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Abstract

Neural Circuit Dynamics Estimation and Control

by

Sang Min Han

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Chunlei Liu, Chair

We present a high-throughput, scalable, and biophysically informed effective connectivity
mapping method for a population of neurons via two photon holography optogenetics. Specif-
ically, we derive a simple neural circuit dynamics model from basic biophysical principles
and introduce a fast algorithm that best estimates the connectivity among the neurons in a
network given the observed neural population activity. The algorithm leverages the state-of-
the-art two photon holography optogenetic technique and calcium trace imaging as a proxy
for neuron membrane potential to optimally estimate the connectivity of neurons residing
inside a three-dimensional volume with dimensions spanning hundreds of microns. Using
3D-SHOT, a two photon holography optogenetics technique capable of stimulating custom
ensembles of neurons with cellular resolution and millisecond-order time precision, combined
with GCaMP6, a contemporary genetically encoded calcium indicator, imaging, we observe
the activity of both stimulated and neighboring neurons inside the neocortex of both awake
and anesthetized mice in vivo. With these modern technologies at hand, we use the derived
deterministic and linear autoregressive model of an arbitrary order with a feed-forward op-
togenetic stimuli input to describe the population-level time evolution of neural activities in
a network. We utilize the ideas in causal inference, compressed sensing, and parallel com-
puting to efficiently estimate the aforementioned model parameters, which directly translate
to the connectivity matrices that characterize the effective interactions among the observed
neurons. Furthermore, interference framework in experimental design and network control
algorithm based on a graph-theoretic centrality measure are applied to provide a higher
fidelity summary statistics of the connections among a subset of selected neurons and to
artificially drive the network to specific brain states, respectively. With the estimated bio-
physical model describing the partial dynamics of neuronal interactions, inferences regarding
both the spatial and temporal signatures of a local region of the brain can be made.
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Chapter 1

Introduction

In this dissertation, we present an explainable artificial intelligence-based method to decode
population-level neural activity. Rather than relying on black box architecture-based meth-
ods, we ground our method on a biophysically informed model. Using calcium trace imaging
data of neural population activity obtained with direct photostimulations using two photon
holography optogenetics in both awake and anesthetized mice, we optimize our model pa-
rameters. The fitted model is then used to provide biological insights and to yield intuition
into how the investigated neural circuit can be modulated to achieve specific network-level
characteristics and dynamics.

1.1 Objective

The overarching objective of the work presented in this dissertation is to utilize the newly
developed computational method that combines imaging, modeling, and modulating the
dynamics of neural circuits with extremely high spatiotemporal precision to understand and
to ultimately understand perception and behavior. The long-term goal of the project detailed
in this thesis is to achieve fundamental new understandings of neural circuit dynamics that
may have significant science and health implications. To this end, we demonstrate that
we can compute the aforementioned model parameters in a fast and accurate manner, and
propose a scheme that uses the learned biophysical model for closed-loop neural stimulations.
Figure 1.1 illustrates our method pipeline as well as our overall objective of achieving closed-
loop neural modulations in awake, behaving animals.

This dissertation outlines the derivations that lead to an autoregressive equation that
defines the biophysical model, which characterizes and predicts neural circuit dynamics. It
also details the use of optogenetic stimulation and the optimal spatiotemporal stimulation
patterns for enabling online and closed-loop circuit estimation and modulation. The cus-
tom developed estimation algorithm that employs key ideas in compressed sensing is further
described. We validate the circuit properties and dynamics of the learned biophysical autore-
gressive model and propose an optimized strategy to efficiently modulate circuit dynamics
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Figure 1.1: Explainable artificial intelligence framework to decode and modulate population-
level neural activity in awake, behaving animals.

with optogenetic stimulation.

