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Abstract

Iron in Alzheimer’s Disease: Analysis of the UK Biobank Dataset

by

Laurance Lau

Master of Science in Computer Science

University of California, Berkeley

Professor Chunlei Liu, Chair

A growing body of evidence suggests that iron deposition in the brain contributes to neu-
rodegeneration. We use this as motivation to analyze the dietary and brain imaging data of
UK Biobank and explore their connections to Alzheimer’s disease (AD). We use decision tree
and logistic regression models to predict AD incidence and describe a pipeline for analyzing
brain imaging data, using quantitative susceptibility mapping (QSM) to infer iron concen-
trations in the brain. We find no evidence linking diet to AD incidence and find significantly
higher QSM of the deep gray matter regions overall in participants with AD.
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Chapter 1

Introduction

According to the National Institute of Aging, Alzheimer’s disease (AD) is the seventh
leading cause of death in the United States and the most common cause of dementia among
older adults ([40]). The etiology and pathology of AD has yet to be fully understood and
a cure for AD remains elusive. Nonetheless, potential risk factors, ranging from genetic to
lifestyle and environmental, have been identified. Since AD has no known cure and most
cases are not hereditary, lifestyle choices that may relieve symptoms or positively impact
prognosis are appealing avenues for research that may inspire preventative measures or pro-
vide alternatives to medical treatment.

We are interested in investigating the relationship between iron consumption, deposition,
and AD as iron dyshomeostasis has emerged as a potential mechanism for inducing or ex-
acerbating neurodegeneration. Iron dyshomeostasis is implicated in AD ([27, 35, 59]) and
many other neurodegenerative diseases ([24, 26, 60]). Patients have been observed to exhibit
elevated iron levels and iron deposition in specific areas of their brains ([1, 6, 19, 54]), a
phenomenon associated with the severity of the condition ([5, 55]). Iron is redox-active and
can catalyze the production of reactive oxygen species that contribute to oxidative stress
([12, 25]) and ferroptosis, an iron-dependent form of programmed cell death ([14]). The
dysregulation of ferroptosis is theorized to lead to neurological disorders ([3, 58]). Further
research in this direction may prove useful for developing novel treatments ([17, 41]).

Analyzing biomedical datasets may enable the discovery of new risk factors and hypoth-
esis testing for established risk factors. One such dataset is UK Biobank, a large-scale study
in the United Kingdom with over 500,000 participants. In this thesis, we analyze the dietary
and brain imaging data of UK Biobank and explore their connections to AD.
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Chapter 2

UK Biobank

2.1 Overview

UK Biobank is a large-scale cohort study involving participants aged 40–69 recruited in
the United Kingdom between 2006 and 2010 ([52]). We retrieved the data in March 2023, at
which time the UK Biobank cohort had 502,371 participants. The large number of partici-
pants enables follow-up studies of unprecedented scale and provides great statistical power
for subsequent analyses.

Participants were invited to visit an assessment center on multiple occasions where they
undergo a standardized procedure of data collection. All participants attended the initial
assessment visit conducted between 2006 and 2010. A subset of participants attended ad-
ditional assessments in the following years; around 20,000 participants attended the first
repeat assessment conducted between 2012 and 2013, around 76,000 participants attended
the imaging visit starting in 2014, and around 7,000 participants attended the first repeat
imaging visit starting in 2019.

The data collection procedure is updated between assessment center visits. They gen-
erally involve the following stages: written consent, physical measurements, touchscreen
questionnaires, and biological sample collection. During imaging visits, UK Biobank ac-
quires scans of participants, including magnetic resonance imaging (MRI) scans of the brain.

UK Biobank also collects data outside of assessment center visits. For example, physical
activity data is collected by inviting participants to wear an accelerometer for seven days
and data on dietary habits and cognitive function is collected through optional web-based
questionnaires. These questionnaires are sent to participants with an e-mail address and
are accessible through the participant portal. The use of online questionnaires broadens the
scope of data collection and relieves participants of the necessity of traveling to an assessment
center at a specific time.
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2.2 Cohort Characteristics

UK Biobank has apparent and well-documented selection biases based on the designated
age range and location of its cohort. The age of participants at the time of the initial
assessment visit ranges from 37 to 73 with a mean of 56.3. The vast majority of partic-
ipants (88.2 % of all respondents) identify as ethnically British. Furthermore, the cohort
exhibits an imbalance in biological sex (83.8 males to 100 females) that significantly di↵ers
from the national sex ratio reported in the 2011 UK census (96.3 males to 100 females) ([42]).

Figure 2.1: Age of UK Biobank participants at initial assessment visit (dashed — mean)

White [British] Asian* Black Mixed Chinese* Other response
Initial visit 472575 [442482] 9879 8058 2953 1573 6433
Repeat visit 19843 [18872] 137 95 76 44 139

1st imaging visit† 13632 [10755] 161 84 80 42 101
2nd imaging visit† No data

*Chinese is considered separate from Asian following National Health Service convention
†Question removed from touchscreen questionnaire on 24th October 2016

Table 2.1: Ethnic background of UK Biobank participants
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Health and socio-economic conditions a↵ect one’s willingness to participate in time-
consuming studies. UK Biobank exhibits a “healthy volunteer” selection bias ([16]); in-
dividuals who agreed to participate in the study tend to lead healthier lifestyles and be less
socio-economically deprived. Similarly, those who returned for the first repeat assessment
also tend to lead healthier lifestyles, be less socio-economically deprived, and be better edu-
cated compared to those who did not ([8]).

These biases undermine the conclusions we draw from this dataset since the cohort is
not a representative sample of the UK population ([45]). Furthermore, the location of the
study limits the generalizability of some results on a global scale. Similar biobank projects
such as the All of Us Research Program in the United States and the H3Africa initiative in
Africa are essential for validating results obtained using foreign data and generating findings
specific to local demographics.

