
Object-Centric Perception for Real-World Robotics

Nikhil Mishra

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-24

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-24.html

April 30, 2024

Copyright © 2024, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Object-Centric Perception for Real-World Robotics

by

Nikhil Mishra

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Pieter Abbeel, Chair
Professor Angjoo Kanazawa
Professor Trevor Darrell

Igor Mordatch

Spring 2024

Object-Centric Perception for Real-World Robotics

Copyright 2024
by

Nikhil Mishra

1

Abstract

Object-Centric Perception for Real-World Robotics

by

Nikhil Mishra

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Pieter Abbeel, Chair

Deep learning has resulted in incredible progress in many applications of artificial intelligence.
However, these techniques often fall short when applied to robotics, due to their inability
to reason about the ambiguity that often arises in the real world. Much of this ambiguity
stems from the real world’s long-tail visual diversity – in particular, the huge variety of
objects that robots must interact with. Such shortcomings are only exacerbated by the
strict requirements for autonomous, high-throughput operation that deployed systems must
meet, as well as the cost and difficulty of obtaining the large-scale training datasets that
modern deep learning methods require.

In this thesis, we explore two primary avenues of addressing these challenges. First, we
introduce models that can better express uncertainty in challenging or ambiguous situations,
across a variety of 2D and 3D perception tasks. Real-world robots can incorporate these
models to reason explicitly about ambiguity, in flexible ways depending on their specific
tasks. Second, we extend the capabilities of neural renderers to develop a sim2real2sim
method that can drastically reduce the amount of data needed to train such models. From
only a handful of in-the-wild examples, our method learns to generate synthetic scenes,
targeted to specific real objects and environments, that can be used to train downstream
perception models for a variety of tasks.

i

To all my friends, family, collaborators, and the Covariant team.

ii

Contents

Contents ii

1 Introduction 1
1.1 Robotics for the Real-World . 1
1.2 Overview . 2

2 Distributional Instance Segmentation with Latent-Mask-RCNN 5
2.1 Introduction . 5
2.2 Related Work . 7
2.3 Distributional Instance Segmentation . 8
2.4 Distributional Instance Segmentation with Latent-MaskRCNN 10
2.5 Applying Distributional Instance Segmentation 13
2.6 Experiments . 17
2.7 Discussion . 22

3 Autoregresive Bounding Box Prediction 23
3.1 Introduction . 23
3.2 Related Work . 25
3.3 Autoregressive 3D Bounding Box Prediction 26
3.4 Applying Autoregressive 3D Bounding Box Models 30
3.5 Experiments . 33
3.6 Discussion . 38

4 Shape Completion Models for Dense Packing of Complex, Novel Objects 39
4.1 Introduction . 39
4.2 Related Work . 41
4.3 Dense Packing with Convolutional Occupancy Models 42
4.4 Experiments . 47
4.5 Discussion . 52

5 Closing the Visual Sim-to-Real Gap with Object-Composable NeRFs 53
5.1 Introduction . 53

iii

5.2 Related Work . 55
5.3 Generalizable Neural Rendering with Composable Object Volumes 56
5.4 Experiments . 60
5.5 Discussion . 65

6 Conclusion 66

Bibliography 68

A COB-3D Dataset Overview 76

B Proof of Quantile-Confidence Box Equivalence 83

1

Chapter 1

Introduction

1.1 Robotics for the Real-World

Although robots have been used in key manufacturing segments for many decades, they
have largely been constrained to carefully structured settings that do not demand much
intelligence from them. With traditional automation techniques, a robot’s behavior often is
fully specified in advance, to the extent that it can simply execute pre-programmed motions
blindly and repetitively. However, there is huge and growing demand for robotic systems
that can intelligently perceive their environments and adapt their behavior accordingly. In
particular, industrial applications in logistics and e-commerce seek robots that can perform
general-purpose manipulation in more dynamic environments, but these applications are
especially challenging due to the long-tail visual diversity of the objects and environments
the robots must interact with. The performance requirements are often extremely stringent,
as a deployed system needs to operate autonomously while achieving high accuracy and
throughput, keeping pace with highly-optimized industrial processes or human co-workers.
Recent work incorporating artificial intelligence (AI) into robotics has largely focused on
learning specialized motor skills through reinforcement learning, or on natural language as a
means of task specification. Unfortunately, this work is not immediately applicable to real-
world industrial robotics, where the task description is simple but the tolerance for errors is
almost zero – rather, the challenge lies in the need for robust perceptual generalization to
unseen scenarios and ambiguous situations.

This thesis investigates how we can extend modern deep learning methods for perception
to enable robots to succeed in real-world applications. We identify the ability to reason
about uncertainty in ambiguous situations as a critical capability where state-of-the-art
methods fall short, and propose novel models to address this shortcoming. These models
allow deployed robotic systems to explicitly express their uncertainty in the face of real-
world ambiguity, and adapt their behavior in flexible ways depending on the particulars of
their task. Although reasoning about such ambiguity vastly improves a deployed system’s
ability to operate autonomously, the long-tail variability of the real world also necessitates

CHAPTER 1. INTRODUCTION 2

systems that can continue to learn from their experience. However, such methods still require
substantial amounts of training data, which may be impractically costly or difficult to obtain.
To overcome this challenge, we develop a neural rendering method that can improve sim-to-
real transfer by learning from real-world examples to synthesize targeted training data for a
variety of perception tasks and models.

Robots have enormous potential to tangibly impact our society, and we hope that the
contributions presented in this thesis help further the development of robust, intelligent
robotic systems. We simultaneously hope that the lessons learned and techniques developed
from this practical application of deep learning prove valuable to the broader AI community.

1.2 Overview

In the first half of this thesis, we propose novel perception models that can better reason
about uncertainty in challenging or ambiguous situations. We study instance segmentation
and 3D object detection, two popular perception tasks that exhibit substantial ambiguity
and where state-of-the-art methods fall short. In the second half, we explore methods for
improving sim-to-real transfer as a way to reduce the amount of real-world supervision needed
to train such perception models. We propose a sim2real2sim method to automatically reduce
the sim-to-real gap by learning object-centric NeRF representations from real data, which can
then be composed in arbitrary ways to generate targeted synthetic data of various modalities.

Distributional Instance Segmentation with Latent-Mask-RCNN

Instance segmentation is the cornerstone of the perception stack for many robotics appli-
cations. By enumerating the objects present in a scene, it offers a powerful inductive bias
for downstream components. However, since an instance segmentation model must predict
a set of high-dimensional masks, state-of-the-art approaches utilize specialized model archi-
tectures and loss functions that are not amenable to expressing uncertainty over possible
hypotheses. We propose a class of instance segmentation models that use VAE-style latent
codes to more expressively model distributions over sets of object masks, and introduce
Latent-MaskRCNN as a particular instantiation of this model family. During inference,
Latent-MaskRCNN can sample multiple plausible segmentations, and the predictions can
be incorporated in arbitrary ways depending on the downstream application. We release a
real-world dataset of ambiguous scenes from an apparel picking application, and show that
Latent-Mask-RCNN outperforms existing segmentation methods and drastically improves
the overall task success rate. This section represents work published in: YuXuan Liu et
al. ”Distributional Instance Segmentation: Modeling Uncertainty and High Confidence Pre-
dictions with Latent-MaskRCNN”. International Conference on Robotics and Automation
(ICRA), 2023.

CHAPTER 1. INTRODUCTION 3

Autoregressive 3D Bounding Box Prediction

3D bounding boxes are another popular intermediate representation for robotics applications,
and their prediction suffers from many of the same challenges as instance segmentation. We
propose to model the distribution over 3D bounding boxes autoregressively, which enables a
more nuanced understanding of the underlying uncertainty. We demonstrate the performance
of our autoregressive bounding box model on popular benchmarks including SUN-RGBD
[86], ScanNet [15], and KITTI [20] and show that it achieves state-of-the-art performance
while also learning a well-calibrated sense of uncertainty. Like Latent-MaskRCNN, our
model admits flexible sampling schemes that can be tailored to asymmetric error tolerances.
We also develop and release a robotics-focused simulated dataset, COB-3D, which exhibits
objects in arbitrary 3D rotations, unlike the 1D rotations common in prior work. This section
represents work published in: YuXuan Liu et al. ”Autoregressive Uncertainty Modeling for
3D Bounding Box Prediction”. European Conference on Computer Vision (ECCV), 2022.

Shape Completion Models for Dense Packing of Complex, Novel
Objects

Although instance segmentation and 3D bounding box prediction typically rely on human
annotators to provide supervision, many other perception tasks require dense supervision
that is impossible to obtain in the real world. For example, shape completion seeks to
predict the complete 3D geometry of an object, which is inherently ambiguous due to partial
observability. We release COB-3D-v2, an expansion of COB-3D with additional modalities to
make it suitable for for sim-to-real transfer of shape completion models, and propose Frustum
Convolutional Occupancy Networks (F-CON), a simple model architecture that outperforms
state-of-the-art models for shape completion. We demonstrate F-CON’s effectiveness in a
real-world bin packing application, a manipulation task which prior work has mostly studied
in simulation due to real-world perceptual challenges. This section represents work published
in: Nikhil Mishra et al. ”Convolutional Occupancy Models for Dense Packing of Complex,
Novel Objects”. International Conference on Intelligent Robots and Systems (IROS), 2023.

Closing the Visual Sim-to-Real Gap with Object-Composable
NeRFs

Sim-to-real transfer can achieve impressive results in many situations, as exemplified by the
methods presented in the previous section, but often fails dramatically if the simulation
used for learning is not faithful enough to the real world. When such a discrepancy exists,
resolving it often requires extensive manual engineering and domain expertise to tweak the
simulator to be more realistic. We propose a novel neural rendering method, Composable
Object Volume NeRF (COV-NeRF), that is uniquely suited to remedy sim-to-real mismatch.
COV-NeRF performs real-to-sim learning of structured neural representations of objects
encountered in the real world, which can then be used to compose and render new simulated

CHAPTER 1. INTRODUCTION 4

scenes with photorealistic images and the corresponding supervision for many 2D and 3D
perceptual tasks. The rendered images and supervision automatically enjoy geometric and
semantic consistency with each other and across viewpoints. We study a real-world bin
picking application where state-of-the-art perception models and datasets face a large sim-to-
real gap, and show that COV-NeRF allows us to rapidly close the gap to achieve application-
level improvement. This section represents work published in: Nikhil Mishra et al. ”Closing
the Visual Sim-to-Real Gap with Object-Composable NeRFs”. International Conference on
Robotics and Automation (ICRA), 2024.

5

Chapter 2

Distributional Instance Segmentation
with Latent-Mask-RCNN

2.1 Introduction

Instance segmentation is the cornerstone of the perception stack in many real-world robotic
systems. The goal of instance segmentation is to enumerate the objects (or instances) that
appear in an image, specifying which pixels in the image belong to each object.

Recent work has mostly focused on developing specialized neural network architectures
and loss functions that make the instance segmentation task more amenable to deep learn-
ing. For example, detect-then-segment methods [76, 30, 74, 7, 107] rely on a cascade of
classification, regression, and filtering to first identify a bounding box for each instance (a
related problem known as object detection), followed by an additional step to predict each
instance’s mask given its bounding box. Alternatively, pixel-embedding methods [1, 2], which
optimize pixel-level auxiliary tasks, and then use a specialized clustering procedure to extract
instance predictions from the dense pixel representation. Recent methods that attempt to
apply Transformers to instance segmentation [47, 12] still rely on carefully-crafted, bespoke
loss functions.

We observe that existing methods are not well equipped to deal with the inherent am-
biguity that exists in the real world. We posit that this stems from a phenomenon we
describe as limited distributional expressiveness – in particular, that most instance segmen-
tation models are designed to predict only one possible segmentation hypothesis (a single set
of object masks). When they encounter an ambiguous situation where multiple hypotheses
could be plausible, they are forced to commit to a particular one. However, a distributional
instance segmentation model should be capable of expressing uncertainty on over complex
hypotheses, such as identifying that an ambiguous group of pixels could be one large object
or two small objects. The use of non-distributional instance segmentation models can be
incredibly limiting for high-performance autonomous systems, which may have strict error
tolerances and asymmetric costs for different types of errors.

CHAPTER 2. DISTRIBUTIONAL INSTANCE SEGMENTATION WITH
LATENT-MASK-RCNN 6

Incorrect Mask-RCNN Segmentation
Robot unintentionally grasps two objects,

causing a double pick error

Latent Mask-RCNN Confidence Masks

Grasp spans two objects

Robot only grasps one object

Figure 2.1: Traditional instance segmentation methods such as Mask-RCNN cannot model
uncertainty over object masks. For robotic applications, this can result in critical errors such
as unintentionally picking two objects (a double pick). Our proposed Latent-MaskRCNN can
predict multiple hypotheses, and understand the uncertainty that they reflect to make high-
confidence predictions, reducing the rate of double pick errors.

To overcome these limitations, we propose distributional instance segmentation, where we
explicitly model a distribution over possible segmentation hypotheses. The key contributions
of this work are:

1. We introduce a distributional instance segmentation model, Latent-MaskRCNN, which
uses latent codes to expressively model a distribution over instance segmentations.
Latent-MaskRCNN can sample multiple segmentation hypotheses instead of making
a single point estimate. We build on top of Mask-RCNN [30], which was a popular
state-of-the-art method at the time of this work, but our latent variable formulation
could be applied to any method.

2. We propose new methods for using the output of a distributional instance segmentation
model. For robotic applications, we propose Confidence Masks as a method to obtain
high-precision predictions from Latent-MaskRCNN. We also propose Union-NMS as a
high-recall counterpart of Confidence Masks.

3. We release a dataset of over 5000 annotated images from a real-world robotics ap-
plication that highlights the ambiguity in instance segmentation. We show Latent-
MaskRCNN achieves high performance on this dataset, as well as on popular instance
segmentation benchmarks from other domains.

4. On a real-world apparel-picking robot, we show that the Latent-MaskRCNN can be
applied to significantly reduce critical errors, without sacrificing performance.

CHAPTER 2. DISTRIBUTIONAL INSTANCE SEGMENTATION WITH
LATENT-MASK-RCNN 7

2.2 Related Work

Detect-then-segment methods are the most popular instance segmentation methods, and
Mask-RCNN belongs to this category. While they all first perform object detection and
then segment each instance given its bounding box, there are some variations. For example,
YOLACT [3] follows the same structure as MaskRCNN, but uses YOLO [74] as the object
detector instead of FasterRCNN [76]. YOLO is very similar to FasterRCNN, making ar-
chitectural changes that sacrifice some accuracy in exchange for real-time inference speed.
Thus, we expect YOLACT to have the same distributional limitations as MaskRCNN. Other
methods explore how to express uncertainty during the detection step, but they consider dis-
tributions of individual boxes rather than over sets of object masks [27, 28, 62]. Thus, they
cannot express complex hypotheses, such as ones where the number of objects differs.

Mask-proposal methods [10, 97, 12] aim to circumvent bounding boxes as an inter-
mediate representation. They are structured like FasterRCNN, but propose masks directly.
Empirically, they do not behave much differently than MaskRCNN. Distributionally, they
suffer from many of the same limitations as MaskRCNN: each proposal still models each
pixel independently of the others, and they still rely on NMS to filter proposals.

Pixel-embedding methods [1, 2, 65, 79] work in a substantially different way than ei-
ther of the above two families. They generally optimize some auxiliary task that encourages
pixels in the same instance to have similar representations. Then they rely on a clustering-
based inference procedure to extract instance predictions from their pixelwise representa-
tions. However, their performance has lagged quite far behind that of detect-then-segment
methods, which has made them relatively unpopular. They can model per-pixel uncertainty
in a manner similar to a naive semantic segmentation method, but this is likely insufficient
for distributional expressiveness.

Following this work, Transformer-based methods [7, 107, 47] have matched or exceeded
the performance of detect-then-segment methods. Although the underlying architecture is
different, the set-matching losses that are typically used to train these models are not partic-
ularly compatible with expressive distributional output, and these methods suffer from the
same distributional limitations as their non-Transformer predecessors. The latent variable
method we propose in Section 2.4 could be similarly applied to any of these methods.

A number of methods explore how to express uncertainty in other structured prediction
tasks. However, many of these do so by training multiple replicas of the entire model or
some subset of the parameters, and modifying the training objective in a way that encour-
ages diversity amongst the replicas [46, 25, 80, 19]. This incurs a multiplicative increase
in the computational cost and memory footprint required at training time, which can be
prohibitively expensive for large models. Other latent-variable formulations offer improve-
ments on medical semantic segmentation and video segmentation tasks [42, 37, 49] . We
find, however, that instance segmentation poses a richer set of challenges (variable size sets,
high-dimensional masks) and has different application-specific uses.

CHAPTER 2. DISTRIBUTIONAL INSTANCE SEGMENTATION WITH
LATENT-MASK-RCNN 8

b) target object distribution

c) MaskRCNN prediction
d) Latent-MaskRCNN samples

a) image

Figure 2.2: We construct a toy dataset using a single image (a) and a target distribution (b)
that is uniform over threesets of objects, varying in number, size, and location. (c) When
MaskRCNN is trained to fit this distribution, it blend objects from each of the three modes,
and uncertainty in the mask head is expressed as spurious blobs on the left. (d) Samples
from our distributionally-expressive Latent-MaskRCNN (Section) can cleanly capture each
mode of the target distribution.

2.3 Distributional Instance Segmentation

Distributional instance segmentation seeks to fully model the full distribution over the set of
objects present in an image. We pose it as a maximum likelihood problem, where a instance
segmentation model learns the conditional distribution p(y|x), letting x denote a given input
image, and y = {yk}Kk=1 a set of instances. Each instance yk is defined by a bounding box
bk, instance mask mk and class ck.

Using θ to denote the model parameters and D the dataset, we seek to optimize the stan-
dard maximum likelihood objective: maxθ E(x,y)∼D[log pθ(y|x)]. In the subsequent sections,
we study two concrete examples where Mask-RCNN is unable to effectively optimize this
objective.

Distributions over Sets

One of the main challenges in instance segmentation is modeling distributions over sets
of variable size, since an image may contain an arbitrary number of objects. Traditional
methods typically output only one set of objects through a deterministic inference procedure.
However, a distributionally expressive model should be able to express uncertainty over
hypotheses, where each hypothesis is a set of objects. Consider the example illustrated in

CHAPTER 2. DISTRIBUTIONAL INSTANCE SEGMENTATION WITH
LATENT-MASK-RCNN 9

(a) Im age (b) MaskRCNN Dist ribut ion (c) MaskRCNN Sam ple (d) MaskRCNN Point Est im ate (e) Hypothesis 1 (f) Hypothesis 2

Figure 2.3: In the image shown in (a), who does the hand circled in blue belong to? (b)
The pixelwise distribution predicted by MaskRCNN’s mask head, which does not model
the dependence between pixels. (c) A sample from this distribution, which independently
samples the uncertain pixels in the hand, is not a plausible instance mask. (d) The (incorrect)
point estimate that MaskRCNN would return. (e), (f) A more distributionionally expressive
model might allow us to sample plausible hypotheses like these two. In this case, (e) is
actually the correct segmentation.

Figure 2.2, where we might not be sure how many objects the image contains. We show three
segmentations y(1), y(2), y(3) that might be plausible based on the image. If we construct
a toy dataset where this image appears three times, once with each label, then the true
conditional distribution is p(y = y(j)|x) = 1

3
, for j = 1, 2, 3. This could model randomness

in the annotation process, which could occur when fallible human annotators encounter
challenging long-tail cases. Fitting this data requires the model to express a distribution
over sets of objects. However, MaskRCNN can only predict a single set of objects, so the
best it can do is to either choose a mode or blend the modes together. In Figure 2.2 (c), we
see that it picks the mode y(3) at the bounding box level, and blends the modes together at
the mask level. Meanwhile, a distributional instance segmentation model should be able to
fit the true conditional distribution perfectly, and express the different possibilities as three
distinct hypotheses. In Figure 2.2 (d), we show three samples from Latent-MaskRCNN,
which we introduce in Section 2.2, and observe that it indeed does captures all three modes.

Expressive Pixelwise Mask Distributions

Another challenge in instance segmentation is coherently expressing the relationships be-
tween pixels. For example, Mask-RCNN’s mask head models each pixel in an object’s mask
as independent of the others given its bounding box.

