
Contract Replaceability for Ensuring Independent Design
using Assume-Guarantee Contracts

Sheng-Jung Yu

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-238
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-238.html

December 27, 2024

Copyright © 2024, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I am deeply grateful to my advisor, Professor Alberto Sangiovanni-
Vincentelli, for his guidance and encouragement, which shaped both my
research and personal growth. I also thank Professor Sanjit A. Seshia for his
valuable feedback that greatly improved this work.

Special thanks to Inigo Incer for our discussions on contracts, which
enriched this project, and to Shaokai Lin, Zheng Liang, Tung-Wei Lin, and the
members of Professor Alberto’s group for their support and camaraderie.

Finally, I express my heartfelt gratitude to my family for their unwavering
support, especially during the pandemic. Their love and belief in me made
this milestone possible.

Contract Replaceability for Ensuring Independent Design using
Assume-Guarantee Contracts

by Sheng-Jung Yu

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Alberto Sangiovanni-Vincentelli
Research Advisor

(Date)

* * * * * * *

Professor Sanjit Seshia
Second Reader

(Date)

Contract Replaceability for Ensuring Independent Design using Assume-Guarantee
Contracts

by

Sheng-Jung Yu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Alberto Sangiovanni-Vincentelli, Chair
Professor Sanjit Seshia

Spring 2025

1

Abstract

Contract Replaceability for Ensuring Independent Design using Assume-Guarantee
Contracts

by

Sheng-Jung Yu

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Complexity and heterogeneity are fundamental challenges for system design, as they prolong
the design process and increase its cost. Independent design is a promising design flow to
address these challenges whereby a supplier can develop its component without exchang-
ing system-level information with other suppliers. Recent research on assume-guarantee
contracts and contract-based design has focused on algebraic concepts, such as refinement
and composition, to achieve independent design. However, the conventional definition of
assume-guarantee contracts may result in implementations that may not operate correctly
in the targeted environment of the system, thus hindering independent design. In this re-
port, we introduce the concept of contract replaceability, a binary relation on contracts that
prevents this problem. We then extend the requirements to include receptiveness as a con-
straint on assume-guarantee contracts to ensure strong replaceability. The properties derived
from the constraints ensure that strong replaceability is satisfied under contract refinement
and cascade composition. Thus any assume-guarantee contract that satisfies this constraint
permits independent design.

i

Contents

Contents i

List of Figures ii

1 Introduction 1

2 Preliminaries 4

3 The Vacuous Implementation Problem 9

4 Receptive Contracts 14

5 Refinement with Receptive Contracts 16

6 Cascade Composition with Receptive Contracts 18

7 Discussion 24

8 Conclusion 26

Bibliography 27

ii

List of Figures

1.1 Overview of the independent design flow. 2

3.1 A scenario that all implementations in the refined contract are vacuous implemen-
tations since they form an empty set when intersecting with the original contract
assumption. 9

3.2 A motivating example that shows the vacuous implementation problem in con-
tract refinement. All implementations based on the refined composition C1 ∥ C2
are vacuous implementations for Cs. 10

4.1 Illustrations of a receptive contract and a non-receptive contract. (a) A receptive
contract as all its areas separated by the dashed lines intersect with the guarantee
set. (b) A non-receptive contract as the area at the bottom of A does not intersect
with the guarantee set. 14

6.1 Visualization of Lemma 1. Any behavior from the targeted assumption satisfies
the assumption of C1. 19

6.2 Visualization of Lemma 2. The combined behavior of any behavior from the
targeted assumption and the corresponding behavior generated by C1 satisfies
the assumption of C2. 21

Acknowledgments

I would like to extend my gratitude to my advisor, Professor Alberto Sangiovanni-Vincentelli,
for his guidance and support throughout the project. His insightful advice and encourage-
ment have been instrumental in shaping both my research and personal growth. I am also
deeply thankful to Professor Sanjit A. Seshia for his thoughtful feedback and valuable insights
on my research, which have greatly improved the quality of this work.

I would like to express my sincere appreciation to my colleague, Inigo Incer, for our many
discussions on contracts. His expertise and experience in the domain provided immense
support and significantly enriched this project.

Additionally, I want to thank my colleagues Shaokai Lin, Zheng Liang, and Tung-Wei Lin,
as well as all the members of Professor Alberto’s research group, for their genuine support
and camaraderie during my studies.

Finally, I would like to express my deepest gratitude to my beloved family for their
constant support across the Pacific Ocean. Their encouragement was especially meaningful
during the pandemic, a period marked by separation and isolation. I would not have reached
this milestone without their love, strength, and belief in me.

1

Chapter 1

Introduction

As the needs for large-scale systems, such as autonomous driving, Industry 4.0, and artifi-
cial intelligence-based applications, increased over the last decades, complexity and hetero-
geneity have become the main challenges that prolong the design process and increase its
cost [25, 26]. Several methodologies and algorithms have been proposed to cope with design
complexity and heterogeneity in all design aspects including specification, verification, and
synthesis [20, 21, 7, 26]. Among them, design specification is crucial, as it is the first stage in
a rigorous design flow. Methodologies for design specification affect efficiency in verification
and synthesis, the subsequent stages of a design flow.

Contract-based design [26, 22] tackles complexity and heterogeneity coupled with platform-
based design and formal specifications and thus has become a promising candidate for fa-
cilitating complex and heterogeneous design. Contracts are formal specifications [3] for the
design environment and its implementation. Contract-based design is a methodology that
utilizes contracts in platform-based design. It applies refinement and abstraction to reduce
complexity and separates orthogonal viewpoints, or aspects, of a design to handle the hetero-
geneity of the design [4]. Among many formalisms, assume-guarantee contracts, consisting of
an assumption set and a guarantee set, are attractive in research because of their ease of use.
The close-formed formulas of the assume-guarantee contract operations, such as composition
and quotient [24, 15], have been derived to facilitate contract-based design.

Independent design [3] is a benefit brought by contract-based design. It allows earlier
verification of the system and protects the trade secrets between designers and suppliers. In
the independent design paradigm, system-level specifications are refined with more detailed
information and decomposed into multiple parts where the composition of these parts satisfies
the system-level specifications. The refinement and decomposition ensure that the system
meets the top-level requirement once each part follows its local specification. Every supplier
thus can independently develop the part under its specification without the system-level
specifications or coordination between the suppliers. As a result, the paradigm captures
design faults at the specification stage to avoid costly and time-consuming redesign processes
and protects the high-level design ideas from leaking to the suppliers, which might be different
companies.

CHAPTER 1. INTRODUCTION 2

• Delegate the Specifications to Supplier

• Obtain the System

• Decomposition/Refinement of the Specifications

• Define Specification for System

• Design/Manufacture/Delegate to a Lower-
Level Supplier

• Composition of the Components

Figure 1.1: Overview of the independent design flow.

Figure 1.1 shows the ideal flow of independent design. First, the top-level specification
for the product is decomposed into the specifications of multiple subsystems or parts. These
specifications of the parts are sent to different suppliers proficient in the domain knowledge
to design and provide implementations for the parts. These suppliers can refine their speci-
fications, add more detailed information to the specification, or further decompose the part
specification into more part specifications and then delegate them to subsequent suppliers
for implementation. After a provider completes an implementation, the implementation is
sent back to the system integrator and composed into the target system.