1.2 Background

Recent technical advances have revolutionized our ability to observe and manipulate neurons
at a large scale and to modulate behaviors [14, 32, 3]. Simultaneous two photon (2P) optoge-
netic stimulation and calcium imaging have enabled rapid, reversible control and recording of
genetically and spatially defined neurons [27, 31, 33, 30]. Targeted activation of neuronal en-
sembles in the neocortex may be sufficient to elicit percepts and possibly influence behavioral
outcomes [28, 12]. Although these findings demonstrate the power of precise optogenetic ma-
nipulations, a more generalizable and unsupervised approach to design precise optogenetic
perturbations that will optimally provide insight into the underlying neural mechanisms of
neural coding is necessary. Using the state-of-the-art two photon holography optogenetic
technique, we are able to stimulate tens of neurons together at the same time. However, as
the number of neurons that can be simultaneously targeted grows, the number of possible
perturbations will increase combinatorially. With this technological advance forthcoming,
selecting the most informative ensembles of cells, given limited time, is essential. Straight-
forward applications of machine learning have resulted in “black box” correlations between
neural activity and behaviors, producing little mechanistic understanding of the underlying
neural circuit [35, 17, 19, 45]. By combining functional network mapping via holographic
optogenetics with innovative autoregressive (AR) modeling, we developed an explainable
artificial intelligence (XAI) approach that can reveal the governing equations underlying the
dynamics of a network comprised of a large number of neurons. With further inspection,
we anticipate that the novel approach described in this dissertation will provide deep mech-
anistic insight into how population activity in the cortex drives perceptual behaviors and
cognition that cannot be obtained via other means.
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We hypothesized that the dynamics of a neural circuit can be modeled by an augmented
autoregressive equation that can inform the precise types of perturbations needed to informa-
tively model and modulate circuit activities linked to cortical function. Our approach to test
this hypothesis hinges on two innovations: three-dimensional holographic optogenetic circuit
mapping and a physical circuit model powered by machine learning algorithms. Experimen-
tally, we leverage an all-optical circuit interrogation technique named Three-dimensional
scanless holographic optogenetics with temporal focusing (3D-SHOT) [34]. 3D-SHOT allows
precise, simultaneous photo-activation of sets of neurons at near single-neuron spatial resolu-
tion and millisecond time precision. By holographically activating user-defined ensembles of
neurons in vivo, we obtain the data needed to train the autoregressive biophysical model that
can then predict the optimal neural circuit perturbations needed to drive robust effects on
behavior, which can provide insight into the key aspects of the population codes that drive
perception and behavior. Capitalizing on the more recent innovations in both the optical
aspects of 3D-SHOT and the development of substantially more potent microbial opsins, we
interrogated close to one thousand neurons within the primary visual cortex (V1) during
each experiment session. It is our hope to simultaneously study 100,000 neurons across V1
and higher cortical areas in the future using a newly developed holographic mesoscope. The
number of unknowns in a circuit connectivity matrix scales with the square of the number of
neurons. To address this computational complexity, we probe the circuit by co-stimulating
large, spatially distributed random sets of neurons, and use compressed sensing, an artificial
intelligence algorithm, to learn what we term effective connectivity among all the neurons
in the field-of-view (FOV) of the microscope. The algorithm is fast, which allows online and
closed-loop modeling and modulation of the neural circuits.

1.3 Innovation

Our novel explainable artificial intelligence approach is devised based on known biology and
physics. Prior methods predominantly relied on the use of “black box” machine learning
techniques that fit neural recordings data from specific brain regions directly to specific be-
haviors. Compared to these approaches that cannot be generalized to other brain regions
or to new data, we tackle the problem of decoding population neural activity in two steps:
1) learn a generalizable circuit model; 2) use the learned circuit properties to explain be-
haviors. We also employ compressed sensing in the interrogation of neural circuit functional
connectivity. Prior works have conducted limited perturbation of only few neurons at a
time to estimate circuit dynamics, or relied on observations without targeted stimulation
[42, 43]. We take a novel systems approach to interrogate the circuit with much larger scale
photo-stimulation and compressed sensing [16], which capitalizes on the sparse nature of the
circuit connections. Further novelty comes from the application of three-dimensional holo-
graphic photostimulation to train predictive circuit models. The precise targeted ensemble
stimulation allows statistical estimation of model parameters rather than inference, which
does not scale well in computational complexity and requires probabilistic assumptions and
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priors. Past works related to functional mapping have stimulated one neuron at a time. We
stimulated tens of neurons at a time to increase throughput and obtain more appropriate
training data for large-scale circuit perturbations-based mapping. Our approach stimulates,
observes, and computes in the most effective and efficient manner to date.
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Chapter 2

