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Abstract

A Hardware Accelerator Generator for Zstandard Decompression

by

Junsun Choi

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Borivoje Nikolić, Co-chair

Professor Sophia Shao, Co-chair

In hyperscale cloud computing systems, lossless data compression and decompression
(referred to as “(de)compression”) is a widely used common low-level function that is heav-
ily utilized across applications. However, (de)compression is unique as it trades off CPU
cycles for reduced storage or network bandwidth and is considered a part of the datacenter
tax. (De)Compression accounts for 3% of the fleet-wide CPU cycles in Google’s datacen-
ters, ranking second only to protocol buffer serialization and deserialization. Accelerating
(de)compression is anticipated to deliver significant total cost of ownership (TCO) savings in
hyperscale systems. Among the various (de)compression algorithms, Zstandard decompres-
sion consumes the highest percentage of CPU cycles dedicated to (de)compression within
Google’s fleet, accounting for 25.8%. This makes Zstandard decompression the top candidate
for optimization through a custom hardware accelerator.

A large body of prior work has proposed enhanced microarchitectural features on the existing
(de)compression hardware, but the effect of high-level design parameters on the feasibility
of integrating the decompression hardware is not thoroughly explored. Therefore, this thesis
presents a generator for Zstandard decompression accelerator that exposes design parameters
for tuning including the history buffer size and the number of bits used in speculative Huffman
decoding (referred to as “Huffman speculation bits”). The generator is open-sourced and
is integrated into an open-source RISC-V SoC ecosystem for the performance and area
evaluation of the accelerator designs with different placement configurations. With this
approach, this thesis performs a design space exploration where the exploration range of the
SoC speedup is 15.1x and that of the SoC silicon area is 1.5x. The design space exploration
enables a better understanding of the impact of history buffer size, Huffman speculation
bits, and accelerator placement on the SoC’s quality-of-result (QoR), leading to a in-depth
assessment of different design strategies of the accelerated SoC for hyperscale systems. The
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final optimized SoC with the Zstandard decompression accelerator is 5.6x faster than a single
Xeon core while consuming a only a small portion (approximately 12 percent) of the Xeon
core’s area.
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and Professor Sophia Shao, for their invaluable support and mentorship. This work would
not have been completed without their thoughtful guidance.

This thesis expands upon work originally published in the Proceedings of the 50th Annual
International Symposium on Computer Architecture (ISCA 2023) as “CDPU: Co-designing
Compression and Decompression Processing Units for Hyperscale Systems.” I am particularly
grateful to my primary collaborators of the CDPU paper, Sagar Karandikar and Joonho
Whangbo. I would also like to thank Parthasarathy Ranganathan for his guidance of the
research at Google, along with the collaborators at Google for their valuable input. My
sincere appreciation extends to all co-authors of the CDPU paper, whose collective expertise
helped shape this work.

Last but not least, I am profoundly thankful to my family for their unwavering and
unconditional support throughout my graduate school journey.



1

Chapter 1

Introduction

1.1 Optimizing Hyperscale Systems

The importance of cloud computing in recent times cannot be overstated. Cloud has be-
come the backbone of modern society, supporting everything from everyday tasks like web
applications–such as search and email services–to the most computationally demanding tasks,
including artificial intelligence (AI) and high-performance computing (HPC) applications.
Since cloud relies on datacenters for its foundation, these datacenters are equally vital as the
clouds. Today, a significant portion of the datacenters in the world is operated by hyperscale
companies, or hyperscalers [11]. With the advantage provided by economies of scale, it is
expected that hyperscale datacenters will continue to grow and capture an increasing share
of the datacenter capacity, a benefit that traditional datacenters are unable to achieve to the
same extent.

Given the scale of global users and the diversity of workloads in hyperscale cloud envi-
ronments, which lead to a massive computation demand on clouds, the accompanied power
consumption and the total cost of ownership (TCO) are non-trivial. In 2018, data centers
already consumed 200 terawatt hours (TWh) of energy, which is 1% of global electricity de-
mand [14]. This consumption is projected to grow in the following years [3] due to a number
of trends. One trend is the explosion of traffic to and from datacenters, which grew from
50 exabytes in 2007 to 1.1 zettabytes1 in 2017 [14]. More data to process and move means
more power to burn. Another trend is the increasing size of machine learning models in scale
leading to a larger energy demand [23].

Therefore, reducing the TCO is the primary goal for datacenter operators, especially for
the hyperscalers, as cutting even a small portion of the CPU cycles can save terawatt hours
of energy and millions of dollars in terms of the TCO in hyperscale environments. However,
with the decline of Moore’s law, the performance improvements for workloads running on
a hyperscaler’s server fleet are becoming less significant. Naturally, acceleration through a
custom hardware accelerator (“accelerator” in this paper) is the next approach to achieve

1Exabyte (1018 bytes); Zettabyte (1021 bytes)
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performance gains. However, in hyperscale environments, as the workloads and the type of
microservices are becoming considerably diverse, it is difficult to apply custom acceleration
on all operations. Previous work has characterized different workloads or microservices in
the cloud to explore custom acceleration opportunities.

