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Abstract

Artificial Intelligence Curricula: Comparative Prerequisite Pathways Analysis in
North America

by
Rose Niousha
Master of Science, Plan II in Electrical Engineering and Computer Science
University of California, Berkeley
Professor Narges Norouzi, Research Advisor

Professor Lisa Yan, Second Reader

This work examines Artificial Intelligence (AI), Machine Learning (ML), and Data Science
(DS) courses in North America, focusing on the accessibility of the courses to learners of
different academic backgrounds. Analyzing 50 US and 30 Canadian universities, it identifies
key differences in course pathways. DS courses generally have lower entry requirements, while
AT and ML courses in both countries often demand extensive prerequisites. US institutions
typically provide earlier access to AI, ML, and DS courses with more flexible prerequisites,
whereas Canadian universities emphasize more layered preparation, delaying student expo-
sure. To improve accessibility, the study highlights several strategies such as parallelizing
prerequisites, integrating foundational content into introductory courses, and offering low-
barrier interdisciplinary courses to engage students early. The thesis introduces a codebook
and exposure-level metric to systematically analyze and compare curricula across different
institutions. These findings provide actionable recommendations to make AI in Higher Ed-
ucation more accessible and prepare a diverse range of students for opportunities in this
rapidly growing field.
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Chapter 1

Introduction

1.1 Advancement in AI and Influence in CS
Education

The rapid advancement of Artificial Intelligence (AI) has profoundly impacted various in-
dustries [1] and their applications across fields such as healthcare, finance, and education |2
3, 4L 5 6]. These disciplines have unlocked new opportunities for research, development,
and innovation. As Al continues to shape various industries, it has also become critical in
preparing future leaders who can tackle complex challenges in these sectors |7, 8, 9].

The increasing ubiquity of Al has naturally made it a central focus of Computer Science
(CS) education. The design of university Al programs has significant implications for shaping
the future workforce and fostering innovation [10]. Specifically, the Al-related courses in the
CS department AI, Machine Learning (ML), and Data Science (DS) (hereafter referred to as
Al in Higher Education (AIHD) courses) have been introduced with great effect in higher
education, particularly in areas such as academic performance prediction and employability
enhancement [11]. The integration of ATHD courses into CS curricula has gained prominence,
with universities striving to equip students with the skills needed to navigate and lead in an
Al-driven world.

However, despite their growing significance, ATHD courses face several challenges. Di-
versity remains a pressing issue, with systemic barriers limiting access for underrepresented
groups in the field |12} 13]. Additionally, these courses are reported to be particularly chal-
lenging for both students and instructors due to their interdisciplinary nature and steep
learning curve [14, 8, [15]. This difficulty is exacerbated by the complex prerequisites re-
quired for most AIHD courses. A strong foundation in mathematics including calculus,
linear algebra, and probability as well as advanced programming skills, is often essential for
success |16, 17, |18}, /19].

Such requirements create significant barriers for many students, particularly those from
non-traditional or less privileged educational backgrounds. These barriers have also led
some CS educators to become hesitant in introducing AITHD courses to non-majors, further
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limiting “accessibility” (in this report, this word is used as the accessibility of the courses to
learners of different academic backgrounds) and early exposure to these critical subjects [20].
Yet, introducing accessible and engaging AIHD curricula at earlier stages is essential to
motivate the next generation of learners and ensure that students from all backgrounds can
contribute meaningfully to the field [21, |22 23]. Addressing these challenges will require
innovative prerequisite pathways that balance rigor with accessibility.

1.2 Motivation

This report is motivated by the need to evaluate how undergraduate curricula prepare stu-
dents for Al careers by fostering technical understanding, application understanding, and
eventually research skills. While ATHD courses have gained prominence in higher education,
many institutions are still in the early stages of integrating these fields into their curric-
ula [11]. This highlights the need to analyze how curricula are structured to introduce
AIHD courses effectively. Graduate courses are excluded from this analysis because they are
specialized and cater to a narrower audience. By focusing on the accessibility and prerequi-
site structures of undergraduate ATHD courses, this study seeks to identify the earliest point
a student can engage in such courses and optimize pathways, ensuring they are well-prepared
for careers in these transformative fields.

1.3 Research Questions and Contribution

Rethinking traditional prerequisite pathways and exploring innovative approaches enables
educational institutions to empower students to engage with AIHD courses. This shift not
only helps demystify the field for beginners but also ensures that students from varied aca-
demic and demographic backgrounds are better positioned to contribute to these domains.
Addressing these challenges requires a systematic investigation into current curricular prac-
tices, identifying bottlenecks in prerequisite structures, and proposing actionable solutions
to make AIHD courses more accessible. Hence, this thesis addresses the following Research

Questions (RQs):

e RQ1: What approaches are institutions using to structure prerequisites for ATHD
courses in R1 CS departments in the United States (US)?

e RQ2: What approaches are institutions using to structure prerequisites for AIHD
courses in CS departments in Canada?

e RQ3: What are the similarities and differences in the prerequisite structure of ATHD
courses between the US and Canada?

e RQ4: What approaches can institutions use to allow early exposure to AIHD courses
for undergraduate students in the US and Canada?
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By comparing US and Canadian institutions, this work highlights differences, similarities,
and transferable practices to enhance student engagement and access. Canada was chosen
to apply the framework used for US institutions due to its similar academic structures while
differences enrich the comparative analysis. The aim is to propose actionable strategies
for fostering earlier and more inclusive exposure to AITHD courses. Through analyzing and
identifying bottlenecks, this work provides a framework for designing accessible and inclusive
Al education for students.

This report makes three key contributions to Al education. First, it introduces a com-
prehensive codebook for categorizing prerequisites in AIHD curricula. The codebook stan-
dardizes the various prerequisites for AIHD courses offered across universities, allowing re-
searchers to systematically analyze and compare course structures and identify gaps. Second,
it develops a metric, first exposure level, to quantify how early a student can take an AITHD
course in their academic career. This metric provides a way to assess the accessibility of
AIHD courses by calculating the depth of the prerequisite tree of a course. Third, it com-
bines the codebook and the first exposure level into a comparative framework for evaluating
AIHD curricula across institutions and countries. This framework helps institutions assess
their programs, benchmark against other institutions, and identify barriers to accessibility. It
also highlights strategies for providing earlier exposure to AIHD courses and reducing entry
barriers for students. Together, these contributions aim to create more accessible pathways
in ATHD education.

