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Abstract

Enhancing Accelerator Design Space Exploration with Differentiable Modeling and Unified

Hardware-Software Co-Exploration

by Charles Jungwoo Hong

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Yakun Sophia Shao, Chair

In the hardware design space exploration process, it is critical to optimize both hardware parame-

ters and algorithm-to-hardware mappings. Previous work has largely approached this simultaneous

optimization problem by separately exploring the hardware design space and the mapspace—both

individually large and highly nonconvex spaces—independently. The resulting combinatorial ex-

plosion has created significant difficulties for optimizers.

In this work, we introduce DOSA, which consists of differentiable performance models and a gra-

dient descent-based optimization technique to simultaneously explore both spaces and identify

high-performing design points. Experimental results demonstrate that DOSA outperforms random

search and Bayesian optimization by 2.80× and 12.59×, respectively, in improving DNN model

energy-delay product, given a similar number of samples. We also demonstrate the modularity

and flexibility of DOSA by augmenting our analytical model with a learned model, allowing us to

optimize buffer sizes and mappings of a real DNN accelerator and attain a 1.82× improvement in

energy-delay product.
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Chapter 1

Introduction

Deep neural network (DNN) accelerators [1–4] have become a critical driving force for the re-

cent breakthroughs [5–9] in artificial intelligence. To develop efficient DNN accelerators in a fast

and cost-effective manner, automated design space exploration (DSE) has emerged as a powerful

technique.

The hardware DSE flow [10–12] involves optimizing over two search spaces: the hardware design

space, which describes hardware design parameters such as interconnect topology and buffer and

systolic array sizes, and the mapspace, which describes how applications are executed on the target

hardware and encompasses decisions such as tiling, dataflow, and spatio-temporal mapping.

For both the hardware design space and the mapspace, the goal is to optimize a performance metric,

such as energy-delay product (EDP), subject to certain constraints. These include design budgets,

such as bounds on the area or power consumption, as well as constraints ensuring that the selected

mapping can be executed on the selected hardware configuration (e.g. that the hardware buffers

are sufficiently large to contain the tiles). As these constraints encompass both the mapspace and

the hardware design space, the two spaces must be simultaneously optimized over; techniques solely

tackling hardware search [13, 14] or mapping optimizations [15–21] are insufficient to achieve the

optimal hardware design in DSE.

Both the hardware design and mapping spaces are vast, high-dimensional, and comprised of both

categorical and discrete variables. Furthermore, evaluating the performance of a hardware config-

uration and a mapping can be computationally expensive. The size of the combined optimization

space and the cost of evaluating points in it pose formidable challenges to DSE algorithms.

Much prior work [10, 22–27] has approached this problem using hardware-first search. These meth-

ods directly search over the space of possible hardware configurations. The performance of each

1



Mapspace Search

HW config

Mapspace Search

HW config
Mapspace Search

Mapping

Perf

Mapping

Perf

Mapping

Perf

HW config

Optimization Loop

Optimization Loop

Mapping

HW config

Perf

Mapping

HW config

Perf

Mapping

HW config

Perf

Optimization Loop

Figure 1.1: Hardware-first, two-loop (left) and mapping-first, one-loop (right) DSE approaches.

hardware configuration is calculated by first constraining the mapspace to mappings that are com-

patible with the hardware configuration, then optimizing over the constrained (highly discontin-

uous) mapspace. In most cases, the mapspace optimization is done iteratively, rendering this

process a two-loop approach iterating over both the hardware space and mapspace. As a result,

these approaches must contend with a combinatorial explosion of possible configurations.

Alternatively, mapping-first approaches, as proposed in [28, 29] and illustrated in Figure 1.1, opti-

mize primarily over the mapspace. For each mapping, optimizing over the hardware design space

is a straightforward process consisting of finding the minimal hardware configuration capable of

supporting the mapping. As a result, the loop for hardware search is eliminated, allowing the

entire DSE process to be encapsulated in a single loop. Furthermore, the lack of hardware resource

constraints also significantly simplifies the mapspace search problem.

Despite these advantages, mapping-first approaches must still contend with the size of the mapspace

and the nonconvexity of the performance over this space. Prior works have either directly applied

black-box optimization methods [28, 30], which rely on a large number of (often expensive to

collect) samples, or pruned the search space using architecture-specific heuristics constructed by

hand based on observations of a limited subset of the DSE search space [29].

Reducing the sample complexity of DSE while still allowing for a systematic exploration of the entire

space requires leveraging domain knowledge—for instance, a generalizable performance model like

Timeloop [11, 31] (a popular analytical model for DNN accelerators), that is not reliant on an

2



expensive training process. This work follows this approach, using performance models as an

optimization target for mapping-first search. Specifically:

• We build closed-form differentiable and interpretable performance models for latency and

energy on DNN accelerators. Our models are as precise as the state-of-the-art program-based

analytical models, while also being amenable to white-box optimization techniques such as

gradient descent.

• We then introduce DOSA1, a mapping-first one-loop DSE flow that uses gradient descent to

find the most efficient hardware parameters and mappings to target multi-layer DNNs; to the

best of our knowledge, this is the first work to use a mapping-first strategy to simultaneously

perform DSE for multiple layers of a neural network. DOSA converges at least 40% faster

than state-of-the-art DSE approaches.

• We take a step beyond DSE for architectural models by introducing a DNN model to pre-

dict the variation between analytical model and real hardware accelerator performance. We

integrate this DNN model into our differentiable model and use it to perform DSE on real

hardware.

• We benchmark our results on the Gemmini accelerator, showing a 1.82× EDP improvement

over hand-designed configurations.

1Code open-sourced at https://github.com/ucb-bar/dosa.
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Chapter 2

Background

Hardware design space exploration (DSE) is a time-consuming and costly process that involves the

exploration of various hardware design parameters and software mappings to optimize the target

application performance. This process typically includes two key optimizations: the mapping

search, which aims to find high-performance mappings that effectively utilize hardware resources,

and the hardware search, which aims to achieve multi-objective design goals, such as minimizing

the energy-delay product (EDP) or the area-delay product. To address the mapping complexity

for DNNs, many DNN compilers [15–21] and accelerator-aware mapping techniques [11, 29, 32, 34–

36] have been developed. In addition, there has been extensive research in the area of hardware

parameter search [13, 14].