To make this concrete, consider the example show in Figure 2.3. In (a), there is a hand
circled in blue: who does it belong to? At a first glance, it might seem like it belongs to
the woman in the center of the frame, but a closer look reveals that it more likely belongs
to the man on the right. In (b), we see that MaskRCNN predicts the correct bounding box
for the woman, but is understandably uncertain about the hand (and even the rest of the

CHAPTER 2. DISTRIBUTIONAL INSTANCE SEGMENTATION WITH
LATENT-MASK-RCNN 10

man’s arm). MaskRCNN expresses this uncertainty by outputting probabilities around 0.7
for pixels in the hand, compared to 1.0 for the rest of the woman. However, this is actually
not an accurate reflection of the ambiguity that exists here: in (c), we plot one sample from
the distribution in (b), and see that this is definitely not a plausible instance mask. In
practice, MaskRCNN would return the mode of this distribution, the ultimately-incorrect
point estimate shown in (d). Meanwhile, a distributional instance segmentation model would
be able to capture the correlations between pixels, and might predict a distribution over the
two plausible hypotheses shown in (e) or (f): either none of the hand is part of the mask, or
all of it. The sample shown in (c) would be extremely unlikely under such a distribution.

2.4 Distributional Instance Segmentation with

Latent-MaskRCNN

Latent Variable Formulation

How can we make instance segmentation models distributionally expressive, while retaining
the inductive biases of existing model architectures? Drawing on prior work in variational
inference, we consider a latent-variable formulation where we incorporate latent codes in
the style of a variational autoencoder (VAE) [42, 40]. If we adopt this framework, then an
instance segmentation model becomes a conditional VAE that is trained to maximize the
evidence lower-bound (ELBO):

log p(y|x) ≥ Ez∼q[log p(y|x, z)]−DKL(q||p(z|x)) (2.1)

Typically q(z|y, x) is known as the encoder, p(y|x, z) as the decoder, and p(z|x) as the
prior, and these components are all learned to maximize the ELBO. The decoder is essentially
an instance segmentation model in the traditional sense, except that it is augmented to
additionally consume a latent code z. This general technique allows us to reuse any existing
instance segmentation model to implement our decoder (and train it in the same way), with
only a slight modification to incorporate z as an input. During inference, we can sample
from p(y|x) by sampling different latent codes z(k) ∼ p(z|x). Each can be decoded them into
different segmentations y(k) ∼ p(y|x, z).

Latent-MaskRCNN

In principle, the latent variable method introduced in the previous section can be applied
to any existing instance segmentation model. In this section, we explore how it might be
applied to Mask-RCNN. We call the resulting model Latent-MaskRCNN. We chose Mask-
RCNN since it is one of the most popular instance segmentation models and has served as
the basis for most state-of-the-art methods in recent years.

CHAPTER 2. DISTRIBUTIONAL INSTANCE SEGMENTATION WITH
LATENT-MASK-RCNN 11

Segmentation labels

Image

Per instance features

Conv,
Pooling

Encoder

Prior

Conv,
Pooling

Decoder

Region Proposal

ROI-Align

Classifier head,
box regression

Mask Head

MaskRCNN Loss

Figure 2.4: Overview of Latent-MaskRCNN: At training time, the encoder qθ uses features
extracted from the image x and labels y to sample a latent code z which is passed into the
decoder. The decoder fuses with the latent code with image features, but otherwise follows
the standard MaskRCNN architecture, including region proposal, non-maximum suppression
(NMS), and box/mask/classifier heads. At inference time, z is sampled through the prior
pθ(z|x) which only takes the image x as input.

Figure 2.4 provides an overview of the Latent-MaskRCNN architecture, and Figure 2.5
shows the encoder and decoder in more detail. Our models and code are also released on
our project page.

The decoder uses the same architecture as MaskRCNN, with the only change being the
incoporation of the latent codes. To allow the latent codes to influence as much of the
prediction as possible, we want to inject them as early in the model as possible, so that
they can influence the every stage of the model, including the region proposal network,
box refinement head, classifier head and mask head. We use latent codes of a fixed vector
dimensionality z ∈ Rd. We found that d = 64 was a reasonable choice that worked for all
datasets. We tile the latent codes across the spatial dimensions of the image and concatenate
them in the channel dimension with the feature maps from the Feature Pyramid Network
(FPN) [50]. Then we use a few convolutional layers to project the augmented feature maps
back down to their original channel dimension.

The encoder of Latent-MaskRCNN takes in an image x along with a set of ground-truth
instances y, and produces a distribution over latent codes qθ(z|y, x) = N (µθ(y, x), σ

2
θ(y, x)).

The architecture takes inspiration from the mask head of Mask-RCNN: it acts like an ”in-
verse” mask head that operates on each ground-truth instance, and then pools features from
across all instances. For each ground truth instance yi, we extract ROI-aligned features from
the FPN feature maps, and then use a small CNN to embed each one into a single fea-
ture vector. We use these per-instance features as the initial node features in graph neural
network (GNN) that aggregates them into a single, globally-informative latent code for the
entire image. After several graph network layers (the graph is fully-connected), we mean-
pool across the final node features and use a fully-connected layer to produce a mean and
log-variance for our latent distribution. The encoder is typically not used during inference,
as we do not have access to the ground-truth instance masks.

The prior takes in an image x and produces a distribution over latent codes pθ(z|x) =

https://segm.yuxuanliu.com

CHAPTER 2. DISTRIBUTIONAL INSTANCE SEGMENTATION WITH
LATENT-MASK-RCNN 12

Figure 2.5: The architecture of Latent-MaskRCNN. (a) The decoder is exactly the same as
MaskRCNN, except that, before region proposal, we augment the FPN feature maps with
a latent code. (b) The encoder takes the (non-augmented) FPN feature maps and a list of
ground-truth instances and predicts a diagonal Gaussian distribution over latent codes. (c)
The prior takes the (non-augmented) FPN feature maps and predicts a diagonal Gaussian
distribution over latent codes.

N (µθ(x), σ
2
θ(x)). We apply a few convolutional layers to the FPN feature maps, mean-pool

across the spatial dimensions, and then predict a mean and log-variance using a small MLP.
During inference, we sample latent codes from the prior (instead of from the encoder), but
the decoder consumes them in the same way as during training.

During training, we use the encoder qθ to sample latent codes z, which are passed
to the Mask-RCNN decoder. We maximize the ELBO (Equation 2.1), treating Mask-
RCNN’s bespoke losses as the distortion (loosely corresponding to an energy-based model):
− log p(y|x, z) ∼ LMRCNN(x, y, z):

LMRCNN(x, y, z) = LRPN + Lcls + Lbox + Lmask (2.2)

We found it helpful to use a KL warm-up, as is a common practice for training VAEs
[32]. The final training objective for Latent-MaskRCNN is thus:

L(x, y) = Ez∼q[LMRCNN(x, y, z)] + βDKL(q||p(z|x)) (2.3)

In the first part of training, we use β = 0 and increase β towards the end of training. This
allows the latent code to encode useful information early on as the rest of the model is still
learning; towards the end of the training, higher β pushes the latent space to be covered by
the prior for better samples.

CHAPTER 2. DISTRIBUTIONAL INSTANCE SEGMENTATION WITH
LATENT-MASK-RCNN 13

High precision prediction

High recall prediction

Image Segmentation samples Downstream application

Figure 2.6: At inference time, Latent-MaskRCNN’s encoder qθ is discarded, and latent
variables zi are sampled from the image x conditioned prior pθ(z|x). Each latent is decoded
using pθ(y|x, zi) into a set of masks, which can be used for our high precision or recall
predictions depending on the application.

2.5 Applying Distributional Instance Segmentation

A distributional instance segmentation model like Latent-MaskRCNN can express its un-
certainty over multiple hypotheses. However, how should a downstream application best
consume this expressive distributional output? Instance segmentation often occurs at the
beginning of the perception pipeline, and there could be many ways to incorporate the sam-
ples. Moreover, each application may have asymmetric error tolerances: failing to detect an
object can be catastrophic in autonomous driving but acceptable in robotic picking, while
grouping two objects as one is a critical error in robotic picking but more forgivable in driving
applications. In this section, we show how a single Latent-MaskRCNN model can be used
flexibly across a number of applications with different requirements (Figure 2.6).

High-Precision Segmentation with Confidence Masks

In some applications, it can be very costly to make undersegmentation errors, when a par-
ticular instance mask prediction actually spans multiple objects. For example, consider a
robotic manipulation application, where a robot must pick objects one at a time and feed
them into a sortation process. If the model undersegments an instance, it may inadvertently
pick multiple objects (a type of error commonly referred to as a double pick), which can be
a particularly expensive error for the downstream application.

Suppose we draw several samples from Latent-MaskRCNN. If two pixels belong to the
same instance mask in many samples, then we can be reasonably confident that they actually

CHAPTER 2. DISTRIBUTIONAL INSTANCE SEGMENTATION WITH
LATENT-MASK-RCNN 14

do belong to the same ground-truth instance. Building on this intuition, we can compute a
p-confidence mask, consisting of pixels that are all likely to be contained in a single ground-
truth instance.

For a given confidence requirement p, we define a confidence mask cp as a mask that is
fully contained in a ground truth mask m with probability at least p: P (cp ⊆ m) ≥ p. Using
Latent-MaskRCNN, we can approximate this probability as:

P (cp ⊆ m) = Em∼P (m|x)[1{cp ⊆ m}] ≈ 1

k

k∑
i=1

1{cp ⊆ mi}

In the finite sample regime, ĉp is an empirical confidence mask if it is contained within a
sampled mask for p fraction of the samples.

Now consider any subset of masks I consisting of one mask mj from at least kp different
samples. If we take the intersection of all of the masks in I, ĉτ =

⋂
mj∈I mj, then this

intersection mask must be contained in each of the masks used in the intersection ĉp ⊆ mj.
Therefore we have:

1

k

∑
mj∈I

1{ĉp ⊆ mj} =
|I|
k
≥ p

and thus ĉp is an empirical confidence mask by construction.
Figure 2.7 illustrates confidence mask predictions for different p. Notice that as the

confidence requirement increases, the unconfident extents of the masks shrink, and some
uncertain masks are eliminated.

Since each confidence mask is an intersection of masks cp =
⋂

I mj, how should we assign
the score of a confidence mask prediction? One intuitive approach might be to take the
average of the score si of each mask in the intersection: 1

|I|
∑
sj. However, a confidence

mask is not an average of masks but rather an intersection.
To formulate a better score for our confidence mask prediction, consider two scenarios. In

the first scenario, the model is very confident about an object’s mask so it predicts roughly
the same mask in every sample. The resulting confidence mask cp has high IoU with each
of the masks used in the sample mj. On the other hand, consider an unconfident prediction
where the object’s mask varies significantly across samples. Here, the confidence mask cp
represents a small but confident region of the object whose extent is highly uncertain. The
resulting IoU between cp and each mj will be smaller than when the model is confident and
masks are not varying across samples.

Formalizing this intuition, we score each confidence mask as the mean score-weighted
IoU between the predicted mask cp and every mask used in the intersection:

scp =
1

|I|
∑
mj∈I

sj
|cp ∩mj|
|cp ∪mj|

When scp is large, this indicates that cp is a confident intersection of masks with very similar
IoU. On the other hand, a small scp indicates that cp has low score or IoU with its samples
and likely does not capture the full extent of the object well.

CHAPTER 2. DISTRIBUTIONAL INSTANCE SEGMENTATION WITH
LATENT-MASK-RCNN 15

Samples

∩ ∩ =

Conʎʐdence Mask

Figure 2.7: Top: Confidence Mask predictions with different p. Notice that as the confidence
requirement p increases, single objects can be split into two, ambiguous object extents are
reduced, and uncertain objects are eliminated entirely. Bottom: Constructing an empirical
confidence mask ĉp by taking intersection of samples m1,m2,m3. When an object’s extent is
uncertain, a high confidence mask prediction will only consist of pixels that are highly likely
to be contained within an object as determined by the samples.

Algorithm 1 presents a simple procedure to condense several sampled instance segmen-
tations into a set of confidence masks. At each iteration, this scheme greedily adds the
highest scoring confidence mask that can be obtained, considering the remaining masks in
each sample and the confidence masks that have already been produced thus far.

High-Recall Segmentation with Union-NMS

Other applications might be concerned about oversegmentation, the complement of under-
segmentation. For example, in autonomous driving, failing to identify a pedestrian, or
predicting them to be smaller than they actually are, can lead to a catastrophic error.

To make high-recall predictions with Latent-MaskRCNN, we use a procedure called
Union-NMS, detailed in Algorithm 2. We first sample multiple segmentations from the
model, and run non-maximum suppression (NMS) on the predicted masks. NMS checks if
any two masks mi,mj have IoU greater than some threshold, and then discards the lower-
scoring one. Suppose that some mask mi remains after we perform NMS. Then Union-NMS
returns the union of mi with every mask that it suppressed, achieving higher recall by in-
corporating masks that would have otherwise been ignored.

CHAPTER 2. DISTRIBUTIONAL INSTANCE SEGMENTATION WITH
LATENT-MASK-RCNN 16

Algorithm 1: Iterative Greedy Confidence Masks

Given: confidence threshold p, sampled segmentations y(1), . . . , y(K), each with
masks mj ∈ y, cutoff threshold ϵ
Initialize M ← {} to be a set of predicted masks
while all masks in M have score scp ≥ ϵ do

for mh ∈ y(i) do
Compute the area of the intersection Ijg = |mh ∩mj \M | with all other
masks mj ∈ y(g)
Let C be the set of masks with the kp highest Ijg where each mask must
come from a unique y(g)
Compute the intersection m∗

h =
⋂

m∈C m \M ignoring predicted masks M

Add mask with highest score argmax sm∗
h
to M

Algorithm 2: Union-NMS

Given: Masks M = {mi}ni=1 sorted by confidence, IoU threshold τ
Initialize S ← {} to an empty map
for i = 1 : n do

if i ∈ K then
continue

S[i]← {}
for j = i+ 1 : n do

if IoU(mi,mj) > τ then
Add j to S[i]

Initialize U ← {}
for i ∈ keys(S) do

m← mi

for j ∈ S[i] do
m← m ∪mj

Add m to U
Result: U

Vanilla Prediction with the Prior Mean

Some applications may not have any specific performance requirements or may have strict
inference time requirements. In these cases, a point estimate may be sufficient. With Latent-
MaskRCNN, we can achieve this by always decoding the mean of the prior: z = µθ(x) where
µθ(x) is the mean of the prior pθ(z|x) (for Gaussian pθ(z|x), it is also the mode of the dis-
tribution). We found that this scheme typically matches or yields a small improvement over
MaskRCNN predictions, suggesting that Latent-MaskRCNN strictly increases the expres-
siveness of MaskRCNN and no performance is lost by using a more expressive distribution.

CHAPTER 2. DISTRIBUTIONAL INSTANCE SEGMENTATION WITH
LATENT-MASK-RCNN 17

2.6 Experiments

We conducted experiments seeking to answer the following questions:

1. How well does Latent-MaskRCNN model uncertainty over instance segmentations,
across a variety of datasets?

2. How can Latent-MaskRCNN’s distributional output be used effectively downstream
applications with asymmetric error tolerances?

3. How effective is Latent-MaskRCNN at reducing critical double pick errors in robotic
picking applications?

Datasets

To help us answer these questions, we compared MaskRCNN and Latent-MaskRCNN across
several datasets, each with its own set of challenges. The complete results are in Table 2.1.

COCO [51]: This large dataset is the standard benchmark for instance segmentation.
There are many object categories and a huge variety in image composition.

Cityscapes [14]: A real-world dataset from an autonomous driving application. Al-
though it is smaller and more specialized than COCO, it is still a popular benchmark for
instance segmentation. One notable challenge is that there are many background instances
that are still important to segment (e.g. pedestrians), but the limited image resolution can
introduce some uncertainty.

Apparel-5k: We collected this dataset of roughly 5000 images from a robot picking
application. We use 4198 images in the training set and 463 in the validation set. There is
only one object category, but the images exhibit a lot of inherent ambiguity due to complex
occlusions, lighting, transparency, etc. The dataset is released on our project page for the
broader community to build upon our work.

For each dataset, we trained both MaskRCNN and Latent-MaskRCNN on 8 NVIDIA
1080Ti GPUs using MaskRCNN’s released hyperparameters and training schedules. We
use the ublicly available train/val/test splits for all experiments and datasets. We used a
ResNet-50 backbone [29], initialized from pretrained-Imagenet [17] weights (for COCO) or
pretrained COCO weights (for other datasets).

Evaluating Confidence Masks

In Section 2.5, we proposed Confidence Masks as a method to obtain high precision predic-
tions for applications where avoiding undersegmentation is critical. However, existing metrics
for instance segmentation are not well-equipped to detect undersegmentation: IoU and mAP
equally weigh oversegmentation vs undersegmentation and precision versus recall. In these
cases, we care that predictions have high Intersection-over-Prediction: IoP(mi, g) =

|mi∩g|
|mi| .

When IoP is high, errors due to undersegmentation are less likely to occur.

https://segm.yuxuanliu.com

CHAPTER 2. DISTRIBUTIONAL INSTANCE SEGMENTATION WITH
LATENT-MASK-RCNN 18

Table 2.1: Evaluation of MaskRCNN and different prediction modes of Latent-MaskRCNN
across various datasets and metrics.

COCO [51] CityScapes [14] Apparel-5k
Method Inference Mode MR@HP AR mAP MR@HP AR mAP MR@HP AR mAP

MaskRCNN n/a 20.0 66.0 35.0 25.3 55.1 35.8 23.6 39.9 26.9
Latent-MaskRCNN Union NMS 7.4 72.3 26.5 17.7 57.5 33.6 13.6 61.4 34.1
Latent-MaskRCNN Confidence Masks 22.0 48.1 30.5 28.0 48.6 34.1 42.4 41.8 35.1
Latent-MaskRCNN Prior Mean 19.5 65.8 35.3 25.7 53.8 35.0 26.9 49.4 34.3

When evaluating models in this regime, we need to trade off precision (in terms of IoP)
with recall, to avoid degenerate solutions. To do this, we consider the max recall at high
precision (MR@HP):

MR@HP =
1

|p| · |τ |
∑

pi∈p,τj∈τ

max
t:Precision(τj)≥pi

Recall(t, τj)

For a given precision threshold pi and IoP threshold τj, we can compute the max recall
that each model achieves (or zero, if it never achieves precision pi). The MR@HP metric
is the average of these recalls, over a range of precision threshold p and IoP thresholds τ .
For high precision use-cases, we care about performance at high values of these thresholds,
therefore we use p = τ = [0.75, 0.8, 0.85, 0.9, 0.95].

In Table 2.1, we evaluate Latent-MaskRCNN using both the prior-mean scheme from
Section 2.5 as well as confidence masks with a confidence level p = 0.9. Across all three
datasets, we find that confidence masks yield the best performance in terms of MR@HP.
As for mAP, we find that the prior-mean prediction can match, if not exceed, the perfor-
mance of MaskRCNN on all three datasets. On the challenging Apparel-5k dataset, we find
that confidence masks and the prior-mean significantly outperform MaskRCNN in terms of
MR@HP and mAP. Overall, we find that Latent-MaskRCNN is a strict improvement over
MaskRCNN by matching overall detection performance in terms of mAP and offering the
best high-precision performance in terms of MR@HP.

Evaluating Union NMS

In Section 2.5, we proposed Union-NMS as an inference procedure for applications where
avoiding oversegmentation is critical. In such cases, we care that we have high recall (that we
detect every instance that exists), and that each mask prediction has high IoG (intersection-

over-ground-truth): IoG(mi, g) =
|mi∩g|

|g| . To capture both of these considerations, we con-

sider the average recall (AR) [51] using IoG.
We evaluated Latent-MaskRCNN using both its prior-mean (Section 2.5) and Union-

NMS. In Table 2.1, we show that the prior-mean predictions are similar to MaskRCNN
on all three datasets, while Union-NMS achieves substantially higher AR (using IoG). This
suggests that Latent-MaskRCNN with Union NMS can more effectively cover different modes
of uncertainty, for high-recall applications.

CHAPTER 2. DISTRIBUTIONAL INSTANCE SEGMENTATION WITH
LATENT-MASK-RCNN 19

(1)

Ground-TruthImage MaskRCNN Latent Sample 1 Latent Sample 2 Latent Sample 3 Latent Sample 4

(2)

(3)

Figure 2.8: Each row corresponds to a single image. Columns 1-2 show the original image and
a zoomed-in version. The remaining columns show instance masks, and the word above the
image is the class of the instance. Column 3 is the ground truth, column 4 is MaskRCNN’s
prediction, and columns 5-8 are samples from Latent-MaskRCNN.

Qualitative Evaluation of Samples

In this section, we qualitatively explore what kinds of uncertainty Latent-MaskRCNN can
express. In Figure 2.8, we visualize samples from the model on images from various datasets,
and observe that it does capture several distinct types of ambiguity:

Category confusion: Latent-MaskRCNN can express meaningful uncertainty in the
classification head. In row 2, MaskRCNN confidently classifies this sink as a toilet, while
different samples from Latent-MaskRCNN classify it as toilet, sink, and bowl.