2.3 Medical History Data

Data from linked health records and physical measurements taken during the assessment
center visits are available. Anonymity is achieved by hiding data fields with personally iden-
tifiable information such as home addresses from all researchers by default and only allowing
researchers to interact with a unique ID number assigned to each participant.

Linked health records contain primary care data, hospital inpatient data, cancer data,
and death data. All English and Welsh data are coded in ICD-10 for diagnoses and OPCS-4
for operations and procedures, while a portion of Scottish data is coded in the older versions
of these codes, ICD-9 and OPCS-3.

UK Biobank has also collected information on self-reported medical conditions through
verbal interviews. However, since AD has a complicated di↵erential diagnosis and requires
a physician to properly diagnose, I chose to rely on ICD-10 codes as the standard of deter-
mining whether someone has been a✏icted with AD. I discarded all ICD-9 data since ICD-9
codes were there is only a single record of any kind of dementia (presenile dementia) and it
is not specifically AD.

UK Biobank expected around 9,000 cases of AD to occur in its cohort by the year 2022
and around 30,000 cases by 2027 ([52]). There are actually 3,955 cases by the time of data
retrieval (March 2023), which could be a manifestation of the “healthy volunteer” bias. This
number shrinks when we specify subsetting criteria and exclude participants with missing
data.
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2.4 Dataset Features

The UK Biobank dataset has its strengths and limitations that a↵ect the practicality of
data analysis and the quality of the results. Some features are related to the organization of
data storage while others concern particular types of data.

Metadata

UK Biobank stores measurements and results in “Data-Fields”. These Data-Fields are
categorized into broader collections known as “Categories” which can be Subcategories of an-
other Category, creating a nested structure that makes searching for related Data-Fields easy.

Every Data-Field is given a descriptive title and has a high-level summary which is
publicly available, including the number of records, histograms, and relevant statistics. Ad-
ditional information about the data collection process is available for particular Categories.
For example, the entire list of questions is provided for verbal interviews and questionnaires,
and images of the computer interface are provided for cognitive testing tasks. This makes it
easy to see at a glance whether a Data-Field or a Category may be useful.

Redundant Data-Fields

There are seemingly redundant Data-Fields that do not serve a useful purpose. For ex-
ample, there are two Data-Fields for year of birth (34, 22200) and four Data-Fields for body
weight (3160, 12143, 21002, 23098). UK Biobank also notes that Data-Field 21002 “should
be used in preference to” Data-Field 12143.

Suspicious Multimodal Distributions

Multimodal distributions in continuous health data could be accounted for by di↵erent
distributions due to biological sex (e.g. Data-Field 51: Seated height) or by subtle design in
the assessment procedure (e.g. Data-Field 20015: Sitting height). However, rounding could
be to blame for some occurrences, degrading the quality of the data. This likely explains
multimodal distributions occurring in Data-Fields involving age responses (e.g. Data-Field
3680: Age when last ate meat).
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Handling Missing Data

The core dataset is organized in a relational model and is downloaded as a single file.
Every participant is associated with all attributes regardless of whether they provided data
for all of them. While relational databases have many advantages, this does not distinguish
between an empty response or actual missing data. UK Biobank uses “Data-Codings” which
provides additional codes for responses such as “Prefer not to say” or “Unknown” which dis-
tinguishes these from missing data.

Additional downloads are required for images and genetic data. Not every participant
underwent scans because they may not have attended an imaging visit. Unfortunately, it is
not possible to know the data availability of images until it is requested.

Web-based Questionnaire

With the emergence of platforms such as Amazon Mechanical Turk and Prolific, online
questionnaires have become a common and easy method of obtaining large amounts of re-
sponses quickly. However, the truthfulness of questionnaire responses cannot be guaranteed,
especially if respondents experience fatigue from completing previous tasks or if the ques-
tionnaire takes too long. The 24-h dietary recall questionnaire has questions on around 200
foods and drinks; the mean time for completion is 17.7 minutes, with some participants
taking as little as 5 minutes and some taking more than three hours. Later instances of
the questionnaire are remotely completed without in-person support from UK Biobank sta↵.
Even though later instances of the questionnaire are strictly optional, there is reason to
question the quality of the responses.

Furthermore, in this thesis we are interested in AD which presents with short-term mem-
ory loss and cognitive deficit. Questionnaire responses received from participants with neu-
rodegeneration should generally be taken with a grain of salt.

Cognitive Battery

In figuring out how to determine whether a participant has cognitive deficits and to what
degree, I looked into UK Biobank’s bespoke suite of 12 cognitive tests. Unfortunately, these
tests are non-standard ([15]) and lack o�cial documentation and it is unclear what cognitive
domains these tests can assess. The burden of checking desirable properties such as validity
and test-retest reliability and figuring out what cognitive ability these tests are assessing
rests on the researchers using the data.
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Chapter 3

Analysis of Dietary Data

3.1 Motivations

Iron is necessary for the proper functioning of various processes in the human body, and
its imbalance is shown to be associated with diseases, some of which can be remedied by
adjusting the amount of dietary iron intake. For example, iron-deficiency anemia can be
treated with iron supplements, while patients with thalassemia are often advised to avoid
iron in their diet.

With regard to neurology, iron deposition in the brain is linked to neurodegeneration,
but there is scarce evidence linking iron consumption directly to iron deposition. It may
seem naive to connect food consumption directly to neurological disease, but there exists
conflicting research on whether a certain amount of iron intake increases the risk of devel-
oping neurodegeneration later in life ([36, 49]). Previous work done by Liu et al. using the
24-hour dietary recall questionnaire data from the UK Biobank dataset suggests that both
deficient or excessive iron intake can contribute higher risk of developing dementia ([34]).

I am interested in discovering dietary determinants of AD. Can one’s diet be predictive
of the risk of developing AD? If so, which components of diet?

