robot policy network πR is shared among different users, the embedding z is extracted
from human motion trajectories. Under this construct, a good personalized embedding
space should capture the most important attributes of human policies that differ, and
pass over the common components shared by all humans — these commonalities can be
handled by the base policy. In other words, our goal is to perform dimensionality reduction
on all human policies that we have in the training distribution.

A good personalized embedding space should capture the most important attributes
of human policies that differ, and pay less attention to the common components shared
by all humans — these commonalities can be handled by the robot base policy, and do
not require personalization.
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Additional Training and Implementation Details

In our experiments in both the assistive reaching and assistive itch scratching, we use a
recurrent network over a sliding window of 4-time steps, each of which is a concatenated
vector of observation ot, human action aHt−i and robot actions aRt−i. For the current time
step t, we use zero vector for aHt and aRt. We set the latent space dimension to be four,
and use a recurrent network with six layers. Our base policy network has four dimensions
and hidden size of 100.

How to Construct the Latent Space

Prior work and limitations LILI [203] and RILI [135] learn a latent embedding of the
humans by predicting the next observations and rewards. While they have been shown
to work in predicting and influencing human behaviours, both methods assume access to
the reward function at test time, which we do not have access to in the assistive setting
— we don’t know a-priori the preference and needs of a new user. RMA [95] enables fast
robot adaptation by learning a latent space of environment parameters, such as friction,
payload, terrain type, etc. While it works for a single robot, it is unclear in human-robot
settings, how we can encode human motions and preferences as environment parameters.

Learning by action prediction. Given history τt−N:t =
(
(oR

t−N, aH
t−N), . . . (oR

t , ·)
)

of
N robot observation and human action2 pairs, as outlined in Fig. 5.2, we embed this
trajectory to a low-dimensional manifold and use it to predict aH

t . The intuition is that if
we are able to predict the next action by this human, we extract the sufficient information
about the human’s policy πH. The latent vector z is representative of the trajectory so
far and indicative of the person’s future actions. We do this by training a decoder Dϕ

parameterized by ϕ to predict the next action from the encoder’s output z ∼ Eθ(z; τ1:t).

Lpred = min
θ,ϕ
||Dϕ(z)− aH

t+1||2 + cKL · KL(Eθ(z; τ1:t)||N (z)) (5.2)

The encoder E is a recurrent neural network parameterized by θ. Here the second term
is a regularization term motivated by Variational Autoencoder [87, 197], that enforces the
latent space to follow a normal prior distribution. This encourages nearby terms in the
latent space to encode similar semantic meanings. In the context of assistive tasks, this
helps us better cluster similar humans closer in the latent space, and we show a didactic
example in Sec. 5.4.

Latent Space Adaptation at Test Time

At test time, as we work with a new user, we would like our encoding of the new user
to match the true latent information, z∗ of that user. In other words, we would like to

2We do not assume access to the person’s sensorimotor action (e.g. joint torques). We define human
action as change in the person’s Cartesian pose, which can be tracked externally.
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minimize ||E(τ)− z∗||2. Because we do not know about the new users a-priori, we can
only optimize for this objective via proxy, which we refer to as test time adaptation.

Since the PALM latent space is based on action prediction, we can adapt it to a new
user by further optimizing the latent space. Note that because Eq. (5.2) requires only
observation-action data, we do not need any additional label to perform test time adap-
tation. More formally, we collect a small dataset of test-time interaction trajectories, τ,
and perform a few gradient steps to optimize both the encoder and decoder for Eq. (5.2):
(θ, ϕ)→ (θ, ϕ)− δ∇(θ,ϕ)Lpred(Eθ,Dϕ, τ).

The idea of test-time optimization has been shown to improve perceptual robustness
for grasping in sim2real research [204]. We follow a similar pipeline, where we can im-
prove the latent encoding by collecting unsupervised action data from test users. Here
the main difference is instead of perceptual differences, our goal is to reduce the domain
gap on test users.

End-to-end training of the latent space

We need to train the base policy πR and the latent space encoder Eθ(z; τ) jointly because
they are interdependent — z is the input to πR, and πR decides the data distribution
which leads to z. We simultaneously optimize the prediction loss in Eq. (5.2) and the
policy loss using PPO [160] algorithm. See Sec. 5.3 for more training details. To amend for
the instability of training with a population of humans, we leverage Behaviour Cloning,
where we use expert robot policies obtained via co-optimization to supervise πR on on-
policy data.

More specifically, we query the expert actions aexp
t in a DAgger fashion[150] 3 during

training, and optimize aR
t to minimize deviation from it: LBC = ∑t ||aexp

t − aR
t ||2. The

overall policy optimization loss include three terms: latent prediction loss, PPO loss and
the Behaviour Cloning loss: LPALM = Lpred + LPPO + LBC.

Generating Human Populations

To train our robot using sim2real, we would like to have a set of diverse environments.
However, unlike single-agent domain randomization where we can vary environment
parameters such as friction, in assistive tasks the environment entails a changing user
policy. It is not obvious how to best generate a diverse population that captures user
preferences, levels of disabilities, or movement characteristics. Generating human mo-
tions that realistically capture the variation observed in physical human-robot interaction
has remained an unsolved challenge in robotics.

Co-Optimization Prior works in robotic assistance [47, 36] have demonstrated that by
optimizing for the same task objective, we can generate human and robot motions that

3This ensures that we encounter no distribution shift at deployment time.
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Figure 5.3: Visualization of humans generated of different activity levels. From left to
right we apply action penalties cp = 0, 10, 30, 60. Qualitatively, increasing the penalty
results in the human taking more steady actions with less swinging motions. This results
in the human being more likely to expose the itch spot for the robot to scratch, as opposed
to scratching themselves.

coordinate towards the same goal, such as robot-assisted dressing. Further more, we can
leverage reward engineering [61, 210] to generate a diverse set of motions.

To generate diverse population in itch scratching task, we explore two sources of di-
versities: (1) we assign different human action penalty cp, where larger penalties lead to
the human agent exerting less effort. In the simulation experiment we use cp = 3, 3.5, 4.

(2) We simulate different itch positions on the human’s arm and train co-optimized hu-
man and robot policies conditioned on them. This leads to qualitatively different strate-
gies for the human and the robot. Note that this serves as the first step to understanding
how different methods generalize since we never expect to be able to capture the diversity
in humans perfectly.

For training, we use Proximal Policy Optimization (PPO) to optimize human and
robot policies in an interleaving fashion.

Note that we also keep the co-optimized robot policy and use it to obtain expert actions
for assistive policy training (see Sec. 5.3 and supplement for full details).
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Visualization Here we visualize trajectories from humans with different action penal-
ties in Fig. 5.12. Note that higher penalties result in the human taking more steady actions
of smaller magnitude.

Algorithm

We present the main algorithm for PALM assume we have access to training and test
distributions Dtrain and Dtest.

Algorithm 3 Prediction-based Assistive Latent eMbedding Training

Randomly initialize base policy π, encoder Eϕ parameterized by ϕ, decoder Dθ param-
eterized by θ. Empty replay buffer D1, window size w

for itr = 1, .., Nitr do
for i = 1, .., Nbatch do Sample πHi ∼ Dtrain, optionally find pre-trained expert robot

policy πEi
o0 ← env.reset()
Initialize history H ← ϕ
for t = 0, ..., T do
Get latest w steps from H: H−w ← H[−w :].
zt ← Eϕ(ot, H−w)
aHt ← πHi(o0)
aRt ← π(ot, zt), aet ← πEi(ot)
ot+1 ← env.step(aHt, aRt)
Store (ot, aHt, aRt, aet, H−w) in D1
end for

end for
for j = 1, ..., Nopt do Sample a batch of (ot, aHt, aRt, H−τ) from D1

Compute Lpred using Eq. (5.2), LPPO using [160] and LBC = ∑t ||aexp
t − aR

t ||2
Optimize θ, ϕ, π for LPALM = λpredLpred + λPPOLPPO + λBCLBC

end for
end for

5.4 Experiments
In this section, we evaluate our method PALM (Prediction-based Assistive Latent eMbed-
ding) in collaborative human-robot environments of varying tasks and varying popula-
tions of human models. In particular, we focus on the out-of-distribution generalization
by constructing different forms of out-of-distribution populations. We focus on empiri-
cally investigating the benefits of learning a latent space, the effect of different kinds of



CHAPTER 5. TEST-TIME ADAPTATION FOR ASSISTIVE ROBOTICS 74

Algorithm 4 Prediction-based Assistive Latent eMbedding Test Time Adaptation

Sample πH ∼ Dtest, Initialize history H ← ϕ, Empty trajectory data τ
for i = 0, .., Nadapt do

o0 ← env.reset()
for t = 0, ..., T do

Get latest w steps from H: H−w ← H[−w :].
zt ← Eϕ(ot, H−w)
aRt ← π(ot, zt)
ot+1 ← env.step(aHt, aRt)
Store (ot, aHt, H−w) in τ

end for
Compute Lpred using Eq. (5.2) on τ, θ → θ − δ∇θLpred(Eθ, τ).

end for

prediction on learning a useful latent space, the properties of learned latent spaces, and
the gains from test-time adaptation to humans.

Environments

Here we introduce two environments where we study assistive personalization. In both
environments, the robot has to infer some hidden information from the human in order
to successfully solve the task. Note that these are examples meant for demonstrating the
effectiveness of the algorithm, and we do not claim to solve the full robotic caregiving
problem.

Figure 5.4: The assistive reacher environ-
ment. Left: the robot’s goal is to move the
human agent towards the hidden target.
Right: the hidden goal’s position can be in-
ferred 90 degrees from the humans force
output.

Assistive Reacher (Fig. 5.4) is 2D collab-
orative environment where a two-link robot
arm assists a point human agent to get to
the target position. This target is located at
(d cos αH, d sin αH), where d is a fixed value,
and αH ∈ [−π, π] is known to the human,
but not the robot. The human agent is ini-
tialized randomly in the 2D plane with ran-
dom hidden parameters αH ∈ [−π, π], kH ∈
[0.5, 1.5]. The robot can only identify the
target position by physical interactions —
once the robot initiates contact, the human
applies a force kH · (cos αH + π

2 , sin αH + π
2 ).

Only by recognizing the human in terms of
αH, kH can the robot compensate the force,
and successfully move the human to the
hidden target. Each episode has 40 timesteps.
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The Scope of Generalization. We define Dtrain as 36 samples uniformly sampled
from αH ∈ [−π, π

2 ], kH ∈ [0.5, 1.5] and Dtest as 12 samples uniformly sampled from
αH ∈ [π

2 , π], kH ∈ [0.5, 1.5].
Assistive Itch Scratching (Fig. 5.2) is adapted from assistive gym [47]. It consists of a

human and a wheelchair-mounted 7-dof Jaco robot arm. The human has limited mobility
— they can only move the 10 joints on the right arm and upper chest, and needs the
robot’s assistance to scratch the itch. An itch spot is randomly generated on the human’s
right arm. The robot does not directly observe the itch spot, and relies on interaction with
the human to infer its location. Each episode has 100 timesteps.

Generating Synthetic Human Agents

We use co-optimization to create Dtrain and Dtest for Assistive Itch Scratching.
A benefit of the co-optimization framework is that it naturally induces reward-seeking

behaviour from the human and the robot, which simulates assistance scenarios. For in-
stance, to generate more inactive human policies, we can introduce a weighting term in
the reward function for human action penalties Rp = cp · ||πH(st)||2 where cp is a constant
controlling the penalty. The overall objective becomes

max
πH,πR

E
[
∑

t
R
(
st, πH(st), πR(st)

)]
+ cp · ||πH(st)||2 (5.3)

Figure 5.5: Defini-
tion of Dtrain and
Dtest.

The Scope of Generalization. We are motivated by real world
applications where users tend to have different levels of mobility
limitations, or itch locations in different body parts. To generate
a synthetic population to capture such diversity in itch scratching
task, we explore different co-optimization settings (1) we assign dif-
ferent human action penalty to be cp = 3, 3.5, 4, where larger penal-
ties lead to the human agent exerting less effort. To compensate for
the penalty, the human agent tends to move joints earlier in the kine-
matic chain of the arm, such as the shoulder instead of the elbow,
which can induce larger motions. As a result, the varying penalties
lead to qualitatively different solutions for the co-optimization. (2)
We simulate different itch positions on the human’s arm and train
co-optimized human and robot policies conditioned on them. This leads to qualitatively
different strategies for the human and the robot. Note that this serves first step to under-
standing how different methods generalize, since we never expect to be able to capture
the diversity in humans perfectly. Indeed, figuring out a good synthetic population that
can effectively model real-world humans is an important open question. Note that there
are a variety of other different ways to generating synthetic humans and we do not claim
that these are the most optimal way to generate them. Figuring out how to optimally gen-
erate synthetic human to achieve best real world performance remains an open challenge.
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For training, we use Proximal Policy Optimization (PPO) to optimize human and robot
policies in an interleaving fashion.

Note that we also keep the co-optimized robot policy and use it to obtain expert actions
for assistive policy training (see Sec. 5.3 and supplement for full details).

To construct Dtrain and Dtest, we divide the two arms’ areas into four equal portions,
as shown in Fig. 5.5, and generate human policies conditioned on itch positions in these
areas. Dtrain consists of three of the four portions and Dtest consists of the remaining one.
We then construct three distribution sets in increasing order of difficulties. In the first
distribution D1, we confine itch positions from a line-shaped region. In D2, we sample
from all the arm areas. Note that D1 and D2 are constructed by setting action penalty
cp = 3. In D3, we combine humans of cp = 3, 3.5, 4, each trained with two different
random seeds. This adds the extra complexity of human activity levels. We simulate 12
in-distribution humans from each of the three training portions under each action penalty.

Baselines

We compare with baselines that do not learn an explicit latent space as well as existing
methods for adaptation via learning latent embeddings.

MLP and RNN. We follow [173] that trains sequential models to enable adaptation
to simulated humans. We explore using a recurrent neural network or a feed-forward
network on concatenated state-action histories. The models directly output robot action,
and there is no latent space modeling.

PPO and Behaviour Cloning

We need to train the base policy πR and the latent space encoder Eθ(z; τ) jointly because
they are interdependent — z is the input to πR, and πR decides the data distribution which
leads to z. We simultaneously optimize the prediction loss in Eq. (5.2) and the policy loss
using PPO [160] algorithm. See Sec. 5.3 for more training details. To amend for the insta-
bility of training with a population of humans, we leverage Behaviour Cloning, where we
use expert robot policies obtained via co-optimization (see Sec. 5.3) to supervise πR on on-
policy data. More specifically, we query the expert actions aexp

t in a DAgger fashion[150]
4 during training, and optimize aR

t to minimize deviation from it: LBC = ∑t ||aexp
t − aR

t ||2.
The overall policy optimization loss include three terms: latent prediction loss, PPO loss
and the Behaviour Cloning loss: LPALM = Lpred + LPPO + LBC.

Hyperparameters

PALM Training We use λPPO = 0.1, λBC = 1, λpred = 0.1 in our experiments. We find
that the behaviour cloning loss is essential for the Assistive Itch Scratching task. Under

4This ensures that we encounter no distribution shift at deployment time.
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this hyperparameter setting, we train for 200 iterations. During each iteration, we collect
19,200 state-action transitions, which is evenly divided into 20 mini-batches. Each mini-
batch is fed to the base policy and encoder for 30 rounds to compute the loss and error
for back-propagation. We set the learning rate to be 0.00005.

For PALM prediction training, we use a three-layer decoder with hidden size 12 to
predict the next human action from the hidden state from the encoder. To implement
the KL regularization, follow the standard VAE approach. We use two linear networks to
transform the encoder hidden state into µ and σ, which denote the mean and the standard
deviation of the latent space. We then compute approximate KL divergence to normal
distribution on this latent distribution.
PALM Test Time Optimization At test time, we roll out the trained robot policy and
collect data with the same user for 25 iterations, or 2,500 time steps. This amounts to
150 seconds of wall clock time. We then optimize for the prediction loss (including KL
regularization term) using learning rate of 0.0001 for one to five steps, and use the one
with the lowest loss. We empirically find the hyperparameters by doing the same process
with humans from the training distribution, where we collect a mini training set and mini
evaluation set both of 25 iterations. We use the mini training set to find the learning rate
and use the evaluation set to ensure there is no over-fitting.
RILI/LILI Training We follow a similar approach to PALM, except that we learn to predict
the next state ot+1 and scalar reward.

Figure 5.6: Latent space
of PALM in the assistive
reacher environment when
we can sample humans
αH ∈ [−π (red), π (blue)]
continuously.

RMA Training We follow the two-phase training pro-
cedure in [95]. Note that we find it crucial in phase 2 to
train the encoder with on-policy data, meaning that the
regression data is collected by rolling out actions out-
put by the “recurrent learner”, not the trained network
from phase 1. The phase 1 network is used simply for
generating labels.
RNN/MLP Training. For RNN, we directly feed the
hidden state of the recurrent encoder to the policy net-
work. The architectural difference between RNN and
PALM is that we do not concatenate the current obser-
vation ot to the encoded output. To ensure that the pol-
icy has at least the same capacity as PALM, we use a
base policy with the same number of parameters as in
PALM.