1.4 Overview

In the following chapters, this report systematically addresses its research questions. Chap-
ter 2| reviews key literature on curriculum pathways, challenges in Al education, and cross-
country comparisons, identifying gaps this study aims to fill. Chapter |3 describes the two-
phase research approach, focusing on US institutions and Canadian universities, and details
the coding and analytical frameworks used. Chapter 4] present findings on prerequisite
structures and strategies for fostering early exposure to AITHD courses. Chapter [5| interprets
the findings, explores their implications for curriculum design and policy, acknowledges the
study’s constraints, and outlines directions for future work. Finally, Chapter [6] summarizes
the report’s contributions.
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Related Work

2.1 History of Computer Science Education
Curriculum Development

CS is a rapidly growing discipline, and constant curriculum design updates have been an
integral part of its education history to balance foundational knowledge with the demands
of emerging technologies [24]. The origins of CS education can be traced back to the late
1960s and early 1970s when foundational efforts were primarily focused on the psychology
of programming. This included understanding how novices transition into experts and iden-
tifying the challenges faced by beginners in learning programming [25]. During this period,
educational tools like the Logo programming language emerged, designed to teach critical
thinking and mathematical reasoning through programming, setting the stage for integrating
computing concepts into broader educational contexts.

By the 1990s, there was a pedagogical shift in CS education, as educators recognized the
importance of moving beyond rote learning to foster deeper understanding. Ben-Ari [26]
advocated for constructivist teaching methods that emphasized active learning, encouraging
students to engage directly with the material to construct their understanding. This shift
reflected a growing awareness of the need for more student-centered teaching approaches in
CS education.

As the field progressed into the 2000s, the focus expanded to include practical skills
such as software testing, an area that was often underemphasized in traditional curricula.
Edwards [27] highlighted the importance of teaching students reflective learning practices
through software testing methodologies, which not only improved problem-solving skills but
also prepared students for real-world software development challenges. These milestones
illustrate how CS education has continually evolved and adapted to changing educational
needs.
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2.2 Curriculum Pathway in Computing Education

Prerequisites are critical in determining student progression through a curriculum, especially
in CS [28] |29]. Students’ incoming proficiency with prerequisite knowledge significantly cor-
relates with their performance in an upper-division data structures class [30]. From the
instructor’s standpoint, prerequisites enable them to assume a baseline of student knowl-
edge, with some caveats [31]. While prerequisites simplify course design, they can also
discourage or delay students from enrolling [32]. Several methods have been introduced to
redesign prerequisites to reduce entry barriers in CS [33]. For instance, Brodley, Quam, and
Weiss [34] analyzed the math requirements of CS degrees across US universities, providing
recommendations for CS departments to consider to improve access, retention, and on-time
degree completion. Moreover, Song [35] showed that micro-credentials can help instructors
identify key skills and learning outcomes, potentially reducing entry barriers by breaking
down complex prerequisites into more manageable components.

Furthermore, earlier works demonstrate that AIHD can be taught without extensive
technical prerequisites. Li and Liu [36] addresses ML prerequisites by suggesting integrating
foundational ML concepts into introductory courses like programming and DS. This approach
aims to make ML concepts more accessible by reducing the intimidation factor for students
encountering them for the first time. Earlier integration of ML courses is further supported by
Freitas and Weingart [20], Hu and Hu [37], and Sahu, Ayotte, and Banavar [38], who argue
that such exposure increases student engagement and prepares them for more specialized
topics later in the curriculum. In addition, Janeja et al. [39] highlights how DS courses
can be adapted to fit different student populations and institutional frameworks. These
adaptations ensure that DS education remains flexible and inclusive, catering to variations
in student preparation, institutional priorities, and resource availability.

2.3 Rise of Awareness in Teaching ATHD

Teaching AIHD at the university level is a well-established topic in CS education [40, 41].
While the popularity of ATHD courses is growing, research on best practices for teaching these
subjects, which require a strong foundation in both computing and mathematics, remains
limited [42].

Apart from the complex theories and knowledge, students may prefer applied Al focusing
on practical problem-solving over complex theories [43]. DS courses are particularly suited
to providing these hands-on skills. However, given that DS courses are still in their forming
stages and are highly interdisciplinary, how to teach such courses or prepare for varying
levels of preparation for students is only beginning to be explored |44} |45]. Barretto et al.
[12] recommends enhancing Al and ML participation by adding courses on their societal
and cultural impacts, targeting underrepresented students interested in these broader topics
over technical aspects. Allen, McGough, and Devlin [15] advocate combining theoretical
and practical teaching methods, tailored support to address students’ mathematics anxiety
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and confidence issues, and adaptive teaching strategies for complex AI concepts to broaden
participation.

AT is so ubiquitous that there is a growing interest in teaching Al in early childhood
education |46 |47, |48]. Su and Zhong 49| discusses the importance of Al literacy at a
young age due to the role of Al in society and emphasizes creating a framework for teaching
AT concepts, skills, and attitudes to young children. Their study uses the AI4K12 [50]
framework and its “Five Big Ideas” as a guide to shaping the curriculum for young learners.
Moreover, there has been an increased focus on integrating Al education into fields beyond
traditional computing [51}, |52} [53]. Furthermore, in a month-long course teaching ML and
Natural Language Processing (NLP) to high school students, participants greatly enhanced
their understanding of AI, even though they were only introduced to programming as part
of the course itself [54].

2.4 AIHD Curricula and Research Engagement

Research engagement is a critical component of a strong ATHD curriculum, as early exposure
to research opportunities helps students apply their coursework knowledge to real-world
problems. With the recent technological advancements, interest in conducting Al research
has risen dramatically, particularly with undergraduates [55]. However, Al research is often
not available to students without prior experience in related coursework. Providing access to
AIHD courses early empowers students to engage in undergraduate research sooner, which
has important implications for retention and academic success.

For instance, Bhattacharyya et al. [56] found that engaging in undergraduate research
increased retention and graduation rates. Similarly, the Early Research Scholars Program
(ERSP) at UC San Diego showed that participants had higher GPAs, improved retention
rates, and a stronger sense of belonging compared to control groups [57]. These findings
suggest that early research experiences foster essential academic skills and positive academic
identity, which are vital for success. Additionally, the Students Tackling Advanced Research
(STAR) Scholars Program at Drexel University found significant learning gains among stu-
dents, particularly in understanding research work, developing independence, and improving
communication abilities [58]. These programs demonstrate how research engagement, when
integrated with strong mentoring [59], enhances student success in ATHD disciplines. By
ensuring that students have access to AIHD courses early and supporting their transition
into research, institutions can build programs that not only attract students but also retain
and prepare them for advanced studies and Al careers.