Fortunately, there were a few common components that take a significant portion of the
server fleet’s CPU cycles. Meta’s characterization of their top microservices found that a
notable amount of cycles are spent on orchestration, such as compression, serialization, and
I/O processing, even more than the core application logic [28]. Google’s profiling of its fleet
workloads revealed that there is no “killer application” to optimize for, but there were six
common low-level functions across binaries which is called the datacenter tax [15].

The six common functions are protocol buffer (protobuf) serialization and deserialization
(“(de)serialization” in this paper), data compression and decompression (“(de)compression”
in this paper), remote procedure calls (RPCs), memory allocation, data movement, and
encryption/decryption. The characteristics of these functions are very similar to those of
what Meta’s profiling categorized as orchestration. The CPU cycles spent on the six functions
add up to 22 to 27 percent of the warehouse-scale (WSC) cycles. As these functions are widely
used across applications and do not rapidly change over time, they are the top candidates for
hardware acceleration. Inside Google’s infrastructure, protobuf (de)serialization consumes
the most CPU cycles among the six datacenter tax functions with 9.6 percent of fleet-wide
CPU cycles [16]. At UC Berkeley, we have already implemented an accelerator for protocol
buffer serialization and deserialization, as published in [16].

1.2 Why Do We Need a (De)Compression

Accelerator?

The datacenter tax function that consumes the second most fleet-wide CPU cycles, after
protobuf (de)serialization, is data (de)compression. Data (de)compression consumes ap-
proximately 3 percent of the fleet-wide CPU cycles [17]. Although this number may look
small, accelerating data (de)compression can potentially save gigawatts of power and millions
of dollars in TCO.

Among the datacenter tax components, data (de)compression is different from others
because the purpose of data (de)compression is to make a trade-off between CPU cycles
and capacity or CPU cycles and bandwidth, while other datacenter tax functions are more
for their functionalities. Thus, developing an accelerator that performs (de)compression
much better than software creates an interesting chance to find a new point in the runtime-
capacity trade-off space or the runtime-bandwidth trade-off space. For instance, we can use a
compression algorithm that is slower but results in a smaller compressed file size if we have an
accelerator, as we can run that algorithm faster with the accelerator. Moreover, equipping
(de)compression accelerators in the system can make (de)compression more accessible by
lowering the runtime cost, which can lead to a decision to use compression more extensively
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in the fleet.
To sum, deploying a custom system-on-chip (SoC) for hyperscale systems provided with

accelerators for data (de)compression will not only provide TCO savings in hyperscale con-
text by outperforming the software radically but also open new opportunities to change the
runtime versus data storage/bandwidth trade-off space. This paper focuses on the decom-
pression accelerator, which is an important component of such SoC.

Although designing the accelerator is important, the adoption of the accelerator requires
a careful investigation of the performance and area trade-off of different accelerator designs.
In order to tackle this problem, in this paper, I present an RTL-based custom decompres-
sion accelerator generator that is configurable through parameters targeting a pervasively
used compression algorithm at hyperscale systems called Zstandard. Next, I present the
performance and silicon area evaluation results obtained by integrating the decompression
processing unit into a RISC-V SoC with different decompression processing unit design pa-
rameters.

Extensive prior research including [1, 22, 13, 24, 5, 19, 25] has proposed enhanced mi-
croarchitectural features for better custom (de)compression acceleration opportunities, but
their context fell short of evaluating the effect of design level parameters, such as accelera-
tor placement in the SoC, history size, and more, which are the determining factors on the
feasibility of accelerator integration into the system. Whether the accelerator placed as a
near-core accelerator in the SoC or placed away from the core connected by PCIe or chiplet
interconnect changes the I/O read and write latency cost for memory transactions issues
from the accelerator. History size is the size of previously processed input to be stored for
lookup and larger history size can lead to better (de)compression performance sacrificing the
area cost. The assessment of these design parameters are crucial to judge the appropriateness
of developing and integrating a (de)compression accelerator.

Using a generator-based approach enables a wide design space exploration. Running a
Google fleet representative (de)compression benchmark, the exploration range is 15.1x in
speedup and 1.5x in silicon area for different Zstandard decompression accelerator designs
points. The best-performing decompression accelerator achieves 5.6x speedup compared to
the Intel Xeon CPU, which is used to perform compression in real hyperscale environments,
while only taking up only 12% of the area.