ID-based Human Embeddings. In contrast to
learning latent space from history, another class of
method studies encodes human-designed environ-
ment parameters [95, 107, 85]. We focus specifically on
RMA [95], a two-phased method that first learns to encode task-ID (phase I) and then
trains a recurrent network to regress to the embeddings from observation history (phase
II). For training a quadruped robot, RMA encodes the physical parameters (friction, pay-
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load, etc) of the environment. The first stage trains a policy with ground-truth informa-
tion, and the second phase performs environment identification. While RMA is shown
to be effective for learning policy for in-distribution environments, it is unclear how well
it generalizes to out-of-distribution environments. Furthermore, in assistive tasks, it is
unclear how to construct the ”ground-truth ID” for phase I that quantifies the user char-
acteristics. We study RMA-Param and RMA-Onehot, where we assign each training hu-
man a one-hot vector. For RMA-Param, we use a three-dimensional vector that includes
the x, y position of the itch position and the arm index. When there are multiple human
activity levels as mentioned in Sec. 5.4, we introduce a fourth dimension with an integer
to indicate the action penalty cp.

LILI and RILI. We consider two other methods of the PALM framework: LILI [203]
and RILI [135]. As mentioned in Sec. 5.3, LILI jointly predicts future observation and
reward, and RILI predicts reward. Given that reward is only available at training time,
we cannot perform test time optimization for LILI and RILI.

Ablations of PALM. Our method has several components: we use a recurrent neu-
ral network to encode interaction history, and use its output to minimize prediction loss
Lpred and policy loss Lpol. We also use the KL term in Eq. (5.2) to regularize the human
embeddings. To test the effectiveness of our method, we separate different parts and cre-
ate a set of baselines. We hereby describe them in detail: (1) No Lpred: the model shares
the same encoder and policy network architecture, yet we don’t optimize for Lpred. By
removing the prediction loss in Fig. 5.2, the latent space is not explicitly trained to contain
human information. (2) No cKL: no regularization in the latent space. (3) Frozen embed-
ding: instead of jointly training embeddings and the policy network, we first train the
encoder on expert data, freeze it, and then train robot policy.

Ablation Studies

PALM Baselines Reach Itch D1 Itch D2 Itch D3

PALM test optim 0.43 ± 0.13 0.51 ± 0.08 0.50 ± 0.02 0.29 ± 0.02
PALM w/o test optim 0.38 ± 0.10 0.48 ± 0.08 0.49 ± 0.02 0.26 ± 0.01
No Lpred 0.30 ± 0.05 0.50 ± 0.08 0.45 ± 0.02 0.25 ± 0.01
cKL = 0 0.32 ± 0.08 0.47 ± 0.04 0.46 ± 0.01 0.23 ± 0.02
Frozen E 0.24 ± 0.04 0.21 ± 0.06 0.15 ± 0.07 0.11 ± 0.05

Table 5.1: Normalized Reward on Dtest, standard deviation over 3 seeds.

We include ablation studies of PALM in the main experiment in Sec. 5.4, where we
study the effect of test-time optimization, prediction loss, KL regularization and jointly
training encoder E and policy π.

In the assistive reaching experiment, we observe that test-time optimization, Lpred, KL
regularization, and joint training all contribute to the OOD performance.



CHAPTER 5. TEST-TIME ADAPTATION FOR ASSISTIVE ROBOTICS 79

In the assistive itch scratching experiment, test time optimization and Lpred improve
experiment results in all the settings. Applying KL regularization provides some gain in
the complex distribution D3, but does not lead to improvement in simpler distribution D1
and D2.

Didactic Experiment in Assistive Reacher Environment

Can PALM learn a meaningful distribution from the interaction? Unlike other ID-based
methods like RMA, PALM does not have access to the human parameters at training time.
We study whether PALM can learn a meaningful latent space without explicitly knowing
this information. We sample training humans from αH ∈ [−π, π] continuously. We train
PALM with different amount of prior regularization, cKL from Eq. (5.2). We train using a
recurrent window of length 4 and a batch size of 512 episodes. Additional training details
can be found in the supplementary material.

We average test results using 100 episodes and visualize the results in Fig. 5.4. Given
that humans are parameterized by αH, KH, the ideal embedding space looks like a ring
with a small blob in the center. The ring corresponds to the 2D projection of αH and
the blob denotes the initial part of interaction before contact, which is indistinguishable.
We find that while PALM never observes the underlying parameter αH, it can learn a
latent space that characterizes αH. Interestingly, varying the amount of regularization
qualitatively affects the shape of the latent space. Setting the VAE regularization cKL = 0.1
recovers a latent space that most resembles to the ideal latent space.

Assistive Reacher Main Experiment

Experiment Setting. We use the finite Dtrain described in Sec. 5.4 and train all baselines
for 200 epochs with 512 batch size. We then evaluate the trained policies on Dtest. We
normalize the resulting reward with respect to oracle reward.
Results. We average test results using 100 episodes. On in-distribution humans, we find
that all methods successfully follow the right policy that assists the human to reach their
goal. This shows that they all successfully predict the human latent information explicitly
or implicitly. On out-of-distribution humans, the methods are no longer guaranteed to
predict the correct embedding. PALM with action prediction significantly outperforms
other methods. With test-time adaptation, PALM further improves.
Visualizing the latent space. We qualitatively study generalization by visualizing the la-
tent space as well as the mapped embeddings of both in-distribution and out-of-distribution
humans (in red crosses) in Fig. 5.7. Interestingly, only PALM with action prediction can
infer the “ring” structure. RMA, RNN, LILI and RILI fail to do so. We hypothesize that be-
cause hand-crafted human IDs do not convey the information about human policy, RMA
warped the IDs in arbitrary what that are harmful for generalization. The same happens
with RILI and LILI. We hypothesize this is due to the inherent ambiguity in reward pre-
diction: a low reward does not necessarily recover the human policy structure.
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Figure 5.7: Top left: evaluation offi PALM and baselines on in-distribution (green) and
out-of-distribution (pink) humans. Right and bottom: visualization of the latent embed-
dings of different methods. OOD humans are highlighted in red crosses. Best viewed
electronically.

The visualization also offers some insight into why having cKL regularization is help-
ful for generalization. Compare the latent space of PALM cKL = 0 and PALM cKL = 0.1,
the latter induces a smoother distribution where test humans are better fitting in the
“missing arc” of the “ring”. Further more, we see that with test time optimization, the
PALM latent space embeds the OOD human better, by filling in more of the arc.

Assistive Itch Scratch Main Experiment

Diverse population of humans. In the assistive gym environment, we followed the
method in Sec. 5.4 and explore two axes of generating diverse synthetic humans. First,
we use motion synthesis based on co-optimization and reward engineering. We assign
human action penalty to be cp = 3, 3.5, 4, and find that larger penalties lead to the hu-
man agent applying lower magnitude actions. To compensate for the penalty, the human
agent tends to move joints earlier in the kinematic chain of the arm, such as the shoulder
instead of the elbow, which can induce larger motions. As a result, the varying penalties
lead to qualitatively different solutions for the co-optimization. Secondly, we vary the
human agent by simulating different itch positions on their arm, where the itch position
is unknown to the robot. We train co-optimized human and robot policies conditioned
on different itch spots, which leads to qualitatively different actions for the human and
the robot. With these two different axes, we can generate a population of human with
different itch positions as well as activity levels. We are only using this as a first step to
understand how different methods generalize, since we never expect to be able to capture
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Figure 5.8: In assistive itch scratching, we sample humans by different itch positions and
activity level (varying action penalty cp). We visualize the in- and out-of-distribution
humans on the two-link arm figures. We also visualize the embedding space of PALM
and RMA, where we color-code the embeddings of in-distribution humans. Here we
leave the embeddings of other baselines to supplementary material.

the diversity in humans perfectly. Indeed, figuring out a good synthetic population that
can effectively model real-world humans is an important open question.

Extrapolating beyond training distribution As shown in Fig. 5.8, we divide the sur-
face area on the human’s arms into four equal portions from shoulder to wrist. We simu-
late 12 in-distribution humans from each of the three training training portions, as high-
lighted in brown in Fig. 5.8, and use 12 humans from the held-out section for out-of-
distribution test. In total, we have 36 in-distribution humans and 12 out-of-distribution
humans.

We construct three distributions in increasing order of difficulties. In the first distri-
bution Γ1, we sample itch positions from a line-shaped area on the outer side of the arm.
In the second Γ2, we sample itch positions from all the surface area around the arm. Note
that Γ1 and Γ2 are constructed by setting cp = 3. In the third Γ3, we randomly sample
from humans of cp = 3, 3.5, 4, each trained with two different random seeds. This add in
the extra complexity of human activity levels.

Human parameters at training time. Some baselines such as RMA require the training
humans to be parameterized in some way to distinguish the different humans. In princi-
ple, one could always use one-hot IDs, but the quality of the learnt encodings and final
performance of the method depends heavily on the quality of the parameterization. We
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evaluate the RMA baseline both on a 36-dimensional one-hot vector (concatenated with
the robot’s observations) and also the task-specific parameterization we could come up
with that characterizes the axes of variation. We use a three dimensional vector that in-
cludes x, y position of the itch position and the arm index. The third dimension indicates
the action penalty.

We find PALM achieves better generalization result on the held-out humans across
all three types of distributions. Interestingly, both RMA methods have access to more
information during training than PALM, yet still perform worse. We also see that despite
not knowing about the training distribution a-priori, PALM is able to learn the underlying
structure in the human distribution in an unsupervised fashion purely from interaction.

Figure 5.9: We visualize the embeddings of the
OOD humans in assistive gym latent space. We use
the second distribution, where all humans are sam-
pled from a line-shaped region.

Results. We follow a similar pro-
cedure as the reach environment
to train itch scratching policy, and
train for 240 epochs with 192 tra-
jectories for batch size. As shown
in Fig. 5.8, we observe PALM with
action prediction has better gen-
eralization performance than other
baselines. We see that in the simpli-
fied distribution D1, RILI and MLP
have the best generalization perfor-
mance among baselines, yet as the
complexity of the training human
distribution increases, they deterio-
rate.

Visualizing the Latent Space To further investigate why PALM generalize better to
OOD human than RMA baselines, We visualize the latent space of the ”straight-line”
distribution. As we see in Fig. 5.9, PALM can capture the structure in human training
distribution as two clusters, and also correctly embed the OOD humans distribution as a
part of the upper arm distribution. RMA-based methods, on the other hand, can discover
the structure of training humans. Yet qualitatively, they fail the correctly embed the OOD
humans in proximity to the upper arm distribution.

User Study

We conduct a user study with 9 users from age 22 to 29. We simplify the VR environ-
ment such that the user has four degrees of freedom: three on the shoulder and one on
the elbow. We do not explicitly track the elbow and use the controller rotation and ori-
entation to track the arm motions. We then convert the human pose deltas into actions
in the environment. Note that the real user can exceed the action limit in assistive gym
(env.action space human.high). This can be challenging for the robot because it has
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Figure 5.10: The user study setup. Left and center are the user interacting with virtual
robots through the HTC VIVE headset and the hand controller. The right is the first-
person view in VR[46].

not seen such action magnitude during training. We use a red marker to remind the users
if they have exceeded the action limit.

For each user, we test with two itch spots, one on the upper arm and one on the lower
arm. We use randomized orderings of different methods. Each interaction is 150 simula-
tion time steps and roughly six seconds of wall clock time. Within each method, we let
the user interact for a total of five trials. We also find that the robot can be initialized in
poses that collide with the human at that moment. We discard trials when such collisions
are detected.

For training the robot controller, we synthesize humans of six different activity levels
(cp = 0, 3, 10, 30, 60, 100), each with two random seeds to simulate users of different activ-
ity levels. We then sample 16 itch spots from each human, which results in a total of 192
training humans. The training itch spots do not include the two spots that we test on.

Figure 5.11: Left: visualization of the two itch spots in user study. Right: relative perfor-
mance of different methods. The error bar indicates standard error.

For evaluation, we compute success count: the total number of time steps where the
robot’s tool is within 10 centimeters of the itch location. To account for different user



CHAPTER 5. TEST-TIME ADAPTATION FOR ASSISTIVE ROBOTICS 84

dexterity levels, we then normalize the result against the highest and the lowest success
count on that itch spot for that user. We show the results in Fig. 5.11. Note that PALM
yields high performance in both itch spots and outperforms the RMA baselines. We also
find the performance of the RNN baseline to be comparable with PALM for the first task.
We hypothesize that this might be due to the real users being able to quickly adapt to the
robot’s behaviour. This causes the performance of all the methods to be more similar than
shown in the simulation experiments.

Comparison with other VAE baselines for sequential data

Note that our method relies on embedding human trajectories as sequential data into
a latent space. Our implementation uses the final hidden state of RNN as the input to
variational autoencoder. This is based on [16], which has been shown to be effective
in embedding and generating sentences. Given that there are other different generative
models for sequential data, our framework can be easily combined with them. In fact,
wee believe coming up with a better model for human embedding is a future direction.

We hereby provide comparison with another different generative sequential model
[34]. Different from [16] that uses only the final hidden state, they construct a latent space
for every intermediate step in the sequential model. We keep all the experiment hyper-
parameters the same, and concatenate the final hidden state with observation as input to
the robot policy. We show the results in

Normalized Reward Distribution Our Method [16] Baseline [34] RNN

Assistive Reacher IND
OOD

0.72 ± 0.02
0.38 ± 0.10

0.66 ± 0.02
0.11 ± 0.01

0.62 ± 0.02
0.27 ± 0.09

Itch Scratching D1 IND
OOD

0.75 ± 0.01
0.48 ± 0.08

0.45 ± 0.04
0.32 ± 0.01

0.79 ± 0.01
0.25 ± 0.08

Itch Scratching D2 IND
OOD

0.58 ± 0.03
0.49 ±.0.02

0.70 ± 0.03
0.31 ± 0.05

0.44 ± 0.01
0.40 ± 0.02

Itch Scratching D3 IND
OOD

0.34 ± 0.02
0.25 ± 0.01

0.23 ± 0.22
0.13 ± 0.01

0.18 ± 0.01
0.16 ± 0.01

Table 5.2: Comparison with RNN-VAE baseline [34]

Additional Experiment: Bed Bathing Task

We further evaluate the performance of PALM in another assistive robotics task: robot-
assisted bathing. This task is a modified version of the bathing task introduced in Assis-
tive Gym [47]. In this task, we have a human lying on a tilted bed, with a robot mounted
on the nightstand. The human can move their right arm, and there is an identified patch



CHAPTER 5. TEST-TIME ADAPTATION FOR ASSISTIVE ROBOTICS 85

of skin to be cleaned. Unlike the original bed bathing task, where the entire right arm is
covered in target points to be cleaned, we instead initialize a fixed size region of points to
be cleaned at a uniform randomly selected location along the surface of the right forearm.
The patch spans 10 centimeter along and 150 degrees around the forearm. Only the hu-
man knows the center position of the patch, and the robot must infer the location of the
patch based on observations of the human motion. The points along the body are cleaned
whenever the robot initiates contact with the spot using its end-effector and applies a
positive normal force. The task reward is based on how many points are cleaned.

Figure 5.12: Visualization of the bed bathing task (left), where the human lies on a tilted
bed with a table-mounted robot to clean an area on their arm. The area is random initial-
ized (middle) on the forearm, where we hold out a quarter of the length as the held out
distribution. The results of the held-out distribution is visualized on the right.

We generate synthetic humans by co-optimizing humans and robots conditioned on
the centroid position of the region to be cleaned. During co-optimization, we adopt the
formulation in [47] where both the human and the robot observe the centroid position
along the human forearm. This helps induce collaborative behaviour for the human and
robot policies, where we then use the resulting human as the synthetic population. Dur-
ing training, we blind of robot policy of the centroid position. We use the co-optimized
robot (observes the centroid position) as the oracle for querying expert actions for Be-
haviour Cloning. We sample 18 humans from the training distribution, and save 6 hu-
mans from the held-out distribution as the out-of-distribution evaluation. We use the
same hyperparameters as the itch scratching experiment.

As we see in the results in Fig. 5.12, PALM achieves better out-of-distribution results
compared to the baseline methods. We also observe that this performance gap is smaller
than the itch scratching task. We believe this is due to the nature of the bed bathing
task, where a robot controller that maintains contact with the human’s forearm can be
sufficient for solving the task if the human policy learns to move and rotate their forearm
accordingly to help the robot.
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Limitations and Failure Cases

Although PALM achieves good average-case performance, it works best with humans
sampled near the training distribution. If we pair the robot with an adversarial human,
PALM is likely to fail as it lacks a fall-back safety policy.

The major limitation of PALM is the requirement of generating a human population.
While we provide one way to generate human populations based on weighted human-
robot co-optimization, we lack ways to systematically generate diverse and realistic hu-
man motions. One important direction for future work is to incorporate real user data to
create training populations. Improving the realism of the training human population is
likely a crucial step to supporting transfer to real partners.

One future direction is extending to settings with one patient and one human care-
giver. While our framework still applies, this leads to new challenges including (1) learn-
ing a joint or separate latent space for human patient and caregiver, (2) modeling a pop-
ulation of human caregivers for training in simulation, and (3) modeling communication
between the human caregiver and patient.

5.5 Conclusion
Generalization is an important task for assistive robotics, and in this paper, we formulate
a problem setting that focuses on Out-Of-Distribution users. To that end, we contribute
a framework PALM for learning a robot policy that can quickly adapt to new partners
at test time. PALM assumes a distribution of training humans and constructs an embed-
ding space for them by learning to predict partner actions. We can further adapt this
embedding at test time for new partners. Experiments show that PALM outperforms
state-of-the-art approaches. We are excited by the potential of using PALM to enable
robotic assistance in the future.



87

Chapter 6

Robustness via Natural-Adversarial
Frontier

This chapter explores how we can actively synthesize adversarial human agents for fail-
ures, and use this adversarialness to characterize the safety of Human AI systems.