Category imprecision: Even when the class of an instance is obvious, there still may
be ambiguity in how the category is defined. For example, in row 1, both MaskRCNN and
Latent-MaskRCNN are (correctly) confident that this instance is a traffic light. However,
depending on how you define exactly what constitutes the extent of the traffic light, the
instance mask may look very different. Latent-MaskRCNN samples a wide range of plausible
possibilities, but MaskRCNN picks a single (in this case incorrect) mode.

Object and mask ambiguity: Latent-MaskRCNN lets us sample from a distribution
over sets of objects. For example, in row 3, we see that the samples contain different numbers
of objects, variety in bounding boxes, and variety in instance masks. Even though none of
the samples are perfect, they are all plausible and all markedly better than MaskRCNN.

In row 2, we see examples where Latent-MaskRCNN’s hypotheses express uncertainty in
both mask and bounding box, while MaskRCNN picks a single mode.

CHAPTER 2. DISTRIBUTIONAL INSTANCE SEGMENTATION WITH
LATENT-MASK-RCNN 20

2.0 2.5 3.0 3.5
Double Pick Rate % (lower better)

0.70

0.75

0.80

0.85

0.90
Pi

ck
ab

le
 A

re
a

Fr
ac

tio
n

(h
ig

he
r

be
tt

er
)

0.1
0.2

0.3
0.40.50.6

0.70.8
0.9

1.0 MaskRCNN

Double Pick Rate VS Pickable Area
MaskRCNN
p-Confidence Mask

Figure 2.9: Latent confidence masks achieve lower double pick rates and generally more
pickable area compared to MaskRCNN.

Double Pick Evaluation on Apparel-5k

As discussed in Figure 2.1 and Section 2.5, double pick errors are especially costly in robotic
picking applications. For example, if the robot is fulfilling e-commerce orders to be sent
to a customer, a double pick can result in the customer receiving the wrong order and the
warehouse having an incorrect inventory count. If the robot is sorting packages in a shipping
facility, a double pick can result in packages being sent to the wrong destination.

On the Apparel-5k dataset, we can estimate the double pick rate of an instance segmen-
tation segmentation prediction by approximating the robot’s gripper as a circle with a fixed
radius in pixel space (corresponding to a single suction cup). Then, we randomly sample
pixel locations in the image and count the number of circles D that land within one predicted
mask but more than one ground truth mask. We divide this by the number of circles N
that land within one predicted mask, to arrive at the estimated double pick rate R = D

N
.

Empirically, we find that this simulated double pick rate is correlated with double pick rates
on a real robot. In Section 2.6, we evaluate the true double pick rate with a real robot, but
this evaluation can be performed more scalably and reproducibly – both offline and without
access to a particular physical environment.

To ensure that we are avoiding degenerate solutions, we also consider the pickable area:
the amount of visible surfaces that the robot can pick from. A model that predicts more
accurate pickable areas enables the robot to have more flexibility in its grasping strategy
(e.g. due to kinematic or other constraints). To this end, we compute the ratio between the
area of all the predicted masks and the area of all the ground truth masks, and evaluate how
the pickable area fraction trades off with the double pick rate.

We compare MaskRCNN and Latent-MaskRCNN with varying p-confidence masks in

CHAPTER 2. DISTRIBUTIONAL INSTANCE SEGMENTATION WITH
LATENT-MASK-RCNN 21

Table 2.2: Apparel-picking robot evaluation. ∗ indicates a statistically significant difference

Method Double Pick Rate Average Sealed Cups
MaskRCNN 4.40%∗ 4.76
Latent-MRCNN 0.82%∗ 4.91

Figure 2.9. We find that Latent-MaskRCNN outperforms MaskRCNN in fraction of pickable
area and double pick rate in all cases. Moreover, tuning the confidence parameter p s allows
for application-specific tradeoffs between double pick rate and pickable area. Higher values
of p tend to correspond to lower double pick rate and less pickable area, as the confidence
requirement for each prediction is increased. MaskRCNN, on the other hand, can only realize
a single double pick rate and pickable area fraction.

Double pick reduction on a real-world robot

To evaluate whether Latent-MaskRCNN can improve real-world application performance,
we compare MaskRCNN and Latent-MaskRCNN on an apparel-picking robot. We use an
ABB-1300 with a 9-cup suction gripper to pick apparel items in polybags between two totes
(Figure 2.1). The robot uses two overhead camera systems to perform instance segmentation
and then grasp point generation. The grasp points are optimized to land as many suction
cups as possible on a single object detected by the segmentation model.

We only vary which segmentation model is used while holding other parts of the system
constant, including hardware, object set, and grasp point generation. Each segmentation
model is trained on the same Apparel-5k dataset. We run each model with several hundred
grasps and record the number of double picks, grasps that unintentionally pick two objects.
A typical high-automation warehouse can tolerate at most a 1% double-pick rate before the
robot becomes prohibitively ineffective.

We also measure the average number of sealed cups on a grasped item, as an approximate
measure of grasp quality. Since the suction holding force that can be exerted is proportional
to the number of sealed cups, grasps that use fewer sealed cups tend to result in more
dropped objects, which leads to jams, lost inventory, and costly human intervention. Naively
shrinking the predicted instance masks or chapping bigger masks into smaller ones might
trivially reduce the double-pick rate at the expense of grasp quality, by forcing the system
to use fewer suction cups.

Table 2.2 reports the results of our apparel-picking experiments. We find that Latent-
MaskRCNN with 0.9-Confidence mask significantly reduces the double pick rate. This vali-
dates our findings from the simulated experiments on Apparel-5K in Section 2.6. Moreover,
Latent-MaskRCNN achieves slightly better average number of sealed cups, suggesting that
grasp quality was not sacrificed. This suggests that Latent-MaskRCNN’s sense of uncertainty
is well-calibrated, since it is only conservative when ambiguity is present.

CHAPTER 2. DISTRIBUTIONAL INSTANCE SEGMENTATION WITH
LATENT-MASK-RCNN 22

2.7 Discussion

We highlighted the importance of distributional expressiveness in instance segmentation, and
showed where existing state-of-the-art approaches fall short. We then proposed a technique
that uses latent variables to overcome this shortcoming, and showed how it can be applied to
a model family like MaskRCNN. Our proposed Latent-MaskRCNN can express a wide range
of uncertainty by sampling different segmentation hypotheses, and we proposed Confidence
Masks and Union-NMS as two different ways that this uncertainty can be leveraged de-
pending on the different error tolerances of the downstream application. Latent-MaskRCNN
demonstrated strong performance across robotics, autonomous driving, and general object
datasets. On a real apparel-picking robot, we found that it can significantly reduce the rate
of critical double-pick errors while maintaining high performance. We hope that future work
in instance segmentation can continue to explore the theme of distributional expressiveness
and build on top of our methods and datasets developed in this chapter.

23

Chapter 3

Autoregresive Bounding Box
Prediction

3.1 Introduction

Predicting 3D bounding boxes is a core part of the perception stack in many real-world
applications, including autonomous driving, robotics, and augmented reality. The inputs
to a 3D bounding box predictor typically consist of an RGB image and a point cloud; the
latter is usually obtained from a 3D sensor such as LIDAR or stereo depth cameras. These
3D sensing modalities have their own idiosyncrasies: LIDAR tends to be accurate but very
sparse, and stereo depth can be both sparse and noisy. When combined with the fact
that objects are only seen from one perspective, the bounding-box prediction problem is
fundamentally underspecified: the available information is not sufficient to unambiguously
perform the task.

Imagine that a robot is going to grasp an object and manipulate it — understanding
the uncertainty over its size can have a profound impact on what the robot decides to do
next. For example, if it uses the predicted bounding box to avoid collisions during motion
planning, then we may want to be conservative and err on the larger side. However, if the
robot is trying to pack items into a shipment, then having precise, accurate dimensions may
also be important.

Consider the scene depicted in Figure 3.1, which we observed in a real-world robotics
application. From the image of the object in (a), it is fairly easy to gauge the width and length
of the indicated object, but how tall is it? The object could be as deep as the bin, or it could
be a stack of two identical objects, or even a thin object – but from the available information,
it is impossible to say for sure. Formulating bounding box prediction as a regression problem
results in a model that can only make a “pointwise” prediction – even in the face of ambiguity,
we will only get a single predicted bounding box, shown in (b). A sufficiently expressive
bounding-box model should understand the space of plausible bounding box hypotheses and
make different predictions for different confidence requirements.

CHAPTER 3. AUTOREGRESIVE BOUNDING BOX PREDICTION 24

a) object e) 0.8-confidence boxd) 0.5-confidence boxc) 0.2-confidence box f) dimension conditioningb) pointwise

Figure 3.1: (a) In this scene from a real-world robotics application, how tall is the object
highlighted in red? (b) A point estimator could output only one box prediction with no
notion of uncertainty (c)-(e) Predictions from our proposed autoregressive model (Section
3.3) with difference confidence parameters (Section 3.4). Notice that the predicted box
expands in the direction of uncertainty as we increase the confidence requirement. (f) Our
autoregressive model can easily leverage additional information such as known dimensions
to make more accurate predictions.

Setting aside partial observability, the prediction space has complexities that require
care in the design of a bounding-box estimator. Making accurate predictions requires the
estimator to reason about rotations, which has been observed to be notoriously difficult for
neural networks to predict and model uncertainty over [108, 22, 68]. Many existing methods
sidestep this problem by constraining their predictions to only consider rotations about a
single axis or no rotations at all. This can be sufficient for some applications but is too
limiting for the general case.

A common thread that links these challenges together is the necessity to reason about
uncertainty. This has been largely underexplored in existing work, but we hypothesize
that it is critical to improving 3D bounding box estimators and expanding their usability
in applications of interest. Taking a similar approach to the Latent-MaskRCNN method
we proposed in Chapter 2 for instance segmentation, we propose to tackle this problem
by predicting a more expressive probability distribution that explicitly accounts for the
relationships between different box parameters. Using a technique that has proven effective
in other domains, we propose to model 3D bounding boxes autoregressively: that is, to
predict each box component sequentially, conditioned on the previous ones. This allows
us to model multimodal uncertainty due to incomplete information, make high confidence
predictions in the face of uncertainty, and seamlessly relax the orientation constraints that
are popular in existing methods.

CHAPTER 3. AUTOREGRESIVE BOUNDING BOX PREDICTION 25

Our key contributions are:

1. We propose an autoregressive formulation to 3D bounding box prediction that can
model complex, multimodal uncertainty. We show how this formulation can gracefully
scale to predict complete 3D orientations, rather than the 0- or 1-D alternatives that
are common in prior work.

2. We propose a method to make high confidence predictions in ambiguous scenarios and
estimate useful measures of uncertainty.

3. We introduce Common Objects in Bins (COB-3D), a simulated dataset of robotics
scenes that illustrates why capturing uncertainty is important for 3D bounding box
prediction, as well as the benefits and challenges of predicting full 3D rotations.

4. We show that our formulation applies to both traditional 3D bounding box estima-
tion and 3D object detection, achieving competitive results on popular indoor and
autonomous driving datasets, in addition to our proposed dataset.

Our code, models, and dataset are available on our project page. COB-3D-v2, an ex-
panded version of COB-3D, was released in the work presented in Chapter 4; please refer to
COB-3D-v2 for continued interest in the dataset.

3.2 Related Work

3D Bounding-box Estimation: Early work on 3D bounding box prediction [64, 69]
assumes that object detection or segmentation has already been performed, and the bounding
box predictor solely needs to identify a single 3D bounding box within a filtered point cloud.
In this paper, we refer to this task as 3D bounding-box estimation. Much of this work focused
on developing specialized architectures to easily consume point cloud data, which are often
sparse, unstructured, and noisy when obtained from real-world data.

3D Object Detection: Recently, a number of methods have explored how to jointly
perform object detection and 3D bounding box estimation, rather than treating them as
two explicit steps [82, 78, 53, 63, 98, 83, 70] . This task is known as 3D object detection
and is quickly gaining popularity over the decoupled detection and estimation tasks. The
main focus has been on how to take the network architectures that have proven successful at
the estimation task (which have strong inductive biases for operating on point clouds), and
combine them with the architectures commonly used for the 2D object detection method
(which are usually based on region proposals). As we show in Section TODO, our proposed
autoregressive model can be applied to both the estimation and detection tasks.

Uncertainty Modeling in Object Detection: Uncertainty modeling has been stud-
ied in the context of 2D and 3D object detection [60, 48, 59, 27]. In many cases, these
methods use independent distributions, such as Gaussian or Laplace, to model uncertainty
over box parameters such as corners, dimensions, and centers [31, 60, 13]. While these

https://bbox.yuxuanliu.com/

CHAPTER 3. AUTOREGRESIVE BOUNDING BOX PREDICTION 26

Features h per objectFeatures h per object

3D Bounding Box
Base Model

RGB-D

Features h per object

cx cy czdx dy dz ψ 𝜽 φ

cx cy czdx dy dz ψ 𝜽
Autoregressive samples

Figure 3.2: We compute per-object features h using a base model from RGB-D input. Then,
we autoregressively sample dimensions, center, and rotations, each step conditioned on the
previous one. We can express uncertainty through samples, such as the rotational symmetry
of the bottle, whereas pointwise models could only make a single prediction.

distributions may capture some uncertainty for simple box parameterizations, they cannot
capture correlations across parameters and have yet to be proven on full 3D rotations.

Autoregressive Models: Deep autoregressive models are frequently employed across
a variety of domains. In deep learning, they first gained popularity for generative modeling
of images [66, 92], since they can model long-range dependencies to ensure that pixels later
in the autoregressive ordering are sampled consistently with the ones sampled earlier. In
addition to being applied to other high-dimensional data such as audio [66], they have also
been shown to offer precise predictions even for much lower-dimensional data, such as robot
joint angles or motor torques [58].

3.3 Autoregressive 3D Bounding Box Prediction

3D bounding box estimation is typically formulated as a regression problem over the dimen-
sions d = (dx, dy, dz), center c = (cx, cy, cz), and rotation R = (ψ, θ, ϕ) of a bounding box,
given some perceptual features h computed from the scene, e.g. from an image and point
cloud. Prior work has explored various parametrizations and loss functions, but a notable
salient feature to observe is that they all predict a pointwise estimate of the bounding box:
the model simply outputs all of the box parameters at once. In 3D object detection, such
regression is typically applied to every box within a set of candidates (or anchors), and
fits into a larger cascade that includes classifying which anchors are relevant and filtering
out unnecessary or duplicate anchors. In practice, this formulation can be greatly limiting,
especially in the face of partial observability or symmetry.

CHAPTER 3. AUTOREGRESIVE BOUNDING BOX PREDICTION 27

FCAF3D Neck + HeadFCAF3D Neck + Head

FCAF3D Sparse
3D-Conv Backbone

Point
cloud

FCAF3D Neck + Head

Classification + Centerness

Regression Head

Autoregressive Head

Autoregressive 3D Object Detection Autoregressive 3D Bounding Box Estimation

Object-centric features

2D CNN

Autoregressive Head

Figure 3.3: For indoor 3D Object Detection, we use FCAF3D as a base model with an
autoregressive head for bounding box prediction. For 3D Bounding Box Estimation we
take object-centric features from a 2D object detector and pass them into a 2D CNN for
autoregressive bounding box prediction.

Autoregressive Modeling

We propose to tackle this problem by autoregressively modeling the components of a 3D
bounding box. That is, for some ordering of the components (e.g. dimensions → center
→ orientation, or any permutation thereof), such a predictor will sequentially predict each
component conditioned on the previous ones. In theory, the particular autoregressive or-
dering should not matter; empirically, we find that dimensions → center → orientation was
effective, so we use this ordering for our model. Having dimension as first in the autoregres-
sive ordering also enables us to condition on dimensions when they are known, which can be
effective at improving the prediction accuracy in certain situations.

We discretize the box parameters rather than predicting continuous values, which is a
well-known technique that allows the model to easily express multimodal distributions [92].
For rotations, we chose Euler angles since each dimension has a fixed range and does not
to be normalized. To make discrete dimension and center predictions, we normalize those
parameters so that they can fit within a fixed set of discrete bins. We normalize dimensions
by some scale s so that most values of d/s are within the range [0, 1], and offset the centers
by c0 so that most normalized centers (c − c0)/s are within the range [−1, 1]. We use 512
bins for each dimension and adjust the bin range to achieve on average ≥ 0.99 IOU with the
quantized box and < 0.1% overflow or underflow due to quantization.

From RGB-D inputs we extract a fixed-dimensional feature vector h for each object.
For each parameter b = (dx, dy, dz, cx, cy, cz, ψ, θ, ϕ) in the autoregressive ordering, we model
p(bi|b1, . . . , bi−1, h) using a MLP with a few hidden layers. This autoregressive model is then
trained using maximum likelihood. Figure 3.2 provides an overview.

log p(b|h) =
9∑

i=1

log p(bi|b1, . . . , bi−1, h) (3.1)

CHAPTER 3. AUTOREGRESIVE BOUNDING BOX PREDICTION 28

Model Architectures

Our autoregressive prediction scheme can be applied to any type of 3D bounding box predic-
tor. In this section, we discuss how it might be applied in two different contexts: 3D object
detection and 3D bounding box estimation.

Autoregressive 3D Object Detection.

FCAF3D [78] is a state-of-the-art 3D object detection method that was heavily engineered
to exploit sparse and unstructured point clouds. Given a colored point cloud, it applies
a specialized feature extractor consisting of sparse 3D convolutions, and then proposes 3D
bounding boxes following a popular single-stage detector, FCOS [88].

Autoregressive FCAF3D: We can make FCAF3D autoregressive by adding a head
and training this head with maximum likelihood in addition to the FCAF3D loss LF (h, y)
(Figure 3.3). We found that the pointwise box prediction was useful to condition the autore-
gressive prediction and estimate the scaling normalization factor s = max{d′x, d′y, d′z}, where
d′ is the pointwise dimension prediction of FCAF3D. Bounding box centers c are normalized
by the output locations c0 of the sparse convolutions and scaled by the same s: (c − c0)/s.
Since 3D object detection datasets have at most one degree of freedom for rotation, we
predict only one θ parameter for box rotation.

To optimize the autoregressive prediction for higher IOU, we sample boxes b ∼ p(b|h)
and maximize the IOUs of the samples with the ground truth box y. For this optimization,
we use the conditional expectation b′ where b′i = E[bi|b1, . . . , bi−1, h] (since b

′ is differentiable)
to maximize IOU(b′, y). We train autoregressive FCAF3D using the combined loss:

L(h, y) = LF (h, y)− log p(b|h) + Eb∼p(b|h)[1− IOU(b′, y)] (3.2)

Autoregressive PV-RCNN: Lidar-based 3D object detectors, such as PV-RCNN [83],
often have different architectures and inductive biases than indoor detection models. How-
ever, we show that our autoregressive box parameterization is agnostic to the underlying
architecture by applying it to PV-RCNN. We propose Autoregressive PV-RCNN by extend-
ing the proposal refinement head to be autoregressive, modeling the residual ∆rα as discrete
autoregressive p(∆rα|h). Then, we add − log p(∆rα|h) to the total training loss.

Autoregressive 3D Bounding Box Estimation.

3D Bounding Box Estimation assumes that object detection has already been performed in
2D, and we simply need to predict a 3D bounding box for each detected object. To highlight
that our autoregressive prediction scheme can be applied to any bounding box predictor, we
chose a model architecture that is substantially different from FCAF3D. For each detected
object, we take an object-centric crop of the point cloud, normals, and object mask as input
to a 2D-CNN, producing a fixed feature vector h per object. This h is used as features for our
autoregressive parameterization p(b|h). See Figure 3.4 for more details on the architecture.