3.2 Dataset Description

UK Biobank conducted two parallel dietary assessments: a touchscreen questionnaire
administered at the beginning of each assessment center visit and a web-based 24-hour
dietary recall questionnaire ([32]). The latter includes questions on about 200 kinds of foods
and additional questions on physical activity. Participants answered this questionnaire up
to five times by invitation over a three year period between the initial and repeat assessment
center visit. I primarily use data collected from the former, which includes 29 questions on
dietary habits involving major food groups.
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Subsetting

At the time of data retrieval, the UK Biobank cohort consisted of 502,371 participants.
Apart from excluding participants with missing data, I set exclusion criteria in order to
better investigate the predictive power of diet on developing disease.

First, I excluded participants with an inconsistent diet. A participant has a consistent
diet if they gave more “Yes” responses than “No” responses for Data-Field 100020, which
indicates whether they had a typical diet the day prior answering the 24-hour dietary recall
questionnaire, and if they never gave “Often” responses for Data-Field 1548, which indicates
variation in diet when answering the touchscreen questionnaire.

Second, I excluded all participants who had ICD-9 codes but did not have ICD-10 codes.
In order to determine whether someone develops AD or has other diseases, the hospital inpa-
tient data in Category 2002 (Hospital inpatient: Summary Diagnoses) was used. UK Biobank
provides both ICD-9 and the newer ICD-10 codes for medical diagnoses. I discovered that
of all 20,390 participants using ICD-9 codes, only one participant has been diagnosed with
any form of dementia. This is not only problematic for data analysis purposes because of
the severe class imbalance and incompatibility with ICD-10 codes, but is also contradictory
to the much higher frequency of dementia in older adults as stated in literature.

Third, I excluded all participants with an AD diagnosis at baseline. Since I want to
investigate the predictive power of diet on AD incidence, it is not productive to include par-
ticipants who already have AD at baseline because their diet has no bearing on the result.
For convenience of data processing, I also exclude those who developed AD before their final
assessment center visit.

Fourth, I excluded participants who passed away before developing AD because we never
know if they would have developed AD had they stayed alive.

A total of 35 features comprising data from non-pilot Data-Fields in Category 100052
(Diet), Category 100058 (Smoking), Category 1001 (Primary demographics), and Category
100010 (Body size measures) was used. Any participant with missing data for any feature
(including “Prefer not to answer” and “I don’t know” responses) was also excluded. Since
plenty of data is available, simply excluding entries with missing data instead of imputation
is preferable. The final sample had a total of 98,960 participants.

Of the entire sample, 50,780 are female and 48,180 are male; the vast majority had a
British (90,965, 91.92%) or white (5,838, 5.90% Irish or other white background) ethnic
background; the age at baseline ranged from 40 to 70 with a mean of 56.15; 283 (0.29 %)
developed AD after attending all assessment visits.
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Figure 3.1: Smoothed age distribution of sampled participants at initial assessment visit

Figure 3.2: Age of sampled participants who developed AD. Top left: when they were
diagnosed; top right: when they attended the initial assessment visit (dashed — mean).
Bottom: combined age profile

Old age is a risk factor for AD. Of the participants in the sample who developed AD,
the mean age when they received an AD diagnosis is 75.22 and the mean age when they
attended the initial assessment visit is 64.14. Although these plots are based on the subset
of data, they also reflect the general trend of participants in the entire cohort who have an
AD diagnosis.
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Although an investigation into dietary data is motivated by iron, it is inadequate to focus
solely on iron intake because iron absorption is influenced by the consumption of other foods
and drugs ([38, 44]). It is also possible that other nutrients and minerals also contribute to
or suppress AD incidence, so it is reasonable to consider the full spectrum of foods for which
data is available.

3.3 Methodology

Data Processing

For each participant, I aggregated repeated responses to the same question by averaging
responses across all assessment visits. Most of the questionnaire responses are discrete values
that cannot be averaged directly but can be ranked in some sense, such as the frequency of
consumption of foods. The data encoding provided by UK Biobank is used to convert these
discrete responses into numerical values that can then be averaged. This aggregate value is
used for the ensuing analyses.

Model Selection

For each participant with a set of features, the goal is to predict a binary label denoting
whether AD develops at the endpoint. To this end, I train logistic regression and decision
tree models that attempt to predict AD incidence after a certain number of years from base-
line in order to identify risk factors. I find these models to be appropriate in general for
biomedical inquiries as their interpretability could be used to both reason about the model
and inspire future work.

Logistic Regression

Logistic regression is a popular method for binary classification. This model assumes
that the features are linearly related to the log odds. Given features x and parameters �,
the probability of a positive label P in this model is given by

P =
1

1 + exp (��|x)
.

This model can be trained using maximum likelihood estimation (MLE) and optimization
techniques such as gradient descent. As such, this has the additional benefits of MLE,
including consistency and e�ciency.
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Decision Trees

Decision tree models work with both discrete and continuous features and are inter-
pretable and non-parametric. A single decision tree recursively partitions the feature space
at each node with axis-aligned boundaries such that each resulting partition at the leaf nodes
has a certain desired homogeneity of labels or the leaf node cannot be further split. The
inhomogeneity of a set of labels is quantified by a concave measure such as entropy or Gini
impurity. The optimal construction of decision trees is known to be NP-complete ([22]);
in practice, it is workable to greedily maximize the information gain at each node. The R
package rpart implements decision tree learning due to Breiman et al. ([10]).

Random Forests

Decision trees are prone to severe overfitting because they can fit any function to any
desired precision. Pruning, depth limiting, and relaxing the stopping homogeneity condition
are techniques used to reduce the variance of decision trees. Random forests use two other
techniques to achieve this: bootstrap aggregation (bagging), which involves training and
averaging the output of many decision trees that each train on data that is resampled with
replacement, and randomly choosing a subset of features to split on at each node. Bagging
is guaranteed to be consistent if the underlying decision trees are consistent ([7]); random
forests are guaranteed to converge ([9]) but are not known to be consistent ([7, 48, 53]). The
R package randomForest implements Breiman’s random forest algorithm.