2.1 Co-exploration Frameworks

In recent years, there has been a growing body of research focused on tackling the compounding

search space of mapping and hardware designs with the goal of achieving higher hardware efficiency

and lower development costs.

2.1.1 Two-Loop Searchers

As shown in Table 2.1, most prior work [10, 22–26, 29] treats the mapping and hardware co-search

as a two-loop process and applies a combination of various optimization techniques to address each

search space independently. The two-loop process starts by sampling a hardware design point from

the hardware search space and then searching for high-performance mappings for that particular

4



Name
Mapspace
Search

Hardware
Search

Two-loop
Searchers

Spotlight [24] BB-BO BB-BO
VAESA [23] ILP [32] VAE+BB-BO/GD
FAST [22] BB-LCS [33]+ILP BB-LCS

HASCO [25] RL BB-BO
NAAS [26] BB-ES BB-ES

MAGNet [10] Heuristics BB-BO

One-loop
Searchers

DiGamma [28] BB-GA
Interstellar [29] Heuristics
Our work:

DOSA
GD

Table 2.1: State-of-the-art Accelerator DSE Methods.

hardware design point in the inner loop. The best mapping obtained is used for generating the

hardware performance feedback for the outer loop hardware optimization.

Optimization techniques used in the two-loop process can be broadly categorized into three types:

heuristics, black-box optimization (BB), and white-box optimization. Heuristics involve using

domain-specific knowledge and experience to guide the search process and reduce the size of design

space. In contrast, BB relies on sampling and machine learning techniques to leverage the charac-

teristics of the problem derived from sampled data in order to find the optimal solution. Popular

BB algorithms include genetic algorithms (BB-GA), reinforcement learning (RL), Bayesian opti-

mization (BB-BO), Linear Combination Swarm (BB-LCS), and evolutionary strategy (BB-ES).

In white-box optimization, the relationship between the optimization variables and the objectives

is known and captured in mathematical models. Numerical optimization techniques like linear

programming (LP) and mixed-integer programming (MIP) can be used if the relationship can

be expressed in specific frameworks. Gradient descent (GD) techniques can be applied if the

relationship can be expressed in a differentiable expression. Compared to black-box optimization,

white-box optimization is generally more efficient as it can exploit the known objective model to

guide the optimization process, resulting in faster convergence. However, it requires the objective

model to be known and accurately specified.

While independently applying optimization techniques to the mapspace and hardware space can be

effective, the two-loop searchers can be susceptible to combinatorial explosion, as the vast search

space multiplies the number of potential options for mappings and hardware parameters together.

5



2.1.2 Single-Loop Searchers

To reduce the size of the compounding search space, one-loop searchers, such as DiGamma [28]

and Interstellar [29] have been proposed. Single-loop search tackles the co-search problem from a

mapping-first approach that infers the minimal hardware requirement from hardware-agnostic high-

performance mappings found in single-loop mapping search. In such approaches, the hardware DSE

space is similar in size to the mapping space. However, DiGamma employs BB-GA which treats the

mapping performance as a black-box and needs to evaluate many unique hardware and mapping

configurations iteratively to achieve a good mapping and hardware design. Interstellar, on the other

hand, only explores a limited space of pre-selected mappings and as a result only a limited space

of hardware design is evaluated.

Unlike previous one-loop approaches that rely on black-box optimizations or heuristics, DOSA

takes a novel approach by formulating the analytical performance and energy model in [11] as

a differentiable white-box model. DOSA uses gradient descent to optimize the mapping variables

in the direction of steepest descent of the EDP objective function on the mathematical model.

This allows DOSA to explore a comprehensive set of mappings and efficiently generate high-quality

hardware and mapping configurations without the need for sampling from simulators extensively.

2.2 Performance Modeling

Performance models are crucial to the DSE process, as they offer quick feedback on performance

and energy consumption for different hardware and mappings. They provide valuable insights into

how hardware designs perform in real-world scenarios without requiring real hardware prototypes

or implementations. They can also reduce the high sampling cost of time-consuming and com-

putationally expensive simulation and emulation for existing hardware designs. In this work, we

illustrate how a well-designed performance model can be used to accelerate the DSE process.

Depending on how they are developed, performance models can be categorized as either analytical

models or data-driven models. For DNN accelerators, architects have developed domain-specific

analytical models in the form of mathematical equations [32] or iterative programs [11, 12, 37–39]

to quickly assess tradeoffs for various hardware designs. These models leverage workload charac-

teristics (e.g., known iteration space bounds and statically analyzable data access patterns), and

hardware characteristics (e.g. roofline model [40]) to perform the estimation. Data-driven mod-

els [19, 35, 41], on the other hand, use statistical techniques to fit a machine learning (ML) model

to performance data collected over time.
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Different models offer different levels of fidelity and compatibility with DSE optimization algo-

rithms. Iterative programs are often used with BB algorithms as the relationship between inputs

and predictions is not directly known to the optimization algorithms, which rely on sampling to

recapture this relationship. Analytical models expressed in mathematical equations can be used

directly as objectives in optimization, but the existing formulations in linear or quadratic pro-

grams [32] tend to be limited in expressiveness for complex hardware systems and can result in

low accuracy. ML models can be integrated with various optimization techniques easily, but they

typically need a large amount of training data to provide accurate prediction and generalize to new

workloads and architectures.

This work aims to improve upon existing performance models by introducing a differentiable perfor-

mance model that is highly accurate, generalizable, and amenable to various efficient white-box op-

timization algorithms, such as GD. Our approach involves decoding the mathematical relationships

from Timeloop [11], an accurate iterative program-based analytical model for DNN accelerators,

and converting part of the iterative program into differentiable mathematical models. We show

that, by making the objectives differentiable with respect to the design parameters, our approach

achieves high sample efficiency in DSE.

While existing analytical models for DNN accelerators are trusted by architects, they may not cap-

ture all the interactions between the accelerator and the rest of the hardware systems in real-world

deployment. To address this, this work also introduces an ML model that predicts the differences

between the analytical model and the actual hardware, thereby improving the effectiveness of DSE

in a real-world setting.

7



Chapter 3

DOSA Overview

We present DOSA, a one-loop differentiate-model-based DSE framework to optimize the map-

pings and hardware simultaneously for target DNN models. DOSA captures key relations between

DNN mapping factors and performance objectives in a differentiable analytical model. In addition,

DOSA introduces a data-driven DNN model to capture the performance variations between ana-

lytical model and real hardware. By applying white-box optimization to the model and calculating

the hardware parameters using minimal parameterization, DOSA achieves high-performance accel-

erator design and mapping while significantly reducing the time and costs associated with DNN

accelerator DSE.