However, the machinery of assume-guarantee contracts does not rule out that the imple-
mentations generated for systems or components may not operate correctly in their targeted
environments. These implementations, which we call vacuous implementations, have empty
sets of behaviors in the targeted environment (i.e., not compatible with the environment).
Therefore, vacuous implementations should be avoided in the independent design flow. As
these vacuous implementations are not excluded from the standard contract framework,
additional requirements and constraints enforced on contracts are required to support inde-
pendent design using assume-guarantee contracts.

In this work, we investigate the requirements and additional constraints on assume-
guarantee contracts to provably avoid vacuous implementations. Our contributions are the
following:

• We identify the vacuous implementation problem as an obstacle to the independent
design paradigm. To the best of our knowledge, this is the first work that discovers and

CHAPTER 1. INTRODUCTION 3

addresses this problem of the application of the contract-based design methodology to
independent design.

• We introduce replaceability, a binary relation, as a sufficient condition to prevent the
vacuous implementation problem. A refinement of a contract that follows replaceability
is guaranteed to contain implementations compatible with the contract.

• We then introduce strong replaceability, a transitive binary relation, as a restriction
on refinement to prevent the vacuous implementation problem in successive refinement
steps and enable the independent design. Strong replaceability relieves the need for
system contracts to enforce the requirement of replaceability. Once each refinement
step follows strong replaceability, the resulting contract must follow replaceability with
the system contract.

• We introduce the concept of receptiveness as a property of assume-guarantee con-
tracts. We show that receptiveness is sufficient to ensure strong replaceability, and the
independent design paradigm is permitted on receptive contracts for refinement and
cascade composition.

This report is based on the based on joint work with Inigo Incer, and Alberto Sangiovanni-
Vincentelli [27].

The remainder of the report is organized as follows: Chapter 2 introduces assume-
guarantee contracts. Chapter 3 describes the vacuous implementation problem and for-
mulates the contract replaceability requirement. Chapter 4 proposes the notion of contract
receptiveness. Chapter 5 and Chapter 6 show that contract receptiveness ensures strong
replaceability in refinement and cascade composition, respectively. Finally, Chapter 8 con-
cludes the report.

4

Chapter 2

Preliminaries

This chapter introduces the elements in assume-guarantee contracts, the contract-based de-
sign methodology, and their background.

Variables, Behaviors, and Projections

A system specification defines its interaction with the external environment. The interaction
is represented by the behaviors over the variables of the system.

Variables For our purposes, the variable is the port of the system that interacts with the
external environment. Each variable is associated with a variable type, the set of values
the variable can take. The collection of all variables in the system is the variable set of
the system, denoted by V . For example, a logical AND gate with input ports a and b, and
output port c has the variable set V = {a, b, c}, and the variable types for a, b, and c are
the Boolean domains B.

Behaviors and Components A behavior is a successive assignment of values to the vari-
ables in the system. Take the logical AND gate for example, (a, b, c) = (T, T, T), (T, F, F),
(F, F, F) . . . is one behavior. To simplify notation, in our examples, we will denote behaviors
statically, i.e., taking constant values for all time steps. However, all of the definitions and
properties used throughout the report can be applied to arbitrary behaviors.

For a variable v ∈ V , we denote the universe of the behaviors over the variable v by
Bv. The universe of system behaviors over the variable set V , represented as BV , is defined
by the direct product of the universe of behaviors for all system variables, i.e.,

∏
v∈V Bv.

For example, the universe of the behaviors over the variable set of the logical AND gate is
BV = B3.

A component M ⊆ BV is a set of behaviors. We understand the component as containing
the behaviors that one can observe from it. The behavior set can be expressed as a predicate
over the variables. All behaviors leading to the truth value of the predicate belong to the
behavior set. In the logical AND gate example, the behavior set is {(a, b, c) ∈ B3 | a∧b = c}.

CHAPTER 2. PRELIMINARIES 5

If the variable set is well-known in the context, we can express the behavior set using only
the predicate: a∧ b = c. Elaboration on these syntactic issues can be found in Chapter 7 of
[12].

The composition of two components M1 and M2 is the intersection of both behavior sets
M1∩M2. We understand this intersection as the simultaneous enforcement of the constraints
imposed by M1 and M2 on the system’s behaviors. In other words, the composition of two
components can be represented as the conjunction of their predicates (i.e., constraints).

Projections of Behaviors We will often need to map behaviors to behaviors defined over
a different set of variables. To define this map, we first define the behaviors restricted to a
single variable v ∈ V .

Let e ∈ BV be a behavior and v ∈ V , we denote ev as the behavior restricted to the
variable v.

Here we define the projection of behaviors. Let V and V ′ be two variable sets and
BV ′ ⊆ BV ′ be a set of behaviors defined in V ′, the projection of behaviors BV ′ to variables
V is as follows:

ΠV (BV ′) =

{
e ∈ BV

∣∣∣∣∣ ∃e′ ∈ BV ′ (∀v ∈ V ∩ V ′ ev = e′v) ∧
(∀v ∈ V \ V ′ e′v ∈ Bv)

}

Each behavior e after the projection corresponds to some behavior e′ ∈ BV ′ , sharing the same
assignments for the common variables and having arbitrary assignments for the variables not
in V ′.

Take the logical AND gate as an example again, the projection of its behavior to variables
{b, c} is {(b, c) ∈ B2 | ¬c ∨ b}. Consider another example of the removal of a variable and the
inclusion of an additional variable at the same time. If we are considering the system which
contains an additional input d that is unrelated to this logical AND gate, the projection to
variables {b, c, d} is {(b, c, d) ∈ B3 | ¬c ∨ b}.

Regarding notation, if e is a behavior, we will sometimes write ΠV (e) to mean ΠV ({e}).
Similarly, when ΠV (e) is a singleton, we will sometimes use ΠV (e) to denote the element it
contains. In those cases, we may see statements such as ΠV ({e}) ∈ BV .

Assume-Guarantee Contracts and Contract-Based Design

An assume-guarantee contract C, as a formal specification for a system, is a pair of behavior
sets (A,G), where A is the assumption set, and G is the guarantee set. Both behavior
sets share the same contract variable set VC, the collection of all ports in the system. The
assumption set specifies the targeted environments where the system is expected to operate.
The guarantee set describes the acceptable behaviors when the system operates under the
targeted environment. When the system operates in an environment not specified by the
assumption set, all behaviors are acceptable. As a result, the acceptable behavior set of
a contract C = (A,G) is G ∪ A. An implementation of the contract is a component MC

CHAPTER 2. PRELIMINARIES 6

which meets the contract. Therefore, the behavior set of an implementation must satisfy
MC ∩ A ⊆ G, and it is thus any subset of the acceptable behavior set: MC ⊆ G∪ A.

A contract is a saturated contract if it satisfies G∪A = G, meaning that the guarantee set
includes all the acceptable behaviors. Any contract can be saturated by replacing C = (A,G)
with (A,G∪ A). The semantics of the specification remains unchanged, as saturation does
not change the acceptable behaviors.

Contract-based design is a design methodology that specifies a system using contracts
and exploits the theory of contracts to operate on the contracts during the design process.
The refinement and the composition are the main operations in contract-based design. The
refinement increases the details of the specifications, and composition integrates multiple
subsystem contracts into a contract for the entire system. The contract-based design process
is as follows: First, the designers specify a system-level contract to reflect the goal of the
design. The contract is then refined and decomposed into multiple subsystem contracts
whose composition refines the original contracts. The process continues until the detail of
the contract for each subsystem is sufficient for actual implementation, such as a circuit
layout, a CAD model for a mechanical part, and the control parameters for a controller
design. The contract-based design leverages this hierarchical flow and abstraction of the
system to tackle design complexity and capture design faults earlier to avoid long design
cycles.