CHAPTER 3. AUTOREGRESIVE BOUNDING BOX PREDICTION 29

Object patch features
(N, D, 96, 96)

3x3 Conv(64) x3

3x3 Residual
Conv(64) x6

3x3 Residual
Conv(64) x2

2x2 Max pool

x3

Linear(64) on
flattened spatial

features

64-dim feature per object

64-dim feature per object

64-dim feature per object

Attend MLP

x4

(N, 64) feature

Tile across spatial dimConcat & Conv(64) 3x3

3x3 Residual
Conv(64) x2

Bilinear
Upsample x2

x3

5x5 Conv(64) stride 4 x2

3x3 Conv(32) stride 2

Flatten spatial dims

MLP(128, 128) MLP(128, 256, 512, 1024)

x9

Autoregressive Output Bins

Figure 3.4: Overview of Autoregressive Bounding Box Estimation architecture

To normalize the input and box parameters, we scale by the range of the first and third
quartiles of each point cloud dimension s = Q3−Q1, and recenter by the mean of the quartiles
c0 =

Q1+Q3

2
. Within the complete space of SO(3) rotations, there are many box parameters

that could represent the same box; for example, a box with d = (1, 2, 3) is equivalent to a
box with d′ = (2, 1, 3) and a 90◦ rotation. To account for this, we find all the box parameters
B = {b(1), ..., b(m)} that represent the same box and supervise on all of them:

L(h,B) = − 1

|B|
∑
b(i)∈B

log(b(i)|h) (3.3)

CHAPTER 3. AUTOREGRESIVE BOUNDING BOX PREDICTION 30

(1)

(3)

(2)

(4)

a) P(i) = 1/4

O(x) = 1/4

O(x) = 1/2

O(x) = 3/4

O(x) = 1

b) Occupancy

Q(3/4) = b1/4

Q(1/2) = b1/2

Q(3/4) = b1/4

Q(0) = b1

c) Occupancy Quantiles Q(q) and Confidence Boxes b1-q

Figure 3.5: Suppose we are estimating the bounding box of a tightly packed bin of stacked
boxes. (a) There is not enough visual information to estimate the object height, however, we
know that the object could have heightsH/i for i ∈ {1, 2, 3, 4, . . . } with equal probability. (b)
We compute the occupancy O(x) for different regions. (c) We visualize occupancy quantiles
Q(q) which correspond to confidence boxes b1−q. Notice that as the confidence requirement
increases, the size of the box increases to ensure we can contain the true object.

3.4 Applying Autoregressive 3D Bounding Box

Models

Given a trained autoregressive bounding-box model, how should we actually obtain predic-
tions from it? Like Latent-MaskRCNN, an autoregressive bounding box model produces
expressive distributional output that enables flexibility, depending on how the downstream
application plans to use the predictions.

Beam Search

In many applications, we simply want to obtain the most likely 3D bounding box given the
input observation. That is, we seek the box b∗ = argmaxb p(b|h) which is most likely under
the model. Finding b∗ exactly can be computationally expensive, but we can approximate it
using beam search, a technique that has proven especially popular for autoregressive models
in natural language applications [18]. Beam search allows us to estimate the mode of the
distribution learned by the model and serves as an effective pointwise prediction.

Quantile and Confidence Boxes

In applications such as robotics and autonomous driving, 3D bounding boxes are often used
to estimate object extents and avoid collisions. To that end, we often care that an object o
is fully contained in the estimated box b. For a given confidence requirement p, we define

CHAPTER 3. AUTOREGRESIVE BOUNDING BOX PREDICTION 31

a confidence box bp as a box that contains the true object o with probability at least p:
P(o ⊆ bp) ≥ p. In this section we show how to extract confidence box predictions from an
autoregressive bounding box model.

The motivating intuition is similar to that of Latent-MaskRCNN’s confidence masks, as
introduced in Section 2.5. Suppose we draw multiple samples from the model. If a point
x ∈ R3 is contained in many boxes, then it is likely that point is actually part of the object.
Conversely, a point that is only contained in a few sampled boxes is not likely to be part of
the object. We can formalize this idea using the occupancy measure

O(x) = P(x ∈ b) = Eb∼p(b|h)[1{x ∈ b}] ≈
1

K

K∑
i=1

1{x ∈ b(i)} (3.4)

which can be approximated using samples b(1), . . . , b(K) ∼ p(b|h) from our model.
To find regions that are very likely to be part of an object, consider the occupancy quantile

Q(q), the set of all points that have occupancy greater than q:

Q(q) = {x : O(x) > q} (3.5)

We define the quantile box bq as the minimum volume bounding box that contains the
occupancy quantile Q(q):

bq = arg min
b:Q(q)⊆b

vol(b) (3.6)

Under some conditions, we can show that quantile boxes are confidence boxes.

Theorem 1 A quantile box with quantile q is a confidence box with confidence p = 1 − q
when p(b|h) is an ordered object distribution.

We say that p(b|h) is an ordered object distribution if for any two distinct boxes bi, bj
in the sample space of p(b|h), one box must be contained within the other, bi ⊂ bj or
bj ⊂ bi. Empirically we find that quantile boxes exhibit similar uncertainty characteristics
to confidence boxes even when p(b|h) is not an ordered object distribution. See Figure 3.5
for a visualization of occupancy and confidence boxes. The full proof of Theorem 1 is in
Appendix B.

As described in Algorithm 3, quantile boxes can be computed extremely efficiently, in
polynomial time and easily batchable on a GPU without custom CUDA kernels. We use a
sample ofK boxes to approximate the occupancy and a sample ofKM points to approximate
the occupancy quantile Q(q). To find the minimum volume box, we assume that one of the
sampled box rotations will be close to the optimal quantile box rotation. For each sampled
rotation, we calculate the corresponding dimension/center of the minimum volume box that
contains the occupancy quantile. Empirically, we find that K = 64, M = 43 provides a good
trade-off of variance and inference time. With these parameters, quantile box computation
for 15 objects takes no more than 10ms on a NVIDIA 1080Ti GPU.

CHAPTER 3. AUTOREGRESIVE BOUNDING BOX PREDICTION 32

Algorithm 3: Efficient Quantile Box Computation

Given: Desired quantile q, box distribution P (b|h), numbers of box samples K,
number of point samples M
Sample b(1), ..., b(K) ∼ P (b|h) boxes
For each b(i), sample M random points within b(i), adding all points to a set T
For all x ∈ T , estimate O(x) = 1

k

∑K
i 1{x ∈ b(i)}

Construct the occupancy quantile Q(q) = {x ∈ T : O(x) > q}
for b(1), ..., b(K) do

Let Ri be the rotation of b(i)

Compute the volume of the Q(q) bounding box under Ri,
vi =

∏
a∈x,y,z(maxx∈Q(q)(R

−1
i x)a −minx∈Q(q)(R

−1
i x)a)

Find the minimum volume box i∗ = argmini vi
Let sa = maxx∈Q(q)(R

−1
i∗ x)a, ta = minx∈Q(q)(R

−1
i∗ x)a

Return box b = (d, c, Ri∗) with dimensions d = (tx − sx, ty − sy, tz − sz) and center
c = Ri∗(sx + dx/2, sy + dy/2, sz + dz/2)

Dimension Conditioning

For some robotics applications, such as object manipulation in industrial settings, we are
often presented with Stock-Keeping Unit, or SKU, information beforehand. In these scenar-
ios, the dimensions of each SKU are provided, and the prediction task essentially boils down
to correctly assigning the dimensions to a detected object instance, and predicting the pose
of the 3D bounding box.

The autoregressive nature of our model allows for conveniently conditioning on the dimen-
sions of each bounding box. However, we don’t know which object in the scene corresponds
to which SKU dimensions. How can we leverage dimension information from multiple SKUs
without object-SKU correspondence? Our autoregressive model provides an elegant solution
using conditioning and likelihood evaluation.

Given {d(1), ..., d(k)} known SKU dimensions, we can make a bounding box prediction
using this information by maximizing:

b∗ = argmax
b
{ max
d(1),...,d(k)

p(b|d(i), h)} (3.7)

We can find the optimal b∗ by using beam search conditioned on each of the di and returning
the box with the highest likelihood. Figure 3.1 illustrates how dimension conditioning can
be used to greatly increase the fidelity of the predicted 3D bounding boxes.

CHAPTER 3. AUTOREGRESIVE BOUNDING BOX PREDICTION 33

3.5 Experiments

We designed our experiments to answer the following questions:

1. How does an autoregressive bounding box predictor perform compared to a pointwise
predictor, across a variety of domains and model architectures?

2. How meaningful are the uncertainty estimates from an autoregressive model? How
effective are quantile boxes for reasoning about uncertainty?

Datasets

To demonstrate the flexibility of our method, we conducted experiments on a diverse set of
datasets.

SUN-RGBD [86] is a real-world dataset containing monocular images and point clouds
captured from a stereo depth camera. It features a large variety of indoor scenes and is one
of the most popular benchmarks in 3D object detection. The box labels only include one
rotational degree of freedom θ.

ScanNet [15] is a dataset of indoor 3D reconstructions. There are 18 classes and the
bounding box labels are axis-aligned (no rotation). We train on 1201 scenes and evaluate on
312 validation scenes.

KITTI [20] is a widely popular 3D detection dataset for autonomous driving. Objects
in KITTI have one degree of rotational freedom θ, and we report evaluation results on the
validation split.

COB-3D: Common Objects in Bins 3D is a simulated dataset we rendered to be more
representative of the challenges encountered in real-world robotic applications. It contains
7000 scenes that aim to emulate industrial environments where robots perform manipulation-
based tasks, with each scene consisting of a bin containing a variety of items. Compared
to existing datasets, the objects are in a greater range of orientations than any other 3D-
bounding-box dataset. In many indoor and autonomous-driving datasets, the ground-truth
bounding boxes typically only exhibit one rotational degree of freedom, since the objects tend
to be situated in stable poses on the ground. However, the diversity of object arrangements
in COB-3D necessitates reasoning about complete 3D rotation. COB-3D also exhibits many
types of ambiguity including rotation symmetry, occlusion reasoning in cluttered scenes,
and tightly-pack bins with unobserved dimensions. See Appendix A for full details on this
dataset, including visual examples.

Evaluation

To evaluate 3D-bounding-box predictions, intersection-over-union, or IoU, is commonly used
to compare the similarity between two boxes. 3D object detection uses mean average precision,
or mAP, to measure how well a detector trades off precision and recall. IoU is used to de-
termine whether a prediction is close enough to a ground-truth box to constitute a true

CHAPTER 3. AUTOREGRESIVE BOUNDING BOX PREDICTION 34

Table 3.1: 3D Object Detection on SUN-RGBD, Scannet, and KITTI

IoU IoG
Dataset Method AP0.25 AP0.50 APall AP0.25 AP0.50 APall

S
U
N
-R

G
B
D

FCAF3D 63.8 48.2 37.42 64.72 59.82 48.75
3DETR 59.52 32.17 31.13 63.00 53.33 44.08
VoteNet 60.71 38.98 30.25 62.81 54.58 43.62
ImVoteNet 64.24 39.38 31.12 67.00 57.41 45.78
Beam Search 62.94 47.03 38.15 64.75 58.50 47.17
Quantile 0.1 61.21 30.94 31.06 65.89 64.34 60.08
Quantile 0.4 63.46 48.41 38.43 65.34 61.68 51.76
Quantile 0.45 63.47 48.64 38.55 65.19 61.03 50.36
Quantile 0.5 63.30 47.70 38.50 64.99 59.83 48.44

S
ca
n
N
et

FCAF3D 68.53 53.87 43.32 72.05 67.63 60.66
3DETR 64.09 47.16 39.57 68.62 59.17 49.82
Beam Search 69.06 53.67 43.85 71.46 66.10 59.13
Quantile 0.1 67.10 43.13 34.17 72.23 70.01 66.73
Quantile 0.2 68.03 48.68 38.27 72.30 69.68 65.43
Quantile 0.4 68.73 52.98 42.76 72.08 67.74 61.98

K
IT

T
I

AP IoU Hard Split AP IoG Hard Split
Method Car Ped. Cycl. Car Ped. Cycl.
PVRCNN 82.37 53.12 68.69 91.86 67.08 73.14
Beam Search 82.37 52.28 69.13 91.84 66.96 73.40
Quantile 0.1 59.75 39.26 58.38 96.02 71.85 76.09
Quantile 0.4 81.98 54.15 68.45 93.98 70.63 74.08
Quantile 0.5 82.32 53.78 69.03 91.84 68.14 73.52

positive. For 3D bounding-box estimation, detection has already happened, so we simply
measure the mean IoU between the prediction and ground-truth, averaged across objects.

Unlike 2D detection, many applications that use 3D bounding boxes especially care about
underestimation more than overestimation: if the predicted bounding box is too large, that
is generally a less costly error than if it is too small. In the latter case, there are parts of
the object that are outside the bounding box, which may result in collisions in robotics or
autonomous driving settings.

To help quantify this error asymmetry, we consider a new similarity functions, the
intersection-over-ground-truth (IoG). IoG measure what fraction of the ground truth box
is contained within the predicted box; when IoG is 1, the ground truth box is fully contained
in the predicted box. With IoG and IoU, we have a more complete understanding of the
types of errors that a bounding-box predictor is making. For the detection task, we compute
mAP separately using IoU and IoG, and for the estimation task, we compute the mean IoG
along with the mean IoU.

CHAPTER 3. AUTOREGRESIVE BOUNDING BOX PREDICTION 35

3D Object Detection

In Table 3.1, we evaluate the autoregressive box parameterization for 3D object detection on
SUN-RGBD, ScanNet, and KITTI. We compare Autoregressive FCAF3D and Autoregressive
PV-RCNN, both introduced in Section 3.3, to several other state-of-the-art methods.

We find that beam search generally matches or exceeds the baseline performance on IoU
APall. With quantile boxes, we find that lower quantiles result in higher IoG mAP, which
suggests that the predicted boxes are more likely to contain the ground truth box. This
is consistent with Theorem 1, since lower quantiles correspond to higher confidence boxes
and must contain the true object with higher probability. We find that quantile boxes 0.4-
0.5 strike the best balance between IoU and IoG, achieving better mAP than baselines in
most cases. The quantile parameter flexibly enables applications to trade off bounding box
accuracy (as measured by IoU) with containment probability (as measured by IoG).

3D Bounding Box Estimation

We evaluate bounding box estimation on COB-3D using the model architecture described
in Section 3.3. To study the effectiveness of our autoregressive parameterization, we train
the same model architecture with different box parameterizations and losses. All models
receive the same 2D detection results and features as input, and must make 3D bounding
box predictions for each detected object. We consider 4 baseline parameterizations for this
task inspired by various works in the literature:

L1 Regression: In this parameterization, the model outputs 9 real values for each of
the 9 box parameters: b = (dx, dy, dz, cx, cy, cz, ψ, θ, ϕ). The model predicts dimensions and
centers in coordinates normalized around the object’s point cloud. This model is trained
using a L1 loss over the normalized box parameters L(b, g) = ||b−g||1, where g is the ground
truth box [63].

Gaussian: For this baseline, the model outputs 18 real values for the mean, µ, and
log-variance, log σ2, of 9 Gaussian distributions N (µ, σ) over the box parameters b [31,
60]. Predicting the variance enables the model to output uncertainty over different box
parameters, independently of each other. We train this model using maximum likelihood:
L(µ, log σ2, g) = −

∑
i logN (gi;µi, σi).

Discrete: In some prior works, box parameters are predicted as discrete bins but not in
an autoregressive manner [72]. To evaluate this parameterization and ablate the necessity
of autoregressive predictions, we predict each box parameter independently as discrete bins:
log p(b|h) =

∑9
i=1 log p(bi|h)

4-Point: This baseline outputs 12 real values for four 3D corner points (p0, p1, p2, p3) ∈
R3, constituting a 3D bounding box [60, 59]. We ensure that the 3D bounding box is
orthogonal by applying the Gram-Schmidt process on the basis vectors (p1− p0, p2− p0, p3−
p0). We use an L1-loss on the difference between the predicted points and the points of the
ground truth 3D bounding box. Since there are many permutations of valid 4-point corners
of a bounding box, we supervise on the permutation that induces the minimum loss.

CHAPTER 3. AUTOREGRESIVE BOUNDING BOX PREDICTION 36

Table 3.2: Results of the proposed method & baselines on our dataset. We also show results
for conditioning our method on ground truth dimensions.

IoU IoG F1 errdim[m] errquat[rad] errcenter[m]
L1 Regression 0.4219 0.6113 0.4992 0.0436 0.4667 0.0138
Discrete 0.5232 0.6282 0.5709 0.0339 0.2926 0.0105
Gaussian 0.3169 0.5304 0.3967 0.0450 0.5154 0.0119
4-Point 0.5688 0.7113 0.6321 0.0332 0.1999 0.0132
Beam Search 0.6296 0.7877 0.6999 0.0287 0.1598 0.0109
Quantile 0.1 0.3821 0.9723 0.5486 0.0986 0.1762 0.0123
Quantile 0.4 0.5949 0.8871 0.7122 0.0377 0.1640 0.0110
Quantile 0.5 0.6275 0.8295 0.7126 0.0318 0.1657 0.0110
Conditioning 0.6709 0.7899 0.7215 0.0086 0.1674 0.0096

Metrics

To more quantifiably reason about the trade-off between IoG and IoU, we report the corre-
sponding F1-score: F1score =

2(IoU∗IoG)
IoU+IoG

. We further report metrics on the dimension & pose
errors, which are computed as follows:

◦ errdim = sum(|d− dgt|), where we compute the error across all possible permutations
and then choose the one with the smallest error.

◦ errquat = 2arccos(|⟨q,qgt⟩|), where q represents the rotational part of the pose as a
quaternion. We compute the error across all possible symmetries and choose the one
with the smallest error.

◦ errcenter = ||c− cgt||2, where c is the 3D-center of the bounding box.

Results

Table 3.2 compares different prediction modes of our autoregressive model to the baseline
parameterizations. We find that Beam Search achieves the best IoU, dimension & rotation
error. As for the Quantile methods, we find that lower quantiles achieve higher IoG while
sacrificing IoU and dimension error. Quantile 0.5 offers the best tradeoff in terms of over-
all performance, achieving higher IoG with similar IoU and dimension error compared to
Beam Search. Baseline models that predict box parameters directly generally performed
worse since those models cannot properly capture multimodal correlations across the box
parameters. The Discrete baseline performs the best in terms of center error, but we can
see that the best autoregressive methods are only a few millimeters worse. For bounding
box predictions with full rotations in SO(3), we find that an autoregressive bounding box
parameterization can effectively model rotation uncertainty, achieving the lowest rotation

CHAPTER 3. AUTOREGRESIVE BOUNDING BOX PREDICTION 37

0.2 0.4 0.6 0.8
Quantile q

0.0

0.2

0.4

0.6

0.8
C

on
ta

in
m

en
t f

ra
ct

io
n
f

Quantile Box Containment
Ideal q=1− f
Beam Search
L1 Regression
Discrete
Gaussian
Quantile Box

Figure 3.6: We compare fraction of predicted boxes that contain ground truth boxes f with
different quantiles q and find that q-quantile boxes contain approximately f ≈ 1− q fraction
of ground truth boxes.

error. We can also see that conditioning the model on known dimensions of the items in
the scene increases performance in all relevant metrics (besides IoG), most notably in IoU &
dimension error. Note that the dimension error is non-zero because the model is given the
dimensions as an unordered set, and still needs to predict the association of each dimension
tuple to the corresponding item in the scene.

Quantile and Confidence Boxes

In Section 3.4 we introduced quantile boxes as a tractable approximation for confidence
boxes. In particular, we showed that when p(b|h) is an ordered object distribution, a quantile
box with quantile q is equivalent to a confidence box with p = 1− q and should contain the
true object with probability p.

While real world objects generally do not follow an ordered distribution (and it can be
hard to verify if they are or not), we can empirically evaluate whether q confidence boxes
contain the ground truth object 1 − q fraction of the time. To test our hypothesis, we
predict quantile boxes with different q and calculate the fraction of predictions f with IoG
> 0.95. In Figure 3.6, we can see that f ≈ 1− q and follows a generally linear relationship.
This suggests that even for general object distributions, quantile boxes can be an effective
approximation for confidence boxes, and that the uncertainty exposed by quantile parameter
is actually well-calibrated.

CHAPTER 3. AUTOREGRESIVE BOUNDING BOX PREDICTION 38

3.6 Discussion

We introduced an autoregressive formulation to 3D bounding prediction that greatly expands
the ability of existing architectures to express uncertainty. We showed that it can be applied
to both 3D object detection and 3D bounding-box estimation, and explored different ways
to extract bounding box predictions from such autoregressive models. In particular, we
showed how the uncertainty expressed by these models can make high confidence predictions
and meaningful uncertainty estimates. We introduced a dataset that requires predicting
bounding boxes with full 3D rotations, and showed that our model naturally handles this
task as well. While autoregressive models are just one class of distributionally expressive
models, they are not the only option for more expressive bounding box modeling. We hope
that future lines of work will continue to build upon the method, dataset, and benchmarks
we introduced in this chapter.

39

Chapter 4

Shape Completion Models for Dense
Packing of Complex, Novel Objects

4.1 Introduction

So far we have presented two techniques for improving the ability of state-of-the-art percep-
tion models to reason about uncertainty in challenging or ambiguous situations. Studying
instance segmentation (Chapter 2) and 3D bounding box prediction (Chapter 3), we showed
how to learn models that express distributional uncertainty over complex hypotheses, and
how to flexibly incorporate this uncertainty into real-world robotics systems. However, even
our improved models still require large training datasets, which can be challenging to obtain
in diverse real-world environments. While human annotators can provide the supervision, at
a nontrivial cost, for instance segmentation or 3D bounding box prediction, there are other
perception tasks where annotation would be prohibitively impractical.