2.5 Cross-country Comparision

We are interested in validating and expanding the applicability of our framework in new
contexts. As mentioned in Section Canada offers a unique yet comparable academic
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environment. For example, both Canada and the US recognize the important role of uni-
versities in their research and innovation ecosystems with a heavy reliance on government
research funding and active university-to-industry collaboration [60]. On the other hand,
Canada’s doctoral graduation rates fall behind those of the US, and Bégin-Caouette et al.
[60] suggest this difference could impact Canada’s long-term research capacity.

In the context of curriculum research, while there has been some analysis of Canadian
university curricula in fields such as Civil Engineering and medicine [61, 62|, to the best of
our knowledge, there is limited work on curriculum analysis for CS and specifically ATHD
education in Canadian universities.

Comparing curricula across countries allows us to learn best practices from different
educational cultures. By applying our framework used on US universities to Canadian uni-
versities, we aim not only to understand the Canadian context but also to compare it with
the US to identify best practices.



Chapter 3

Methodology

The methodology is divided into two phases. Initially, we focused on R1 (Research-1):
Doctoral Universities in the US with “Very High Research Activity” from the Carnegie clas-
sificationl| (RQ1). We specifically focused on R1 institutions since we wanted to investigate
the process and the associated timeline that prepares students for Al research after taking
relevant ATHD courses. The purpose was to compare and contrast the various curriculum
designs in institutions to evaluate student access to AIHD courses. This first phase estab-
lished a baseline for first exposure levels and prerequisite chains, identifying common and
different practices and informing the comparative framework used in the second phase, which
extends the study to Canadian institutions for cross-country insights (RQ2, RQ3, and RQ4).

3.1 Phase 1: US Institutions Study

Data Collection and Sampling

We first randomly sampled 50 R1 universities, including 37 public universities and 13 pri-
vate universities. To be included in our sample, a university must have a CS department
advertised on its website and offer at least one AI, ML, or DS course within the department.
Focusing on CS departments ensures consistency and comparability across institutions, as
they are the primary units offering AI, ML, and DS courses. This fixed departmental focus
also simplified the process of coding and analyzing course structures later in the study. We
excluded two universities that did not meet these criteria and resampled them with other
universities that satisfied the inclusion requirements. The geographic distribution of our US
sample is illustrated in Figure |3.1

We then collected, for each university, a list of undergraduate ATHD courses offered by
their CS department. First, we identified relevant courses from each university’s academic
calendar and classified them as AI, ML, or DS based on the 2023 offering guidelines by exam-
ining the course syllabi. This process ensured that the selected courses were representative

Thttps://carnegieclassifications.acenet.edu/institutions/
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Count
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Figure 3.1: US sample of R1 universities.

of their respective subjects. While we considered potential edge cases in categorization, such
instances were not prevalent. To maintain relevancy and accuracy, we excluded special topic
courses and those that were not recently offered.

We collected information for each relevant undergraduate course, including course type
(AI, ML, or DS), course name, level, immediate prerequisites (courses that must be completed
directly before enrolling in the course), and offering frequency. Course levels were defined as
“Introductory,” “Intermediate,” “Advanced,” or “Cross-listed” (open to both undergraduate
and graduate students) according to each university’s course numbering scheme reflecting
the complexity of the course content. Offering frequency was categorized into “More than
once a year,” “Once a year,” or “Less than once a year,” based on the universities’ academic
schedules. We ensured data consistency by standardizing the course levels and prerequisites
across different universities’ terminologies.

Out of our sampled universities, three universities had less than 2 AIHD courses, 36
offered between 2 and 3 ATHD courses, and 11 universities offered more than 3 AIHD courses,
as seen in Figure 3.2

Further, as shown in Table our sampled courses included 55 AI, 54 ML, and 40
DS courses. The course level from “Introductory” to “Cross-listed” is coded as levels 1 to
4. Al and DS had a minimum course level of introductory, whereas ML had a minimum
intermediate. All three subjects were most often offered at the advanced level.
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Figure 3.2: Histogram of the number of US AIHD courses per university.

Data Analysis Framework
Coding Prerequisites

To structure the diverse set of prerequisites provided by each university, we first gathered
information on the immediate prerequisites of each course. Three researchers independently
conducted open coding of each course, resulting in three sets of codes. The open coding
involved identifying recurring themes and patterns in the prerequisite descriptions, allowing
us to generate initial categories. Next, the three sets were merged into a single codebook.
During this phase, we held multiple review sessions to discuss and reconcile differences in
the codes, ensuring consistency and accuracy. We removed duplicates and aligned our codes
with courses provided in ACM’s CS Curricula 2023 (Version Gamma)El. The course names
(codes) in our final codebook is shown in Table

Table 3.1: Distribution of Course Levels for ATHD Courses in the US.

Course Type Number of Average Min Max Mode
Courses Course Level Course Level Course Level Course Level

Al 55 2.96 1 4 3

ML 54 3.02 2 4 3

DS 40 2.33 1 4 3

Zhttps://csed.acm.org/wp-content /uploads/2023/09/ Version-Gamma.pdf
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Table 3.2: Categorization of code names.

Category Code Names

Mathematics Discrete Mathematics, Linear Algebra, Multi-variable
Calculus,
Probability, Statistics, Single-variable Calculus

Computing  Algorithms, Architecture and Organization, Artificial

Intelligence,
CS1, CS2, Data Management, Data Science, Machine
Learning,
Foundations of Programming Languages, Software FEn-
gineering

Others “Society, Ethics and Professionalism,”

Signal Processing

To enhance reliability, two researchers then coded the prerequisites for each course using
the final codebook. There was a 10% overlap in the coding process to check reliability. After
this phase, the coders discussed with a third mediator to iterate upon the overlapping codes.
Any discrepancies were discussed during this part, and additional modifications were made
to the coding, particularly in instances where courses spanned multiple topics. This iterative
process achieved high inter-rater reliability, as evidenced by a Cohen’s kappa score of 0.95,
high substantial agreement [63]. This iterative process ensured that our coding scheme was
robust and could be applied uniformly across different institutions.

First Exposure Level

To understand when students can first access AIHD courses, we focused on identifying the
initial entry point for engagement with these courses. Thus, we analyzed the first exposure
level (L(c)) of each course within the prerequisite hierarchy. This metric is defined as follows:

(o) 0 if ¢ has no prerequisites (a root node in G),
CcC) =
max{L(c') + 1] (c,c) € E} otherwise.

