
The Hyper-Dimensional Processing Unit: Energy-Efficient
Machine Learning Using Vector-Symbolic Architectures

Youbin Kim

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-232
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-232.html

December 20, 2024

Copyright © 2024, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

The Hyper-Dimensional Processing Unit: Energy-Efficient Machine Learning Using
Vector-Symbolic Architectures

By

Youbin Kim

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Jan M. Rabaey, Chair
Professor Bruno Olshausen
Professor Sayeef Salahuddin

Fall 2024

The Hyper-Dimensional Processing Unit: Energy-Efficient Machine Learning Using
Vector-Symbolic Architectures

Copyright 2024
by

Youbin Kim

1

Abstract

The Hyper-Dimensional Processing Unit: Energy-Efficient Machine Learning Using
Vector-Symbolic Architectures

by

Youbin Kim

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Science

University of California, Berkeley

Professor Jan M. Rabaey, Chair

Hyper-Dimensional computing (HDC) is a machine learning framework that has made in-
roads in low-power edge-AI applications. With simple bitwise vector operations and a small
memory footprint, HDC demonstrates improved energy-efficiency for biosensing classifica-
tion tasks compared to conventional machine learning methods. Recent interest in HDC has
developed complex algorithms that enable the use of HDC systems for cognitive reasoning
and control applications. Although previous hardware for HDC achieve impressive energy-
efficiency for certain tasks, they face several issues with the growing application space. This
dissertation covers the goals, design, optimization, and implementation of an energy-efficient
multipurpose processor for HDC.

The first half of the dissertation overviews the recent expansion of HDC algorithms and
the corresponding hardware to implement them efficiently. The shortcomings of previous
hardware for HDC is analyzed and used to create goals for the Hyper-Dimensional Processing
Unit (HPU), the first multipurpose HDC processor. The second half describes the physical
realization and optimization of the HPU, characterized with two tape-outs. HPUv2 achieves
an impressive energy-efficiency of 168 pJ per operation, making it competitive with previous
application-specific hardware. The fabrication, verification, and characterization of the HPU
architecture demonstrate the viability of an energy-efficient multipurpose processor that can
enable intelligent HDC systems on the edge.

i

Contents

Contents i

List of Figures iii

List of Tables vi

1 Introduction 1
1.1 Energy-Efficient Machine Learning . 1
1.2 Hyper-Dimensional Computing . 3
1.3 Encoding and Computing with HD Vectors 6
1.4 Applications of HDC . 9
1.5 Custom Hardware for Energy-Efficient HDC 11
1.6 Outline . 12

2 Investigating Non-Classification HDC Algorithms 13
2.1 HD Factorization . 13
2.2 Recall of Reactive Behavior . 17
2.3 Conclusion . 20

3 The Design of the Hyper-Dimensional Processing Unit (HPU) 22
3.1 Introduction . 22
3.2 Previous ASICs for HDC . 22
3.3 Goals of the HPU . 23
3.4 HPU System Architecture . 25
3.5 Dimensionality Scaling . 29
3.6 Pseudo-Random Generation using Cellular Automata 30
3.7 Conclusion . 31

4 HPUv1: Design and Implementation 33
4.1 Introduction . 33
4.2 Processor Design . 33
4.3 Physical Implementation . 42
4.4 Chip Verification and Measurement . 44

ii

4.5 Power and Performance Bottlenecks . 46

5 HPUv2: Optimization and Characterization 50
5.1 Introduction . 50
5.2 Energy Optimization and Updates . 50
5.3 Physical Implementation . 60
5.4 Chip Measurements . 62
5.5 Discussion . 67

6 Conclusions 73
6.1 Overview . 73
6.2 Summary of Results . 73
6.3 Future Work . 75
6.4 Looking Forward . 76

Bibliography 78

A Testing and Measurement Methodology 84
A.1 Python Emulator and Compiler . 84
A.2 Test Setup . 84
A.3 Measurement Methodology . 86

iii

List of Figures

1.1 Depiction of an IoT network and with many edge devices. 3
1.2 Normalized probability density function for the Hamming distance between two

random binary vectors of varying dimension. 4
1.3 Figure 1 of [24]: Block diagram of the HDC testing algorithm used for text

language recognition. 9

2.1 Effects of thresholding, quantization, and saturation on the accuracy and con-
vergence of the HD factorization algorithm. The results are compiled from 1000
tests with 3 factors and 128 items per factor using 2048 dimension vectors. For
the saturation results, saturation is applied after quantization with a threshold
of 64. 16

2.2 Simulated 2D environment for obstacle navigation using RORB. The agent uses
sensor data inputs to avoid obstacles and reach the goal square. 17

2.3 Diagram of the training and testing algorithms for RORB (a). Sensor vectors
constructed from input sensor data (b). Visualization of the modality-based (c),
directional (d), and constraints vs. goals (e) encoding strategies. 19

2.4 RORB success rate and standard deviation for the different sensor encoding
strategies. 20

3.1 System architecture of the HPU, divided into a single HD Encoder and multiple
Associative Memory (AM) Tiles. The architecture is parametrized with the design
variables listed at the bottom. 27

3.2 Visualization of the dimensionality scaling feature using time-multiplexing over
fixed size vector folds. 29

3.3 Block diagram of the CA90 unit and how item vector folds are updated. 31

4.1 Block diagram of the VMU and depiction of the address space of the contained
SRAM. 34

4.2 Block diagram from the HD Encoder (a) with detailed hardware diagrams for the
BCU (b), Accumulate Unit (c), and Scale Unit (d). d represents the datapath
dimension and k is the integer bitwidth. 36

4.3 Block diagram of the Similarity Accumulator and Local Argmax Unit within each
AM Tile. A hardware diagram of the Similarity Unit is also shown. 37

iv

4.4 Block diagram of the Argmax Units. The same comparator tree structure is used
for both the Local Argmax and Global Argmax Units. 38

4.5 Die micrograph of HPUv1 with an overlay of the chip floorplan. The white squares
represent individual SRAM blocks. 43

4.6 Kernel accuracy for three kernels measured on HPUv1 as a function of core voltage
(VDD) and clock frequency. Blue signifies higher accuracy while red signifies
lower accuracy. The resulting energy-efficient operating points are also shown. . 47

5.1 Block diagram of updated VMU with added automatic write-back CA90 cache.
The cache stores an additional parity bit used to determine if write-back is necessary. 51

5.2 Comparison of the Control Unit pipelines between HPUv1 and HPUv2. The
right-hand tables show the resulting speedup where each row represents one cycle
and a blue cell indicates that the module is active. 54

5.3 Number of instructions for the HD factorization benchmark on HPUv1 and
HPUv2 vs. number of vector folds used. Note that both axes are log-scale. . . . 54

5.4 Depiction of the SRAM partitioning scheme for general vector storage. Normal-
ized post-synthesis power vs. number of partitions for benchmarks with small,
medium, and large vector usage. Power analyzed at the TT0p9V25C corner with
a 200MHz clock. 55

5.5 Post-synthesis energy of a HD factorization benchmark on HPUv2 synthesized
with different number of AM Tiles and datapath dimension. Lower energy is
blue while higher energy is red. Power analyzed at the TT0p9V25C corner with
a 200MHz clock. 56

5.6 Die micrograph of HPUv2 with an overlay of the chip floorplan. The white squares
represent individual SRAM blocks. 61

5.7 Kernel accuracy for three kernels measured on HPUv2 as a function of core voltage
(VDD) and clock frequency. Blue signifies higher accuracy while red signifies
lower accuracy. The resulting energy-efficient operating points are also shown. . 63

5.8 Benchmark accuracy for three European language classification [24], EMG gesture
classification [58], and HD factorization [48] measured on HPUv2 as a function
of core voltage (VDD) and clock frequency. Blue signifies higher accuracy while
red signifies lower accuracy. 66

5.9 Example of choosing an energy-efficient operating point (0.53V) by threshold
accuracy for the EMG classification benchmark at 25.2MHz. 67

5.10 Latency and average power of the benchmarks over their respective energy-efficient
operating points (a) and resulting normalized energy as a function of core voltage
(b). The lowest energy operating point is 0.49V and 12.6MHz for all benchmarks. 68

5.11 Energy per query of all measured HPUv2 benchmarks at the minimum energy
operating point of 0.49V and 12.6MHz. The factorization benchmarks use a
naming convention of f × i where f is the number of factors and i is the number
of items per factor. 68

v

A.1 Custom PCB with labeled components. 85
A.2 System diagram of the testing setup. 87
A.3 Power trace measured by PMIC for 5 batches of the EMG benchmark with each

batch containing 250 queries. Power measured on HPUv2 operating at 0.49V,
12.6MHz. 88

vi

List of Tables

1.1 Performance of HDC classification for edge-compute suitable applications. Ac-
curacies and energy improvement, where available, are also reported for the best
performing conventional ML alternative, as well as the platform used for energy
comparison. 10

3.1 Comparison of previous hardware for HDC. Existing processors can only perform
a single class of HD algorithms and use fixed-dimension vectors. The Hyper-
Dimensional Processing Unit (HPU) is the first processor to accelerate all known
binary HDC algorithms and vary the vector dimension to fit the target application. 24

4.1 Table of opcodes and descriptions of instructions 1-19 of the HPUv1 ISA. Instruc-
tions 20-33 described in Table 4.2. 40

4.2 Table of opcodes and descriptions of instructions 20-33 of the HPUv1 ISA. In-
structions 1-19 described in Table 4.1. 41

4.3 Summary of HPUv1 chip specifications and architectural parameters. 42
4.4 Measured kernel power, latency, and energy at the energy-efficient operating

points. Lowest-energy data point highlighted in green. 48
4.5 Post-synthesis delay-annotated average power simulation of the Emotion Recog-

nition algorithm [57] on HPUv1 with a folding factor of 8. Power analyzed at the
TT0p9V25C corner with a 200MHz clock. 48

4.6 Instruction breakdown for the Emotion Recognition algorithm [57] run on HPUv1
with a folding factor of 8. 49

5.1 Comparison of number of instructions needed to implement for kernel operations
in HPUv1 vs in HPUv2. f is the folding factor while n is the number of channel
value pairs or the Ngram number. 53

5.2 Table of opcodes and descriptions of instructions 1-17 of the HPUv2 ISA. Instruc-
tions 18-26 described in Table 5.3. 58

5.3 Table of opcodes and descriptions of instructions 18-26 of the HPUv2 ISA. In-
structions 1-17 described in Table 5.2. 59

5.4 Summary of HPUv2 chip specifications and architectural parameters and com-
parison to HPUv1. 61

vii

5.5 Measured kernel power, latency, and energy at the energy-efficient operating
points on HPUv2. Lowest-energy data point highlighted in green. 65

5.6 Comparison of HDC kernel power, latency, and energy between GPU (NVIDIA
GTX 1080), HPUv1, and HPUv2. The kernel operations assume 1024 dimension
vectors. 70

5.7 Comparison of HPUv2 with previous hardware for HDC across three benchmarks.
Note many of the previous hardware include simulated power and energy data
(marked). 71

viii

Acknowledgments

This dissertation and its corresponding research would not have been possible without the
help and mentorship of many people. First, I would like to thank Professor Jan Rabaey
who has been an incredible advisor throughout my Ph.D. His expertise and insights were
instrumental in finding my research interests and shaping my academic career, and he has
helped me always keep my eye on the bigger picture. I am grateful for his kindness, patience,
and vibrant energy that has guided me through the challenges of this journey.

I would also like to thank Professors Sayeef Salahuddin and Bruno Olshausen. Their
discussions and feedback have been invaluable in shaping this work. I have had the pleasure
of collaborating with many brilliant researchers. Thank you to Mohamed Ibrahim, with
whom I worked closely to plan and implement HPUv1. Thank you to Alisha Menon and
Braeden Benedict for their contributions to the HD recall of reactive behavior project. Thank
you to Nathania Santoso and Cecil Symes for their work in characterizing SRAM partition
power for HPUv2. Thank you to Tamzid Razzaque for his assistance in the HPU testing
process.

I owe many thanks to the Berkeley Wireless Research Center (BWRC) and its wonderful
staff. In particular, I would like to thank Brian Richards for his guidance during the tape-
out process for both HPUv1 and HPUv2, and Anita Flynn for her help in setting up the
physical testing infrastructure. I also thank Columba Candy Corpus-Steudeman and Mikaela
Cavizo-Briggs who have answered my countless administrative emails and questions.

Thank you to TSMC who have funded my research and manufactured both chips from
my Ph.D.

Finally, thank you to my family and friends who always stood by me. This journey would
not have been possible without you all.

1

Chapter 1

Introduction

1.1 Energy-Efficient Machine Learning

In the last decade, machine learning (ML) has brought forth a drastic and rapid advancement
in computing and its applications. From artificial intelligence chatbots like OpenAI’s GPT to
image recognition like Apple Face ID, ML is quickly becoming a core part of our technological
usage. This shift in computing paradigms is fueled by the massive network of smart sensors,
devices, and actuators that exist in modern society. Dubbed the internet of things (IoT),
this network generates enormous amounts of personalized data which is well-suited for ML
algorithms to gain insights and make decisions or predictions from complex datasets [1].
The growth in the number of devices that record information (i.e. data producers) and use
information (i.e. data consumers) will consequently increase ML usage in IoT.

Given the diverse computational complexity and requirements of IoT systems, cloud com-
puting has emerged as a widely adopted solution due to its cost efficiency, reliability, and
scalability [2], [3], [4]. In this computing model, devices request hardware resources from a
central datacenter to perform algorithms and data analysis. Since such datacenters can pool
requests from large numbers of different users and devices, they can achieve high resource
utilization and efficiency. Cloud computing plays a major role in today’s technological in-
frastructure. However, it faces several challenges as the data and computing requirements
of IoT continues to grow [5], [6], [7]:

1. Network bandwidth and latency

Connections between devices have limited bandwidth and data transfer speeds set by
the communication protocol. If data is generated at a faster rate than data transmission
to the cloud compute server, additional latency is needed to upload input data (in
addition to the data processing time). For many applications, this response time may
be too long.

CHAPTER 1. INTRODUCTION 2

2. Transmission power

As the number of data producers in the network grows, so does the total amount of
raw data that needs to be transmitted to the cloud. Wireless communication is energy
intensive and scales with the amount of data to be transferred. Depending on the
application, it may not be practical or feasible to transfer all the data required to the
cloud.

3. Privacy and security

For certain applications using information such as healthcare or on-body sensor data,
transferring this data off the device to the cloud incurs risk of compromising data
privacy. Furthermore, devices used for critical applications are reliant on wireless
communication which may not always be guaranteed.

These concerns can be mitigated by performing the computations locally on or near
the data producers/consumers rather than offloading the task to the cloud. This model of
computing, known as edge computing1, requires algorithms to be adapted so that they can
run on devices at the edge of the network. However, edge devices (e.g. mobile phones,
medical devices, smart sensors, robotics) are often energy-constrained, relying on either
battery power or energy harvesting [8]. As a result, the energy efficiency of both the data-
processing algorithm and the hardware platform is a key limitation.

Unfortunately, commonly used ML algorithms such as deep neural networks (DNNs)
and support vector machines (SVMs) struggle to meet the constraints required for edge
computing. The main issue is the vast amount of memory needed by these algorithms. For
example, AlexNet, a convolutional neural network used to classify images, uses 60 million
weights totaling over 200MB of storage [9]. Even if an edge device has enough memory
to fit AlexNet’s weights, the large memories would contribute significant leakage power.
Furthermore in energy-efficient designs, energy from data movement can exceed that of the
computation itself [10]. In addition, DNN training involves multiple passes of large datasets
with expensive back-propagation calculations [11] and is thus infeasible to do on the edge.
Although ”Big Data” has empowered ML in cloud applications, the large amounts of memory
and compute make conventional ML algorithms difficult to map onto edge devices.

Edge computing has created a market for energy-efficient ML. There are many ongoing
efforts to adapt conventional ML algorithms by reducing the amount of memory required.
Model compression uses techniques to determine and remove unimportant weights and reduce
the float precision of the weights to reduce required memory after training [12]. Recent
hardware implementations have taken advantage of such techniques for DNNs [13] and SVMs
[14], although with reduced accuracy and performance compared to the baseline models. As

1Note there are two commonly used definitions of edge computing in literature. The first refers to
computing directly on endpoint devices as mentioned in the prior sentence. The second refers to offloading
compute onto a nearby local edge server that serves several endpoints. In this dissertation, we will use the
former definition.

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Depiction of an IoT network and with many edge devices.

such, efficient algorithms and energy-efficient hardware platforms for edge computing are
still an active area of study.

1.2 Hyper-Dimensional Computing

Power-constrained circuit design is not a new concept. Since the beginning of the century,
transistor speed and density has scaled to the point that performance of large processors are
gated by power (and their ability to dissipate it) [15]. Digital designers soon found adding
more parallelism, i.e. multiple slower cores vs. a single fast core, was more efficient given
the same power budget [10]. The idea of slow but massively-parallel designs may be the key
to energy-efficient computation on the edge.

Hyper-Dimensional Computing (HDC) is one such computing paradigm. Inspired by the
vast neural circuits of the brain, HDC emulates neural activity patterns with vectors of very
large dimension, i.e. hyper-dimensional (HD) vectors [16]. Unlike Von Neumann computing
which is based on scalar arithmetic, HDC only computes using HD vectors. These vectors are
combined using a simple but rich vector algebra which maps easily onto parallel and energy-
efficient hardware implementations in a small memory footprint [17]. The HD representation
of data also gives HDC unique robustness and fast one-shot learning capabilities useful for
low power ML [18].

CHAPTER 1. INTRODUCTION 4

Figure 1.2: Normalized probability density function for the Hamming distance between two
random binary vectors of varying dimension.

In this section, we will introduce HDC and its operating principles.

Pseudo-Orthogonality in HD Spaces

HDC algorithms are based on several important properties of randomness in HD vector
spaces. In order for these properties to hold, the vector dimensions need to be large, usually
in the order of 1000 or more. There are several variations of HDC collectively known as
Vector-Symbolic Architectures (VSAs), which differ slightly in data type of vector elements
as well as the specific vector operations used to combine and encode them [19]2. In this
dissertation, we will only consider the multiply-add-permute (MAP) variation that uses
binary HD vectors whose elements are {0, 1}. For instance, a 1000 dimension binary HD
vector is represented as a length 1000 bit string or word.

The key working principle of HDC is that randomly chosen HD vectors are very close
to orthogonal, i.e. pseudo-orthogonal. Binary vectors are considered orthogonal if exactly

2As mentioned in [19], the various flavors of VSAs have advantages and disadvantages in their implemen-
tation and performance. However, since they share the same working principles, applications should be able
to ported between most VSA types, although vector dimensions may need to be adjusted for performance.

CHAPTER 1. INTRODUCTION 5

half of their elements (bits) are the same and half are different. In other words, vectors
a, b ∈ {0, 1}d are defined as orthogonal if the Hamming distance dH(a, b) = d / 2.

Now consider a, b ∈ {0, 1}d both of whose elements are randomly chosen. For each
element pair (ai, bi), there is a 50% chance they match and can thus be modeled using a
Bernoulli distribution ai ⊕ bi ∼ Bern(0.5). Since we can mathematically express

dH(a, b) =
d∑

i=0

ai ⊕ bi ∼
d∑

i=0

Bern

(
1

2

)
= B

(
d,

1

2

)
(1.1)

as a binomial distribution. Since a, b are HD vectors, d is large. We can use the normal
approximation to the binomial distribution

dH(a, b) ∼ N
(
d

2
,
d

4

)
. (1.2)

Figure 1.2 plots the normalized probability density from Equation 1.2 for various values
of d. In the case of d = 10000, the standard deviation σ = 50. This means that for 99.7% of
randomly chosen vectors a, b, their Hamming distance will fall in an extremely narrow range
of 4850 < dH(a, b) < 5150 centered around the orthogonality condition of dH = 5000. In
this way, randomly chosen vectors are considered pseudo-orthogonal and thus can be used
to represent distinct ideas, concepts, or values we wish to compute with.

HD Vector Operations

In order to leverage the pseudo-orthogonal property of HDC, its vector operations are neces-
sarily designed around preserving or nullifying similarity. We define two vectors to be similar
if their Hamming distance is not close to half the vector dimension

a ∼ b := dH(a, b) ̸≈
d

2
. (1.3)

Consequently, two vectors are dissimilar if their Hamming distance is close to half the vector
dimension

a ̸∼ b := dH(a, b) ≈
d

2
. (1.4)

Only three vector transformations (multiplication, addition, permutation) and a single
vector associative search operation are used to encode and decode HD vectors. Furthermore,
the HD vector space is closed under all four operations.

1. Addition

Also referred to as superposition or bundling, addition performs an element-wise ma-
jority function across all constituents. In practice, addition is computed into two steps:
accumulation, denoted by + or

∑
, and thresholding, denoted by [·]. Given n binary

CHAPTER 1. INTRODUCTION 6

vector inputs, the accumulation phase performs element-wise addition into a single
integer vector. Thresholding then transforms the integer vector back into a binary one
by mapping values greater than n / 2 to 1 and values less than n / 2 to 0. Addition
preserves similarity between the output and all of its inputs, i.e. given b = [

∑n
i=1 ai],

then b ∼ ai for 1 ≤ i ≤ n. Note that the accumulation step of addition is commutative
and associative.

2. Multiplication

Also known as binding, multiplication is an element-wise XOR computation of two
binary HD vectors denoted with the symbol ⊕ or

∏
. Given that a ̸∼ b, then a⊕ b ̸∼

a, b. Multiplication is also commutative and associative. Multiplication has some other
important properties as well. First it is invertible, a ⊕ b ⊕ b = a ⊕ 0 = a. Second,
it distributes over addition, b ⊕ [

∑n
i=1 ai] = [

∑n
i=1 b ⊕ ai]. Finally, multiplication

also preserves distance, dH(a, b) = dH(a ⊕ c, b ⊕ c). In this way, multiplication by a
random vector can be thought of as a vector transformation function. It “randomizes”
the direction of the input vectors, but does so in a way that preserves their relationships.

3. Permutation

Permutation is a cyclic reordering of elements in a vector, denoted by ρ. In practice
(especially in hardware), the simplest permutation to implement is a cyclic shift. In
many ways, permutation is similar to multiplication by a random vector. It outputs
a vector dissimilar to the original, a ̸∼ ρ(a). It is also invertible ρ−1(ρ(a)) = a, dis-
tributes over addition ρ([

∑n
i=1 ai]) = [

∑n
i=1 ρ(ai)], and preserves distance dH(a, b) =

dH(ρ(a), ρ(b)). Its main use is for distinguishing a vector’s position in a sequence.

4. Associative search

The associative search operator takes a single query vector q and a set of search vectors
a1, . . . ,an. The output of the search is the vector in the search set that is most similar
to the query vector. In mathematical terms, the search result vector is given by s = ak

where k = argminn
i=1dH(q,ai). The associative search is useful in cleaning up noisy

versions of vectors. Often times, the vectors in the search set are collectively referred
to as the associative memory.

1.3 Encoding and Computing with HD Vectors

Using the simple vector algebra defined in the previous section, HDC can compute and encode
information in hierarchical structures. In this section, we will explore some commonly used
encoding structures, discuss the information capacity of HD vectors, and walk through a full
example of performing text language classification.