1.3 Previous Publication

The contents of this thesis is previously published as “CDPU: Co-designing Compression
and Decompression Processing Units for Hyperscale Systems”[17] in collaboration with my
co-authors. The graphs and numbers related to (de)compression in Google’s fleet, presented
in Chapter 2.2 of the background section, draw extensively from the work of my co-authors at
Google including Sagar Karandikar, Aniruddha Udipi, Svilen Kanev, Jyrki Alakuijala, and
Parthasarathy Ranganathan. I would also like to state that the Huffman decoder presented
in Chapter 3.2 was developed in collaboration with my colleague Joonho Whangbo.
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Chapter 2

Background

2.1 Lossless Compression Algorithm Fundamentals

In this paper, the compression ratio is defined as the compressed file size divided by the
uncompressed file size. The compression ratio is better when it is lower, as the compressed
file size is small compared to the original file.

There are different types of lossless compression algorithms, such as Deflate [8], Zstan-
dard [7], Snappy [10], and so on. Although these algorithms have different characteristics,
most compression algorithms consist of compression primitives, and the algorithms can be
interpreted as a mix of a few primitives. There are several popular primitives and they can
be categorized into two classes: entropy coding and dictionary coding.

Entropy Encoding

The philosophy of entropy encoding is “A symbol that occurs more frequently should be
encoded with fewer bits”. Widely used primitives in this category include Huffman encoding
[12], arithmetic coding, and finite state entropy (FSE) encoding [6].

Let us take Huffman encoding as an example of entropy encoding. First, the frequency
of each symbol in the input file is counted and the symbols are sorted by their frequency,
where each symbol is now a node with a frequency value. Next, a Huffman tree is built
by repeatedly merging the two least frequent nodes into a single parent node until one tree
remains. Then, binary codes are assigned: 0 for left branches and 1 for right branches.
Symbols with higher frequencies get shorter codes, and the encoded message is formed by
replacing each character in the original data with its corresponding binary code. An example
Huffman encoding corresponding to this procedure is described in Figure 2.1. It is shown
that symbols with higher frequency is represented with less bits after encoding.

In Huffman encoding, the number of bits to represent an encoded symbol is a natural
number so that the encoding scheme approximates the probability of appearance, which is
the frequency of a symbol divided by the sum of the frequency of all symbols, to a power of
2. On the other hand, arithmetic coding, which uses a more exact probability distribution,
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Figure 2.1: Example Huffman encoding [20]

achieves a better compression ratio with the sacrifice of computation speed. Asymmetric
numerical system (ANS) encoding [9], including FSE, is in the middle ground with respect
to the accuracy of the probability distribution, so that it achieves a decent compression ratio
and computation speed.

Dictionary Encoding

A different approach from entropy encoding is dictionary encoding. In dictionary encoding,
previously processed input symbols are stored as history in the history buffer. At each
encoding iteration, a chunk of the input stream is compared to the history to find if there
is the same pattern in both the current symbols and the history. If there is a such pattern,
or a match in other words, the match is encoded to a shorter data structure. Finding a
longer match and storing it in a short data structure format is the key to achieving a smaller
encoded file size. As the likelihood of finding a longer match correlates with the maximum
size of the history stored in the history buffer, the history buffer size is a determining factor
of the compression ability of an algorithm that uses dictionary encoding.

One of the most popular compression primitives that can be classified as dictionary
encoding is Lempel and Ziv’s LZ77 [32]. LZ77 algorithm encodes a match into a triplet
of (offset, match length, literal length). This triplet is called as a sequence. The size of
the sequence is usually shorter than the match if the match size is reasonably large. The
meaning of each component of the sequence is as follows.

• Offset: Information to indicate where the match is from the current position.

• Match length: Number of symbols in a match, starting from (current position - offset).
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• Literal length: Number of raw symbols, also known as literals, that do not belong to a
match, following the match indicated by (offset, match length).

There are variants of LZ77 where the literal length is replaced with one literal symbol so that
the sequence contains one literal after the match. However, popular compression algorithms
such as Snappy and Zstandard use literal length as a component of the sequence instead of
the literal. In this case, the literals have to be stored in a separate literal buffer in order to
produce the original data during the decoding stage.

Figure 2.2: Example LZ77 encoding. The arrow indicates the current position at each step.

Figure 2.2 describes an example of how LZ77 encodes a string stream. Note that the
history buffer is much longer than the input, even though the history buffer may graphically
look similar in size to the input chunk. In step 1, the history buffer is empty, so there is
no match found between the input and the history. Thus, the offset and the match length
field of the sequence becomes zero. After step 1, the current input symbol ’A’ should be put
into the history buffer and the position advances to the next symbol. In every step, like step
1, the processed input is put into the history buffer and the position advances. In step 2,
there is still no match between the current input symbol. In step 3, there is a match ’AB’
between the current input stream and the history. Therefore, the literal is A and B from
step 1 and step 2 and the produced sequence is (0, 0, 2), following the (offset, match length,
literal length) format.
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The match found in step 3 starts two symbols back from the current position, so the
offset of this match is 2. The match length is 2 as the match is two symbols. The match
is put into history. The literals following this match is ’C’, as the ’BAB’ is the following
match found in step 5, so the literal length becomes 1. Then, the produced sequence is (2,
2, 1). The same procedure continues to reach the end of the input stream. When there are
consecutive matches, such as in step 6, the literal length becomes zero.