Data Analysis

MATLAB (version R2024a) was used for logistic regression. R (version 4.3.2) and li-
braries caret, gbm, rpart, randomForest, and tidyverse and their dependencies were used
for data pre-processing and training decision tree models. The R library ggplot2 and its
dependencies were used to create figures.

A 80-20 train-test split was constructed with class ratios preserved. 5-fold cross-validation
was performed for all types of models. Random forests were trained with 100, 300, and 1000
trees. 6 features were randomly chosen at each node; this is roughly the square root of the
total number of features and is a recommendation attributed to Breiman ([20]). To do a finer
search of parameter space, AdaBoost models were trained with cross-validation and a grid
search on 20, 40, 60, 80, 100, 200, 400, or 600 trees, interaction depth 1, 0.002 or 0.005 shrink-
age, and 1 or 10 minimum observations per leaf node. Logistic regression was also attempted.

I control for age and sex by repeating training with di↵erent brackets of age and sex.
This may not be useful for decision tree models since these are capable of feature selection
but this still helps to isolate the e↵ects of old age and sex on AD incidence.
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Depending on the accuracy of the model, variable importance plots can be used to inter-
pret the e↵ectiveness of splitting on individual features and partial dependence plots can be
used to interpret how each individual variable a↵ects the outcome.

3.4 Results

As few as 100 trees are su�cient to perfectly fit the training data. In the validation stage,
all models uniformly classified all participants as negative for the eventual development of
AD and failed to classify any participant as positive. That is, while all models achieved
remarkable accuracy, they had zero sensitivity to eventual AD development.

However, we may still try to determine which of the individual variables have a greater
e↵ect on AD incidence. Plots of individual features suggested that high alcohol intake fre-
quency may be a risk factor other than old age and did not suggest risk factors related to
anthropometric measurements and other dietary items.

Figure 3.3: Alcohol intake frequency of sampled participants (lower number on the abscissa
corresponds to higher frequency). Red: AD group; blue: no AD group
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Model interpretation is meaningful when the models perform well to match the ground
truth. Since the models have low sensitivity, we should cautiously interpret items that sug-
gest a positive classification.

The Gini importance of a feature in random forest models is defined as the total decrease
in Gini impurity from splitting on the feature averaged over all trees. The decision tree
models generally find splitting on anthropometry measures and age to be more useful than
splitting on dietary features.

Figure 3.4: Gini importance plot of the top 10 features of a random forest with 1000 trees

We omit the partial dependence plots of the logistic regression model as most do not
yield meaningful interpretations and some even display trends that contradict analyses on
individual features. This is not surprising since logistic regression is sensitive to outliers and
the model has a constant output that is supported by the most of the variables anyway.
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3.5 Discussion

The results suggest that there is not enough information in the UK Biobank dietary
survey included in the touchscreen questionnaire to predict AD incidence. There are many
possible reasons for this outcome.

First, there may be too few positive labels for the models to learn from. This is an exam-
ple of class imbalance in which the trained models simply ignore the minority group. One
possible workaround is to oversample the minority group or to undersample the majority
group, but we will no longer be modeling ground truth.

Second, the granularity of the dietary section of the touchscreen questionnaire may be
insu�cient, both in terms of the specificity of the foods included and in the discretized re-
sponses. Furthermore, it is not viable to quantify the consumption of particular nutrients of
interest based on this data. We contrast this with the work done by Liu et al. mentioned in
Section 3.1 where they find significant associations between iron consumption and all-cause
dementia using a di↵erent Category of UK Biobank data which includes a much greater
number of questions in much finer detail in addition to nutrition estimation data calculated
by UK Biobank ([34, 43]).

Third, it is important to recognize that diet is only one out of many potential lifestyle
and environmental risk factors for AD. Furthermore, there are many stages between food
consumption and the development of disease that need to be examined carefully for a concrete
connection to be established.
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Chapter 4

Analysis of Brain Imaging Data

4.1 Motivations

Di↵erent biological tissues have di↵erent magnetic susceptibility. The magnetic resonance
imaging (MRI) technique of quantitative susceptibility mapping (QSM) allows us to measure
this property of brain tissues and infer the degree of iron deposition and myelination ([28,
33]). This is useful as iron deposition and demyelination are both observed in AD patients
and both result in an increase in QSM signal.

We are interested in investigating the di↵erence in the patterns of QSM signals between
people with and without AD.

4.2 Dataset Description

We use brain imaging data from UK Biobank, which has been conducting its first phase
of imaging assessment center visits since 2014 and a repeat phase since 2019 ([39, 50]). UK
Biobank has the largest QSM dataset in existence ([57]).

The number of brain images of participants with AD is limited. Even though there are
half a million participants in the entire study, around 76,000 participants attended the first
imaging visit and 7,000 attended the repeat imaging visit. Furthermore, participants with
an AD diagnosis are less likely to attend imaging visits and there are fewer of them than
what UK Biobank expected.

58 participants with an AD diagnosis attended the first imaging visit and only one at-
tended the repeat imaging visit. For this reason, we only use data collected during the
first imaging visit. Participants whose images could not be processed through the pipeline
described in the next section were excluded. In total, we used the susceptibility weighted
brain images of 56 participants with an AD diagnosis and 945 participants without.
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Magnetic Resonance Imaging

MRI of the brain is commonly used to assess neurological abnormalities and in the di-
agnosis of AD which presents with brain atrophy that can be imaged with structural MRI.
Some advantages of using MRI are its noninvasiveness and its many contrast mechanisms.

MRI utilizes the curious quantum mechanical phenomenon of nuclear magnetic reso-
nance. The MRI machine generates a strong uniform magnetic field (B0), causing atomic
nuclei inside the body to align with the field. A radiofrequency magnetic field (B1) is then
applied and turned o↵, causing the nuclei to be misaligned momentarily. MRI measures the
nuclear magnetism as the nuclei, typically single protons, realign with the B0 field.