This approach accounts for both sequential and parallel prerequisites. For example, an Al
course with an exposure level of 2 might require two sequential prerequisites, such as CS1
— Data Structures — Al. Alternatively, an Al course with the same first exposure level of
2 could have parallel prerequisites, such as requiring students to complete both CS1 and
CS2 before Data Structures and then taking AI. By considering the longest pathway in the
prerequisite tree, this metric provides a comprehensive view of course accessibility, capturing
the cumulative depth of the prerequisite tree rather than simply the individual course levels.
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Common Prerequisite Approach

To understand the common prerequisite approaches, we developed a Sankey diagram (Fig-
ure plotting each course’s prerequisite chain. We chose this graph to visualize which
prerequisites were most often required to determine the most foundational prerequisites for
each of the AIHD courses. For each of the 50 institutions in our sample, we constructed
a prerequisite tree: a directed tree where the nodes are courses needed to take one of the
AIHD courses, and the edges denote direct prerequisite relation. This approach allowed us
to trace each course to its direct and indirect prerequisites.

Clustering Analysis

We used a clustering method (Figure to reveal the characteristics of different insti-
tutions and their corresponding courses. Specifically, we analyzed the data using K-means
clustering to create course and university clusters. Our features for the course level cluster-
ing use five groups of features: Type of course, course level, course frequency, prerequisite
statistics, and prerequisite courses using the codebook above. These groups of features were
necessary to define how AIHD is currently being offered in R1 institutions; taken together,
they capture statistics related to access to courses. The course frequency metric in particu-
lar offered insights into barriers to access to classes even after prerequisites are completed.
Through our analysis, we aimed to highlight the roadblocks students may face to access
these courses and, therefore, potential barriers in their pursuit of research opportunities.

For K-means clustering, we used one-hot encoding to represent categorical features. The
number of clusters (k) was chosen based on the highest silhouette score between 2 and /%, a
common heuristic to find an optimal k&, where n is the number of data points. This resulted
in k = 8 clusters.

3.2 Phase 2: US vs. Canada Comparison

Data Collection and Sampling

The method for analyzing the prerequisite approaches of Canadian institutions followed that
of Phase 1. We sampled 30 universities from a list of 104 Canadian universities, obtained
from the Employment and Social Development Canada websitd®] Unlike the U.S., Canada
does not officially classify universities into tiers like R1, and it has a much smaller number
of universities, making it impractical to restrict the sample to a narrow subset. From the
104 universities, we excluded universities without a CS department and any AIHD courses.
54 universities fit these criteria, from which we obtained a sample of 30 universities. The
geographic distribution of our Canadian sample is illustrated in Figure |3.3

3https://www.canada.ca/en/employment-social-development/programs/designated-schools.
html
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Figure 3.3: Canadian sample of universities.

We then studied the academic calendar of the CS department to obtain all courses offered
by the department. Based on the course description on the websites, we identified and
categorized ATHD courses by examining the course syllabi. Additionally, we verified whether
the course is currently offered by checking the course’s offering status in the latest posted
academic calendar. We collected 90 AIHD courses total, including 36 Al, 38 ML, and 16
DS courses (Table [3.3). Figure shows the histogram of the number of AIHD offered
per university. The average DS course level is 2.3, compared to 3.4 for Al and 3.6 for ML,
showing that DS courses have lower first exposure levels compared to Al and ML courses.
We also collected additional information such as the university name, course calendar URL,
and the province where the university is located to replicate the data analyst framework of
Phase 1.

Table 3.3: Distribution of Course Levels for ATHD Courses in Canada.

Course Type Number of Average Min Max Mode
Courses Course Level Course Level Course Level Course Level

Al 36 3.36 1 4 4

ML 38 3.58 1 4 4

DS 16 2.25 1 4 1




CHAPTER 3. METHODOLOGY 14

30
25
20

: I I I I I
0 . l
1 2 3 4 5 7 8

Number of Al Courses

Number of Universities
o s

Figure 3.4: Histogram of the number of Canadian AIHD courses per university.

Data Analysis Framework

The data analysis framework for Phase 2 is adopted from Phase 1. First, we used each uni-
versity’s course calendar to identify the entire prerequisite sequence for each ATHD course.
We used the codebook for prerequisite courses developed in Phase 1 to code each pre-
requisite course, with two coders initially collaboratively coding 26 courses (80 prerequisites).
At this stage, two additional codes were added to the codebook to account for the courses
“Mathematical Proof” and “Introduction to Math,” which are common in Canadian institu-
tions. The “Mathematical Proof” course is an introduction to formal proofs (in both discrete
and continuous settings), and “Intro to Math” focuses on pre-calculus content on functions
and relations. With the updated codebook in Table the two coders independently coded
the prerequisites for 20 courses and obtained an inter-rater reliability Cohen’s kappa score
of k = 0.87, indicating substantial agreement. The remaining courses were then evenly split
between the two coders for coding.

Next, using the prerequisite structure, we computed the first exposure level of each course.
Additionally, we used the prerequisite graph structures of the ATHD courses in a sample
to produce a Sankey diagram (Figure to visualize the frequent prerequisite paths.
Finally, we used the prerequisite data for each course to cluster (using K-means clustering)
the Canadian AIHD courses into 8 clusters (Figure [1.3D)): the features used for clustering
included the course type, course level, total number of prerequisites, and the prerequisite
courses, with categorical data represented through one-hot encoding. The optimal k-value
was determined by the same approach as Phase 2.
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Table 3.4: Updated categorization of code names. New codes are shown in bold.

Category

Code Names

Mathematics

Discrete Mathematics, Introduction to Math, Linear
Algebra, Mathematical Proof, Multi-variable Calcu-
lus, Probability, Statistics, Single-variable Calculus

Computing

Architecture and Organization, Artificial Intelligence,
CS1, CS2, Data Structure, Data Management, Data Sci-
ence, Machine Learning, Object-oriented Programming,
Software Engineering

Others

“Society, Ethics and Professionalism”, Signal Processing

15
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Chapter 4

Results

4.1 Approaches in US Institutions (RQ1)

First Fxposure Level

We compared the first exposure levels of different course types in the US, as shown in
Figure [4.1a] For AI courses, the majority have a first exposure level of 2, indicating they
are typically encountered after completing foundational prerequisites. Only a small number
are available at the first exposure level of 1, and none at level 0, indicating a higher entry
barrier. ML courses show an even higher entry barrier, with most at the first exposure level 2.
Some ML courses reach a first exposure level of 5, suggesting they require several semesters
of prerequisite coursework. DS courses tend to be more introductory, with a significant
number having a first exposure level of 0, indicating they are available to students in their
first semester or year without prerequisites. This early accessibility contrasts sharply with
ATl and ML courses. These results suggest that DS courses are generally more accessible
early in students’ academic careers, while Al and ML courses have delayed initial exposure.