3.1 Problem Setup

3.1.1 Target Workloads

DOSA targets accelerator DSE for complete DNN models, which comprise both matrix multiplica-

tion and convolution layers. To express these layers, we use seven dimensions: R (weight height),

S (weight width), P (output activation height), Q (output activation width), C (input channels),

K (output channels), and N (batch size). These dimensions describe the size of the weight (W ),

input (I), and output (O) tensors. We assume the activation functions are fused with the matrix

multiplication and convolution layers.

3.1.2 Variables and Objectives

In our mapping-first search, we focus on the following three layerwise mapping decisions:

8
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Figure 3.1: An architecture diagram of DOSA.

1. Spatial loop tiling, which defines which loops are mapped to parallel spatial resources (such

as processing elements in a systolic array), and the iteration bounds of these loops,

2. Temporal loop tiling, which specifies the loop iteration bounds grouped together to form a

block at each memory level.

3. Loop ordering, which defines the order in which dimensions are accessed at a given memory

level.

We utilize the spatial and temporal tiling factors, denoted as f⃗ , as input optimization variables in

our approach. Specifically, for dimension d at memory level i, fS,i,d and fT,i,d represent the spatial

and temporal tiling factors, respectively. Using f⃗ , we construct DOSA’s objective function, which

serves as the analytical performance model predicting energy-delay product (EDP) of the DNN,

as detailed in Chapter 4. To optimize performance, gradient descent is employed to differentiate

the objective with respect to the tiling variables f⃗ . The optimization details are elaborated on

in Chapter 5. Note that there are constraints imposed on the variables to ensure that for each

dimension, the product of the spatial and temporal tiling factors at all memory levels is equal to

the total problem size.

3.2 Toolflow

Figure 3.1 provides an overview of how DOSA simultaneously optimizes mappings and hardware

for a given workload consisting of a set of layers. The following are the detailed steps involved in

9



this process:

1. Generate performant mappings using CoSA [32] for a set of target DNN layers, targeting a

randomly selected valid hardware design.

2. Compute the hardware resource requirements of the layerwise mappings and convert them to

a minimal hardware parameterization.

3. Given the mappings represented in f⃗ , use the differentiable model in DOSA to calculate the

number of arithmetic operations and the number of accesses made by each mapping to each

memory level in the accelerator.

4. Combine arithmetic operation and memory access counts with previously calculated hardware

parameters to generate roofline-based latency predictions and event-based energy predictions

for each layer’s mapping. Then, each mapping’s latency and energy prediction is combined

to produce a single EDP value.

5. Use gradient descent to update all mappings in parallel.

6. Repeat from Step 2.
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Chapter 4

DOSA Differentiable Model

Arch. Component Memory Level Bandwidth (words/cycle) Energy Per Access (EPA, in uJ) [42]

PE 0.561
Registers 0 2CPE 0.487

Accumulator 1 2
√
CPE 1.94 + 0.1005 × C1√

CPE

Scratchpad 2 2
√
CPE 0.49 + 0.025 × C2

DRAM 3 8 100

Table 4.1: Details of the accelerator under study. CPE is the total number of PEs and Ci is the
capacity of memory level i.

The differentiable model of DOSA is motivated by the following observations:

• As discussed in Section 2.1, inferring hardware parameters from mappings flattens the hardware-

mapping co-search space, and allows for mapping-first, one-loop search.

• An effective mapping-first searcher should co-optimize mapping variables of all layers in the

target DNN. This high-dimensional problem requires the application of an efficient optimiza-

tion method such as gradient descent.

• A differentiable performance model can facilitate DSE with gradient descent, and constructing

the model analytically is preferable as it ensures the accuracy, interpretability, and general-

izability of the model.

Given the absence of a differentiable, analytical model for DNN accelerators in current literature,

we present our approach for constructing such a model that achieves accuracy on par with Timeloop

in our problem space. To account for performance variations in real hardware that are difficult to

capture and express in analytical models, we in addition trained a differentiable DNN model to

further improve the accuracy of the performance model.
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Per-Layer Min-HW

// Layer: 
// N=1, R=1, S=1, P=56, Q=56, C=64, K=64 

// DRAM (Weights: 4096 Inputs: 200704 Outputs: 200704)
for p3 in [0:56):
  for q3 in [0:4):
    // Scratchpad (Weights:4096, Inputs: 896)
    spatial_for k2 in [0:64):
      // Accumulator (Outputs:896)
      spatial_for c1 in [0:64):
        // Registers (Weights: 4096)
        for q0 in [0:14):

PEs: 
64x64

Accumulator: 
896 words
x 4 B/word
≈ 4 KB

Scratchpad: 
(4096 + 896) words
x 1 B/word
≈ 5 KB

Gemmini

max ( · )

Figure 4.1: Mapping to hardware parameters conversion in DOSA. The final hardware configu-
ration is selected by taking the max across mappings for each hardware parameter.

4.1 Computing Hardware Resource Requirements

We target the open-source DNN accelerator Gemmini [43], whose most notable architectural com-

ponents are 1) a systolic array of processing elements (PEs), 2) accumulator SRAM, 3) scratchpad

SRAM, and 4) DRAM. Specifically, we target the weight-stationary (WS) configuration of Gem-

mini. The buffer levels are enumerated 1, 2, ..., where level 1 represents the buffer memory level.

Memory level 0 represents the per-PE registers in the systolic array. The architectural components

of Gemmini are further detailed in Table 4.1. As depicted in Figure 4.1, the capacity requirements

at each level are first computed. Then, we take a parameter-wise max to generate a design that

will support all current mappings.

4.1.1 Notation

In our notation, we use i to index memory levels and d to index problem dimensions for the spatial

and temporal tiling factors fS,i,d and fT,i,d, as listed in Table 4.2. The spatial or temporal factor is

indexed using k in the subsequent section. Additionally, we use t to index each data tensor.
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i memory level index

d problem dimension index

k spatial / temporal index

t data tensor index

Table 4.2: Notation.