Quantitative Susceptibility Mapping

Magnetic susceptibility in tissues distorts the surrounding magnetic field. Since the pre-
cessional frequency of protons is proportional to the strength of the magnetic field, the
protons precess at di↵erent rates as this distortion happens. Over time, a phase di↵erence
between photons emerges. We use this phase data from the susceptibility weighted brain
MRI images which use a contrast mechanism that is particularly sensitive to magnetic sus-
ceptibility.

4.3 Image Processing

The phase data from the brain images are first converted into QSM signals before any
statistical analysis is done. Even though UK Biobank has a QSM pipeline, implementing
our own pipeline gives us more flexibility in handling the brain images ([2]).

Image Reconstruction

A mask is generated using the Brain Extraction Tool provided by the FMRIB Software
Library to separate the brain from the rest of the image ([23, 51]). The phase data is
unwrapped using a Laplacian-based method and the background phase is removed using
V-SHARP ([28, 46, 47]). We use these methods through their implementations provided by
STI-Suite ([31]).

Reconstructing the QSM signal is a deconvolution problem where each point in the image
contributes its own magnetic field distortion ([33]). As with all deconvolution problems, this
is generally di�cult and ill-posed, but many algorithms have been developed to attack the
QSM reconstruction problem. We use the iLSQR and STAR-QSM algorithms provided by
STI-Suite for image reconstruction ([29, 61]).
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Image Registration

Since the brains of each individual are di↵erent in shape and size, to figure out which part
of the brain corresponds to which portion of the image and to perform statistical analysis
using brains of di↵erent participants, we perform image registration to warp these images
to a “standard” brain — a so-called ‘brain atlas’ with known labels. We use the symmetric
normalization method provided by Advanced Normalization Tools together with an atlas
made for QSM for image registration ([4, 63]).

4.4 Methodology

Statistical Analysis

R is used for creating figures and MATLAB (version R2024a) is used for creating figures
and all statistical analysis.

We compute the mean QSM signal for each of the regions of interest (ROIs) and com-
pare the medians of the AD and non-AD groups using the Wilcoxon rank-sum test with the
rank-biserial correlation (rrb) as the e↵ect size.

It is known that QSM patterns change with age ([37, 56]). The AD group has a mean
age of 70.4 while the non-AD group has a mean age of 65.5. We control for age by repeating
the analysis using data only from participants within the 25th to 75th percentile of ages in
the AD group (68 to 75 inclusive) for both groups. 29 participants with an AD diagnosis
and 288 participants without an AD diagnosis were in this age range.

Figure 4.1: Age of sample participants at initial imaging visit (dashed — mean)
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Furthermore, we investigate the e↵ects of aging on QSM by considering the AD and non-
AD groups separately and averaging the QSM of participants with the same age (rounded
to the nearest year). One participant in the AD group with missing age data was excluded.

Regions of Interest

It is known that QSM reflects iron deposition in deep gray matter regions where iron is
concentrated, so we restrict our investigation to these regions. Deep gray matter regions are
non-cortical gray matter regions, including the basal ganglia and surrounding regions such
as the hippocampus and thalamus. This is a semantic designation based on anatomy and
does not reflect the various functional roles these brain regions are responsible for.

Abbreviation Region of Interest

Hip Hippocampus
PHG Parahippocampal gyrus
Amy Amygdala
Put Putamen
Cd Caudate nucleus
Acb Nucleus accumbens
EA Extended amygdala
GPe External globus pallidus
GPi Internal globus pallidus
SNr Pars reticulata of substantia nigra
SNc Pars compacta of substantia nigra
RN Red nucleus
STh Subthalamic nucleus
VP Ventral pallidum
ANG Anterior nuclei of thalamus
MD Median nuclei of thalamus
IML Internal medullary lamina of thalamus
LNG Lateral nuclei of thalamus
Pul Pulvinar nuclei of thalamus
DN Dentate nucleus

Table 4.1: Abbreviations of deep gray matter regions of interest
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4.5 Results

Comparison of AD and Non-AD Groups

We find significant di↵erences between the QSM of the AD group and the non-AD group
in deep gray matter regions. Except the amygdala, ANG, MD, IML, and LNG, the QSM of
the deep gray matter regions is higher for the AD group compared to the non-AD group.

QSM does not di↵er greatly between iLSQR and STAR-QSM reconstructions. Similar
patterns of di↵erences between the AD and non-AD group are shared by the entire sample
and the 68- to 75-year-old subset.

iLSQR Reconstruction

ROI p-value rrb
HipL 3.13⇥ 10�9 0.187
HipR 1.20⇥ 10�9 0.192
PHGL 0.996 �0.000165
PHGR 6.90⇥ 10�4 0.107
AmyL 7.79⇥ 10�35 �0.389
AmyR 1.87⇥ 10�29 �0.356
PutL 3.29⇥ 10�29 0.355
PutR 8.02⇥ 10�25 0.325
CdL 1.01⇥ 10�17 0.271
CdR 7.28⇥ 10�15 0.246
AcbL 0.0381 0.0656
AcbR 2.56⇥ 10�7 0.163
EAL 1.37⇥ 10�29 0.357
EAR 1.67⇥ 10�31 0.369
GPeL 4.60⇥ 10�34 0.385
GPeR 1.23⇥ 10�33 0.382
GPiL 1.26⇥ 10�35 0.394
GPiR 6.26⇥ 10�35 0.390
SNrL 1.78⇥ 10�29 0.357
SNrR 4.96⇥ 10�30 0.360