The assume-guarantee contracts support the composition and the refinement for contract-
based design using the set operations [26]. A contract C1 = (A1, G1) is a refinement of an ab-
stract contract C2 = (A2, G2), denoted by C2 ⪰ C1, if A1 ⊇ A2 and G1 ⊆ G2. The composition
of two contracts, denoted by C1 ∥ C2, can be computed as ((A1 ∩A2)∪ (G1 ∩G2), G1 ∩G2).

For a given contract C = (A,G) we define the non-assumption variables VG and the
assumption variable set VA. The non-assumption variable set is a subset of VC that is
insensitive to the assumption set, defined formally as follows:

VG =

v ∈ VC

∣∣∣∣∣∣∣
∀e ∈ BV

(ΠVC(ΠVC/{v}(e)) ⊆ A)∨
(ΠVC(ΠVC/{v}(e)) ⊆ A)

 .

The intuition of the definition is that the value of the non-assumption variable does not
affect the satisfaction of the assumption for all behaviors. The set ΠVC(ΠVC/{v}(e)) contains
all behaviors that have the same value as e for all variables except for v.

The assumption variable set VA is defined as VA = VC \ VG, the set difference of VC and
VG.

For example, considering the contract C = (A,G) = (x ≥ 0 ∧ y ≥ 0, z = x + y), VC =
{x, y, z}, the non-assumption variable set VG is {z} and the assumption variable VA is {x, y}.

CHAPTER 2. PRELIMINARIES 7

Related Work

The notion of contracts derives from a software engineering technique using preconditions
and postconditions to specify and verify a program method. Once the preconditions, the
responsibilities of the caller, are satisfied, the method ensures the postconditions. Variants
of these specifications are also proposed to reason different systems. For example, Jones [16]
proposes rely-guarantee reasoning for concurrent programming, adding rely-conditions, the
assumptions on the changes of global states made by other processes, and guarantee condi-
tions, the changes of global states that can be made by the programs itself. Meyer [18] was
the first to use the term “contract” in its proposed design methodology, as an analogy to
business contracts between the caller of function and the function itself.

The contracts are later adopted in the (cyber-physical) system design domain for formal
verification and specifications of components operating in parallel. Abadi et al. [2, 1] was
the first to represent specifications as assumptions and guarantees for Transition Systems
and their composition. Sangiovanni-Vincentelli et al. [26] then developed the contract-based
design methodology, which utilizes contracts in the platform-based design for cyber-physical
system designs. The contracts in the methodology include horizontal contracts and vertical
contracts. The horizontal contracts describe the interactions of the components in the same
level of abstraction, and the vertical contracts capture additional assumptions between dif-
ferent levels of abstraction. Applications of the contract-based design methodology to build
a systematic design flow, such as aircraft Electricity Power System [20] and analog system
interface design [21], have demonstrated its potentials in handling complex design problems.
Extensions of contracts formalism are also proposed in different applications, such as opti-
mization of controller designs [23], stochastic systems [22], and hyperproperties [13] We refer
interested readers to Chapter 3 of the monograph by Benveniste et al. [3], which provides
a comprehensive background of contracts in software engineering and their adoption by the
cyber-physical domain in formal verification and specification.

This report focuses on the problem in the application of refinement in contract-based
design. Many works have proposed algorithms for verifying and generating refinement of
contracts. Cimatti et al. [6, 5] proposed the property-based proof systems to check whether
a system is refined by the submodule contracts. The algorithm tests whether the guarantees
generated by all submodules satisfy the top-level guarantees, and any top-level environments
operating with all submodules create an environment for each submodule. Le et al. [17] pro-
posed a similar paradigm more generically by defining a set of metatheoretical operators
which allows the proof strategy to apply in different contract frameworks. Iannopollo et
al. [11] adopted a hierarchical verification strategy and proposed a library-based contract
refinement checking algorithm. The algorithm utilizes pre-checked refinement relations in
the library to accelerate the verification. Iannopollo et al. [9, 8] also proposed a counter-
example guided inductive synthesis-based constrained synthesis flow to synthesize contracts
from a library of components or contracts specified using linear temporal logic. Their subse-
quent work [10] improves the synthesis efficiency by hierarchically decomposing the contracts
into smaller contracts. These works are not aware of the potential vacuous implementation

CHAPTER 2. PRELIMINARIES 8

problem in the refinement process, the key enabler of the independent design paradigm. To
the best of our knowledge, this is the first work that formally defines the requirement for
independent design using contracts and introduces constraints to address the problem. As a
result, this work complements the algorithms and tools by identifying the requirements for
ensuring independent design. By enforcing the requirements, independent design can be en-
sured using the contract-based design without worrying about the vacuous implementation
problem.

Receptiveness is the foundation for our proposed receptive contracts. The concept of
receptiveness, which originates from the implementation point of view, was first proposed
by Benveniste et al. [4], where receptiveness is defined over behaviors as any values for the
specified variables corresponding to some behaviors restricted by an assertion. Then the
consistency of a contract is defined as the guarantee being u-receptive, where u stands for
the uncontrolled variables in the variable set. The same notion for receptiveness was also
mentioned in the later works [3, 5, 7, 26], while Benveniste et al. [3] and Inigo et al. [15] define
the contract consistency differently as contracts containing nonempty implementations set.

However, these works do not show the relation of receptiveness to the ability of indepen-
dent design, as they intend to ensure receptive implementations and semantically separate
the responsibilities of the assumption and guarantees instead of independent design. Their
definition based on predefined partitioning of variables also limits the application of con-
tracts as it cannot apply to components without rigorous input-output ports such as ones
with bidirectional ports. Furthermore, being u-receptive requires the guarantees to include
behaviors rejected by its assumptions, and thus the guarantees have larger behavior set
sizes and contain redundant information. Therefore, taking the notion of receptiveness for
behaviors as the foundation, our work defines receptiveness for contracts which does not
contain redundant information by requiring receptiveness only for the behaviors accepted by
assumptions. We show that our proposed receptive contracts ensure independent design and
it does not rely on predefined partitioning of controlled and uncontrolled variables.

9

Chapter 3

The Vacuous Implementation
Problem

As introduced before, the empty sets of behaviors could be problematic in the set-based
definition of contracts. Given a contract C = (A,G), an implementation of the contract C is
a componentMC such thatMC∩A ⊆ G. Since an empty set is a subset of G, a componentM ′

C
such that M ′

C∩A = ∅ is by definition an implementation of C. However, this implementation
is not compatible with the targeted environment A. We call such an implementation a
“vacuous implementation” of the contract. We also define a “strict implementation” of the
contract C as an implementation MC such that MC ∩ A ̸= ∅.

𝐴 𝐺
𝐴′

𝐺′

(a) Original Contract (b) Refined Contract

𝐴 𝐺

Figure 3.1: A scenario that all implementations in the refined contract are vacuous im-
plementations since they form an empty set when intersecting with the original contract
assumption.