Prerequisite Chain

Next, to understand the relationship between prerequisites in US institutions as shown in
Figure [4.2a], all prerequisite chains for US courses uses were based on one of the three-course
types: CS1 for more programming-related courses and Linear Algebra or Single-variable
calculus for more mathematics-related courses. DS courses generally require minimal pre-
requisites, with only a few universities requiring additional courses like CS2 or Algorithms.
In other words, DS courses have fewer and more direct prerequisites, making them more
accessible with minimal entry barriers. Al courses typically require a strong programming
background, starting from CS1. Al courses also frequently list CS2 and Algorithms as pre-
requisites, indicating a need for advanced programming and algorithmic knowledge. ML
courses require more extensive preparation, often involving long prerequisite chains on both
the programming and mathematics sides, starting from CS1 and Single-variable Calculus.
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(b) Histogram of the first exposure levels of Canadian AIHD courses.

Figure 4.1: Comparison of first exposure levels in the US (a) and Canadian (b) curricula.

ML courses exhibit more extensive prerequisite chains, usually beginning with Single-variable
Calculus and extending through Linear Algebra, Probability, and Statistics, highlighting the
substantial mathematical foundation needed for ML concepts. CS1 is a foundational prereq-

uisite for many AI and ML courses, reflecting the importance of introductory programming
skills.

Clustering

To understand the different approaches US institutions use to structure AIHD prerequi-
sites, we studied the clustering of different courses offered by the sampled US institutions.
Figure [£.3a] is a heatmap of the course clusters.

On the x-axis, we have our selected features as described previously, and on the y-axis, we
have 8 clusters. The color gradient indicates how important each feature was to the cluster.
A lighter shade, such as yellow, indicates that the feature’s average value is higher in that
cluster than in others. In other words, clusters with lighter shades have a higher importance
of that feature compared to clusters with darker shades. For example, the first cluster has a
yellow color for Al, which means that its cluster is defined by having AI courses. A darker
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(b) Sankey diagram representing prerequisite chains of Canadian AIHD courses.

Figure 4.2: Comparison of prerequisite chains for AIHD courses in US (a) and Canadian (b)
universities. The nodes represent prerequisite courses, and the lines connecting each node
represent the relationships. For example, if one university’s Al course has its CS2 course as a
prerequisite, which in turn has CS1 as a prerequisite, two lines would be plotted connecting
CS1 to CS2 and CS2 to Al (from left to right). The width of a connection between two nodes
corresponds with the frequency of that particular prerequisite relationship. Connections that

occur less than 3 times are not plotted for graph clarity.
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(a) Heatmap of course clusters in the US.
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Figure 4.3: Comparison of course-level clusters in the US (a) and Canadian (b) universities.
Each column represents a feature (course type, level, frequency, number of prerequisites,
prerequisite courses).
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shade, such as navy blue, indicates that the feature’s average value is lower in that cluster.
Notably, the dark blue in Cluster 6 for the “Once a Year” feature suggests that the cluster
mainly contains courses not offered once a year. Lastly, the medium-tone colors, such as
teal, indicate that a feature was not as relevant to that cluster as to other clusters.

Using these definitions, we find that features including course type, course level, and some
prerequisite features help define our clusters, as seen by the light yellows and dark blues in
those regions. However, features such as first exposure level and number of prerequisites do
not define our clusters as much, except for cluster 4, where relatively low prerequisite levels
are relevant. The eight clusters have the following characteristics:

1. Al courses, advanced level, offered once a year, common prerequisites include CS1 and

CS2 (N = 45).

2. ML courses, advanced level, offered once a year, low number of immediate prerequisites,
and common prerequisites include CS1 and Algorithms (N = 31).

3. ML Courses, advanced level, offered once a year, high level of total and immediate pre-
requisite courses, and common prerequisites include CS1, Algorithms, Linear Algebra,
Probability, Statistics, and Single Variable Calculus (N = 23).

4. DS courses at an introductory level (N = 17).

5. Intermediate level, offered more than once a year, low first exposure levels, low total
and immediate numbers of prerequisites (N = 15).

6. Advanced level, offered more than once a year, high total number of prerequisites, and
common prerequisites include CS2, Statistics, Foundations of Programming Languages,
and Single Variable Calculus (N = 7).

7. ML courses, advanced level, high first exposure level, low number of immediate pre-
requisites, and common prerequisites include Linear Algebra and Machine Learning
(N =6).

8. DS courses, advanced level, offered once a year, and common prerequisites include CS1,
CS2 Algorithms, and Data Management (N = 5).

4.2 Approaches in Canadian Institutions (RQ2)

First Fxposure Level

Figure shows the first exposure level for ATHD courses in Canadian universities. Most
AT courses had an first exposure level of 3, indicating that 3 semesters are required before
students can take these courses. ML courses generally had higher first exposure levels. DS
courses’ first exposure levels had a wider distribution, with many accessible in year 1 of the
study.
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Prerequisite Chain

Figure visualizes the common prerequisite links in ATHD courses in Canadian univer-
sities as a Sankey diagram. This figure explains some of the patterns we saw in Figure [4.1D]
For example, Figure verifies that Canadian DS courses had lower first exposure levels
compared to Al and ML courses, illustrated by the small number of edges linked to the
DS node. Moreover, the high first ezposure DS courses were likely those with a Statistics
prerequisite, which itself requires previous math or probability courses.

Figure also shows that AI and ML have more advanced prerequisites. CS1, CS2, and
Data Structures were the three most common courses in the prerequisite chains for Al and
ML courses. Canadian Al courses in our sample were quite homogenous in their prerequisites,
with 26 AT courses (72%) in our sample requiring Data Structure as a prerequisite. Data
Structure itself can be a high-exposure course—starting from CS1 to CS2 to OOP, and
also sometimes including Mathematical Proofs and Discrete Math in the prerequisite chain.
Prerequisites for ML courses were more varied. Generally, ML courses require both CS
prerequisites (e.g., Data Structure, AI, or Software Engineering) and math prerequisites
(e.g., Linear Algebra, Probability, Statistics).

Clustering

As a final analysis for RQ2, we performed K-means clustering on the course prerequisite
structure and found the following 8 clusters. The following features define each cluster, also
shown in Figure

1. AT courses, advanced level, common prerequisites include Data Structure and CS2
(N = 28).

2. Advanced level courses, frequently appeared prerequisites include Multi-variable cal-
culus, Linear Algebra, and Single variable calculus (N = 11).