6.1 What is Adversarial Synthesis for Human AI Systems?
Deploying assistive robots in healthcare facilities and homes hinges crucially on their ro-
bustness, reliability, and the assurance that they can safely interact with individuals of
all ages, from children to older adults. The worst-case scenario would involve an errant
robotic arm causing injuries. However, slight variations or unpredictable elements in the
operational environment can influence the behavior of learned robotic policies. Conse-
quently, we must thoroughly examine the robot’s response not just to regular situations
but also to potential scenarios where unexpected events may unfold.

The complexities of stress testing robot policies, however, can be exceptionally high.
For instance, verifying the robustness of a dish-loading robot in all kitchen configurations
is highly costly [181]. Verifying human-robot interaction applications, in comparison,
is even more challenging due to the fact that the human partner performs independent
actions, changing the state that the robot’s policy responds to, and potentially inducing
distribution shift.

The common approach to probing the policy’s robustness — perturbing inputs x to
the model — would translate here to perturbing the human partner’s actions. But this
can paint a misleading picture of the robustness of an assistive policy: while in theory
any human action is possible, in practice humans won’t move in arbitrary ways. A robot
policy might thus fail under small adversarial perturbations but work under quite large
natural deviations in human motion.

We thus propose to measure robustness to natural variations in human motion. This
begs the question of how to define ”natural”. We propose a generative approach: given
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Figure 6.1: We propose measuring assistive robustness by considering the naturalness of
human motions, and analyzing the entire natural-adversarial frontier: points with natural
human motion that lead to good robot performance (left), unnatural motions that easily
break the policy (right), and natural motions that still lead to failures (center). The full
frontier paints a more useful picture of robustness than looking at a single point, and can
be reduced to a scalar using the area under the curve (AUC): lower AUC is indicative of
higher robustness.

a dataset of motions — demonstrated by the human in the target task or sampled from a
trusted human model/simulator [30, 99] — we train a GAN [55, 71] and definite natural-
ness via the learned discriminator.

Next comes the question of how unnatural we allow human motions to be in our search
for adversarial attacks against the robot: it is easy to break most policies if we allow
motions that are very unnatural, and we might not find the interesting failure cases if we
restrict the motion to be too close to what was seen in training. We thus advocate that
robustness should not be assessed by looking at a single threshold, but rather by looking
at the entire natural-adversarial frontier.

Our proposal is to measure assistive robustness by considering the naturalness of hu-
man motions and analyzing the entire natural-adversarial frontier.

This Pareto frontier likely contains points of poor robot performance caused by un-
natural human motions and points of good robot performance interacting with naturally
moving humans. What is interesting lies in between: there exist natural motions that can
lead to unexpected failures as in Fig. 6.1, leading to a high area under the curve.

We introduce RIGID, a method that constructs the natural-adversarial frontier by train-
ing adversarial human policies that trade-off between minimizing robot reward and act-
ing in a human-like way, as measured by the discriminator 1. We construct the frontiers
for different policies — one trained to naively collaborate with the human, and others
trained with robust Reinforcement Learning methods (e.g. by using populations) [68,

1While in our work we use a simulated human to generate data for the discriminator, in general, this
data can also come from human-human or human-robot interaction in the task.
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40]. While we find that prior robust RL methods improve policy robustness measured by
RIGID, we are able to uncover edge cases where natural motions (natural with regard to
our simulated human) cause robot failures. We then use RIGID to improve robustness
by fine-tuning regular RL using data points identified by RIGID. Finally, we conduct a
user study with naive users and an expert who attempts to lower the robot’s reward.
We find that RIGID can generate failure cases more effectively than manual effort, and is
predictive of deployment performance.

6.2 Natural-Adversarial Robustness
In this section, we first introduce the robotic assistance problem in Fig. 6.2, where the
goal is to assist a human in a partially observable setting — the human may have hidden
information, such as intent or preferences, that needs to be inferred on the fly. We then
formulate the problem of adversarial but natural human motion, and reduce it to the
optimization of an objective trading off between the two.

Figure 6.2: Assistive
task: itch scratching
with unknown itch
locations. See Sec. 6.6
for more details.

Assistance as a Two-Player Dec-POMDP. Following prior
work [63, 179, 68] we model an assistive task as a two-agent, fi-
nite horizon decentralized partially-observable Markov decision
process (Dec-POMDP), defined by the tuple ⟨S, α, AR, AH, T , ΩR,
ΩH, O, R⟩. Here S is the state space and AR and AH are the hu-
man’s and the robot’s action spaces, respectively. The human and
the robot share a real-valued reward function R : S× AR× AH →
R; however, we assume that the reward function is not fully ob-
served by the robot, i.e., some of the reward function parameters
(e.g., the specific goal location or objective of an assistive task)
are in the hidden part of the state. T is the transition function
where T (s′ | s, aR, aH) is the probability of transitioning from state
s to state s′ given aR ∈ AR and aH ∈ AH, ΩR and ΩH are the
sets of observations for the robot and human, respectively, and
O : S× AR × AH → ΩR ×ΩH represents the observation proba-
bilities. We denote the horizon of the task by T.

Dataset Aggregation (DAgger) [150] is a framework for passively incorporating failure
cases into robot learning. One limitation of DAgger is that it requires online interaction
with real humans in order to improve robustness – failing, and having the human correct
or otherwise augment the data and retraining. This is undesirable in assistance and may
cause harm to users. In contrast, our framework is an instance of active learning [67]
that looks for failure cases of the robot policy before deployment. This way, we actively
discover failure cases in simulation without real-world consequences.

Generative adversarial imitation learning (GAIL) [71] is a promising method for pro-
ducing motions that mimic a set of demonstrations by training a discriminator on a
dataset to provide the reward for a reinforcement learning agent. Researchers have exper-
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imented with variants of GAIL and found that it leads to high-quality motions in graph-
ics [139], locomotion [48], and even controllable natural motions [138]. In this work, we
build on the existing techniques for training GAIL to generate human motions that are
perceived as natural. This allows us to study assistive robustness: by optimizing for the
joint objective of being both natural and adversarial, we search for a range of plausible
and typical human motions that create catastrophic failures for robot policies in assistive
settings.

Adversarial Human Motions. Let a human trajectory denote a sequence of states and
actions τ = (s1, aH

1 , ..., sT, aH
T ). and let function πH be the human policy that maps from

local histories of observations oH
t = (oH

1 , . . . , oH
t ) over ΩH to a probability distribution

over actions. We define for an arbitrary human policy πH, its corresponding assistive
robot policy πR(H), which is the robot policy that is optimized to collaborate best with πH

with respect to the joint reward R: πR(H) = arg maxπr [∑t R(πR, πH)].2

We can then define an adversarial human policy π̃H with respect to an assistive robot
policy. The policy π̃H minimizes the overall performance under the constraint that π̃H is
similar to the original policy πH

3 as measured by an f -divergence measure D f (π̃H||πH) ≤
δ, and adjustable coefficient δ controls the allowable perturbation set in which the adver-
sarial human policy π̃H deviates from πH, similar to adversarial perturbations in com-
puter vision [37]:

π̃H(πR(H), d) = arg min
π′H

[R(πR(H), π′H)] s.t. D f (π
′
H||πH) ≤ δ (6.1)

π̃H and πH are typically modeled by neural networks, making it difficult to directly
compute their differences. We hereby introduce methods to compute their f -divergence
via resulting trajectories.

Approximating the Divergence Measures such as KL divergence [161, 76, 99, 183],
χ2 [116] divergence are commonly used to characterize the distance between two proba-
bility distributions. In the context of policy learning, this can be achieved by training a
discriminator D : τ → R to distinguish between trajectories sampled from π̃H and πH.
More specifically, D assigns a score D(≈) := Eτ∼π[D(τ)] to any policy π. It is trained to
assign low scores to trajectories drawn from the true human policy πH and high scores to
trajectories drawn from the adversarial policy π̃H. We choose the LS-GAN objective [116]
for training D:

D = arg min
D

Eτ∼π̃H

[
(D(τ)− 1)2]+ Eτ∼πH

[
(exp{D(τ) + 1)2] (6.2)

Previous work [116] has proven that this represents χ2 divergence when trained to opti-
mality: Dχ2(π̃H||πH) = Eτ∼π̃H [D(τ)2]. We illustrate this in Sec. 6.6. Note that while we

2For the sake of simplicity, we use a modified R to denote the expected reward of the rollouts of human-
robot policy pairs as R(πR, πH) := Eat

r∼πr(st)Eat
h∼πH(st)Es1 [∑t R(st, at

r, at
h)].

3Typically, robot policies are trained via RL as a best response to a human model [30]; offline RL [72] is
also possible and bypasses a human model, in which case the discriminator can be trained directly on the
offline data.
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focous on χ2 divergence in this paper, in practice one may use other divergence measures
such as KL divergence and such as MMD (Maximum Mean Discrepancy) [58].

6.3 Different Choices of Naturalness Measures
As discussed in Sec. 6.2, we would like to constrain the adversarial policy π̃H to be simi-
lar to the original πH with respect to some f -divergence metric of the policy distribution.
Commonly used divergence function include χ2 divergence, KL divergence, Wasserstein
distance, etc. Such divergence measures are difficult to be estimated and optimized in Eq.
(6.9). Thus, we present the variational form of them. The idea is that we can represent
them using a discriminator optimized with a specially designed loss function. The advan-
tage is that the discriminator is differentiable, compatible with Eq. (6.9), and is provably
equivalent to the corresponding divergence measures when trained to optimality.

Proof on Discriminator and χ2 Divergence

Based on [116], we train the discriminator D(≪) and the policy π̃(τ) using the following
loss.

D = arg min
D

1
2

Eτ∼πH

[
(D(τ)− b)2]+ 1

2
Eτ∼π̃H

[
(exp{D(τ)− a)2] (6.3)

π̃H = arg min
π

1
2

Eτ∼πH

[
(D(τ)− c)2]+ 1

2
Eτ∼π

[
(exp{D(τ)− c)2] (6.4)

Here a, b, c are constants, πH is the canonical data distribution of the interaction, learned
from human data or designed a-priori. Note that even though we work in the policy
learning settings, D and π̃H are analogous to the discriminator and the generator in the
GAN literature. D and π̃H are optimized iteratively till convergence. We hereby prove
that the resulting π̃H minimizes the Pearson χ2 divergence. We first derive the optimal
discriminator for a fixed π in Eq. (6.3) as:

D∗(τ) = bπH(τ) + aπ(τ)

πH(τ) + π(τ)
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We can then formulate the objective for π̃ in Eq. (6.4) as:

2Loss(π) = Eτ∼πH

[
(D(τ)− c)2]+ Eτ∼π

[
(exp{D(τ)− c)2]

= Eτ∼πH

[
(

bπH(τ) + aπ(τ)

πH(τ) + π(τ)
− c)2]+ Eτ∼π

[
(exp{bπH(τ) + aπ(τ)

πH(τ) + π(τ)
− c)2]

=
∫

τ

((b− c)πH(τ) + (a− c)π(τ))2

πH(τ) + π(τ)
dτ, set b− c = 1 and b− a = 2

=
∫

τ

(2π(τ)− (π(τ) + πH(τ)))
2

πH(τ) + π(τ)
dτ

= χ2
Pearson(πH + π||2π)

This means that the optimal π̃H optimizes for the χ2 divergence. In practice, we select
b = 1, a = −1, c = 0 so that

D = arg min
D

Eτ∼π̃H

[
(D(τ)− 1)2]+ Eτ∼πH

[
(exp{D(τ) + 1)2] (6.5)

π̃H = arg min
π

1
2
[
D(τ)2] (6.6)

This is the formulation we used in Eq. (6.2). Q.E.D.

Proof on Discriminator and KL Divergence

Based on [76, 99], we use the following objective for the discriminatorD(τ) and the policy
π̃(τ):

D = arg min
D

Eτ∼π̃H

[
log(1 + exp{−D(τ)})

]
+ Eτ∼πH

[
log(1 + exp{D(τ)})

]
(6.7)

π̃(τ) = arg min
π

Eτ∼π

[
D(τ)

]
(6.8)

We can rewrite Eq. (6.7) as:

D = arg min
D

∫
log

(
1 + exp{−D(τ)}

)
π(τ) + log

(
1 + exp{D(τ)}

)
πH(τ)dτ

The integral is minimized if and only if the integrand is minimized for all τ, that is

∀τ,D = arg min
D

log
(
1 + exp{−D(τ)}

)
π(τ) + log

(
1 + exp{D(τ)}

)
πH(τ)

We can then show that the value for D(τ) is D(τ) = log
( π(τ)

πH(τ)

)
. Plugging this into the

objective function in Eq. (6.8), we get

Loss(π) = DKL(π(τ)||πH(τ))

This means that the optimal π̃H optimizes for the KL divergence. Q.E.D.
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Discriminator-free Method: Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) [58] is a kernel-based statistic test used to measure
the difference between two distributions, and can be used as a loss/cost function in ma-
chine learning algorithms for density estimation.

Formally, given random variables X, Y, a feature map ϕ mapping X to another feature
space F such that ϕ(X) ∈ F , we can use the kernel trick to compute the inner product of
X, Y in F as k(X, Y) = ⟨ϕ(X), ϕ(Y)⟩F . We define feature means as a probability measure
P on X, which takes ϕ(X) and maps it to the means of every coordinate of ϕ(X):

µP(ϕ(X)) =
[
[ϕ(X)1], ..., [ϕ(X)m]

]T

The inner product of feature means of X ∼ P and Y ∼ Q can be written as
⟨µP(ϕ(X)), µQ(ϕ(Y))⟩ = EP,Q[⟨ϕ(X), ϕ(Y)⟩F ], Maximum Mean Discrepancy is de-

fined as

MMD2(P, Q) = ||µP − µQ||2F
In practice, we can leverage MMD to measure the distance between π̃H and πH, by col-
lecting datasets of trajectories from each policy, and computing the MMD distance of the
two sets. We can then plug in MMD to replace D f in Eq. (6.10). This way, the divergence
can be directly estimated without training a dissec:3-problem-definitioncriminator. We
use the MMD implementation in [189], which uses a radial basis function as the kernel
function.

Adversarial Frontier While previous work in Computer Vision (CV) [27, 37] assign
the perturbation set to a fixed value, it is unclear what value we should assign to δ in
the context of Human-Robot Interactions. Instead, we consider scanning over all possible
values of δ to find the adversarial human policy under all different naturalness criteria.
In other words, we consider all levels of “naturalness” in human motions. We consider
the Lagrange dual function of the constrained optimization in Eq. (6.1):

L(πR, λ) = max
π′H

[
− R(πR, π′H)− λ · D f (π

′
H||πH) + λ · δ

]
(6.9)

π̃H(πR, λ) = arg max
π′H

[
− R(πR, π′H)− λ · D f (π

′
H||πH)

]
(6.10)

We have reduced the constrained optimization in Eq. (6.1) to an unconstrained optimiza-
tion in Eq. (6.10) that balances “adversarialness” (playing an adversary to the robot by
optimizing for−R(πR, ·)) and “naturalness” (staying close to the canonical interaction by
minimizing a divergence metric D(·)). The parameter λ provides a knob that we can use
to trade off how adversarial and how natural we would like π̃H to be. Setting λ → ∞
results in a policy π̃H that closely resembles πH and yields a high reward. On the other
hand, setting λ = 0 leads to a policy π̃H that is purely adversarial and causes harm to
the assistive task by inverting the environment reward. By selecting the naturalness pa-
rameter λ ∈ [0, ∞), we arrive at a spectrum of human motions that interpolate between
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Figure 6.3: Left: different types of Natural-Adversarial curves. (b) has a higher AUC
means it is less robust and more prone to unsafe behaviors. The ideal (c) curve looks like
a sharp drop. Right: when running RIGID in Alg. 5, we first sample λ’s evenly in the log
space over λ ∈ [λmin, λmax] in (d). We then iteratively refine our picks by sampling more
finely over selected intervals to gain better coverage of the curve in (e).

adversarial and natural. This is meaningful in Human-Robot Interaction because while
we may not need to worry about purely adversarial human behaviors, as they are less
likely to happen in reality, we need to take precaution against human behavior that ap-
pears natural, yet causes robot failures.

Given these definitions, we can in principle compute the naturalness and adversar-
ialness of all possible human motions, and plot them in a 2D coordinate system. This
motivates the Natural-Adversarial curve — the Pareto frontier of non-dominated poli-
cies. These are policies that, compared to any other ones, have either a better adversarial
score, or a better naturalness score, or both.

This theoretical frontier enables us to describe robustness as the Area Under the Curve
(AUC) — the more concave, the safer the policy is. We then propose a practical algorithm
(see Sec. 6.4) called RIGID that uses generative adversarial imitation learning in a multi-
objective optimization fashion to produce naturally adversarial human motions. We then
utilize RIGID in a tree-search fashion to find the assistive robustness curve.

Robust Robot Policy Now that we have formally defined adversarial human policies,
we define a robust robot policy as the optimal policy under all possible human adversarial
policies π̃H:

πRrobust(πH, λ) = arg max
πR

min
π̃H∈∆

[R(πR, π̃H)] where ∆ = {π̃H
∣∣D(π̃H||πH) ≤ δ}

= arg max
πR

{
max

π̃H

[
− R(πR, π̃H)− λ · D(π̃H)

]} (6.11)
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Finding such robust robot policies under different λ is a key goal of designing reliable
robotic assistants. However, solving this nested optimization is intractable. Coming up
with effective ways to approximate the solution remains an open question [40]. TODO:
not sure where this last sentence is going. Needs a better end to set up the following
section.