During the design process, we should avoid vacuous implementations and guarantee strict
implementations. However, the refinement of contracts results in smaller acceptable behavior
sets, and thus we may lose all strict implementations for the original contracts. Consider a
scenario where the contract is C = (A,G) and its refinement contract is C ′ = (A′, G′) such
that the acceptable behavior set of the refined contract and the original assumption set are

CHAPTER 3. THE VACUOUS IMPLEMENTATION PROBLEM 10

𝐶! = (𝑥 ≥ 2, 𝑦 = 4𝑥)

𝐶" = (𝐴", 𝐺")
𝐴": 𝑥 ≥ 0
𝐺": 𝑧 = 2𝑥

𝑥 ≥ 2 𝑦 = 4𝑥
𝐶# = (𝐴#, 𝐺#)
𝐴#: 𝑧 ≥ 1
𝐺#: 𝑦 = 2𝑧

𝑥 ≥ 2

𝐶! = (𝑥 ≥ 2, 𝑦 = 4𝑥)

𝐶# = (𝐴#, 𝐺#)
𝐴#: 𝑧 ≥ 1
𝐺#: 𝑦 = 2𝑧

∅
𝐶"′ = (𝐴"′, 𝐺"′)
𝐴"$: 𝑥 ≥ −5

𝐺"′: 𝑧 = 2𝑥 ∧ 𝑥 < 1

Figure 3.2: A motivating example that shows the vacuous implementation problem in con-
tract refinement. All implementations based on the refined composition C1 ∥ C2 are vacuous
implementations for Cs.

disjoint, as illustrated in Figure 3.1. All implementations M ′ of the contract C ′ are vacuous
implementations since M ′ ∩ A ⊆ (G′ ∪ A′)∩ A = ∅.

In this section, we first provide a motivating example of the vacuous implementation
problem in the independent design and then formulate the requirements to avoid the problem.

Motivating Example

Figure 3.2 shows an example that the refinement of contracts results in vacuous imple-
mentations. Let the system contract be Cs = (As, Gs) = (x ≥ 2, y = 4x), and two con-
tracts be C1 = (A1, G1) = (x ≥ 0, z = 2x) and C2 = (A2, G2) = (z ≥ 1, y = 2z) as
its subsystems whose composition refines the system contract. All contracts are defined
on the variable set Vs = {x, y, z}. The two subsystem contracts are then sent to differ-
ent suppliers for independent development. If the supplier for C1 refines the contract as
C ′
1 = (A′

1, G
′
1) = (x ≥ −5, z = 2x ∧ x < 1) during the design process, the composition of C ′

1

and C2 remains a refinement for the system-level contracts. However, all implementations of

CHAPTER 3. THE VACUOUS IMPLEMENTATION PROBLEM 11

the composition are vacuous implementations for Cs, as shown in the following derivation:

(M ′
1 ∩M2)∩ As ⊆ (G′

1 ∪ A′
1)∩ (G2 ∪ A2)∩ As

⊆ (G′
1 ∪ A′

1)∩ As

⊆ ((z = 2x ∧ x < 1) ∨ (x < −5)) ∧ (x ≥ 2)

= ∅,

where M ′
1 is any implementation for C ′

1 and M2 denotes any implementation for C2.
The example shows that the refinement can result in the vacuous implementation prob-

lem during independent design. Therefore, we hope to restrict the refinement to guarantee
strict implementations, and the vacuous implementation problem can avoid the problem in
independent development as long as all suppliers follow the restriction. In the next part, we
formulate the requirement to avoid vacuous implementations and develop a restriction based
on the requirement.

Requirement for Independent Design

We define contract replaceability as the requirement to guarantee strict implementation:

Definition 1. Let C1 = (A1, G1) and C2 = (A2, G2) be saturated contracts that satisfy C1 ⪰ C2
and share the same variable set VC and assumption variable set VA. We say that C1 is
replaceable by C2, or that C2 replaces C1, if the following condition is satisfied:

∃e ∈ ΠVA
(A1),ΠVC(e)∩G2 ̸= ∅,

or, equivalently, A1 ∩G2 ̸= ∅.

Contract replaceability requires a projected behavior e in the assumption set A1 such that
the intersection of the guarantee set and the behavior projected back to the entire variable
set VC is not an empty set. As a result, a behavior with the assignments of the assumption
variables satisfying A1, the targeted environment, can be found in G2, the refined guarantee.
A binary relation called the contract replaceability relation is defined as the set containing
all contract pairs (C1, C2) such that C1 replaces C2.

Contract replaceability ensures that the strict implementations for the original contracts
can be found using the refined contract, summarized in Theorem 1:

Theorem 1. Let C1 = (A1, G1) and C2 = (A2, G2) be saturated contracts over the same
variable set VC and assumption variable set VA such that C2 refines C1 and C2 replaces C1.
Any implementation M2 of C2 such that M2 ⊇ (G2 ∩ A2) is a strict implementation for C1.

Proof. We prove Theorem 1 by showing that M2 ∩ A1 is not an empty set:

M2 ∩ A1 ⊇ (G2 ∩ A2)∩ A1 = G2 ∩ A1 ̸= ∅,

CHAPTER 3. THE VACUOUS IMPLEMENTATION PROBLEM 12

where the equality is by the definition of refinement that A1 ⊆ A2, and the inequality is by
the definition of contract replaceability. Therefore, M2 ∩ A1 is a superset of a non-empty
set, which means M2 ∩ A1 is not an empty set and thus a strict implementation for C1.

As a result, once the system contract is replaceable by the refined contract, we can find
a strict implementation for the system contract using the refined contract.

However, we need the assumption set from the system contract to ensure contract re-
placeability. In independent design, the supplier does not obtain the system contract but
relies on a refined contract. Intuitively, we can require that the supplier guarantees contract
replaceability for the refined contract instead of the system contract. Unfortunately, the
contract replaceability relation is not transitive. A contract replacing the refined contract is
not guaranteed to replace the system contract, as shown in the following example:

Example 1. Consider the following three contracts C1, C2, and C3, where C1 ⪰ C2 ⪰ C3:

C1 = (A1, G1) = (x ≥ 0, y = 2x)

C2 = (A2, G2) = (x ≥ −2, (y = 2x ∧ x ≤ 4) ∨ (x < −2))

C3 = (A3, G3) = (x ≥ −4, (y = 2x ∧ x ≤ −1) ∨ (x < −4)).

We can see that C2 replaces C1, and that C3 replaces C2. However, C3 does not replace C1 as
A1 ∩G3 = (x ≥ 0) ∧ ((y = 2x ∧ x ≤ −1) ∨ (x < −4)) = ∅

To address the problem, a transitive relation that guarantees strict implementation is
required. Thus, we propose strong replaceability :

Definition 2. Let C1 = (A1, G1) and C2 = (A2, G2) be saturated contracts that satisfy C1 ⪰ C2
and share the same variable set VC and assumption variable set VA. We say that C1 is
strongly replaceable by C2, or C2 strongly replaces C1, if the following condition is satisfied:

∀e ∈ ΠVA1
(A1),ΠVC1

(e)∩G2 ̸= ∅.

Strong replaceability requires that for all projected behaviors e in the assumption set A1,
the intersection of the guarantee set and the behavior projected back to the entire variable
set VC1 is not an empty set. As a result, for each assignment of the assumption variables
satisfying A1, we can always find a satisfying behavior in G2. A binary relation called the
strong replaceability relation is defined as the set containing all contract pairs (C1, C2) such
that C1 strongly replaces C2. The difference between replaceability and strong replaceability
is the quantification of the projected behavior.

We can show that the strong replaceability relation is transitive:

Proposition 1. Let C1 = (A1, G1), C2 = (A2, G2), and C3 = (A3, G3) be saturated contracts
over the same variable set VC and assumption variable set VA such that C1 ⪰ C2 ⪰ C3. If C2
strongly replaces C1 and C3 strongly replaces C2, then C3 strongly replaces C1.