3. Advanced ML courses, the low number of immediate prerequisites includes Data Man-
agement (N = 7).

4. DS courses at an introductory level have few immediate prerequisites (N = 10).

5. ML courses, advanced level, common prerequisites include CS2 and Data Structure
(N =17).

6. Intermediate Level DS courses, common prerequisites include CS1 and Data manage-
ment (N =7).

7. ML courses, advanced level, high total number of prerequisites include Linear Algebra
and ML(pre) (N =5).

8. Al course, advanced level, common prerequisites include Multi-variable calculus and
Object Oriented Programming (OOP) (N = 5).



CHAPTER 4. RESULTS 22

4.3 Differences and Similarities in US and Canadian
ATHD Courses (RQ3)

Comparison of First Exposure Level

Figure 4.1]shows that there are differences in first exposure levels of AIHD courses in Canada
and the US. Overall, the first exposure levels of these courses leaned higher in Canada
compared to the US. For example, the most common first ezposure levels for US Al and ML
courses were 2, whereas in Canada these values were higher at first exposure level 3 for Al
courses and 4 for ML courses. The difference can also be seen in Figure 4.2 and is discussed
in the next section. There were fairly low variances in Al course first exposure levels and a
larger variance in ML course first exposure levels in Canada.

The first exposure level pattern for DS courses also differed in Canada. First, the percent-
age of DS courses in our sample was lower than in the US, suggesting that CS departments
in Canada offered fewer DS courses in general. Like in the US, many DS courses in Canada
had no prerequisites, but Canadian institutions also offered high first exposure DS courses
not found in the US.

Comparison of Prerequisites

Figure [4.2] shows the Sankey diagrams of AIHD course prerequisites in Canada and the US.
These diagrams highlight not just differences in AIHD prerequisites but also in how CS and
math prerequisites are generally structured in Canadian and US institutions. For example,
we found that US universities usually use OOP as an introductory first-year course, while
Canadian universities tend to enhance the understanding and application of programming
languages through such courses only after students have taken CS1 or CS2.

Another difference is that our sample showed that Canadian universities typically re-
quired introductory Mathematical Proof courses in the freshman year (about 26 courses in
the sample) to provide a foundation for subsequent advanced AIHD courses that cover in-
troductory mathematical proofs and mathematical induction. In contrast, US universities
did not offer such courses, instead integrating relevant content into Discrete Mathematics or
Data Structures courses.

The prerequisites for DS courses in Canada were more homogeneous than in the US, with
the Sankey diagram showing a single edge from Statistics to DS course. In contrast, in US
institutions, DS courses can have a wider range of prerequisites like Data Structures, CS2,
and Data Management.

Finally, Canadian universities more often use Al courses as a prerequisite for ML courses,
indicated by edges from Al to ML courses. These ML courses tend to be more advanced
ML courses, (e.g., covering topics like Deep Learning and NLP). Despite these differences,
there are also similarities between Canadian and US universities. For instance, both ML
and Al generally require foundational programming courses (i.e., CS1 or CS2). In addition,



CHAPTER 4. RESULTS 23

Al emphasized more programming-related courses such as OOP and Data Structures, while
ML focused more on math courses like Linear Algebra and Calculus.

Comparison of Clusters

Comparing the course clusters of Canada against the US clusters (Figure , we found
similarities and differences. Both countries offer advanced Al and ML courses that commonly
require foundational computing prerequisites such as CS2, Data Structures, and math courses
like Linear Algebra and Probability. For example, in the US heatmap, Cluster 1 represents
Al courses with common prerequisites including CS1 and CS2. Similarly, in the Canadian
heatmap, Cluster 1 reflects advanced Al courses, with frequent prerequisites including Data
Structures and CS2. Introductory DS courses with few prerequisites are reflected in Cluster
4 in the US and Cluster 4 in Canada, making them accessible to early-stage students.

However, variations appear in ML courses: in the US, Cluster 3 captures advanced
ML courses requiring a high total number of prerequisites, including Algorithms, Linear
Algebra, Probability, and Calculus. In Canada, Cluster 7 highlights advanced ML courses
with a high total number of prerequisites, including Linear Algebra and Machine Learning.
These clusters highlight differences in prerequisite structures across institutions in the two
countries.

4.4 Approaches to Allow Early Exposure of ATHD
Courses (RQ4)

To compare the curriculum structure of AIHD courses in the US and Canada, we compared
the results from the first exposure level, Sankey diagram, and clustering analyses with those
in Phase 1.

Best Curricula Practices

After identifying the similarities and differences between US and Canadian Universities in
structuring their ATHD courses, we wanted to demonstrate ways institutions can lower the
exposure of ATHD courses. Specifically, we analyzed approaches institutions are taking by
drawing examples from universities that offer low-exposure AIHD courses. First, we defined
the very low first exposure level AIHD courses. These include non-technical introductory
courses (e.g., history of AI, AT ethics, etc.). Then, we analyzed only intermediate course
level ATHD courses in order to avoid non-technical courses and avoid courses with “hidden
prerequisites” that have low first exposure level but are not actually accessible to early un-
dergraduate students due to prerequisites not officially publicized. For each course type (Al,
ML, or DS), we selected the intermediate courses with the lowest first exposure level within
the filtered sample to show an example course that allows early exposure. However, we
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excluded courses with first exposure level 0 since the structure is not demonstrative. More-
over, courses with prerequisite structures that significantly differed from the Sankey diagram
were considered outliers and were excluded. In this section, we demonstrate approaches that
institutions take to allow students to start AIHD courses earlier in their academic journey
and without requiring extensive preparatory work. To do so, we analyzed two types of low
first exposure AIHD courses: (1) courses intended to introduce students to some AIHD
courses, but may not cover all the content typical in rigorous ATHD courses (e.g., align with
the CSC2023 curricular guidelines for Al and ML courses), (2) intermediate level courses
that cover major topics in AITHD and require advanced prerequisites, but with prerequisites
structured in ways to make these courses accessible early on. Both of these approaches align
with ways that make ATHD accessible.

Low First Exposure Level ATHD Courses

In this section, we highlight our sample’s lowest first exposure courses in Al and ML. These
courses provide avenues for early exposure and draw students’ interest towards AIHD. DS
courses with low first exposure levels are not atypical, so their discussion is omitted.

There were five Al courses with first exposure level 0 in our samples, 3 from Canada and 2
from the US: “Special Topics in Artificial Intelligence”, “Philosophy of Artificial Intelligence”,
“Artificial Intelligence Everywhere”, “Concepts in Artificial Intelligence”, and “Demystifying
Artificial Intelligence”. The first course is an example of an upper-level course with no formal
prerequisites, but which may not be accessible to novice students. Most of the other courses
were interdisciplinary courses that discuss the history, nature, limits, and societal impact of
Al The last course was “designed for students that want to learn about Al and ML but don’t
have the course schedule bandwidth to build up the math and computing background”.