LZ77 decoding can be done to restore the original stream, which is the input stream
during decoding, with the encoded sequences and the literal buffer. An example decoding
procedure corresponding to Figure 2.2 is depicted in Figure 2.3.

Figure 2.3: Example LZ77 decoding, used in Zstandard sequence execution [7]

2.2 Understanding the Fleet-wide (De)Compression

Usage

Inside Google’s server fleet, a number of algorithms are used for data (de)compression. The
profiling of fleet-wide (de)compression usage in Google’s datacenters shows that Zstandard
and Snappy are the most-used compression algorithms regarding CPU cycles. The related
data is displayed in Figure 2.4. At the latest time point when the profiling was performed,
among the CPU cycles spent on compression and decompression, 41.2 percent is consumed in
Zstandard–15.4 on compression and 25.8 percent on decompression. 39.8 percent is spent on
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Figure 2.4: Fleet-wide CPU cycles spent on (de)compression over time. Source: [17]

Snappy–19.5 percent on compression and 20.3 percent on decompression. Other algorithms
such as Flate (5.9%, 5.2% respectively on compression and decompression), Brotli (3.3%,
4.0%), Gipfeli (0.1%, 0.4%), and LZO (0.0%, 0.1%) take up the rest of the cycles.

One thing to note is the long lifetime of the compression algorithms. Profiling (de)compression
over several years shows that compression algorithms being used in the fleet do not change
in general. Also, the API for using these algorithms, which is taking an input stream and
generating an output stream, does not change over time. This makes data (de)compression
a good target to build a customized SoC for it.

Another prominent trend over time is that with the advent of Zstandard, Zstandard has
been replacing the usage of other algorithms like Flate. Although the set of compression
algorithms being used do not change quickly, when there is an algorithm that outperforms
similar algorithms in terms of the compression ratio-runtime trade-off, the usage of that algo-
rithm rises rapidly. To handle this case, a generator-based approach where the compression
primitives commonly used in multiple popular algorithms exist as modules in the SoC can
be beneficial to adjust to the emergence of a new algorithm.

As numbers present, Zstandard decompression expends the most fleet-wide CPU cycles
among any algorithm-compression/decompression pair. This fact motivates the implemen-
tation of an accelerator for Zstandard decompression. Before diving into the design of the
accelerator, the next section will explain how Zstandard decompression works.

2.3 Zstandard Decompression

Zstandard decompression first reads the header of the compressed file stream to retrieve
metadata essential to further decompression. The next portion after the header of the
input stream is decompressed by the Huffman decoding algorithm to produce literals. The
rest of the compressed data is decompressed by the FSE decoding algorithm to produce
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sequences. The literals and sequences are fed into the LZ77 decoding algorithm to produce
the decompressed file stream output.

Figure 2.5: Zstandard decompression [7]

The Huffman decoding is an inverse operation of the Huffman encoding in Chapter 2.1.
The LZ77 decoding process is described in Chapter 2.1. FSE decoding in Zstandard relies
on a FSE decode table. The FSE decode table is retrieved by the normalized frequency
statistics of each symbol which are stored in the compressed file stream during Zstandard
compression. A decode table entry consists of four values: nextState, nbAdd, nbBits, and
baseValue. Decompression is done by reading a decode table entry and the compressed file
stream as follows:

• Symbol output = baseValue + nbAdd bits from the compressed file stream

• Index of the next entry to read = nextState + nbBits bits from the compressed file
stream

As FSE decoding produces the (offset, match length, literal length) sequences to be used in
LZ77 decoding, each component of the sequence has its own decode table. Therefore, FSE
decoding in Zstandard requires building and reading three decode tables.
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Figure 2.6: FSE decoding in Zstandard decompression [7]
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Chapter 3

Design of the Zstandard
Decompression Accelerator Generator

Zstandard decompression accounts for the largest proportion of all fleet-wide CPU cycles
spent on compression and decompression. Consequently, developing a hardware accelera-
tor for Zstandard decompression is a must to save the TCO of hyperscale systems. From
this chapter, this dedicated hardware accelerator for decompression will be called as the
decompression processing unit, or a decompression accelerator.

A generator for the Zstandard decompression processing unit is needed due to the fol-
lowing reasons.