In this chapter, we delve into shape completion, one such task where annotation is not a
feasible route to obtaining supervision. The goal of shape completion is typically to predict
the entire 3D shape of an object (for example, a mesh, voxel grid, or surface point cloud)
based on a partial observation, such as an incomplete or noisy point cloud. Due to the
inherent partial observability, shape completion models are forced to learn strong priors
about 3D object geometry, making them a good fit for real-world applications where the
ability to generalize robustly in the face of inherent ambiguity is essential.

Robust real-world shape completion can form the perceptual foundation for dense pack-
ing, a manipulation task where a robot must pack objects into a given container, maximizing
the density or number of objects in the final configuration. Dense packing is a critical ca-
pability for robotic pick-and-place systems for applications in warehouse automation and
logistics, which have seen huge commercial interest in recent years. For example, in order
fulfillment for e-commerce, objects must be packed into shipping boxes that will be sent from
a warehouse to a customer. Suboptimal packing causes inefficiencies in the overall operation,
as larger boxes, more shipments, or human interventions will be unnecessarily required.

CHAPTER 4. SHAPE COMPLETION MODELS FOR DENSE PACKING OF
COMPLEX, NOVEL OBJECTS 40

Shape Completion
with F-CON

Packing Planner

Completed
Point Cloud

Planned Packing
Configuration

RGB-D image of target container

RGB-D image of source container

Shape
Completion

Completed Point
Cloud

RGB-D image of source container

Packing Planner

Planned Packing
Configuration

RGB-D image of target container

Figure 4.1: Our proposed shape completion model, F-CON, is trained in simulation and
predicts completed point clouds for complex, unseen objects in the real world. Off-the-shelf
planners can leverage F-CON for precise dense-packing in pick-and-place applications.

Recent work in dense packing has sidestepped the real-world perception challenges, work-
ing in simulation to focus sequential-decision-making aspect of the problem: in order to
achieve optimal packing densities, every object needs to be placed carefully, with regard for
how it affects the subsequent objects that will need to be packed into the same container.
The result of this line of work has been a series of attempts to cast dense packing as a
reinforcement learning (RL) problem [45, 100, 38]. For tractability and ease of evaluation,
common practice has been to operate on simplified state representations, such as by approx-
imating all objects as cuboids, or to assume that complete state information is available,
such the ground-truth geometry of all objects [95, 94].

In this chapter, we push the boundaries of sim-to-real transfer to develop a shape com-
pletion model that provides the necessary perceptual understanding for real-world dense
packing systems. Our main contributions are as follows:

(1) We release a simulated dataset, COB-3D-v2, that can be used to train shape completion
models for robotics applications. COB-3D-v2 is an expansion of the COB-3D dataset
introduced in Chapter 3, and it is publically available at our project page.

(2) We propose a 3D fully-convolutional model architecture for shape completion that
performs well in the robotics domain. We show that our model achieves state-of-the-
art performance on COB-3D-v2.

(3) Through extensive real-world experiments, we show that our model trained on COB-
3D-v2 can be combined with simple, off-the-shelf planning methods to enable state-of-
the-art dense packing performance on cluttered scenes with complex, novel items.

https://sites.google.com/view/fcon-packing

CHAPTER 4. SHAPE COMPLETION MODELS FOR DENSE PACKING OF
COMPLEX, NOVEL OBJECTS 41

4.2 Related Work

Dense packing has been mostly studied from a planning perspective: in what order and pose
should the items be placed to maximize the packed density? Early work proposed heuristics
like Deepest-Bottom-Left-First (DBLF) or Heightmap-Minimization (HM) [96, 95]. Besides
their simplicity, these heuristics are attractive because they empirically perform well even in
situations where the entire item set to be packed is not know in advance. More recent work
has attempted to learn policies using reinforcement learning (RL), exploring state/action
representations, reward functions, neural network architectures, and RL algorithms that
work best for this problem domain [45, 100, 38]. However, the RL-for-packing work has
mostly been limited to simulated evaluations of cuboid objects, limiting its applicability to
real-world systems. Methods for 3D bounding-box estimation could help extend this work
to arbitrary objects, but the imprecision of the bounding-box representation would likely
result in suboptimal packing performance. Our experiments will explore this in Section 4.4.

Packing of complex objects in the real world has only been explored under restricted
settings, such as where the ground-truth object geometry is known in advance, where the
items are already singulated, or where the items only need to be packed in a 2D planar
configuration [94, 24]. These simplifications reduce the perception requirements necessary
for a packing system, but do not reflect the challenges encountered in real-world applications.
In this work, we consider a more realistic setting where the items must be picked from a
cluttered bin and packed into a dense 3D arrangement. As we show in Section 4.4, the strong
geometric priors learned by our shape completion model enable existing planning methods to
gracefully handle this difficult task. Additionally, we explicitly evaluate the achieved packing
density, which, to the best of our knowledge, has not been explored in prior work.

Methods for shape completion can be roughly categorized by the particular 3D represen-
tation that they predict. Recent work has focused on implicit functions, which offer the best
accuracy and resolution, but have limited ability for generalization and are computationally
expensive during inference [67, 57]. While such methods are incredibly effective in many
graphics applications, these properties make them a poor fit for robotic systems that need
to handle unseen objects in low-latency applications. Other representations like voxel grids
and unstructured point clouds are more computationally tractable to work with; voxel grids
tend to be more amenable to prediction with neural networks, but scale poorly to extremely
high resolutions. We will discuss how these trade-offs influence our system in Section 4.3

In robotics, shape completion has mostly seen attention in the context of grasping. There
have been labor-intensive attempts to collect real-world training data by taking RGB-D cap-
tures of objects with known meshes, and then use the resulting shape completion models
to plan parallel-jaw grasps on singulated objects [93]. Later work attempted to train shape
completion models on existing, generic, simulated datasets, and used the predictions to eval-
uate both grasp quality and kinematic/collision feasibility during placement [24]. However,
the poor real-world performance of their shape completion model necessitated substantial
focus on how the planning algorithm could reason about perceptual errors. We evaluate that
model as a baseline in Section 4.4.

CHAPTER 4. SHAPE COMPLETION MODELS FOR DENSE PACKING OF
COMPLEX, NOVEL OBJECTS 42

4.3 Dense Packing with Convolutional Occupancy

Models

Frustum-Convolutional Occupancy Networks

The shape completion problem is typically posed as follows: given a partial point cloud of an
object, the goal is to produce a complete point cloud of the entire object surface, including
invisible or occluded portions. This is particularly amenable to robotics, where RGB-D
cameras can provide partial point clouds of varying quality. In existing benchmarks, scenes
typically contain only a single object, or the partial point clouds are already segmented into
objects. However, for a real-world application where objects appear in cluttered scenes, we
also require access to an instance segmentation model. Model families such as Mask-RCNN
[30] or DETR [7] are relatively mature and have been extensively used in robotic applications.

Given an RGB-D image and corresponding instance segmentation, our model predicts
voxels for each object using a 3D fully-convolutional architecture. We find that inference with
voxel representations is still efficient at the resolutions we care about, and the convolution-
based network architecture is the best way to impose strong inductive biases when working
with structured data like RGB-D images.

As illustrated in Figure 4.2, we first construct a trapezoidal frustum for each object. Each
frustum is the projection of its 2D bounding-box into 3D, clipped between a near plane and
a far plane. The near plane is chosen to be slightly closer to the camera than the nearest
point in the partial point cloud in the object’s instance mask, and the far plane is chosen
to be conservatively far based on the working volume of the scene. We then discretize
each frustum into a voxel grid, and associate a feature vector of dimension C with each
voxel, resulting in a feature volume of shape C × D × H × W for each instance. For all
experiments, we chose D = 96, H = W = 64 for a favorable trade-off between inference
speed and performance. The voxels are trapezoidal, but they are aligned with the camera
viewpoint (for a given h,w coordinate, every voxel along the D dimension is on the same ray
entering the camera, and projects to the same pixel in the image plane), and they are spaced
linearly along the D dimension between the near and far plane. For each point in the partial
point cloud, we fill the corresponding voxel with the RGB color and a binary indicator for
the instance mask (C = 4). The camera-centric and object-centric properties of this scheme
encourage robustness to different camera viewpoints, scene composition, and object sizes,
which improves the sim-to-real transfer performance. A similar frustum-based scheme was
used by Mesh-RCNN [23]; however, they predict voxels jointly with instance masks, and do
not condition on a partial point cloud. The latter is desirable in applications where depth
is not available during inference, but depth cameras are already ubiquitous in robotics and
can substantially improve performance.

The initial C ×D ×H ×W feature volume is passed through a 3D-convolutional UNet
to produce an updated feature volume of the same shape. We then use a 3D-conv layer to
reduce the C dimension to 1, and then refine the resulting D ×H ×W feature map with a

CHAPTER 4. SHAPE COMPLETION MODELS FOR DENSE PACKING OF
COMPLEX, NOVEL OBJECTS 43

Figure 4.2: F-CON unprojects a segmented instance into a camera-aligned frustum, popu-
lates the frustum with the instance’s partial point cloud (orange voxels), and then applies
a series of 3D convolutions to produce a voxel grid of the completed shape (green). The
ground-truth instance shape (purple contour) is used as supervision during training. Here
we only visualize a single slice of the frustum (indicated by the red line in the image plane).
In practice, F-CON unprojects the entire region-of-interest for each object.

2D UNet (where the D dimension is treated as the channel dimension). This is an efficient
way to increase the expressiveness of the model, since 2D convolutions are cheaper than their
3D counterparts. Each element of the 2D UNet’s output (still D × H ×W) is the scalar
probability that the corresponding voxel is occupied by the object’s completed shape. During
training, we label each voxel as positive if it is contained inside the object’s ground-truth
mesh. Each voxel is supervised independently using a class-balanced binary cross-entropy
loss. During inference, we extract meshes from the voxel predictions using Marching Cubes
[54]. sample points uniformly from the surface to obtain an unstructured point cloud. For
more details, see our implementation.

We call this model F-CON (F rustum-Convolutional Occupancy N etwork). In the follow-
ing sections, we discuss the dataset used to train it, and how we utilize it for dense packing
in the real world.

https://github.com/nikhilmishra000/fcon/

CHAPTER 4. SHAPE COMPLETION MODELS FOR DENSE PACKING OF
COMPLEX, NOVEL OBJECTS 44

Figure 4.3: COB-3D-v2 contains high quality RGB renderings (left), instance masks (top
right), and depth maps (middle right), and posed meshes for each instance (bottom right).
It can be downloaded from our project page. See Appendix A for more details and examples.

Simulated Dataset

In Section 3.5, we introduced COB-3D, a simulated dataset of common objects in bins,
arranged in realistic yet challenging configurations. As illustrated in Figure 4.3, the dataset
contains roughly 7000 scenes of high-quality RGB renderings along with ground-truth camera
calibrations, instance masks and point clouds. Each scene contains up to 30 objects, which
are thrown into a bin using physics simulation. For robust sim-to-real transfer, the object
sizes, camera parameters, and scene lighting are all randomized.

In this work, we released a new version of this dataset, COB-3D-v2, with ground-truth
meshes and poses of each object instance. This addition allows shape completion models
such as F-CON to be trained on COB-3D-v2. For more example scenes and details about
the dataset format, see Appendix A.

Note that neither COB-3D nor COB-3D-v2 have object categories (all objects belong
to a single category). This is a substantial departure from prior work in shape completion,
where the standard practice is to either train category-specific models or condition on the
object category [8]. However, we find that the lack of categories is more representative of
real-world settings with novel objects, which may belong to arbitrary novel categories, or
may be hard to categorize in the first place.

We trained F-CON for 125 epochs on COB-3D-v2, which took about 4 GPU-days. We
used a batch size of 32 scenes and the Adam optimizer with default hyperparameters (α =
10−3, β1 = 0.9, β2 = 0.999, ϵ = 10−8). During training, we also randomize the near and far
planes for each instance, which improves robustness after sim-to-real transfer. In Section
4.4, we evaluate F-CON against baselines for shape completion on COB-3D-v2.

https://sites.google.com/view/fcon-packing

CHAPTER 4. SHAPE COMPLETION MODELS FOR DENSE PACKING OF
COMPLEX, NOVEL OBJECTS 45

Dense Packing with F-CON

Given a trained shape completion model, there can be different ways to utilize it in a dense-
packing system. To highlight F-CON’s perceptual capabilities, we opted for a simple plan-
ning pipeline that allows us to use off-the-shelf methods from prior work. As described in
Algorithm 4, we determine a grasp pose g∗ ∈ SE(3) and placement pose q∗ ∈ SE(3) from
the following inputs:

• A height-map H[·, ·] for the target container, which is computed from the captured
depth map. The container is discretized into rectangular cells, where H[u, v] = z if the
highest sensed point in cell (u, v) is distance z from the container bottom.

• A set of candidate grasp poses G = {g(1), . . . , g(N}Ni=1, g
(i) ∈ SE(3). These can be

generated using any method and for any grasping modality (suction, parallel-jaw, etc).

• Completed point clouds O = {o(i)}Ni=1 for each grasped object. Each o(i) ∈ RK×3 is
expressed in the g(i) frame.

• A cost function C(g, q)→ R that evaluates the packing quality of a candidate grasp g
and placement q.

Given the returned grasp and placement poses, we use a scripted trajectory planner such
that the robot’s gripper retracts linearly upwards from the grasp pose, and descends linearly
downwards during placement.

Algorithm 4: A simple planner for dense packing

Input: Height-map H for the target container
Candidate grasps G = {g(1), . . . , g(N)}
Object point clouds O = {o(1), . . . , o(N)}
Placement cost function C(g, q)→ R

Initialize g∗ ← null, q∗ ← null, c∗ ←∞;
for k = 1, . . . , M do

Sample a grasp g(k) from G;

Sample a placement cell (u(k), v(k)) inside H;

Sample a placement orientation R(k);

Compute the lowest placeable height z(k) (see Figure 4.4) for object o(k), when
centered at H[u(k), v(k)] and rotated by R(k);

Compute the gripper pose q(k) corresponding to (i(k), j(k), z(k), R(k));

Evaluate c(k) ← C(g(k), q(k));

if c(k) < c and MotionFeasible(g(k), q(k)) then
g∗ ← g(k), q∗ ← q(k), c∗ ← c(k);

Result: Best placement q∗, corresponding grasp g∗

CHAPTER 4. SHAPE COMPLETION MODELS FOR DENSE PACKING OF
COMPLEX, NOVEL OBJECTS 46

Figure 4.4: A 2D-slice of the lowest-placeable-height computation from Algorithm 4. For
a candidate placement pose, every point in the completed shape (yellow) is projected
(black/red arrows) onto the target container’s height-map (blue). The shortest projection
distance (red arrows) determines the height at which the object can be placed for that cell
and orientation. In this example, we visualize the projections for two placement candidates.
The left candidate results in a lower placement than the right.

This framework neatly encapsulates existing planning methods like DBLF and HM. Using
C(g, q) = qz + ϵ · (qx + qy), for 0 < ϵ << 1, yields the DBLF planner. The HM planner
estimates the height-map H ′(q) that would result from placement q, and then uses C(g, q) =∑

u,vH
′(q)[u, v]−H[u, v]. For more details about howH ′(q) is computed, see [95]. Combining

F-CON with a model-based RL method (such as by extending the simulated packing work
discussed in Section 4.2) could potentially result in a better cost function than either DBLF
or HM, as well as a better sampler than the uniform one that we use. However, to focus on
evaluating F-CON, we defer such explorations to future work.

Unlike some prior work, we do not consider re-grasping, where already-packed items
may be removed in order to achieve a better arrangement. Re-grasping allows the system to
mitigate the effects of perceptual mistakes made in the preceding timesteps, which confounds
our evaluation of shape completion models.

CHAPTER 4. SHAPE COMPLETION MODELS FOR DENSE PACKING OF
COMPLEX, NOVEL OBJECTS 47

4.4 Experiments

We conducted extensive real-world experiments to answer the following questions:

(1) How effective is F-CON at shape completion, as trained and evaluated on the realistic-
but-simulated scenes in COB-3D-v2?

(2) To what extent does F-CON address the perceptual difficulties surrounding dense pack-
ing, as evaluated on novel objects in cluttered real-world scenes?

COB-3D-v2 Evaluation

To evaluate shape completion on COB-3D-v2, we considered the following metrics:

• Chamfer distance: This is the standard metric for comparing unstructured point
clouds in benchmarks such as ShapeNet [8]. Given two point clouds X and Y , the
Chamfer distance (CD) is computed as follows:

CD(X, Y) =
1

|X|
∑
x∈X

min
y∈Y
∥x− y∥22 +

1

|Y |
∑
y∈Y

min
x∈X
∥y − x∥22 (4.1)

Often, an L1-variant (CD-L1), where the ∥ · ∥22 norms are replaced by ∥ · ∥1, is reported
alongside the traditional Chamfer-L2 distance (CD-L2).

• F1τ : For a given distance threshold τ , predicted point cloud X and ground-truth point
cloud Y , F1τ (X, Y) is the harmonic mean of the precision at τ (fraction of points in
X that are within τ of some point in Y) and the recall at τ (fraction of points in Y
that are within τ of some point in X). This metric is usually considered alongside
the Chamfer distance in shape completion benchmarks because it is less sensitive to
outliers, and is typically reported at varying values of τ .

• Box IoU, IoG, F1: Given a completed point cloud, a 3D bounding-box can be fit
around it and compared it to the ground-truth bounding-box, using metrics from 3D
bounding-box estimation (Chapter 3). In contrast with Chamfer distances, and espe-
cially F1τ , we find that bounding-box metrics are very sensitive to outliers. However,
they may be more representative of packing performance, since outliers can cause a
packing system to believe that an item cannot fit in a pose where it actually could have.
To fit a bounding box around a point cloud, we sample rotations uniformly at random
in quaternion space [43], compute the axis-aligned dimensions of the enclosing box in
each sampled rotation frame, and finally choose the sampled box with the smallest
volume (see Figure 4.5 for a visualization). Using this scheme, we report IoU, IoG,
and F1: IoU is the standard metric for bounding-box estimation, IoG (intersection-
over-ground-truth) is a form of recall to complement IoU, and F1 trades off between
the two (Section 3.5). Note that IoG is not particularly meaningful in isolation, since
perfect IoG can be achieved by simply predicting arbitrarily large bounding-boxes.

CHAPTER 4. SHAPE COMPLETION MODELS FOR DENSE PACKING OF
COMPLEX, NOVEL OBJECTS 48

Figure 4.5: Fitting a bounding box around a point cloud (black dots). We sample several
candidate boxes that contain all the points (blue), and then take the one with minimum
volume (green). Notice that the single point on the far right substantially influences the
dimensions of the fitted box.

We considered the following methods as baselines to F-CON. Like prior work in shape
completion for grasping, we did not consider implicit functions: they must be queried ex-
tremely densely to extract surface geometry, and often require test-time optimization, making
them too computationally expensive during inference for use in a real-world system [67, 57].

• PCN [105] has been used in prior work for grasp and placement planning [24]. It uses an
encoder that embeds a partial cloud into a latent space, and a decoder that constructs
the completed point cloud from the latent vector. Both encoder and decoder use
PointNets [71] to operate directly on unstructured point clouds directly, and they are
trained end-to-end using the Chamfer-L2 distance as the loss function. To train PCN
on COB-3D-v2, we normalize each instance’s partial point cloud using its frustum,
decode the completed point cloud in the normalized coordinates, and then transform
it back to the original space. For a more fair comparison with F-CON, we also improve
upon the original architecture by concatenating RGB and instance masks with the
partial point cloud.

• PoinTr [104] uses a similar encoder-decoder framework to PCN, but substantially im-
proves the architecture, primarily by using Transformers. At the time of this work,
it achieved state-of-the-art performance on many shape completion benchmarks, even
outside of robotics. We train PoinTr using the same normalization scheme, additional
inputs, and loss function as PCN.

• The autoregressive bounding-box model (AR-bbox) from Chapter 3. Since bounding
boxes have been used as a simplified state representation in prior packing work (as
discussed in Section 4.2), we also consider this model as a baseline, but only evaluate
it on bounding-box metrics.