Approach

Our objective is to develop a data-driven explainable artificial intelligence-based model that
both provides insights about the inner working of the circuit and generates useful predictions
for perturbing it to probe downstream dynamics and behavior. To achieve this goal, we take
an approach that involves three steps. First, we obtain training data sets by mapping effective
connections within a large population of cortical neurons with 3D-SHOT, photo-activating
ensembles of approximately 30 neurons per time step while monitoring the resulting impacts
on all the other neurons through dense, volumetric calcium imaging. Second, this data is fed
into an estimation algorithm that computes the model parameters, which is the set of de-
tailed connectivity matrices characterizing the effective functional pairwise influence weights
among all probed neurons. Third, the biophysically inspired circuit model determined by
these matrices are used to identify further photo-activation patterns that can drive local dy-
namics that may optimally drive higher cortical areas and modify behavior. Training a full
biophysical Hodgkin-Huxley model of the entire network is not feasible due to limitations of
current technology, but we still aim for a model that treats each neuron and its connections
in a physiological manner. This plan of attack facilitates gaining insight into the neural
circuit’s underlying mechanisms. The approach we take overcomes the above limitations by
modeling the current-voltage propagation relationship with a compound transconductance
function and using calcium imaging as a surrogate for action potentials in the training data.
Algorithms for both offline and online estimation have been developed, and we demonstrate
that compared to conventional correlation analysis, our approach significantly improves the
predictive power of the data-driven model, which informs the precise perturbations that yield
insight into the computations underlying perception and behavior.

The aforementioned algorithms compute the autoregressive circuit parameters using a
sparsity prior. The estimation algorithm is high-throughput, scalable, and learns the neu-
ral circuit parameters of an ensemble of neurons in the optogenetics setting using the data
collected from the circuit interrogation scheme outlined above. We leverage the ideas in
compressed sensing and parallel computing to efficiently estimate the parameters of the au-
toregressive biophysical model. The model parameters directly translate to the effective
connectivity matrices that characterize the effective connections. These connectivity matri-
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Figure 2.1: Autoregressive biophysical model determined using compressed sensing with
multiphoton optogenetics. A) Connectivity parameter estimation: Statistical estimation of
connectivity made possible by custom ensemble stimulation of opsin expressing cells and
calcium imaging. B) Neural perturbation: Connectivity between cells cannot be efficiently
learned via spontaneous or naturally evoked activity, as they are too sparse or too syn-
chronized, respectively. Instead, many custom precise stimulation patterns generated by
multiphoton holographic optogenetics are needed. C-D) AR model: We use a sparse au-
toregressive model that takes into account connectivity dynamics from past observations
G0, . . . , Gp−1, as well as the current photostimulation effects over time S0, . . . , Sq−1 to pre-
dict future neuronal activities. E) Random stimulations: Random pattern stimulation profile
inputs are transformed by the sparse connectivity matrices to explain observed responses.

ces capture effects of both functional and true physical synaptic connectivity that might be
mono- or poly-synaptic. We derive the mathematical formulations required to transform the
problem of estimating the unknown model parameters to solving a slightly modified version
of the least absolute shrinkage and selection operator (LASSO) [44], a convex optimization
problem, which is the hallmark of compressed sensing. The LASSO problem is solved us-
ing a state-of-the-art variant of the proximal gradient descent algorithm termed the Greedy
Fast Iterative Shrinkage-Thresholding Algorithm (Greedy FISTA) [2, 25]. The appropriate
sparsity level in the recovered solution is determined from the validation data set using cross
validation.

We check the accuracy of our algorithm by conducting in silico computer simulations.
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The primary advantage of such simulations is that the circuit connectivity is entirely known
a priori. After constructing a biophysically meaningful ground truth connectivity matrices
with sparsity levels and connection strengths that match what is known in neuroscience,
we demonstrate the accuracy of our effective connectivity mapping approach on simulated
photo-stimulation training data.