Since HDC requires random vectors to take advantage of its pseudo-orthogonality prop-
erty, we start by creating random vectors to represent each input for our computation. Once

CHAPTER 1. INTRODUCTION 7

a random vector is created for an input, however, this assignment is fixed. These vectors are
often called items or item vectors and consequently the entire collection of items is named
the item memory. From a traditional computing view, the row address of an item can be
used as a label to associate with its corresponding input. We will now demonstrate how
items can be encoded into useful data structures.

1. Key-value pairs

The first simple encoding scheme is the combined representation of a key and value,
much like an entry in a dictionary. Assuming k,v are items that represent a key and
value respectively, we can encode a simple multiplication of the vectors p = k ⊕ v.
Unlike a traditional key-value pair, the HD pair vector p can be queried by either
vector to retrieve its corresponding pair. For example p ⊕ k = k ⊕ v ⊕ k = v and
p⊕ v = k ⊕ v ⊕ v = k.

2. Sequences

Multiplication and permute operations are used to encode sequences and patterns. The
sequence of items {a1, . . . ,an} can be encoded as s =

∏n
i=1 ρ

i−1(ai). The permutation
is used to distinguish between the order of the sequence items and ensure a unique
sequence vector for different orderings.

3. Sets

HDC encodes sets using the addition operator3. For instance, we can encode a vector
s that represents a set of items {a1, . . . ,an} by adding s = [

∑n
i=0 ai]. HDC provides

an elegant and non-brute force method to test for set membership. Assuming a query
vector q, we can compute x = dH(q, s). Since s is similar to all of its constituents, if
x ̸≈ d / 2 then q is in the set. If x ≈ d / 2, then q is not in the set.

4. Dictionaries

By combining the ideas of sets and key-value pairs, we can construct dictionaries as
well. A dictionary is just a set of key-value pairs constructed as s = [

∑n
i=0 ki ⊕ vi].

This dictionary can be queried by a key or value to get its corresponding pair. For
example, assume we have the item representing the key kj where 1 ≤ j ≤ n. We can
multiply the key to the dictionary vector to get

kj ⊕ s =

[
kj ⊕ vj ⊕ kj +

n∑
i=0,i ̸=j

ki ⊕ vi ⊕ vj

]
(1.5)

=

[
vj +

n∑
i=0,i ̸=j

ki ⊕ vi ⊕ vj

]
. (1.6)

3Note that traditional sets only contain one of each item. In our case, it is possible to add multiple of
the same item, and is thus more akin to a multiset. However for simplicity, in this dissertation we will use
the terms set and multiset interchangeably.

CHAPTER 1. INTRODUCTION 8

Noting that the terms ki⊕vi⊕vj where i ̸= j are all dissimilar from {v1, . . . ,vn}, the
product vector can be seen as vj with noise added from the other terms. We can thus
perform an associative search query over the set of items {v1, . . . ,vn} using kj ⊕ s as
a query vector to retrieve the value vector vj .

Information Capacity

For all the data structures mentioned above, there are limits to how much data can be
stored and retrieved in a single vector. For example, if too many vectors are added into a
single set, the constituent vectors and set vector will start to get more and more dissimilar.
For dictionaries, adding too many key-value pairs could make the product vector so noisy
that associative search cannot choose the correct vector. Clearly, the number of entries in a
set/dictionary (i.e. the information capacity) increases with the size of the HD vector. Both
analytical [20], [21] and quantitative [22] studies observe a linear increase in the dimension of
the HD vector with the number of entries to be added. As a point of reference, 1000 dimension
vectors were able to achieve 99% accuracy in both set membership and dictionary unbinding
tests with the summation of 20 items/key-value pairs [22]. Depending on the complexity
and size of the encoding we want to perform, the dimension of the HD vectors should be
scaled accordingly for desired performance.

Case Study: Text Language Recognition

Now that we have introduced the basics of HDC, we will walk through an entire example of
an HDC algorithm for language classification of texts. Language recognition was the first
example of HDC applied to a supervised classification algorithm, the family of algorithms
that HDC is perhaps most known for. The HDC language recognition algorithm uses Latin
alphabet text to learn and classify 21 European languages [23], [24].

Using ideas from natural language processing, this HDC algorithm uses N-grams, se-
quences of n consecutive letters, to detect and measure language similarity. The goal is to
measure the frequency of N-grams for different languages and calculate a histogram that
represents each language. When given new input text, we can again compute the N-gram
histogram and compare it to the histograms for each language. The closest match will be
the output class.

The N-gram histogram computations and comparisons would be a memory and compute
intensive task in standard computing. Given 26 letters of the alphabet and the whitespace
character, there are 27 total possibilities for each element in an N-gram sequence. As a result,
N-gram histograms must keep track of 27n different entries. HDC can solve this problem
efficiently. We begin by creating an item memory with 27 entries, assigning one item to
each letter and whitespace. To differentiate N-grams, their representations must be unique,
or pseudo-orthogonal, which can be achieved by encoding them as sequences. The N-gram
frequencies are tracked by adding N-gram vectors together into a set vector. N-grams that
appear multiple times will also be added multiple times into the weighted set vector, where

CHAPTER 1. INTRODUCTION 9

Figure 1.3: Figure 1 of [24]: Block diagram of the HDC testing algorithm used for text
language recognition.

the weight reflects the frequency of each N-gram. This ensures high similarity between the
set vector and frequently occurring N-gram vectors, and low similarity for rare N-grams.

In the training phase, input text for each language is processed and encoded into N-gram
vectors which are then summed into a single vector representing that language. The language
vectors are stored into the associative memory. In the testing phase, depicted in Figure 1.3,
the same exact encoding and summation is performed for input text. The only difference is
that rather than storing the resulting vector, we perform an associative search to find the
most similar class vector.

The HDC algorithm was performed using 10000 dimension vectors and an N-gram size
of n = 4 with a classification accuracy of 97.1% [24]. Although the baseline method of
nearest-neighbor classifier using N-gram histogram slightly outperforms the HDC method
with an accuracy of 99.2%, it requires 20× more memory.

1.4 Applications of HDC

The number of proposed and theorized HDC applications are quickly growing across a wide
range of application spaces. A recent HDC survey counts over 300 applications [30]. How-
ever, only a limited number of these studies include concrete examples with well-defined
problems/datasets and characterized performance. As of now, most practical applications
of HDC are supervised classification tasks. Table 1.1 outlines several of such tasks that
have also been compared to baseline implementations state-of-the-art conventional ML al-

CHAPTER 1. INTRODUCTION 10

A
p
p
li
ca
ti
on

D
im

.
A
cc
.

B
as
el
in
e
A
cc
.

P
la
tf
or
m

E
n
er
gy

S
av
in
g/

S
p
ee
d
u
p

L
an

gu
ag
e
re
co
gn

it
io
n
[2
4]

10
00
0

97
.1
%

K
N
N

99
.2
%

65
n
m

p
os
t-
sy
n
th
es
is

20
.0
×

E
M
G

ge
st
u
re

re
co
gn

it
io
n
[2
5]

10
00
0

97
.8
%

S
V
M

89
.7
%

-
-

E
m
ot
io
n
re
co
gn

it
io
n
[2
6]

20
00

79
.3
%

S
V
M

89
.7
%

28
n
m

p
os
t-
la
yo
u
t

9.
5×

V
oi
ce

re
co
gn

it
io
n
[2
7]

10
00
0

88
.4
%

D
N
N

95
.9
%

C
P
U

11
.9
×

S
ei
zu
re

re
co
gn

it
io
n
[2
8]

10
00
0

85
.5
%

S
V
M

83
.3
%

G
P
U

1.
9×

D
N
A

se
q
u
en
ci
n
g
[2
9]

10
00
0

99
.7
%

S
V
M

94
.5
%

C
P
U

4.
3×

T
ab

le
1.
1:

P
er
fo
rm

an
ce

of
H
D
C

cl
as
si
fi
ca
ti
on

fo
r
ed
ge
-c
om

p
u
te

su
it
ab

le
ap

p
li
ca
ti
on

s.
A
cc
u
ra
ci
es

an
d
en
er
gy

im
p
ro
ve
-

m
en
t,

w
h
er
e
av
ai
la
b
le
,
ar
e
al
so

re
p
or
te
d
fo
r
th
e
b
es
t
p
er
fo
rm

in
g
co
n
ve
n
ti
on

al
M
L
al
te
rn
at
iv
e,

as
w
el
l
as

th
e
p
la
tf
or
m

u
se
d
fo
r
en
er
gy

co
m
p
ar
is
on

.

CHAPTER 1. INTRODUCTION 11

gorithms. In all cases, the HDC algorithms outperforms or is competitive in accuracy with
the baseline, while having vastly superior energy-efficiency and computation latency.

HDC classification algorithms follow the same general structure, outlined in the language
recognition case study in the previous section. Random item vectors are assigned to all
possible input data values and channels. For both training and testing examples, the items
representing the input are encoded into a single HD vector. The exact encoding algorithm
differs between different implementations. Even for the same application, finding a smart
encoding strategy can improve performance [27]. As a result, classification with HDC often
requires domain knowledge to implement the encoder, e.g. N-grams for language recognition.

Outside of classification, HDC has also shown promise in applications such as robotics
and control [31], [32], [33], efficient storage and search in graph and tree data structures [34],
[35], and visual perception tasks when used in combination with neural networks [36], [34],
[37]. Due to their recent development, there are currently limited examples and uses of these
applications. However, we expect increased adaption and evaluation of these applications in
the near future.

1.5 Custom Hardware for Energy-Efficient HDC

In the previous sections, we have shown how HDC algorithms compute using simple highly-
parallel vector operations with a compact memory. In combination with its competitive
accuracy and vastly superior efficiency, HDC is fast becoming a promising candidate for
edge-compute applications (refer to Table 1.1). This section highlights several additional
attractive qualities of HDC in low-power environments and argues how custom hardware
design can maximize energy-efficiency.

Robustness

All HDC algorithms require real-world inputs to first be mapped onto random item vec-
tors. Unlike scalars used for conventional computing which have most significant and least
significant bits, the bits that make up the item vectors all carry the same amount of im-
portance and information. In other words, data representation is holographic in the HD
space. Additionally, uncertainty is fundamentally built-in to the structure of HDC; dis-
tances between random HD vectors are uncertain (although probabilistically narrow) and
the associate search returns the most similar result. As such, random errors in HD vector
computations have a low chance in corrupting the final output. For example, simulations
show that the HDC language recognition algorithm can tolerate memory bit error rates 8.8×
higher than the baseline SVM algorithm [24]. Several hardware implementations have shown
that this robustness can be used to take advantage of new error-prone devices such as carbon
nanotube FETs and RRAMs [38] and PCMs [39]. However, even standard digital CMOS
designs can utilize HDC’s robustness by operating at low-VDD in the near-threshold regime
for higher energy-efficiency.

CHAPTER 1. INTRODUCTION 12

Efficient Training

Unlike conventional ML algorithms, training for supervised HDC tasks is fast and simple. For
example, classification performs one-shot learning, accumulating encoded training examples
in a single pass through the dataset. Furthermore, encoding for training and testing is
exactly the same, and no additional complex calculations (e.g. backpropagation, gradient
descent) are required. These qualities make online learning feasible, even on edge devices
with limited data and compute resources [25], [40].

HDC in Hardware

Unfortunately, traditional compute platforms such as CPUs and GPUs cannot efficiently im-
plement HDC algorithms. These platforms are most effective for large intensive computations
such as floating point arithmetic and struggle with custom data widths and non-standard
operations [41]. As a result, HDC applications aiming for energy-efficiency are often imple-
mented on FPGAs or ASICs. FPGA designs for HDC [42], [43], [44] are common due to
their quick implementation and turnaround time. However, especially if energy-efficiency is a
primary concern, ASICs can often provide one order of magnitude higher efficiency as a rule
of thumb [45]. In practice, ASIC implementations of HDC have shown even higher efficiency
gains. [46] shows ∼ 10 000× better energy-efficiency when comparing post-synthesis simula-
tions of HDC classification on a 28nm CMOS ASIC vs on an Nvidia Jetson TX2 CPU. [47]
shows ∼ 100× better energy-efficiency when comparing post-synthesis simulations of HDC
classification on a 22nm CMOS ASIC vs on a FPGA. Intelligent ASIC design can enable
HDC for energy-constrained computing on the edge.

1.6 Outline

This introduction has overviewed the increase in demand of energy-efficient ML and how cus-
tom hardware implementations of HDC offer a solution. Given that real-world applications of
HDC have been limited (although rapidly increasing in recent years), hardware accelerators
for HDC have correspondingly been designed for a single algorithm or class of algorithms.
This dissertation argues for the design of an efficient general purpose processor for HDC in
four steps. In the first step (Chapter 2), we investigate two promising non-classification HDC
algorithms. We apply these algorithms to concrete examples and characterize their perfor-
mance in order to show that HDC’s edge computing capabilities are continuing to grow.
The second step (Chapter 3), we discuss the limitations of previous ASICs for HDC and pro-
pose the architecture of the Hyper-Dimensional Processing Unit (HPU), a general-purpose
processor for HDC. In the third step (Chapters 4-5), we implement, optimize, fabricate,
and characterize the HPU design. This includes detailed performance and energy-efficiency
measurements of the HPU in the context of edge computing and comparisons to existing
hardware. We will conclude the dissertation with a summary of results and perspectives on
the future of hardware for HDC.

13

Chapter 2

Investigating Non-Classification HDC
Algorithms

Until recently, applications and hardware for HDC only made use of the HD classification
algorithm. The classification algorithm was first introduced and applied to a European text
language classification task [24], but has since found broad success in many areas as shown in
Table 1.1. These applications follow the same basic HDC algorithm with differences only in
the input encoding process. As a result, hardware platforms to accelerate HD classification
allowed for specialized datapaths and deep pipelines optimized only for the classification
algorithm. However in the last few years, new HDC algorithms have begun to emerge
that have vastly different computation structures or more complex vector operations. In
this chapter, we share two such emerging algorithms in which we have contributed to the
algorithm development or hardware implementation.

2.1 HD Factorization

The development of the HD factorization algorithm is rooted in the disentanglement problem
associated with sensory perception and cognitive reasoning. First proposed and analyzed in
[34] [48], HD factorization maps the disentanglement problem into the HD space. Each
quality to be unbinded (also known as a factor) is represented by a set of vectors (called
items) that correspond to each possible quality value. For example, assume we are given
an image with a colored digit somewhere in the picture. We wish to disentangle the im-
age into its three constituent factors: the digit represented {0, . . . , 9}, the color of the digit
{black, red, . . . , green}, and the position of the digit in the image {top-left, . . . , bottom-right}.

For ease of analysis, let us assume that we have three factors each with exactly n items.
We assign unique random vectors x1, . . . ,xn for each item of the first factor, y1, . . . ,yn for
the second factor, and z1, . . . ,zn for the third. The input image can be represented as a
unique combination of the items q = xi ⊕ yj ⊕ zk for i, j, k ∈ {1, . . . , n}. The factorization
problem can then be posed as follows: given a query vector q that is the multiplication of

CHAPTER 2. INVESTIGATING NON-CLASSIFICATION HDC ALGORITHMS 14

item vectors from each factor, find the individual items (i.e. multiplicands) from each factor.
The factorization problem can be solved using an iterative HDC algorithm. In each

iteration, we first assume we have guesses for each factor, x̂[t], ŷ[t], ẑ[t] where t is the iteration
number. We can then compute

x̂[t+ 1] =
[
XX⊤q ⊕ ŷ[t]⊕ ẑ[t]

]
(2.1)

ŷ[t+ 1] =
[
Y Y ⊤q ⊕ x̂[t+ 1]⊕ ẑ[t]

]
(2.2)

ẑ[t+ 1] =
[
ZZ⊤q ⊕ x̂[t+ 1]⊕ ŷ[t+ 1]

]
(2.3)

where

X =

 | |
x1 · · · xn

| |

 , Y =

 | |
y1 · · · yn

| |

 , Z =

 | |
z1 · · · zn

| |

 . (2.4)

Let us break down the update process for x̂ shown in Equation 2.1. The innermost
product p = q⊕ ŷ[t]⊕ ẑ[t] multiplies the query vector with the current guesses for ŷ and ẑ.
Since the all vectors in the binary HDC space is its own multiplicative inverse, p represents
the guess for x. The outermost operation performs the matrix multiplication

[
XX⊤p

]
. We

can evaluate

[
XX⊤p

]
=

 | |
x1 · · · xn

| |

— x1 —

...
— xn —

p

 (2.5)

=

 | |
x1 · · · xn

| |

⟨x1,p⟩

...
⟨xn,p⟩

 (2.6)

=

[
n∑

i=1

⟨xi,p⟩xi

]
, (2.7)

where ⟨·, ·⟩ represents the inner product assuming the binary vectors are represented in
bipolar form. In other words, the matrix multiplication can be viewed as computing the
vector similarities between p and all the items xi and then performing a scaled accumulation
where each item xi is scaled by its corresponding similarity value. The end result is then
thresholded back to a binary/bipolar vector and stored as the guess for the next iteration.
This process is then repeated for each of the other factors to finish one iteration of the
factorization algorithm.

The iterative algorithm completes when the vector guesses converge, i.e. when

x̂[t+ 1] = x̂[t], ŷ[t+ 1] = ŷ[t], ẑ[t+ 1] = ẑ[t] . (2.8)

CHAPTER 2. INVESTIGATING NON-CLASSIFICATION HDC ALGORITHMS 15

In order to start the algorithm, we must first initialize the starting guesses x̂[0], ŷ[0], ẑ[0],
which are set to the unscaled accumulation of the items for that factor. In other words

x̂[0] =

[
n∑

i=0

x]i

]
, ŷ[0] =

[
n∑

i=0

y]i

]
, ẑ[0] =

[
n∑

i=0

z]i

]
. (2.9)

The average number of iterations to converge depends on several factors. In general,
the larger the search space of the factorization algorithm (defined as the total number of
possible combinations of items), the algorithm requires either more iterations or larger vector
dimensions to converge. If the vector dimension is too small compared to the search space,
the guess iterations can get stuck in a cyclic loop and never converge.

In an effort to both make the HDC algorithm more hardware friendly and to improve the
algorithm convergence speed, we investigated three methods of constraining the similarity
computation and scaled accumulation portions of the factorization algorithm:

1. Thresholding:
After computing the similarities in Equation 2.6, thresholding will replace all similari-
ties less than the threshold value with zero. Since items that have very small similarities
to the guess vector p are nearly orthogonal to p, there is very little probability that
those items are included in the query. As a result, by removing such items from the
scaled accumulation, we can converge more quickly to the correct item.

2. Quantization:
Quantization is similar to thresholding but with the main focus of reducing the number
of bits required to hold the similarity values by reducing the dynamic range. Like
thresholding, quantization will set small similarity values to zero, but it will also reduce
the resolution of larger similarity values as well.

3. Saturation:
Saturation affects the scaled accumulation by setting maximum and minimum values
during the accumulation phase. Assuming one item is accumulated at a time, if an
accumulated vector element is greater or less the saturation values, it will be clipped
to the saturation values instead.

The results of the three methods are shown on an example factorization problem using
2048 dimension vectors with 3 factors and 128 items per factor in Figure 2.1. We report
the accuracy and avg number of iterations to converge measured over 1000 random queries.
Note that the saturation results assume the similarities have already been quantized by a
threshold of 64 before the scaled accumulation phase.

Thresholding and quantization are mutually exclusive strategies that are applied to the
similarity computation portion of the factorization algorithm. In terms of convergence speed
and accuracy, thresholding shows superior performance, with up to a 3.5× improvement in
number of iterations over the baseline and a maximum accuracy of 100%. In general, in-
creasing the threshold value improves factorization performance, but if the threshold is too

CHAPTER 2. INVESTIGATING NON-CLASSIFICATION HDC ALGORITHMS 16

Figure 2.1: Effects of thresholding, quantization, and saturation on the accuracy and con-
vergence of the HD factorization algorithm. The results are compiled from 1000 tests with
3 factors and 128 items per factor using 2048 dimension vectors. For the saturation results,
saturation is applied after quantization with a threshold of 64.

CHAPTER 2. INVESTIGATING NON-CLASSIFICATION HDC ALGORITHMS 17

Figure 2.2: Simulated 2D environment for obstacle navigation using RORB. The agent uses
sensor data inputs to avoid obstacles and reach the goal square.

large (> 64 in this case), the algorithm will suddenly collapse and fail. As a result, find-
ing the optimal threshold value for factorization problems of different sizes may be difficult
without extensive characterization. The quantization method yields similar trends to thresh-
olding, but with less effective results. We again see an improvement in convergence speed
and accuracy, although only a 2× convergence speedup. However, quantization enables for
compressed integer representations of the similarity values and thus reduces the necessary
integer bitwidth. As a result, hardware acceleration of the HD factorization algorithm is
more amenable to quantization as we gain a large portion of the performance gains while
also reducing hardware cost and complexity.

After quantization, we find that saturation has little effect on the factorization perfor-
mance for reasonable saturation values. Alongside quantization, this allows us to fix the
integer bitwidth required in hardware for HDC while improving algorithm performance.

2.2 Recall of Reactive Behavior

One of HDC’s biggest advantages over traditional ML algorithms is its ability to use domain
knowledge to quickly learn over limited training data and time, which is especially useful
in robotics and control applications [49]. The HDC Recall of Reactive Behavior (RORB)
algorithm was initially proposed as a method to bring these advantages into a robotics ap-
plication [31] [32]. Unfortunately in these works, the application details as well as algorithm
performance are not presented nor measured.

CHAPTER 2. INVESTIGATING NON-CLASSIFICATION HDC ALGORITHMS 18

In this section, we present our work on adapting the RORB algorithm to deal with
heterogeneous sensory inputs as well as characterizing the algorithm performance on a well-
defined application [50]. The RORB algorithm is used to navigate within a simulated 2D
environment shown in Figure 2.2. The algorithm’s goal is to navigate the agent (located
at the blue square) to the goal (located at the green square) while avoiding all obstacles
(black squares). The worlds are 10× 10 grids with 15 randomly-placed obstacles. The agent
has access to six sensory inputs. Ob1 - Ob3 are boolean signals that return true or false
depending on whether an obstacle is present in the tile up, right, down, and left of the agent
respectively. targetx and targety are ternary signals which detect whether the x and y
coordinates of the agent are less than, equal to, or greater than that of the goal. In other
words, these signals allow the agent to know the direction of the goal location relative to
itself. Finally, the agent’s last movement is also provided as an input, which is useful in
training the agent not to enter a movement loop (ex. moving back and forth between two
squares). The agent can move in four directions (up, down, left right), and thus after every
movement, the algorithm receives the 7 new inputs from the current location and provides
a directional output for the next movement.

As RORB is a supervised learning algorithm, we first manually move the agent to the
goal in several random environments to create a set of sensor inputs and movement outputs
to train on. The basic training algorithm is similar to that of HD classification. We first
begin by assigning a random ID vector to represent each of the 7 inputs and 4 outputs, as
well as vectors to represent the possible sensor values. During the RORB training phase, the
sensor inputs values are multiplied to their respective ID vectors and then encoded into a
single sensor vector that represents all the sensor inputs. The sensor vector is then multiplied
to the output ID vector (also called the actuator vector) and accumulated into the program
vector. The program vector accumulates all training instances that are sufficiently different
and then is stored for use in testing.