CHAPTER 3. THE VACUOUS IMPLEMENTATION PROBLEM 13

Proof. Since C3 strongly replaces C2, by the definition of strong replaceability:

∀e2 ∈ ΠVA
(A2),ΠVC(e2)∩G3 ̸= ∅. (3.1)

And A1 ⊆ A2 by the definition of contract refinement, so their projected behavior sets
also hold the subset relation: ΠVA

(A1) ⊆ ΠVA
(A2).

Therefore, ∀e1 ∈ ΠVA
(A1), e1 ∈ ΠVA

(A2), and thus e1 satisfies the qualification for (3.1):
∀e1 ∈ ΠVA

(A1),ΠVC(e1) ∩ G3 ̸= ∅. By the definition of strong replaceability, C3 strongly
replaces C1.

Combining Theorem 1 and Proposition 1, we conclude that strong replaceability guaran-
tees strict implementations during independent design in Theorem 2

Theorem 2. Let C1 = (A1, G1), C2 = (A2, G2), C3 = (A3, G3), . . . , Cn = (An, Gn) be
saturated contracts over the same variable set VC and assumption variable set VA such that
Ci ⪰ Ci+1 for i = 1 . . . n − 1. If Ci+1 strongly replaces Ci for i = 1 . . . n − 1, then any
implementation Mn such that Mn ⊇ An ∩Gn strictly implements C1.

Therefore, we propose strong replaceability as the restriction for suppliers to perform
contract refinement. As long as all the suppliers follow the restriction to ensure strong
replaceability, strict implementations for the system contracts can be found by An ∩Gn.

14

Chapter 4

Receptive Contracts

We have formulated strong replaceability as a restriction to ensure strict implementations
in independent design. However, the problem that the conventional operations in assume-
guarantee contracts cannot ensure strict implementations is worth exploring. In this chapter,
we propose contract receptiveness as a constraint for assume-guarantee contracts so that any
operations in independent design under the constraint ensure strict implementations. We will
show that the receptive contract guarantees strong replaceability for refinement in Chapter 5
and cascade composition in Chapter 6.

𝐴 𝐺 𝐴 𝐺

(a) A receptive contract (b) A non-receptive contract

Figure 4.1: Illustrations of a receptive contract and a non-receptive contract. (a) A receptive
contract as all its areas separated by the dashed lines intersect with the guarantee set. (b) A
non-receptive contract as the area at the bottom of A does not intersect with the guarantee
set.

CHAPTER 4. RECEPTIVE CONTRACTS 15

Contract receptiveness is defined as follows:

Definition 3. A receptive contract is a contract C = (A,G) satisfying the following condi-
tion:

∀e ∈ ΠVA
(A),ΠVC(e)∩G ̸= ∅.

A receptive contract requires that every assignment to the assumption variable set allowed
by the assumption set corresponds to at least a behavior in the guarantee set. Figure 4.1
illustrates the concept of the receptive contract. The areas between the dashed line represent
all the assumption set assignments, ΠVA

(A) Each area in the receptive contract, as shown in
Figure 4.1 (a), must contain a behavior in G, while some areas in a non-receptive contract,
as shown in Figure 4.1 (b), do not contain any behavior in G.

Example 2. The contract C1 in Example 1 is a receptive contract while the contracts C2 and
C3 are not receptive contracts. To check the receptiveness of C1, we first find the assumption
set assignments ΠVA1

(A1) = {x | x ≥ 0}. For all assignments x ≥ 0, we can find a behavior
(x, y) = (x, 2x) that is in G1 and ΠVC1

(x). Therefore, C1 is a receptive contract.
Then we check the receptiveness of the contracts C2 and C3 in Example 1, The assignments

of the assumption variable allowed by C2 is {x | x ≥ −2}. However, as the guarantee set
requires x ≤ 4, any behavior with assignments of the assumption variable being x > 4 is
not in the guarantee set. Similarly, for C3, the guarantee set requires x ≤ −1, and thus any
behavior with assignments of the assumption variable being x > −1 is not in the guarantee
set. Therefore, the two contracts are not receptive.

16

Chapter 5

Refinement with Receptive Contracts

In this chapter, we show that the proposed receptive contracts guarantee strong replaceability
for refinement during independent design and allow the suppliers to discover design faults in
the specifications.

Theorem 3 states that receptive contracts guarantee strong replaceability in the refine-
ment operation:

Theorem 3. Let C1 = (A1, G1) and C2 = (A2, G2) be saturated contracts over the same
variable set VC and assumption variable set VA such that C1 ⪰ C2. If C2 is a receptive
contract, then C2 strongly replaces C1.

Proof. We prove Theorem 3 by converting the condition for receptiveness to the condition
for strong replaceability:

As C2 is receptive, using the definition for the receptive contract we get:

∀e1 ∈ ΠVA
(A2), G2 ∩ ΠVC(e1) ̸= ∅.

By the definition of contract refinement, A1 ⊆ A2, so ΠVA
(A1) ⊆ ΠVA

(A2). Therefore,
∀e2 ∈ ΠVA

(A1), e2 ∈ ΠVA
(A2). Combining the above results, we get

∀e2 ∈ ΠVA
(A1), G2 ∩ ΠVC(e2) ̸= ∅.

Therefore, C2 strongly replaces C1 by the definition of strong replaceability.

Receptive contracts guarantee strong replaceability not only for the abstract contracts
before refinement but also for the system contract. To see this, we first show that a receptive
refined contract implies that its abstract contract is also receptive:

Proposition 2. Let C1 = (A1, G1) and C2 = (A2, G2) be saturated contracts over the same
variable set VC and assumption variable set VA such that C1 ⪰ C2. If C2 is a receptive contract,
then C1 is also a receptive contract.

CHAPTER 5. REFINEMENT WITH RECEPTIVE CONTRACTS 17

Proof. During the proof in Theorem 3, we have derived the following:

∀e2 ∈ ΠVA
(A1), G2 ∩ ΠVC(e2) ̸= ∅.

By the definition of contract refinement, G1 ⊇ G2:

∀e2 ∈ ΠVA
(A1), G1 ∩ ΠVC(e2) ⊇ G2 ∩ ΠVC(e2) ̸= ∅.

Therefore, C1 is a receptive contract by Definition 3.

Strong replaceability for the system contracts, summarized in Theorem 4, can thus be
derived by combining Proposition 2 and Theorem 3:

Theorem 4. Let C1 = (A1, G1), C2 = (A2, G2), C3 = (A3, G3), . . . , Cn = (An, Gn) be
saturated contracts over the same variable set VC and assumption variable set VA such that
Ci ⪰ Ci+1 for i = 1 . . . n− 1. If Cn is a receptive contract, then Cn strongly replaces C1.

Proof. We prove Theorem 4 by induction. When n = 2, the statement holds by Theorem 3.
Assume that the statement holds for n = k. When n = k + 1, Ck+1 strongly replaces C2 by
the assumption. C2 is a receptive contract as Ck+1 is a receptive contract by Proposition 2.
Applying Theorem 3 on C2 and C1, C2 strongly replaces C1. Therefore, by the transitivity of
strong replaceability in Proposition 1, Ck+1 strongly replaces C1. By mathematical induction,
Theorem 4 holds for any n ≥ 2.