There were three ML courses with first exposure level 1 in our sample: “Machine Learn-
ing”, “Deep Learning”, and “Basics of Machine Learning”. Again, the first two courses may
not be accessible to novice students. However, the latter course intended to “provide a solid
foundation in the mathematics of ML, in preparation for more advanced ML concepts.” We
thus identified putting the math prerequisites into a single course as a strategy for intro-
ducing ML earlier in the curriculum. In our US sample, there are 10 ML courses with first
exposure level 0 or 1. Again, many of these were advanced courses that may have hidden
prerequisites and are not accessible to novices. Some of these courses had titles such as
“Applied Machine Learning” and taught ML with little math.

Rigorous AITHD Courses

Although introductory AIHD courses can provide early exposure to key ATHD topics, access
to advanced ATHD courses covering technical content rigorously is still important for under-
graduate CS students. This section discusses how the first exposure level of such courses has
been successfully reduced in Canadian and US institutions. Specifically, we focus on AIHD
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courses at the intermediate course level. Figure [£.4] and Figure [4.5] provide examples of such
courses with lower exposure than usual.
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Figure 4.4: Prerequisites of intermediate ATHD courses in Canada (AIHD courses highlighted
in yellow).

In Canada, there were 13 AI courses at the intermediate level, all of which had course
titles similar to “Artificial Intelligence” or “Introduction to AI”. One course had a first
exposure level of 2, as indicated by the depth of the tree in Figure 1.4l This course requires
Data Structures as a prerequisite, which itself requires CS1 and Discrete Math. There were
9 intermediate ML courses, most of which had the course title “Machine Learning,” but
two courses had titles “Deep Learning” and “Reinforcement Learning.” (RL) Two of these
courses had first exposure level 2, including the RL course. We selected the non-RL course to
explore in Figure[£.4] The prerequisites required for this course follow Figure .2b} however,
the prerequisite courses are structured in a parallelizable way, so that a strong student can
take multiple prerequisites simultaneously to access this course earlier. Finally, there were
2 intermediate DS courses, with first exposure levels 2 and 4. The latter course had two
introductory DS courses as prerequisites. We show the remaining course prerequisites in
Figure 4.2b

In US universities, there were 4 intermediate Al courses, with first exposure levels 0 to
3, all with similar titles as the Canadian counterparts. The minimum first exposure level
courses either had no prerequisites or only a CS1 prerequisite, shown in Figure [4.5| There
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were 6 intermediate ML courses, titled either “Machine Learning”, “Elements of Machine
Learning” or “Applied Machine Learning”. One course required only single-variable calculus
and had little other information publicly available. The remaining courses all had first
exposure level 2. Like the Canadian counterparts, the prerequisite structure of this course is
highly parallelizable, allowing many prerequisite requirements but a lowfirst exposure level.
Finally, for intermediate DS courses, there were 6 in total, with a range of first exposure
levels (2 courses with level 0, 1 with level 1, etc.). The course with first ezposure level 1
required only CS1. The course with first exposure level 2 is shown in Figure |4.5|
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Chapter 5

Discussion

5.1 Comparing Approaches of US and Canadian
Institutions

First Fxposure Levels

The differences in first exposure levels between US and Canadian ATHD courses, shown in
Figure [4.1], highlight distinct curriculum priorities. It is worth noting that for Canadian
universities, we did not restrict the sample to research-intensive institutions as we did for
the US, so some differences may inherently reflect the priorities of the institution system. US
institutions generally offer earlier access to ATHD topics, with Al and ML courses commonly
available at first exposure level 2. In contrast, Canadian institutions delay these courses,
requiring first exposure levels of 3 for Al and 4 for ML. This may reflect Canada’s focus
on ensuring a strong foundation in programming and math before tackling advanced topics.
However, this delay might also limit opportunities for internships, research, and other hands-
on experiences that require early Al and ML knowledge.

Both countries prioritize early engagement with DS concepts, but they take slightly
different approaches. In the US, many DS courses are available at first exposure level 0,
making them accessible to first-year students without prerequisites. Canadian institutions
also offer some low first exposure level DS courses but balance this with higher-level DS
courses. This dual approach may aim to introduce DS concepts early while allowing for
advanced exploration later in the curriculum.

Prerequisite Chains

The prerequisite chains for AIHD courses differ greatly between US and Canadian institu-
tions, as shown in Figure [1.2] US institutions streamline prerequisites by combining mathe-
matical and theoretical foundations into broader courses like Discrete Mathematics or Data
Structures. This reduces the total number of prerequisites, enabling students to reach Al
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and ML courses sooner. Canadian institutions, however, take a more segmented approach,
requiring standalone courses like Mathematical Proofs and Advanced Programming before
students can access advanced AIHD topics. While this approach ensures a solid foundation,
it can create bottlenecks that slow progression.

Programming prerequisites also differ. US institutions often introduce OOP early, em-
phasizing practical skills. In Canada, OOP is typically offered after foundational courses
like CS1 and CS2, ensuring a step-by-step progression. This sequencing approach can build
strong fundamentals but also delay students from applying programming skills in interdisci-
plinary or applied ATHD contexts.

DS courses further highlight these differences. Canadian institutions often have uniform
prerequisites, such as Statistics, for DS courses. In contrast, US institutions show more
variety, requiring courses like Data Structures, CS2, or Data Management, depending on the
course’s goals. Similarly, Canadian ML courses often require prior Al coursework, creating
a sequential path through the curriculum. In the US, ML courses frequently follow directly
from math courses like Linear Algebra, bypassing Al as a prerequisite. These differences
reflect Canada’s layered progression and the US’s more flexible pathways.

Clustering of Courses

The clustering analysis (Figure highlights key similarities and differences in AI and ML
course structures between Canada and the US.

Both countries emphasize foundational prerequisites like CS2, Data Structures, Linear Al-
gebra, and Probability for advanced Al and ML courses, ensuring students are well-prepared
for technical rigor. This consistency emphasizes the importance of strong computing and
mathematical foundations. However, the US adopts a broader preparation strategy for ML
courses, requiring diverse prerequisites such as Algorithms and Calculus. In contrast, Cana-
dian ML courses focus on fewer but more specific prerequisites, like prior ML experience,
streamlining the pathway for potentially limiting accessibility for newcomers. Introductory
DS courses are highly accessible in both countries, typically requiring minimal prerequisites.
This accessibility supports early engagement with computational concepts and encourages
broader participation in DS education.