2.1 3D-SHOT Optimization

We further optimize 3D-SHOT photo-stimulation for acquiring training data for our estima-
tion routine. 3D-SHOT allows the user to photo-stimulate a custom ensemble of neurons
optogenetically with near cellular resolution and millisecond precision [27, 34]. It thus serves
the need for acquiring the relevant training data for the compressed sensing estimation al-
gorithm. We update and tailor the specific 3D-SHOT photo-stimulation and 2P imaging
settings to acquire the best possible training data for our problem formulation. As shown
in Figure 2.2 showing the 3D-SHOT setup, a spatial light modulator (SLM) diffracts the
excitation laser into a hologram comprised of a set of neuron-sized, temporally focused light
spots where each spot targets one of a subset of neurons for optogenetic stimulation. Com-
bined with volumetric calcium imaging, this two photon read and write platform allows one
to activate arbitrarily chosen sets of neurons while simultaneously monitoring the impact
on all other neurons within the FOV. Exploiting the recent optical advances, the updated
3D-SHOT system both images and photo-stimulates across a brain volume approximately
800µm×800µm×100µm. In the mouse primary visual cortex (V1), this volume encompasses
a substantial fraction of Layer 2/3 (L2/3). Within this volume, the system records the ac-
tivity of each of approximately 1,000 neurons using genetically encoded calcium indicator
GCaMP6s whose relative fluorescence changes report firing changes approximately linearly
[10, 48]. With recent developments of even more potent opsins for 2P optogenetics, named
ChroME2.0, we selected about 30 neurons to stimulate at a time [41]. The optimized setup
can excite a different group of neurons at each refresh of the spatial light modulator, which
has maximum rate of 300 Hz. The calcium dynamics of nearly every GCaMP-expressing
neuron in the imaging volume are sampled with fast remote focusing via a second SLM.
Three planes are sampled at approximately 6 Hz imaging rate. There is an inherent tradeoff
between the number of neurons the system can sample and the sampling rate. We deliber-
ately choose to acquire data from many imaging planes (many neurons) at lower frame rates
for two reasons: first, the AR model will perform best when most of the potential inputs to
each neuron are probed; second, the slow kinetics of calcium transients limits the amount of
added information obtained from higher sampling frequency.
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Figure 2.2: Schematic diagram of the 3D-SHOT rig setup.

2.2 Off-Target Effects

An important point to consider is the effective photo-stimulation resolution. Although the
resolution is on the order of the size of a single cortical pyramidal neuron, we take several
approaches to minimize contamination from “off-target” photo-excited neurons as they may
corrupt the model estimation procedure. First, we use recently developed high potency opsins
(ChroME2.0) that allow us to drive neurons with light levels that are far from saturating the
opsin, maximizing the resolution benefit from 2P excitation [9, 41]. Second, we stimulate
each opsin-positive cell with the minimum laser power needed to produce reliable photo-
activation, minimizing activation of nearby neurons as exact targeting is never perfect. Third,
in cases where photo-excitation of ‘off-target’ cells is still unavoidable (as measured through
the volumetric GCaMP6s imaging) will be excluded from analysis. These data demonstrate
that our system is capable of activating large user-defined sets of neurons in the imaging
volume, a critical technical requirement for training the AR model.
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Chapter 3

Mathematical Formulation

Recall the optimized 3D-SHOT setting where a custom ensemble of neurons in the neocortex
region of the brain can be stimulated optically using laser light with near cellular spatial res-
olution and millisecond-order time precision. We consider a region of interest 1 comprised of
three cross sections of 800 µm× 800 µm in size that cover a depth of approximately 100µm
in the cortex. Within this field-of-view, each of approximately 1000 neurons’ membrane
potentials are recorded using GCaMP6s, a calcium trace indicator outputting relative fluo-
rescence changes that translate to a cell’s action potential event. The brighter the relative
GCaMP fluorescence signature, the higher the membrane potential of the neuron. Using
3D-SHOT, we target at most 50 neurons simultaneously. In 3D-SHOT, each hologram de-
fines one stimulation profile, which is comprised of a subset of neurons selected as targets
for optical stimulation. The turnaround time for switching from one stimulation profile to
another is only a couple of milliseconds. Nevertheless, up to 10 seconds may be needed to
prepare and compile a new hologram if a custom ensemble of neurons needs to be stimulated
online based on immediate feedback. In other words, millisecond-order turnaround time for
stimulation is possible only with pre-determined and pre-prepared ensembles. With these
physical spatiotemporal settings in mind, we formulate our problem mathematically using
definitions and techniques often used in experimental design and causal inference.

3.1 Mathematical Formulation of Experimental

Design

The experimental design framework fits naturally in the optogenetics setting. The mathe-
matical formulation of the effective connectivity estimation in optogenetics investigated here
will follow the notations commonly used in the experimental design literature.