1. Design space exploration: Most importantly, effectively evaluating the trade-offs be-
tween decompression performance and hardware complexity is the ultimate goal. A
generator is essential to explore the design space with different parameters.

a) Determining the history buffer size: A larger history buffer can effectively handle
Zstandard decompression calls that require a larger history size, but the history
buffer SRAM cost will be too expensive above a certain size. The history buffer
size of the decompression accelerator should be exposed as a design parameter to
be explored to make a decision.

b) Determining the accelerator placement: Accelerator placement is directly related
to the accelerator’s I/O read and write latency, hence affecting the decompression
accelerator’s performance heavily, as decompression inherently requires numerous
reads and writes. Where the decompression accelerator is integrated into the
system should be exposed as a design parameter to be explored to make a decision.

2. Preparing for a sudden emergence of a new compression algorithm: As shown in Figure
2.4, Zstandard’s share in the fleet-wide (de)compression CPU cycles grew 10 percent
in one year from the algorithm’s introduction. An agile hardware development method
is needed in case of an occurrence of a similar phenomenon.
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Figure 3.1: SoC Architecture with the decompression accelerator integrated

Therefore, this thesis proposes a Zstandard decompression processing unit generator that
exposes important high-level design parameters for tuning.

The Zstandard decompression processing unit generator is implemented in Chisel RTL [4].
The generated decompression processing unit is integrated into the Chipyard RISC-V SoC
generator ecosystem [2], as described in Figure 3.1. The SoC with the accelerator contains
the BOOM out-of-order superscalar RISC-V core, whose performance is IPC-comparable
to the ARM A72 core [31]. The accelerator is connected to the BOOM core via the RoCC
interface where the CPU can directly issue custom RISC-V instructions called RoCC instruc-
tions. Two 64-bit register values can be sent through a RoCC instruction. The accelerator
can access the CPU’s memory space with virtual addressing through 256-bit wide TileLink
network-on-chip (NoC) [26]. Accordingly, the accelerator can access the L2 cache and the
LLC through the TileLink system bus, as shown in Figure 3.1. The Zstandard decompression
processing unit generator is open-sourced as a part of the CDPU framework [17].

The rest of this chapter explains the blocks of a generated Zstandard decompression
processing unit. The blocks can be found in Figure 3.2.
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Figure 3.2: Architecture of the Zstandard decompression accelerator

3.1 System Interface Blocks

Memloaders and Memwriters are modules that facilitate streaming from and to the L2 cache.
A Memloader queues read requests and sends them to the L2 cache, queues the responses
from the L2 cache in buffers, and shifts the buffers to provide data as much as the consumer
requires. Similarly, a Memwriter receives the data to write from the producer, gathers the
data in buffers, manipulates the order of data coming from the buffers, then issues a write
request to the L2. The Command router illustrated as CMD Router in Figure 3.2 receives the
RoCC instructions from the core and issues the right commands to the appropriate module,
then sends a response back to the core when necessary.

3.2 Huffman Decoder

The Huffman decoder consists of Huff Control, Huff Table builder, and Huff Table Reader
drawn in Figure 3.2. To perform Huffman decoding of the input stream, the decoder builds
and reads the Huffman table. The input stream contains Huffman codes, which are the
Huffman-encoded version of the original symbols. The Huffman table is indexed by the
Huffman code whose length is fixed to the maximum Huffman code length (11 bits, defined
by the Zstandard algorithm). A Huffman table has two columns, the number of bits column
and the symbol column. To obtain the original symbols, the Huff table reader reads 11 bits
from the input stream and indexes the Huffman table using that 11-bit code. The value of
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Figure 3.3: 4-bit Huffman Speculative Decoding Example

the symbol column of that entry is the decoded symbol. The value of the number of bits
indicates how many bits should be consumed from the input stream. For example, if the
number of bits value is 5, only 5 bits out of the 11 bits read from the input stream are
consumed and the Huff table reader resumes reading the input stream from 5 bits after the
current position.

Speculative Decoding

Since the number of bits to read is determined by reading the decode table entry, the starting
position of the 11-bit code is unknown before decoding the last code. Therefore, Huffman
decoding is innately serial. The serial nature of Huffman decoding is not optimal for the
accelerator’s performance. To cope with this problem, the Huffman decoder speculatively
decodes by performing code lookups at multiple starting positions, similar to the IBM z15
accelerator [1]. The number of positions to perform speculative decoding is parameterized
as a design parameter of the Zstd decompression accelerator generator.