In the testing phase, we repeat the same encoding process for the sensory inputs to
produce the sensor vector. The sensor vector is then multiplied with the stored program
vector to produce a noisy actuator vector. By performing an associative search over the
output ID vectors, the noisy actuator vector will select the output direction towards which
the agent should move. For each test, we simulate a random environment which has not
been seen in the training phase. RORB uses the stored program vector to predict each
consecutive movement of the agent until one of three outcomes occur. The first is when the
agent reaches the goal without any collisions, which is counted as a success. The second is
when the agent collides with an obstacle or wall, which is counted as a fail. Last is if the
agent becomes stuck in a movement loop, which also counts as a fail.

The implementation of the sensor encoding plays a large role in the behavior of the
agent. In this work, we tested three unique sensor encoding strategies which results in vastly
different algorithm performance, shown in Figure 2.3.

• Modality-based encoding: Based on previous sensor-fusion classification algorithms,
the sensors are grouped and multiplied together by modality. The resulting modality

CHAPTER 2. INVESTIGATING NON-CLASSIFICATION HDC ALGORITHMS 19

Figure 2.3: Diagram of the training and testing algorithms for RORB (a). Sensor vectors
constructed from input sensor data (b). Visualization of the modality-based (c), directional
(d), and constraints vs. goals (e) encoding strategies.

vectors are accumulated into the sensor vector.

• Directional encoding: The input sensors vectors are grouped by the x and y directions
and multiplied together. The directional vectors and the last movement vector are
accumulated into the sensor vector.

• Constraints vs. goals encoding: This encoding strategy attempts to convey domain
knowledge by use of primary and secondary goals. Since collision with an obstacle
is an automatic failure, the primary goal (i.e. constraints) of the agent should be to
avoid all obstacles. As a result, the obstacle sensor vectors are directly multiplied
into the sensor vector. On the other hand, the directional target vectors and the last
movement vectors are used to move the agent towards the goal and thus should be
considered secondary goals. Therefore, the goal vectors are accumulated together first
before being multiplied into the sensor vector.

CHAPTER 2. INVESTIGATING NON-CLASSIFICATION HDC ALGORITHMS 20

Figure 2.4: RORB success rate and standard deviation for the different sensor encoding
strategies.

The success rates of each sensor encoding strategy is shown in Figure 2.4. The rates are
calculated over 100 environments with 100 trials in each environment consisting of differing
start and goal locations for a total of 10 000 tests. The same set of tests are used to evaluate
the three strategies. Each test includes a 100-step timeout to detect movement loops.

Of the three encoding strategies, constraint vs. goals achieves by far the highest success
rate at 88% nearly doubling the worst-performing modality-based strategy of 46%. This
demonstrates that HDC can utilize intelligent encoding strategies to set behavioral priorities.
In this way, domain knowledge and previous experience can be included in HDC algorithms
to ensure good performance even with constraints in training.

2.3 Conclusion

As showcased in this chapter,the complexity and applicability of HDC algorithms is con-
stantly growing. Initially HDC was only used for classification algorithms which perform
perception tasks using sensory data. Now, we see that HDC can be used for other types
of cognitive functions such as reasoning (eg. HD factorization) and control (eg. RORB).
Dynamic and intelligent systems require the use and interconnection of all three layers of
cognitive function, using each layer for tasks at different levels of cognitive abstraction [51].

CHAPTER 2. INVESTIGATING NON-CLASSIFICATION HDC ALGORITHMS 21

Moving forwards, intelligent HDC systems and the hardware required to implement them
efficiently need to be prepared to handle a wide variety of HDC algorithms.

22

Chapter 3

The Design of the Hyper-Dimensional
Processing Unit (HPU)

3.1 Introduction

The previous chapter introduced two emerging HDC algorithms, HD factorization and recall
of reactive behavior, which demonstrate the growing applicability and complexity of HDC.
Traditionally, custom processors and accelerators for HDC have been designed for a specific
application or class of similar algorithms (i.e. HD classification). However, with the ex-
plosion of new HDC algorithms, the need for a programmable and flexible HDC processor
is becoming apparent. In this chapter, we introduce the system architecture of the Hyper-
Dimensional Processing Unit (HPU), a processor capable of accelerating all-known binary
HDC algorithms. We begin with a survey of existing ASICs for HDC and highlight their
limitations in algorithm and hardware adaptability. These limitations help define the design
goals and resulting architecture of the HPU. This chapter presents the core features of the
HPU and provides a block-level description of the system design.

3.2 Previous ASICs for HDC

As mentioned in Section 1.5, the operations used for binary HDC algorithms are simple
bitwise operations on vectors with thousands of dimensions and therefore struggle to map
efficiently onto conventional compute platforms. Custom hardware, particularly in the form
of ASICs, can provide the performance and energy-efficiency required for HDC’s low-power
edge applications. As a result, several custom processors have been developed for HDC in
the last decade.

The first manufactured example of hardware for HDC utilized new emerging devices,
namely Resistive Random Access Memory (RRAM), to take advantage of HDC’s robustness
to errors and randomness [38]. A similar RRAM design integrated with Carbon Nanotube
Field Effect Transistors (CNFETs) became the first processor to report on-chip power and

CHAPTER 3. THE DESIGN OF THE HYPER-DIMENSIONAL PROCESSING UNIT
(HPU) 23

performance [52]. These ASICs were designed specifically to perform language classification
of the EUROPARL dataset and cannot be adapted to different applications or datasets.
Kaunaratne et al. fabricated the first programmable HDC processor capable of performing
multiple different applications [39]. This processor also utilized emerging devices in the
form of Phase-Change Memory (PCM) and performed the vector operations in-memory.
Due to the in-memory compute constraints of the PCM crossbar, the processor struggles to
efficiently compute binary vector operations. For example, the authors chose to perform 2-
min-term approximations instead of the N-gram encoding required for many HD classification
algorithms. Furthermore, only the PCM modules were fabricated, and the additional digital
CMOS required to program and control the memories were simulated instead. Datta et al.
fabricated the first completely digital CMOS processor for HDC [53]. The processor is also
programmable, but unlike Karunaratne’s PCM processor, performs all vector operations in
full without approximations.

Although both [39] and [53] can accelerate multiple different HDC algorithms, they are
limited to only classification algorithms. The processors contain a uni-directional datapath
from the item memory to the associative memory, and thus cannot perform more complex
algorithms such as HD factorization which require encoded vectors to be fed back into
the datapath. With the recent interest in the capabilities of HD factorization, [54] was
fabricated using PCM crossbars to accelerate the iterative matrix multiplication portion of
the HD factorization algorithm. Similar to [39], only the PCM modules were fabricated, and
the digital logic required for encoding was simulated instead. Nevertheless, this processor
marked the first manufactured ASIC to accelerate a non-classification HD algorithm.

Additionally, there are several ASIC designs that been proposed and simulated but not
realized on physical hardware. Notably, [55] also proposes a fully digital CMOS proces-
sor that can be programmed to perform various classification algorithms. In accordance
with many of HDC’s applications, the processor attempts to push the low-power boundaries
through multiple architectural optimizations such as an item memory mixer and latch-based
memories. However, like [53] and [39], the processor is only able to accelerate HD classifi-
cation algorithms. Also, [26] introduces a custom processor for emotion classification of the
AMIGOS dataset. Although the processor is customized to perform only a single applica-
tion, it introduces an effective low-power optimization technique of compressing item vectors
using Cellular Automata 90 (CA90).

3.3 Goals of the HPU

As reviewed in the previous section, existing hardware for HDC is restricted in their flexibility
and adaptablitity. We propose the Hyper-Dimensional Processing Unit (HPU), a multipur-
pose processor for HDC that can accelerate all known binary HDC algorithms. Based on
the learnings and drawbacks of previous HDC hardware, highlighted in Table 3.1, the HPU
has three main design goals:

CHAPTER 3. THE DESIGN OF THE HYPER-DIMENSIONAL PROCESSING UNIT
(HPU) 24

W
u

et
al
.
[5
2]

K
ar
u
n
ar
at
n
e

et
al
.
[3
9]

E
gg
im

an
n

et
al
.
[5
5]

D
at
ta

et
al
.
[5
3]

L
an

ge
n
eg
ge
r

et
al
.
[5
4]

H
P
U

T
ec
h
.

R
R
A
M

C
N
F
E
T

90
n
m

P
C
M

60
n
m

C
M
O
S
∗

22
n
m

C
M
O
S
†

28
n
m

C
M
O
S

14
n
m

P
C
M

14
n
m

C
M
O
S
∗

28
n
m

C
M
O
S

H
D
C

D
im

.
81
92

10
00
0

20
48

20
48

25
6

V
ar
ia
b
le

A
p
p
li
ca
ti
on

(s
)

C
la
ss
ifi
ca
ti
on

(L
an

gu
ag
e
on

ly
)

C
la
ss
ifi
ca
ti
on

C
la
ss
ifi
ca
ti
on

C
la
ss
ifi
ca
ti
on

F
ac
to
ri
za
ti
on

A
ll

∗
N
ot

fa
b
ri
ca
te
d
(P

o
st
-S
y
n
th
es
is
),

†
N
o
t
fa
b
ri
ca
te
d
(P

o
st
-R

o
u
te
)

T
ab

le
3.
1:

C
om

p
ar
is
on

of
p
re
v
io
u
s
h
ar
d
w
ar
e
fo
r
H
D
C
.
E
x
is
ti
n
g
p
ro
ce
ss
or
s
ca
n
on

ly
p
er
fo
rm

a
si
n
gl
e
cl
as
s
of

H
D

al
go
ri
th
m
s
an

d
u
se

fi
x
ed
-d
im

en
si
on

ve
ct
or
s.

T
h
e
H
y
p
er
-D

im
en
si
on

al
P
ro
ce
ss
in
g
U
n
it

(H
P
U
)
is

th
e
fi
rs
t
p
ro
ce
ss
or

to
ac
ce
le
ra
te

al
l
k
n
ow

n
b
in
ar
y
H
D
C

al
go
ri
th
m
s
an

d
va
ry

th
e
ve
ct
or

d
im

en
si
on

to
fi
t
th
e
ta
rg
et

ap
p
li
ca
ti
on

.

CHAPTER 3. THE DESIGN OF THE HYPER-DIMENSIONAL PROCESSING UNIT
(HPU) 25

1. First processor to accelerate all known binary HDC algorithms.

Previous ASICs for HDC have been designed for a single application or class of algo-
rithms. With the introduction of more and more complex HDC algorithms, a mul-
tipurpose processor capable of efficiently accelerating all algorithms is critical for the
employment of HDC algorithms on a general learning platform. The HPU must be
easily programmable to support a multilayered HDC system which can switch between
different algorithms to support various cognition tasks.

2. First processor to change vector dimension to suit target application.

In addition to the programmability and flexibility requirements to implement all al-
gorithms, HDC algorithms of different complexities will have different optimal vector
sizes. For example, complex algorithms require large vector dimensions (10,000+) for
acceptable accuracy. Using the same large dimensions for a simple algorithm is unnec-
essary when the same accuracy is achievable with much smaller dimensions. In order
to save unneeded compute, and therefore energy, the vector dimensions used should
be adaptable to fit the target application. Since previous hardware for HDC are de-
signed for a specific application or applications of similar complexity (i.e. classification
algorithms), the vector dimensions are fixed at design time. For the HPU, the vector
dimension should be an adjustable runtime parameter.

3. Energy-efficiency comparable to previous application-specific hardware.

One key advantage of HDC algorithms over conventional machine learning is their low
power and energy-efficiency. Due to the resource limitations of on-the-edge computing,
we consider energy per inference or task as the primary optimization metric. Despite
the added flexibility and programmability to accelerate multiple algorithms, the HPU
should remain competitive in energy-efficiency with the application specific hardware
for HDC overviewed in the previous section.

3.4 HPU System Architecture

In order to design a processor that can accelerate all known binary HDC algorithms, we
first review all the HDC vector operations and how to implement them in digital hardware.
All HDC algorithms are built out of sequences of encoding and similarity operations. In
an encoding sequence, vectors are combined using the three element-wise vector operations
(multiplication, addition, permutation) into a single encoded vector. For the purposes of
hardware implementation, we split the addition operation into its respective accumulation
and thresholding operators. Notably, the multiplication, addition, and permutation opera-
tors are both commutative and associative. Furthermore, multiplication and permutation
distribute over addition. Let’s first consider the case where the encoding sequence contains a
single addition operation. Using the distributive property, the sequence can always be repre-
sented as the addition of terms consisting of only multiplication and permutation operations.

CHAPTER 3. THE DESIGN OF THE HYPER-DIMENSIONAL PROCESSING UNIT
(HPU) 26

For example

e = a⊕ ρ ([b+ ρ(c⊕ d)]) (3.1)

= a⊕ [ρ(b) + ρ2(c⊕ d)] (3.2)

= [a⊕ ρ(b) + a⊕ ρ2(c⊕ d)] . (3.3)

Now consider an encoding sequence with multiple additions. If the additions are nested,
then we take the lowest-level addition, distribute out the terms, and evaluate the addition.
This process is repeated until all nested additions are evaluated. As a result, we see that
in order to evaluate any encoding sequence, we only need hardware that can perform the
addition of terms made up of arbitrary multiplication and permutation sequences, and pass
the addition result back into the encoding hardware.

The second type of computation required for HDC algorithms is similarity sequences. The
commonly used similarity sequences include associative searches and vector construction
used in factorization. Unlike the encoding operations, the similarity operations are not
element-wise, relying on the Hamann similarity (equivalent to the dot-product similarity of
bipolar vectors). Assuming we represent the binary vectors as bipolar (1 → 1, 0 → −1), the
associative search of vector a over a set of vectors v1, · · ·vn can be represented as

addr = ArgMax (V a) , V =

— v1 —
...

— vn —

 . (3.4)

We note that

V a =

— v1 —
...

— vn —

a =

s1...
sn

 (3.5)

where si =< vi,a > represent the dot-product similarities. For factorization, we extend this
functionality by introducing matrix-matrix multiplication in the form of the Gram Matrix.
In other words, we also need to compute

ai+1 =
[
V TV ai

]
, V =

— v1 —
...

— vn —

 . (3.6)

By first evaluating

ai+1 =
[
V T (V ai)

]
=

 | |
v1 · · · vn

| |

s1...
sn

 =

[
n∑

i=1

sivi

]
, (3.7)

we see that the factorization vector construction can be represented as an addition scaled
by the vector similarities. Since the vector similarities are already computed for associative

CHAPTER 3. THE DESIGN OF THE HYPER-DIMENSIONAL PROCESSING UNIT
(HPU) 27

Figure 3.1: System architecture of the HPU, divided into a single HD Encoder and multiple
Associative Memory (AM) Tiles. The architecture is parametrized with the design variables
listed at the bottom.

CHAPTER 3. THE DESIGN OF THE HYPER-DIMENSIONAL PROCESSING UNIT
(HPU) 28

search, we only need to add the ability to scale vectors before accumulating in the encoding
datapath.

With the hardware requirements for a multipurpose HDC processor described above, we
designed a novel system architecture for the HPU shown in Figure 3.1. The single HD En-
coder handles all element-wise vector operations. The first module in the HD Encoder is the
Binary Encoder. The Binary Encoder performs only permutation and multiplication opera-
tions, creating each addend necessary for the distributed and reduced addition computation
for encoding. Once the addend is fully constructed, it is passed to the accumulator banks
which first optionally scales the binary vector before accumulating into one of two integer
vector banks. The accumulator banks output a thresholded vector to store back into the
memory or pass back to the input of the HD Encoder.

The Associative Memory (AM) Tiles consist of a Vector Memory Unit (VMU) as well as
a Similarity Accumulator (SA). The VMUs hold all item vectors, temporary computation
vectors, as well as stored vectors such as class vectors. The VMU can pass any of these vectors
to the HD Encoder or to its attached SA. The SAs are responsible for computing vector
similarities for both associative search and for scaling purposes (as used in factorization).
As a result, the computed similarities are temporarily held in similarity registers that can
send the integer similarities to the scaling units in the HD Encoder or to an argmax unit
for the associative search. The processor contains multiple AM Tiles to parallelize the
similarity computation. In both associative search and factorization vector construction, the
same query vector is compared against multiple other vectors which can be mapped onto
multiple tiles to speed up the computation.

As such, the HD Encoder can perform the accumulation of arbitrary terms constructed
from permutation and multiplication of any vectors in the VMU. The outputs from the
HD Encoder can be saved back into memory or fed back to the encoder input. The AM
Tiles and the HD Encoder are bidirectionally connected, which means the HPU can perform
any combination of encoding and similarity sequences required for all known binary HDC
algorithms. The HPU accepts instructions and memory addresses corresponding to the
target item or stored vectors, which are translated by the control unit into control signals
that control the vector movement and operation of each module. The HPU then outputs
memory addresses that correspond to item and stored vectors as the result of an associative
search.

The described architecture has several important tuneable parameters, also highlighted
in Figure 3.1. First is the datapath dimension d. While the HPU is able to vary the vector
dimension used for computation (discussed further in the next sections), the baseline datap-
ath dimension has a large effect on the size and efficiency of the processor. If d is too large,
routing and fanout of control signals and the similarity computation will become problem-
atic for timing and power, while if d is too small, the overhead and total latency required
for time-multiplexing of large algorithms may become problematic. As previously discussed,
the number of AM Tiles m are also configurable with the optimal number depending on the
amount of parallelism required for the similarity computations. Finally, the integer bitwidth
k and number of similarity registers n put soft restrictions on the total size and complexity

CHAPTER 3. THE DESIGN OF THE HYPER-DIMENSIONAL PROCESSING UNIT
(HPU) 29

Figure 3.2: Visualization of the dimensionality scaling feature using time-multiplexing over
fixed size vector folds.

of algorithms that can be run on the HPU. These architectural parameters play a large role
in optimizing the HPU for energy-efficiency.

3.5 Dimensionality Scaling

The previous section highlighted the flexibility of the HPU architecture and how it can be
used to accelerate all known binary HDC algorithms. This section discusses how the HPU
system can adapt the dimension of the computed vectors to fit the target application, a
feature we call dimensionality scaling. Since the vector multiplication, addition, and per-
mutation operations are element-wise, the vectors can be split up into smaller sub-vectors,
called folds, and computed one fold at a time. Note that permuting folds through a cyclic
shift is not exactly the same as permuting the entire vector, as the values at the start and end
of the folds may become corrupted. However, assuming the fold length is fairly large, this
introduced bit-error is tolerated by the natural robustness of HDC. Finally, for the vector
similarity computations, the bipolar dot-product computation can also be done separately
on each fold and then accumulated to find the final similarity value. In other words, given
a fixed datapath dimension d, we can compute using vectors of dimension fd, f ∈ N where
f is the folding factor through time-multiplexing, as depicted in Figure 3.2.

Using vector folding to time-multiplex larger computations is not a novel feature. [52],

CHAPTER 3. THE DESIGN OF THE HYPER-DIMENSIONAL PROCESSING UNIT
(HPU) 30

[55], and [26] all proposed a similar form of vector folding to compute with larger vectors
on a fixed-size smaller datapath. However, in all three instances, the folding factor is a
design time parameter used to reduce the processor’s area and is unable to be changed
at runtime. Supporting arbitrary folding factors for a multipurpose HDC processor adds
additional challenges as well. For example, depending on the algorithm, the loop over vector
folds can be the innermost loop (such as when accumulating similarities) or the outermost
loop (when performing a vector encoding). When switching between the two, any temporary
computation vectors need to be stored and reloaded to avoid recomputation which wastes
compute time and energy. The HDC handles these challenges with the VMUs which can
store and load temporary vectors as well as item and class vectors.

3.6 Pseudo-Random Generation using Cellular

Automata

While vector folding enables dimensionality scaling on the HPU, using large dimension vec-
tors would still impose a large burden on the item memories, which would need to store
correspondingly large item vectors for use in the HDC algorithms. In order to compress the
item memories and instead generate them on the fly, the VMUs include Cellular Automata
90 (CA90) modules. CA90 is an iterative sequence which takes in a fixed length binary
sequence and return a sequence where every element is the XOR of the previous and next
elements in the input sequence. In other words, given an input vector v ∈ {0, 1}n,

CA90(v) = CA90

v1
v2
...

vn−1

vn

 =

vn ⊕ v2
v1 ⊕ v3

...
vn−2 ⊕ vn
vn−1 ⊕ v1

 . (3.8)

This sequence can be repeated by feeding the CA90 output back into the input which gen-
erates multiple pseudo-random sequences of bits from a randomly initiated seed. The use of
CA90 to generate binary item vectors for HDC was first studied in [56] which also investi-
gated the additional degrees of freedom introduced by each step. The study found that after
a certain number of CA90 steps, very few degrees of freedom were added to the sequence.
In other words, the CA90 sequence eventually repeats. The number of steps at which this
occurs generally increases as the length of the initial seed grows. This phenomenon is also
reflected in [26], which shows a sharp drop off in classification accuracy at large folding
factors.

While [26] uses CA90 to both create and extend item vectors, the HPU stores an in-
dividual seed for each item vector. This ensures that the CA90 steps are used purely to
create vector folds, allowing the HPU to compute with extremely large vector dimensions if
desirable. As a result the HPU seed lengths are set to match the datapath dimension d such

CHAPTER 3. THE DESIGN OF THE HYPER-DIMENSIONAL PROCESSING UNIT
(HPU) 31

Figure 3.3: Block diagram of the CA90 unit and how item vector folds are updated.

that each CA90 step represents a single vector fold used for dimensionality scaling, show in
Figure 3.3.

3.7 Conclusion

In this chapter, we covered the limitations of previous hardware for HDC. The proposed HPU
addresses these limitations by being flexible and adaptable in both vector operations and
vector size. We have shown that the HPU can implement any combination of binary encoding
and similarity computation operations. As a result, the HPU can accelerate all known binary
HDC algorithms while remaining energy-efficient. As a strictly binary HDC processor, the
HPU cannot implement HDC algorithms with certain non-binary vector operations. For
example, HPU does not have the capability to store and load integer vectors as required
for the classification retraining method described in [40] to increase classification accuracy.
However, such non-binary operations have limited use in HDC applications, and often the
end goal of such methods can be implemented in other ways. For example, as shown in
Chapter 2, application accuracy can be boosted with intelligent vector encoding schemes.

Finally, the architectural parameters of the HPU impose constraints on the binary HDC
algorithms that can be effectively accelerated. Firstly, the memory rows in the VMUs must
be sufficient to store all necessary item vectors, stored vectors, and temporary computation
vectors. The folding factor determines the number of rows required per stored vector, limiting
the maximum folding factor based on memory capacity. Secondly, the integer bitwidth
and the number of similarity registers significantly influence application performance when
mapped to the HPU. A small integer bitwidth, relative to the effective vector dimension, can
degrade the accuracy of similarity metrics. In scenarios requiring scaled accumulation, if the

CHAPTER 3. THE DESIGN OF THE HYPER-DIMENSIONAL PROCESSING UNIT
(HPU) 32

number of addends exceeds the available similarity registers, recomputation of similarities
for each vector fold is necessary, reducing performance. Consequently, selecting appropriate
architectural parameters is critical for ensuring the HPU’s applicability and energy efficiency,
as will be further discussed in the following chapters.