Consider a finite population U of neurons indexed by n = 1, . . . , N , where |U | = N .
Denote by m the discrete time index corresponding to one imaging sample. Let the treatment

1the field-of-view is a trapezoid due to the physics of the optogenetics setup
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assignment dn ∈ {0, 1} represent the stimulation assignment corresponding to neuron n such
that dn = 1 indicates that neuron n is targeted for optogenetic stimulation. We assume
that there is perfect compliance. This is a valid assumption as we excite a neuron with a
set of approximately 10 pulses at 30 Hz to ensure stimulation with very high probability.
Let the potential outcome yn for neuron n be the high-pass-filtered fluorescence readout of
GCaMP–the calcium trace indicator–relative to the baseline level, ∆F

F0
, of neuron n. High-

pass filtering removes the undesirable low-frequency baseline shifts in the recorded, raw ∆F
F0

signals. For brevity and clarity, ∆F
F0

will refer to the high-pass filtered ∆F
F0

data. Define

yn :=

(
∆F

F0

)
n

. (3.1)

Then, under randomization-based treatment assignment, the potential outcome for neuron
n can be written:

yn = dny
(1)
n + (1− dn)y(0)

n , (3.2)

where y
(1)
n and y

(0)
n are the potential outcomes, the observed ∆F

F0
trace, of unit n under

treatment and control, respectively. In the context of optogenetics, y
(1)
n , the outcome under

treatment, and y
(0)
n , the outcome under control, varies over time for every neuron n due to

noise (spontaneous activity), interference, and the discrete nature of sampling. Treatment
can only be assigned to neurons expressing opsins, which are light-sensitive proteins that
enable optical stimulation. We restrict treatment assignments to the support set of opsin-
positive neurons:

Ω := {n : Prob(dn) > 0} , (3.3)

i.e., the set of neurons that can be optically stimulated.
We assume the constant additive treatment effect model for optogenetics:

y(1)
n = y(0)

n + τn ∀ n = 1, . . . , N, (3.4)

and presume that the optogenetic stimulus increases the ∆F
F0

of neuron n in the support Ω
by a constant amount of τn. The constant additive treatment effect model above defines a
superpopulation model, where one potential outcome at time steps m for each neuron n is
regarded as a sample drawn from one of two distributions: one distribution corresponding to
the stimulated state and another corresponding to the resting state of the neuron. Given this
superpopulation model, we can quantify the effects of the treatment, optogenetic stimulation,
on the neurons’ observed ∆F

F0
, or yn. Due to the nature of biology, e.g. discrepancies in

the GCaMP expression levels and nonuniform transfection rate of the opsins in the neurons,
different neurons react differently to the optogenetic stimulation. Therefore, treatment effect
is not homogeneous across all neurons, and there exists treatment effect heterogeneity. We
define the Individual Treatment Effect (ITE) for every neuron n as

ITEn := τn = y(1)
n − y(0)

n . (3.5)
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Fundamental Problem of Causal Inference

In the optogenetics setting, we can circumvent the fundamental problem of causal inference,
which states that it is impossible to observe multiple treatment effects or potential outcomes
under both treatment and control for one unit. For every unit neuron n, we can observe
both the baseline state of a neuron as well as its potential outcome under treatment with
the assumption that reasonable stationarity conditions hold, i.e. plasticity does not develop,
because a neuron’s membrane potential always returns to its resting state after an action
potential event. Therefore, if an experiment is performed within a reasonable amount of
time (approximately 2 hours) such that plasticity or other significant change in the brain
does not occur to a degree that alters the circuit, we can disregard the fundamental problem
of causal inference. Then, estimating the ITE for neuron n, i.e. τn, for every neuron n is
straightforward.

3.2 Potential Treatment Outcome Framework

We consider a superpopulation model, where potential outcomes are regarded as samples
drawn from two distributions: one distribution corresponding to the stimulated state and
another corresponding to the resting state. Given this superpopulation model, we estimate
the Individual Treatment Effect (ITE) for every neuron in the context of treatment effect
heterogeneity, and propose a scheme for calculating point estimates of the interference es-
timands of interest in the subsequent sections. To estimate this superpopulation model as
well as the ITE for every neuron n, we fit a two-Gaussian mixture model on the high-pass
filtered ∆F

F0
histogram data. These estimates are then used to decide whether each neuron’s

∆F
F0

at every time step m corresponds to the stimulated state or the baseline state. In ad-

dition, the estimates are used to standardize and normalize the ∆F
F0

data, which is essential
for estimating population-level relationships among all neurons without systematic biases.