Figure 3.3 demonstrates an example of Huffman speculative decoding using 4 speculation
bits. The Huffman decoder reads 11 bits from positions 0, 1, 2, and 3. The Huffman decoder
then performs parallel indexing of the Huffman table using these four codes. This does not
mean symbols from all four Huffman table entries will be considered as the decoded output.
The Huffman decoder selectively chooses the symbols rooted from codes read from valid
starting positions. Let us take a look at what should be done. The decoder indexes the
Huffman table with code0. The symbol in the corresponding entry is D and the number of
bits is 3. Thus, 3 bits starting from the input stream position 0 should be consumed and
the next position to read 11 bits is position 3, which means code1 and code2 are not valid
values. The decoder only emits symbols indexed by code 0 and code 3, so the output at this
decode iteration is DC. The next decoding iteration will start from position 7.
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It is expected that utilizing more speculation bits during Huffman decoding, which is
to use more input stream positions to read 11-bit codes and perform Huffman table lookup
in parallel, will boost the Huffman decoder throughput, as the number of output symbols
emitted per iteration is likely to increase. However, there is a limit to the speculation bits as
using more speculation bits accompanies increased hardware complexity by requiring more
parallel look-ups of the Huffman table. The added hardware cost will differ by implemen-
tation details. The current design implements the Huffman table as registers. In this case,
the number of register file ports will be proportional to the speculation bits. Thus, utilizing
speculation bits over a certain amount may not be realistic depending on the silicon area
budget. Also, the speculation bit should not exceed the L2 bandwidth of the system.

3.3 FSE Decoder

A FSE decoder is composed of a FSE decode table builder, FSE decode table reader, and
FSE decode table SRAM. Instead of the L2 cache, FSE decode table built by the decode
table builder is written to the FSE decode table SRAM. The decode table reader reads the
table entries from that SRAM to produce sequences.

FSE Decode Table Builder

By parsing the first few bytes of the input stream, the FSE decode table builder obtains
the number of sequences to produce and the compression modes of offset, match length, and
literal length. After getting the number of sequences and compression modes, the decode
table builder generates decode tables for offset, match length, and literal length depending
on the mode.

Compression mode 0 means using a predefined decode table, which is a fixed table already
determined by the Zstandard algorithm. In this Zstandard decompression processing unit,
these predefined tables exist as a hard-wired read-only memory (ROM), so the decode table
builder skips the building and tells the decode table reader to use the predefined table.
Compression mode 1 is the run-length encoding (RLE) mode, where the decode table only
consists of a single symbol value used for all sequences. The decode table builder reads
the next byte of the input stream to find out what the symbol is. Then it writes the only
decode table entry to the decode table SRAM. Compression mode 2 is when the sequences
are compressed in the standard FSE algorithm. This case will be explained in the next
paragraph. Compression mode 3 is repeat mode where the previously built decode table is
used. In this case, the decode table builder does not build a new decode table.

For compression mode 2, the FSE decode table builder first recovers the normalized
count statistics of symbols by reading the input stream. Using the statistics, the decode
table entries can be retrieved. The challenge of building this module is that the decode
table entries are dependent on each other. The key to achieving high throughput is to
minimize memory accesses and write as many bytes in one write request. Small tables
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are implemented as ROMs, intermediate data structures to calculate the table entry are
implemented as registers instead of a region in the L2 cache, and all fields of an entry are
processed and written to the decode table SRAM in one cycle.

FSE Decode Table Reader

Figure 3.4: FSE Decode Table Reader

Figure 3.4 illustrates the internals of the FSE decode table reader. The decode table
reader loads the appropriate decode table entry from the SRAM where it is stored and the
input stream from the L2 cache. The finite state machine (FSM) deals with the processing
of the table entry and input stream to recover the sequences.

To maximize performance, memory requests and computation are overlapped. The L2
read request for the input stream is put into the request queue whenever the queue is not full,
so the L2 read request can be overlapped with the computation to produce the sequences.
Also, requesting the decode table entries is also overlapped with computation as in state 4
the request to SRAM and computation for sequence production is done in the same cycle.
The generated sequences are directly fed to the LZ77 decoder through a ready-valid interface.

The decode table reader is able to emit one sequence at a cycle to the LZ77 decoder
after a small setup time. This rate is fast enough considering the LZ77 decoder’s speed of
decoding a sequence.
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Figure 3.5: Simplified Diagram of the LZ77 Decoder

3.4 LZ77 Decoder

The LZ77 decoder is composed of LZ77 control, LZ77 loader, off-chip history lookup, and
LZ77 writer, as noted in Figure 3.2.

LZ77 Control and Loader

The LZ77 control receives the necessary information from the Huffman decoder and the
FSE decoder and dispatches appropriate commands to the LZ77 loader, off-chip history
lookup, and writer. From the FSE decode table reader, the LZ77 control takes the sequences
to decode and the total number of sequences to decode. The Huffman decoder consumes
a portion of the compressed file stream (input stream) to produce literals and stores the
literals in an L2 cache address. The Huffman decoder sends the address of the start of these
literals to the LZ77 control. The LZ77 control also obtains the address where the output is
going to be written, from the command router.