CHAPTER 4. SHAPE COMPLETION MODELS FOR DENSE PACKING OF
COMPLEX, NOVEL OBJECTS 49

Table 4.1: Benchmarking Shape Completion on COB-3D-v2

Shape completion 3D bounding-box estimation
Method CD-L1 (↓) CD-L2 (↓) F10.1(↑) F10.3(↑) F10.5(↑) Box-IoU (↑) Box-IoG (↑) Box-F1 (↑)

AR-bbox (Chapter 3) - - - - - 0.6296 0.7877 0.6999
PCN [105] 0.9835 0.5800 0.0729 0.5460 0.7968 0.5374 0.8002 0.6460
PoinTr [104] 0.4857 0.1582 0.3721 0.8717 0.9555 0.5874 0.8394 0.6984
F-CON (ours) 0.4229 0.1157 0.4664 0.8928 0.9600 0.6809 0.7686 0.7485

Both Chamfer distance and F1τ generally depend on both the scaling and density of the
point clouds. Following prior work [23], we scale all point clouds such that the longest edge of
the ground-truth bounding-box has length 10. The ground-truth point clouds are generated
by sampling 16384 points uniformly from the mesh surface. For F-CON, we sample points in
the same way, but from the meshes obtained via Marching-Cubes. PCN and PoinTr always
output a fixed number of points, so we train them accordingly to predict 16384 points.

In Table 4.1, we see that F-CON outperforms the baseline methods across all shape
completion metrics. We find these results particularly compelling given that F-CON is
not trained to minimize Chamfer distance, unlike PCN and PoinTr. We also note that F-
CON performs well on 3D bounding-box metrics, even though PCN and PoinTr do not.
Qualitatively, we observe PCN and PoinTr are prone to outliers in their predicted point
clouds – this is well-reflected in their F1τ and IoG scores.

Real-World Dense Packing

We designed real-world experiments to mimic typical order fulfillment applications, where a
robot must pack items from a cluttered bin (or often, multiple bins) into a smaller container,
like a cardboard box. As shown in Figure 4.6, we used an ABB-1200 with a 5-cup suction
gripper, with RGB-D cameras mounted above both containers. The item set consists of a
variety of household objects of diverse shapes and categories. In total, we have 35 objects,
which are unseen by all models (since all models are trained purely in simulation on COB-
3D-v2).

Recall that the goal of dense packing is to minimize the volume that the packed objects
occupy. Thus, we evaluate our system by directly estimating this quantity at the end of
each episode, using a scheme inspired by the HM heuristic. To the best of our knowledge,
no prior work has evaluated real-world packing quality with a continuous volumetric mea-
sure (a common practice is simply to check whether all items were successfully placed in
the container). Using the target container’s height-map, as defined in Section 4.3, we can
estimate the total volume occupied by the packed objects via numerical integration over the
cells of the height-map. The HM planner minimizes the change in this quantity for each
item to be packed; while tractable and easy to implement, this is generally not optimal when
considering the entire episode.

For each shape completion model from Section 4.4, we use the planner from Algorithm
4 using either DBLF or HM as the cost function C(g, q), height-map cells of 1 mm × 1

CHAPTER 4. SHAPE COMPLETION MODELS FOR DENSE PACKING OF
COMPLEX, NOVEL OBJECTS 50

(a) (b)

Figure 4.6: (a) Our robot picks items from the cluttered bin in the front, and packs them
into the cardboard box on the the table. (b) The complete item set used in our experiments.

mm, and a sample size of M = 4096 placements. Since F-CON operates in an object-centric
manner, its inference time scales with the number of objects in the scene. For a large scene
(16 objects), it takes about 25 milliseconds on an NVIDIA Quadro RTX 600. The entire
planning process (perception, sampling placements, scoring, motion planning) takes about
300 milliseconds.

Within each trial, we select a subset ranging from 5 to 15 items uniformly at random from
the overall item set, and arrange them chaotically in the source container. Each trial consists
of one episode for each (shape completion, planner) configuration, wherein the system packs
the sampled items one-by-one into the target container. The episode ends when either all
items are placed, one is placed that causes the container to overflow, or the system cannot
find an overflow-free plan. At the end of each episode, we estimate the packed volume using
the height-map integration scheme discussed in the previous paragraph. Finally, we measure
human performance by quickly packing the items by hand (taking 20 seconds or less), and
measuring the packed volume in the same manner.

In Table 4.2, we show the performance of each shape completion model paired with
different off-the-shelf packing planners, alongside human performance, across 50 trials. We
report the mean and standard error for the following metrics:

• Success Rate: the fraction of episodes where all items were successfully packed at
the end of the episode.

• Packed Volume: the volume measured by height-map integration at the end of the
episode. We express this value as a fraction of the total container volume. In episodes
that are not successes, we record a value of 1.0, which is the worst possible score and
corresponds to using the entire container.

CHAPTER 4. SHAPE COMPLETION MODELS FOR DENSE PACKING OF
COMPLEX, NOVEL OBJECTS 51

Table 4.2: Real-World Dense Packing

Shape Completion Planner Packed Volume (↓) Success Rate (↑)
AR-bbox (Chapter 3) DBLF 0.698± 0.047 0.48± 0.071

PCN [105] DBLF 0.909± 0.035 0.12± 0.046
PoinTr [104] DBLF 0.570± 0.046 0.66± 0.067
F-CON (ours) DBLF 0.461± 0.041 0.80± 0.057

AR-bbox (Chapter 3) HM 0.762± 0.045 0.38± 0.069
PCN [105] HM 0.664± 0.049 0.50± 0.071
PoinTr [104] HM 0.535± 0.039 0.76± 0.060
F-CON (ours) HM 0.440± 0.032 0.88± 0.046

Human Human 0.357± 0.012 1.00± 0.000

Final
Height-map Remaining Objects

F-CON

PoinTr

AR-bbox

PCN

Initial Source
Container

Initial Target
Container

Final Target
Container Success?

Figure 4.7: Representative episodes from our real-world packing experiments. In each row,
we conduct one episode using the listed shape completion model and HM as the planning
method. All rows use the same item set. The progress within the episode can be seen from
left to right, along with the final height-map. With F-CON (row 1), all of the items can
be packed densely. Other methods cause the packing container to overflow (row 2) or they
cannot pack all the items (rows 3, 4).

For all planners, F-CON substantially outperforms the other shape completion methods,
demonstrating its efficacy for real-world dense packing. In Figure 4.7, we visualize repre-
sentative episodes for a qualitative understanding. With other methods, the system often
cannot find a suitable placement pose or causes the target container to overflow. The former
typically results from overestimation of the object’s size, which is consistent with the F1τ

and IoG results discussed in Section 4.4.

CHAPTER 4. SHAPE COMPLETION MODELS FOR DENSE PACKING OF
COMPLEX, NOVEL OBJECTS 52

4.5 Discussion

We presented F-CON, a voxel-based shape completion model with strong inductive biases,
and validated it on the highly-realistic simulated dataset COB-3D-v2. We then conducted
extensive experiments in the real-world, and showed that the strong geometric priors learned
by F-CON can enable dense-packing of complex, unseen items in chaotic, cluttered scenes,
without any real-world training. Although using F-CON results in substantially better per-
formance that baseline shape completion methods, we limited our packing system to simple
planning methods in order to demonstrate F-CON’s efficacy. Combining F-CON with RL
methods to obtain learned packing policies is an exciting direction for future work, and we
hypothesize that this could close the gap with respect to human performance.

However, F-CON ultimately owes its success to its training data, the COB-3D-v2 dataset.
A lot of manual engineering went into the development of this dataset, maximizing its visual
and physical realism to give sim-to-real transfer the best chance of succeeding. What would
we have done if the sim-trained F-CON had transferred poorly to the real-world, despite our
best efforts? We will explore this theme in the next chapter.

53

Chapter 5

Closing the Visual Sim-to-Real Gap
with Object-Composable NeRFs

5.1 Introduction

Sim-to-real transfer is the standard technique for training perception models where supervi-
sion is unreliable or impractical to obtain in the real-world. In Chapter 4, we saw a successful
instantiation of this recipe that applied sim-to-real shape completion to the downstream task
of dense packing, but sim-to-real transfer is generally a fickle and labor-intensive art.

Models trained in simulation often degrade when deployed in the real-world due to dis-
tribution shift; the performance discrepancy is often known as the sim-to-real gap. Domain
randomization [89] tries to reduce the sim-to-real gap by observing that if a model is trained
to generalize to different parameters of the simulator (viewpoint, lighting, material proper-
ties, etc), then it may also generalize to the real world as simply another randomization.
However, this requires the training distribution to be both diverse enough to enable gen-
eralization, as well as realistic enough that the real world is a plausible sample from this
distribution. This can be difficult to achieve in practice, often requiring manual asset cre-
ation (meshes, textures, materials), scene construction, and parameter tuning. When a large
sim-to-real gap is observed, it can be difficult to know exactly how to improve the simulator,
and actually doing so may require specialized expertise (e.g. graphics for visual tasks), or
domain-specific or task-specific tuning. Even if the sim-to-real gap is initially small, the
engineering effort may still need to occur continuously, as a deployed system may encounter
changing environments or new scenarios that were not reflected in the original data.

In this chapter, we explore neural rendering methods as a mechanism to close the sim-
to-real gap for perception tasks. The seminal NeRF [61] uses real images to build a neural
representation of a scene, which can then be rendered from new viewpoints through a ray-
marching process based on physical models of light transport. However, these methods
typically require extensive test-time optimization (TTO), taking many GPU-hours to recon-
struct a single scene. In this chapter, we introduce Composable Object Volume NeRF, or

CHAPTER 5. CLOSING THE VISUAL SIM-TO-REAL GAP WITH
OBJECT-COMPOSABLE NERFS 54

COV-NeRF generates
targeted simulated data

Train COV-NeRF
using real images

Model performance
improves in real world

Models suffer from
sim-to-real gap

Train COV-NeRF
using real images

Models suffer from
sim-to-real gap

COV-NeRF generates
targeted simulated data

Model performance
improves in real world

Figure 5.1: Our proposed object-centric neural renderer, COV-NeRF, can be used to gen-
erate targeted supervision for other models that are brittle to sim-to-real distribution shift.
After learning explicit neural representations of real objects, COV-NeRF can compose those
representations into photorealistic synthetic scenes and generate many modalities of down-
stream supervision, including depth maps, segmentation masks, and instance meshes.

COV-NeRF, a novel neural renderer that is uniquely suited to remedy sim-to-real mismatch.
Unlike prior NeRF methods, COV-NeRF explicitly represents objects while also generalizing
across scenes without TTO. It performs real-to-sim learning of structured neural representa-
tions that can subsequently be used for novel scene synthesis, rendering photorealistic images
along with the corresponding supervision for many perception tasks. Existing methods for
domain adaptation simply re-skin simulated scenes [35, 33, 73], while COV-NeRF synthe-
sizes new scenes de novo, can produce both RGB images and many types of 2D and 3D
supervision, and automatically enjoys geometric and semantic consistency across viewpoints
and between the rendered images and labels.

Our key contributions are as follows:

1. We introduce COV-NeRF, a novel NeRF architecture that both explicitly represents
objects and generalizes across scenes. Although these properties have been explored
individually in prior work; COV-NeRF is the first to exhibit both simultaneously.

2. We demonstrate COV-NeRF’s ability to generate targeted synthetic data based on
real-world scenes and objects. Without artificial consistency constraints, we show that
COV-NeRF can generate supervision for a variety of perceptual tasks, including depth
estimation, object detection, instance segmentation, and shape completion, and that
training on COV-NeRF’s generations improve real-world performance.

3. Finally, we apply the entire pipeline to a real world bin-picking application. We identify
challenging scenarios where state-of-the-art perception models and simulated datasets
face a large sim-to-real gap, and show that COV-NeRF’s real-to-sim capabilities can
rapidly close the gap to achieve application-level improvement.

CHAPTER 5. CLOSING THE VISUAL SIM-TO-REAL GAP WITH
OBJECT-COMPOSABLE NERFS 55

5.2 Related Work

Neural Rendering: NeRF [61] was a breakthrough in physically-plausible differentiable
rendering, yielding better visual quality and easier optimization than existing methods for
inverse rendering. However, NeRF trains a new neural network for each scene, which re-
quires 50-100 source images and several GPU-days of TTO. More recent methods, such as
PixelNeRF [101], MVS-NeRF [9], and NerFormer [75], use more specialized architectures
that can simultaneously represent many scenes and generalize to new scenes without TTO.
Since they learn priors that transfer across scenes, they only need 3-5 source views during
inference.

Object-NeRF [99] and Object Scattering Functions (OSF) [102] stayed within the single-
scene paradigm, but explored object-centric decompositions that allowed scene editing, where
objects can be explicitly added, re-positioned, or scaled. OSF’s edited scenes are the most
realistic, but it requires the lighting to be specified parametrically (which can be difficult
outside of controlled settings), and an order of magnitude more compute during rendering.
Subsequent work [44] [84] adds bells-and-whistles to Object-NeRF; COV-NeRF extends these
methods to not require TTO.

In robotics, single-scene NeRFs have been explored for online geometry estimation, but
were bottlenecked by the computational cost of TTO [36] [39]. NeRF-Supervised Deep
Stereo [91] used single-scene NeRFs to generate labels for stereo depth estimation. This
pipeline generated high-quality supervision, but required extensive TTO and many source
views per scene. GraspNeRF [16] trained NeRF rendering in simulation as an auxiliary
loss for grasp generation, but did not explore or evaluate its rendering quality, let alone
its ability to mitigate sim-to-real mismatch. GraspNeRF’s architecture is similar to MVS-
NeRF; as such, we expect similar rendering performance, and it does not share COV-NeRF’s
object-composable properties.

Sim-to-Real Transfer: Domain randomization has been explored for sim-to-real trans-
fer of both visual and physical tasks. Early visual sim-to-real work [89] focused on diversity
rather than realism: these methods achieved promising results on simple tasks and environ-
ments, but could not scale to more challenging applications without manual tuning. Simple
heuristics like cut-and-paste were explored for segmentation, but produce visually and geo-
metrically implausible scenes, and cannot generate 3D supervision [21] [85].

Domain adaptation methods employed generative models to automatically improve the
realism of simulated images. CyCADA [35] trained GANs to translate simulated images into
real ones, but required a cycle consistency objective so that the original semantic segmen-
tations could still serve as supervision for the translated images. Subsequent work applied
this idea using object detection [33] and Q-values [73]. However, finding such a bijective
mapping is an ill-posed task, and its difficulty scales poorly as more modalities are consid-
ered (e.g. if we require consistency for depth maps as well as for semantic segmentation).
We take a fundamentally different approach: COV-NeRF creates datasets de novo that are
more realistic and more meaningfully diverse than the adaptions produced by these meth-
ods, and achieves multi-view consistency for many modalities for free. We evaluate domain

CHAPTER 5. CLOSING THE VISUAL SIM-TO-REAL GAP WITH
OBJECT-COMPOSABLE NERFS 56

adaptation methods in Section ??.
Inspired by recent advances in vision-language alignment, CACTI [56], ROSIE [103], and

GenAug [11] used text-conditioned diffusion models [34] to automatically apply augmenta-
tions, such as changing backgrounds or adding distractor objects. These methods improved
the robustness of end-to-end policies, but ultimately suffer from the same limitations as the
GAN-based approaches.

5.3 Generalizable Neural Rendering with

Composable Object Volumes

Preliminaries

NeRF methods use differentiable volumetric rendering to train models for novel view synthe-
sis. Given a collection of source images {I(b)}Bb=1 of a scene and their corresponding camera
intrinsic/extrinsic matrices, their goal is to render an image I∗ of the scene as seen from a
new viewpoint.

Recall that a ray r is parametrized as r(t) = o + t · d, t ≥ 0, where o, d ∈ R3 are the
ray’s origin and direction. Each pixel (u, v) ∈ I∗ corresponds to a particular ray ru,v(t);
the intrinsics and extrinsics determine o and d. To render a ray, points r(ti), t1 < · · · < tN
are sampled along it, and the density σi and radiance ci are determined for each, then
accumulated to compute the ray’s rendered color Ĉ(r):

Ĉ(r) =
N∑
i=1

Tiαici (5.1)

where δi = ti+1 − ti, αi = 1 − e−δiσi , Ti = e−
∑

j<i δjσj . The rendered color of pixel (u, v) is
simply Ĉ(ru,v(t)).

Early NeRFs used fully-connected neural networks to predict σi and ci from the coordi-
nate ru,v(ti)) and the ray direction d. However, since they lacked direct access to the source
images during inference, they had to distill visual details from the source images into the
network weights via optimization, which prevented them from representing multiple scenes.
Moreover, since the networks were trained from scratch for each scene, many source views
were required (B ≈ 100).

In the scene-generalizable extensions discussed in Section 5.2, the dependence on {I(b)}
was made explicit by making these images inputs to the network during rendering. More
powerful architectures, such as 3D-CNNs and Transformers, were introduced to better lever-
age the additional information. Instead of memorizing visual details, the networks learned
to robustly aggregate information from the source images, and could work with substantially
fewer source views (B ≈ 3).

CHAPTER 5. CLOSING THE VISUAL SIM-TO-REAL GAP WITH
OBJECT-COMPOSABLE NERFS 57

Target View

?
Source View #1

Source View #2

Ray Marching through
object-centric feature volumes

Interpolated Ray
Features

Transformer
Decoder

NeRF density and radiance

Rendered
Image

Rendered
Depth

Rendered
Instance Masks

3D-UNet

Figure 5.2: An overview of COV-NeRF’s object-centric rendering process. Visual features
from the source views are projected into a feature volume for each object in the scene.
For each pixel to be rendered, features are interpolated along the corresponding ray from
each volume that the ray intersects with. A Transformer decodes the interpolated features
into the NeRF density and radiance, which are composited into RGB colors, depths and
segmentation masks.

Composable Object Volumes

For synthetic data generation, we seek a NeRF method that both generalizes across scenes
and explicitly represents objects. These properties ensure that we can generate supervision
for different perceptual tasks, that the generated supervision is consistent with the rendered
images, and that we can scalably generate diverse datasets with many objects in a variety
of configurations.

COV-NeRF represents a scene as a collection of objects {ok}Kk=1 and a background. Each
object is defined by a frustum, which is discretized into a D×H ×W voxel grid. A learned
feature vector is associated with each voxel, resulting in a feature volume V (k) ∈ RC×D×H×W .
The object o(k) is fully specified by its pose p(k) ∈ SO3 and volume V (k).

Each V (k) is computed by projecting the RGB values from the source views, resulting
in an initial volume of shape B×3×D×H×W . We aggregate features across source views
via attention over the B dimension, reducing the volume to C×D×H×W , and then refine
it with a 3D-UNet to produce V (k). MVS-NeRF [9] uses a similar plane-sweep scheme, but
constructs one volume for the entire scene, while we construct one for each object.

To render a ray, we gather contributions from each object and the background. For the
background, we sample points r(t

(0)
i), t

(0)
1 , . . . , t

(0)
N throughout the entire scene, and predict

σ
(0)
i , c

(0)
i using a simplified NerFormer [75], which interpolates features from each source view

and processes them with a Transformer. For each object o(k), if the ray intersects with

CHAPTER 5. CLOSING THE VISUAL SIM-TO-REAL GAP WITH
OBJECT-COMPOSABLE NERFS 58

its frustum, we also sample points r(t
(k)
i), t

(k)
1 , . . . , t

(k)
N . We transform r(t

(k)
i) and d into the

object frame p(k), trilinearly interpolate feature vectors from V (k), and use a Transformer to
decode them into σ

(k)
i and c

(k)
i following [75, 52].

To accumulate these values into Ĉ(r), we sort all the {t(k)i }
i=N,k=K
i=1,k=0 and apply Equation

5.1. This natively handles occlusions: even if σ
(k)
i is large, T

(k)
i may be small if the ray passes

through other objects before hitting object ok.
Following prior work, the product αiTi can be interpreted as the probability that the ray

terminates at distance ti. Then the expected distance τ̂(r) that the ray travels is:

τ̂(r) =
N∑
i=1

Tiαiti (5.2)

τ̂(r) is the point-to-point distance from the camera center, but can be trivially converted
into a depth value in the camera frame. COV-NeRF renders depth maps by applying this
process to each pixel in the image, considering all objects and the background.

This probabilistic interpretation can also be leveraged to render instance masks. In
addition to standard (modal) instance masks, which indicate the pixels where an object is
visible, COV-NeRF can also render amodal masks, which include both visible and occluded
portions of each object.

Let M
(k)
u,v ∈ [0, 1] be the probability that pixel (u, v) belongs to object ok’s modal mask,

and let M̄
(k)
u,v be the corresponding probability for its amodal mask. M

(k)
u,v is simply the prob-

ability that ru,v terminates inside ok, and M̄
(k)
u,v is the probability that ru,v would terminate

inside o(k) in the absence of other objects:

M (k)
u,v =

N∑
i=1

T
(k)
i α

(k)
i (5.3)

M̄ (k)
u,v =

N∑
i=1

T̄
(k)
i α

(k)
i , where T̄

(k)
i = exp

(
−
∑
j<i

δ
(k)
j σ

(k)
j

)
(5.4)

For more details about COV-NeRF’s architecture and rendering, see our implementation.