We define the following sets to express the consideration of problem dimensions for calculating the

size of data tensors in DNN computations:

D = {R,S, P,Q,C,K,N}

DW = {R,S,C,K}

DI = {R,S, P,Q,C,N}

D0 = {P,Q,K,N}

The set D contains all the problem dimensions, while DW , DI , and DO are subsets of D that

contain the problem dimensions used to calculate the data tensor size and the minimal hardware

requirements for weights, inputs, and outputs, respectively.

M = {0, 1, 2, 3}

M is a set of indices that represents the memory levels available for storing intermediate tensors

during the computation. To keep track of which tensors are stored at each memory level, we define

a matrix B as shown in Table 4.3. The entries of B indicate whether a tensor with a certain

problem dimension is stored at a certain memory level.

Tensor

W I O

Registers 0 ✓

Accumulator 1 ✓

Scratchpad 2 ✓ ✓

DRAM 3 ✓ ✓ ✓

Table 4.3: Constant binary matrix B, which encodes the data tensor(s) stored at each level of
the memory hierarchy, for the accelerator under study.

4.1.2 PE Capacity Requirements

Gemmini supports only square arrays of processing elements. In its WS (weight stationary) config-

uration, it can parallelize the input channel (C dimension) and output channel (K dimension), each

13



along one side of the array. Hence, we need to configure a square PE array that is large enough to

accommodate the square of the larger of these two spatial factors. The total number of processing

elements in the systolic array is denoted by CPE .

CPE = max(fS,1,C , fS,2,K)2 (4.1)

4.1.3 Buffer Capacity Requirements

Buffer capacities required at a given level i for each tensor are computed by multiplying the related

factors fk,j,d together.

Ci,W =
∏

(k,j,d)∈{S,T}×{i−1,i−2,...,0}×DW

fk,j,d (4.2)

Inner(i, d) =
∏

(k,j)∈{S,T}×{i−1,i−2,...,0}

fk,j,d

Ci,I =

 ∏
(k,j,d)∈{S,T}×{i−1,i−2,...,0}×{C,N}

fk,j,d


× (Pstride× (Inner(i, P ) − 1) + Inner(i, R))

× (Qstride× (Inner(i, Q) − 1) + Inner(i, S))

(4.3)

Ci,O =
∏

(k,j,d)∈{S,T}×M×DO

fk,j,d (4.4)

Ci,t represents the number of words of tensor t that memory level i must be able to hold. Note

that to calculate the size required for inputs Ci,I , we first need to calculate the input activation

dimensions using the stride and the output and weight dimensions factors (P,Q,R,S).

The total buffer capacity requirement at level i is the sum of Ci,t for each tensor t that is stored at

that level:

Ci =
∑

t∈{W,I,O}

Bi,tCi,t (4.5)
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4.2 Traffic Estimation

To capture the performance of the accelerator, we utilize differentiable non-convex functions to

model the data movement at each buffer level. We use the following terminologies to refer to

different types of data transfer:

• Writes - backing store memory to current memory

• Updates - faster memory or MAC to current memory

• Reads - current memory to faster memory or MAC

4.2.1 Writes

The number of writes to a given memory level i in Gemmini attributable to the tensor t is given

by multiplying the tensor size Ci,t at level i with all tiling factors outer to the innermost relevant

loop, that is outer to level i.

Writest(i) = Ci,t

∏
(k,j,d)∈S,T×{i+1,i+2,...,M}

×D outer to Dt>1

fk,j,d (4.6)

For instance, to calculate the writes to weights, we can multiply the weight tensor size at memory

level i, denoted as Ci,W , with all the tiling factors that are outer to the innermost loops R, S, C, or

K given the loop order of all dimensions. This calculation is performed similarly for the outputs.

For inputs, as we did for the capacity calculation, we need to first compute the input factors by

considering the stride and padding.

The total tensor traffic at a given level is computed by summing weight, input, and output traffic.

4.2.2 Updates

Once write counts are computed, update traffic can be computed more easily. Only outputs and

partial sums incur updates to the current memory level i from the inner memory or MAC. For

every MAC operation, it will incur an output or partial sum update to the innermost memory level

that stores the outputs. Therefore the number of updates to the innermost memory level is equal

to the total number of MACs, which is defined as follows:

MACs =
∏

(k,j,d)∈{S,T}×M×D

fk,j,d (4.7)
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In the Gemmini architecture, as indicated in Table 4.3, the innermost level corresponds to the

accumulator at memory level 1. In the outer levels, the number of updates is equal to the number

of writes to the next inner level that holds outputs, as each time a partial sum is loaded, it undergoes

addition and is subsequently stored back as an update. Note that the accumulation can also happen

in the spatial network which will not result in an update to the memory. The overall reduction to

the updates FS,O(i) can be determined by multiplying the spatial factors that are not related to

the outputs:

FS,O(i) =
∏

d∈{D−DO}

fS,i,d (4.8)

Combining all these factors, the total updates at memory level i can be expressed as:

UpdatesO(i) =


MACs
FS,O(i) i = innermost output level

WritesO(i−1)
FS,O(i) i > innermost output level

Updates(i) = Bi,OUpdatesO(i)

(4.9)

where the MACs and Writes(i) are discounted by the factors that are spatially accumulated in the

network.

4.2.3 Reads

Similarly, when it comes to read operations, in the case of the innermost input buffer that holds

inputs, the total number of reads is equal to the total number of MACs. This is because we need

to load an input for each MAC calculation. For the outer levels, all the reads from the current

level are transferred to the inner level as writes. In the presence of a broadcast spatial network at

a certain level, if there are factors FS,t(i) that are irrelevant to the tensor, the same read operation

will be broadcasted to different children, eliminating the need for multiple reads:

FS,t(i) =
∏

d∈{D−Dt}

fS,i,d (4.10)

Putting it all together, we have number of reads defined as:

Readst(i) =


MACs
FS,t(i)

i = innermost tensor level

Writest(i−1)
FS,t(i)

i > innermost tensor level

Reads(i) =
∑

t∈{W,I,O}

Bi,tReadst(i)

(4.11)
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Figure 4.2: Error of DOSA differentiable model prediction with respect to Timeloop for 100
random Gemmini configurations, 73 unique layers, 10,000 total mappings. MAE=Mean Absolute

Error.