ROI p-value rrb
SNcL 3.25⇥ 10�27 0.342
SNcR 6.99⇥ 10�27 0.340
RNL 2.69⇥ 10�29 0.355
RNR 1.08⇥ 10�30 0.364
SThL 6.45⇥ 10�31 0.366
SThR 4.38⇥ 10�32 0.373
VPL 0.0400 0.0649
VPR 0.0914 0.0534
ANGL 4.45⇥ 10�13 �0.229
ANGR 2.79⇥ 10�8 �0.176
MDL 0.0541 �0.0609
MDR 4.51⇥ 10�3 �0.0898
IMLL 3.51⇥ 10�9 �0.187
IMLR 1.24⇥ 10�13 �0.234
LNGL 1.37⇥ 10�27 �0.344
LNGR 1.01⇥ 10�28 �0.352
PulL 0.154 0.0451
PulR 1.71⇥ 10�6 0.151
DNL 3.12⇥ 10�20 0.291
DNR 0.41⇥ 10�19 0.280

Table 4.2: Results of Wilcoxon rank-sum test on QSM data of AD and non-AD groups in
deep gray matter regions reconstructed using iLSQR. L/R subscript denotes left or right
side. rrb is the rank-biserial correlation
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STAR-QSM Reconstruction

It is possible that these observations are due to inaccuracies in the reconstruction or
registration processes. To be more confident that the results are not due to particulars of
iLSQR reconstruction, we repeat the analysis with STAR-QSM reconstruction, which yields
similar results.

ROI p-value rrb
HipL 1.79⇥ 10�8 0.178
HipR 9.60⇥ 10�7 0.155
PHGL 0.0628 0.0588
PHGR 3.27⇥ 10�5 0.131
AmyL 4.63⇥ 10�35 �0.391
AmyR 8.19⇥ 10�30 �0.359
PutL 1.86⇥ 10�30 0.363
PutR 2.67⇥ 10�26 0.336
CdL 4.21⇥ 10�18 0.274
CdR 5.15⇥ 10�16 0.256
AcbL 0.0158 0.0763
AcbR 2.88⇥ 10�8 0.176
EAL 1.02⇥ 10�30 0.364
EAR 1.00⇥ 10�32 0.377
GPeL 2.29⇥ 10�34 0.387
GPeR 5.57⇥ 10�34 0.384
GPiL 7.19⇥ 10�36 0.395
GPiR 2.87⇥ 10�35 0.392
SNrL 7.76⇥ 10�28 0.346
SNrR 4.35⇥ 10�29 0.354

ROI p-value rrb
SNcL 2.35⇥ 10�26 0.336
SNcR 1.13⇥ 10�28 0.351
RNL 3.86⇥ 10�30 0.361
RNR 9.66⇥ 10�33 0.377
SThL 5.98⇥ 10�30 0.360
SThR 1.11⇥ 10�31 0.370
VPL 0.411 0.0260
VPR 0.637 0.0149
ANGL 1.24⇥ 10�16 �0.262
ANGR 2.89⇥ 10�11 �0.210
MDL 0.195 �0.0410
MDR 0.0804 �0.0553
IMLL 4.16⇥ 10�11 �0.209
IMLR 6.54⇥ 10�16 �0.256
LNGL 6.78⇥ 10�29 �0.353
LNGR 9.04⇥ 10�30 �0.358
PulL 0.108 0.0508
PulR 6.84⇥ 10�6 0.142
DNL 2.65⇥ 10�20 0.292
DNR 1.39⇥ 10�18 0.278

Table 4.3: Results of Wilcoxon rank-sum test on QSM data of AD and non-AD groups in
deep gray matter regions reconstructed using STAR-QSM. L/R subscript denotes left or
right side. rrb is the rank-biserial correlation
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68–75 Year Old Subsample

Using data from participants within the 68–75 year old age range yields slightly di↵erent
results with largely similar patterns. Compared to the entire sample, the di↵erences be-
tween the AD and non-AD groups are more pronounced overall. Using either reconstruction
method yields similar results.

ROI p-value rrb
HipL 1.18⇥ 10�3 0.183
HipR 2.16⇥ 10�5 0.239
PHGL 0.806 �0.0139
PHGR 5.97⇥ 10�3 0.155
AmyL 1.14⇥ 10�17 �0.482
AmyR 5.89⇥ 10�15 �0.439
PutL 2.51⇥ 10�14 0.429
PutR 2.09⇥ 10�13 0.413
CdL 9.10⇥ 10�12 0.384
CdR 3.02⇥ 10�8 0.312
AcbL 2.87⇥ 10�3 0.168
AcbR 2.08⇥ 10�6 0.267
EAL 1.89⇥ 10�15 0.447
EAR 9.74⇥ 10�17 0.467
GPeL 5.19⇥ 10�17 0.472
GPeR 1.03⇥ 10�16 0.467
GPiL 1.52⇥ 10�18 0.494
GPiR 2.39⇥ 10�18 0.492
SNrL 3.37⇥ 10�16 0.459
SNrR 1.27⇥ 10�16 0.466

ROI p-value rrb
SNcL 4.06⇥ 10�15 0.442
SNcR 2.21⇥ 10�16 0.462
RNL 3.48⇥ 10�17 0.474
RNR 4.52⇥ 10�18 0.488
SThL 2.56⇥ 10�17 0.476
SThR 9.07⇥ 10�17 0.468
VPL 0.240 0.0661
VPR 0.304 0.0579
ANGL 5.64⇥ 10�8 �0.306
ANGR 3.16⇥ 10�4 �0.203
MDL 0.826 0.0124
MDR 0.0545 �0.108
IMLL 2.50⇥ 10�3 �0.170
IMLR 7.05⇥ 10�7 �0.279
LNGL 3.55⇥ 10�15 �0.443
LNGR 3.26⇥ 10�15 �0.443
PulL 0.0349 0.119
PulR 2.20⇥ 10�5 0.239
DNL 4.90⇥ 10�13 0.407
DNR 2.03⇥ 10�14 0.430

Table 4.4: Results of Wilcoxon rank-sum test on QSM data of AD and non-AD groups
(68–75 year old participants only) in deep gray matter regions reconstructed using iLSQR.
L/R subscript denotes left or right side. rrb is the rank-biserial correlation
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Aging E↵ects

We observe linear trends in the QSM of deep gray matter regions with respect to age in
the non-AD group (Figure 4.3). Compared to the non-AD group, the distribution of QSM
in the AD group has higher variance overall.