33

Chapter 4

HPUv1: Design and Implementation

4.1 Introduction

With the goals, system architecture, and primary features of the HPU in place, this chapter
discusses the design, implementation, analysis, and results of HPUv1. As the first version
of the HPU, HPUv1 is meant to be a small-scale proof of concept of the proposed system
architecture. The main goals are to showcase that HPUv1 can implement all known binary
HDC algorithms and can adjust the vector dimension using a combination of dimensional-
ity scaling and CA90 vector generation. HPUv1 is also an important source of data and
analysis for the further optimization of the HPU architecture. This chapter gives a detailed
breakdown of each module in HPUv1 as well as the physical design process. We share the
on-chip verification and measurements of HPUv1, and finally analyze and discuss the issues
of HPUv1 and opportunities for improvement.

4.2 Processor Design

Although the previous chapter overviewed the system architecture and modules of the HPU,
the exact hardware implementations of the modules were not discussed. This section provides
details on the hardware and design choices for each module.

Vector Memory Units (VMUs)

We begin with the VMUs which store, load, and generate vectors as required by the processor.
As shown in Figure 4.1, each VMU contains an SRAM and an output register attached to
a CA90 module. The SRAMs hold all random item vectors in the top rows while the other
rows are reserved for stored and/or encoded vectors. The exact number of item and stored
vectors vary depending on the needs of each algorithm. The SRAM width is sized to the
datapath dimension d such that all vector fold read and writes can occur in a single cycle.
In practice, the VMU contains several SRAMs in parallel due to SRAM width restrictions.

CHAPTER 4. HPUV1: DESIGN AND IMPLEMENTATION 34

Figure 4.1: Block diagram of the VMU and depiction of the address space of the contained
SRAM.

In this case, the SRAM addresses and control signals are driven together so that they act as
a single large-bandwidth memory.

Note that for item vectors, each SRAM row corresponds to a different item vector seed.
However, when using dimensionality scaling, all encoded vectors must be stored in full. For
example with a folding factor of four, all encoded vectors should be stored as four lines in
SRAM with each line representing a single fold. As such, the number of stored vector rows
is generally large in order to support high folding factors.

When an SRAM read occurs, the output values are first passed to an output register.
From there, stored vectors are directly sent to the HD Encoder or Similarity Unit. However,
with dimensionality scaling, item vectors need further processing before leaving the VMU.
Since the SRAM only contains the item vector seeds, the CA90 module updates the vector
currently in the output reg and stores the update back into the register. A single update
step is enacted each cycle, and thus the total number of cycles to prepare a vector fold is
equal to the current fold number n. In other words, vector reads from the VMU take one
cycle for stored vectors, and a variable 1 + n cycles for item vectors.

The HPU address space is designed such that each VMU contains unique item vectors,
while stored vectors may or may not be unique. In this way, each VMU has individual
enables set by custom instructions, which allows vector reads, writes, and CA90 updates
to enact on any subset of the AM Tiles. During the encoding process, only a single vector
enters the HD Encoder at a time, and thus only the VMU which contains the desired vector
is activated. However, if we wish to make use of the AM Tiles for associative search, all
VMUs should output a vector for its corresponding Similarity Unit. As a result, all memory
instructions contain both a row address and one-hot tile enable signal.

CHAPTER 4. HPUV1: DESIGN AND IMPLEMENTATION 35

HD Encoder

The HD Encoder consists of three main components: the Binary Encoder, the Scale Unit,
and the Accumulator Banks as shown in Figure 4.2. Vector inputs from the VMUs are
first passed to the Binary Encoder, which is made of up of d parallel Binary Compute Units
(BCUs) where d is the datapath dimension. Each BCU is a single-bit datapath that operates
on one element of the input binary vector. The BCUs are responsible for the creation of
the expanded multiply and permute terms that will eventually be accumulated. Each BCU
contains a single bit register fed by a three input multiplexer. The first option simply loads
the register from the input bit, essentially just loading the entire vector from the VMU into
the Binary Encoder. The second option loads the value from the previous BCU and adapts
the BCU registers into a shift register. This performs the cyclic shift operation that is used
for vector permutation. Finally, the last option performs an XOR between the currently
stored bit and the input bit, storing the result back into the register. This represents the
multiplication between the vector currently in the Binary Encoder and the input vector.
Each of these three operations occur in a single cycle and is controlled by an operation select
signal which is shared by all the BCUs.

Once the Binary Encoder finishes all required permute and multiply operations, the
resulting vector is passed to the Scale Units, which converts each element from a binary
element to a two’s complement integer element. It also optionally scales the entire vector by
an input similarity value as required for scaled addition. When converting from binary to
integer, we map

{0, 1} → {−1,+1} (4.1)

when not using scaling, and

{0, 1} → {−s,+s} (4.2)

when using scaling by similarity value s. With this mapping, thresholding after accumulation
can simply be done by taking the most significant bit (MSB) and allows us to avoid computing
an exact threshold value.

After converting the binary vector to an integer vector, the vector is accumulated into one
of two accumulator banks. Two accumulator banks are required to handle nested addition
loops in an encoding sequence, as we must hold the outer loop value as integers while the inner
loop is being computed. Each bank consists of a row of integer Accumulate Units, which
performs an element-wise accumulation of the integer vectors from the Scale Unit. One
accumulation is performed per cycle, and when the summation is finished, it is thresholded
back to a binary vector. In accordance with the mapping in equation 4.1, negative integers
map to binary 0 while positive integers map to binary 1. From a hardware perspective, this
is achieved by taking the complement of the MSB of each element. As a result, the vectors
output by the HD Encoder are always binary and correspondingly written into one or more
of the VMUs.

CHAPTER 4. HPUV1: DESIGN AND IMPLEMENTATION 36

Figure 4.2: Block diagram from the HD Encoder (a) with detailed hardware diagrams for
the BCU (b), Accumulate Unit (c), and Scale Unit (d). d represents the datapath dimension
and k is the integer bitwidth.

CHAPTER 4. HPUV1: DESIGN AND IMPLEMENTATION 37

Figure 4.3: Block diagram of the Similarity Accumulator and Local Argmax Unit within
each AM Tile. A hardware diagram of the Similarity Unit is also shown.

Similarity Accumulator and Argmax

The similarity and argmax computations occur in a separate datapath which exists in each
AM Tile. Within in each tile, the Similarity Accumulator accepts a vector from the VMU
and stores it in either the query register or the vector register. Although both registers feed
into the Similarity module, when the vector register is loaded, the SRAM row address of
the vector is also stored in a separate address register. The Similarity module computes
the Hamann similarity, which corresponds to the dot-product if the binary vectors were
transformed into their bipolar counterparts. In hardware, this is computed by taking the
elementwise XOR between the two vectors, shown in Figure 4.3. The resulting d bits are
mapped from binary to integer as

{0, 1} → {+1,−1} (4.3)

and then fed into an adder tree. The mapping transforms the similarity metric from Ham-
ming distance to Hamann similarity. The integer output is then quantized and passed to the
Similarity Accumulator.

The Similarity Accumulator accumulates the Hamann similarity across multiple vector
folds when using dimensionality scaling. Each accumulator includes n similarity registers

CHAPTER 4. HPUV1: DESIGN AND IMPLEMENTATION 38

Figure 4.4: Block diagram of the Argmax Units. The same comparator tree structure is used
for both the Local Argmax and Global Argmax Units.

which hold the similarities for different vectors that are output either to the HD Encoder for
scaled accumulation or to the Local Argmax unit for associative searches. The number of
similarity registers n limits the number of argmax comparisons that can be done in a single
cycle on a single tile. Moreover, for certain algorithms that use scaled accumulation using the
computed similarity values, nm limits the number of addends in the scaled accumulation,
where m is the number of AM Tiles. Although performing scaled accumulation on more
than nm similarity values is possible, the similarities will have to be recomputed if they are
overwritten, which greatly reduces algorithm efficiency. As such, n should be chosen to be
large enough to cover most practical scaled accumulation use cases.

For associative searches, the HPU must return the address of the vector most similar
to the query. Correspondingly, for every similarity calculated, the corresponding address of
each vector sent to the vector register is saved in n address registers. Since control unit
sends the same row address to every AM Tile, a single set of address registers can be shared
across all the tiles. Once the similarities are all accumulated, the similarity registers and
corresponding address registers are fed into the Local Argmax Unit within each tile. Here, a
comparator tree is used to output the maximum similarity value alongside its corresponding
vector address in a single cycle, as shown in Figure 4.4. The resulting output from each
tile’s Local Argmax Unit is then output into a single Global Argmax Unit, which also is

CHAPTER 4. HPUV1: DESIGN AND IMPLEMENTATION 39

implemented as a comparator tree. The Global Argmax Unit also has the ability to compare
the set of inputs with the last computed maximum similarity and argmax address so that the
associative search can be performed over a larger number of vectors than the total number
of similarity registers.

Control Unit and Instruction Set

The HPU is an instruction-based processor which performs one instruction per clock cycle.
The system architecture does not include a program memory and therefore requires instruc-
tions to be input to the processor every cycle. These instructions are then processed by the
control unit which decodes the instructions into module-level control signals. HPUv1’s in-
struction set consists of 33 different instructions with a 6 bit opcode and 16 bit address field,
overviewed in Tables 4.1 and 4.2, where each instruction targets a specific HPU module.

The instructions can be categorized as follows:

• NOP
As implied by the name, the NOP instruction stalls the processor and holds all register
values.

• Control registers
Instructions 2-5 set control registers that configure HPUv1’s active datapaths. tile en-

set configures the active AM Tiles, allowing the programmer to turn off AM Tiles
if the additional similarity computation parallelism and memory size are not neces-
sary. mem en set controls the write enables for the VMUs, allowing the user to specify
which memories should get written to. accbank set selects which accumulator bank
is targeted by the accumulate instructions. Finally, lcomp set selects which similarity
register values are input into the Local Comparator.

• IO
Instructions 6-13 control HPUv1’s input and output buffers. These buffers are used to
load both integers and vectors in and out of the HPU.

• VMU
Instructions 14-19 control the HPUv1’s VMUs. These include SRAM read/writes
as well as CA90 updates. Only VMUs that are activated (according to the control
registers) are affected by these instructions.

• Datapath
Instructions 20-33 manipulate the HD Encoder, Similarity Accumulator, and argmax
units which implement the vector operations required by HDC computations. These
instructions can be flexibly combined into programs for all known binary HDC algo-
rithms.

CHAPTER 4. HPUV1: DESIGN AND IMPLEMENTATION 40

In
st
ru
ct
io
n

O
p
co
d
e

D
es
cr
ip
ti
on

1
n
o
p

10
00
00

D
o
n
ot
h
in
g,

st
al
l
al
l
d
at
ap

at
h
s,
h
ol
d
al
l
re
gi
st
er
s.

2
t
i
l
e
e
n
s
e
t

01
00
00

S
et

ac
ti
ve

ti
le
s
u
si
n
g
on

e-
h
ot

ac
ti
ve

ar
g.

3
m
e
m
e
n
s
e
t

01
00
01

S
et

ac
ti
ve

V
M
U
s
to

b
e
w
ri
tt
en

to
u
si
n
g
on

e-
h
ot

ac
ti
ve

ar
g.

4
a
c
c
b
a
n
k
s
e
t

00
00
00

S
el
ec
t
ac
cu
m
u
la
to
r
re
gi
st
er

to
b
e
w
ri
tt
en

to
/r
ea
d
fr
om

u
si
n
g
b
an

k
ad

d
re
ss

ar
g.

5
l
c
o
m
p
s
e
t

01
00
10

S
et

ac
ti
ve

si
m
il
ar
it
y
re
gi
st
er
s
fo
r
lo
ca
l
ar
gm

ax
u
si
n
g
on

e-
h
ot

ac
ti
ve

ar
g.

6
i
b
u
f
f
c
l
e
a
r

10
00
01

C
le
ar

ve
ct
or

an
d
in
te
ge
r
in
p
u
t
b
u
ff
er
s.

7
o
b
u
f
f
c
l
e
a
r

10
00
10

C
le
ar

ve
ct
or

an
d
in
te
ge
r
ou

tp
u
t
b
u
ff
er
s.

8
h
d
e
n
c
c
l
e
a
r

10
00
11

C
le
ar

al
l
re
gi
st
er
s
in

th
e
H
D

E
n
co
d
er
.

9
s
i
m
c
l
e
a
r

10
01
00

C
le
ar

al
l
re
gi
st
er
s
in

th
e
S
im

il
ar
it
y
U
n
it
s.

10
i
b
u
f
f
v
e
c
l
o
a
d

10
01
01

L
oa
d
ve
ct
or

in
p
u
t
in
to

in
p
u
t
ve
ct
or

b
u
ff
er
.

11
i
b
u
f
f
i
n
t
l
o
a
d

10
01
11

L
oa
d
in
te
ge
r
in
p
u
t
in
to

in
p
u
t
in
te
ge
r
b
u
ff
er
.

12
o
b
u
f
f
v
e
c
l
o
a
d

00
00
10

L
oa
d
ve
ct
or

fr
om

m
em

or
y
at

ti
le

ad
d
re
ss

ar
g,

V
M
U

ro
w

ad
d
re
ss

ar
g
or

fr
om

th
e
G
lo
b
al

A
rg
m
ax

U
n
it
in
to

ou
tp
u
t
ve
ct
or

b
u
ff
er
.

13
o
b
u
f
f
i
n
t
l
o
a
d

10
01
11

L
oa
d
si
m
il
ar
it
y
va
lu
e
fr
om

G
lo
b
al

A
rg
m
ax

U
n
it
to

th
e
ou

tp
u
t
in
te
ge
r
b
u
ff
er
.

14
m
e
m
r
e
g
l
o
a
d

00
10
01

L
oa
d
th
e
m
em

or
y
ou

t
re
gi
st
er
s
fr
om

th
e
V
M
U

ro
w

ad
d
re
ss

ar
g
fo
r
al
l
ac
ti
ve

V
M
U

ti
le
s.

15
m
e
m
s
t
o
r
e
i
b
u
f
f

00
00
01

S
to
re

ve
ct
or

fr
om

in
p
u
t
ve
ct
or

b
u
ff
er

to
V
M
U

ro
w

ad
d
re
ss

ar
g
of

ac
ti
ve

m
em

-
or
ie
s.

16
m
e
m
s
t
o
r
e
b
e

00
01
00

S
to
re

ve
ct
or

fr
om

B
in
ar
y
E
n
co
d
er

to
V
M
U

ro
w
ad

d
re
ss

ar
g
of

ac
ti
ve

m
em

or
ie
s.

17
m
e
m
s
t
o
r
e
a
c
c

00
00
11

S
to
re

ve
ct
or

fr
om

se
le
ct
ed

ac
cu
m
u
la
to
r
b
an

k
to

V
M
U

ro
w
ad

d
re
ss

ar
g
of

ac
ti
ve

m
em

or
ie
s.

18
c
a
9
0
l
o
a
d

00
01
01

L
oa
d
ve
ct
or

fr
om

m
em

or
y
ou

t
re
gi
st
er
s
to

C
A
90

re
gi
st
er
s
of

al
l
ac
ti
ve

ti
le
s.

19
c
a
9
0
u
p
d
a
t
e

10
10
11

U
p
d
at
e
ve
ct
or

in
C
A
90

re
gi
st
er

b
y
on

e
C
A
90

st
ep

fo
r
al
l
ac
ti
ve

ti
le
s.

T
ab

le
4.
1:

T
ab

le
of

op
co
d
es

an
d
d
es
cr
ip
ti
on

s
of

in
st
ru
ct
io
n
s
1-
19

of
th
e
H
P
U
v
1
IS
A
.
In
st
ru
ct
io
n
s
20
-3
3
d
es
cr
ib
ed

in
T
ab

le
4.
2.

CHAPTER 4. HPUV1: DESIGN AND IMPLEMENTATION 41

In
st
ru
ct
io
n

O
p
co
d
e

D
es
cr
ip
ti
on

20
b
e
l
o
a
d

00
01
10

L
oa
d
ve
ct
or

fr
om

ou
tp
u
t
of

V
M
U

fr
om

A
M

T
il
e
ad

d
re
ss

ar
g
to

th
e
B
in
ar
y

E
n
co
d
er
.

21
b
e
b
i
n
d

00
01
11

B
in
d
ve
ct
or

fr
om

ou
tp
u
t
of

V
M
U

fr
om

A
M

T
il
e
ad

d
re
ss

ar
g
to

th
e
B
in
ar
y

E
n
co
d
er
.

22
b
e
p
e
r
m

10
10
00

P
er
m
u
te

ve
ct
or

in
th
e
B
in
ar
y
E
n
co
d
er
.

23
a
c
c
b
a
n
k
l
o
a
d

11
00
01

L
oa
d
ve
ct
or

fr
om

B
in
ar
y
E
n
co
d
er

to
se
le
ct
ed

ac
cu
m
u
la
to
r
b
an

k
.
T
h
e
ve
ct
or

is
op

ti
on

al
ly

sc
al
ed

b
y
th
e
si
m
il
ar
it
y
re
gi
st
er

gi
ve
n
b
y
A
M

T
il
e
ad

d
re
ss

ar
g
an

d
si
m
il
ar
it
y
re
gi
st
er

ad
d
re
ss

ar
g.

24
a
c
c
b
a
n
k
a
d
d

11
00
10

A
cc
u
m
u
la
te

ve
ct
or

fr
om

B
in
ar
y
E
n
co
d
er

to
se
le
ct
ed

ac
cu
m
u
la
to
r
b
an

k
.
T
h
e

ve
ct
or

is
op

ti
on

al
ly

sc
al
ed

b
y
th
e
si
m
il
ar
it
y
re
gi
st
er

gi
ve
n
b
y
A
M

T
il
e
ad

d
re
ss

ar
g
an

d
si
m
il
ar
it
y
re
gi
st
er

ad
d
re
ss

ar
g.

25
a
c
c
b
a
n
k
r
e
t
r
i
e
v
e

10
10
01

R
et
ri
ev
e
ve
ct
or

fr
om

se
le
ct
ed

ac
cu
m
u
la
to
r
b
an

k
b
ac
k
to

ac
cu
m
u
la
to
r.

26
a
c
c
b
a
n
k
s
a
v
e

10
10
10

S
av
e
ve
ct
or

fr
om

ac
cu
m
u
la
to
r
to

se
le
ct
ed

ac
cu
m
u
la
to
r
b
an

k
.

27
q
u
e
r
y
l
o
a
d

00
10
00

L
oa
d
ve
ct
or

fr
om

V
M
U

ro
w

ad
d
re
ss

ar
g
to

q
u
er
y
re
gi
st
er
s
fo
r
al
l
ac
ti
ve

ti
le
s.

28
s
i
m
c
o
m
p
u
t
e

10
11
00

C
om

p
u
te

si
m
il
ar
it
y
b
et
w
ee
n
ve
ct
or

in
th
e
q
u
er
y
re
gi
st
er

an
d
V
M
U

ou
tp
u
t
fo
r

al
l
ac
ti
ve

ti
le
s.

29
s
i
m
r
e
g
l
o
a
d

01
00
11

L
oa
d
si
m
il
ar
it
y
va
lu
e
fr
om

S
im

il
ar
it
y
U
n
it
to

re
gi
st
er

d
et
er
m
in
ed

b
y
si
m
il
ar
it
y

re
gi
st
er

ad
d
re
ss

ar
g
fo
r
al
l
ac
ti
ve

ti
le
s.

30
s
i
m
r
e
g
a
d
d

01
01
00

A
d
d
si
m
il
ar
it
y
va
lu
e
fr
om

S
im

il
ar
it
y
U
n
it
to

re
gi
st
er

d
et
er
m
in
ed

b
y
si
m
il
ar
it
y

re
gi
st
er

ad
d
re
ss

ar
g
fo
r
al
l
ac
ti
ve

ti
le
s.

31
l
c
o
m
p
l
o
a
d

10
11
01

C
om

p
u
te

ar
gm

ax
si
m
il
ar
it
y
of

ac
ti
ve

si
m
il
ar
it
y
re
gi
st
er
s
fo
r
al
l
ac
ti
ve

ti
le
s.

32
g
c
o
m
p
l
o
a
d

10
11
10

C
om

p
u
te

ar
gm

ax
si
m
il
ar
it
y
st
or
ed

in
th
e
L
o
ca
l
A
rg
m
ax

U
n
it
s
of

ac
ti
ve

ti
le
s.

33
g
c
o
m
p
u
p
d
a
t
e

10
11
11

C
om

p
u
te

ar
gm

ax
si
m
il
ar
it
y
st
or
ed

in
th
e
L
o
ca
l
A
rg
m
ax

U
n
it
s
of

ac
ti
ve

ti
le
s
in

ad
d
it
io
n
to

p
re
v
io
u
sl
y
co
m
p
u
te
d
gl
ob

al
ar
gm

ax
.

T
ab

le
4.
2:

T
ab

le
of

op
co
d
es

an
d
d
es
cr
ip
ti
on

s
of

in
st
ru
ct
io
n
s
20
-3
3
of

th
e
H
P
U
v
1
IS
A
.
In
st
ru
ct
io
n
s
1-
19

d
es
cr
ib
ed

in
T
ab

le
4.
1.

CHAPTER 4. HPUV1: DESIGN AND IMPLEMENTATION 42

HPUv1

Process TSMC 28nm CMOS
Size 1.6mm× 1.6mm

Timing 200MHz at 0.9V
Datapath Dimension 512
Integer Bitwidth 12

Similarity Registers 16
AM Tiles 4

Total SRAM 262KB

Table 4.3: Summary of HPUv1 chip specifications and architectural parameters.

4.3 Physical Implementation

HPUv1 serves as a small-scale proof of concept of the HPU architecture and thus architec-
ture parameters were selected according to ease of implementation. Table 4.3 outlines key
architectural parameters and chip specifications for HPUv1. The processor’s base datapath
dimension is 512 bits wide, with 12 bit integer width in order to cover the full dynamic range
of the Hamann similarity. HPUv1 includes 4 AM Tiles each with 1024 row VMUs and 4
similarity registers, yielding an aggregate storage capability of 4096 vector folds of 512 bits
each (262KB total). We fabricated HPUv1 using TSMC28nm CMOS using only standard
digital cells and SRAMs within a total die area of 1.6mm× 1.6mm. Physical design of the
chip was performed using Cadence Genus and Innovus, starting from Register Transfer Logic
(RTL) written in SystemVerilog. HPUv1 does not have any internal clock generation hard-
ware and relies on an off-chip clock input. Since we are targeting optimal energy-efficiency,
which usually occurs at reduced clock frequency and supply voltage, HPUv1 timing is closed
at a theoretical max frequency of 200MHz at 0.9V.

IO and Communication

The fabricated HPUv1 processor contains a simple In Out (IO) controller in addition to
the HPU core. The IO controller handles reading and writing from the input and output
buffers of the HPU. The HPU contains two input buffers and two output buffers, one for
vectors and one for integer values. The input vector buffer allows the programmer to save a
vector into the HPU VMUs, and is required to initialize the item memories before starting an
HDC algorithm. The input integer buffer is used to insert custom similarity values for use in
scaled accumulation. The output vector buffer can load either a vector from the VMU or the
argmax address held in the global comparator unit. The former can be used for verification
purposes, while the latter reads out associative search results. Finally, the output integer
buffer can output any integer stored in the similarity registers.