Furthermore, Theorem 4 implies that the suppliers can discover faults in the specification.
We can impose receptiveness as a constraint on the assume-guarantee contract. The suppliers
can rest assured that strong replaceability holds as long as the received abstract contract is
receptive. In contrast, if the suppliers receive a non-receptive abstract contract, some faults
must have occurred before the abstract contract was generated. Accordingly, the supplier
can alert the specification provider to check for faults during the design process.

18

Chapter 6

Cascade Composition with Receptive
Contracts

We have presented requirements for independent design under the refinement operations.
However, in contract-based design, an abstract contract can be decomposed into several
contracts whose composition refines the abstract contract. The decomposition of a contract
is analogous to decomposing a system into several subsystems. Each subsystem follows the
decomposed contracts. If a supplier receives one of the subsystem contracts and refines the
subsystem contract, the supplier cannot check the strong replaceability of the composition
without the other subsystem contracts. In this chapter, we discuss strong replaceability in
composition using receptive contracts.

A composition is either a cascade composition or a feedback composition, depending on
the topology of the subsystems. A cascade composition has subsystem order such that the
assumption variable set of each subsystem only connects to the variables from the assumption
variable set of the environment or the variables set from the preceding subsystems. We will
use the subscript s to denote the system contract and numbers as subscripts to denote the
order for the subsystem in a cascade composition. For example, let a system Cs be a cascade
composition of two subsystem contracts C1 ∥ C2. Then C1 precedes C2, and thus by the
definition of cascade composition, VA1 must be a subset of VAs . A feedback composition is
any composition that is not a cascade composition, meaning that subsystem order cannot
be defined.

In this chapter, we discuss the following problem: Let the system contract be Cs =
(As, Gs), Let C1 = (A1, G1) and C2 = (A2, G2) be saturated receptive contracts in a cascade
composition such that Cs ⪰ C1 ∥ C2. Let C ′

1 = (A′
1, G

′
1) and C ′

2 = (A′
2, G

′
2) be saturated

receptive contracts such that C1 ⪰ C ′
1 and C2 ⪰ C ′

2. All the behavior sets are defined in the
variable set VCs . We will show that the composition C ′

1 ∥ C ′
2 strongly replaces the system

contract Cs = (As, Gs). For the feedback composition, we will present an example showing
that the composition of the refined receptive contracts does not ensure strong replaceabil-
ity. More constraints are thus required for general composition. We leave these additional
constraints for feedback composition as future work.

CHAPTER 6. CASCADE COMPOSITION WITH RECEPTIVE CONTRACTS 19

Any behavior 𝑒 ∈ Π!!"(𝐴")
The behavior Π!!# 𝑒 , which is in Π!!# 𝐴#

𝐶! = (𝐴!, 𝐺!)

𝐶" = (𝐴", 𝐺") 𝐶# = (𝐴#, 𝐺#)

Figure 6.1: Visualization of Lemma 1. Any behavior from the targeted assumption satisfies
the assumption of C1.

We develop two lemmas to show strong replaceability of the cascade composition by
receptive contracts. The first lemma, summarized in Lemma 1, states that any assignments
to the assumption variable set of the system contract must satisfy the assumption of the
first contracts.

Lemma 1. Let Cs = (As, Gs), C1 = (A1, G1), and C2 = (A2, G2) be saturated receptive
contracts such that Cs ⪰ C1 ∥ C2, then ∀e ∈ ΠVAs

(As),ΠVA1
(e) ∈ ΠVA1

(A1).

Figure 6.1 illustrates the concept in Lemma 1. The lemma is proved by contradiction: if
ΠVA1

(e) /∈ ΠVA1
(A1), then e /∈ ΠVAs

(As).

Proof. Assume that e is a counterexample of Lemma 1 such that e ∈ ΠVAs
(As) and ΠVA1

(e) /∈
ΠVA1

(A1). We want show that e /∈ ΠVAs
(As), and thus the assumption leads to a contradic-

tion.
First, we show that ΠVCs

(e) ⊆ A1 and ΠVCs
(e) ⊆ G1. Since ΠVA1

(e) /∈ ΠVA1
(A1), we can

project the two sides back to VCs :

ΠVA1
(e) /∈ ΠVA1

(A1)

=⇒ ΠVCs
(ΠVA1

(e)) ⊆ ΠVCs
(ΠVA1

(A1))

=⇒ ΠVCs
(e) ⊆ ΠVCs

(A1)

=⇒ ΠVCs
(e) ⊆ A1 ⊆ G1 ∪ A1 ⊆ G1. (6.1)

Then we discuss whether e can satisfy the assumption set of the second contract in two
cases. The first case is ΠVA2

(e) ⊆ ΠVA2
(A2) and the second case is ΠVA2

(e) ⊈ ΠVA2
(A2).

CHAPTER 6. CASCADE COMPOSITION WITH RECEPTIVE CONTRACTS 20

Case 1

ΠVA2
(e) ⊆ ΠVA2

(A2)

=⇒ ΠVCs
(ΠVA2

(e)) ⊆ ΠVCs
(ΠVA2

(A2))

=⇒ ΠVCs
(e) ⊆ ΠVCs

(A2)

=⇒ ΠVCs
(e) ⊆ A2 ⊆ G2 ∪ A2 = G2. (6.2)

Combining (6.1) and (6.2), we get:

ΠVCs
(e) ⊆ (A1 ∪ A2)∩ (G1 ∩G2)

⊆ ((A1 ∩ A2)∪ (G1 ∩G2))

⊆ As.

Therefore, ΠVCs
(e) ⊆ As, and thus e /∈ ΠVAs

(As), which contradicts our assumption that e is
a counterexample.

Case 2 When ΠVA2
(e) ⊈ ΠVA2

(A2), ΠVA2
(e) ∩ ΠVA2

(A2) ̸= ∅. We can find a behavior
e2 ∈ ΠVA2

(e) ∩ ΠVA2
(A2). Since C2 is a receptive contract, we can find a behavior e3 ∈

ΠVC2
(G2) ∩ ΠVC2

(e2). Considering the behavior e4 = ΠVCs
(e3) ∩ ΠVCs

(e), we can get e4 ∈
ΠVCs

(e) and e4 ∈ ΠVCs
(e3). Also, e4 ∈ ΠVCs

(e) implies e4 ∈ A1 ⊆ G1.
Therefore, we can get:

e3 ∈ ΠVC2
(G2) =⇒ ΠVCs

(e3) ⊆ G2 =⇒ e4 ∈ G2.

As a result, we can derive that e4 is not a behavior in As:

e4 ∈ A1 ∩ (G1 ∩G2)

∈ ((A1 ∩ A2)∪ (G1 ∩G2))

∈ As.

Therefore, e4 ∈ As, and thus e = ΠVAs
(e4) /∈ ΠVAs

(As), which contradicts the assumption
that e is a counterexample.

As both cases lead to contradictions, Lemma 1 is thus proved.

The other lemma, as shown in Lemma 2, states that the behaviors of the first contract
satisfy the assumption of the second contract if the behaviors meet the assumption of the
system contract.

Lemma 2. Let Cs = (As, Gs), C1 = (A1, G1), and C2 = (A2, G2) be saturated receptive
contracts such that Cs ⪰ C1 ∥ C2, then ∀e1 ∈ ΠVAs

(As), ∀e2 ∈ ΠVC1
(G1)∩ΠVC1

(e1),ΠVA2
(e1)∩

ΠVA2
(e2) ∈ ΠVA2

(A2).