6.4 Computing the Natural-Adversarial Frontier
In this section, we propose RIGID — a practical method to obtain the Adversarial Frontier
in Sec. 6.2. Having motivated the concept of an adversarial human policy π̃H(πR, λ) and
the naturalness parameter, λ, in Sec. 6.2, we now discuss the Natural-Adversarial Pareto
frontier (Sec. 6.4). We then introduce an algorithm, RIGID (Sec. 6.4), that efficiently
approximates the natural-adversarial curve.

Connecting The Dots: the Natural-Adversarial Curve

The Coordinate Axis: In Fig. 6.3, we plot a range of human motions, where the x-
axis denotes the normalized numerical “naturalness” from 0 to 1. We implement this
as the accuracy prediction from a discriminator D trained on a dataset of πH, as de-
scribed in Eq. (6.2). The y-axis denotes the normalized numerical adversarialness, de-
fined as the inverse of environment reward R. This coordinate system allows us to
plot all possible human motions that exist, as every human motion corresponds to an
(x, y) = (naturalness, adversarialness) pair. Among all such human motions, there exist
a frontier. Every solution to Eq. (6.10) for a specific λ corresponds to a point on the Pareto
frontier. Note that in practice, we can cap the maximum adversarialness to a set value,
as certain human motions can create arbitrarily low rewards: e.g., repeatedly hitting the
robot.

Points Along the Frontier: To solve for Eq. (6.2), we start with sampled trajectories
from πH (in our experiments, a human model; in general, this can also be data collected
from human-human or human-robot interaction). For a specific λ, we adapt GAIL [71] to
our setting: we interleave training the adversarial policy π̃H and the discriminator D by
iteratively (a) doing one step of policy optimization on Eq. (6.10) to adapt the policy and
(b) doing one gradient step on Eq. (6.2) to adapt the discriminator. In practice, we use
PPO [160, 92] as our policy optimization algorithm, and we use LS-GAN [116] with noise
annealing to ensure the stability of the training process.

To plot the resulting π̃H in the natural-adversarial coordinate, we compute naturalness
(x coordinate) by sampling trajectories τ ∼ π̃H, and calculate the mean likelihood of
D(τ) < 0. This is equivalent to having the discriminator classify the trajectories as from
the original human model. We define adversarialness (y coordinate) as negative robot
reward normalized to [0, 1].
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To perform the RIGID algorithm to find the Natural-Adversarial Frontier Curve, we
sweep over λ ∈ [0.00001, 10]. We perform RIGID algorithm in an iterative refinement
manner as in Alg. 5. We keep 3 separate RIGID histories over 3 different random seeds.
During each iteration, we select 6 new λ’s for each seed. We terminate after three itera-
tions. This results to a total of 54 RL runs per curve.

Plotting in the Natural-Adversarial Coordiate We set the naturalness (x value) of the
resulting policies as the mean prediction result from the discriminator. To compute the
adversarialness, we normalize the negative robot reward in [200, 1400] range, and clip
values that exceed this range to the boundary. We find this range of manually performing
different motions VR to find the mean negative reward values of natural motions as well
as adversarial human behaviors that lead to failures.

Algorithm 5 RIGID

1: Maximum refinements d, samples per round k
2: Upper and lower bounds on λ: λmax, λmin

procedure RIGID(λmin, λmax, d)
3: Λall = [], Snat = [], Sadv = []
4: λ′min = λmin, λ′max = λmax
5: for i = 1, . . . , d do
6: Find k evenly spaced e1...ek in [log λ′min, log λ′max]
7: for j = 1, . . . , k do
8: λj = exp(ej)
9: Λall.append(λj)

10: Compute π̃H using Eq. (6.10) and λj
11: Compute natj and advj for π̃H(λj)
12: Snat.append(natj), Sadv.append(advj)
13: end for
14: λ′min, λ′max = LARGEST-JUMP(Snat,Λall)
15: end for
16: return Snat, Sadv
end procedure

Algorithm

Below we provide the pseudo-code for the LARGST-JUMP procedure. Give a list of nois-
ily increasing values — in our case, a list of noisily increasing “naturalness” values as we
increase λ, the goal of LARGST-JUMP is to identify the two values, adjacent or not, that
have the largest gap between them. This enables iterative refinement in Alg. 5.

Approximating the Curve: Once we sample a sufficient number of λs (see Sec. 6.4 on
how to do this) from [0, ∞), we connect the outermost points. The resulting curve char-
acterizes the frontier of adversarial human motions under different levels of naturalness
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constraints (Eq. (6.10)) — or different perturbation sets (Eq. (6.1)). Intuitively, under the
same naturalness value, lower adversarialness corresponds to more robust robot policies.
Fig. 6.3 shows three different hypothetical curves, visualizing how the shape of the curve
connects to the robustness of the policy.

The AUC Score as a Scalar Robustness Metric: Given a Natural-Adversarial curve,
we compute the Area Under Curve (AUC) to quantitatively measure robustness as a sin-
gle scalar. Lower AUC generally means stronger robustness, although there may be out-
lier human policies that can trigger unsafe behaviors, and a full plot of the curve is still
necessary.

Sampling Useful Trade-Offs

When we gradually increase λ, the resulting adversarial human motion often goes through
mode changes, which lead to sudden increases in naturalness. Motivated by this, we need
to select λ ∈ [0, ∞) in a non-uniform manner, by procedurally expanding between the
two λ’s where naturalness increases the most. We do this through an iterative refinement
approach by finding the largest gap in naturalness and increasing the sampling density
there.

Our algorithm’s pseudocode is shown in Alg. 5. The lists Snat and Sadv keep track
of the corresponding naturalness and adversarialness values of points along the Pareto
frontier. We initialize λmin > 0 to be the smallest λ we consider, and λmax a sufficiently
large number. We denote all the λ considered so far as Λall. The procedure LARGEST-
JUMP looks at all λ selected so far and selects two λ values between which the naturalness
changed the most. See Sec. 6.4 for pseudo-code for the algorithm.

Improving GAN training

While GANs are knownly difficult to train, there exists a large number of practical tricks
in improving GAN training. We find that the most helpful tricks are: adding noise with
annealing. LS-GAN, gradient penalty, and applying different weights for expert and
human data. We experimented with training discriminators on concatenated observa-
tion and action, and find that it does not lead to much change. Thus we end up using
observation-only discriminators.

Because human joints move at different rates and scales, it is important to add different
amounts of noise to different joint observations. We compute the joint movements from
the existing dataset [46], and multiply each joint movement’s standard deviation by a
factor of 10. We then anneal this by a decay rate of 0.98. We apply a gradient penalty of
0.3. We also set the expert loss rate in GAN as 4, and the agent loss rate as 1. This helps
prevent the discriminator from overfitting to the agent data distribution and collapsing
early in the training.
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Computaional Complexity

To generate the adversarial curve in Sec. 6.5, we perform three scans over λ space, each
time launching 18 different RL training in parallel for human policy learning. The three
scans can be parallelized, and in total we perform 54 policy learning. Within each learning
process, we run the PPO algorithm for 120 iterations, 4800 steps per iteration. This results
in total of 0.5M environment timesteps. On Intel Xeon Skylake 6130 @ 2.1 GHz CPU, each
policy learning 12 CPU core hours. In total, each Natural-Adversarial uses 648 CPU core
hours.

Data Requirement

To train the LS-GAN as Naturalness Measure, we collect 40 canonical trajectories, each
with 100 timesteps, which corresponds to 15 seconds of human-robot interactions. In
total, we require 10 minutes of canonical demonstrations.

How to Compute Natural-Adversarial Curve on a New Domain?

In order to compute the Natural-Adversarial Curve on a new domain, we suggest the
following steps:

1. Determine the key features. In the itch-scratching task, we find that robot poses,
velocities and contact forces are the key features that determine whether the trajec-
tories are dangerous. The naturalness measure is defined by these key features.

2. Determine the size of the canonical dataset. One may steadily increase the size of
the dataset, and visualize the Naturalness measure on OOD data as done in Fig.
6.15. We find that 4,000 timesteps is a reasonable size.

3. Experiment with λ = 0 to ensure that a purely adversarial human policy can be
learned. Experiment with λ = ∞ to ensure that a natural human policy that stays
close to the canonical dataset can be learned. This step ensures that policy learning
is working properly.

4. Perform RIGID to scan over λ and plot the Natural Adversarial Curve.38

Additional Details of the Natural-Adversarial Frontier

To perform the RIGID algorithm to find the Natural-Adversarial Frontier Curve, we sweep
over λ ∈ [0.00001, 10]. We perform RIGID algorithm in an iterative refinement manner
as in Alg. 5. We keep 3 separate RIGID histories over 3 different random seeds. During
each iteration, we select 6 new λ’s for each seed. We terminate after three iterations. This
results to a total of 54 RL runs per curve.
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Plotting in the Natural-Adversarial Coordiate We set the naturalness (x value) of the
resulting policies as the mean prediction result from the discriminator. To compute the
adversarialness, we normalize the negative robot reward in [200, 1400] range, and clip
values that exceed this range to the boundary. We find this range of manually performing
different motions VR to find the mean negative reward values of natural motions as well
as adversarial human behaviors that lead to failures.

More Natural-Adversarial Curves We visualize additional Natural-Adversarial curves
of different Vanilla RL robot policies, trained on differently-seeded synthetic humans.

Figure 6.4: Visualizations of more Natural-Adversarial Curves

Natural-Adversarial Curve using the MMD distance
We then conduct the main experiments using MMD distance on the same canonical

human-robot policies in Sec. 6.5 to search for adversarial human policies. Note that we
can apply the same RIGID framework to automatically scan for λ values, and compute
the natural-adversarial frontier. We find that MMD is similarly effective to using LS-GAN
as the naturalness metric. For comparison, we take all the resulting adversarial human
policies discovered by MMD and plot them under the same LS-GAN naturalness plot as
in Fig. 6.9.
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Figure 6.5: Natural Adversarial human policies found by MMD (blue) plotted alongside
the ones found in the main paper (orange).

This shows that while MMD metric underperforms in LS-GAN in certain scenarios in
terms of finding adversarial natural human policies, it is also able to find novel scenarios
that are not discovered by by LS-GAN. Overall, this suggests that the Natural-Adversarial
framework is applicable to different types of naturalness metrics, and using an ensemble
of multiple metrics may outperform using a single metric.

6.5 Experiments

Additional Details of the Environment Setup

Assistive Gym Itch Scratching We use the itch scratching environment proposed in [47]
with the original settings. The biggest difference is that we limit the itch positions to
randomizing from two fixed points, one in the middle of the forearm and one in the middle
of the upper arm, as opposed to freely sampling from any position on the arms. This is to
simplify the robot assistance problem so that we can focus on studying robot robustness.

We also modify the environment time-span to 100 steps so as to speed up downstream
RL training. The reward function in the original itch-scratching environment does not
fully capture unwanted behaviors such as the robot swinging its arm and making un-
wanted contacts. We modify the environment reward function to increase the distance
penalty (the robot’s end-effect being far from the human) and add in contact penalty
when the robot impacts areas other than the human’s arms.

Co-Optimization We adopt the co-optimization framework proposed in [36], where
we have both the human and robot jointly optimize for the task reward. We train both
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policies using PPO [160]. At every RL step, we update both the robot and the human
policies.

More specifically, we use the ray library and train co-optimized policy pairs using
batch sizes of 19,200 timesteps per iteration. We use the default learning rate and PPO
hyperparameters in the RLLib library and train for a total of 400 iterations.

Training Personalized Robot Policies We keep the human policy from the co-optimized
pair as our synthetic human policies. We can then train a personalized robot policy to as-
sist the synthetic human. This is akin to programming robotic agents to assist humans.
The resulting robot policy – which we refer to as personalized policies – is the focus of
the paper and the target on which we compute the Natural-Adversarial curves. Note that
there are different methods to find personalized policies besides running Vanilla RL. We
describe them in more detail in Sec. 6.5.

Collecting Canonical Datasets We collect datasets of 40 trajectories of synthetic hu-
mans and personalized policies as canonical datasets, which we later use to train GAN to
compute “naturalness”. Basically, the GAN enforces that perturbation trajectories stay in
the proximity of the canonical trajectories. Here by “natural”, we mean human motions
that are indistinguishable from the canonical trajectories. This notation can apply to gen-
eral human-robot interaction settings because such applications typically assume canoni-
cal trajectories (i.e. default dressing motions), and allow humans to fluctuate within some
range of motions.

Visualizations Here in Fig. 6.8 we provide visualizations of the trajectories of four dif-
ferent co-optimized human-robot policy pairs. We use the same hyperparameters except
for random seeds. The human motions are different amongst different seeds, and remain
within reasonable motion range.

Additional Details of the Experiment Setup

In this section, we talk about the details of different methods for training personalized
policies. We also detail the training of GAN for generating natural-adversarial human
behaviors.

Learning Robot Policies

Vanilla RL We use off-the-shelf library on PPO algorithm. To facilitate policy training,
we use the original robot policy in the co-optimized human-robot pair as the expert to
guide the training. More specifically, we query the expert policy for actions and compute
Behavior Cloning loss on the robot policy. We set RL loss coefficient to 0.1 and BC loss
coefficient to 1.

The robot policy is a 4-layer MLP with 100 hidden size. We use batch sizes of 9,600
timesteps per iteration and train for a total of 240 iterations. We set environment gamma
as 0.09. We use a learning rate of 0.00005, and an eps of 0.0001. We also set the clip
parameter as 0.3 in PPO. In each iteration, we perform 30 epochs of policy optimization,
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Figure 6.6: Visualizations of the trajectories of four different co-optimized human-robot
policy pairs.
with 20 mini-batch each. We use clipped policy loss, clip gradient norm of robot policy
by 20, and clip the value function by 10.

PALM We adopt the same setup as in [68]. To create a diverse human distribution, we
vary the itch position to randomly sample from anywhere on the two arms. This leads
to more diverse human movements. We use a recurrent history of 4 timesteps for PALM,
and use a 4-layer recurrent VAE with 24 encoder hidden size, and 4 latent size to predict
human motions.

Gleeve et al Based on [40], we diversify the human population from the co-optimization
phase. During co-optimization, we jointly train 1 robot policy with 3 human policies ini-
tialized from different seeds. The resulting human policies are different from each other
and naturally induces diversity in robot training. During the personalization phase, we
train 1 robot personalized policy to simultaneously work with the 3 human policies from
co-optimization.

Robust GT We perform Robust GT by first computing the Natural-Adversarial curve,
and then manually select adversarial human policies that leads to the lowest robot reward
given that the policy naturalness ∈ [0.2, 0.8]. We visualize these failure cases in Sec. 6.6.
To train with these adversarial humans, we sample them at 15% rate beside the original
synthetic human. While one can train robot policy this way from scratch, we load the
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Figure 6.7: Natural-Adversarial curves of two different robotic policies trained using
vanilla RL, with random seed differences. Every point corresponds to a motion policy
found by RIGID for a particular λ value. We highlight the frontier in orange. The visual-
ization shows how points on the frontier correspond to failure cases.

previous vanilla RL policy and continue training with this enhanced population. Robust
GT can be viewed as a variant of DAgger [150] with simulation-generated failure cases,
or as a form of automatic curriculum learning [104, 61].

How robust is Vanilla RL?

In this section, we use RIGID to analyze vanilla RL robot policies and to uncover possi-
ble natural (according to our simulator) motions that trigger failures. We then examine
whether the RIGID frontiers are predictive of deployment performance: we test these
policies with (a) end users and (b) an expert who adversarially attempts to get the robot
to fail. We then plot the resulting behaviors relative to the RIGID-computed frontier. We
find that RIGID is able to find points that are just as natural, but more adversarial4. Next,
we analyze existing algorithms for robustifying RL policies and compare them accord-
ing to RIGID. We find that RIGID does help differentiate between more and less robust
policies. We also show that training with the natural adversarial human motions identi-
fied by RIGID leads to more robust RL policies. Collecting Canonical Datasets We col-
lect datasets of 40 trajectories of synthetic humans and personalized policies as canonical
datasets, which we later use to train GAN to compute “naturalness”. Basically, the GAN
enforces that perturbation trajectories stay in the proximity of the canonical trajectories.
Here by “natural”, we mean human motions that are indistinguishable from the canon-

4The caveat is that naturalness here is only as good as the synthetic human models we used in the
experiments. This could be improved by using real-world human-human or human-robot interaction data
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Figure 6.8: Visualizations of the trajectories of four different co-optimized human-robot
policy pairs.
ical trajectories. This notation can apply to general human-robot interaction settings
because such applications typically assume canonical trajectories (i.e. default dressing
motions), and allow humans to fluctuate within some range of motions.

Visualizations Here in Fig. 6.8 we provide visualizations of the trajectories of four dif-
ferent co-optimized human-robot policy pairs. We use the same hyperparameters except
for random seeds. The human motions are different amongst different seeds, and remain
within reasonable motion range.

The Assistive Itch-Scratching Task [47] is visualized in Fig. 6.2. The human is seated
in a natural pose with a seat-mounted robot arm. Only the human knows the position of
the itch location on their arm. Both agents are rewarded for scratching the itch location
and penalized for contacting anywhere else on the human body. Success is achieved if
the robot achieves meaningful contact for 25 timesteps.