CHAPTER 4. HPUV1: DESIGN AND IMPLEMENTATION 43

Figure 4.5: Die micrograph of HPUv1 with an overlay of the chip floorplan. The white
squares represent individual SRAM blocks.

The input and output vector buffers contain 512 bits (64B) of data which would require
too many data IO ports. As a result, the IO controller implements shift registers with custom
shift control pins to fill or output the buffers one byte per cycle. Since the integer buffers
are 12 bits, HPUv1 has 12 input and output data ports, where the full 12 bits are used for
integer load/reads and the bottom 8 are used for vector load/reads.

HPUv1 uses a wirebond pad ring to get signals on and off the die. Each pad is connected
to an IO cell that requires a higher 1.3V supply (VDDPST, VSSPST) in addition to the
core supply (VDD, VSS). The HPUv1 die contains a total of 86 pads: 8 VDD, 8 VSS, 8
VDDPST, 12 VSSPST, 1 clock, 1 reset, 12 data in, 12 data out, 22 instruction bits, and
2 IO control signals. Pads are arranged around the square perimeter with the intermixing
of supply and ground pads to abide by the electrostatic discharge rules. HPUv1 sits in a
Ceramic Pin Grid Array (CPGA) package which wirebonds signals from the die pads to the
package pins.

CHAPTER 4. HPUV1: DESIGN AND IMPLEMENTATION 44

Floorplan

Figure 4.5 shows the die micrograph of HPUv1 with the superimposed floorplan. Since the
HPU requires flexibility in vector movement between the various VMUs and compute units,
it is critical to intelligently floorplan the processor to minimize congestion and timing issues
due to routing. As the HD Encoder needs to connect to every VMU, it is placed in the
center of the floorplan with the 4 AM Tiles in each corner. Each tile contains 16 SRAMs
of size 32x1024 in parallel which are equally spaced throughout the tile. The similarity and
argmax compute units are placed in between the SRAMs within each tile.

4.4 Chip Verification and Measurement

The python emulator, program compiler, and test setup used to verify and measure HPUv1
is covered in detail in Appendix A. In this section, we discuss the verification process as well
as power and performance measurements for HPUv1.

Kernel Tests

Most processors report performance and energy-efficiency in terms of operations per second
(OPS) and operations per second per Watt (OPS/W). For the HPU, there is no single
representative operation that can be used to summarize expected power and performance.
As a result, we define the four following kernel operations for the HPU. The kernel operations
are small instruction macros that are common among almost all HDC algorithms on the HPU.

1. CA90: The CA90 operation represents a single update step of a vector fold using
CA90.

2. Multiply-add: Given n pairs of vectors (ai, bi), i = 1, . . . , n, the multiply-add opera-
tion encodes [

∑n
i=0 ai ⊕ bi]. Reported kernel power and performance is normalized by

n.

3. Ngram encoding: Given n vectors a1, . . . ,an, the Ngram encoding computes an ⊕
ρ(an−1 ⊕ (. . .⊕ ρ(a1)). Reported kernel power and performance is normalized by n.

4. Associative search: Given n vectors and a single query vector, the associative search
computes the similarity between the query vector and all n vectors and returns the ad-
dress of the most similar vector. Reported kernel power and performance is normalized
by n.

These kernel operations are a good representation of the HPU operations that occur
during an actual benchmark. As a result, they are suitable proxy to report power and
performance to compare between HDC platforms. In order to ensure a fair comparison, the
kernel operations computed with an effective vector dimension of 1024, and thus HPUv1

CHAPTER 4. HPUV1: DESIGN AND IMPLEMENTATION 45

uses a folding factor of 2 in the kernel measurements. The kernel operations cover nearly all
compute instructions for the HPU and are valuable for HPU verification. In the verification
tests, encoded vectors are stored into the VMUs and then shifted out to compare against
the emulator results.

Verification and Functional Issues

When verifying the kernels on HPUv1, we discovered several implementation issues summa-
rized below:

• Triple memory read
The VMUs in HPUv1 were mistakenly fabricated with a mismatch in the control
signals paths. The SRAM chip enable signal is delayed compared to the read address
bits the signal to update the output register. As a result, the memreg load instruction
does not properly load the memory output register. Fortunately, we find that three
consecutive memreg load instruction properly synchronizes the VMU control signals
and loads the desired vector into the memory output register. As a result, this issue
does not hamper the functionality of HPUv1, although it reduces performance due to
the increase memory read latency.

• Similarity metric
HPUv1 was fabricated with a bug in the Similarity Unit. Although we designed the
Similarity Unit to compute the Hamann similarity, HPUv1 was synthesized with an
old version of the Similarity Unit RTL which computes the Hamming distance, which
introduce two key functional issues. First, the associative search uses the similarity
values to return the most similar vector to the query. In terms of the Hamann similarity,
more positive values mean the vectors are more similar and vice versa. As a result, we
use argmax to determine the address of the most similar vector. However for Hamming
distance, large values mean the vectors are more dissimilar. Thus using argmax over
the Hamming distance returns the least similar vector instead of the most similar.
Unfortunately, for algorithms end with an associative search such as classification,
HPUv1 will be unable to verify functionality on-chip.

Second, compared to the Hamann similarity which is zero-centered, the Hamming
distance is not. This becomes an issue for scaled accumulation in which we want the
final sum vector to be more representative of the most similar vector. In the case of
the Hamming distance, the most similar vector will have a distance close to zero and
thus will be the least represented vector in the sum. As a result, algorithms with scaled
accumulation also cannot be verified on-chip.

Luckily, these issues can be easily remedied by properly computing the Hamann simi-
larity instead of the Hamming distance. Future versions of the HPU contain the correct
Similarity Unit module with updated RTL.

CHAPTER 4. HPUV1: DESIGN AND IMPLEMENTATION 46

While the VMU issue only affects processor performance, the similarity metric bug pre-
vents us from verifying any full benchmarks as all benchmark outputs are results of an
associative search. However, algorithms without similarity computations can be fully ver-
ified. As a result, we find that HPUv1 correctly computes the CA90, Mulitply-Add, and
Ngram Encode kernels. We also mapped the language classification algorithm onto HPUv1
and verified that the encoded class vectors indeed match our emulator.

Despite being unable to verify HPUv1’s similarity computation, we can assume that
the power measured during the associative search will be extremely similar to a version
of HPUv1 that correctly computes the Hamann similarity, as the Hamann similarity and
Hamming distance only differ by a binary to integer mapping layer in the adder tree.

Kernel Measurements

Since the HPU aims to optimize energy-efficiency, we first aim to find the optimal operating
voltage and frequency to operate HPUv1. For each kernel, we sweep the core VDD and clock
frequency and record the kernel accuracy. The kernel accuracy is defined as the percentage
of bits that match between the encoded vector output by HPUv1 and the one computed in
the emulator. Figure 4.6 shows these accuracies in the form of heatmaps for each kernel. The
figure also plots the energy-efficient operating points, defined as the lowest VDD that still
achieves 100% accuracy at each clock frequency. Note that the energy-efficient operating
points are different for different kernels. For example, The CA90 and Ngram kernels fail
at lower VDDs compared to the multiply-add kernel, which signifies that the accumulator
banks have less timing slack when compared to the CA90 module and Binary Encoder.

For each kernel, we measure the HPUv1 power and latency at its energy-efficient operating
points and compute the corresponding kernel energy, shown in Table 4.4. From the energy-
efficient operating points, we then report the lowest energy data point, highlighted in green
in the table.

4.5 Power and Performance Bottlenecks

The on-chip measurements from the previous section are difficult to analyze as the reported
data cannot be split into its individual constituents. In order to optimize the HPU, we
need simulated system-level and module-level power and performance to determine the areas
that are bottleneck for the HPU. To get use-case accurate data, we mapped the emotion
recognition algorithm [57] into HPUv1 instructions and simulated the program on the post-
synthesis netlist. We used PrimeTime PX to run power analysis on the post-synthesis netlist
with the cycle-accurate switching data. The power breakdown for the emotion recognition
benchmark with a folding factor of 8 (4096 dimension vectors) is shown in Table 4.5. Of the
total average power of 15.16mW dissipated by HPUv1, the SRAMs are the dominant source
of processor power at nearly 70%, followed by the AM Tiles (without the SRAMs) at 17%,
and the HD Encoder at 12.6%.

CHAPTER 4. HPUV1: DESIGN AND IMPLEMENTATION 47

Figure 4.6: Kernel accuracy for three kernels measured on HPUv1 as a function of core
voltage (VDD) and clock frequency. Blue signifies higher accuracy while red signifies lower
accuracy. The resulting energy-efficient operating points are also shown.

CHAPTER 4. HPUV1: DESIGN AND IMPLEMENTATION 48

CA90
Freq (MHz) VDD (V) Avg Power (mW) Latency (µs) Energy/Op (nJ)

67.2 0.57 2.58 0.04 0.09
50.4 0.55 2.10 0.05 0.10
38.4 0.53 1.63 0.06 0.10
25.2 0.50 1.07 0.09 0.10
12.6 0.47 0.58 0.19 0.11
6.3 0.43 0.35 0.38 0.13

Multiply-Add

Freq (MHz) VDD (V) Avg Power (mW) Latency (µs) Energy/Op (nJ)

67.2 0.60 3.03 0.40 1.20
50.4 0.58 2.36 0.53 1.24
38.4 0.56 1.82 0.69 1.26
25.2 0.53 1.21 1.06 1.27
12.6 0.49 0.60 2.11 1.27
6.3 0.46 0.41 4.22 1.71

Ngram Encode

Freq (MHz) VDD (V) Avg Power (mW) Latency (µs) Energy/Op (nJ)

67.2 0.57 2.45 0.23 0.56
50.4 0.55 1.99 0.31 0.61
38.4 0.53 1.49 0.40 0.60
25.2 0.50 0.99 0.61 0.60
12.6 0.47 0.56 1.22 0.69
6.3 0.43 0.33 2.44 0.82

Table 4.4: Measured kernel power, latency, and energy at the energy-efficient operating
points. Lowest-energy data point highlighted in green.

Category Dynamic power (mW) Leakage power (mW) Total power (mW) %

Total 13.18 1.98 15.16
SRAMs 10.08 0.33 10.48 69.2%
AM Tiles 2.12 0.48 2.6 17.3%
HD Encoder 0.92 0.99 1.91 12.6%
Other 0.06 0.07 0.17 0.9%

Table 4.5: Post-synthesis delay-annotated average power simulation of the Emotion Recogni-
tion algorithm [57] on HPUv1 with a folding factor of 8. Power analyzed at the TT0p9V25C
corner with a 200MHz clock.

CHAPTER 4. HPUV1: DESIGN AND IMPLEMENTATION 49

Instruction Cycles %

Total 655572
sram read 273204 41.7%
ca90 update 149800 22.9%
ca90 load 86752 13.2%
Other 145816 22.2%

Table 4.6: Instruction breakdown for the Emotion Recognition algorithm [57] run on HPUv1
with a folding factor of 8.

We also investigated the instruction frequency of the benchmark program by taking a
histogram of the instructions, with the top three shown in Table 4.6. Again we find that
the VMU instructions make up nearly 78% of all operations performed by the HPU. The
simulated benchmark data yields two main conclusions:

• SRAM power is problematic.
In our benchmark test, we found that the power dissipated by compute datapaths (AM
Tiles and HD Encoder) account for only ∼ 30% of the total processor’s power, and
the remaining 70% is spent reading and writing to the SRAM. Reducing SRAM area
and activity should be a key factor in optimizing HPU’s energy-efficiency.

• Reading vectors out of the VMU is inefficient.
The benchmark test also revealed that HPUv1 spends a vast majority (78%) of cycles
executing VMU instructions. Even if we account for the fixing the triple read issue,
the VMU instruction percentage only drops to ∼ 70%. Furthermore, at higher folding
factors, the VMU instruction percentage will grow due to the additional cycles required
to update the vector folds.

Since HPUv1 instructions only target a single module, this means that the VMU
heavily bottlenecks the HPU architecture. As a result, the HD Encoder or Similarity
Accumulator must stall and wait until the VMU finishes preparing the vectors. Since
the algorithm runtime linearly correlates with the total test energy, improving the
process of preparing and moving vectors from the VMU to the datapaths is critical.

As a baseline first version of the proposed architecture, HPUv1 has much room to grow
in terms of power and performance. With the findings from this section and the experience
from the physical design process, we have identified key weaknesses which will be improved
for future versions of the processor.

50

Chapter 5

HPUv2: Optimization and
Characterization

5.1 Introduction

The previous chapter overviewed our first attempt to design and build the HPU. As a
prototype for the HPU architecture, HPUv1 focused on the first two goals for the HPU
outline in Chapter 3: the ability to accelerate all known binary HDC algorithms and the
flexibility to adapt the computed vector dimensions. In order to achieve the third HPU goal,
our second processor, HPUv2, aims to optimize energy-efficiency in accordance with HDC’s
many low-power use cases.

This chapter covers the extensive changes made both to the system architecture and in-
dividual hardware modules compared to HPUv1. These optimizations are analyzed through
post-synthesis power simulations and a python emulator. HPUv2 shares a similar physical
design process to HPUv1 and is fabricated in the same 28nm CMOS process which allows for
direct comparison of power and performance results. We perform rigorous low-power charac-
terization of HPUv2 and provide comparisons against HPUv1 as well as previous hardware.

5.2 Energy Optimization and Updates

In Chapter 4, we discovered that VMUs are the limiting factor for both power and perfor-
mance for HPUv1. As a result, the bulk of the energy optimizations performed for HPUv2
focus on the VMUs. The following three sections outline the main hardware changes per-
formed for HPUv2.

CA90 Cache & Memory-Datapath Pipeline

In our test benchmark for HPUv1, we found that nearly 70% of the benchmark instructions
were VMU operations. The majority of these instructions (50% of the total benchmark) are

CHAPTER 5. HPUV2: OPTIMIZATION AND CHARACTERIZATION 51

Figure 5.1: Block diagram of updated VMU with added automatic write-back CA90 cache.
The cache stores an additional parity bit used to determine if write-back is necessary.

spent loading and updating the CA90 register within the VMU. Furthermore, for higher fold-
ing factors, CA90 instructions will make up an even higher percentage of total instructions.
Since vector folding time-multiplexes the vector operations, we expect the number of cycles
performing encoding or similarity computations to scale linearly with the folding factor. For
the VMUs, the number of cycles to update an item vector seed to the output vector depends
on the current fold number. For example, if an algorithm uses a folding factor of f , then the
total number of cycles spend updating the CA90 register is

1 + 2 + 3 + · · ·+ f =
f(f + 1)

2
∼ O(f 2) (5.1)

quadratic with f whereas all other operations are linear.
To remove the quadratic dependency, HPUv2 implements a CA90 cache which holds the

most recent CA90 update of each seed in a separate SRAM, shown in Figure 5.1. While
HPUv1 had a single SRAM that held both item vectors and stored vectors, HPUv2 has
separate SRAMs for each vector type. The Seed SRAM only holds the random seeds for
item vectors, the Cache SRAM holds CA90 updates of the item vector seeds, and the Vector
SRAM hold all encoded and stored vectors. Each SRAM is width d to ensure that one full
vector fold can be read/written to the VMU every cycle. Furthermore, the number of rows
in the Cache SRAM matches that of the Seed SRAM to guarantee updates of all seeds can
be stored in the cache.

The updated VMU has 4 distinct operations:

• Vector write
A vector is input to the VMU and stored in the Vector SRAMs. In most cases this

CHAPTER 5. HPUV2: OPTIMIZATION AND CHARACTERIZATION 52

will be an encoded vector (such as a class vector) or a temporary computation vector.
This operation takes one cycle.

• Vector read
A vector from the Vector SRAMs is read and output from the VMU. This operation
takes one cycle.

• Item write
An item vector seed is input to the VMU and stored in the Seed SRAM. This usually
only occurs during processor setup to initialize the random item seeds. This operation
takes one cycle.

• Item read
An item vector fold is requested from the VMU, which behaves differently based on the
current fold number. If the current fold number is non-zero, the Cache vector at the
requested address is read. Cache SRAM also contains one extra bit which holds the
parity corresponding to the CA90 update number of the stored vector. If the parity
matches the current fold number, then the cached vector is output. If not, the cached
vector is first passed through the CA90 module and then the updated vector is output.
The updated vector is then written back to the Cache SRAM in the next cycle. The
cache is implemented as dual port SRAM (DPSRAM) so that the write-back happens
automatically in the next cycle, and the SRAM can continue read operations as normal.
Finally, if the current fold number is zero, then the seed vector is output, while the
CA90 updated seed is written to initialize the cache in the next cycle. In order for the
write-back to occur at the correct address, the address for all item reads are registered
into an address register which connects to the write address port of the cache. All item
reads take one cycle, while the automatic cache write-back occurs on the next cycle if
necessary.

The addition of the CA90 cache greatly reduces runtime of HDC algorithms by lowering
the number of CA90 updates required, especially at higher fold numbers. All CA90 opera-
tions now happen in the background by means of the automatic cache and thus no explicit
CA90 load and update instructions are necessary. Moreover, all VMU read operations for
HPUv2 have a fixed one cycle latency. In other words, the CA90 cache now guarantees that
a vector fold needed by the HD Encoder or Similarity Accumulator is available after one
cycle.

To gain a more representative understanding of the resulting instruction speedup, we
analyze the effects on three kernels (Multipy-Add, Ngram encoding, Associative Search)
described in Section 4.4. Mapping the kernels to both HPUv1 and HPUv2 instructions, we
compute the total number of instructions required as a function of the folding factor f and
the number of vectors/vector pairs n, shown in Table 5.1. The CA90 cache removes the
quadratic dependency on f and the guaranteed one cycle latency also reduces the coefficient
of the linear term as well.

CHAPTER 5. HPUV2: OPTIMIZATION AND CHARACTERIZATION 53

Kernel HPUv1 Instructions HPUv2 Instructions

Multiply-Add 5nf +
nf(f − 1)

2
3nf

Ngram encoding 3nf +
nf(f − 1)

2
2nf

Associative search 2 + 2f +
f(f − 1)

2
2 + f

Table 5.1: Comparison of number of instructions needed to implement for kernel operations
in HPUv1 vs in HPUv2. f is the folding factor while n is the number of channel value pairs
or the Ngram number.

Furthermore, the added CA90 cache also enables the optimization of the HPUv2 control
pipeline. Since reading a vector from the VMU in HPUv1 has a variable latency depending
on the type of vector read and the fold number, HPUv1’s instructions only activates one
module at a time. This ensures that all required VMU instructions finish before the VMU
output is read into the vector datapaths. However, since HPUv2 VMUs have a fixed read
latency, we can prefetch vectors that we wish to compute with in the next cycle from the
VMU. In this way, both the VMU and the HD Encoder or Similarity Accumulator can be
active in the same cycle. The vector prefetch is implemented by adding a second pipeline
stage for the control signals of the vector datapaths, while the VMU keeps only a single
pipeline stage as depicted in Figure 5.2. We also demonstrate how the CA90 cache and
vector prefetch reduces the number of instructions to perform the same HDC algorithm.
The charts on the right indicate when modules are active, indicated by a filled-in blue cell.
Each row in the table represents one clock cycle.

With improvements in instruction efficiency, i.e. the number of instructions to implement
the same HDC operations, in both the VMU and the Control Unit, we compiled a full
factorization benchmark on both HPUv1 and HPUv2 to compare the instruction speedup,
shown in Figure 5.3. The benchmark was compiled with 1, 2, 4, 8, and 16 folds corresponding
to a speedup from ∼ 2× to > 30×. As predicted, the number of instructions for HPUv2 is
linear with the number of folds, leading to a quadratic speedup when compared to HPUv1.
The instruction speedup improves both algorithm latency and throughput, and as a result
lowers benchmark energy.

CHAPTER 5. HPUV2: OPTIMIZATION AND CHARACTERIZATION 54

Figure 5.2: Comparison of the Control Unit pipelines between HPUv1 and HPUv2. The
right-hand tables show the resulting speedup where each row represents one cycle and a blue
cell indicates that the module is active.

Figure 5.3: Number of instructions for the HD factorization benchmark on HPUv1 and
HPUv2 vs. number of vector folds used. Note that both axes are log-scale.

CHAPTER 5. HPUV2: OPTIMIZATION AND CHARACTERIZATION 55

Figure 5.4: Depiction of the SRAM partitioning scheme for general vector storage. Normal-
ized post-synthesis power vs. number of partitions for benchmarks with small, medium, and
large vector usage. Power analyzed at the TT0p9V25C corner with a 200MHz clock.

Memory Reduction and Partitioning

HPUv1 revealed that SRAM power was the dominant portion of total processor power. For
HPUv2, we employ several optimizations reduce SRAM power. The simplest process is to
cut down the amount of SRAM on chip. The number of rows of SRAM limits the number of
vectors and the folding factor that can be used for an algorithm on the HPU. We surveyed
the HPU vector usage across a broad assortment of HDC algorithms with different folding
factors, where the vector usage represents the number of SRAM rows required, defined as
the number of item vectors added to the number of stored vectors multiplied by the folding
factor. At a folding factor of one, the recall of reactive behavior has the highest vector usage
at 274, while at a folding factor of 16, language classification overtakes it with a vector usage
of 401. We also simulated an extremely large synthetic benchmark using HD factorization
with 9 factors and 70 items per factor, which uses 648 to 933 vectors at 1 and 16 folding
factors respectively.

The total vector storage capacity of HPUv1 is 4096 rows, far greater than the vector
usage we find across existing HDC algorithms. In order to reduce SRAM area and power,
we reduce the vector storage capacity to 2048 for HPUv2, half of the original design. Note
that even 2048 is much greater than the maximum usage of 933 vectors we found. However,
in order to ensure that future algorithms that require more vectors or a higher folding factor
can fit on HPUv2, we decided for a conservative limit of 2048. The 2048 rows are split into
512 rows for the Seed SRAM, 512 rows for the Cache SRAM, and 1024 rows of general vector
storage.

In most cases, especially at low folding factors, many algorithms use fewer than 200 vector
storage rows, much fewer than the 2048 capacity of HPUv2. In particular, the number of
rows needed for general vector storage can be quite low at low folding factors. As a result,
HPUv2 partitions the general vector storage into separate SRAMs so that smaller algorithms

CHAPTER 5. HPUV2: OPTIMIZATION AND CHARACTERIZATION 56

Figure 5.5: Post-synthesis energy of a HD factorization benchmark on HPUv2 synthesized
with different number of AM Tiles and datapath dimension. Lower energy is blue while
higher energy is red. Power analyzed at the TT0p9V25C corner with a 200MHz clock.

can turn off unneeded SRAMs to store power, as shown in Figure 5.4.
We computed the total SRAM power in addition to the post-synthesis partition control

logic overhead across different number of partitions. For each number of partitions, we
looked at three HDC algorithms with small, medium, and large amounts of vector usage.
The power shown is normalized to see the percent power savings for each benchmark. For
small algorithms, all required vectors can likely fit into the first partition, and thus a larger
number of partitions means smaller partition sizes and consequently less total power. On the
other hand, large algorithms would likely use most of the available partitions, so increasing
the number of partitions only introduces additional overhead without significantly changing
the amount of active/inactive SRAM. Since most known algorithms fall under the small and
medium categories, HPUv2 uses 4 vector partitions which provides an average of 22% power
savings across all benchmark sizes.