Training COV-NeRF

Like other scene-generalizable NeRF methods, COV-NeRF learns visual and geometric priors
that enable inference when only a few source images are available. To best learn these priors,
we train COV-NeRF on a mix of simulated and real data: simulation helps bootstrap its
understanding of 3D geometry, and real data exposes it to realistic textures, materials, and
lighting. This gives us the best of both worlds: COV-NeRF can leverage dense geometric
supervision when available, but is also robust to sim-to-real mismatch, since it can be trained
on any real data that it does not initially generalize to. We jointly train the following losses:

https://github.com/nikhilmishra000/cov-nerf

CHAPTER 5. CLOSING THE VISUAL SIM-TO-REAL GAP WITH
OBJECT-COMPOSABLE NERFS 59

• View synthesis: the rendered color (Equation 5.1) is trained to match the true color
using an L2-loss.

• Depth estimation: the rendered depth (Equation 5.2) is trained to match the true
depth using an L1 loss.

• Instance segmentation: the rendered masks (Equation 5.3) are trained to match the
ground-truth masks using a cross-entropy loss.

• Voxel occupancy: we use V (k) to predict the occupancy of each voxel in that object’s
feature volume, similar to [23] and the F-CON model introduced in Chapter 4. This
facilitates novel scene synthesis (see Section 5.3) since it lets us automatically pose
objects into physically plausible configurations.

In practice, we found that a compute-efficient scheme is to pretrain all of the above losses
in simulation, and add real data when it becomes available. We pretrain COV-NeRF for 100
epochs on the COB-3D-v2 dataset introduced in Section 4.3, which takes about 1 day using
8 NVIDIA RTX A5000s. We used a batch size of 32 scenes and the Adam optimizer with
default parameters (α = 10−3, β1 = 0.9, β2 = 0.999).

Scene Generation with COV-NeRF

Single-scene NeRF methods (see Section 5.2) anecdotally explore scene-editing as a benefit
of object-centric rendering. We extend this capability to perform novel scene synthesis,
procedurally generating new scenes at scale, for use in a downstream application. When
sim-to-real models struggle in the real world, COV-NeRF can synthesize new training data
targeting specific real-world scenes and objects.

Given a pre-trained COV-NeRF and collection of real scenes, we first perform real-to-sim
finetuning using the captured images and any additional supervision that may be available
(such as instance mask annotations). Although this step is not strictly required, the ability to
use weak 2D supervision as learning signal for the underlying 3D semantics and geometry (for
which direct real-world supervision usually cannot be obtained) is a strength unique to COV-
NeRF, and is only possible because of its object- and ray-centric structure. Next, we extract
feature volumes and meshes for objects from the real scenes. The meshes are extracted from
the voxel occupancy predictions (Section 5.3) via Marching Cubes. To compose a new scene,
we sample objects and then use a physics simulator (we use Mujoco [90]) to construct a
physically plausible configuration. We sample initial poses for each object and place the
meshes accordingly in the simulator, advance physics until all objects settle, and then render
the scene with each object at its final pose using COV-NeRF. The process is described in
Algorithm 5.

CHAPTER 5. CLOSING THE VISUAL SIM-TO-REAL GAP WITH
OBJECT-COMPOSABLE NERFS 60

Algorithm 5: Scene Generation with COV-NeRF

Input: Desired number of scenes N
Feature volumes V = {V (1) . . . , V (K)}
Background source images {I(1), . . . , I(B)}

for i = 1, . . . , N do
Sample camera viewpoints
Sample a number of objects K(i)

Initialize physics simulator (e.g. Mujoco)
for k = 1, . . . , K(i) do

Sample object V (k) ∼ V and corresponding mesh
Sample initial pose p

(k)
0

Add mesh to simulator at pose p
(k)
0

Advance physics for T timesteps (e.g. until all objects settle)

Render images and supervision with V (k), p
(k)
T , k = 1, . . . , K(i) and

{I(1), . . . , I(B)}

5.4 Experiments

We conducted experiments in both simulation and the real world to answer the following
questions:

1. How does COV-NeRF compare to other NeRF methods, in terms of the visual quality
of its renderings?

2. How effective is synthetic data generated by COV-NeRF for training perception models
relevant to robotic applications?

3. How effective is COV-NeRF at reducing the sim-to-real gap in challenging scenarios?

View Synthesis

To evaluate COV-NeRF’s rendering capabilities, we compare it to the following methods:

• MVS-NeRF [9] is a state-of-the-art scene-generalizable NeRF method. It shares archi-
tectural similarities to COV-NeRF (in particular, the mechanism for feature volume
construction), but is not object-centric.

• Object-NeRF [99] is an object-centric renderer like COV-NeRF, but must be retrained
for each scene. Like COV-NeRF, it considers contributions from each object and the
background, but each is represented by a separate MLP. It requires many sources views
and mask supervision in each.

CHAPTER 5. CLOSING THE VISUAL SIM-TO-REAL GAP WITH
OBJECT-COMPOSABLE NERFS 61

GT

Object-NeRF
(100 gpu-hours TTO)

MVS-NeRF
(no TTO)

COV-NeRF
(no TTO)

Full Image Per-Instance crops Full Image Per-Instance crops

Figure 5.3: Qualitative view synthesis results on two real scenes. For each method, an image
is rendered from a novel viewpoint using 4 source views (not pictured). The ground-truth
image from the novel viewpoint is show in the top row. COV-NeRF matches the performance
of object-centric methods that require expensive, per-scene TTO, and outperforms other
scene-generalizable methods.

Table 5.1: Scene-Generalizable View Synthesis on COB-3D-v2

Method TTO? Object-Centric? PSNR (↑) SSIM (↑) LPIPS (↓)
MVS-NeRF N N 25.03 0.867 0.102
COV-NeRF N Y 28.32 0.915 0.082

Table 5.2: Real-World View Synthesis

Method TTO? Object-Centric? PSNR (↑) SSIM (↑) LPIPS (↓)
Object-NeRF Y Y 23.01 0.841 0.118
MVS-NeRF N N 18.97 0.830 0.203
COV-NeRF N Y 25.62 0.905 0.089

In Table 5.1, we evaluate MVS-NeRF and COV-NeRF on the COB-3D-v2 validation set
(∼600 scenes). Object-NeRF is excluded due to computational constraints. In Table 5.2, we
evaluate all methods on scenes from the real-world environment from Section 5.4. In Figure
5.3, we show qualitative examples from these scenes. COV-NeRF strictly outperforms MVS-
NeRF, and, without TTO, matches or exceeds the performance of single-scene methods like
Object-NeRF.

CHAPTER 5. CLOSING THE VISUAL SIM-TO-REAL GAP WITH
OBJECT-COMPOSABLE NERFS 62

Sim-to-real Perception

In this section, we study COV-NeRF’s effectiveness at improving visual sim-to-real transfer.
Using a real-world bin picking system, we construct challenging configurations that exhibit
a sim-to-real gap and evaluate COV-NeRF’s effectiveness at reducing the gap. Our system
consists of an ABB 1200, a 6-cup suction gripper, and 6 RGB cameras mounted over a bin.
The robot must grasp objects from the bin one at a time, and transport them to an adjacent
bin.

We construct a state-of-the-art bin picking system, using the following components as a
representative sample of fundamental perception capabilities for robotic applications:

• Instance segmentation: we modify a SOTA method, MaskDINO [47], to predict both
modal and amodal masks. We train it on COB-3D-v2, which has similar scene com-
position to our real environment.

• Depth estimation: we train a SOTA model for multi-view stereo, MVS-Former [6], on
COB-3D-v2.

• Grasping: we use a fully-convolutional grasp-quality CNN (FC-GQCNN) [81] in the
style of DexNet 3.0 [55]. It is trained in simulation to place suction cups on flat
surfaces and near the object’s center of mass. For each unoccluded object in the scene
(as predicted by MaskDINO), we sample grasps based on a crop of the depth map
predicted by MVS-Former.

We consider a few different scenarios:

• Mixed-Clutter: generic household objects are arranged chaotically inside the bin. The
clutter is generally challenging for both segmentation and depth; it can be especially
difficult to reason about occlusions.

• Hard-Specular: we curate a set of challenging transparent and reflective objects. These
non-Lambertian surfaces cannot be accurately sensed by standard depth cameras, ne-
cessitating the use of learned methods like MVS-Former.

For each scenario, we first evaluate the baseline system. As expected, there is substantial
room for improvement because it has not seen any real data, let alone these particular objects
and environmental conditions. We then benchmark the following strategies for reducing the
sim-to-real gap:

• COV-NeRF: We generate a synthetic dataset (following Section 5.3) and use it to
finetune MaskDINO and MVS-Former. Although COV-NeRF generalizes well for view
synthesis (as evidenced by Figure 5.3), we found that even tiny amounts of mask super-
vision vastly improve the synthetic dataset, especially the sharpness of the rendered
masks. We finetune COV-NeRF using 100 real scenes encountered by the baselines
system, of which 5 have mask supervision, and use the extracted objects to generate
1000 synthetic scenes.

CHAPTER 5. CLOSING THE VISUAL SIM-TO-REAL GAP WITH
OBJECT-COMPOSABLE NERFS 63

(b) Simulated Scenes, COB-3D-v2

(c) Domain Adaptation by CyCADA [15]

(d) Domain Adaptation by DDIB [28]

(e) Scene Generation by COV-NeRF (ours)

(a) Real Scenes

Figure 5.4: (a) Representative real images from the Mixed-Clutter (top) and Hard-Specular
(bottom) scenarios. (b) Sample simulated scenes from COB-3D-v2. (c) CyCADA [35] adapts
the scenes from (b) to more closely resemble samples from the real world, but its cycle
consistency objectives result in only a mild re-styling of the sim scenes. (d) DDIB [87]
produces more visually realistic adaptions of (b), but violates the original scene semantics.
(e) Instead of adapting simulated scenes, COV-NeRF composes new scenes using explicit
object representations extracted from (a).

• CyCADA [35]: This well-established domain adaptation method uses GANs to trans-
late images between sim and real, with cycle consistency in both RGB and seman-
tic segmentation. Deriving semantic segmentation from instance masks using three
classes, {background, object, edge}, we train CyCADA using COB-3D-v2 and 100 real
scenes from each scenario. We then use the trained GANs to augment the training
of MaskDINO and MVS-Former: for each simulated scene in COB-3D-v2, we use the
original labels as supervision for the adapted images produced by CyCADA.

• Dual Diffusion Implicit Bridges [87]: DDIB performs image-to-image translation using
diffusion models, which are the modern method of choice for image generation. Inspired
by conditional diffusion models (such as StableDiffusion’s img2img and depth2img
modes [77]), we extend DDIB to be mask-conditioned, and train it to translate between
COB-3D-v2 and our real scenarios. We then use the same procedure as for CyCADA
to train MaskDINO and MVS-Former.

• Segmentation Finetuning: As a baseline, we finetune MaskDINO on real scenes using
mask supervision. Note that this does not affect MVS-Former, but it allows us to
evaluate whether data synthesized by COV-NeRF is visually compelling enough to
reduce reliance on annotations.

CHAPTER 5. CLOSING THE VISUAL SIM-TO-REAL GAP WITH
OBJECT-COMPOSABLE NERFS 64

Table 5.3: Sim-to-Real Improvement

Grasp Success Rate (↑) Mask AP, modal / amodal (↑)
Method Real Supervision Mixed-Clutter Hard-Specular Mixed-Clutter Hard-Specular

Pure sim-to-real None 0.700± 0.028 0.463± 0.035 28.5 / 27.3 13.8 / 12.4
Finetune segm 100 scenes, segm 0.742± 0.035 0.567± 0.036 59.4 / 57.3 66.5 / 65.3
CyCADA [35] 100 scenes, rgb 0.725± 0.035 0.453± 0.037 31.2 / 29.2 28.1 / 28.0
DDIB [87] 100 scenes, segm 0.727± 0.031 0.598± 0.037 36.1 / 35.1 31.7 / 31.3

COV-NeRF (ours) 100 scenes (5 segm / 95 rgb-only) 0.929± 0.021 0.807± 0.022 62.7 / 61.8 72.9 / 72.4

Pure sim-to-real Trained with
CyCADA [15] adaptations

Trained with
COV-NeRF generations

Trained with
DDIB [28] adaptations

Figure 5.5: Sample instance segmentation predictions from MaskDINO (top row) and stereo
depth predictions from MVS-Former (bottom row) resulting from the sim-to-real methods
evaluated in Table 5.3. COV-NeRF enables substantial improvement in both modalities.

In Figure 5.4, we visualize the outputs of each method, and in Table 5.3, we quantitatively
evaluate grasp success and instance segmentation (mask AP for both modal and amodal
predictions). Depth estimation can only be evaluated indirectly through grasp success, since
we cannot obtain ground-truth in the real world (especially for Hard-Specular), but we
study qualitative examples in Figure 5.5. With as little as 5 scenes of mask supervision,
COV-NeRF enables substantial improvement in both grasp success and mask AP. CyCADA
has almost no effect on the real system: the cycle consistency objective and the challenges
of GAN optimization prevent it from substantially altering the simulated images. DDIB’s
adaptations have more realistic low-level textural details, but are still vastly less realistic
than the scenes synthesized by COV-NeRF.

CHAPTER 5. CLOSING THE VISUAL SIM-TO-REAL GAP WITH
OBJECT-COMPOSABLE NERFS 65

5.5 Discussion

We presented COV-NeRF, an object-composable and scene-generalizable neural renderer
that can the close sim-to-real gap for a variety of perception modalities, including ones where
direct supervision cannot be obtained in the real world. After validating COV-NeRF against
existing NeRF methods, we explored its effectiveness at combating sim-to-real mismatch
in challenging bin-picking scenarios. We showed that COV-NeRF can generate targeted
synthetic data that is effective at improving state-of-the-art perception methods, translating
to significant improvements in end-to-end application performance.

Despite its demonstrated results, COV-NeRF’s rendering model suffers from a few lim-
itations. It does not account for higher-order visual effects like reflections or variations in
scene lighting, and it must imagine the appearance of the occluded portions of objects. We
hope to address this in future work, as it would further enhance the diversity and realism of
the scenes that COV-NeRF can generate.

66

Chapter 6

Conclusion

In this thesis, we have highlighted and addressed several challenges that commonly arise in
real-world robotic applications. We investigated the inability of existing model families to
express and reason about real-world ambiguity, and proposed novel architectures to overcome
this challenge for instance segmentation and 3D object objection. We showed that our im-
proved models learn to express the underlying uncertainty in ambiguous situations, and that
their rich distributional output can be leveraged by downstream components for more flexible
and robust decision making. Despite the improved performance and expanded capabilities
of these methods, the difficulty of obtaining real-world supervision is still a considerable
bottleneck to robotic applications, and results in a relative scarcity of relevant training data
compared to other domains. We developed a neural rendering method that tackles this chal-
lenge by improving sim-to-real transfer, allowing more effective use of simulators to provide
supervision. We showed that our object-centric NeRF renderer can learn from real scenes
to generate synthetic training data that is targeted to real objects and environments, which
can then substantially improve real-world performance for many perception modalities and
for the overall application.

Our contributions help pave the way for robust and intelligent robotic systems that
perform useful work in the real world. However, there is much to be done before such
systems are ubiquitous, and the work presented in this thesis highlights several exciting
directions for future work.

• Natural Language and Uncertainty: Chapters 2 and 3 presented techniques for
endowing perception models with the ability to express and reason about uncertainty
in ambiguous situations. Our models describe the hypothesis space by sampling, but
natural language could be a more powerful and interpretable mechanism for doing so,
similarly to how it has been used for task specification [4, 5]. For example, grounding
Latent-MaskRCNN’s latent space (Chapter 2) with language could allow the model
to more compactly describe its uncertainty. This idea could also be applied to open-
vocabulary detection [41, 106] where the distributional uncertainty could be extended
beyond simple categorization to detailed characteristics or long-tail events.

CHAPTER 6. CONCLUSION 67

• Structured Intuitive Physics: The COV-NeRF model presented in Chapter 5 com-
bines the expressiveness of neural representations with strong inductive biases (object-
centricity, pose equivariance) that enable effective interpretability, composability, and
generalization. Extending this formulation to incorporate physics could result in a
particularly compelling learnable simulator or world model [26]. If COV-NeRF’s rep-
resentations could be learned from video instead of static captures, there should be
sufficient information to also learn the dynamical properties of objects in addition to
their appearance. Physics is similar to rendering in that the high-level structure is well
understood (e.g. Newtonian mechanics and raycasting) but the details may be com-
plex (e.g. a particular surface’s contact force model or material properties), making it
a good fit for hybrid approaches like COV-NeRF. This line of work could result in a
powerful fusion between system identification (where we learn a few parameters of a
simple and often explicitly-specified model, but the model generalizes well within its
constraints) and intuitive physics or video prediction (where no structure is imposed,
but certain types of generalization may be poor even in abundant data regimes).

* * *

We hope that this work serves as a stepping stone towards fully realizing the potential of
both AI and robotics. The future is bright and we are excited to see where it leads.

68

Bibliography

[1] Anurag Arnab and Philip H. S. Torr. “Pixelwise Instance Segmentation With a Dy-
namically Instantiated Network”. In: IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 2017.

[2] Min Bai and Raquel Urtasun. “Deep watershed transform for instance segmentation”.
In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2017.

[3] Daniel Bolya et al. “YOLACT: Real-time Instance Segmentation”. In: International
Conference on Computer Vision (ICCV). 2019.

[4] Anthony Brohan et al. “RT-1: Robotics transformer for real-world control at scale”.
In: arXiv preprint arXiv:2212.06817 (2022).

[5] Anthony Brohan et al. “Rt-2: Vision-language-action models transfer web knowledge
to robotic control”. In: arXiv preprint arXiv:2307.15818 (2023).

[6] Chenjie Cao, Xinlin Ren, and Yanwei Fu. “MVSFormer: Multi-View Stereo by Learn-
ing Robust Image Features and Temperature-based Depth”. In: Transactions on Ma-
chine Learning Research (TMLR). 2022.

[7] Nicolas Carion et al. “End-to-End Object Detection with Transformers”. In: European
Conference on Computer Vision (ECCV). 2020.

[8] Angel X Chang et al. “Shapenet: An information-rich 3d model repository”. In: arXiv
preprint arXiv:1512.03012. 2015.

[9] Anpei Chen et al. “MVS-NeRF: Fast generalizable radiance field reconstruction from
multi-view stereo”. In: International Conference on Computer Vision (ICCV). 2021.

[10] Xinlei Chen et al. “Tensormask: A foundation for dense object segmentation”. In:
International Conference on Computer Vision (ICCV). 2019.

[11] Zoey Chen et al. “Genaug: Retargeting behaviors to unseen situations via generative
augmentation”. In: 2023.

[12] Bowen Cheng et al. “Masked-attention Mask Transformer for Universal Image Seg-
mentation”. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2022.

BIBLIOGRAPHY 69

[13] Jiwoong Choi et al. “Gaussian YOLOv3: An Accurate and Fast Object Detector Using
Localization Uncertainty for Autonomous Driving”. In: International Conference on
Computer Vision (ICCV). 2019.

[14] Marius Cordts et al. “The cityscapes dataset for semantic urban scene understand-
ing”. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2016.

[15] Angela Dai et al. “ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes”.
In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2017.

[16] Qiyu Dai et al. “Graspnerf: Multiview-based 6-dof grasp detection for transparent and
specular objects using generalizable nerf”. In: International Conference on Robotics
and Automation (ICRA). 2023.

[17] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2009.

[18] Markus Freitag and Yaser Al-Onaizan. “Beam Search Strategies for Neural Machine
Translation”. In: Proceedings of the First Workshop on Neural Machine Translation.
2017.

[19] Bin-Bin Gao et al. “Deep label distribution learning with label ambiguity”. In: IEEE
Transactions on Image Processing. 2017.

[20] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for Autonomous
Driving? The KITTI Vision Benchmark Suite”. In: IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). 2012.

[21] Golnaz Ghiasi et al. “Simple copy-paste is a strong data augmentation method for
instance segmentation”. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 2021.

[22] Igor Gilitschenski et al. “Deep Orientation Uncertainty Learning based on a Bingham
Loss”. In: International Conference on Learning Representations (ICLR). 2020.

[23] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. “Mesh R-CNN”. In: Interna-
tional Conference on Computer Vision (ICCV). 2019.