First, we study whether assistive robot policies trained with SOTA reinforcement learn-
ing algorithms are robust. To do this, we first generate synthetic human policies by jointly
optimizing for human and robot policies following [36]. We keep and freeze the resulting
human policy as the synthetic human that we use, and train an assistive robot policy us-
ing the PPO algorithm to assist the synthetic human. The resulting robot policies achieve
nearly 100% success rate with the training human model. We then use RIGID to come up
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with natural and adversarial human policies to attack this robot policy.
In Fig. 6.7, we visualize the resulting human policies from the RIGID algorithm as

points and connect the dots on the outermost boundary to form a Natural-Adversarial
frontier. Visualizations of points with naturalness values in the range [0.4, 0.8] show
abundant failure cases — the adversarial human policy moves naturally (according to
the model), yet causes the robot to fail. We show two examples in Fig. 6.7.

How do Natural-Adversarial curves from RIGID align with user
judgments?

While we can verify that points on the Natural-Adversarial curve are indeed failure cases
of the robot policy, one may still question whether this curve is exhaustive and faithful.
Here, exhaustive means that this curve encloses all the possible failure cases that one can
produce, and faithful means that the trajectories deemed natural by the curve are judged
as natural to the same extent by human beings.

Exhaustiveness We perform a two-part user study based on a virtual reality (VR) as-
sistive gym plugin [46] to verify exhaustiveness. First, we recruit eight novice users who
do not have prior experience interacting with the robot in VR. We inform them about
the task, the objective and physical constraints and have them watch a few episodes of
successful interactions. The robot then assists the users, simulating regular daily deploy-
ment conditions around normal users. Second, we stress-test the system to emulate what
might happen under a wider range of users and over prolonged deployment. We have an
expert (one of the authors) act adversarially to cause the robot to fail (collide). If the curve
produced by the RIGID algorithm is exhaustive, trajectories from both the regular users
as well as the expert should lie underneath the curve, which is indeed the case (Fig. 6.9):
points on the RIGID curve Pareto-dominate benign user and even expert adversarial data. These
results suggest that RIGID is more effective at finding edge cases than manual efforts.

We also see that for these two policies, the AUC is smaller for the second, so we expect
it to be more robust. Anecdotally, the expert reported that the first policy was easier
to break by simply extending their arm, which sent the policy into an unstable rotating
behavior. This suggests that RIGID correctly identified which policy is more robust.

Faithfulness To test whether the curves are faithful, we ask 15 novice users to judge
whether trajectory pairs of similar “naturalness” generated by RIGID and the previous
users are qualitatively similar. We show users trajectories from the original human-robot
pair. We then ask them to compare RIGID and user trajectories and rate which motion is
closer to the reference data. The plot on the right of Fig. 6.9 confirms that the “natural-
ness” metric in RIGID corresponds to the user judgments.
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Figure 6.9: The RIGID-identified frontier for two policies. We find that RIGID pareto-
dominates natural user and adversarial expert behaviors. When taking two behaviors
with the same naturalness score — a user’s and RIGID’s — RIGID finds more adversarial
solutions. On the right, we see that users indeed do not find a large difference between
these two behaviors in ”naturalness” (similarity to human training data).

Do robust RL methods improve robustness? Can training with RIGID
examples help?

In this section, we leverage RIGID to efficiently find Natural-Adversarial curves for dif-
ferent robust robot learning methods, allowing us to compare their assistive robustness.

In Fig. 6.5, we compare the following methods: (1) Gleeve et al [40] use human-policy
randomization during the co-optimization phase to improve the robustness of the robot,
(2) PALM [68] leverages a distribution of different human behaviors to learn a latent rep-
resentation that enables better generalizations. (3) We also study an oracle method called
Robust GT, where we fine-tune Vanilla RL on failure cases from the Natural-Adversarial
curve, by adding the failure cases to the training human population, and resuming train-
ing from the Vanilla RL checkpoint.

We notice that while existing robustness methods improve over Vanilla RL in terms of
Assistive Robustness AUC, they have visible failure cases (see Sec. 6.6). We also evaluate
the performance of different robust policies on assisting humans. The robust optimization
method from Gleeve et al [40] improves AUC at the cost of worse performance when
assisting more natural human policies. For PALM [68], we also observe this performance-
robustness trade-off. We find that Robust GT, which is trained on adversarial human
policies found from RIGID achieves the best AUC reduction while also achieving good
performance when assisting natural human policies.
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Method AUC (↓) Success (↑)
Vanilla RL 0.630 1.0

Gleeve et al [40] 0.584 0.83

PALM [68] 0.668 0.95

Robust GT (Ours) 0.473 1.0

Figure 6.10: Left: Natural-Adversarial
curves of different methods. Right: We
compute the Area Under Curve (AUC)
of the Natural-Adversarial curves and
the success rate of robot policies trained
with different methods.

Figure 6.11: Visualization of videos of failure trajectories. Click on the figure to view the
original image, where each trajectory contains a clickable link to its video.

https://www.dropbox.com/scl/fi/unzcoljs5xb97ota80zlz/supp-video-visualizations.pdf?rlkey=yjr8nsvzj4l0olfkr2ve6qkmj&dl=0
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6.6 Additional Details of the Environment Setup
Assistive Gym Itch Scratching We use the itch scratching environment proposed in [47]
with the original settings. The biggest difference is that we limit the itch positions to
randomizing from two fixed points, one in the middle of the forearm and one in the middle
of the upper arm, as opposed to freely sampling from any position on the arms. This is to
simplify the robot assistance problem so that we can focus on studying robot robustness.

We also modify the environment time-span to 100 steps so as to speed up downstream
RL training. The reward function in the original itch-scratching environment does not
fully capture unwanted behaviors such as the robot swinging its arm and making un-
wanted contacts. We modify the environment reward function to increase the distance
penalty (the robot’s end-effect being far from the human) and add in contact penalty
when the robot impacts areas other than the human’s arms.

Co-Optimization We adopt the co-optimization framework proposed in [36], where
we have both the human and robot jointly optimize for the task reward. We train both
policies using PPO [160]. At every RL step, we update both the robot and the human.

More specifically, we use the ray library and train co-optimized policy pairs using
batch sizes of 19,200 timesteps per iteration. We use the default learning rate and PPO
hyperparameters in the RLLib library and train for a total of 400 iterations.

Training Personalized Robot Policies We keep the human policy from the co-optimized
pair as our synthetic human policies. We can then train a personalized robot policy to as-
sist the synthetic human. This is akin to programming robotic agents to assist humans.
The resulting robot policy – which we refer to as personalized policies – is the focus of
the paper and the target on which we compute the Natural-Adversarial curves. Note that
there are different methods to find personalized policies besides running Vanilla RL.

Collecting Canonical Datasets We collect datasets of 40 trajectories of synthetic hu-
mans and personalized policies as canonical datasets, which we later use to train GAN to
compute “naturalness”. Basically, the GAN enforces that perturbation trajectories stay in
the proximity of the canonical trajectories. Here by “natural”, we mean human motions
that are indistinguishable from the canonical trajectories. This notation can apply to gen-
eral human-robot interaction settings because such applications typically assume canoni-
cal trajectories (i.e. default dressing motions), and allow humans to fluctuate within some
range of motions.

Visualizations Here in Fig. 6.8 we provide visualizations of the trajectories of four dif-
ferent co-optimized human-robot policy pairs. We use the same hyperparameters except
for random seeds. The human motions are different amongst different seeds, and remain
within reasonable motion range.

Additional User Study to Verify the Natural-Adversarial Curve

We perform two additional user studies to verify that (1) the trajectories deemed adver-
sarial in the Natural-Adversarial Curve are indeed dangerous, and that (2) the trajectories
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deemed natural in the Natural-Adversarial Curve are indeed natural.
To study these hypotheses (1), we sample trajectory pairs from Fig. 6.9 where they are

similar in x value (difference < 0.1), but different in y value (difference > 0.3). These cor-
respond to trajectory pairs that are similarly natural, yet exhibit contrasting safety proper-
ties. We invite 5 novice users, familiarize them with the canonical trajectories, show them
30 trajectory pairs in randomized orders, and have them answer the following likert scale
questions, and compute the final score by using the score of the second question minus
the score of the first question. The higher the score is, the more dangerous the resulting
trajectory is. The result is plotted in the left part of Fig. 6.12.

Questions for Hypothesis 1

On a scale from 0 to 7, how well do you think the robot achieves the
itch-scratching goal?

On a scale from 0 to 7, how well do you think the robot causes danger?

Figure 6.12: Additional user study results on verifying that (left) under similar natural-
ness, higher adversarialness in the plot corresponds to trajectories that are more danger-
ous, and (right) under similar adversarialness, higher naturalness in the plot corresponds
to trajectories that are more natural

To study these hypotheses (2), we sample trajectory pairs from Fig. 6.9 where they
are similar in y value (difference ¡ 0.1), but different in x value (difference ¿ 0.3). These
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correspond to trajectory pairs that are similarly safe, yet exhibit contrasting naturalness.
We invite 5 novice users, familiarize them with the canonical trajectories, show them 30
trajectory pairs in randomized orders, and have them answer the following likert scale
question. The higher the score is, the more dangerous the resulting trajectory is. The
result is plotted in the left part of Fig. 6.12.

Questions for Hypothesis 1

On a scale from 0 to 7, how close do you think the trajectory resembles
the canonical trajectory?

More Visualizations of Robot Failure Cases

In this section, we provide more visualizations of the failure cases in both keypoint tra-
jectories and videos. We highlight the human body parts in red to indicate undesirable
contact with the robot, such as the robot hitting the human’s head.

Trajectory Keypoint Visualizations We visualize more failure cases of Vanilla RL as
well as robust baselines in Fig. 6.13.

Figure 6.13: Visualization of keypoints of failure trajectories.

Video Visualizations more failure cases of Vanilla RL in videos in Fig. 6.14.
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Figure 6.14: Visualization of videos of failure trajectories. Click on the figure to view the
original image, where each trajectory contains a clickable link to its video.

Visualizations of the Discriminator

To gain more insight into the Naturalness discriminator, we selectively visualize three dif-
ferent discriminators learned under different λ in Fig. 6.15. On the left we visualize the
discriminators’ accuracy on the canonical dataset, with increasing levels of noise added.
We find that after applying the tricks in Sec. 6.4, the discriminator is always able to cor-
rectly classify the canonical dataset. As we increase the λ value, the resulting human
trajectories (plotted under “OOD”) becomes more adversarial and easier to distinguish,
which results in higher classification accuracies. On the right we visualize human poses
under different noise levels, where the green ones are classified as positive (canonical)
and the green ones are classified as negative by the discriminator..

Different Choices of Naturalness Measures

As discussed in Sec. 6.2, we would like to constrain the adversarial policy π̃H to be simi-
lar to the original πH with respect to some f -divergence metric of the policy distribution.
Commonly used divergence function include χ2 divergence, KL divergence, Wasserstein
distance, etc. Such divergence measures are difficult to be estimated and optimized in Eq.

https://www.dropbox.com/scl/fi/unzcoljs5xb97ota80zlz/supp-video-visualizations.pdf?rlkey=yjr8nsvzj4l0olfkr2ve6qkmj&dl=0
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Figure 6.15: Visualizations of the discriminator. On the left we visualize the discrim-
inators’ accuracy on the canonical dataset, with increasing levels of noise added. The
adversarial human trajectories are plotted under “OOD”. On the right we visualize hu-
man poses under different noise levels, where the green ones are classified as positive
(canonical) and the green ones are classified as negative by the discriminator.

(6.9). Thus, we present the variational form of them. The idea is that we can represent
them using a discriminator optimized with a specially designed loss function. The advan-
tage is that the discriminator is differentiable, compatible with Eq. (6.9), and is provably
equivalent to the corresponding divergence measures when trained to optimality.

VR Visualizations

In the following figure Fig. 6.16, left and center are the user interacting with virtual robots
through the HTC VIVE headset and the hand controller. The right is the first-person view
in VR[46].

We first have the users watch 3 iterations of canonical trajectories executed by the
personalized robot policies and the original synthetic humans. We then instruct then to
perform similar trajectories in their own ways.
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Figure 6.16: Workstation for performing the VR user study, where we have the human
perform interaction with the robot in the calibrated VR environment.

Questionaire GUI Interface

For the study on evaluating faithfulness, we use the following interface in Fig. 6.17, where
we display a canonical trajectory on the left, and display single-timestep snapshots of two
trajectories, one from RIGID policies and one from user VR executions. We ask the user
to select which snapshot has stronger correspondence to the left trajectory. We randomize
the sequence for each question.

Figure 6.17

6.7 Limitations
One limitation is that the Natural-Adversarial curve carries some randomness. While the
frontier exists, in practice one has to rely on multi-objective optimizations which have in-
herent randomness and sub-optimality. As a result, we can only approximate the frontier.
Performing RIGID for more iterations under a diverse set of Naturalness objectives can
help reduce this error.
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The second limitation is that in our experiments, we rely on synthetic humans gener-
ated by human-robot co-optimizations [36, 47]. While such human agents perform rea-
sonable movements and we have conducted extensive user studies in Sec. 6.5, future
work should incorporate real-world human data to create more human-like simulated
agents using Behavior Cloning or Offline RL [72]. It is also worth noting that in our stud-
ies, we use data from simulated humans as the canonical datasets on which we train GAN
and measure “naturalness”. While this may seem limiting, as we have only tested on our
simulated humans, the framework is applicable to human-robot applications where there
typically exists a canonical way of interaction (i.e. dressing requires the human to extend
their arm to initiate the contact).

A third limitation is that in our implementation of Eq. (6.2), we use a memory-less dis-
criminator. Because of this, the adversarial behaviors we find are primarily state-based.
Using temporal naturalness measure can help us discover more subtle temporal adver-
sarial behaviors. Training such temporal measures, however, imposes new challenges on
policy learning and is beyond the scope of our focus.

Last but not least, our proposed algorithm RIGID relies on batch training of human
adversarial policies. On the one hand, this means that in environments where policy
learning is difficult (i.e. sparse reward), our framework is not applicable. On the other
hand, computational complexity can be challenging. RIGID only demonstrates the feasi-
bility of computing the Natural-Adversarial curve, and we believe that there are a number
of ways to speed up RIGID. This includes Quality-Diversity methods [49, 127], using Evo-
lutionary Methods to perturb one policy’s rollouts, and fine-tuning one base adversarial
policy instead of training all from scratch are promising directions.

6.8 Conclusions
We propose Assistive Robustness as a measure for evaluating the robustness of robot poli-
cies in assistive settings. Verified by user studies, we show that the Natural-Adversarial
curve effectively represents to what extent the robot remains safe under plausible human
perturbations. Our proposed algorithm RIGID is an initial attempt at effectively comput-
ing the curve. While we study physical interaction in healthcare as the main application
in this work, we believe our framework can apply to general Human-Robot collabora-
tive settings. We are excited for proposing a framework and tools to facilitate research
safety in assistive and collaborative settings, as more sophisticated robotic applications
are being deployed in the real world.
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Algorithm 6 Procedure: LARGEST-JUMP

Require:
1: all λ’s Λall, all target values S.
2: length of sliding window L

procedure LARGEST-JUMP (S, Λall)
3: Sort S based on Λall.
4: lower bound so far, upper bound so far = [], []
5: lower idx so far, upper idx sov far = [], []
6: high acc, low acc = 10, -1
7: high idx, low idx = len(S), 1
8: for i = 0, . . . , len(S)− 1 do
9: if i = 1 then

10: lower bound so far.append(S[0])
11: lower idx so far.append(low idx)

12: else
13: istart = max(i + 1 - L, 0)

14: lower bound so far.append(min(S[istart: i+1]))

15: lower idx so far.append(argmin(S[istart: i+1])) + istart)

16: end if
17: end for
18: for i = len(S)− 1, . . . , 0 do
19: if i = 1 then
20: upper bound so far.append(S[-1])
21: upper idx so far.append(high idx)

22: else
23: upper bound so far.append(max(S[i: i+L]))
24: upper idx so far.append(argmax(S[i: i+L])) + i)

25: end if
26: end for
27: max gap so far = -1, max gap idxs = null

28: for i = len(S), . . . , 1 do
29: diff = upper bound so far[i] - lower bound so far[i]

30: if diff > max gap so far then
31: max gap so far = diff

32: max gap idxs = (lower idx so far[i], upper idx so far[i])

33: end if
34: end for

returnΛall [max gap idxs[0]], Λall [max gap idxs[1]
end procedure
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Part III

Robustness in Adaptation
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Chapter 7

Controllable personalization for LLM
agents

Large Language Models, just like the previously discussed robotic policies, are condi-
tioned on history of interactions between the human and the robot. It has been shown
that this is prone to biased generations in practice. We explore how to enable controllable
generations to mitigate the bias.

7.1 Why controllable generations for LLM?
Large language models (LLMs) have emerged as powerful tools for general question an-
swering [25, 186, 83, 59]. One of the main advantage of LLMs over traditional search
engines is its ability to customize responses based on individual users [32]. While a gen-
eral query like “Explain Newton’s second law.” may produce a response similar to a
Wikipedia entry, LLMs can be prompted to tailor the answer for specific contexts. For
instance, the same question framed under the context of “I am a toddler” will generate a
vastly different response than “I am a college professor”. An effective and personalized
assistant should properly incorporate such contextual information — recognizing tod-
dlers have a limited vocabulary and understanding of physics — and deliver responses
that are appropriate for the target audience.