Architecture Parameter Optimization

With large improvements to both the memory output efficiency and power, the final front
of optimization focuses on the architectural parameters of HPUv2. While HPUv1 selected
its architectural parameters based on ease of implementation, we analyzed and chose archi-
tectural parameters based on energy-efficiency for HPUv2.

The base datapath dimension of the processor d and the number of AM tiles m are used
to trade off processor size and performance. Unlike the other architectural parameters, these
parameters do not affect the size or complexity of algorithms that can fit on the HPU. In
other words, any combination of d and m will be functionally equivalent. For example,
if we wish to compute s similarities using t dimension vectors, we need to use a folding
factor of t

d
with s

m
similarity compute instructions per fold. Choosing higher d or m lowers

the amount of time-multiplexing required by increasing the parallelism. In order to find

CHAPTER 5. HPUV2: OPTIMIZATION AND CHARACTERIZATION 57

the optimal values of d,m, we ran post-synthesis power simulations of an HD factorization
benchmark on different combinations of d and m, shown in Figure 5.5. In general, we see
that more AM Tiles is energy-inefficient. The optimal datapath dimension size depends on
the number of AM Tiles, with the optimal value increasing with a larger number of tiles. For
HPUv2, we chose the lowest energy combination of 2 AM Tiles with a datapath dimension
of 1024. Although we only simulated a few combinations of parameters since post-synthesis
simulations are expensive, we are confident about the choice based on the trends in the data.
The 2048 rows of vector storage split over the 2 AM Tiles so that each tile contains 256 rows
for the Seed SRAM, 256 rows for the Cache SRAM, and 4 partitions of 128 rows each for
general vector storage. In total, the total SRAM capacity of HPUv2 is 252KB, the same as
for HPUv1. However, HPUv2 is approximately double the size of HPUv1 due to its larger
datapath dimension of 1024, which means that the proportional power from SRAM will be
lower.

HPUv2 also implements two techniques to reduce integer bitwidth to 8 from 11 in HPUv1.
Integers are used in the HD Encoder accumulators as well as the Similarity Compute and
Accumulate units. In HPUv2, the similarity computation output is quantized according to
the instruction argument. The quantization right shifts the output integer by a set number
of bits so that at large folding factors, the similarity values can be appropriately quantized
so that the similarity accumulators do not overflow. Second, all accumulators are equipped
with overflow protection so that they saturate at the high and low limits ([−128, 127] for 8
bit integers). For these limits, our simulations show that once the accumulator in the HD
Encoder saturates, the accumulated value is very unlikely to flip its sign. As a result, 8
bit integers show no reduction in algorithm accuracy if the quantization value is carefully
chosen.

Finally, the total number of similarity registers is increased to 32 for HPUv2, with 16
registers per tile. This choice ensure that algorithms with a large similarity register require-
ment such as HD factorization can be efficiently accelerated on HPUv2. We find that 16
registers per tile is close to the upper limit in terms of timing and routing congestion for
the similarity accumulators without a complete redesign of the hardware, and in practice 32
registers is plenty for nearly all HDC algorithms.

Bugfixes

HPUv2 fixes the two functional flaws found in the design and analysis of HPUv1. The newly
designed VMU no longer requires consecutive read operations to output a vector to memory.
Furthermore, as HPUv2 uses the VMU as a pipeline stage, all memory read instruction are
combined with a data movement instruction (see next section for more detail). HPUv2 also
properly computes the Hamann similarity instead of the Hamming distance.

CHAPTER 5. HPUV2: OPTIMIZATION AND CHARACTERIZATION 58
In
st
ru
ct
io
n

O
p
co
d
e

D
es
cr
ip
ti
on

1
n
o
p

00
00
0

D
o

n
ot
h
in
g,

in
p
u
t
d
at
ap

at
h

an
d

re
gi
st
er

st
al
l
co
m
m
an

d
s
in
to

in
st
ru
ct
io
n

p
ip
el
in
e.

2
f
o
l
d
r
s
t

00
00
1

S
et

cu
rr
en
t
fo
ld

n
u
m
b
er

to
0.

3
f
o
l
d
i
n
c
r

00
01
0

In
cr
em

en
t
cu
rr
en
t
fo
ld

n
u
m
b
er

b
y
on

e.
4

p
a
r
t
s
e
t

00
11
0

S
et

ac
ti
ve

m
em

or
y
p
ar
ti
ti
on

s
w
it
h
on

e-
h
ot

ac
ti
ve

ar
g
fo
r
ti
le
sp
ec
ifi
ed

u
si
n
g
ti
le

ad
d
re
ss

ar
g.

5
l
c
o
m
p
s
e
t

00
11
1

S
et

ac
ti
ve

si
m
il
ar
it
y
re
gi
st
er
s
fo
r
lo
ca
l
ar
gm

ax
u
si
n
g
on

e-
h
ot

ac
ti
ve

ar
g
fo
r
ti
le

sp
ec
ifi
ed

u
si
n
g
ti
le

ad
d
re
ss

ar
g.

6
t
i
l
e
e
n
s
e
t

01
00
0

S
et

ac
ti
ve

A
M

T
il
es

u
si
n
g
on

e-
h
ot

ac
ti
ve

ar
g.

7
m
e
m
e
n
s
e
t

01
00
1

S
et

ac
ti
ve

V
M
U
s
u
si
n
g
on

e-
h
ot

ac
ti
ve

ar
g.

8
i
b
u
f
f
v
e
c
l
o
a
d

00
01
1

L
oa
d
ve
ct
or

in
p
u
t
in
to

in
p
u
t
ve
ct
or

b
u
ff
er
.

9
i
b
u
f
f
i
n
t
l
o
a
d

00
10
0

L
oa
d
in
te
ge
r
in
p
u
t
in
to

in
p
u
t
in
te
ge
r
b
u
ff
er
.

10
o
b
u
f
f
v
e
c
l
o
a
d

10
01
0

L
oa
d
ve
ct
or

fr
om

m
em

or
y
at

ti
le

ad
d
re
ss

ar
g,

V
M
U

ro
w

ad
d
re
ss

ar
g
or

fr
om

th
e
G
lo
b
al

A
rg
m
ax

U
n
it
in
to

ou
tp
u
t
ve
ct
or

b
u
ff
er
.

11
o
b
u
f
f
i
n
t
l
o
a
d

11
00
0

L
oa
d
si
m
il
ar
it
y
va
lu
e
fr
om

si
m
il
ar
it
y
re
gi
st
er

at
ti
le

ad
d
re
ss

ar
g,

b
u
ff
er

ad
d
re
ss

ar
g,

or
fr
om

G
lo
b
al

A
rg
m
ax

U
n
it
to

th
e
ou

tp
u
t
in
te
ge
r
b
u
ff
er
.

12
m
e
m
s
t
o
r
e
a
c
c

10
01
1

S
to
re

ve
ct
or

fr
om

ac
cu
m
u
la
to
r
b
an

k
gi
ve
n
b
y
b
an

k
ad

d
re
ss

ar
g
to

V
M
U

ro
w

ad
d
re
ss

ar
g
of

V
M
U
s
se
t
b
y
on

e-
h
ot

ac
ti
ve

ar
g.

13
m
e
m
s
t
o
r
e
i
b
u
f
f

10
10
0

S
to
re

ve
ct
or

fr
om

in
p
u
t
b
u
ff
er

to
V
M
U
ro
w
ad

d
re
ss

ar
g
of

V
M
U
s
se
t
b
y
on

e-
h
ot

ac
ti
ve

ar
g.

14
m
e
m
s
t
o
r
e
b
e

10
10
1

S
to
re

ve
ct
or

fr
om

B
in
ar
y
E
n
co
d
er

to
V
M
U

ro
w

ad
d
re
ss

ar
g
of

V
M
U
s
se
t
b
y

on
e-
h
ot

ac
ti
ve

ar
g.

15
b
e
p
e
r
m

00
10
1

P
er
m
u
te

ve
ct
or

in
th
e
B
in
ar
y
E
n
co
d
er
.

16
b
e
l
o
a
d

10
00
0

L
oa
d
ve
ct
or

fr
om

V
M
U

at
ro
w

ad
d
re
ss

ar
g,

ti
le

ad
d
re
ss

ar
g
or

fr
om

th
e
ac
cu
-

m
u
la
to
r
b
an

k
to

th
e
B
in
ar
y
E
n
co
d
er
.

17
b
e
m
u
l
t

10
00
1

M
u
lt
ip
ly

ve
ct
or

fr
om

V
M
U

at
ro
w

ad
d
re
ss

ar
g,

ti
le

ad
d
re
ss

ar
g
or

fr
om

th
e

ac
cu
m
u
la
to
r
b
an

k
to

th
e
B
in
ar
y
E
n
co
d
er
.

T
ab

le
5.
2:

T
ab

le
of

op
co
d
es

an
d
d
es
cr
ip
ti
on

s
of

in
st
ru
ct
io
n
s
1-
17

of
th
e
H
P
U
v
2
IS
A
.
In
st
ru
ct
io
n
s
18
-2
6
d
es
cr
ib
ed

in
T
ab

le
5.
3.

CHAPTER 5. HPUV2: OPTIMIZATION AND CHARACTERIZATION 59

In
st
ru
ct
io
n

O
p
co
d
e

D
es
cr
ip
ti
on

18
a
c
c
b
a
n
k
l
o
a
d

11
00
1

L
oa
d
ve
ct
or

fr
om

B
in
ar
y
E
n
co
d
er

to
ac
cu
m
u
la
to
r
b
an

k
at

b
an

k
ad

d
re
ss

ar
g.

T
h
e
ve
ct
or

is
op

ti
on

al
ly

sc
al
ed

b
y
th
e
si
m
il
ar
it
y
re
gi
st
er

gi
ve
n

b
y
A
M

T
il
e

ad
d
re
ss

ar
g
an

d
si
m
il
ar
it
y
re
gi
st
er

ad
d
re
ss

ar
g.

19
a
c
c
b
a
n
k
a
d
d

11
01
0

A
d
d
ve
ct
or

fr
om

B
in
ar
y
E
n
co
d
er

to
ac
cu
m
u
la
to
r
b
an

k
at

b
an

k
ad

d
re
ss

ar
g.

T
h
e
ve
ct
or

is
op

ti
on

al
ly

sc
al
ed

b
y
th
e
si
m
il
ar
it
y
re
gi
st
er

gi
ve
n

b
y
A
M

T
il
e

ad
d
re
ss

ar
g
an

d
si
m
il
ar
it
y
re
gi
st
er

ad
d
re
ss

ar
g.

20
q
u
e
r
y
l
o
a
d

10
11
0

L
oa
d
ve
ct
or

fr
om

V
M
U

ro
w

ad
d
re
ss

ar
g
to

q
u
er
y
re
gi
st
er
s
fo
r
al
l
ac
ti
ve

ti
le
s.

21
s
i
m
c
o
m
p
u
t
e

10
11
1

C
om

p
u
te

si
m
il
ar
it
y
b
et
w
ee
n
ve
ct
or

in
th
e
q
u
er
y
re
gi
st
er

an
d
ve
ct
or

fr
om

V
M
U

ro
w

ad
d
re
ss

ar
g
to

q
u
er
y
re
gi
st
er
s
fo
r
al
l
ac
ti
ve

ti
le
s.

22
s
i
m
r
e
g
l
o
a
d

11
01
1

L
oa
d
si
m
il
ar
it
y
va
lu
e
fr
om

S
im

il
ar
it
y
U
n
it
to

re
gi
st
er

d
et
er
m
in
ed

b
y
si
m
il
ar
it
y

re
gi
st
er

ad
d
re
ss

ar
g
fo
r
al
l
ac
ti
ve

ti
le
s.

23
s
i
m
r
e
g
a
d
d

11
10
0

A
d
d
si
m
il
ar
it
y
va
lu
e
fr
om

S
im

il
ar
it
y
U
n
it
to

re
gi
st
er

d
et
er
m
in
ed

b
y
si
m
il
ar
it
y

re
gi
st
er

ad
d
re
ss

ar
g
fo
r
al
l
ac
ti
ve

ti
le
s.

24
l
c
o
m
p
l
o
a
d

01
10
0

C
om

p
u
te

ar
gm

ax
si
m
il
ar
it
y
of

ac
ti
ve

si
m
il
ar
it
y
re
gi
st
er
s
fo
r
al
l
ac
ti
ve

ti
le
s.

25
g
c
o
m
p
l
o
a
d

01
01
0

C
om

p
u
te

ar
gm

ax
si
m
il
ar
it
y
st
or
ed

in
th
e
L
o
ca
l
A
rg
m
ax

U
n
it
s
of

ac
ti
ve

ti
le
s.

26
g
c
o
m
p
u
p
d
a
t
e

01
01
1

C
om

p
u
te

ar
gm

ax
si
m
il
ar
it
y
st
or
ed

in
th
e
L
o
ca
l
A
rg
m
ax

U
n
it
s
of

ac
ti
ve

ti
le
s
in

ad
d
it
io
n
to

p
re
v
io
u
sl
y
co
m
p
u
te
d
gl
ob

al
ar
gm

ax
.

T
ab

le
5.
3:

T
ab

le
of

op
co
d
es

an
d
d
es
cr
ip
ti
on

s
of

in
st
ru
ct
io
n
s
18
-2
6
of

th
e
H
P
U
v
2
IS
A
.
In
st
ru
ct
io
n
s
1-
17

d
es
cr
ib
ed

in
T
ab

le
5.
2.

CHAPTER 5. HPUV2: OPTIMIZATION AND CHARACTERIZATION 60

Modified Instruction Set

With the changes in the HPUv2 control unit and instruction pipeline, HPUv2 has a more
streamlined instruction set that combines several HPUv1 instructions into a single instruc-
tion. Similar to HPUv1, HPUv2 accepts and performs one instruction per cycle, requiring
an instruction input to the processor every cycle. HPUv2 has a slightly smaller instruction
set of 26 instructions with a 5 bit opcode and 20 bit address field, overviewed in Tables 5.2
and 5.3. Compared to HPUv1, there area few key differences:

• The new fold rst and fold incr instructions set the current fold number, which is
required for the CA90 Caches.

• There are no longer any individual memory read commands. Since the VMU acts as a
pipeline stage, HPUv2 commands including be load, be mult, and sim compute now
take in an additional vector and tile address argument. The vector is read on the first
cycle and computed in the datapath during the second.

• Certain control registers which were often changed during an algorithm (such as the
write memory select and accumulator bank select) were removed for HPUv2. Instead,
the mem store and accbank instructions take one-hot VMU active and accumulator
bank address arguments respectively.

5.3 Physical Implementation

With the optimization and analysis described in the previous section, HPUv2 maximizes the
energy-efficiency of the HPU architecture so that it can be competitive with existing applica-
tion specific processors. Table 5.4 summarizes the processor specifications and architectural
parameters, and compares them to HPUv1.

The fabrication process for HPUv2 is the same as HPUv1: TSMC28nm CMOS using
only standard digital cells and SRAMs. Physical design of the chip was also performed using
Cadence Genus and Innovus, starting from RTL written in SystemVerilog. Like HPUv1,
relies on an off-chip clock input, with timing closed at the same frequency of 200MHz at
0.9V. HPUv2 is a significantly larger chip than HPUv1 with a die area of 2.1mm× 2.1mm
that is nearly twice the area of HPUv1. The larger area accommodates the 2× larger
datapath, which means that for a given compute vector size, HPUv2 can operate with half
the folding factor of HPUv1.

IO and Communication

HPUv2 has a slightly modified a IO controller in comparison to HPUv1. It still contains
two input buffers and two output buffers, one for vectors and one for integer values. The
vector buffers are again implemented as 8 bit shift registers. However now that the integer

CHAPTER 5. HPUV2: OPTIMIZATION AND CHARACTERIZATION 61

HPUv1 HPUv2

Process TSMC 28nm CMOS TSMC 28nm CMOS
Size 1.6mm× 1.6mm 2.1mm× 2.1mm

Timing 200MHz at 0.9V 200MHz at 0.9V
Datapath Dimension 512 1024
Integer Bitwidth 12 8

Similarity Registers 16 32
AM Tiles 4 2

Total SRAM 262KB 262KB
SRAM partitions/tile - 4

Table 5.4: Summary of HPUv2 chip specifications and architectural parameters and com-
parison to HPUv1.

Figure 5.6: Die micrograph of HPUv2 with an overlay of the chip floorplan. The white
squares represent individual SRAM blocks.

CHAPTER 5. HPUV2: OPTIMIZATION AND CHARACTERIZATION 62

bitwidth is also 8, HPUv2 only requires 8 input and 8 output data ports. The shift register
controls are slightly modified so that the user must assert the shift signal to shift the register
rather than as a trigger signal in HPUv1. This change allows for slightly better flexibility
when switching between integer and vector inputs or outputs.

HPUv2 also uses a wirebond pad ring to get signals on and off the die powered by the
same IO cells. The HPUv2 die contains a total of 96 pads: 12 VDD, 12 VSS, 12 VDDPST,
12 VSSPST, 1 clock, 1 reset, 8 data in, 8 data out, 26 instruction bits, 2 IO control signals.
These pads are arranged around the perimeter of the chip which are wirebonded to a CPGA
package.

Floorplan

Figure 5.6 shows the die micrograph of HPUv2 with the superimposed floorplan. The floor-
plan uses a similar methodology with the HD Encoder in the center as it can receive a vector
from any SRAM on the chip. Since there are only two AM Tiles, each tile is placed on the top
and bottom sides of the die. Within each tile, the Seed SRAM and Cache are placed closest
to the HD Encoder, as that the most common source of vectors loaded into the encoder. As
the VMUs require an extremely wide bandwidth of 1024 bits, each memory is split into 8
parallel SRAMs each with a width of 128 bits (129 bits for the cache). The similarity and
argmax units are again placed in between the SRAMs within each tile.

5.4 Chip Measurements

For information about the python emulator, program compiler, and test setup used to verify
and measure HPUv2, please refer to Appendix A. In this section, we discuss characterization
of HPU kernel power tests and full benchmarks.

Kernel Characterization

We begin by running and verifying the kernel tests described in Section 4.4. The kernel
test validity is first checked by reading out the stored encoded vectors or search results
and compared against the emulated outputs. With the updated Similarity Unit, HPUv2
passes all kernels including the associative search. We measure the accuracy of each kernel
across a range of voltages and frequencies to find the energy-efficient operating points of
HPUv2. For the CA90, multiply-add, and Ngram encode kernels, accuracy is determined
by the percentage of bits that are correctly read out of the VMUs after encoding. For
the associative search, accuracy is computed as the percentage of correct search results.
The resulting accuracy heatmaps are presented in Figure 5.7. Note that for the associative
search, the maximum accuracy does not reach 100% due unexpected behavior if all the
similarity values being compared are negative. However, other than in our random kernel,

CHAPTER 5. HPUV2: OPTIMIZATION AND CHARACTERIZATION 63

Figure 5.7: Kernel accuracy for three kernels measured on HPUv2 as a function of core
voltage (VDD) and clock frequency. Blue signifies higher accuracy while red signifies lower
accuracy. The resulting energy-efficient operating points are also shown.

CHAPTER 5. HPUV2: OPTIMIZATION AND CHARACTERIZATION 64

this will never occur practically and does not pose a functional issue for HPUv2. The energy-
efficient operating points, defined as the lowest voltage that provides > 99% accuracy for
each frequency, are significantly lower for the associative search kernel compared to the HD
Encoder kernels. This is understandable because although HDC is robust to bit-errors in the
vector datapaths, any errors induced in the argmax computation would cause a completely
different vector address to be output.

For each kernel and its energy-efficient operating points, we measure the on-chip power
and latency to compute the kernel energy per operation, shown in Table 5.5 with the lowest-
energy point highlighted in green. Across all kernels, we see that lowest-points all occur at
the same frequency of 12.6MHz.

Benchmark Characterization

HPUv2 is characterized over three benchmarks: European language classification [24], EMG
gesture classification [58], and HD factorization [48]. The benchmarks were chosen they have
been characterized on prior hardware for HDC, which allows for a fair comparison point for
the HPU. Furthermore, the applications span over different HDC algorithms, other than the
HPU, no single existing ASIC can accelerate all three.

In order to find the energy-efficient operating points for each benchmark, they are first
characterized on a wide range of chip voltage and frequencies. The benchmark accuracy at
each point is shown in the heatmaps in Figure 5.8. The language classification benchmark
takes in random input text of different 21 different European languages and outputs a lan-
guage prediction. 100 tests for each language are run at each operating point for a total of
2100 tests, and accuracy is reported as the percentage of correct predictions. HPUv2 uses a
folding factor of 2 for an effective vector dimension of 2048 in order to match the benchmark
accuracy reported in literature. The EMG gesture recognition benchmark predicts hand ges-
tures from 64 channels of input EMG signals. For the accuracy characterization, we run 1300
tests on each operating point and again report the percentage of correct predictions. A vec-
tor folding factor of one is chosen as the smallest factor that meets the accuracy reported in
literature. For the factorization benchmark, we implemented several networks with different
numbers of factors and items per factor. The accuracy heatmap is shared for 3 factors with
64 items per factor, which is computed using a folding factor of 2. 200 factorization tests
are computed at each operating point, with the accuracy being the percentage of correct
factorizations.

When choosing energy-efficient operating points for the benchmarks, we first find the
baseline benchmark accuracy, which is defined as the benchmark accuracy at the highest
voltage and lowest frequency operating point (i.e. 0.62V, 6.3MHz) since we expect no failed
timing paths and thus no injected error. We then define a threshold accuracy as 99% of
the baseline accuracy. The energy-efficient operating points are chosen as the lowest VDD
that achieves at least threshold accuracy for each frequency point, as shown in Figure 5.9.
For the operating frequency shown (25.2MHz), the lowest VDD that maintains greater than
threshold accuracy is 0.53V. The figure also the low-VDD robustness of the HPU. At

CHAPTER 5. HPUV2: OPTIMIZATION AND CHARACTERIZATION 65

CA90
Freq (MHz) VDD (V) Avg Power (mW) Latency (µs) Energy/Op (nJ)

67.2 0.55 5.47 0.02 0.09
50.4 0.53 4.00 0.02 0.08
38.4 0.51 2.68 0.03 0.07
25.2 0.48 1.69 0.04 0.07
12.6 0.45 0.73 0.08 0.06
6.3 0.42 0.41 0.17 0.07

Multiply-Add

Freq (MHz) VDD (V) Avg Power (mW) Latency (µs) Energy/Op (nJ)

67.2 0.55 5.77 0.05 0.27
50.4 0.53 4.15 0.06 0.26
38.4 0.51 2.95 0.08 0.24
25.2 0.48 1.77 0.12 0.22
12.6 0.45 0.83 0.25 0.20
6.3 0.42 0.45 0.49 0.22

Ngram Encode

Freq (MHz) VDD (V) Avg Power (mW) Latency (µs) Energy/Op (nJ)

67.2 0.55 5.43 0.03 0.18
50.4 0.53 3.99 0.04 0.17
38.4 0.51 2.74 0.06 0.16
25.2 0.48 1.71 0.09 0.15
12.6 0.45 0.76 0.17 0.13
6.3 0.42 0.43 0.35 0.15

Associative Search

Freq (MHz) VDD (V) Avg Power (mW) Latency (µs) Energy/Op (nJ)

67.2 0.55 5.88 0.04 0.23
50.4 0.53 4.15 0.05 0.22
38.4 0.51 2.82 0.07 0.19
25.2 0.48 1.89 0.10 0.20
12.6 0.45 0.80 0.21 0.17
6.3 0.42 0.47 0.42 0.20

Table 5.5: Measured kernel power, latency, and energy at the energy-efficient operating
points on HPUv2. Lowest-energy data point highlighted in green.