[24] Marcus Gualtieri and Robert Platt. “Robotic pick-and-place with uncertain object
instance segmentation and shape completion”. In: IEEE Robotics and Automation
Letters (RA-L). 2021.

[25] Abner Guzman-Rivera, Dhruv Batra, and Pushmeet Kohli. “Multiple Choice Learn-
ing: Learning to Produce Multiple Structured Outputs.” In: Neural Information Pro-
cessing Systems (NeurIPS). 2012.

[26] David Ha and Jürgen Schmidhuber. “World models”. In: arXiv preprint arXiv:1803.10122
(2018).

BIBLIOGRAPHY 70

[27] David Hall et al. “Probabilistic Object Detection: Definition and Evaluation”. In:
Winter Conference on Applications of Computer Vision (WACV). 2020.

[28] Ali Harakeh, Michael Smart, and Steven L. Waslander. “BayesOD: A Bayesian Ap-
proach for Uncertainty Estimation in Deep Object Detectors”. In: International Con-
ference on Robotics and Automation (ICRA). 2020.

[29] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

[30] Kaiming He et al. “Mask R-CNN”. In: International Conference on Computer Vision
(ICCV). 2017.

[31] Yihui He et al. “Bounding box regression with uncertainty for accurate object de-
tection”. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2019.

[32] Irina Higgins et al. “beta-VAE: Learning Basic Visual Concepts with a Constrained
Variational Framework”. In: International Conference on Learning Representations
(ICLR). 2017.

[33] Daniel Ho et al. “RetinaGAN: An object-aware approach to sim-to-real transfer”. In:
International Conference on Robotics and Automation (ICRA). 2021.

[34] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising diffusion probabilistic mod-
els”. In: Neural Information Processing Systems (NeurIPS). 2020.

[35] Judy Hoffman et al. “CyCADA: Cycle-consistent adversarial domain adaptation”. In:
International Conference on Machine Learning (ICML). 2018.

[36] Jeffrey Ichnowski et al. “Dex-NeRF: Using a neural radiance field to grasp transparent
objects”. In: Conference on Robot Learning (CoRL). 2021.

[37] Won-Dong Jang et al. “Learning Vector Quantized Shape Code for Amodal Blas-
tomere Instance Segmentation”. In: 2020.

[38] Jie Jia, Huiliang Shang, and Xiong Chen. “Robot Online 3D Bin Packing Strategy
Based on Deep Reinforcement Learning and 3D Vision”. In: International Conference
on Networking, Sensing and Control (ICNSC). 2022.

[39] Justin Kerr et al. “Evo-NeRF: Evolving nerf for sequential robot grasping of trans-
parent objects”. In: Conference on Robot Learning (CoRL). 2022.

[40] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In: Inter-
national Conference on Learning Representations (ICLR). 2014.

[41] Alexander Kirillov et al. “Segment anything”. In: International Conference on Com-
puter Vision (ICCV). 2023.

[42] Simon A. A. Kohl et al. “A Probabilistic U-Net for Segmentation of Ambiguous
Images”. In: Neural Information Processing Systems (NeurIPS). 2018.

BIBLIOGRAPHY 71

[43] James J. Kuffner. “Effective Sampling and Distance Metrics for 3D Rigid Body Path
Planning”. In: International Conference on Robotics and Automation (ICRA). 2004.

[44] Abhijit Kundu et al. “Panoptic neural fields: A semantic object-aware neural scene
representation”. In: IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR). 2022.

[45] Olyvia Kundu, Samrat Dutta, and Swagat Kumar. “Deep-pack: A vision-based 2d
online bin packing algorithm with deep reinforcement learning”. In: International
Conference on Robot and Human Interactive Communication (RO-MAN). 2019.

[46] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple and scal-
able predictive uncertainty estimation using deep ensembles”. In: Neural Information
Processing Systems (NeurIPS). 2017.

[47] Feng Li et al. “Mask DINO: Towards a unified transformer-based framework for object
detection and segmentation.” In: IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 2023.

[48] Xiang Li et al. “Generalized Focal Loss: Learning Qualified and Distributed Bound-
ing Boxes for Dense Object Detection”. In: Neural Information Processing Systems
(NeurIPS). 2020.

[49] Chung-Ching Lin et al. “Video Instance Segmentation Tracking With a Modified
VAE Architecture”. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 2020.

[50] Tsung-Yi Lin et al. “Feature Pyramid Networks for Object Detection”. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2017.

[51] Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: European Con-
ference on Computer Vision (ECCV). 2014.

[52] Yuan Liu et al. “Neural rays for occlusion-aware image-based rendering”. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2022.

[53] Ze Liu et al. “Group-free 3d object detection via transformers”. In: IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR). 2021.

[54] William E Lorensen and Harvey E Cline. “Marching cubes: A high resolution 3D
surface construction algorithm”. In: SIGGRAPH. 1998.

[55] Jeffrey Mahler et al. “Dex-net 3.0: Computing robust vacuum suction grasp targets
in point clouds using a new analytic model and deep learning”. In: International
Conference on Robotics and Automation (ICRA). 2018.

[56] Zhao Mandi et al. “Cacti: A framework for scalable multi-task multi-scene visual
imitation learning”. In: arXiv preprint arXiv:2212.05711. 2022.

[57] Lars Mescheder et al. “Occupancy networks: Learning 3d reconstruction in function
space”. In: 2019.

BIBLIOGRAPHY 72

[58] Luke Metz et al. “Discrete sequential prediction of continuous actions for deep rl”.
In: arXiv preprint arXiv:1705.05035. 2017.

[59] Gregory P. Meyer and Niranjan Thakurdesai. “Learning an Uncertainty-Aware Object
Detector for Autonomous Driving”. In: International Conference on Intelligent Robots
and Systems (IROS). 2020.

[60] Gregory P. Meyer et al. “LaserNet: An Efficient Probabilistic 3D Object Detector for
Autonomous Driving.” In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). Computer Vision Foundation / IEEE, 2019.

[61] Ben Mildenhall et al. “NeRF: Representing scenes as neural radiance fields for view
synthesis”. In: European Conference on Computer Vision (ECCV). 2020.

[62] Dimity Miller et al. “Benchmarking Sampling-based Probabilistic Object Detectors”.
In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops. 2019.

[63] Ishan Misra, Rohit Girdhar, and Armand Joulin. “An End-to-End Transformer Model
for 3D Object Detection”. In: IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). 2021.

[64] Arsalan Mousavian et al. “3D Bounding Box Estimation using Deep Learning and
Geometry”. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2017.

[65] Davy Neven et al. “Instance Segmentation by Jointly Optimizing Spatial Embeddings
and Clustering Bandwidth”. In: IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 2019.

[66] Aaron van den Oord et al. “Wavenet: A generative model for raw audio”. In: arXiv
preprint arXiv:1609.03499. 2016.

[67] Jeong Joon Park et al. “Deepsdf: Learning continuous signed distance functions for
shape representation”. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 2019.

[68] Valentin Peretroukhin et al. “A Smooth Representation of SO(3) for Deep Rotation
Learning with Uncertainty”. In: Robotics: Science and Systems (RSS). 2020.

[69] Charles R Qi et al. “Frustum PointNets for 3D Object Detection from RGB-D Data”.
In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2018.

[70] Charles R Qi et al. “Imvotenet: Boosting 3d object detection in point clouds with im-
age votes”. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2020.

[71] Charles R Qi et al. “PointNet: Deep learning on point sets for 3d classification and
segmentation”. In: IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR). 2017.

BIBLIOGRAPHY 73

[72] Charles R. Qi et al. “Deep Hough Voting for 3D Object Detection in Point Clouds.”
In: International Conference on Computer Vision (ICCV). 2019.

[73] Kanishka Rao et al. “RL-CycleGAN: Reinforcement learning aware simulation-to-
real”. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2020.

[74] Joseph Redmon et al. “You only look once: Unified, real-time object detection”. In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

[75] Jeremy Reizenstein et al. “Common objects in 3d: Large-scale learning and evaluation
of real-life 3d category reconstruction”. In: International Conference on Computer
Vision (ICCV). 2021.

[76] Shaoqing Ren et al. “Faster R-CNN: Towards real-time object detection with region
proposal networks”. In: Neural Information Processing Systems (NeurIPS). 2014.

[77] Robin Rombach et al. “High-resolution image synthesis with latent diffusion models”.
In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2022.

[78] Danila Rukhovich, Anna Vorontsova, and Anton Konushin. “FCAF3D: Fully Convo-
lutional Anchor-Free 3D Object Detection”. In: European Conference on Computer
Vision (ECCV). 2022.

[79] Lorenz Rumberger, Lisa Mais, and Dagmar Kainmueller. “Probabilistic Deep Learn-
ing for Instance Segmentation”. In: ECCV BioImage Computing Workshop. 2020.

[80] Christian Rupprecht et al. “Learning in an uncertain world: Representing ambigu-
ity through multiple hypotheses”. In: International Conference on Computer Vision
(ICCV). 2017.

[81] Vishal Satish, Jeffrey Mahler, and Ken Goldberg. “On-policy dataset synthesis for
learning robot grasping policies using fully convolutional deep networks”. In: IEEE
Robotics and Automation Letters (RA-L) (2019).

[82] S Shi, X Wang, H PointRCNN Li, et al. “3d object proposal generation and detec-
tion from point cloud”. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 2019.

[83] Shaoshuai Shi et al. “PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object
Detection”. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2020.

[84] Yawar Siddiqui et al. “Panoptic lifting for 3d scene understanding with neural fields”.
In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2023.

[85] Maximilian Sieb and Katerina Fragkiadaki. “Data dreaming for object detection:
Learning object-centric state representations for visual imitation”. In: IEEE-RAS
International Conference on Humanoid Robots (Humanoids). 2018.

BIBLIOGRAPHY 74

[86] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao. “Sun rgb-d: A rgb-d scene
understanding benchmark suite”. In: IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 2015.

[87] Xuan Su et al. “Dual Diffusion Implicit Bridges for Image-to-Image Translation”. In:
International Conference on Learning Representations (ICLR). 2023.

[88] Zhi Tian et al. “FCOS: Fully convolutional one-stage object detection”. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2019.

[89] Josh Tobin et al. “Domain randomization for transferring deep neural networks from
simulation to the real world”. In: International Conference on Intelligent Robots and
Systems (IROS). 2017.

[90] Emanuel Todorov, Tom Erez, and Yuval Tassa. “Mujoco: A physics engine for model-
based control”. In: International Conference on Intelligent Robots and Systems (IROS).
2012.

[91] Fabio Tosi et al. “Nerf-supervised deep stereo”. In: IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). 2023.

[92] Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. “Pixel recurrent neural
networks”. In: International Conference on Machine Learning (ICML). 2016.

[93] Jacob Varley et al. “Shape completion enabled robotic grasping”. In: International
Conference on Intelligent Robots and Systems (IROS). 2017.

[94] FanWang and Kris Hauser. “Dense robotic packing of irregular and novel 3D objects”.
In: IEEE Transactions on Robotics. 2021.

[95] FanWang and Kris Hauser. “Stable bin packing of non-convex 3D objects with a robot
manipulator”. In: International Conference on Robotics and Automation (ICRA).
2019.

[96] Lei Wang et al. “Two natural heuristics for 3D packing with practical loading con-
straints”. In: Pacific Rim International Conference on Artificial Intelligence (PRI-
CAI). 2011.

[97] Enze Xie et al. “PolarMask: Single Shot Instance Segmentation With Polar Repre-
sentation”. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2020.

[98] Qian Xie et al. “MLCVNet: Multi-Level Context VoteNet for 3D Object Detection”.
In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2020.

[99] Bangbang Yang et al. “Learning object-compositional neural radiance field for ed-
itable scene rendering”. In: International Conference on Computer Vision (ICCV).
2021.

[100] Shuo Yang et al. “Heuristics Integrated Deep Reinforcement Learning for Online 3D
Bin Packing”. In: IEEE Transactions on Automation Science and Engineering. 2023.

BIBLIOGRAPHY 75

[101] Alex Yu et al. “pixelnerf: Neural radiance fields from one or few images”. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2021.

[102] Hong-Xing Yu et al. “Learning object-centric neural scattering functions for free-
viewpoint relighting and scene composition”. In: 2023.

[103] Tianhe Yu et al. “Scaling robot learning with semantically imagined experience”. In:
arXiv preprint arXiv:2302.11550. 2023.

[104] Xumin Yu et al. “PoinTr: Diverse point cloud completion with geometry-aware trans-
formers”. In: International Conference on Computer Vision (ICCV). 2021.

[105] Wentao Yuan et al. “Pcn: Point completion network”. In: International Conference
on 3D Vision (3DV). 2018.

[106] Hao Zhang et al. “A simple framework for open-vocabulary segmentation and detec-
tion”. In: International Conference on Computer Vision (ICCV). 2023.

[107] Hao Zhang et al. “DINO: DETR with Improved DeNoising Anchor Boxes for End-
to-End Object Detection”. In: International Conference on Learning Representations
(ICLR). 2023.

[108] Yi Zhou et al. “On the Continuity of Rotation Representations in Neural Networks”.
In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2019.

76

Appendix A

COB-3D Dataset Overview

COB-3D is a simulated dataset for a variety of 2D and 3D perception tasks that we developed
throughout the work presented in Chapters 3 and 4. We designed it to be representative of
the challenges encountered in real-world robotic applications, while still exhibiting state-of-
the-art diversity and realism. The most recent version of the dataset is COB-3D-v2, and it
can be downloaded from our project page. We hope that it will be of benefit to the broader
robotics and vision communities.

Dataset Format

COB-3D-v2 contains 6955 scenes, split into 6259 train, 696 validation. For each scene, we
provide the following:

|-- rgb: The rendered RGB image. Shape (3, H, W), dtype float32.

Values scaled to [0, 1].

|-- intrinsic: The camera intrinsics. Shape (3, 3), dtype float32.

|-- depth_map: The rendered depth map corresponding to ‘rgb‘.

Shape (H, W), dtype float32.

|-- normal_map: The rendered normal map corresponding to rgb‘.

Shape (3, H, W), dtype float32.

|-- near_plane: The minimum depth value of the scene’s working volume.

Scalar, float32.

|-- far_plane: The maximum depth value of the scene’s working volume.

Scalar, float32.

|-- segm/

https://sites.google.com/view/fcon-packing

APPENDIX A. COB-3D DATASET OVERVIEW 77

|-- boxes: 2D bounding boxes for each object in the scene.

Shape (N_objects, 4), dtype float32.

These are pixel coordinates relative to ‘rgb‘.

The box format is ‘[x_low, y_low, x_high, y_high]‘

|-- masks: Binary masks for each object in the scene.

Shape (N_objects, H, W), dtype bool.

|-- amodal_masks: Amodal instance masks for each object.

Shape (N_objects, H, W), dtype bool.

|-- bbox3d/

|-- poses: The pose of each object’s 3D bounding box, as a 4x4 matrix.

This is the transform from the bbox frame to the camera frame.

Shape (N_objects, 4, 4), dtype float32.

|-- dimensions: The dimensions of each 3D bounding box.

Shape (N_objects, 3), dtype float32.

|-- corners: The corner points of each 3D bounding box, in the camera frame.

Shape (N_objects, 8, 3), dtype float32.

|-- mesh_ids: The mesh_id of each object. List[str], length N_objects.

|-- obj_poses/

|-- poses: The pose of each mesh, as a 4x4 matrix.

This is the transform from the mesh frame to the camera frame.

Note that the mesh frame does not necessarily equal the bbox frame!

Shape (N_objects, 4, 4), dtype float32.

|-- scales: The scale of each mesh. Shape (N_objects, 3), dtype float32.

|-- voxel_grid/

|-- voxels: The surface of each mesh, extracted into a voxel grid.

Shape (N_objects, n_voxels, n_voxel, n_voxels), dtype bool.

|-- extents: The extents of each object’s voxel grid.

‘voxels[i]‘ span the cuboid ‘[-extents[i], extents[i]]‘,

in the object frame ‘obj_poses/poses[i]‘.

Shape (N_objects, 3), dtype float32.

APPENDIX A. COB-3D DATASET OVERVIEW 78

Example Scenes

The following pages exhibit some representative scenes from COB-3D-v2, showcasing the
visual quality and diversity of the dataset. In each row, the left column is the rendered
RGB, and the right column is the rendered depth map.

APPENDIX A. COB-3D DATASET OVERVIEW 79

APPENDIX A. COB-3D DATASET OVERVIEW 80

APPENDIX A. COB-3D DATASET OVERVIEW 81

APPENDIX A. COB-3D DATASET OVERVIEW 82

83

Appendix B

Proof of Quantile-Confidence Box
Equivalence

In this section, we present the proof of Theorem 1 from Section 3.4:

Theorem 1

A quantile box with quantile q is a confidence box with confidence p = 1− q when p(b|h) is
an ordered object distribution.

Proof Sketch:

Let P (b) be a distribution over an ordered set of boxes where for any two distinct boxes
b1, b2 in the sample space, one must be contained in the other, b1 ⊂ b2 or b2 ⊂ b1. We’ll show
that a quantile box bq is a confidence box with p = 1 − q by 1) constructing a confidence
box bp for any given q, 2) showing that any x ∈ bp must have O(x) > q, and 3) therefore
bp ⊆ Q(q) ⊆ bq so the quantile box is a confidence box.

1) Confidence Box:

For any p = 1−q, we’ll show how to construct a confidence box bp. Using the ordered object
distribution property of P (b), we can define ordering as containment b1 < b2 ≡ b1 ⊂ b2. This
ordering defines an inverse cdf:

F−1(p) = inf{x : P (b ≤ x) ≥ p} (B.1)

Let bp = F−1(1−q) be the inverse cdf of p; by definition bp is a confidence box with confidence
p since P (b ≤ bp) = P (b ⊆ bp) ≥ p

APPENDIX B. PROOF OF QUANTILE-CONFIDENCE BOX EQUIVALENCE 84

2) Occupancy of bp:

We’ll show that any x ∈ bp satisfiesO(x) > 1−p. First we’ll prove that that P (b ≥ bp) > 1−p.
Let b0 = inf{b : b < bp}, the smallest box that is strictly contained in bp. (If no such b0
exists, then bp must be the smallest box in the distribution order such that P (b ≥ bp) = 1
and P (b ≥ bp) > 1− p for p ̸= 0)

Since bp is the inverse cdf of p, we know that P (b ≤ b0) < p, otherwise b0 would be the
inverse cdf of p (i.e. b0 = bp a contradiction). It follows that

P (b ≥ bp) = P (b > b0) (B.2)

= 1− P (b ≤ b0) (B.3)

> 1− p (B.4)

Now consider any point x ∈ bp:

O(x) = P (x ∈ b) (B.5)

=

∫
b

1{x ∈ b}p(b)db (B.6)

≥
∫
b≥bp

1{x ∈ b}p(b)db (B.7)

=

∫
b≥bp

p(b)db (B.8)

= P (b ≥ bp) (B.9)

> 1− p (B.10)

Where (B.7) follows from the nonegativity of 1{x ∈ b}p(b). (B.8) follows from x ∈ bp, bp ⊆ b
which implies x ∈ b.

3) Quantile-Confidence Box:

Since any x ∈ bp satisfies O(x) > 1 − p, it follows that bp ⊆ Q(1 − p), where Q(q) = {x :
O(x) > q} is the occupancy quantile with quantile q. The quantile box by construction must
contain the occupancy quantile Q(q) ⊆ bq, therefore we have bp ⊆ Q(1− p) ⊆ bq, and

P (b ⊆ bq) ≥ P (b ⊆ bp) (B.11)

≥ p (B.12)

So bq is a confidence box with confidence requirement p.

	Contents
	Introduction
	Robotics for the Real-World
	Overview

	Distributional Instance Segmentation with Latent-Mask-RCNN
	Introduction
	Related Work
	Distributional Instance Segmentation
	Distributional Instance Segmentation with Latent-MaskRCNN
	Applying Distributional Instance Segmentation
	Experiments
	Discussion

	Autoregresive Bounding Box Prediction
	Introduction
	Related Work
	Autoregressive 3D Bounding Box Prediction
	Applying Autoregressive 3D Bounding Box Models
	Experiments
	Discussion

	Shape Completion Models for Dense Packing of Complex, Novel Objects
	Introduction
	Related Work
	Dense Packing with Convolutional Occupancy Models
	Experiments
	Discussion

	Closing the Visual Sim-to-Real Gap with Object-Composable NeRFs
	Introduction
	Related Work
	Generalizable Neural Rendering with Composable Object Volumes
	Experiments
	Discussion

	Conclusion
	Bibliography
	COB-3D Dataset Overview
	Proof of Quantile-Confidence Box Equivalence