CHAPTER 6. CASCADE COMPOSITION WITH RECEPTIVE CONTRACTS 21

𝐶! = (𝐴!, 𝐺!)

Any behavior 𝑒! ∈ Π"!"(𝐴#)
Any behavior 𝑒$ ∈ Π"#$(𝐺!)⋂Π"#$(𝑒!)
The behavior Π"!%(𝑒!) ⋂Π"!%(𝑒$), which is in Π"!%(𝐴$)

𝐶" = (𝐴", 𝐺")

𝐶# = (𝐴#, 𝐺#)

Figure 6.2: Visualization of Lemma 2. The combined behavior of any behavior from the
targeted assumption and the corresponding behavior generated by C1 satisfies the assumption
of C2.

Figure 6.2 illustrates the concept in Lemma 2. The projected assumption from the system
contracts and all the corresponding behaviors generated by G1 must be in the assumption
set of the second contract.

The lemma is proved by contradiction that if ΠVA1
(e1) /∈ ΠVA1

(A1), then e /∈ ΠVAs
(As):

Proof. Assume that e ∈ ΠVAs
(As) and that e2 ∈ ΠVC1

(G1)∩ΠVC1
(e1) forms a counterexample

such that ΠVA2
(e1)∩ ΠVA2

(e2) /∈ ΠVA2
(A2). Therefore, we can derive the following:

ΠVA2
(e1)∩ ΠVA2

(e2) /∈ ΠVA2
(A2)

=⇒ ΠVCs
(e1)∩ ΠVCs

(e2) ⊆ A2 ⊆ G2

and

e2 ∈ ΠVC1
(G1)

=⇒ ΠVCs
(e2) ⊆ G1

=⇒ ΠVCs
(e1)∩ ΠVCs

(e2) ⊆ G1.

CHAPTER 6. CASCADE COMPOSITION WITH RECEPTIVE CONTRACTS 22

Similar to the proof for Lemma 1, we can show that ΠVCs
(e1)∩ ΠVCs

(e2) ⊆ As:

ΠVCs
(e1)∩ ΠVCs

(e2) ⊆ (A2)∩ (G1 ∩G2)

⊆ ((A1 ∩ A2)∪ (G1 ∩G2))

⊆ As.

Therefore, ΠVCs
(e1) ⊆ As, and thus e1 /∈ ΠVAs

(As) contradicts the assumption.

With Lemmas 1 and 2, we conclude that any refinement to the receptive contracts ensures
strong replaceability, as shown in Theorem 5:

Theorem 5. Let Cs = (As, Gs), C1 = (A1, G1), and C2 = (A2, G2) be saturated receptive
contracts such that Cs ⪰ C1 ∥ C2, and let C ′

1 = (A′
1, G

′
1) and C ′

2 = (A′
2, G

′
2) be saturated

receptive contracts such that C1 ⪰ C ′
1 and C2 ⪰ C ′

2, then C ′
1 ∥ C ′

2 strongly replaces Cs.

Proof. Using the proposition of contract refinement, Cs ⪰ C ′
1 ∥ C ′

2. By Lemma 1, for every
e ∈ ΠVAs

(As), ΠVA1
(e) ∈ ΠVA1

(A′
1). Since C ′

1 is a receptive contract, we can find e2 such that
e2 ∈ ΠVC1

(e)∩ ΠVC1
(G′

1), and thus:

ΠVCs
(e2) ∈ G′

1. (6.3)

By Lemma 2, e2 and e satisfies ΠVA2
(e) ∩ ΠVA2

(e2) ∈ ΠVA2
(A2). Similarly, since C ′

2 is a
receptive contract, we can find e3 such that e3 ∈ ΠVC2

(ΠVA2
(e)∩ ΠVA2

(e2))∩ ΠVC2
(G′

2), and
thus:

ΠVCs
(e3) ∈ G′

2. (6.4)

Considering the behavior ΠVCs
(e) ∩ ΠVCs

(e2) ∩ ΠVCs
(e3) and combining the results in (6.3)

and (6.4), we get:

ΠVCs
(e)∩ ΠVCs

(e2)∩ ΠVCs
(e3) ∈ G′

1 ∩G′
2

⊆ Gs.

As ΠVCs
(e)∩ΠVCs

(e2)∩ΠVCs
(e3) ∈ ΠVCs

(e), the condition for strong replaceability is satisfied.
Therefore, C ′

1 ∥ C ′
2 strongly replaces Cs.

Finally, we show an example of a feedback composition using receptive contracts that
contains only vacuous implementations after refinement:

Example 3. Let Cs be the system contract, C1 and C2 be the subsystem contracts, and C ′
1 be

the refined contract for C1:

Cs = (True, y =
x

1− x
), Vs = {x, y},

C1 = (True, (y = b+ 1) ∨ (y = xb)), V1 = {x, y, b},
C2 = (True, b = y + 1), V2 = {y, b},
C ′
1 = (True, y = b+ 1), V1

′ = {x, y, b}.

CHAPTER 6. CASCADE COMPOSITION WITH RECEPTIVE CONTRACTS 23

The compositions C ′
1 ∥ C2 and C1 ∥ C2 both refine C1. But C ′

1 ∥ C2 = (True, ∅), and thus the
only implementation is a vacuous implementation M ′

1 = ∅, even though the refined contract
is a receptive contract.

We believe that additional constraints are needed for feedback composition such that
the strong replaceability of any composition is ensured. The constraints for the feedback
composition will be material for future work.

24

Chapter 7

Discussion

In this chapter, we discuss the impacts of the discovery and proposed concept on the contract-
based design process, and thus the need for the development of new algorithms and tools for
supporting contract-based design.

Design Faults in Refinement

The vacuous implementation problem should be regarded as a type of design fault, which
might be caused by the designer or problems in the automation tools to generate refined con-
tracts not satisfying the replaceability relation. The replaceability relation is crucial for the
refinement process to guarantee the compatibility of its subsystems and thus avoid vacuous
implementations after system integration. Only verifying the refinement relation cannot cap-
ture this type of design fault. Therefore, existing contract-based design methodologies [26,
22] that propose using refinement in the design process, should include a stage for verifying
the replaceability of the top-level specification. The transitive strong replaceability breaks
down the problem of verifying the replaceability of the top-level specification into verifying
the strong replaceability between each refinement step and thus can be applied in the inde-
pendent design paradigm. If the design faults are not captured in this early stage of design,
the vacuous implementation would result in huge costs and design time overhead.

Applying Receptive Contracts

In Chapter 4– 6, we have shown that receptive contracts guarantee strong replaceability in
cascade composition and pure contract refinement. The theory indicates that using receptive
contracts can further simplify the process of verifying the replaceability relation. As long as
the system does not contain feedback composition, receptive subsystem contracts guarantee
the replaceability of the refined systems to the top-level specifications. In many application
fields, the specifications should be receptive by their definitions, such as controller design and
sequential programs. The inputs and outputs are explicitly defined for every system in these
fields. Therefore, verifying receptive contracts can serve two roles at the same time, one is

CHAPTER 7. DISCUSSION 25

verifying the design faults, and the other is maintaining the semantics of the components, as
it is meaningless for a controller or a program method to have no outputs for any allowable
inputs.