CHAPTER 5. HPUV2: OPTIMIZATION AND CHARACTERIZATION 66

Figure 5.8: Benchmark accuracy for three European language classification [24], EMG ges-
ture classification [58], and HD factorization [48] measured on HPUv2 as a function of core
voltage (VDD) and clock frequency. Blue signifies higher accuracy while red signifies lower
accuracy.

CHAPTER 5. HPUV2: OPTIMIZATION AND CHARACTERIZATION 67

Figure 5.9: Example of choosing an energy-efficient operating point (0.53V) by threshold
accuracy for the EMG classification benchmark at 25.2MHz.

VDDs between 0.53V − 0.58V, we see a small drop in accuracy compared to the baseline.
However, since the HPU can tolerate some datapath errors, the algorithm still performs
acceptably. The computed energy-efficient operating points for the different benchmarks are
nearly identical and match up with the energy-efficient operating points of the associative
search kernel. It appears that the associative search kernel limits the low-VDD robustness
of the HDC algorithms

Using same process to compute minimum kernel operation energy, we find the minimum
energy operating point for each benchmark by measuring the power and latency at the
energy-efficient operating points, shown in Figure 5.10. For all benchmarks, we find that the
minimum energy operating is at 0.49V and 12.6MHz. The resulting minimum energy per
query is measured and summarized for all benchmarks in Figure 5.11.

5.5 Discussion

In this section, we compare and analyze the measured data from HPUv1, HPUv2, and
existing hardware for HDC. We first focus on the HPU the power and performance of the
HPU kernels, before moving on to the three benchmarks characterized on HPUv2.

HPU Kernel Comparison

The HPU kernels, defined in Section 4.4, represent common HDC computations used in most
algorithms. In order to evaluate the energy optimizations of the HPUv2, Table 5.6 compares
the kernel power, latency, and resulting energy per operation for 1024 dimension vectors
between HPUv1 and HPUv2. We also include a comparison to the same HPU kernels run
on an NVIDIA GTX 1080 GPU platform. The GPU implementation uses Torchd [59], an
optimized package for python based off of PyTorch, and uses the nvidia-smi command line
interface to monitor and record GPU power. Note that the CA90 kernel is not included

CHAPTER 5. HPUV2: OPTIMIZATION AND CHARACTERIZATION 68

Figure 5.10: Latency and average power of the benchmarks over their respective energy-
efficient operating points (a) and resulting normalized energy as a function of core voltage
(b). The lowest energy operating point is 0.49V and 12.6MHz for all benchmarks.

Figure 5.11: Energy per query of all measured HPUv2 benchmarks at the minimum energy
operating point of 0.49V and 12.6MHz. The factorization benchmarks use a naming con-
vention of f × i where f is the number of factors and i is the number of items per factor.

CHAPTER 5. HPUV2: OPTIMIZATION AND CHARACTERIZATION 69

as the CA90 operation is built into other computation instructions and thus is not a useful
point of comparison.

We find that with the optimized design, HPUv2 is 4.5×more energy efficient than HPUv1
across all kernels with an average energy per operation of 168 pJ compared to 750 pJ. The
kernel operations are conducted on a relatively small 1024 dimension, and thus we can
expect HPUv2 to present even greater energy-efficiency gains vs. HPUv1 for larger and
more complex algorithms. Note that the average power between HPUv1 and HPUv2 are
fairly similar, which is surprising as HPUv2 has double the datapath dimension and chip
area of HPUv1. However, the kernels run on HPUv2 have a lower minimum-energy operating
VDD of 0.45V, 12.6MHz compared to 0.57V, 67.2MHz for HPUv1. On the other hand, the
slower clock frequency should correspondingly increase HPUv2’s kernel latency, but with the
vastly improved instruction efficiency of HPUv2, we see much lower latency on HPUv2.

When compared to the GPU implementation, both HPUv1 and HPUv2 have orders of
magnitude greater energy-efficiency. For instance, HPUv2 has 650000× lower average energy
per operation. This is mainly due to the massive difference in processor power, with GPU
on the order of 100W and the HPU on the order of 1mW. Note that the reported GPU
latencies are the best case scenario. Torchhd uses batching to load multiple different vector
operation onto the GPU. For the GPU kernels we assume that each test is independent and
thus may be computed in parallel. During an actual HDC algorithms, there may be temporal
dependence on certain operations in which case we expect the GPU latency to be higher,
leading to even worse energy per operation.

Comparison with Previous Hardware

With HPUv2 demonstrating large improvements in energy over a GPU, we now compare
against previous hardware for HDC on real benchmarks. The three benchmarks compared
are language classification (LANG), EMG gesture classification (EMG), and HD factorization
(FACT) as they are the most commonly characterized benchmarks for existing HDC ASICs.
The benchmark energy comparisons are found in Table 5.7, where the columns represent
different existing processors and the three tested benchmarks are grouped into rows. We first
note that the HPU is the first and only processor that can accelerate all three benchmarks
shown. Additionally, several of the listed processors are not fully fabricated (marked on the
table), and thus part or all of the power data is simulated.

We also note that the HPU is the only processor that uses different HDC vector di-
mensions for different benchmarks. The dimension for HPUv2 was selected as the smallest
folding factor (i.e. multiple of 1024) that achieves the accuracy and/or performance reported
in literature. For example, the EMG benchmark only requires 1024 dimensions to achieve
93.9% accuracy while the FACT benchmark requires 16384 dimensions to reach 98.2%.

For both classification benchmarks, HPUv2 outperforms the previous classification-only
processors. For LANG, HPUv2 operates with 82.3 nJ per query, nearly 4× lower than the
next lowest energy per query. The query latency is also much faster at just 122.6 µs compared
to 14ms, a 114× improvement over the next best performer. We see a similar story for EMG,

CHAPTER 5. HPUV2: OPTIMIZATION AND CHARACTERIZATION 70

G
P
U

H
P
U
v
1

H
P
U
v
2

K
er
n
el

P
ow

er
L
at
en
cy

E
n
er
gy

/o
p

P
ow

er
L
at
en
cy

E
n
er
gy

/o
p

P
ow

er
L
at
en
cy

E
n
er
gy

/o
p

M
u
lt
ip
ly
-A

d
d

10
6.
1
W

74
7
n
s

79
µJ

0.
60

m
W

21
11

n
s

12
74

p
J

0.
83

m
W

24
6
n
s

20
3
p
J

N
gr
am

63
.5
W

22
16

n
s

14
1

µJ
0.
58

m
W

12
22

n
s

56
1
p
J

0.
76

m
W

17
5
n
s

13
3
p
J

A
ss
o
c
S
ea
rc
h

16
4.
7
W

53
8
n
s

10
5

µJ
1.
07

m
W

38
7
n
s

41
6
p
J

0.
80

m
W

20
8
n
s

16
7
p
J

A
ve
ra
ge

10
8

µJ
75
0
p
J

16
8
p
J

T
ab

le
5.
6:

C
om

p
ar
is
on

of
H
D
C

ke
rn
el

p
ow

er
,
la
te
n
cy
,
an

d
en
er
gy

b
et
w
ee
n
G
P
U

(N
V
ID

IA
G
T
X

10
80
),

H
P
U
v
1,

an
d

H
P
U
v
2.

T
h
e
ke
rn
el

op
er
at
io
n
s
as
su
m
e
10
24

d
im

en
si
on

ve
ct
or
s.

CHAPTER 5. HPUV2: OPTIMIZATION AND CHARACTERIZATION 71

N
at
u
re
’2
0
[3
9]

T
C
A
S
-I
’2
1
[5
5]

E
S
S
C
IR

C
’2
3
[5
3]

N
at
u
re
’2
3
[5
4]

H
P
U
v
2

P
la
tf
or
m

90
n
m

R
R
A
M

22
n
m

C
M
O
S
†

28
n
m

C
M
O
S

14
n
m

P
C
M

28
n
m

C
M
O
S

65
n
m

C
M
O
S
∗

14
n
m

C
M
O
S
∗

A
p
p
li
ca
ti
on

s
H
D

cl
as
si
fi
ca
ti
on

H
D

cl
as
si
fi
ca
ti
on

H
D

cl
as
si
fi
ca
ti
on

H
D

fa
ct
or
iz
at
io
n

A
ll
b
in
ar
y
H
D
C

LANG[24]

H
D
C

D
im

10
00
0

20
48

—
—

20
48

A
cc
u
ra
cy

92
.8
%

86
%

—
—

93
.1
%

L
at
en
cy

—
14

m
s

—
—

12
2.
6

µs
E
n
er
gy

/q
u
er
y

43
0
n
J

32
2
n
J

—
—

82
.3
n
J

EMG[58]

H
D
C

D
im

—
20
48

20
48

—
10
24

A
cc
u
ra
cy

—
95

%
92
.9
%

—
93
.9
%

L
at
en
cy

—
6.
78

m
s

11
8

µs
—

17
.3

µs
E
n
er
gy

/q
u
er
y

—
19
1
n
J

25
.6
n
J

—
10
.4
n
J

FACT[34]

H
D
C

D
im

—
—

—
25
6

16
38
4

S
ea
rc
h
S
p
ac
e

—
—

—
16

77
7
21
6

1
04
8
57
6

A
cc
u
ra
cy

—
—

—
99
.7
%

98
.2
%

L
at
en
cy

—
—

—
2.
2
m
s

16
.1
m
s

E
n
er
gy

/q
u
er
y

—
—

—
33
.1

µJ
13
.7

µJ
∗
N
ot

fa
b
ri
ca
te
d
(e
n
er
gy

fr
o
m

p
o
st
-s
y
n
th
es
is
),

†
N
o
t
fa
b
ri
ca
te
d
(e
n
er
g
y
fr
o
m

p
o
st
-r
o
u
te
)

T
ab

le
5.
7:

C
om

p
ar
is
on

of
H
P
U
v
2
w
it
h
p
re
v
io
u
s
h
ar
d
w
ar
e
fo
r
H
D
C
ac
ro
ss

th
re
e
b
en
ch
m
ar
k
s.

N
ot
e
m
an

y
of

th
e
p
re
v
io
u
s

h
ar
d
w
ar
e
in
cl
u
d
e
si
m
u
la
te
d
p
ow

er
an

d
en
er
gy

d
at
a
(m

ar
ke
d
).

CHAPTER 5. HPUV2: OPTIMIZATION AND CHARACTERIZATION 72

where HPUv2’s 10.4 nJ per query and latency of 17.3 µs improve that of previous hardware
by 2.4× and 16× respectively.

For the factorization benchmark, HPUv2 does not perform as well as the factorization-
only processor [54], at least for large factorization problems. The number of factors f and
items per factor i define the factorization search space of if , which represents the total possi-
ble combinations of items. In general, larger search space computations require correspond-
ingly larger vector dimensions as the algorithm grows larger and more complex. However,
[54] uses the naturally-occurring variance in the PCMs to inject randomness into the itera-
tions to improve convergence. As a result, they are able to factorization very large search
spaces (16 777 216) using only 256 dimension vectors. Without the variance injection, the
factorization algorithm can struggle at larger search spaces. For example, the HPU struggles
to reasonably factorize search spaces of more than 1 048 576, even using a vector dimension
of 16 384. Even though the search space of [54] is 16× larger, their reported power is only
2.5× larger than HPUv2’s reported 13.7 µJ energy per query. Furthermore, their processor
is able to compute the factorization 8× faster than HPUv2’s 16.1ms latency.

Nearly all the performance and energy difference can be attributed to the fact that they
can achieve the better accuracy with a much smaller vector dimension. It may be possible
that even without PCM variance, we can modify the factorization algorithm implemented
on the HPU to achieve the same purpose. For example, we can add a few randomly selected
unused vector seeds to the scaled accumulation step, which may help the algorithm break
out of a convergence loop. Although not yet explored, if such algorithmic adjustments can
be made and the vector dimension is correspondingly lowered, HPUv2 can achieve much
better performance on the factorization benchmark. We should also note that [54] uses a
much more advance process of 14nm compared to 28nm in HPUv2 which contributes to their
better performance and energy measurements.

Finally, we expect HPUv2 to be more competitive with factorization-only processor for
small search spaces. Currently, practical applications of HD factorization only operate over a
fairly small search space. For example, the visual decomposition example tested in [54] only
uses a search space of 1200. On the HPUv2, this can easily fit into the FACT 3 16 benchmark
from Figure 5.11 which only requires 80.8 nJ per query. Unfortunately, the factorization-only
processor does not separately report energy for this use-case.

Overall, HPUv2 has successfully achieved the three main goals of that it aimed to solve.
First, it has demonstrated its ability to accelerate all known binary HDC algorithms through
three distinct benchmarks. Second, Each benchmark uses a different HDC vector dimension,
which is adapted to the size and complexity of the target application. Third, HPUv2 has
shown promising energy-efficiency. For the kernel tests, HPUv2 outperforms GPU energy
per operation by 6 orders of magnitude with an average of 168 pJ per operation. HPUv2
outperforms previous HD classification processors in both energy and performance, and
remains competitive with existing HD factorization processors.

73

Chapter 6

Conclusions

6.1 Overview

The proliferation of smart devices and sensors is pushing computation and decision-making
closer to endpoint devices. This is especially problematic for machine learning and artifi-
cial intelligence applications which are traditionally power-hungry and most often offload
complicated and expensive algorithms onto a centralized compute platform or datacenter.
As a result, there is an increasing demand for energy-efficient algorithms and corresponding
hardware platforms to fit this shift in computing paradigms.

This dissertation explores the design of a general-purpose processor to accelerate Hyper-
Dimensional Computing (HDC) algorithms for energy-efficient learning on the edge. The
first two chapters introduce HDC and why it is a good fit for certain low-power AI appli-
cations. The third chapter outlines the goals and overall system architecture of the Hyper-
Dimensional Processing Unit (HPU) and how it efficiently accelerates all binary HDC algo-
rithms. The fourth and fifth chapters describe the physical design, silicon implementation,
and power and performance results of HPUv1 and HPUv2. This final chapter summarizes
the key results and contributions of the dissertation, provides insight on possible future
directions of the HPU project, and concludes with some final thoughts.

6.2 Summary of Results

1. Robot Navigation Algorithm using Recall of Reactive Behavior

Although an HDC algorithm for robot learning through the Recall of Reactive Behavior
(RORB) has been proposed, there had not yet been a detailed implementation or review
of the performance and limitations of the algorithm. We defined an environment with a
robot in a two-dimensional grid with randomly placed obstacles and a target location.
We then applied the RORB algorithm with a modified encoding scheme to train the
robot to move to the target while avoiding obstacles. The modified RORB algorithm
achieves up to 88.57% success rate in new previously-unseen random environments.

CHAPTER 6. CONCLUSIONS 74

2. Development of the HPU Architecture

The HPU is the first general-purpose processor capable of accelerating all binary HDC
algorithms. Previous hardware developed for HDC are limited to a specific application
or type of application (e.g. classification, factorization) and many can only accelerate
certain operations/kernels and rely on off-chip CPU/FPGA for some HDC operations.
To overcome these limitations, we designed the HPU ISA so that it can perform any HD
operation on any vector in any order. Furthermore, the HPU has built in dimensionality
scaling using a combination of vector folding and CA90. As a result, the HPU is the
first accelerator for HDC that can change the dimension of the HD vectors at runtime
to fit the application at hand. The HPU is a completely digital design written in
SystemVerilog and only using standard cells and SRAMs, which allows it to be easily
portable over different technologies.

3. HPUv1: Silicon Implementation and Verification of the HPU architecture

While several accelerators for HDC have been proposed, only a few have been imple-
mented, verified, and tested in silicon. HPUv1 was fabricated in TSMC 28nm CMOS
as a small-scale proof of concept of the HPU architecture. We set up four kernel tests
which cover all operations used in HDC algorithms. HPUv1 passes all three encoding
kernels, for which power and latency were measured at the lowest energy operation
points. Due to an error in the implementation of the vector similarity calculator,
HPUv1 cannot be verified over full-scale benchmarks. However, measurements from
HPUv1 can still serve as a reliable baseline for the unoptimized HPU architecture.

4. HPUv2: Silicon Implementation and Characterization of an optimized HPU
architecture

The previous testing and analysis of HPUv1 highlighted the memory-datapath interface
as the main bottleneck in both power and performance. With HPUv2, we made sev-
eral architectural optimizations aimed at improving memory read latency and standby
memory power. HPUv2 was also fabricated in TSMC 28nm CMOS and successfully
verified across all four kernel tests with an average energy per kernel operation of
168 pJ. We also tested and measured HPUv2 for three different applications: Lan-
guage recognition (82.3 nJ per query), EMG gesture recognition (10.4 nJ per query),
and factorization problems over various size search spaces (80.8 nJ−14.7 µJ per query).
HPUv2 is the first ASIC implementation to accelerate HDC algorithms of different
types (classification and factorization). Furthermore, HPUv2 is also the first processor
to compute the entire factorization algorithm on-chip. For each application, HPUv2
remains competitive in both benchmark accuracy and energy to previous application-
specific hardware.

CHAPTER 6. CONCLUSIONS 75

6.3 Future Work

The design and implementation of HPUv2 focused primarily around improving the memory-
datapath interface. There are still many areas to explore in both architecture optimization
and silicon implementation in order to further improve the capabilities and performance
of the HPU. Furthermore, with the constant evolution and progress of HDC algorithms as
well as emerging device and memory technologies, there will always be adjustments and
optimizations to suit a general-purpose and energy-efficient processor for HDC. Based on
our experience designing and optimizing the HPU, we present several directions for further
research:

1. Multi-VDD HPU implementation

Our kernel tests for both HPUv1 and HPUv2 show that for the same operating fre-
quency, different kernels can fail at different VDDs. In particular, the HDC encoding
operations are capable of operating at ∼ 50mV lower than the distance compute and
search operations. HDC algorithms are robust to random bit-level errors in computed
vectors, but not to errors in the processor control pipeline, distance compute, or search.
Thus, we propose an HPU implementation with three power rails: one for the SRAMs,
one for error-resilient logic (encoding datapath, pseudo-random generators), and one
for error-vulnerable logic (control, distance compute, search). As a result, we can iso-
late the error-resilient portions of the HPU to study and take advantage of HDC’s
properties of robustness. Since these areas are expected to have the highest switching
activity for most HDC algorithms, the multi-VDD implementation can save significant
power.

2. On-chip program memory

HPUv1 and HPUv2 require an instruction input every cycle. Consequently, programs
are currently stored off-chip on the testing FPGA. However, with small changes to
the HPU ISA and a small dedicated program memory, all instructions can be stored
on-chip. This change primarily allows conditional instructions to be executed on the
HPU, which may be useful in certain HDC applications. For example, conditional
instructions can be used to check for early convergence in factorization algorithms, or
used for adaptive training or retraining [40] in supervised learning tasks. Programs for
the HPU are also extremely cyclical and, with the addition of jump/loop instructions,
can be mapped onto a small amount of program lines.

3. Scratchpad memory

HPUv2 features separate SRAMs for the item vector seeds, CA90 cache, and parti-
tioned SRAMs for general vector storage. Currently, the general vector storage only
stores binary vectors, either intermediate computation vectors or fully-encoded vec-
tors. Transitioning the general vector storage into a scratchpad memory with variable
output port width would increase the flexibility and efficiency of the HPU in certain

CHAPTER 6. CONCLUSIONS 76

cases. The scratchpad would have the ability to store and retrieve integers from the
distance registers as well as integer vectors from the accumulators. For example in
training a classification task, HPUv2 must finish training a single class before moving
on to the next. The new scratchpad configuration would support training of multiple
classes at the same time, which is useful in applications requiring online learning.

4. Architecture design space exploration

Although we performed a rudimentary analysis of varying architecture parameters for
HPUv2, there is still a large design space yet to be explored. In addition to the base
datapath dimension and number of distance compute lanes, the HPU features many
configurable parameters such as integer size, memory size, and number of memory
partitions. The exploration should also consider the target operating point, which will
likely be much lower VDD compared to typical library characterization.

5. HPU compiler

Appendix A touches on the python emulator and compiler we used to generate pro-
grams for the HPU. These programs were built using python functions and require
large amounts of manual coding to keep track of vector to symbol mappings and ad-
dresses. Furthermore, there are multiple ways to implement the same computation on
the HPU and it is possible that the benchmark programs can be further optimized and
shortened. Moving forward, the development of a proper HPU compiler is critical for
users to efficiently create new programs for the HPU.

6.4 Looking Forward

When energy-efficiency is critical, well-designed application specific processors can outper-
form a general-purpose processor like the HPU. However, a versatile and programmable
processor for HDC may play a significant role in a generalized learning framework.

With the recent explosion of AI, ML is asked to solve problems of growing complexity.
Different ML frameworks (CNNs, transformers, HDC, etc.) have complementary strengths,
weakness, and applications they excel at. Consequently, complex tasks may benefit from
a multi-layered algorithm that involves several ML algorithms on a shared platform. Such
a platform requires general-purpose compute units that can work together to solve diverse
problems.

For example, one of the largest challenges for HDC is finding intelligent ways to map
input features of an algorithm onto HD vectors [19]. This is especially true for 2D images,
where HDC performs MNIST digit classification with fairly low accuracy even compared
to small CNNs [60]. However, recent studies have successfully fused shallow CNNs trained
to distinguish image features which are then mapped onto HD item vectors for cognitive
reasoning in HDC [36], [61], [62].

CHAPTER 6. CONCLUSIONS 77

These hybrid applications point to the advantage of a generalized low-power AI SoC
composed of an HPU, neural network accelerator, and CPU to arbitrate data and compute
between the coprocessors. While many low-power general-purpose neural network accel-
erators have been proposed, implemented, and improved upon [63], [64], [65], [66], [67],
low-power general-purpose HDC accelerators have yet to be studied and optimized. The
HPU is the first step towards that direction.

78

Bibliography

[1] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and
prospects,” en, Science, vol. 349, no. 6245, pp. 255–260, Jul. 2015.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A
vision, architectural elements, and future directions,” Future Generation Computer
Systems, Including Special sections: Cyber-enabled Distributed Computing for Ubiq-
uitous Cloud and Network Services & Cloud Computing and Scientific Applications —
Big Data, Scalable Analytics, and Beyond, vol. 29, no. 7, pp. 1645–1660, Sep. 2013.

[3] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: State-of-the-art and research
challenges,” en, Journal of Internet Services and Applications, vol. 1, no. 1, pp. 7–18,
May 2010.