Normal Aging E↵ects

Having observed linear trends in the non-AD group, we compute Pearson’s r for each ROI
to assess the linear relationship between age and QSM. There is again asymmetry between
the two brain hemispheres.

ROI p-value Pearson’s r
HipL 1.15⇥ 10�4 0.592
HipR 1.93⇥ 10�6 0.694
PHGL 0.259 0.191
PHGR 0.0573 0.315
AmyL 0.715 �0.0622
AmyR 0.613 0.0860
PutL 4.77⇥ 10�4 �0.546
PutR 5.82⇥ 10�3 �0.445
CdL 4.19⇥ 10�16 �0.923
CdR 4.02⇥ 10�12 �0.867
AcbL 6.93⇥ 10�10 �0.817
AcbR 6.71⇥ 10�11 �0.842
EAL 1.08⇥ 10�8 �0.782
EAR 2.31⇥ 10�10 �0.829
GPeL 8.92⇥ 10�13 �0.879
GPeR 1.07⇥ 10�12 �0.877
GPiL 6.83⇥ 10�11 �0.842
GPiR 2.97⇥ 10�8 �0.768
SNrL 0.174 0.228
SNrR 0.743 0.0558

ROI p-value Pearson’s r
SNcL 8.16⇥ 10�3 0.428
SNcR 0.0720 0.299
RNL 0.392 0.145
RNR 0.987 0.00285
SThL 0.0441 �0.333
SThR 0.0490 �0.326
VPL 0.124 0.258
VPR 1.17⇥ 10�3 0.513
ANGL 6.11⇥ 10�5 0.610
ANGR 0.212 0.210
MDL 2.63⇥ 10�5 �0.633
MDR 3.16⇥ 10�6 �0.683
IMLL 0.427 �0.135
IMLR 8.33⇥ 10�3 �0.427
LNGL 1.37⇥ 10�3 0.507
LNGR 2.15⇥ 10�3 0.489
PulL 4.19⇥ 10�5 �0.621
PulR 2.13⇥ 10�8 �0.773
DNL 1.65⇥ 10�3 �0.500
DNR 2.25⇥ 10�3 �0.487

Table 4.5: Pearson correlation coe�cient between the age and QSM data of participants
without an AD diagnosis in deep gray matter regions reconstructed using iLSQR averaged
by age. L/R subscript denotes left or right side
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4.6 Discussion

The results corroborate the findings of previous studies that pathological QSM patterns
are observed in deep gray matter regions in AD, supporting the hypotheses that some form
of iron dyshomeostasis is present in AD and that iron deposition occurs in AD. Given these
clear pathological patterns, QSM may prove useful in the clinical setting as an auxiliary tool
for AD diagnosis and research.

We find that QSM is asymmetric between the two brain hemispheres. This is plausible
since brains are not completely symmetric both in terms of structure and function, and such
observations have been previously reported ([18]).

There is a vast literature on how QSM of deep gray matter regions normally evolves with
age ([37]). Iron is necessary for healthy childhood development, during which the QSM of
these regions has been observed to increase ([11, 62, 63]). Beyond adolescence, this rising
trend has been observed to mostly keep increasing into old age across all regions, but it can
also plateau or even reverse slightly for particular regions ([13, 21, 30, 63]). We observe linear
trends in both increasing and decreasing directions as well as plateaus in di↵erent deep gray
matter regions. Our study contributes more data towards elucidating these trends.
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Chapter 5

Is There a Connection Between Diet
and QSM?

As diet does not seem to directly contribute to risk of AD based on our work, we would
like to take a step back and explore whether there is a connection between diet and QSM.

We conduct an exploratory analysis by taking each of 33 numerical features in the dietary
dataset (excluding sex and ethnicity) and the QSM of each of 40 deep gray matter regions
to compute the Pearson correlation coe�cient, only using data from participants who had a
consistent diet as defined in Chapter 2. We use the Bonferroni adjustment to control false
discovery rate. The sample included 14 participants with an AD diagnosis and 380 partici-
pants without an AD diagnosis.

No significant correlations involving dietary or lifestyle features were present, both in the
AD group and the non-AD group. For the non-AD group, anthropometry measures were at
most mildly correlated with QSM of only a couple of deep gray matter regions. As discussed
in the previous chapter, out of all the features used for the dietary analysis, age was the
most outstandingly correlated with QSM of deep gray matter regions for the non-AD group.

Our results suggest that diet may not be connected to regulatory processes in the brain
that are related to iron.
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Age at Initial Assessment and QSM

ROI p-value Pearson’s r
HipL 0.139 0.0761
HipR 0.0241 0.116
PHGL 0.388 0.0444
PHGR 0.495 �0.0351
AmyL 0.924 0.00491
AmyR 0.982 0.00118
PutL 0.0970 �0.0852
PutR 0.0109 �0.130
CdL 2.01⇥ 10�14 �0.379
CdR 5.35⇥ 10�10 �0.312
AcbL 8.33⇥ 10�9 �0.290
AcbR 4.15⇥ 10�9 �0.296
EAL 2.68⇥ 10�6 �0.238
EAR 2.73⇥ 10�5 �0.213
GPeL 4.41⇥ 10�7 �0.256
GPeR 5.72⇥ 10�11 �0.328
GPiL 1.51⇥ 10�4 �0.193
GPiR 1.33⇥ 10�6 �0.245
SNrL 0.908 0.00598
SNrR 0.615 0.0259