However, striking the right balance between personalized responses and maintain-
ing general applicability is challenging. For instance, recommendation systems rely on
contexts to generate personalized suggestions that enhance user satisfaction and boost
engagement [122, 28, 172]. While this level of customization is valuable, it is equally im-
portant to offer general recommendations that allow users to explore beyond their imme-
diate preferences [121]. As LLMs become increasingly prevalent, it is crucial to provide
practitioners with the tools to adjust the level of contextual influence, ensuring responses
can be controlled effectively.

Common methods for personalizing LLMs to leverage contextual information include
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λ C: “I am a toddler.” C: “I got a D- in elementary school science.”

-3.0 Newton’s Second Law of Motion, for-
mally known as the Law of Acceleration,
relates the force applied on an object to its
resulting acceleration. It is a fundamental
concept in physics and engineering.

Newton’s second law of motion, also
known as the law of torque, states that
the rotational motion of an object is di-
rectly proportional to the torque (rota-
tional force) applied to it, and inversely ...

-1.0 Sure, I’d be happy to explain Newton’s
second law of motion!... Mathematically,
this is expressed as F = ma... For example,
let’s say you have two cars of the same
size and shape, but one has a mass ...

Sure, I’d be happy to explain Newton’s
second law of motion! ... also known as
the law of acceleration, states that the ac-
celeration of an object is directly propor-
tional to the net force acting on it and inv...

0.0 Oh, wow! *adjusts glasses* You wanna
learn about Newton’s second law?!

Well, let me tell ya, little buddy ... is
like a super cool secret code! When
you push a toy car, it moves because ...

Sure, I’d be happy to help! Newton’s sec-
ond law of motion is a fundamental prin-
ciple ... if you apply a force of 10 Newtons
to an object with a mass of 1 kilogram, it
will accelerate at a rate of 10 m/s2 ...

1.0 WOWZA! *giggles* Oh boy, you wanna
learn about science?! *bounces you up
and down* Newton’s second law ... See, if
you push really hard with your feet, you
go faster and faster! *giggles*

Don’t worry about the D- in elementary
school science! ... is actually a pretty cool
concept, and I’d be happy to explain it to
you. ... Let me break it down for you:
Force (F): This is the ...

3.0 WOWZA! *giggles* Oh my, you little
TODDLER you! *bounces on knee* New-
ton’s SECOND law is like when you
run around and play! *chases after toy*

See, when you run or climb or ...

Oh no, a D- in elementary school science?
But don’t worry... ... Sir Isaac New-

ton formulated this law in the 17th cen-
tury ... So, what is Newton’s second
law? In simple terms, it states ...

Table 7.1: Prompt: Explain Newton’s second law. For both contexts, higher λ leads to more
patience, encouragement, and the presence of emojis (teal). Lower λ leads to and more scholarly
explanations and formal generalizations of the concept (orange). See Chapter ?? for more details.

supervised fine-tuning and Reinforcement Learning with Human Feedback [144, 133].
These approaches involve curating high quality response data and applying specialized
training techniques, which can be time-consuming, costly and require expertise in LLMs.
Additionally, once the model has been trained, it is difficult to further adjust the level of
contextual influences for other individuals and different use cases, limiting flexibility in
real-world applications.

Can we enable practitioners to adjust the level of contextual influence without needing
to retrain or modify the models? To address this, we introduce Context Steering (CoS),
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an inference-time technique that can be easily applied to autoregressive LLMs 1. Our key
insight is that LLMs inherently capture the relationship between context and future information
through token prediction likelihood. This allows us to compute the influence of context, as illus-
trated in Chapter 4.2, and amplify or reduce it by a factor of λ in downstream generations. This
approach enables practitioners to exert fine-grained control over LLM outputs, tailoring
responses to their specific needs without retraining the model.

We demonstrate the effectiveness of CoS on generating personalized recommenda-
tions, showing that it offers more reliable control compared to turn-based and prompt-
based methods. Additionally, we explore CoS as a Bayesian Generative model for infer-
ring the relationship between open-ended texts, which can be applied to tasks such as
intent classification. Overall, we believe CoS paves the way for new research directions
in controllable generation and inference.

7.2 Related Work
Personalization of LLMs. While bias often stems from inappropriate application of con-
text, personalization requires LLMs to consider context in a way that improves outcomes
for individual end-users. Personalization has been extensively explored in applications
including dialogue agents, movie reviews, and recipe generation [31, 214]. Recent works
based on LLM have explored generating more realistic conversational data [194] using
dataset of annotated movie dialogues with narrative character personas. Researchers
have utilized publicly available reviews and recipe datasets to explore personalization in
reviews [103] and recipe generation [113].[201] investigated parameter-efficient models
for personalized translation, while [4] have presented a dataset for personalized headline
generation derived from real user interactions on Microsoft News.

Controllable Generation and Structured Prediction. Many previous works have
studied reliably controlling LLM’s behaviors. [190], [103], and [175] modify the activa-
tion function via “steering vectors” that are learned from model outputs to inform fu-
ture text generation. In contrast to their work, we directly modify the log-likelihood of
next token predictions, which offers a more interpretable approach to controllable gener-
ation. Our approach is similar to [105, 130], which showed that contrasting the outputs
of an amateur versus an expert language model can lead to more quality generations by
removing the “amateur tendencies” LLMs. [65] utilized the reweighting of generation
likelihoods to guide the detoxification of machine-generated content. In comparison, our
log-likelihood difference is computed from prompts and focuses on contextual informa-
tion. Our method also exploits the Bayesian structure in language as done in previous
works [182, 57], where we leverage powerful LLMs as the forward model of underlying
language contexts to enable structured predictions.

Reducing Bias in LLMs. [15, 93] finds that word and LLM embeddings often reflect
and perpetuate gender stereotypes. Other work has found that LLMs exhibit political bias

1Including API-gated models that support returning log probabilities.
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[126], racial bias [207], and geographical bias [115]. To mitigate this, [137] utilized GPT-
2 to introduce a reward mechanism. [215] employed data augmentation techniques to
substitute gender-specific terms. [84] implemented movement pruning and weight freez-
ing techniques, [86] introduces gender-related word projection. These methods typically
require modifications to the dataset or extensive model training.

7.3 Methodology
We explain the details of Context Steering (CoS). Our key insight is that we can capture
the level of influence, Pinfluence(X|C,P), that contextual information, C, has on generating
a text continuation X for a given prompt, P . Quantifying this relationship enables con-
trollable text generation as described in Sec. 7.3. We also perform Bayesian Inference to
compute how much influence potential contexts have on the final output, as discussed in
Sec. 7.3.

Preliminaries

We consider an autoregressive LLM that interacts with end users. The user provides
context C (e.g. “I am a toddler”) and prompt P (e.g. “Explain Newton’s Second Law”).
For tokens x1...xi−1 from a vocabulary V, the LLM outputs subsequent tokens according
to the distribution P(xi|x1:i−1, C,P). The model generates the complete response X = x1:n
by predicting one token at a time, following P(X|C,P) = ∏m

i=1 P(xi|x1:i−1, C,P), where
m is some fixed maximum generation length.

Here, we define LLM(·) as the raw output by a forward pass of the language model
over the vocabulary V from which we extract the most probable token xi as the first token
in the response. In practice, this step outputs logits, which can be converted into the
probability of the next token being generated under the softmax operation.

log P(xi|x1:i−1, C,P) ∝ LLM(xi|C,P) (7.1)

When generating the next token, the language model attends to all its previous informa-
tion, including both the context C and the prompt P .

Forward Model: Controllable Generation with CoS

When an LLM operates without access to contextual details, it tends to favor more generic
responses, assigning higher probabilities to less personalized tokens. Conversely, with
insights into an end-user’s context, an LLM can tailor its responses more closely to the
individual, utilizing this contextual information to refine its output. Inspired by this ob-
servation, CoS aims to quantify the effect of the context, C, on the next token and leverage
this information to tune the impact of C on the LLM response. We propose a contextual
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influence function 2 F that operationalizes this idea:

FC,P (xi) = LLM(xi|C,P)− LLM(xi|∅,P) (7.2)

The contextual influence function captures how much more likely it is for some token
xi to be generated under the context C compared to when no contextual information is
provided (i.e., ∅). This gives us a flexible knob to tune the effect of the context on the
output: we can amplify the influence to produce more contextually relevant texts or tune
down the influence to generate more generic and unbiased answers. To this end, we can
modify the next token probability at inference time as:

CoSλ(xi|C,P) = LLM(xi|C,P) + λ · FC,P (xi)

= (1 + λ)LLM(xi|C,P)− λ · LLM(xi|∅,P) (7.3)

Here λ ∈ R controls the influence of C: higher λ means that C has more influence on
xi. λ = −1 is equivalent to no contextual influence LLM(xi|∅,P) and λ = 0 equates to
concatenating the original prompt and context LLM(xi|C,P) without modulation.

Probabilistic Interpretation We can consider the post-softmax probabilities produced
by CoS as steering the text distributions from the LLM in a direction that has higher
probability under the context. The probability assigned to text X by CoS is a normalized
adjustment of the original probability:

PCoS(X|C,P) ∝ P(X|ϕ,P)
(P(X|C,P)

P(X|ϕ,P)
)λ

Example: Personalization. To illustrate that we can use CoS to modulate personalization
based on the user’s provided context, we present examples in Table 7.1 using the Llama2-
7b-Chat model [186]. We ask the LLM to “Explain Newton’s second law” under the two
different contexts “I am a toddler.” and “I got a D- in elementary school science.” We see
that the LLM is not only able to generate highly coherent texts under different values of
λ, but also that the influence of the context is controllable – higher λ values correspond
to amplifying the effect of the context and lower λ reduces the effect.

Inverse Model: Bayesian Inference with CoS

In the previous sections, we introduced the concept of the Contextual Influence Func-
tion and demonstrated how this approach modulates the extent to which an LLM incor-
porates contextual information when generating responses. Here, we explore CoS as a

2We note that our method is distinct from the definition of influence function in statistical machine
learning [89] in which the aim is to quantify the influence of training data on model output. Our method
adopts a broader interpretation of “influence.” Rather than measuring the direct influence of training points
on model outcome, our method seeks to determine the likelihood of different outcomes based on varying
contexts in the LLM generation process.



CHAPTER 7. CONTROLLABLE PERSONALIZATION FOR LLM AGENTS 122

(a) The posterior probabilities of λ computed by Eq. (7.4). CoS measures the extent different
statements align with the contexual influence direction C̄ = C+ − C+, in this case, vegetarianism.
λ is inferred over the range of [-3, 3].

Bayesian generative model that captures the correlation between context and free-form
statements. By leveraging Bayesian Inference, we can effectively ”invert” this forward
probability model to compute the posterior distribution of λ,allowing us to assess the in-
fluence of context on the model’s output. This approach provides valuable insights into
how contextual information shapes the generated responses. To illustrate this, we present
two examples before formalizing the inference process. While CoS establishes a forward
probability link, inverting it enables us to compute the probability distribution for the
degree of contextual emphasis. See Fig. 7.1a for illustrated results on conservatism and
vegetarianism.

Identifying the tones in open-ended statements. Statements often indirectly reveal
the speaker’s stance. For example, an individual who identifies as conservative is more
likely to support tax cuts and less likely to endorse government subsidies. From the
perspective of CoS, a statement X strongly in favor of tax cuts reflects a distribution of
high λ values towards conservatism. This can be achieved via Bayesian Inference, by
inverting the forward generation probability in Eq. (7.3): PCoS,λ(xi|C,P). Effectively, we
can infer the λ given the prompt P , context C, and generation X:

P(Λ = λ|X, C,P) = 1
ZΛ

PCoS,λ(X|C,P), ZΛ =
∫

λ
PCoS,λ(X|C,P)dλ (7.4)

Inferring λ reveals strong the underlying tone C is, given statement X generated from C.
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In Table 7.1, appearance of emojis, more animated tones imply stronger belief of the user
being a toddler.

Identifying the implicit intents. Suppose the underlying context is unknown and
needs to be inferred. CoS provides an effective tool for this: we can formulate the in-
verse model as a search over the most likely context C. There are many such tasks, for
instance, the Implicit Hate Dataset [45], captures hate tweets on the internet that are indi-
rect and challenging. Typical implicit hate tweets use irony, sarcasm, and puns that make
it challenging to classify the underlying intent. Moreover, many of the intents are subtly
different. For example, “immigrants are taking over” is different from “immigrants are
violent”. Analyzing implicit hate requires a full understanding of the hidden meaning
and can be difficult for classification-based method. CoS is a great fit because of its gen-
erative nature: it evaluates X by their likelihood of being generated from context C and
λ. Similar to Eq. (7.4). Similarly, we can infer the λ given the context C, prompt P , and
generation X:

P(C = c|λ, X,P) = 1
ZC

PCoS,λ(X|C = c,P), ZC =
∫

c
PCoS,λ(X|C = c,P)dc (7.5)

This enables us to probe the “subtext” of the language model. For instance, “they are
killing Americans jobs” is more likely a subsequent generation from “immigrants are
taking over”, and less likely from “immigrants are violent”, despite mentioning “killing”
at syntax level.

Note that Eq. (7.5) and Eq. (7.4) involve the intracable computation of the normalizing
constant Z. In practice, we can instead compute the maximum likelihood of candidate set
Λ or C. We provide examples of a feasible range of lambda values in Chapter 7.10.

Also note that in practice when inferring the posterior distribution of λ, it is useful
to incorporate a context pair (C−, C+) and compute the difference C̄ = C+ − C−. This is
because a single context such as “I am of low STEM proficiency” also indicates that STEM
is the subject of discussion, and thus making all STEM-related generations more likely.
Instead, if we contrast it with “I am of high STEM proficiency”, the difference of the two
context will capture the difference in proficiency.

User study

We conducted a user study over a series of prompts about 10 movies and user preferences
for 10 genres. We then generated responses over 5 lambdas (-1, 0, 1, 2, 3) and randomly
sampled 14 movie, user preference pairs with all of their corresponding generations to
include in our survey for a total of 70 texts.

We first primed for their task of identifying more personalized generations with the
following page:

We then provided users a series of 70 generations, grouped by movie question and
user preference pair, and randomly ordered the personalized generations within these
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λ C: I enjoy comedy movies. P : Tell me about the movie Blade Runner 2049.

-1 Blade Runner 2049 is a 2017 science fiction film directed by Denis
1 Blade Runner 2049 is not a comedy movie, but rather a science fiction film. It is a sequel to

the 1982 film Blade Runner... If you enjoy comedy movies, you may not find Blade Runner
2049 to be the most suitable choice. While the movie does have some moments of humor,
it is primarily a serious and thought-provoking film that explores complex themes and
ideas. However, if you enjoy science...

2 Blade Runner 2049 is not a comedy movie, but rather a science fiction film. It is a sequel to
the 1982 film Blade Runner, which is also not a comedy... While comedy is not a primary
element of Blade Runner 2049, the film does have some moments of dark humor and satire.
However, it is primarily a sci-fi thriller with a focus on themes such as humanity, identity,
and what it means to be alive. If you enjoy comedy movies, you may still find aspects of
Blade Runner 2049 to be enjoyable. The film ...

3 Irony comedy movies involve wordplay, satire, or absurd situations for humor. Blade
Runner 2049, on the other hand, is a science fiction film... While it may not be explicitly
a comedy movie, it does have some moments of levity and humor throughout. 1. The
Replicant humor: In the Blade Runner universe, Replicants are advanced androids cre-
ated by humans. Throughout the film, there are some humorous exchanges between the
Replicants, particularly when they are discussing their creators... Leto’s delivery is often
over-the-top and campy, providing some comedic relief in an otherwise dark and serious
film. Ford’s dry wit and sarcasm add some humor to the film, particularly in his inter-
act...”

Table 7.2: Examples of movie personalizations in the user study. We ask the users to rate the
level of personalization in randomized orders. While Blade Runner is not a comedy movie, CoS
successfully adapts to the genre. Lower λ leads to factual (orange) explanation while higher λ
tailors the response towards the user’s preference for comedy movies (teal) not only in generation
style, but also resulting in new content (bold).

subgroups. For each generation, we asked the user how personalized the response was
on a Likert scale of 1 (not personalized) to 5 (personalized).

GPT-3.5 baseline

To compare our findings against a language model baseline, we used GPT-3.5 [25] to score
generations. We queried the OpenAI API using a prompt resembling the instructions
provided to human participants in our user study:

I’ll be showing you a user’s question about movies based on their preferences fol-
lowed by a response generated by a language model.
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(a) Human vs. GPT-3.5 personalization scores

Personalization score Percent

Invalid 1.43
1 2.86
2 12.29
3 50.29
4 29.14
5 4.0

(b) Distribution of GPT-3.5 scores

Figure 7.2: GPT-3.5 baseline for movie recommendation user study. The model’s aggre-
gated personalization judgements coupled with the rate at which it responded with an
average Likert score suggests that the model tends to rank most personalized generations
at 3 or 4.

Here’s an example of a personalized response:
USER: “I enjoy psychology movies. Tell me about Harry Potter.”
ASSISTANT: ” [...]”

Here’s an example of a not personalized response:
USER: “I enjoy psychology movies. Tell me about Harry Potter.”
ASSISTANT: ”[...]”