4.3 Latency Modeling

We calculate the latency cycles required for compute by dividing the total number of multiply-

accumulate (MAC) operations in a layer by the product of all spatial factors fS,i,d in a mapping (i.e.,

the number of parallel processing elements utilized). To compute memory access latency, we divide

the total number of memory accesses by the memory bandwidth. We calculate the memory latency

for each memory level i utilized in Gemmini, including accumulator SRAM, scratchpad SRAM,

and DRAM. We consider the maximum latency among all memory levels and the compute as the

final latency since performance is limited either by memory or compute. The latency formulations

are provided below:

Compute Latency =
# of MACs in Layer∏

(i,d)∈M×D fS,i,d

Accesses(i) = Reads(i) + Updates(i) + Writes(i)

Mem Latency(i) =
Accesses(i)

Bandwidth(i)

Mem Latency = max
i∈M

(Mem Latency(i))

Latency = max(Compute Latency,Mem Latency)

(4.12)

4.4 Energy Modeling

Energy is modeled via data collected for a 40nm process using Accelergy [31] and its Aladdin [44]

and CACTI [42] plug-ins. In our model, compute, register access, and DRAM access energy are

constant per word, whereas SRAM access energy per word scales with the number of SRAM rows
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and columns. The specific energy per access (EPA) values for each component are in Table 4.1.

Energy(i) = Accesses(i) × EPA(i)

Energy = MACs × EPAPE +
∑
i∈M

Energy(i)
(4.13)

4.5 Composing Performance Metrics

In this work, we target co-design of an accelerator for a given DNN model. Thus far, all calculations

have been per-layer. To compute the minimal hardware requirement for a set of layers, we take the

max over layers of each hardware parameter. To compute performance, for example via energy-

delay product (EDP), we sum the energies and latencies of each layer, and multiply these sums

at the end. For layers that appear multiple times, one mapping is generated and its energy and

latency are each multiplied by the number of times the corresponding layer appears. By setting

the total EDP value as the gradient descent loss term, we minimize EDP for the full model, rather

than find mapping/hardware configuration that minimizes EDP for individual layers. Say a model

consists of layers l.

EDP(model) =

( ∑
l∈model

Energy

)
×

( ∑
l∈model

Latency

)
(4.14)

Due to the scalability of gradient descent, we are able to optimize this objective with respect to

all mappings in parallel, rather than one mapping at a time. This forms a different optimization

problem over mappings compared to two-loop searchers that optimize for the EDP of individual

layers. The flexibility of the GD loss function also enables the user to weight layers differently,

which could be explored in future work.

4.6 Correlation to Timeloop

To demonstrate that our model does not compromise accuracy in order to provide differentiability

and interpretability, we compare the predictions generated by the DOSA differentiable model to

Timeloop [11] and Accelergy. Specifically, we evaluate 73 matrix multiplication and convolutional

layers, each of which are mapped onto 100 randomly generated Gemmini configurations and sampled

approximately evenly for a total of 10,000 mappings. Figure 4.2 shows that the EDP results from

our differentiable model are on average within 0.18% of Timeloop, with 98.3% of results within 1%

of Timeloop. For very small layers with very low energy usage, there is up to 12.0% error. For
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these very small layers, Timeloop uses a ceiling function to compute energy based on the number

of blocks accessed in DRAM, whereas the DOSA differentiable model computes energy from the

number of elements accessed. Apart from these small layers, high correlation is observed because

DOSA captures the same relationships between mapping and latency and energy performance as

Timeloop does. However, Timeloop models these relationships as an iterative program while DOSA

manages to express them in a mathematical framework to enable the use of white-box optimization

algorithms for DSE.

4.7 Real Hardware Performance Modeling

In general, analytical models do not completely capture hardware performance [45, 46]. Variations

caused by specific implementation details and complex hardware-software interactions may be un-

known to the designer or difficult to capture mathematically. One potential solution is to augment

analytical models with learned surrogate models. Since many learned models, such as deep neural

networks or polynomial regression models, are differentiable, DOSA is particularly well-suited to

work with such models.

In this case, we train a deep neural network to predict the difference between our analytical model’s

latency predictions for a layer and the real latency of Gemmini-RTL, evaluated using FireSim [47].

The model’s inputs include the layer’s dimensions, a mapping (represented as in Section 3.1.2), and

a hardware configuration. The model’s architecture is similar to that of the model used in Mind

Mappings [35]. It contains 7 hidden fully-connected layers and a total of 5737 parameters.

19



Chapter 5

DOSA Optimization

Constructing a differentiable performance model allows DOSA to optimize hundreds of parameters

(tens per layer, times tens of layers) at once using gradient descent (GD). As seen by its use for

training neural network models with up to billions of parameters, GD is a highly performant and

scalable optimization method.

5.1 Search Strategy

Table 5.1 summarizes the search algorithms used by DOSA to explore different mapping and design

decisions. To determine the temporal and spatial tiling factors for each layer in the network (with

20 variables per layer), DOSA employs GD. The GD loss term is the total performance metric,

whose construction is described in Section 4.5. Differentiability is implemented using PyTorch

automatic differentiation. GD start points are generated via random hardware configuration, plus

CoSA [32] mappings.

We fix the spatial tiling dimensions (dataflow) decision to a weight stationary C(input channel)-

K(output channel) mapping, as this is the primary spatial dataflow supported by the Gemmini

generator. Note that it is possible for the dataflow decision to be incorporated into the differentiable

performance model, similar to the spatial tiling factor decision, by allowing the spatial factors from

all problem dimensions to exceed 1.

For the current bypassing setup, we allocate one level of buffers for tensors with different data

precisions, specifically the scratchpad for inputs and weights and accumulator for outputs.
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Temporal Tiling Factors GD

Spatial Tiling Factors GD

Spatial Tiling Dimensions Constant

Tensor Bypass Constant

Loop Ordering Exhaustive

Table 5.1: Search algorithms for different design decisions.

5.2 Loop Ordering

We present two potential strategies for searching loop orderings in this section, which are compared

in Section 6.2.

5.2.1 Iterative Loop Ordering Optimization

For the iterative optimization strategy, depicted in Figure 5.1a, we shuffle the order of loops for each

layer every time mappings are rounded to the nearest valid mapping as explained in Section 3.1.2.

This typically occurs after several hundred gradient descent steps. We select between three loop

orderings per layer per level, each minimizing the data accesses for weights, outputs, and inputs

respectively. We call these weight-stationary (WS), input-stationary (IS), and output-stationary

(OS) orderings. The differentiable model-predicted loop ordering that minimizes overall EDP, as

in Equation 4.14, is selected.