Suppose that the potential outcomes ∆F
F0

for each neuron n are realizations of a parametric

model: a Gaussian mixture model with two mixture components: N (µn0, σ
2
n0) for the baseline

and N (µn1, σ
2
n1) for the excited state. For every neuron n, denote by fn(x) the approximate

probability density function of the high-pass-filtered ∆F
F0

histogram data. Then,

fn(x) = w0fN (µn0,σ2
n0)(x) + w1fN (µn1,σ2

n1)(x). (3.6)

We subsequently have an approximate superpopulation model for each neuron n, and have
the following estimate of the ITE:

ÎTEn = µn1 − µn0. (3.7)

Because every neuron n reacts differently to treatment, the optogenetic stimulation, we
quantify the treatment effect heterogeneity using the ITE estimate, and leverage this ITE
to normalize and standardize the data for population-level analysis. We also use this ITE
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to determine whether each observation ∆F
F0

for every neuron n is sampled from the baseline
distribution or the excited distribution. Using the estimated Gaussian mixture model, we
have the following hypotheses to test for each neuron n at every time step m:

H0 : yn ∼ N (µn0, σ
2
n0), (3.8)

H1 : yn ∼ N (µn1, σ
2
n1). (3.9)

We test for

Λ (yn) =
w1fYn=yn|N (µn1,σ2

n1) (yn)

w0fYn=yn|N (µn0,σ2
n0) (yn)

=

w1√
2πσn1

exp
{
−(yn−µn1)2

2σ2
n1

}
w0√

2πσn0
exp

{
−(yn−µn0)2

2σ2
n0

} (3.10)

=
w1σn0

w0σn1

exp

{
1

2

[(
yn − µn0

σn0

)2

−
(
yn − µn1

σn1

)2
]}

H1

≷
H0

1. (3.11)

Taking the log-likelihood ratio, we can equivalently test for(
yn − µn0

σn0

)2

−
(
yn − µn1

σn1

)2 H1

≷
H0

2 log

(
w0σn1

w1σn0

)
. (3.12)

Simplifying, we obtain

y2
nσ

2
n1 − 2ynµn0σ

2
n1

σ1
n0σ

2
n1

− y2
nσ

2
n0 − 2ynµn1σ

2
n0

σ2
n0σ

2
n1

H1

≷
H0

2 log

(
w0σn1

w1σn0

)
+
µ2
n1

σ2
n1

− µ2
n0

σ2
n0

, (3.13)

where the optimal threshold for determining if yn is a sample from the baseline distribution
or the stimulated distribution becomes a function of the solutions to the following quadratic
inequalities:

c1y
2
n + c2yn + c3

H1

≷
H0

0, (3.14)

where

c1 := σ2
n1 − σ2

n0, (3.15)

c2 := 2
(
µn1σ

2
n0 − µn0σ

2
n1

)
, (3.16)

c3 := µ2
n0σ

2
n1 − µ2

n1σ
2
n0 − 2σ2

n0σ
2
n1 log

(
w0σn1

w1σn0

)
. (3.17)

The two critical y∗n’s are then:

y∗n =

µn1σ
2
n0 − µn0σ

2
n1 ±

√
σ2
n0σ

2
n1

[
(µn0 − µn1)2 − 2 (σ2

n0 − σ2
n1) log

(
w0σn1
w1σn0

)]
σ2
n0 − σ2

n1

. (3.18)
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Algorithm 1: Threshold γ calculation algorithm

Input : Observation y and the parameters of the fitted Gaussian mixture models:
w0, w1, µ0, µ1, σ0, σ1

Output: Threshold γ for optimally deciding between H1 and H0.

1 Initialize: Calculate

γ∗n1 =

µn1σ
2
n0 − µn0σ

2
n1 −

√
σ2
n0σ

2
n1

[
ÎTE

2

n − 2(σ2
n0 − σ2

n1) log
(
wn0σn1
wn1σn0

)]
σ2
n0 − σ2

n1

,

γ∗n2 =

µn1σ
2
n0 − µn0σ

2
n1 +

√
σ2
n0σ

2
n1

[
ÎTE

2

n − 2(σ2
n0 − σ2

n1) log
(
wn0σn1
wn1σn0

)]
σ2
n0 − σ2

n1

.