The LZ77 control processes the inputs and puts them into queues. Using the literal
address, the LZ77 control sends requests to the memloader to read the literals from the L2
cache. The LZ77 loader is responsible for receiving the literals coming from the memloader,
slicing the literals, and putting the literal chunks into the literal queue.
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Off-Chip History Lookup

The LZ77 off-chip history lookup deals with matches that do not fit into the range of the
history buffer. The offset of a sequence can exceed the history buffer SRAM size in the LZ77
decoder. The off-chip history lookup logic detects such far-copy by looking at the sequence
information and sends an L2 read request to the associated memloader to retrieve the match.
In this case, the match given by the memloader is put into the literal queue and the sequence
is no longer considered to have a match, as described in Figure 3.5.

LZ77 Writer

The LZ77 control sends the output address to the LZ77 writer and the off-chip history
lookup sends the literal chunks and sequence to the LZ77 writer. The LZ77 writer contains
the history buffer SRAM so that matches whose offset is smaller than the history buffer
size can be copied from the history buffer SRAM to be written as the next output. As
matches that do not fall into the history buffer’s range are already handled in the off-chip
history lookup, all matches are handled. The output is written to the L2 cache through the
memwriter inside the LZ77 writer and at the same time to the history buffer SRAM.
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Chapter 4

Design Space Exploration

4.1 Methodology

Three design knobs are controlled in the design space exploration experiment: history buffer
SRAM size, accelerator placement, and the number of bits used in speculative Huffman
decoding (“Huffman speculation bits” in this thesis).

The design space exploration (DSE) of the accelerated SoC implemented in RTL is per-
formed by using FireSim [18], which produces deterministic cycle-exact performance numbers
by modeling designs and I/Os cycle-accurately. The experiments are run on the HyperCom-
pressBench benchmark [17], which is an open-source benchmark suite representative of the
Google fleet’s (de)compression requirements.

The HyperCompressBench files are run on two systems–(1) a single-core RISC-V system
where the Zstandard decompression processing unit integrated is into (2) a baseline Xeon
server. The BOOM core and the Zstandard decompression accelerator of the RISC-V system
are modeled at 2 GHz frequency. The baseline system is a one-core two-HT Xeon E5-2686
v4-based server at 2.3GHz/2.7GHz turbo frequency. Performance results of the RISC-V
system measured the end-to-end runtime of an entire decompression call without overlapping
jobs. The performance results of the Xeon are collected by running lzbench [27], which is
an established tool used for benchmarking in-memory (de)compression algorithms. The
throughput is calculated as each benchmark file size divided by the time took to finish
decompressing. The overall throughput is the sum of all benchmark file sizes divided by the
sum of all decompression runtime.

The area estimation numbers of the RISC-V system are obtained by advancing the designs
through synthesis [29] for Intel’s 16nm-class process.

4.2 Results

Figure 4.1 shows the speedup and area results from a decompression processing unit gen-
erated all with 16 Huffman speculation bits but with different history buffer SRAM sizes
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Figure 4.1: Effect of history buffer SRAM size and accelerator placement on speedup and
area using 16-bit Huffman speculation

and accelerator placements. The history buffer SRAM size changes from 64K to 2K in this
figure.

In the design space exploration experiment, four accelerator placement parameters are
used: RoCC, Chiplet, PCIeNoCache, PCIeLocalCache. RoCC is when the accelerator is
placed near-core, so no latency is injected for memory requests. Chiplet is modeled by
injecting 25ns latency for all requests from the accelerator. PCIeNoCache is when the
accelerator is integrated over PCIe+DDIO, without a cache attached to the PCIe card.
PCIeNoCache is modeled by injecting 200ns latency [21] for all requests. PCIeLocalCache
models a shared on-die cache and local DRAM attached to the PCIe card. 200ns latency
is injected only for the decompression input and output, not for any intermediate read and
writes.

The design with the highest speedup compared to the Xeon CPU achieves 4.2x speedup
(3.95 GB/s) using the most area among the designs explored. The silicon area of this design
is 1.899mm2, which is only 10.56 percent of the area of the Xeon Core Tile of 17.98mm2 in
14nm [30].

Including a large history buffer SRAM leads to higher speedup for all placements, but
the performance gain of using a large history buffer SRAM compared to its area overhead
is negligible. For example, the SoC that has the decompression accelerator integrated as a
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RoCC accelerator with a 64K SRAM is 1.2 percent faster than that with a 2K SRAM while
using 9.4 percent more area.

Even with 64K SRAM, the speedup is considerably worse if the accelerator is integrated
over PCIe. The speedup of the PCIeLocalCache case is 3.0x lower and that of the PCIeNo-
Cache case is 7.72x lower. This is owing to (1) higher read and write cost over PCIe than the
near-core case and (2) the fact that there are many small decompressions in the fleet. The
PCIeLocalCache case mitigates this effect by modeling the shared on-die cache and local
DRAM. The performance degradation due to using smaller SRAM is not as much as the
PCIeNoCache case.