5.2.2 Gradient-Based Loop Ordering Optimization with Softmax Weighting

The second optimization strategy involves integrating loop ordering into the gradient descent-based

search by modifying the loss function. Like with iterative optimization, we consider WS, IS, and

OS loop orderings for each level, for each layer. At every gradient descent step, we now consider the

latency and energy of all loop ordering options and take them into account when updating tiling

factors. We do so by combining the latency and energy predictions for each ordering using the

softmax function σ(zi) = ezi∑K
j=1 e

zj
. The case where loop ordering is flexible for one level is depicted

in Figure 5.1b. We first construct a vector of energies for each loop ordering options and a similar

vector of latencies.
E⃗l =

[
Energyl,WS Energyl,IS Energyl,OS

]
L⃗l =

[
Latencyl,WS Latencyl,IS Latencyl,OS

] (5.1)
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Tiling Factors
(1 layer)

WS Perf

WS | IS | OS

Latency Energy

Lat. Ene. EDP
IS Perf

Lat. Ene. EDP
OS Perf

Lat. Ene. EDP

if step%N=0:
    iterate +
    keep best

(a) Iterative optimization, with IS loop
ordering currently selected.

Tiling Factors
(1 layer)

WS Perf

✕ ✕

+

✕

1 / z

Softmax

Latency

+

Energy

✕ ✕ ✕

Lat. Ene. EDP
IS Perf

Lat. Ene. EDP
OS Perf

Lat. Ene. EDP

(b) Gradient-based optimization with
Softmax weighting.

Figure 5.1: Energy and latency prediction flow different loop ordering optimization schemes.

We then compute a vector w⃗l for each layer by applying the softmax function over the inverse EDPs

of each loop ordering option. EDP is inverted so lower EDPs result in greater values in w⃗l.

w⃗l = σ

(
1

E⃗l ⊙ L⃗l

)
(5.2)

We use w⃗l to weight the energy and latency values of each loop ordering option before combining

the energies and latencies of all layers in the model. The new loss function is as follows:

Loss =

( ∑
l∈model

w⃗l · E⃗l

)
×

( ∑
l∈model

w⃗l · L⃗l

)
(5.3)

With this new loss function, gradient descent passes a gradient through all paths where w⃗l is not

equal to 0, meaning tiling factors are optimized with awareness of which loop ordering is optimal for

the current tiling factors. w⃗l also prevents these additional gradients from hindering optimization

by weighting the gradients of more performant loop orderings more heavily than gradients of less

performant loop orderings.
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5.3 Other Optimization Details

5.3.1 Start Point Rejection

In subsequent iterations of start point generation, if a start point’s differentiable model-predicted

performance is more than 10× that of the best start point seen thus far, it is rejected and a new

hardware configuration is selected.

5.3.2 Rounding

Since gradient descent may result in non-integer tiling factors, before any mapping is evaluated, it

is rounded to the nearest valid mapping. This is done by rounding each tiling factor to the nearest

divisor of its corresponding problem dimension, subject to the constraint that the rounding process

does not cause the product of tiling factors for that dimension to exceed the total problem size.

This process iterates from the innermost to the outermost memory level.

5.3.3 Preventing Exploration of Invalid Mappings

We do not include tiling factors at the outermost (DRAM) level as optimization targets, and instead

infer them by dividing the total problem size at each dimension by the product of the rest of the

tiling factors for that dimension. In order to prevent exploration of invalid tiling factors that are

less than 1, a loss term is added:

∑
(k,i,d)∈{S,T}×M×D

max(1 − fk,i,d, 0) (5.4)

5.3.4 Pipeline Fusion

Multilayer pipeline fusion is a critical technique to enhance the performance of DNN models whose

computation can be decomposed into parallel streams of sequential layers. It allows concurrent

processing across DNN layers, leading to higher hardware utilization and increased throughput.

DOSA is able to optimize critical DSE decisions with multilayer pipelined mappings. Specifically,

DOSA remains effective for determining numerical variables such as spatial/temporal tiling factors,

and finding the best compute/buffer sizes (using a mapping-first approach). However, DOSA faces

challenges in making discrete pipeline fusion decisions, particularly when deciding the number of
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layers to fuse, balancing larger intermediate buffers against recomputation, and allocating DRAM

bandwidth to different layers. In this work, we do not search the space of pipeline fused layers.
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Chapter 6

Evaluation

To differentiate between Timeloop performance evaluations and cycle-accurate evaluations of Gem-

mini RTL, from this point onward we use Gemmini-TL to refer to the Timeloop architectural

definition of an accelerator analogous to Gemmini, and Gemmini-RTL to refer to the RTL im-

plementation of Gemmini1. In this section, we first analyze the performance of an accelerator

analogous to Gemmini using Timeloop simulation (Gemmini-TL), then demonstrate the ability of

DOSA to transfer to Gemmini-RTL.

6.1 Experimental Setup

We compare the performance of DSE algorithms on a variety of target DNN models that can handle

a diverse set of tasks, such as natural language processing, image classification, object detection,

and image segmentation. These target models are listed in Table 6.1. The hardware parameters we

select using the capacity requirement calculations in Section 4.1 are PE dimensions, accumulator

SRAM sizing, and scratchpad SRAM sizing. PE dimensions come from spatial tiling factors, which

can be directly used as they are always positive integers. PE array size is capped at 128x128. SRAM

sizes are rounded up to increments of 1 KB. For these experiments, the specific descent algorithm

DOSA uses is Adam, an optimizer similar to gradient descent with momentum. In Section 6.2, we

use 7 start points, rounding happens every 300 steps, and GD is run for 890 steps on each start

point. In Sections 6.3–6.5, we use 7 start points, rounding happens every 500 steps and GD is run

for 1490 steps on each start point.

In addition to using CoSA to initialize GD start points, we apply it as a constant mapper to separate

the effects of hardware and mapping improvements. CoSA requires a fixed partitioning for buffers

1Available at https://github.com/ucb-bar/gemmini.
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Training Workloads Target Workloads

AlexNet [5] BERT [48]
ResNeXt-50-32x4d [49] ResNet-50 [7]

VGG-16 [50] RetinaNet [51]
DeepBench [52] U-Net [53]

(OCR and Face Recognition)

Table 6.1: Training workloads for DNN-based performance prediction (Sections 4.7 and 6.5) and
target workloads on which we evaluate DOSA (Chapter 6). RetinaNet performance is evaluated on

layers that are not part of its ResNet backbone.