2 if σ2
1 ≥ σ2

0 then
3 γ = γ∗2 .
4 else
5 γ = γ∗1 .
6 end
7 Return γ.

Denote by γ∗n1 and γ∗n2 the two critical y∗n such that γ∗n1 ≤ γ∗n2. Then, for every yn, we
have Algorithm 1 for calculating the threshold γn for optimally deciding between H1 and H0

according to the Neyman-Pearson lemma.
This threshold is a function of

γ∗n± =

µn1σ
2
n0 − µn0σ

2
n1 ±

√
σ2
n0σ

2
n1

[
ÎTE

2

n − 2 (σ2
n0 − σ2

n1) log
(
w0σn1
w1σn0

)]
σ2
n0 − σ2

n1

, (3.19)

where γn1 = γn− and γn2 = γn+. If σ2
n1 ≥ σ2

n0, the parabola specified by the quadratic
inequality opens up, and γ∗+ is the optimal threshold for deciding between H0 and H1.
Otherwise, the parabola opens down, and γn1 is the optimal threshold. In conclusion, the
optimal threshold is

γn = I
(
σ2
n1 ≥ σ2

n0

)
γ∗n+ +

[
1− I

(
σ2
n1 ≥ σ2

n0

)]
γ∗n− (3.20)

=

{
γn+, if σ2

n1 ≥ σn0

γn−, otherwise
, (3.21)

where I(·) is the indicator function. Note that the critical y∗n, and thus γn, is a function
of the ITE for every neuron n. The optimal threshold γn is used to compute the binary
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activation state of the recorded ∆F
F0

to standardize the observations across all neurons in the
field-of-view.
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Chapter 4

Biophysics Model

The interpretability of AI algorithms can be achieved with either model-based machine
learning and/or post-hoc analysis. Our approach integrates both methods. We decouple the
circuit-behavior relationship into two separate problems: first, understanding the mecha-
nisms underlying circuit dynamics; and second, relating the local circuit dynamics to down-
stream cortical area activation and behavior. In our model, circuit dynamics are governed
by neuronal and synaptic biophysics that are modeled by a set of autoregressive processes,
and thus are generalizable to other circuits and brain regions. The relationship between cir-
cuit dynamics and behavior is to be learned from the impact of closed-loop model-designed
optical perturbations. The model is autoregressive because it relates current-time neuronal
activity with past activity and stimulation. The parameters of the autoregressive model
define a set of dynamic connectivity matrices. Existing approaches for neural modulation
attempt to record neural activity patterns associated with specific behavior and “replay”
the activity patterns in the same group of neurons in order to elicit the same behavior. The
aforementioned approach completely neglects the circuit dynamics. A network of neurons
may not exhibit stationarity when presented with the replayed patterns due to inherent net-
work dynamics. By modeling, predicting, and empirically probing the circuit dynamics, our
approach has the potential to provide more potent and predictable modulations of behavior.

4.1 Vector Notation for Neural Population

Denote by d[m] ∈ {0, 1}N and y[m] ∈ RN the N -dimensional vectors with the nth element
equivalent to dn[m] and yn[m], respectively. We refer the the vector d[m] as the stimulation
profile at time m and the vector y[m] as the response of the network at time m. We obtain
the input-output pairs (dn[m], yn[m]) from optical stimulation and calcium imaging of a
three-dimensional field-of-view of the brain at time steps indexed by m for every neuron n.
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Effective Connectivity Matrix

The overarching objective is to establish population-level signatures associated to certain
brain states, which may be directly linked to behavior. We would like to establish how
neurons in one region of the brain interact with each other. Let G ∈ [−1, 1]N×N be the
effective connectivity matrix of the neural network under observation, where [−1, 1]N×N

denotes the set of N -dimensional square matrices with the element gn` (located at the nth

row and `th column) that is less than 1 in magnitude for every n, ` ∈ {1, . . . , N}. Edges
with positive weights correspond to neural links that are excitatory, and edges with negative
weights correspond to neural links that are inhibitory. We follow the convention where gn`
specifies how neuron ` influences neuron n. Suppose that G does not change with respect
to time, i.e., there does not exist plasticity. In order to assure this assumption, we must
estimate G within the time frame of approximately 2 hours. This effective connectivity
matrix G represents a graph with N nodes, with each node representing a neuron.