ROI p-value Pearson’s r
SNcL 0.0573 0.0976
SNcR 0.00213 0.157
RNL 0.575 0.0288
RNR 0.776 �0.0146
SThL 0.395 �0.0438
SThR 0.154 �0.0732
VPL 0.272 �0.0565
VPR 0.728 �0.0179
ANGL 0.331 0.0500
ANGR 0.00582 0.141
MDL 6.07⇥ 10�8 �0.273
MDR 1.89⇥ 10�4 �0.190
IMLL 0.139 �0.0760
IMLR 0.429 �0.0407
LNGL 0.00349 0.149
LNGR 0.00668 0.139
PulL 1.90⇥ 10�4 �0.190
PulR 2.40⇥ 10�6 �0.239
DNL 4.43⇥ 10�5 �0.208
DNR 1.22⇥ 10�4 �0.196

Table 5.1: Pearson correlation coe�cient between the age at the initial assessment visit and
QSM data of participants with a consistent diet and without an AD diagnosis in deep gray
matter regions reconstructed using iLSQR. L/R subscript denotes left or right side
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Body Mass Index and QSM

We give body mass index as an example of an anthropometry measure that has few sig-
nificant correlations with QSM.

ROI p-value Pearson’s r
HipL 0.602 �0.0269
HipR 0.799 0.0131
PHGL 0.00929 �0.133
PHGR 0.606 �0.0265
AmyL 0.677 �0.0214
AmyR 0.542 �0.0314
PutL 0.0701 �0.0930
PutR 0.590 �0.0277
CdL 0.00285 �0.153
CdR 0.352 �0.0478
AcbL 0.00363 �0.149
AcbR 0.229 �0.0619
EAL 0.433 �0.0404
EAR 0.552 �0.0306
GPeL 0.251 �0.0590
GPeR 0.554 �0.0304
GPiL 0.364 0.0467
GPiR 0.983 0.00109
SNrL 0.114 �0.0813
SNrR 0.983 �0.00107

ROI p-value Pearson’s r
SNcL 0.157 �0.0727
SNcR 0.583 0.0283
RNL 0.189 �0.0675
RNR 0.382 �0.0450
SThL 0.0226 �0.117
SThR 0.0218 �0.118
VPL 0.580 �0.0285
VPR 0.365 0.0466
ANGL 0.159 0.0723
ANGR 0.210 �0.0645
MDL 0.0649 �0.0948
MDR 0.00901 �0.134
IMLL 0.306 �0.0526
IMLR 0.188 �0.0677
LNGL 0.716 �0.0187
LNGR 0.103 0.0838
PulL 0.560 �0.0300
PulR 0.150 0.0740
DNL 9.83⇥ 10�6 �0.225
DNR 9.61⇥ 10�5 �0.199

Table 5.2: Pearson correlation coe�cient between the Body Mass Index and QSM data of
participants with a consistent diet and without an AD diagnosis in deep gray matter regions
reconstructed using iLSQR. L/R subscript denotes left or right side
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Alcohol Intake Frequency and QSM

We give alcohol intake frequency as an example of a dietary feature that does not have
any significant correlations with QSM.

ROI p-value Pearson’s r
HipL 0.262 �0.0577
HipR 0.0533 �0.0992
PHGL 0.871 �0.00839
PHGR 0.234 0.0612
AmyL 0.909 0.00586
AmyR 0.801 �0.0130
PutL 0.484 �0.0360
PutR 0.0979 �0.0850
CdL 0.0240 0.116
CdR 0.288 0.0546
AcbL 0.186 0.0680
AcbR 0.193 0.0669
EAL 0.443 0.0395
EAR 0.0708 0.0928
GPeL 0.424 0.0411
GPeR 0.368 0.0464
GPiL 0.636 0.0244
GPiR 0.219 0.0631
SNrL 0.275 �0.0562
SNrR 0.377 �0.0454

ROI p-value Pearson’s r
SNcL 0.120 �0.0800
SNcR 0.0763 �0.0911
RNL 0.444 �0.0394
RNR 0.393 �0.0439
SThL 0.503 �0.0345
SThR 0.943 �0.00369
VPL 0.136 0.0767
VPR 0.282 0.0553
ANGL 0.250 �0.0592
ANGR 0.152 �0.0735
MDL 0.416 0.0418
MDR 0.0332 0.109
IMLL 0.926 �0.00481
IMLR 0.106 0.0832
LNGL 0.472 0.0370
LNGR 0.481 �0.0363
PulL 0.735 0.0174
PulR 0.416 0.0419
DNL 0.0472 0.102
DNR 0.724 0.0182

Table 5.3: Pearson correlation coe�cient between the alcohol intake frequency (aggregated
across all responses) and QSM data of participants with a consistent diet and without an
AD diagnosis in deep gray matter regions reconstructed using iLSQR. L/R subscript denotes
left or right side
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Chapter 6

Conclusion

6.1 Future Work

We have not explored fully what UK Biobank has to o↵er. For instance, blood samples
provide information that is downstream from diet and upstream of iron deposition. We could
also broaden the scope to all-cause dementia and other neurodegenerative diseases. When
the UK Biobank cognitive battery is established to be more reliable, we could use it to screen
for cognitive deficits instead of only relying on formal diagnoses.

As UK Biobank continues to collect more data from the cohort, we are certain this will
enable more interesting and impactful studies in the years to come, such as longitudinal
studies using QSM data. It is possible that those who have developed AD for a longer time
have more distinctive QSM patterns as pathological features have had more time to manifest.

6.2 Iron in AD Pathology

The detection of iron in the brain, like other biomarkers in AD, does not imply any causal
relationship between its deposition and the development of the disease. There is speculation
what exactly leads to iron deposition and how iron deposition is linked to neurodegenera-
tion. Our results suggest that dietary lifestyle habits may not be risk factors for AD and
corroborate the popular hypothesis that processes regulating iron are dysfunctional in AD.
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