0 2000 4000 6000
Samples

1011

1012

1013

ED
P 

(u
J x

 c
yc

le
s, 

lo
g-

sc
al

e)

Baseline
Iterate
Softmax

(a) ResNet-50

0 2000 4000 6000
Samples

1010

ED
P 

(u
J x

 c
yc

le
s, 

lo
g-

sc
al

e)

Baseline
Iterate
Softmax

(b) BERT

Figure 6.1: Comparison of no loop ordering optimization by DOSA (”Baseline”), iterating over
loop orderings every time mappings are rounded (”Iterate”), and gradient-based loop ordering

(”Softmax”). The shaded regions represent a 95% confidence interval across 3 runs.

that contain multiple tensors—we set up CoSA to partition the scratchpad equally between inputs

and weights. Our Bayesian optimization-based hardware-mapping optimizer is a two-loop method

which trains a Gaussian process model with 100 hardware designs and 100 mappings per layer per

hardware design, and uses this model to select the hardware design and mappings with the best

predicted performance from 1000 candidates per problem. We select these hyperparameters based

on Spotlight [24]. Finally, the random search baseline evaluates 10 hardware designs with 1000

mappings per layer per hardware designs.

In Sections 6.2–6.4, we use Timeloop and Accelergy (with Aladdin and CACTI as plug-ins) to

evaluate latency and energy. In Section 6.5 we use RTL simulation in FireSim to evaluate latency,

and Timeloop and Accelergy to evaluate energy.
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Figure 6.2: DOSA EDP optimization of Gemmini-TL on 4 distinct workloads, versus baselines.
Each line represents the mean (across 5 runs) best point found after x model evaluations. The

shaded regions represent a 95% confidence interval across 5 runs.

6.2 Evaluating Loop Ordering Optimization Strategies

We evaluate iterative loop ordering optimization and gradient-based loop ordering optimization on

a subset of target workloads, specifically ResNet-50 and BERT. Each method uses the same start

points. As shown in Figure 6.1, we find that gradient-based loop ordering optimization finds 1.58×
better design points after 7000 samples compared to not searching loop orderings at all, whereas

iterative optimization improves EDP by 1.70× over the baseline. Potential performance gains from

searching loop orderings seem to be realized at similar levels by both methods, but slightly better
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Figure 6.3: Energy-delay product (EDP) of baseline accelerators, compared to DOSA-optimized
Gemmini-TL. Bar labels represent EDP normalized to Gemmini-TL DOSA.

by iteration after rounding. Iterative loop ordering optimization also requires significantly less

computation. We use iterative loop ordering optimization for the experiments that follow.

6.3 Hardware-Mapping Co-Search Performance

Our evaluation finds that DOSA is able to identify significantly more performant co-design points

than either random search or Bayesian optimization with a similar number of samples. BB-BO uses

Timeloop simulation as a black-box optimization metric for Gemmini-TL. The random search- and

DOSA-generated co-design points are also evaluated under this setup. After around 10,000 model
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Figure 6.4: DOSA improves performance under a constant mapper and produces near-optimal
mappings for the hardware design points it selects.

evaluations, the geometric mean of EDP improvements for DOSA versus random search is 2.80×,

and 12.59× versus BO. Evaluations done using Timeloop are considered equivalent to evaluations

done using DOSA’s differentiable model.

We find that in the regime of roughly less than 1000 samples, BB-BO performs best, likely because

it performs more hardware search. However, only using 100 samples per hardware design may

limit the full exploitation of each explore hardware design point, as by the 5,000 to 10,000 sample

regime, BB-BO is overtaken by random search and DOSA. BB-BO exhibits the least variance, while

random search and DOSA exhibit relatively high variance. However, DOSA does tend to converge

after around 6,000 samples, perhaps as it reaches close to optimal EDP.

In Figure 6.3, we compare Gemmini-TL, with hardware and mappings optimized by DOSA, with

other expert-optimized accelerator baselines (Eyeriss, NVDLA Small, NVDLA Large, and Gem-

mini default) for the four target workloads. We evaluate these accelerators using Timeloop and

search 10,000 valid mappings per layer using the Timeloop random-pruned mapper. Gemmini-TL

configurations searched by DOSA consistently outperform the baselines by more than 2× in EDP.

6.4 Separating the Effects of Hardware and Mapping Search

We further find that DOSA identifies both performant hardware design points and performant

mappings. We run gradient descent 10 times, and use Timeloop to compare EDP at the GD

start point (randomly selected hardware design with CoSA mappings) to EDP at the GD end
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point (DOSA-generated hardware designs and mappings). We also evaluate these DOSA-generated

hardware designs with CoSA mappings, to see whether the hardware design improves under a

constant mapper. This case study shows that DOSA produces a 5.75× improvement over start

point performance (geomean over 4 workloads, 10 GD instances each). Furthermore, with CoSA as

a constant mapper, DOSA generated hardware designs show a 3.21× improvement. This shows that

end point hardware designs are better than start point hardware designs and that the performance

improvements gained by DOSA are not simply due to the use of a performant mapper (CoSA) in

the loop.

DOSA mappings also show a 1.79× improvement over CoSA and a 2.78x improvement over a

1000-sample random mapper on the same hardware, showing that DOSA identifies near-optimal

mappings, competitive with or beating a state-of-the-art mapper, on the hardware design points it

generates. The results per workload are shown in Figure 6.4.

6.5 Gemmini-RTL Optimization with DOSA

In this section, we assess the efficacy of our one-loop differentiable-model-based gradient descent

approach for real hardware design. We explore three potential approaches for latency modeling

of Gemmini-RTL: an analytical-only approach using the model described in Sections 4.1–4.5, a

DNN-only model trained from scratch from measured Gemmini-RTL performance data and our

DNN-augmented analytical model approach from Section 4.7. Note that energy is predicted using

the DOSA differentiable analytical model in all cases.

6.5.1 DNN Model Training Setup

We utilize FireSim to generate cycle-accurate Gemmini-RTL latencies on our training set of models

(Table 6.1). Specifically, we generate a relatively small dataset of 1567 random mappings, roughly

evenly distributed among the layers in Table 6.1. This dataset is used to train the two DNN perfor-

mance models, which have the same architecture and are trained using the same hyperparameters.