The performance of the Chiplet setting in Figure 4.1 is worse than the RoCC but better
than PCIe options. It is up to the system operator to choose this option considering the
performance, area, and chiplet integration cost. The 64K SRAM configuration achieves
a 2.42x speedup compared to the Xeon. At smaller history buffer sizes, the performance
gets worse as more read and write requests have to go through the chiplet interconnect,
which would be the bottleneck to the performance. At the smallest history buffer size, the
performance is almost similar to the PCIe case.

Figure 4.2: Effect of Huffman speculation bits, with 64K SRAM when integrated as RoCC
(near-core) accelerator
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Figure 4.2 shows the impact of the Huffman speculation bits on the performance and
area when the decompression processing unit is integrated as a near-core accelerator with
history buffer SRAM size fixed to 64K. The 16-bit Huffman speculation case corresponds
to the configuration used in Figure 4.1. 32-bit speculation is what is used in the IBM
z15 (de)compression accelerator [1] and 4-bit speculation represents the minimal reasonable
design point.

The change in the Huffman speculation bits creates a large variation in the quality-of-
result (QoR) of the decompression processing unit’s design. The 32 Huffman speculation
bits design achieves 5.64x speedup (5.304 GB/s) over the Xeon while consuming only about
12 percent of Xeon’s area (2.245mm2). This is an 18 percent bigger area and 34 percent
higher speedup than the 16-bit speculation design. On the other hand, the 4-bit speculation
design only achieves 2.11x speedup compared to the Xeon. The silicon area of the 4-bit
speculation design (1.711mm2) is 10 percent less than the 16-bit speculation design and the
speedup of the 4 bits design is 50 percent lower than the 16 bits design. As the numbers
present, doubling the Huffman speculation bits is more influential on the speedup and area
than doubling the history SRAM size is.

The results of the design space exploration prove that consideration of high-level pa-
rameters of the decompression processing units is crucial to understanding the design QoR
and the microarchitectural design of the accelerator is not the sole factor that determines
the QoR. This justifies the generator approach used in this paper which parameterizes the
high-level knobs. The key findings include

• The Huffman speculation bits significantly influence the accelerator’s QoR, far more
than the history buffer size.

• Integrating the Zstandard decompression unit as a near-core accelerator is recom-
mended. Integrating the accelerator over PCIe is not recommended because its perfor-
mance matches or falls short of the Xeon’s.

• The fastest design point among the explored designs is 5.6x faster than the Xeon while
requiring about 12% of the Xeon’s area.
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Chapter 5

Conclusion

This thesis presented an open-source RTL-based Zstandard decompression processing unit
generator that enables tuning many design knobs. The generated accelerator is integrated
into an open-source RISC-V SoC ecosystem that is capable of fast evaluation of the perfor-
mance and silicon area of an SoC with different design parameters. Many existing works
related to (de)compression accelerators demonstrate enhanced microarchitecture in a con-
strained design point. Instead of presenting a single microarchitectural design point, the
generator-based approach of this paper enables the evaluation of the effect of high-level de-
sign parameters that are critical to judging the appropriateness of integrating the accelerator,
such as history buffer size and Huffman speculation bits, which are not covered thoroughly
in previous works.

The key achievements of this thesis are as follows:

• Comprehensive sweeping of the decompression processing unit’s design space, spanning
a 15.1x range in accelerator speedup and a 1.5x range in silicon area.

• Design space exploration whose results led to a better understanding of the effect of
each design parameter and how to optimize the design considering the integration into
a hyperscale system.

• Finding a hyperscale-optimized design which is 5.6x faster than a single Xeon core
while consuming approximately 12 percent of a Xeon core’s area.

Future work

The end goal of developing the (de)compression accelerator generator is to have a universal
(de)compression accelerator that works on a wide range of compression algorithms. Cur-
rently, the Zstandard decompressor presented in this paper is already modularized to a set
of decoders of three compression primitives: Huffman, FSE, and LZ77. Ideally, any algo-
rithm that uses these primitives as its building blocks can reuse the accelerator. However,
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the accelerator control is now configured to follow Zstandard’s file format. In order to sup-
port other algorithms, the logic related to producing the output according to the format
should be reconfigurable to algorithms other than Zstandard. Small changes are necessary
to reuse the accelerator because of this. For example, to reuse the LZ77 decoder for Snappy
decompression, the LZ77 control module should change to follow the Snappy file format and
the LZ77 loader should include a variable integer (varint) decoder. If this challenge is solved
and a completely modularized reconfigurable (de)compression accelerator is available, agile
development will be possible in case of a sudden emergence of a new compression algorithm.
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