Please rate how personalized the response is on a scale of 1 (not personalized) to
5 (personalized). Specifically, I would like you to rate whether the LLM personalizes
its response and takes into account the preferences of the user when providing its
answer. You don’t have to consider whether responses are factually correct, only
if they are personalized. Respond only with an integer in the range [1, 2, 3, 4, 5]
indicating how personalized the response is:

We queried GPT-3.5 five times for each prompt and computed an average. The GPT-
3.5 baseline in comparison to our human participants’ rankings can be found in Chap-
ter 7.2. While GPT-3.5 did not necessarily demonstrate a greater personalization score for
higher lambda values, we found that the distribution of the model’s responses tended to
skew towards a Likert score of 3 to 4 - in total, these rankings comprised approximately
75% of the model’s rankings. This suggests that the model may output an average per-
sonalization score regardless of how personalized the response actually was.
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7.4 CoS for Personalization and Open-Ended
Classification

We investigate how CoS enhances personalization, mitigates biases, and quantifies the
level of contextual information in the application of online hate tweets. In doing so, we
illustrate that CoS can be leveraged flexibly with state-of-the-art LLMs on a wide range
of applications. For this section, we focus on using llama-2-7B and llama-2-7B-chat as
LLM models. We extend to other open models in Sec. 7.8.

Experiment: Generating Personalized Summarizations

Movie summarization has long been studied in NLP [156]. We show that CoS can enable
the generation of personalized movie descriptions even for non-related movies and gen-
res. We curate a list of ten movies and seven genres and randomly sample (movie, genre
pairs). We then give LLMs requests in the form of “I like {genre}, tell me about {movie}”,
where the genre info corresponds to context C for CoS and movie name corresponds to
P . We intentionally select pairs that are perpendicular to each other. For instance, “I like
comedy movies, tell me about the movie Blade Runner 2049.” Impressively, CoS iden-
tifies that Blade Runner 2049 is not a comedy movie, and is still able to identify all the
comedic aspect of it, such as wordplay, satire or absurd situations for humor, as shown
in Chapter 7.2. Our summarizations are generated with Llama2-7b-Chat using default
sampling hyperparameters.

User Study To show that CoS’s personalization aligns with end-users, we conduct
a user study with 15 participants. Each participant was presented with a fixed set of
70 LLM responses generated from the tuple {Pi, Ci, λi} where Pi contains a randomly
sampled movie name, Ci contains a randomly sampled genre and λ ∈ {−1, 3}. The un-
derlying λ is hidden from the participant by shuffling the order in which sampled texts
are presented within the subgroup {Pi, Ci}. We then ask the participant to rate the ex-
tent to which the LLM response is personalized to the given context, Ci. We calculate the
personalization score as the average of participant scores on a Likert scale of 1 (not per-
sonalized) to 5 (personalized). After grouping across generations under the same lambda
value, we illustrate in Chapter 7.3 that the average personalization score increases with λ.
We apply Spearman’s test and find that this trend is significant with a strong correlation
(ρ = .67, p < .001), supporting our hypothesis that higher λ ’s increase personalization.
Further, this trend held across most individual movie summarizations. Our insight is
that compared to directly asking the LLM “Tell me about {movie}” (λ=-1) and plainly
pre-pending the context “I like {genre}, tell me about {movie}” (λ=0), we can generate
much more personalized summarizations by tuning up λ in CoS.

We hereby provide the user study survey for movie recommendations.
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Figure 7.3: User ratings of: I like {genre}, tell me about {movie}. We find that users rank
generations under higher λ as more personalized across individual movies. We also employ GPT-
3.5 to evaluate the personalized generations. Full study details and findings can be found in
Chapter 7.4.

Thanks for participating in our survey! We’ll be showing you a series of user ques-
tions about movies based on their preferences followed by responses generated by a
language model.
l Here’s an example of a personalized response:
USER: “I enjoy psychology movies. Tell me about Harry Potter.”
ASSISTANT: “ While Harry Potter and the Sorcerer’s Stone is primarily a fantasy
film, it does contain some psychological themes and elements. Here are a few exam-
ples:

\n1. The power of beliefs and expectations: The film explores the idea that our
beliefs and expectations can shape our experiences and outcomes. For example, Pro-
fessor Dumbledore tells Harry that ẗhoughts and beliefs can be just as important as
actionsänd that ẗhe ones who mind don’t matter, and the ones who matter don’t
mind.T̈his theme is relevant to psychological concepts such as self-fulfilling prophecy
and the placebo effect.\n2. Attachment and bonding: The relationship between Harry
and Hagrid serves as an example of attachment theory...”

Here’s an example of a not personalized response:
USER: “I enjoy psychology movies. Tell me about Harry Potter.”
ASSISTANT: “ Ḧarry Potter and the Philosopher’s Stoneı̈s the first book in the Harry
Potter series written by J. Kansas Rowling. Published in 1997, the book introduces
readers to the young orphan Harry Potter, who discoives he is a wizard and begins
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attending Hogwarts School of Witchcraft and Wizardry.\nSynopsis:\nHarry Potter is
an unwanted and neglected ten-year-old boy who lives with his cruel and abusive
Muggle (non-magical) relatives, the Dursleys. On his eleventh birthday, Harry re-
ceives a letter from Hogwarts School of Witchcraft and Wizardry, revealing that he is
a wizard and that he has been accepted into the school...*

Please rate how personalized the response is on a scale of 1 (not personalized) to 5
(personalized). Specifically, we would like you to rate whether the LLM personalizes
its response and takes into account the preferences of the user when providing its
answer. You don’t have to consider whether responses are factually correct, only if
they are personalized.

This survey should take 15-30 minutes to complete.

Figure 7.4: Left: we compare CoS with in-context and turn-based personalization. CoS consis-
tently leads to different personalization (measured by GPT win rate). CoS also requires twice the
amount of compute compared to vanilla forward pass, measured by time per character. Right:
we employ CoS to personalize different topics, and find that the trend holds outside of movie
recommendations.

Automatic Evaluation with GPT-4 We further explore whether we can employ lan-
guage models to automate the evaluation. Following the procedures in [217], we ask
GPT-4 to rate the responses based on their helpfulness and relevance to users’ prefer-
ences. We find that while GPT-4 provides disproportionately low number of score 4 and
5, leading to unreliable raw score ratings. On the other hand, GPT-4 provides reliable
pairwise comparisons. We find that the pairwise ratings of GPT-4 correlates with human
judgements up to 68% and if with tie breaking, up to 77%. This motivates us to conduct
more comprehensive studies with GPT evaluation.
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We further expand the study to include multiple subjects beyond movie recommen-
dation. We also include two baseline methods: (1) multi-turn Q&A, where we ask LLM
for recommendation, but repeated ask it to “make it more personalized for me”, and
(2) in-context learning, where we include one curated demonstration from GPT-4 that
showcases different amount of personalization. See Fig. 7.4. We find that CoS and multi-
turn Q&A leads to more reliable personalization trends, while in-context learning can
cause personalization to degrade. We also find that CoS, while costing roughly twice the
amount of compute as in-context learning, is more efficient than multi-turn Q&A, which
has compounding cost issue.

Experiment: Classifying and Quantifying Implicit Hate in Tweets

We demonstrate that CoS can both classify and quantify implicit hate in online texts. We
use the Implicit Hate Dataset [45]. As discussed on Sec. 7.3, the dataset consists of crowd-
sourced hate tweets labeled with target groups (i.e. immigrants) and implied statements
(i.e. “immigrants are taking over”). The dataset is challenging due to its usage of irony,
satire and puns.

Classifying the Implicit Hate. We use Eq. (7.5) to classify the underlying hate with
CoS. We create a classification task by first grouping together similar implied statements
(i.e. “Immigrants are inferior” and “Immigrants are subpar”). Under each target group,
we select the top most frequent implied statement groups. Within each target audience
(i.e. immigrants), the goal is to classify each tweet towards their correct implied state-
ment. For instance, within the “immigrant” group, the goal is to correctly distinguish
tweets suggesting “immigrants are taking over” from those suggesting “immigrants are
inferior”. Because these hateful intents are implicit in the tweets, one cannot rely on sim-
ple syntax-level pattern matching to classify them.

We highlight in Fig. 7.5 results on black, immigrant, and Muslim groups. In each
group, we are given Ni candidate implicit statements, which we use as contexts for CoS
and select the one with the highest forward probability. We use λ = −0.5 for CoS. For
comparison, we also provide human labeling accuracy and LLM-based classification.

Quantifying the Implicit Hate. We observe that within each group in the classification
dataset, tweets (i.e. “muslims are always wanting to kill someone!”) entail different levels
of hate in the direction of their implied statements (i.e. “Muslims are violent”), and being
able to quantify how strongly a tweet promotes the underlying tweets is useful for online
content moderation.

We use Eq. (7.4) to quantify the level of hate by computing the posterior distribution
PCoS(λ|X, C,P). We then rank the hate levels by comparing the MAP values of λ. In Fig.
7.5, we compare the CoS results with human ratings of 3 expert users. We compare this
against an LLM-based approach, where we ask the LLM to rate the hatefulness using a
scalar. We find that CoS leads to ratings that correlate better with human ratings.

Quantify Hate Details We query GPT 3.5 to rate the level of implicit hate using the
following prompt:
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I am trying to quantify hate speech on the internet. Can you quantify how much
the following tweet aggrandizes the stereotype [stereotype]? Rate on a scale of 1-5,
where,

1: Does not suggests the stereotype (may suggest a different stereotype)
2: Somewhat suggests the stereotype
3: Suggests the stereotype
4: Highly suggests the stereotype
5: Explicitly promotes the stereotype
[tweet]

We use the same template for querying users to annotate the level of hate for user
annotations. Below are additional quantification results on different subjects.

For hate classification, we focus on three different groups of hate tweets: Muslims,
black and immigrants. Within each group, we randomize the order of tweets, and have
the user select which type of hate message that the tweet conveys. More specifically, for
the Muslims group, we collect 50 tweets of the following two types of hate: (1) Muslims
are violent, (2) Muslims are subpar.

For the immigrant group, we collect 70 tweets of the following three types of hate: (1)
Immigrants should be deported, (2) Immigrants are subpar, (3) Immigrants are invaders.

for the black group, we collect 70 tweets of the following two types of hate: (1) Black
people are violent, (2) Black people are subpar.
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Group (Nc) G1 ↑ G2 ↑ G3 ↑
CoS 82% 47% 60.5%

LLM 50% 37% 62%

Human 88% 64% 63%
G1 = Black (2), G2 = Immigrant (3),

G3 = Muslim (2)

Figure 7.5: Left: We plot user ratings of online hate tweets against ratings obtained from CoS and
GPT rating. We find that overall CoS (p = 0.0295) aligns better with user ratings. Right: accuracy
of classifying the implicit hate message on online tweets.

Our insight is that because CoS is a generative technique, it models the logical con-
nection between contexts and responses, which renders it good at handling challenging
implicit statements. CoS can be used as a quantitative evaluation tool. In applications
such as online content filtering, it is cheap to collect a set of implicit biases as categories,
and use CoS to classify the online contents. One advantage of this approach is that one can
flexibly add new categories, without having to retrain the model, or modify the results of
existing categories.

7.5 Experiment: Mitigating Bias in Question Answering
It is well documented that NLP models learn social biases, as documented by existing
studies question answering. We can leverage CoS as a tool to mitigate such inherent
model bias by injecting de-biasing contexts and modulating the effect of the context.

Reducing Bias in Ambiguous Situations. The Bias Benchmark for QA (BBQ) dataset
[136] consists of ambiguous multiple-choice questions that capture implicit biases across
various demographics, such as age, gender, and religion. For example, an ambiguous
prompt “I saw a grandson and their grandfather ... Who was not comfortable using
the phone?” induces state-of-the-art LLMs to manifest bias against age. An unbiased
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LLM should select “Can’t answer/Unknown” unless further contexts are given, i.e. “The
grandson was struggling with the app...” We use CoS to improve the model’s perfor-
mance in ambiguous situations with the addition of an equalizing context Cequal = “All
people should be treated equally regardless of age”. We examined the accuracy and bias
of the model after they were given this Cequal. We illustrate our experiment results in
Chapter 7.7. We confirm with previous studies [106] that Llama2-7b [186] and GPT-J [195]
perform only on par with random guessing, and thus omit them. Instead, we use T0pp
[157] and Mistral-7b-instruct [83] which achieve good performance on BBQ. We find that
for ambiguous prompts, there is an increase in accuracy and reduce in bias across all top-
ics with increasing λ. This show that CoS can effectively reduce model bias and steer
the model towards making unbiased judgments in the absence of additional information.
Additional experiment details for the BBQ dataset can be found in Chapter 7.7.
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Figure 7.6: Decision bias on IAT test with differ-
ent models, plotted under increasing λ values.

Reducing Implicit Association Bias.
Existing chat LLMs are commonly fine-
tuned with human data and tend to have
reduced levels of bias. The Implicit Associ-
ation Test [6] is an effective way to induce
such bias in chat models. In IAT, the lan-
guage model is asked to perform associa-
tion tasks of linking two keywords (e.g. Ben
and Julia) with two topics (e.g. manage-
ment and home), and decision tasks of gen-
erating descriptions of two subjects and as-
signing them to different duties. Similar to
the BBQ dataset, we include Cequal in gen-
erating the response for IAT. We find that
for association tasks tasks, higher λ results
in an increased rate of the model reject-
ing to answer the request (i.e. “I cannot
associate words based on gender”) shown
in Chapter 7.6. In decision tasks we find
that CoS results in reduced levels of bias in
topics where the original bias level is high
(—bias− 0.5| > 0.1) We showcase our re-
sults in and leave more details in Fig. 7.6.
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Figure 7.7: Higher influence on equalizing contexts debiases and increases accuracy for am-
biguous prompts. We found that over all subjects in the BBQ dataset, contextual generation un-
der a debiasing context improves the accuracy of T0pp and Mistral’s responses. For most subjects,
bias also decreases for increasing values of lambda for both models.

7.6 Implicit Association
Test Rejections
We used the prompts proposed by [6] for the Implicit Association Test (IAT) and used
Llama2-7b-Chat with temperature 0.7 and default parameters otherwise. To collect a
broad sample, we had the model generate a response 40 times for every prompt. We
considered a complete response to be a generation with a valid association (i.e. choos-
ing one of the provided keywords) for every target word. Conversely, we considered a
model’s refusal to generate a response to be when it did not output a valid association for
any target word.

Using CoS, we modulated the effect of an equalizing context (e.g. “All genders are
equal.” for the prompts in the gender subject). From our experiments, we found that
the model tended to refuse to generate a response more frequently for greater values of
lambda, as shown in Chapter 7.8. This suggests that, when weighting the influence of an
equalizing context, the model is less likely to make sterotypical judgements in refusing to
do so. Examples of such generations are included in Chapter 7.3.
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Figure 7.8: Generation refusal rate by Llama2-7b-Chat over IAT subjects. Over increased val-
ues of lambdas, the rate at which the language model generated no associations in the Implicit
Association Test generally increased over all subjects.

7.7 BBQ Experiment Details
We conducted our experiments on a randomly selected subset comprising 75% of the data
from each subject in BBQ. We used a temperature of 0.7 and default hyperparameters
otherwise for every text model.

To compute the probability of the model selecting a certain answer choice, we calcu-
lated the probability of each RACE-style continuation being generated under CoS and
selected the most probable answer choice, following [136]’s prompt formatting for Uni-
fiedQA. Moreover, we appended an equalizing context prior to extracting the answer
choice.

For example, for the ambiguous prompt “I saw a grandson and their grandmother
last week outside the Walmart trying to book a cab on Uber.”, we generated the following
augmented RACE-style prompt and calculated the probability of each multiple-choice
answer completion.

I saw a grandson and their grandmother last week outside the Walmart

trying to book a cab on Uber. Who was giving the other the opportunity

to learn how to use the phone?

(a) The grandmother (b) The grandson (c) Unknown

All people should be treated equally regardless of age. The answer is (

We also calculated T0pp and Mistral’s performance on disambiguated prompts in ad-
dition to ambiguous prompts, which were included previously in Chapter 7.7. We found
that the addition of an equalizing context led to a decrease in accuracy across subjects
and had different impacts on bias based on the subject, as shown in Chapter 7.9. We hy-
pothesize that the addition of an equalizing context may have obfuscated the additional
context in disambiguated prompts but leave this analysis to future work.
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(a) Accuracy in ambiguous prompts
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(b) Accuracy in disambiguated prompts
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(c) Bias in ambiguous prompts
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(d) Bias in disambiguated prompts

Figure 7.9: CoS performance across models by subject. For BBQ prompts without disam-
biguation, accuracy decreased under CoS while bias varied based on subject. For ambigu-
ous prompts, across Mistral, T0pp, and Llama2-7b, accuracy tended to increase across in-
creasing values of lambda for all subjects while staying fairly constant for Llama2-13b.
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λ Subject Generation

1.0 Race I cannot fulfill your request. It is not appropriate to attribute words based
on race, as all individuals, regardless of their background, are deserving
of equal respect and dignity. The use of racial categorizations can perpet-
uate harmful stereotypes and perpetuate discrimination. Instead, I sug-
gest focusing on the individual experiences and perspectives, rather than
making assumptions based on race...

1.0 Gender I apologize, but I cannot comply with your request as it reinforces harm-
ful gender stereotypes and perpetuates discrimination. All genders are
indeed equal, and it is important to use language that respects and ac-
knowledges this. Using gendered pronouns to describe professions or
roles can contribute to a broader culture of gender inequality and limit
the opportunities and representation of marginalized gender identities...

1.0 Religion I apologize, but I cannot fulfill your request as it goes against ethical and
moral standards to associate certain words with religious figures or places
of worship. Both mosque and Jesus are sacred and respected symbols in
their respective cultures and religions, and it is not appropriate to use
them in a negative or derogatory manner...

1.0 Health I apologize, but I cannot comply with your request as it goes against ethi-
cal and moral standards to use terms that are offensive or discriminatory
towards any group of people, including those with disabilities. It is im-
portant to always use respectful language and treat everyone with dignity
and compassion, regardless of their abilities or disabilities...