The models are trained for 50,000 epochs. The models could likely be trained to greater accuracy

with a larger dataset, but we limit dataset size to more accurately represent a real hardware design

environment.
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Figure 6.5: Accuracy of Gemmini-RTL latency models on test split of random mappings (training
workloads from Table 6.1, unseen mappings). Correlation metric is Spearman rank correlation.
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Figure 6.6: Accuracy of Gemmini-RTL latency modeling on mappings generated using DOSA.
These are mappings for the target workloads in Table 6.1, which are not included in DNN training

data.

6.5.2 Prediction Accuracy

Figure 6.5 compares the accuracy of each approach when modeling Gemmini-RTL performance on

unseen random mappings of workloads in the training set. To quantify prediction accuracy, we

measure the Spearman rank correlation of each model’s predictions. Spearman rank correlation

measures the strength of the associations between two variables by assessing the monotonicity of

the relationship between those variables [54]. The combined model providing the highest accuracy,

with a correlation coefficient of 0.92. The analytical-only model is the next most accurate model

on this dataset with a correlation coefficient of 0.87, and the DNN-only model is the least accurate

by a small margin with a correlation coefficient of 0.84.
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Figure 6.7: DOSA optimization of Gemmini-RTL using various performance models, compared
to Gemmini’s hand-tuned hardware and mapper.

6.5.3 Optimization Performance

To evaluate DOSA’s real hardware optimization performance, we run DOSA using the analytical-

only, DNN-only and DNN-augmented latency models. Specifically, for each latency model and for

each target workload, we generate a predicted optimal set of mappings and buffer sizes for 16x16

PE Gemmini-RTL, fixing PE dimensions and adjusting only buffer sizing and mappings. We fix PE

dimensions to keep accelerator size in the same order of magnitude as default Gemmini-RTL. This

allows for a more apples-to-apples comparison against the hand-tuned default design point, and

ensures that generated configs can be simulated using FireSim. We compare the performance of

DOSA-generated mappings to the mappings generated by the Gemmini-RTL default heuristic-based

mapper, and the default scratchpad and accumulator sizings of 128 KB and 32 KB respectively

(256 KB and 64 KB including double-buffering), which were selected using heuristics similar to

those in Interstellar [29]. As mentioned above, Gemmini-RTL latency is evaluated using FireSim,

while energy is evaluated using Timeloop and Accelergy, with CACTI as a plug-in.

Figure 6.6 shows the prediction accuracy of each model on the mappings produced using DOSA

during these experiments. These are mappings for layers not present in the training dataset. On this

dataset, the DNN-only model is clearly less accurate than the analytical-only model or the DNN-

augmented analytical model, as seen by the outliers in Figure 6.6b. This reflects previous work [55],

which has shown that DNN-only methods for mapspace exploration [35] have difficulty generalizing

beyond their training sets. The analytical model, which is not fit to any particular workload,

actually improves in prediction accuracy compared to the original test dataset (Figure 6.5a), likely
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Accumulator (KB) Scratchpad (KB)
Gemmini Default 32 128

DOSA-Optimized
Gemmini-RTL

U-Net 123 322
ResNet-50 196 251

BERT 64 256
RetinaNet 112 261

Table 6.2: Gemmini configurations generated by DOSA Analytical+DNN.

because this new dataset consists of performant mappings generated by DOSA, and as such is more

uniform.

Figure 6.7 shows the EDP of Gemmini-RTL after it is optimized for each target workloads, using the

three latency models. The analytical-only and DNN-only models respectively yield 1.48× and 1.66×
improvements over Gemmini’s default buffer sizes and tilings. Despite its drop-off in prediction

accuracy, the DNN-only model outperforms the analytical model in optimization performance on

the three workloads other than U-Net. U-Net contains weight sizes unseen in the training set

(Table 6.1), again demonstrating DNN models’ difficulty in generalizing.

When DNN and analytical models are combined, we improve optimization performance even fur-

ther, to 1.82× over default, while maintaining a level of prediction accuracy (on DOSA-generated

points) higher than that of the DNN-only model and similar to that of the analytical-only model.

Unlike the DNN-only model, the DNN-augmented analytical model does not produce outliers in

our experiments, since its outputs are constrained using the analytical model prediction.

Table 6.2 shows the buffer sizes selected by DOSA with the DNN-augmented latency model. The

buffer size ratios (scratchpad size divided by accumulator size) identified by DOSA using the analyt-

ical+DNN model setup range from 1.28 to the original heuristically selected ratio of 4. We find that

for all four target workloads, DOSA sizes both the accumulator and scratchpad significantly larger

than the default sizes, indicating that these buffers may be underprovisioned for such workloads.

Furthermore, for the three convolutional neural networks (U-Net, ResNet-50, and RetinaNet), the

ratio of scratchpad to accumulator size is smaller than in the default configuration.

This experiment demonstrates that DOSA’s gradient descent-based optimization technique is com-

patible with performance models other than the analytical model presented in this work. In fact,

DOSA allows for a more iterative process when moving from simulation to real hardware, as the

model for each objective (latency, energy, and in future work, potentially area) can be replaced and

augmented independently as demonstrated here. Furthermore, the components that remain ana-

lytically modeled can be easily tuned as more accurate data becomes available or design decisions

change. For example, energy-per-access numbers could be updated based on measured numbers
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once a process node is selected or modified, which would be orders of magnitude more efficient than

generating large amounts of data for a DNN model to consume.
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Chapter 7

Conclusion

In this work, we present DOSA, a differentiable model-based approach to mapping-first DSE.

By constructing a differentiable analytical performance model for a DNN accelerator, we can use

gradient descent to perform an efficient one-loop co-search of both the hardware and mapping

spaces. This enables us to to perform DSE targeting multi-layer neural net workloads, attaining an

EDP 2.80× better than random search and 12.59× better than Bayesian optimization, while using

a similar number of samples. Furthermore, we find that DOSA not only improves hardware design

performance by 3.21× under a constant mapper, but also beats a state-of-the-art mapper on the

hardware designs it selects.

DOSA demonstrates that interpretable, designer-trusted architectural modeling and ML-based op-

timization methods can be combined to improve the convergence of DSE. We pair our analytical

latency model with a DNN model trained on RTL simulation data, improving EDP over the default

Gemmini configuration 1.48× with just the analytical model and by 1.82× when analytical and

learned models are combined. With this work, we move one step closer to bridging the gap between

architectural models and real silicon.
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