The Need for Development of New Algorithms and Tools

With the proposed theory, we suggest the development of new algorithms and tools to
facilitate the contract-based design. Existing contract tools and algorithms [5, 11, 14] do not
include the functionality to verify the replaceability relation, and thus are unable to detect
the design faults of vacuous implementation. The universal quantification in the strong
replaceability and receptiveness is challenging for algorithm development as its decidability
depends on the representations of contracts. For example, the Presburger arithmetic is
decidable while it becomes undecidable if multiplication is involved [19]. Therefore, research
on tools and algorithms for different representations of contracts is required to prevent design
faults and enable independent design using contracts.

26

Chapter 8

Conclusion

We identified the vacuous implementation problem using assume-guarantee contracts under
the independent design paradigm. We first explored the notion of contract replaceability.
This notion was shown to be the requirement to ensure strict implementations, but it is
not transitive, thus limiting its applicability in independent design. The stricter notion of
strong replaceability also ensures strict implementations and is transitive, thus fitting the
independent design paradigm. We then proposed the notion of contract receptiveness, which
guarantees strong replaceability. Moreover, we showed that receptive contracts can be imple-
mented independently and that the composition of their implementations will not be vacuous
in the case of cascade composition. A supplier receiving a contract as the specification for
implementation can check whether this contract is receptive. If so, the supplier knows in
advance that it can proceed to develop an implementation and that this implementation will
integrate correctly into the system integrator’s design. Our areas of future work include find-
ing constraints for feedback composition, developing tools to support independent design,
and investigating the replaceability in different contract formalisms.

27

Bibliography

[1] Martin Abadi and Leslie Lamport. “Composing specifications”. In: ACM Transactions
on Programming Languages and Systems (TOPLAS) 15.1 (1993), pp. 73–132.

[2] Mart́ın Abadi, Leslie Lamport, and Pierre Wolper. “Realizable and unrealizable spec-
ifications of reactive systems”. In: International Colloquium on Automata, Languages,
and Programming. 1989, pp. 1–17. isbn: 978-3-540-46201-9.

[3] Albert Benveniste et al. “Contracts for system design”. In: Foundations and Trends®
in Electronic Design Automation 12.2-3 (2018), pp. 124–400.

[4] Albert Benveniste et al. “Multiple viewpoint contract-based specification and design”.
In: International Symposium on Formal Methods for Components and Objects. 2007,
pp. 200–225.

[5] Alessandro Cimatti, Michele Dorigatti, and Stefano Tonetta. “OCRA: A tool for check-
ing the refinement of temporal contracts”. In: IEEE/ACM International Conference
on Automated Software Engineering (ASE). 2013, pp. 702–705.

[6] Alessandro Cimatti and Stefano Tonetta. “A property-based proof system for contract-
based design”. In: Euromicro Conference on Software Engineering and Advanced Ap-
plications. 2012, pp. 21–28.

[7] Werner Damm et al. “Using contract-based component specifications for virtual in-
tegration testing and architecture design”. In: Design, Automation & Test in Europe
Conference Exhibition (DATE). 2011, pp. 1–6.

[8] Antonio Iannopollo. “A Platform-Based Approach to Verification and Synthesis of
Linear Temporal Logic Specifications”. PhD thesis. University of California, Berkeley,
2018.

[9] Antonio Iannopollo, Stavros Tripakis, and Alberto Sangiovanni-Vincentelli. “Constrained
Synthesis from Component Libraries”. In: Formal Aspects of Component Software.
2017, pp. 92–110. isbn: 978-3-319-57666-4.

[10] Antonio Iannopollo, Stavros Tripakis, and Alberto Sangiovanni-Vincentelli. “Speci-
fication decomposition for synthesis from libraries of LTL Assume/Guarantee con-
tracts”. In: Design, Automation & Test in Europe Conference Exhibition (DATE).
2018, pp. 1574–1579.

BIBLIOGRAPHY 28

[11] Antonio Iannopollo et al. “Library-based scalable refinement checking for contract-
based design”. In:Design, Automation & Test in Europe Conference Exhibition (DATE).
IEEE. 2014, pp. 1–6.

[12] Inigo Incer. “The Algebra of Contracts”. PhD thesis. EECS Department, University
of California, Berkeley, May 2022.

[13] Inigo Incer et al. “Hypercontracts”. In: NASA Formal Methods. 2022, pp. 674–692.

[14] Inigo Incer et al. “Pacti: Assume-Guarantee Contracts for Efficient Compositional
Analysis and Design”. In: ACM Trans. Cyber-Phys. Syst. (Nov. 2024).

[15] Inigo Incer et al. “Quotient for assume-guarantee contracts”. In: 2018 16th ACM/IEEE
International Conference on Formal Methods and Models for System Design (MEM-
OCODE). IEEE. 2018, pp. 1–11.

[16] C. B. Jones. “Tentative Steps toward a Development Method for Interfering Pro-
grams”. In: ACM Transactions on Programming Languages and Systems 5.4 (Oct.
1983), pp. 596–619. issn: 0164-0925.

[17] Thi Thieu Hoa Le et al. “Contract-Based Requirement Modularization via Synthesis
of Correct Decompositions”. In: ACM Transactions on Embedded Computing Systems
(TECS) 15.2 (2016). issn: 1539-9087.

[18] Bertrand Meyer. “Applying ’design by contract’”. In: Computer 25.10 (1992), pp. 40–
51.

[19] James Donald Monk. Mathematical logic. Vol. 37. Springer Science & Business Media,
2012.

[20] Pierluigi Nuzzo et al. “A contract-based methodology for aircraft electric power system
design”. In: IEEE Access 2 (2013), pp. 1–25.

[21] Pierluigi Nuzzo et al. “Methodology for the Design of Analog Integrated Interfaces
Using Contracts”. In: IEEE Sensors Journal 12.12 (2012), pp. 3329–3345.

[22] Pierluigi Nuzzo et al. “Stochastic assume-guarantee contracts for cyber-physical system
design”. In: ACM Transactions on Embedded Computing Systems (TECS) 18.1 (2019),
pp. 1–26.

[23] Chanwook Oh et al. “Optimizing assume-guarantee contracts for cyber-physical system
design”. In: Design, Automation & Test in Europe Conference Exhibition (DATE).
2019, pp. 246–251.

[24] Roberto Passerone, Inigo Incer, and Alberto L Sangiovanni-Vincentelli. “Coherent Ex-
tension, Composition, and Merging Operators in Contract Models for System Design”.
In: ACM Transactions on Embedded Computing Systems (TECS) 18.5 (2019), pp. 1–
23.

[25] Alberto Sangiovanni-Vincentelli. “Quo vadis, SLD? Reasoning about the trends and
challenges of system level design”. In: Proceedings of the IEEE 95.3 (2007), pp. 467–
506.

BIBLIOGRAPHY 29

[26] Alberto Sangiovanni-Vincentelli, Werner Damm, and Roberto Passerone. “Taming Dr.
Frankenstein: Contract-based design for cyber-physical systems”. In: European journal
of control 18.3 (2012), pp. 217–238.

[27] Sheng-Jung Yu, Inigo Incer, and Alberto Sangiovanni-Vincentelli. “Contract Replace-
ability for Ensuring Independent Design using Assume-Guarantee Contracts”. In:ACM/IEEE
International Conference on Formal Methods and Models for System Design. 2023,
pp. 111–121.

	MS_signature_combined_signed_coverpage
	Master_Thesis
	Contents
	List of Figures
	Introduction
	Preliminaries
	The Vacuous Implementation Problem
	Receptive Contracts
	Refinement with Receptive Contracts
	Cascade Composition with Receptive Contracts
	Discussion
	Conclusion
	Bibliography