5.2 Strategies for Enhancing Accessibility and Early
Exposure to AIHD Courses

Based on the results of RQ1 and RQ2, DS courses are generally more accessible compared
to Al and ML courses. This accessibility stems from DS courses often having minimal or no
prerequisites, making them available to students early in their academic journey. Leveraging
this accessibility, one effective strategy is to incorporate basic AI and ML content into DS
courses. By introducing foundational ATHD concepts within the context of DS, students
can gain early exposure without the need for additional prerequisite-heavy courses. This
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approach provides a pathway for engaging students with AI and ML while building on the
accessibility of DS education.

Our analysis from RQ3 shows that AIHD courses in Canada generally have higher first
exposure levels than in the US, meaning Canadian students start engaging with these courses
later in their academic careers. This delay reduces the time available for advanced study,
participation in research, and internships that require the skills developed in these courses.
Early exposure to ATHD topics is essential for enabling students to explore and specialize
in these fields, which are increasingly in demand across industries. Canadian institutions
could address this by revising course structures to introduce AIHD content earlier, aligning
with practices observed in some US institutions where lower first exposure is more common.
For example, courses with lower first exposure levels can act as an entry point, equipping
students with foundational knowledge while maintaining accessibility.

In RQ3, we found that institutions in the US and Canada both adopted innovative
approaches to enable students to engage with ATHD courses earlier. One effective approach
is to offer introductory AIHD courses with little to no prerequisites. These courses could
focus on interdisciplinary topics such as the history and philosophy of AIHD or provide a
hands-on introduction to applied Al. Such courses not only lower the barriers to entry but
also provide a broader context for understanding AIHD, sparking students’ interest at an
earlier stage of their education. Furthermore, offering these courses in the first year could
help students from diverse academic backgrounds engage with ATHD concepts without feeling
overwhelmed by technical prerequisites.

Another approach involves teaching prerequisites alongside some of the ATHD content, as
suggested by Li and Liu [36]. For instance, courses could integrate foundational mathematics
and programming concepts with introductory AI or ML topics, allowing students to gain
exposure to advanced fields while simultaneously fulfilling their prerequisite requirements.
This approach not only reduces the time required to progress through prerequisite chains
but also fosters an immediate connection between theoretical knowledge and its practical
applications.

In the second part of RQ4, our analysis of low first exposure level Al and ML courses
revealed that parallelizing prerequisites is another effective strategy for enabling earlier entry
into these fields. Successful examples demonstrate how parallelizing necessary computing
and mathematics prerequisites, such as Linear Algebra and CS2, allows students to take
these courses simultaneously rather than sequentially. This reduces the delay in entering Al
and ML courses, enabling students to engage with advanced topics earlier in their academic
careers. Early access to these courses can enhance students’ ability to explore specialization
areas, participate in research, and secure internships, ultimately preparing them for advanced
study or industry roles.

However, early exposure strategies often require careful academic planning, especially
for first-year students who may lack the knowledge or resources to structure their course
pathways. Academic advising plays a critical role in guiding students through their learning
pathways, ensuring they complete prerequisites efficiently and take advantage of opportu-
nities for early engagement with AIHD courses. Advisors can help students optimize their
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schedules, avoid unnecessary delays, and ensure they are adequately prepared for advanced
coursework. By combining academic advising with strategies like parallelizing prerequisites
and integrating foundational content into early courses, institutions can greatly reduce entry
barriers and broaden access to Al and ML courses.

5.3 Limitation and Future Work

Our data relies on publicly accessible course calendar information on the institutions’ web-
sites. However, this data may be incomplete or contain outdated information. The dynamic
nature of course offerings in rapidly evolving fields such as ATHD means that some rele-
vant courses might have been overlooked in their latest iteration. Future work could involve
periodically updating the dataset with the latest information from institutional websites
and incorporating surveys or interviews with faculty members to validate and supplement
publicly available data.

As for data collection, there was an uneven geographical distribution of the sampled
universities. The concentration of institutions within certain regions may influence the gen-
eralizability of our findings. To address this limitation, future studies could aim for a more
geographically diverse sample, including universities from underrepresented regions. In addi-
tion, this could involve partnerships with international organizations or networks that focus
on Al education, enabling a more global understanding of curriculum design.

Moreover, we only considered courses offered by CS departments, which may have ex-
cluded courses from other departments that also contributed to education in ATHDThese
departments can include mathematics, statistics, engineering, or even the social sciences,
where interdisciplinary AITHD courses are offered. Failing to account for such courses means
that the data may not fully capture the breadth of Al education provided across institutions.
Future research could expand the scope to include interdisciplinary courses. This would pro-
vide a broader view of how AI education is integrated across various fields and highlight
potential collaborations between departments that could enrich ATHD curricula.

Another potential limitation is the lack of student-specific data, such as enrollment de-
mographics, prior preparation, or post-course outcomes. This omission makes it difficult
to assess the effectiveness of different curricular structures in terms of student success, re-
tention, or career readiness. Future research could integrate student data to analyze how
variations in curriculum design impact diverse student populations.

Finally, we did not analyze the first exposure level of the courses relative to the course
level (e.g. Introductory, Intermediate, etc.). Some low first exposure Al or ML courses could
be advanced-level courses without explicit prerequisites listed on the website, potentially
assuming a prior knowledge of mathematics, programming, or other foundational topics.
Future work could involve validating course levels and prerequisite assumptions through
direct communication with course instructors. This would provide a more accurate picture
of whether low first exposure courses truly represent accessible entry points for students.
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Chapter 6

Conclusion

In conclusion, this report examines the structures of Al curricula in North America, focusing
on the accessibility and timing of AIHD course exposure for undergraduate students. The
analysis reveals similarities and differences in how prerequisites are structured and how early
students can engage with AITHD courses within the US and Canada. US institutions generally
offer earlier exposure and more flexible pathways compared to their Canadian counterparts.
The findings highlight the importance of reducing entry barriers through strategies such as
parallelizing prerequisites, integrating foundational content into introductory courses, and
offering accessible interdisciplinary AIHD courses. These approaches not only broaden ac-
cess to Al education but also prepare students earlier for advanced study, research, and
industry opportunities. By proposing a comprehensive codebook, an exposure-level metric,
and a comparative framework, this work provides actionable recommendations for designing
inclusive and accessible Al curricula, ultimately contributing to the preparation of a diverse
and capable Al workforce. Future research should expand to include interdisciplinary per-
spectives, integrate student-level data, and evaluate the long-term impacts of curriculum
structures on educational outcomes.
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