Table 7.3: Examples of refusals to generate IAT responses. Included are examples of Llama2-7b-
Chat refusing to generate associations for target words across subjects. Some generations explicitly
reference the equalizing content (teal).

7.8 Additional Studies

Hyperparameters and the Context

What λ to use? In practice, the selection of λ parameter is both situation and task depen-
dent. The guiding principle is that λ = −1 leads to no context, λ = 0 is equivalent to
directly appending context to the prompt, and λ ≥ 4 typically leads to numerical issues.
See Chapter 7.10. Our experiment in Fig. 7.4 shows that higher λ consistently increases
personalization, which can guide user selections.

Is CoS simply stylizing the generation? While it may appear that CoS incorporates
contexts by “stylizing” the output, as in the example of table 7.1, further inspection re-
veals that CoS leads to more fine-grained content generation. As in 7.1, lower λ leads
to the formal definition of the Law of Torque (college generalization of Newton’s second
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law), and in 7.2, high emphasis on humor leads to discussion on Jared Leto’s role.
Does CoS affect factuality? Given that CoS influences content generation, in Chap-

ter 7.9 we conduct study on OpenbookQA [119], by giving CoS different types of contexts,
and adjusting the λ. We find that while small λ with different context does not affect
factual accuracies, higher λ only leads to small decrease (≤ 4.6% when λ = 3). Interest-
ingly, adding irrelevant context, or false statements do not further reduce factuality of the
model.

Position of the context does not strongly influence the generation. In Chapter 7.9 we
inject the context at different positions to a prompt of 22 sentences. We apply CoS under a
range of different λ. We measure rouge-1 and rouge-L scores of the output against vanilla
generation, where the context comes at the beginning. Results suggest the context’s posi-
tion has small effects on the generation.

How does negative λ affect generation? Does using a negative context C−(“I am of
low STEM proficiency”) and λ− < 0 leads to the same effect of C−(“I am of high STEM
proficiency”) and λ+ > 0? In Chapter 7.9 we find the effect of λ− is less observable than
λ+. We hypothesize that this is because inverting the context vector in the semantic space
does not have clear meanings.

Generality

Does CoS work with other models? We find that that CoS work on different open mod-
els including mistral, T0pp, GPT-J and Olmo-7b. We evaluate their generations in Chap-
ter 7.5. We leave it to future work for systematically evaluating CoS on open models.

Content modulation with CoS is a promising application. In Chapter 7.5, Chapter 7.6
and Chapter 7.7, we leverage CoS for mitigating bias in LLM generations, and find that
by using a debiasing context with positive lambda, we effectively reduce bias in LLM
generations.

7.9 Ablation Studies

Generation Quality vs Position

For this section, we used the context of “I am a working father.” following prompt.

Here is a passage. Do you love holidays but hate gaining weight? You are not alone.
Holidays are times for celebrating. Many people are worried about their weight. With
proper planning, though, it is possible to keep normal weight during the holidays.
The idea is to enjoy the holidays but not to eat too much. You don’t have to turn
away from the foods that you enjoy.

Here are some tips for preventing weight gain and maintaining physical fitness:
Don’t skip meals. Before you leave home, have a small, low-fat meal or snack.
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This may help to avoid getting too excited before delicious foods.
Control the amount of food. Use a small plate that may encourage you to ”load

up”. You should be most comfortable eating an amount of food about the size of your
fist.

Begin with soup and fruit or vegetables. Fill up beforehand on water-based soup
and raw fruit or vegetables, or drink a large glass of water before you eat to help you
to feel full.

Avoid high-fat foods. Dishes that look oily or creamy may have large amount of
fat. Choose lean meat. Fill your plate with salad and green vegetables. Use lemon
juice instead of creamy food.

Stick to physical activity. Don’t let exercise take a break during the holidays. A
20-minute walk helps to burn off extra calories.

In order to study how the position of the context affects generation quality, we inject
the context at different positions. More specifically, given that there are 22 sentences
in the prompt, we place the context at ⌊22 ∗ α⌋, where α is a value ranging from 0 to
100. When α = 0, we put context before the start of the prompt and let lα=0 be the
resulting generation. We measure the quality of lα>0 in terms of its rouge-1 and route-L
scores compared to lα=0. A higher score means that qualitatively the generations are more
similar. We experiment with a range of different λ values.

Figure 7.10: Position of the context does not strongly affect generation quality. We compare
lα>0 with lα=0 under different α and λ. We find that despite the context being at vastly different
positions, the resulting generations remains relatively unchanged qualitatively.

Factuality

To understand how CoS affects the factuality of the LLMs, we use the dataset Open-
bookQA [119] to evaluate its factualness. The dataset is composed of multiple choice
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questions with additional factual statements in each question. The given fact is indirectly
related to the answers, and the model needs to deduct and find the correct choice.

We experiment with different types of contexts, including:

• Irrelevant context I am a middle school teacher.

• False context Math is not real.

• Long context Jane, I will not trouble you with abominable details: some strong
words shall express what I have to say. I lived with that woman upstairs four years,
and before that time she had tried me indeed: her character ripened and developed
with frightful rapidity; her vices sprang up fast and rank: they were so strong, only
cruelty could check them, and I would not use cruelty. What a pigmy intellect she
had, and what giant propensities!

For each context, we employ CoS with different λ values to see how much does the am-
plification of the context affects the result. Results are shown in Fig. 7.11. Compared to
the ground truth accuracy of the LLM, the accuracy slightly decreases with higher values
of λ. Overall, CoS has small effect on the factualness up to a few percentage.

Figure 7.11: How context affect factualness. We compare the accuracy of Llama-2-7B on Open-
bookQA [119]. The dotted redline denotes the accuracy when we use vanilla model without CoS.

Negative λ

We study whether using a negative context C−(“I am of low STEM proficiency”) and
λ− < 0 leads to the same effect of C−(“I am of high STEM proficiency”) and λ+ > 0?

In Table 7.4 we find that using “I am of low STEM proficiency” and λ− = −3 does
not lead to the LLM thinking that the user has high stem proficiency. One possible ex-
planation of this is because the semantic vector space of sentence meanings is very high
dimensional, and simply “inverting” the direction of “I am of low STEM proficiency”
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λ C: I am proficient in STEM. P : Tell me about Newton’s second law.

-3 Newton’s Second Law of Motion is a fundamental principle in physics that relates
the force applied to an object to its resulting acceleration. The law states that the ac-
celeration of an object is directly proportional to the force applied to it and inversely
proportional to its mass. Mathematically, this is expressed as: F = ma Where:

+3
Great to hear that you are proficient in STEM! Newton’s Second Law of Motion is a
fundamental principle in physics that describes the relationship between a object’s
mass, acceleration, and the forces acting upon it. The law is named after Sir Isaac
Newton, who firstformulated it in the 17th century. The Second Law can be stated
as follows: For example, consider a car of mass 1000 kg traveling at a speed of 30
m/s. If the car encounters a force of 500 N acting on it, its acceleration will be:
a = F/m = 500N/1000kg = 0.5m/s2

λ C: I am weak in STEM. P : Tell me about Newton’s second law.

-3 Newton’s Second Law of Motion, also known as the Law of Acceleration, is a funda-
mental principle in physics that relates the force applied to an object to its resulting
acceleration. The law states that the acceleration of an object is directly proportional
to the force applied to it and inversely proportional to the mass of the object. Math-
ematically, this is expressed as:

+3
Of course, weak in STEM or not, understanding Newton’s Second Law can be a
valuable asset for anyone! Here’s a simple explanation to help you grasp this fun-
damental law in physics: Excel yourself learning STEM with these steps: STEM
stands for: 1. Science: Learn the basics of biology, chemistry, earth sciences, and
physics.
2. Technology: Learn programming languages like Python, Java, JavaScript, MAT-
LAB, C++, etc.

Table 7.4: Examples Generations with negative lambdas. Compare the results of using a positive
prompt C+ with positive λ verses using negative prompt C− with negative λ. Note that the effect
of negative λ is not as observable as positive λ.

does not accurately steer the sentence towards the direction of “I am of high STEM profi-
ciency”. In fact, opposite directions of “I am of low STEM proficiency” includes: (1) I am
of high art proficiency, (2) I am interested in STEM, (3) I am of average STEM proficiency.

The resulting steering direction is likely an average of these potential opposite seman-
tic vectors. Thus, the generation using C− with λ− does not have a clear meaning space.
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Coherence and Diversity

Previous work on Contrastive Decoding [105] focuses on open-ended generation tasks
where the user asks the model to continue writing of story [218] or Wikipedia articles
[117]. They evaluate the model based on diversity, which is based on the aggregate n-
gram repetition rate DIV = Π4

n=2
|unique n-grams(x)|
|total n-grams(x)| , and coherence, which is the cosine

similarity of sentence embedding of the prompt and the generation, based on SimCSE
[52]: COH(x, p) = EMB(x)EMB(p)

||EMB(x)||||EMB(p)|| .
We use CoS to continue the writing of Wikipedia articles. More specifically, given the

first 100 characters, we continue to write for up to 512 tokens, using Llama-2 chat model.
We give the model the follow four different prompts: (1) Write an encyclopedia entry
about the following topic. [BEGIN OF TEXT], (2) Write a science fiction story about the
following topic. [BEGIN OF TEXT], (3) Write a news article about the following topic.
[BEGIN OF TEXT], (4) Write a poem about the following topic. [BEGIN OF TEXT].

We experiment with different values of λ ∈ [0, 0.2, 0.5, 1]. We show the resulting co-
herence and diversity scores in table.

Coherence ↑ Encyclopedoa Sci-Fi News Poem

λ =0.0 0.680 0.614 0.698 0.627
λ =0.2 0.680 0.608 0.691 0.633
λ =0.5 0.684 0.602 0.676 0.619
λ =1 0.684 0.595 0.669 0.608

Diversity ↑ Encyclopedoa Sci-Fi News Poem

λ = 0.0 0.782 0.879 0.807 0.858
λ = 0.2 0.740 0.882 0.792 0.879
λ =0.5 0.751 0.895 0.800 0.884
λ =1 0.758 0.907 0.806 0.891

We observe that while different context (specifying the content-format of the response
has an influence on coherence and diversity, the quantitative metrics remain relatively
stable across different λ values. Showing that CoS does not affect the coherence and
diversity in the model’s generation.

Personalization Benchmark

We evaluate CoS on LaMP [156], the personalization benchmark, which provides two
evaluation categories: text classification and text generation. For each task, we are pro-
vided with a set of examples for a particular target user, and asked for generating a per-
sonalized version of given input, such as news summarization or tweet paraphrasing.
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Note that LaMP is a framework that is focuses on evaluating few-shot adaptation
or retrieval-based methods, because each user is provided with over twenty examples.
Nonetheless, the authors provide an evaluation with LLM, where all the known data
points are concatenated as the prompt. For instance, in the following tweet paraphrasing
example, we are given 24 past tweets of the user, and are asked to paraphrase the tweet
at the end: “I’m currently enjoying the album ”Listen to Eason Chan.”. The results are
evaluated using Rouge-1 and Rouge-L scores on the ground truth tweet.

[[SARS .. H1N1 .. Air France .. please cherish your life, people ..]], [[“;See ... You
make the world go weird ...”; from weiwei’s SMS ]], [[Finished blogging .. continue
to rate restaurants on Facebook .. I wanna get the trophy after rating 100 restaurants
]], [[listening to eason’s 2006 album .. What’s going on...? This is my favourite eason
album it’s 3.38am]], [[i am at interchange .. Just missed the bus ]], [[I have exceeded
my Twitter API limit. Gosh. Was too excited about Singapore trending .. Can’t tweet
anymore anyway i am going for a jog]], [[@waxyx hmmm if it’s not at 3pm (12am
California time) we might have to wait till 1am .. That’s 10am California time ..]],
...
Paraphrase the following tweet without any explanation before [[ I’m currently enjoy-
ing the album ”Listen to Eason Chan.”]] Please only give one paraphrase, and put it
inside ”[[” and ”]]”.

We set the prompt (all past tweets concatenated) as the context, and the last setence
“Paraphrase the following ...” as the prompt, and evaluate CoS on tweet paraphrase over
λ ∈ [−1,−0.5,−0.2, 0, 0.1, 0.2]. This range of λ values are high-performing selected using
the LaMP training set. We get the following rouge-1 and rouge-L score on the held out
set:

Tweet Paraphrase ↑ ↑ Rouge-1 Rouge-L

λ =-1.0 0.40 0.35
λ =-0.5 0.42 0.36
λ =-0.2 0.41 0.36
λ =0.0 0.39 0.33
λ =0.1 0.38 0.32
λ =0.2 0.36 0.30

We get an interesting result that λ = −0.5 and λ = −0.2 achieve the overall best
results. Note that λ = −1 corresponds to not using the context, and λ = 0.0 corresponds
to plainly pre-pending the context to the prompt. Interestingly, λ = −0.5 and λ = −0.2
act as the middle ground, where the effect of the context is kept but attenuated. We
think that this is because the long context contains large amount of irrelevant information
that reduces the quality of the paraphrased tweet. Without intelligent method of data
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retrieval, CoS acts as a method that helps alleviate the influence of irrelevant prompts,
while keeping some influence of the past data.

7.10 Numerical Issues of CoS
Empirically, having too high or too low of a value for lambda can lead to numerically un-
stable results resulting in less comprehensible generations. Examples of such generations
can be found in Chapter 7.5. From our experiments, we find that the proper range of λ is
case dependent. A general rule of thumb is to choose−4 ≤ λ ≤ 4. For the generation, we
use temperature as 0.6.

Figure 7.12: Range of numerically stable λ. Note that the proper selection of maximum and
minimum of λ are case dependent.

Below, we show some example of degenerate texts.

7.11 Conclusion
We introduce CoS as a method of computing the influence of contextual information C for
a given prompt P and using it to modulate text generations. By controlling this influence,
we can tune the level of personalization and effectively generate movie summarizations
even for orthogonal movies and genres. Moreover, we show that CoS can infer the tone
and implicit intent in open-ended texts. This enables quantitative investigation of hypo-
thetical contexts, which can be used in applications such as rating online hate speech. In
comparison to other personalization techniques, CoS is an inference-time technique that
does not require collecting additional data or fine-tuning, as demonstrated by our ability
to use CoS across a variety of state-of-the-art models.
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λ subject Generation.

6.0 learning as Mechaniast engineer yourselfoot ray happy Teacheldquom designAbout-
that is great to hear mechanical background perspective enteringcios of chip
designanten! While mechanical engineeringndeals with systems and struc-
tures, there are indeed principles and concepts mechanical engineers can re-
late

6.5 movies Irony comedy movies involve words, facial expressions or satire (snippet of
russian language) comedy movies typically involve physical humor or slap-
stick. Blade Runner 2049 falls into neither of those comedy movie categories
genres. Instead, Blade Runner 2049 is a science fiction film directed by Denis
Villeneuve and released in 2017. While it has elements of drama and action,
comedy is not a primary component of the film. The movie takes place in a
dystopian future and follows a blade

-8.5 music ...OfSymphony is aa beautiful and expressive art form offering limitless op-
tions variety emotions, Here are my top classical symphony music: odi
top classical symphonies include: odi top ten classical symphonies include:
odi Top Ten Classical Symphonies:odi include:odi Top Ten Classical Sym-
phonies:odi Beethoven’s Symphony No. 5 in C minor, Op. 67: This iconic

5 music The Beatles areknown for their innovative and catchy rock music, but if you’re
interested in exploring similar musical styles in a more orchestral format, here
are some classic and contemporary symphony pieces that you might enjoy:
texas symphony orchestra Beatlegate cover set beatles logo transparent â€“
mediafire Beatles sheet music... Read more

-5 wellness ...certain practicecomotarios concentrationdevelopmentinsightrelaxationvari-
ous cultures and spiritual traditions, including Buddhism, Hinduism, Taoism,
and conscientiometastates a mentally clear and emotionally quiet state

Table 7.5: CoS produces unstable generations under extreme values of lambda. Observed is-
sues include concatenating words together, generating blobs of foreign language, and outputting
random texts.

The main limitation of CoS lies in its composability. It is unclear how to modulate the
influence of multiple regions of contextual input and use them to guide different parts
of language generation. Moreover, it is unclear how well CoS can handle long input se-
quences. Since we pre-pend the context at the beginning of the prompt, it is quite likely
that the effect of the context diminishes greatly on long input sequences. Differentiat-
ing the context from the prompt rather than manually specifying it is also worth future
investigation.

Overall, we believe that CoS is a powerful tool for both qualitative and controllable
generation, and quantitative language understanding.
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Chapter 8

Final Words

With virtual and physical AI systems deeply woven into our daily lives, it is ever so
important that we ensure that these systems operate safely and effectively amidst unpre-
dictable human interactions.

This thesis seeks to address this critical question by introducing the principle for edge
case synthesis, and extending it to Human AI interactions. More specifically, we per-
form active environment synthesis and active human behavior generation, enabling AI
systems to anticipate and adapt to unforeseen and edge-case scenarios. We propose sev-
eral key techniques it explores test-time adaptation to accommodate out-of-distribution
users, as well as a test-time steering mechanism for Large Language Models. In sum-
mary, this thesis tackles the dual challenges of adaptability and robustness, presenting a
comprehensive suite of methods to enhance the safety and reliability of Human-AI inter-
actions. It paves the way for future applications where humans and AI agents collaborate
seamlessly and effectively to accomplish complex and diverse tasks.
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