[4] T. L. Duc, R. G. Leiva, P. Casari, and P.-O. Östberg, “Machine Learning Methods for
Reliable Resource Provisioning in Edge-Cloud Computing: A Survey,” ACM Comput.
Surv., vol. 52, no. 5, 94:1–94:39, Sep. 2019.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision and Challenges,”
IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, Oct. 2016.

[6] H. Li, K. Ota, and M. Dong, “Learning IoT in Edge: Deep Learning for the Internet of
Things with Edge Computing,” IEEE Network, vol. 32, no. 1, pp. 96–101, Jan. 2018.

[7] A. V. Dastjerdi and R. Buyya, “Fog Computing: Helping the Internet of Things Realize
Its Potential,” Computer, vol. 49, no. 8, pp. 112–116, Aug. 2016.

[8] M. Merenda, C. Porcaro, and D. Iero, “Edge Machine Learning for AI-Enabled IoT
Devices: A Review,” en, Sensors, vol. 20, no. 9, p. 2533, Jan. 2020.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” in Advances in Neural Information Processing Sys-
tems, vol. 25, Curran Associates, Inc., 2012.

[10] M. Horowitz, “1.1 Computing’s energy problem (and what we can do about it),” in
2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), Feb. 2014, pp. 10–14.

[11] V. Sze, Y.-H. Chen, J. Emer, A. Suleiman, and Z. Zhang, “Hardware for machine
learning: Challenges and opportunities,” in 2017 IEEE Custom Integrated Circuits
Conference (CICC), Apr. 2017, pp. 1–8.

BIBLIOGRAPHY 79

[12] S. Han, H. Mao, and W. J. Dally, Deep Compression: Compressing Deep Neural Net-
works with Pruning, Trained Quantization and Huffman Coding, en, Feb. 2016.

[13] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU: An Energy-Efficient
Deep Neural Network Accelerator With Fully Variable Weight Bit Precision,” IEEE
Journal of Solid-State Circuits, vol. 54, no. 1, pp. 173–185, Jan. 2019.

[14] V. Jain, S. Giraldo, J. D. Roose, L. Mei, B. Boons, and M. Verhelst, “TinyVers: A
Tiny Versatile System-on-Chip With State-Retentive eMRAM for ML Inference at the
Extreme Edge,” IEEE Journal of Solid-State Circuits, vol. 58, no. 8, pp. 2360–2371,
Aug. 2023.

[15] J. M. Rabaey, Low Power Design Essentials (Series on Integrated Circuits and Sys-
tems), eng, 1. Ed. Berlin: Springer US, 2009, isbn: 978-0-387-71713-5.

[16] P. Kanerva, “Hyperdimensional Computing: An Introduction to Computing in Dis-
tributed Representation with High-Dimensional Random Vectors,” en, Cognitive Com-
putation, vol. 1, no. 2, pp. 139–159, Jun. 2009.

[17] A. Rahimi, P. Kanerva, L. Benini, and J. M. Rabaey, “Efficient Biosignal Processing
Using Hyperdimensional Computing: Network Templates for Combined Learning and
Classification of ExG Signals,” Proceedings of the IEEE, vol. 107, no. 1, pp. 123–143,
Jan. 2019.

[18] A. Rahimi, S. Datta, D. Kleyko, et al., “High-Dimensional Computing as a Nanoscal-
able Paradigm,” en, IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 64, no. 9, pp. 2508–2521, Sep. 2017.

[19] D. Kleyko, D. A. Rachkovskij, E. Osipov, and A. Rahimi, “A Survey on Hyperdi-
mensional Computing aka Vector Symbolic Architectures, Part I: Models and Data
Transformations,” ACM Comput. Surv., vol. 55, no. 6, 130:1–130:40, Dec. 2022.

[20] E. P. Frady, D. Kleyko, and F. T. Sommer, “A Theory of Sequence Indexing and
Working Memory in Recurrent Neural Networks,” en, Neural Computation, vol. 30,
no. 6, pp. 1449–1513, Jun. 2018.

[21] D. Kleyko, A. Rosato, E. P. Frady, M. Panella, and F. T. Sommer, “Perceptron The-
ory Can Predict the Accuracy of Neural Networks,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 35, no. 7, pp. 9885–9899, Jul. 2024.

[22] K. Schlegel, P. Neubert, and P. Protzel, “A comparison of vector symbolic architec-
tures,” en, Artificial Intelligence Review, vol. 55, no. 6, pp. 4523–4555, Aug. 2022.

[23] A. Joshi, J. T. Halseth, and P. Kanerva, “Language Geometry Using Random Index-
ing,” en, in Quantum Interaction, J. A. De Barros, B. Coecke, and E. Pothos, Eds.,
vol. 10106, Cham: Springer International Publishing, 2017, pp. 265–274, isbn: 978-3-
319-52288-3 978-3-319-52289-0.

BIBLIOGRAPHY 80

[24] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A Robust and Energy-Efficient Classifier
Using Brain-Inspired Hyperdimensional Computing,” en, in Proceedings of the 2016
International Symposium on Low Power Electronics and Design, San Francisco Airport
CA USA: ACM, Aug. 2016, pp. 64–69, isbn: 978-1-4503-4185-1.

[25] S. Benatti, F. Montagna, V. Kartsch, A. Rahimi, D. Rossi, and L. Benini, “Online
Learning and Classification of EMG-Based Gestures on a Parallel Ultra-Low Power
Platform Using Hyperdimensional Computing,” IEEE Transactions on Biomedical Cir-
cuits and Systems, vol. 13, no. 3, pp. 516–528, Jun. 2019.

[26] A. Menon, D. Sun, S. Sabouri, et al., “A Highly Energy-Efficient Hyperdimensional
Computing Processor for Biosignal Classification,” IEEE Transactions on Biomedical
Circuits and Systems, vol. 16, no. 4, pp. 524–534, Aug. 2022.

[27] M. Imani, D. Kong, A. Rahimi, and T. Rosing, “VoiceHD: Hyperdimensional Com-
puting for Efficient Speech Recognition,” in 2017 IEEE International Conference on
Rebooting Computing (ICRC), Nov. 2017, pp. 1–8.

[28] A. Burrello, L. Cavigelli, K. Schindler, L. Benini, and A. Rahimi, “Laelaps: An Energy-
Efficient Seizure Detection Algorithm from Long-term Human iEEG Recordings with-
out False Alarms,” in 2019 Design, Automation & Test in Europe Conference & Exhi-
bition (DATE), Mar. 2019, pp. 752–757.

[29] M. Imani, T. Nassar, A. Rahimi, and T. Rosing, “HDNA: Energy-efficient DNA se-
quencing using hyperdimensional computing,” in 2018 IEEE EMBS International Con-
ference on Biomedical & Health Informatics (BHI), Mar. 2018, pp. 271–274.

[30] D. Kleyko, D. Rachkovskij, E. Osipov, and A. Rahimi, “A Survey on Hyperdimen-
sional Computing aka Vector Symbolic Architectures, Part II: Applications, Cognitive
Models, and Challenges,” ACM Comput. Surv., vol. 55, no. 9, 175:1–175:52, Jan. 2023.

[31] P. Neubert, S. Schubert, and P. Protzel, “An Introduction to Hyperdimensional Com-
puting for Robotics,” en, KI - Künstliche Intelligenz, vol. 33, no. 4, pp. 319–330, Dec.
2019.

[32] P. Neubert, S. Schubert, and P. Protzel, “Learning Vector Symbolic Architectures for
Reactive Robot Behaviours,” en,

[33] E. Osipov, D. Kleyko, and A. Legalov, “Associative synthesis of finite state automata
model of a controlled object with hyperdimensional computing,” in IECON 2017 - 43rd
Annual Conference of the IEEE Industrial Electronics Society, Oct. 2017, pp. 3276–
3281.

[34] E. P. Frady, S. J. Kent, B. A. Olshausen, and F. T. Sommer, “Resonator Networks, 1:
An Efficient Solution for Factoring High-Dimensional, Distributed Representations of
Data Structures,” en, Neural Computation, vol. 32, no. 12, pp. 2311–2331, Dec. 2020.

BIBLIOGRAPHY 81

[35] I. Nunes, M. Heddes, T. Givargis, A. Nicolau, and A. Veidenbaum, “GraphHD: Ef-
ficient graph classification using hyperdimensional computing,” en, in 2022 Design,
Automation & Test in Europe Conference & Exhibition (DATE), Antwerp, Belgium:
IEEE, Mar. 2022, pp. 1485–1490, isbn: 978-3-9819263-6-1.

[36] P. Neubert, S. Schubert, K. Schlegel, and P. Protzel, “Vector Semantic Representations
as Descriptors for Visual Place Recognition,” en, in Robotics: Science and Systems
XVII, Robotics: Science and Systems Foundation, Jul. 2021, isbn: 978-0-9923747-7-8.

[37] G. Karunaratne, M. Schmuck, M. Le Gallo, et al., “Robust high-dimensional memory-
augmented neural networks,” en, Nature Communications, vol. 12, no. 1, p. 2468, Apr.
2021.

[38] H. Li, T. F. Wu, S. Mitra, and H.-S. P. Wong, “Device-architecture co-design for hy-
perdimensional computing with 3d vertical resistive switching random access memory
(3D VRRAM),” in 2017 International Symposium on VLSI Technology, Systems and
Application (VLSI-TSA), Apr. 2017, pp. 1–2.

[39] G. Karunaratne, M. Le Gallo, G. Cherubini, L. Benini, A. Rahimi, and A. Sebas-
tian, “In-memory hyperdimensional computing,” en, Nature Electronics, vol. 3, no. 6,
pp. 327–337, Jun. 2020.

[40] A. Hernández-Cano, N. Matsumoto, E. Ping, and M. Imani, “OnlineHD: Robust, Ef-
ficient, and Single-Pass Online Learning Using Hyperdimensional System,” in 2021
Design, Automation & Test in Europe Conference & Exhibition (DATE), Feb. 2021,
pp. 56–61.

[41] M. Véstias and H. Neto, “Trends of CPU, GPU and FPGA for high-performance
computing,” in 2014 24th International Conference on Field Programmable Logic and
Applications (FPL), Sep. 2014, pp. 1–6.

[42] S. Salamat, M. Imani, B. Khaleghi, and T. Rosing, “F5-HD: Fast Flexible FPGA-
based Framework for Refreshing Hyperdimensional Computing,” in Proceedings of
the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
ser. FPGA ’19, New York, NY, USA: Association for Computing Machinery, Feb. 2019,
pp. 53–62, isbn: 978-1-4503-6137-8.

[43] M. Imani, Z. Zou, S. Bosch, et al., “Revisiting HyperDimensional Learning for FPGA
and Low-Power Architectures,” in 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), Feb. 2021, pp. 221–234.

[44] M. Imani, S. Bosch, S. Datta, et al., “QuantHD: A Quantization Framework for Hyper-
dimensional Computing,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 10, pp. 2268–2278, Oct. 2020.

[45] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, and D. Marr, “Acceler-
ating Binarized Neural Networks: Comparison of FPGA, CPU, GPU, and ASIC,” in
2016 International Conference on Field-Programmable Technology (FPT), Dec. 2016,
pp. 77–84.

BIBLIOGRAPHY 82

[46] S. Datta, R. A. G. Antonio, A. R. S. Ison, and J. M. Rabaey, “A Programmable
Hyper-Dimensional Processor Architecture for Human-Centric IoT,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 3, pp. 439–452, Sep.
2019.

[47] Tiny-HD: Ultra-Efficient Hyperdimensional Computing Engine for IoT Applications
— IEEE Conference Publication — IEEE Xplore.

[48] S. J. Kent, E. P. Frady, F. T. Sommer, and B. A. Olshausen, “Resonator Networks, 2:
Factorization Performance and Capacity Compared to Optimization-Based Methods,”
Neural Computation, vol. 32, no. 12, pp. 2332–2388, Dec. 2020.

[49] N. Sünderhauf, O. Brock, W. Scheirer, et al., “The limits and potentials of deep learning
for robotics,” en, The International Journal of Robotics Research, Apr. 2018.

[50] A. Menon, A. Natarajan, L. I. G. Olascoaga, Y. Kim, B. Benedict, and J. M. Rabaey,
“On the Role of Hyperdimensional Computing for Behavioral Prioritization in Re-
active Robot Navigation Tasks,” in 2022 International Conference on Robotics and
Automation (ICRA), May 2022, pp. 7335–7341.

[51] M. Ibrahim, Y. Kim, and J. M. Rabaey, “Efficient Design of a Hyperdimensional
Processing Unit for Multi-Layer Cognition,” in 2024 Design, Automation & Test in
Europe Conference & Exhibition (DATE), Mar. 2024, pp. 1–6.

[52] T. F. Wu, H. Li, P.-C. Huang, et al., “Brain-inspired computing exploiting carbon
nanotube FETs and resistive RAM: Hyperdimensional computing case study,” in 2018
IEEE International Solid-State Circuits Conference - (ISSCC), Feb. 2018, pp. 492–494.

[53] S. Datta, B. Richards, H. Liew, Y. Kim, D. Sun, and J. M. Rabaey, “HDBinaryCore:
A 28nm 2048-bit Hyper-Dimensional biosignal classifier achieving 25 nJ/prediction for
EMG hand-gesture recognition,” in ESSCIRC 2023- IEEE 49th European Solid State
Circuits Conference (ESSCIRC), Sep. 2023, pp. 229–232.

[54] J. Langenegger, G. Karunaratne, M. Hersche, L. Benini, A. Sebastian, and A. Rahimi,
“In-memory factorization of holographic perceptual representations,” en, Nature Nan-
otechnology, vol. 18, no. 5, pp. 479–485, May 2023.

[55] M. Eggimann, A. Rahimi, and L. Benini, “A 5 uW Standard Cell Memory-Based
Configurable Hyperdimensional Computing Accelerator for Always-on Smart Sens-
ing,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 10,
pp. 4116–4128, Oct. 2021.

[56] D. Kleyko, E. P. Frady, and F. T. Sommer, “Cellular Automata Can Reduce Memory
Requirements of Collective-State Computing,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 33, no. 6, pp. 2701–2713, Jun. 2022.

[57] E.-J. Chang, A. Rahimi, L. Benini, and A.-Y. A. Wu, “Hyperdimensional Computing-
based Multimodality Emotion Recognition with Physiological Signals,” in 2019 IEEE
International Conference on Artificial Intelligence Circuits and Systems (AICAS),
Mar. 2019, pp. 137–141.

BIBLIOGRAPHY 83

[58] A. Moin, A. Zhou, A. Rahimi, et al., “An EMG Gesture Recognition System with Flex-
ible High-Density Sensors and Brain-Inspired High-Dimensional Classifier,” in 2018
IEEE International Symposium on Circuits and Systems (ISCAS), May 2018, pp. 1–5.

[59] M. Heddes, I. Nunes, P. Vergés, et al., “Torchhd: An Open Source Python Library
to Support Research on Hyperdimensional Computing and Vector Symbolic Architec-
tures,” Journal of Machine Learning Research, vol. 24, no. 255, pp. 1–10, 2023.

[60] E. Hassan, Y. Halawani, B. Mohammad, and H. Saleh, “Hyper-Dimensional Computing
Challenges and Opportunities for AI Applications,” IEEE Access, vol. 10, pp. 97 651–
97 664, 2022.

[61] M. Hersche, M. Zeqiri, L. Benini, A. Sebastian, and A. Rahimi, “A neuro-vector-
symbolic architecture for solving Raven’s progressive matrices,” en, Nature Machine
Intelligence, vol. 5, no. 4, pp. 363–375, Apr. 2023.

[62] P. Sutor, D. Yuan, D. Summers-Stay, C. Fermuller, and Y. Aloimonos, Gluing Neural
Networks Symbolically Through Hyperdimensional Computing, en, May 2022.

[63] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An Energy-Efficient Re-
configurable Accelerator for Deep Convolutional Neural Networks,” IEEE Journal of
Solid-State Circuits, vol. 52, no. 1, pp. 127–138, Jan. 2017.

[64] A. Parashar, M. Rhu, A. Mukkara, et al., “SCNN: An Accelerator for Compressed-
sparse Convolutional Neural Networks,” in Proceedings of the 44th Annual Interna-
tional Symposium on Computer Architecture, ser. ISCA ’17, New York, NY, USA:
Association for Computing Machinery, Jun. 2017, pp. 27–40, isbn: 978-1-4503-4892-8.

[65] S. Yin, P. Ouyang, S. Tang, et al., “A High Energy Efficient Reconfigurable Hybrid
Neural Network Processor for Deep Learning Applications,” IEEE Journal of Solid-
State Circuits, vol. 53, no. 4, pp. 968–982, Apr. 2018.

[66] J.-F. Zhang, C.-E. Lee, C. Liu, Y. S. Shao, S. W. Keckler, and Z. Zhang, “SNAP: An
Efficient Sparse Neural Acceleration Processor for Unstructured Sparse Deep Neural
Network Inference,” IEEE Journal of Solid-State Circuits, vol. 56, no. 2, pp. 636–647,
Feb. 2021.

[67] S. Ryu, H. Kim, W. Yi, et al., “BitBlade: Energy-Efficient Variable Bit-Precision Hard-
ware Accelerator for Quantized Neural Networks,” IEEE Journal of Solid-State Cir-
cuits, vol. 57, no. 6, pp. 1924–1935, Jun. 2022.

84

Appendix A

Testing and Measurement
Methodology

A.1 Python Emulator and Compiler

We have constructed python emulators for both HPUv1 and HPUv2 which emulate the mem-
ory contents and datapath and control registers of the HPU. Although not cycle accurate,
the emulators can read input HPU instructions and update its registers and memories cor-
respondingly. The python emulators have two main purposes. First, the emulator outputs
are used for verification of the physical ASICs. For a given test program, it is run on the
emulator and all emulator outputs are recorded and compared to the outputs from the ASIC.

Second, the python emulator is highly useful in developing programs for the HPU. The
HPU benchmark applications are developed by hand by first assigning and keeping track
of memory addresses that map to the various vectors required by the application. We also
defined several HPU macros, i.e. groupings of commonly used HPU instructions, as python
functions that call individual instructions in the emulator. Although the process is slow and
tedious, the emulator allows us to verify the accuracy of the benchmark application and tune
certain settings such as the folding factor before testing on the physical hardware.

A.2 Test Setup

The measurement and validation of HPUv1 and HPUv2 is performed on a custom designed
Printed Circuit Board (PCB) shown in Figure A.1. The PCB houses and connects three
primary components:

1. The HPU package
Both HPUv1 and HPUv2 are wirebonded to a 13×13 Ceramic Pin Grid Array (CPGA)
package. The test PCB contains sockets that interface with the package pins.

APPENDIX A. TESTING AND MEASUREMENT METHODOLOGY 85

Figure A.1: Custom PCB with labeled components.

2. Opal Kelly XEM7310 FPGA development board
The programming and measurement of the HPU is handled by a Field-Programmable
Gate Array (FPGA). The Opal Kelly XEM7310 houses a Xilinx Artix-7 XC7A75T
FPGA as well as necessary peripheral circuitry such as a USB interface, clock crystal,
and voltage regulators.

3. TI INA229 PMIC
The HPU power is measured by a Texas Instrument INA229 Power Management Inte-
grated Circuit (PMIC) which can measure power with up to 0.5% accuracy by detecting
the voltage drop over a shunt resistor. The INA229 can be configured and sampled
using a 5MHz SPI interface.

The test PCBs for HPUv1 and HPUv2 are nearly identical, with the only differences being
the connection traces between the HPU data and control pins and the FPGA. The FPGA
handles four main testing responsibilities. First, the FPGA clock generators are used to
supply the HPU clock so that the two chips can synchronize data communication. Second, the
FPGA provides instruction to the HPU every cycle. Before program execution, all program

APPENDIX A. TESTING AND MEASUREMENT METHODOLOGY 86

instructions are loaded from a computer to the large Block Random Access Memory (BRAM)
on the FPGA. While idle, the FPGA asserts the nop instruction to the HPU. When triggered
by the computer, the FPGA begins program operation, reading out the stored instructions
line by line and outputting them to the HPU instruction pins at every clock cycle. Once the
program finished, the FPGA again asserts the nop instruction. The program BRAM is sized
at 524KB which can hold a maximum of 65 536 instructions.

Third, the FPGA handles all data movement required to initialize the HPU memories
as well as to read out vectors, integers, and associative search results from the HPU. When
the FPGA reads a data load or store instruction, it temporarily asserts a nop instruction
while it prepares to load or read the data. Data read and writes from the FPGA to the HPU
are interfaced to a separate BRAM just for IO. The FPGA input and output include shift
registers to deal with vector movement. While a vector is being shifted in or out, the FPGA
will stall the HPU accordingly. In other words, stall instructions required for data reading
or loading does not need to be built in to the program.

Finally, when the FPGA is running a program, it will query the PMIC on the test
PCB and store the measured power data in a separate power BRAM. Once the program is
complete, data from the power BRAM and IO data BRAM can be transferred back to the
computer. All communication with the computer is handled using a python front end.

The HPU has two necessary power rails to set the core VDD and IO VDD respectively.
The power rails are connected an external DC power supply through the power pins available
on the PCB. The IO VDD is set to 1.3V while the core VDD can be varied. Although each
rail has a PMIC, all reported HPU power and energy numbers are from the core VDD rail.
The entire test system diagram is shown in Figure A.2

Although the PCB was designed to minimize the lengths of the traces that connect the
HPU clock, data, and control pins to the FPGA, the trace parasitics limit the maximum fre-
quency of the HPU. While both HPUv1 and HPUv2 were designed for a maximum frequency
of 200MHz, in practice we were only able to achieve a maximum frequency of 108MHz us-
ing the test PCB. Fortunately, the main goal of the power characterization is to minimize
measured benchmark energy, which as shown by our measured data, occurs at relatively
low-frequency operating points.

A.3 Measurement Methodology

All programs to be run on the HPU are split into three subprograms. The first subprogram
initializes the item memories and sets the proper configuration registers of the benchmark.
The second subprogram handles all benchmark computation. The third subprogram is op-
tional and used for verification purposes, where HPU memory contents and search results
can be read back to the FPGA. The subprograms are separated so that they can be run at
different core VDDs. Notably, at low core VDD, even though the core logic, memory, etc.
are all operating normally, the HPU cannot properly drive the IO cells and thus output any
signals to the FPGA. As a result, the first and third subprograms are always run with core

APPENDIX A. TESTING AND MEASUREMENT METHODOLOGY 87

Figure A.2: System diagram of the testing setup.

VDD set to the nominal 0.9V and only lowered to the energy-efficient operating points for
the second main subprogram. All reported benchmark power is measured only during this
second subprogram.

The PMIC computes and updates its power measurement at a frequency of 20 kHz.
During program operation, the FPGA will then sample the PMIC output at 49 kHz. For the
power measurement of each benchmark, we prepare a maximum length program consisting
of multiple benchmark queries, called a batch. The reported power is an average over 100
batches. An example PMIC readout is shown for the EMG benchmark run on HPUv2 in
Figure A.3.

APPENDIX A. TESTING AND MEASUREMENT METHODOLOGY 88

Figure A.3: Power trace measured by PMIC for 5 batches of the EMG benchmark with each
batch containing 250 queries. Power measured on HPUv2 operating at 0.49V, 12.6MHz.