Deficiency of the Simple Linear Model

The goal here is to find the effective connectivity matrix G with the constraints that the
elements gn` satisfy |gn`| ≤ 1 for all n, ` ∈ {1, . . . , N}. Positive weights correspond to
excitatory connections and negative weights correspond to inhibitory connections. We define
the effective connectivity to be the matrix G that specifies the linear relationship between
the optogenetic stimulation input d[m] and the GCaMP calcium trace level output y[m] at
each discrete imaging step m:

y[m] = Gd[m], (4.1)

and our objective is to solve for the elements of G. We can write the aforementioned
problem of estimating G in the linear system of equations as a solution to the following
underdetermined system of linear equations at every time step m:

y[m] = D[m]g, (4.2)

where

D[m] :=


[d1[m] 01×N−1] [d2[m] 01×N−1] · · · [dN [m] 01×N−1]

[0 d1[m] 01×N−2] [0 d2[m] 01×N−2] · · · [0 dN [m] 01×N−2]
...

[01×N−1 d1[m]] [01×N−1 d2[m]] · · · [01×N−1 dN [m]]

 (4.3)

=
[
d1[m]IN×N d2[m]IN×N · · · dN [m]IN×N

]
∈ RN×N2

, (4.4)

and
g := vec(G) (4.5)

is the vectorized (in column-stack manner) G. The least-norm solution to the above under-
determined system at time step m is

gln[m] = D[m]>
(
D[m]D[m]>

)−1
y[m]. (4.6)
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One näıve approach to estimating G is to refer back to the definition of matrix multipli-
cation. We have

y[m] = Gd[m] = ~g1d1[m] + ~g2d2[m] + · · ·+ ~gNdN [m], (4.7)

where ~gn is the nth column of G for n = 1, . . . , N . By allowing only one element of d[m]
be one and the rest be zeros, i.e. stimulate one neuron at a time, we can figure out G in
O (N) time. However, stimulating one neuron may not provide enough impetus to yield
useful observations for estimation. One neuron is often not powerful enough to drive other
neighboring neurons. The matrix D, although high-dimensional, is sparse. Sparse matrix
multiplication algorithms can be employed to further speed up the computation of the least-
norm solution as described, but rank deficiency caused by the severe sparsity presents a
problem in the above method. Because D is extremely sparse, especially when we can
excite only a few neurons in an ensemble, the inverse problem is extremely ill-posed and
ill-conditioned. Therefore, a method that results in a denser D is necessary. Furthermore, in
order to meet the model criteria, we must instead solve the following optimization problem,
which has the constraints |gn`| ≤ 1 for every element gn` of G:

min
g
‖g‖2 (4.8)

s.t. D[m]g = y[m] (4.9)

|gn`| ≤ 1 ∀ n, ` ∈ {1, . . . , N}, (4.10)

which adds to the complexity. Moreover, the aforementioned model is too simplistic to
capture the dynamics of the neural network. The response of the network is not solely a
function of the stimulation profile d. Instead, it is a function of both the stimulation to the
system as well as the activation states of the neurons that constitute the network. Therefore,
a model that is complex enough to capture the main network dynamics while staying simple
enough to remain both biologically and physically meaningful, as well as bypass overfitting
to the data, is presented in the following sections.

4.2 Autoregressive Model

Neural responses vary from one trial to another even when the same stimulus is applied.
Potential sources of variation include differing levels of arousal and attention, and random-
ness associated with biological and cognitive processes affecting neuronal firing. This lack
of regularity prevents accurate deterministic modeling of when the action potential will fire.
Instead, probabilistic models are used in the literature to predict spike sequences based on
specific stimuli. We do not aim to model the neural spike train of every neuron or the actual
membrane potential dynamics of every neuron. The commonly used leaky integrate-and-fire,
Hodgkin-Huxley, and Izhikevich neuron models all increase the complexity of our mesoscale
dynamics model, and thus are used only to derive the appropriate model for the context of
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our problem setting. We are more interested in modeling the population membrane potential
dynamics (of all neurons residing within the field-of-view), and take advantage of the slow
dynamics of GCaMP relative to that of the action potential to justify the following linear
model. This population-level decoding approach mitigates the aforementioned issues. We de-
rive a neural dynamic model from the fundamental Hodgkin-Huxley model, which results in
an autoregressive (AR) process of network responses that further incorporates feed-forward
photostimulation profile inputs.

Model Derivation

We derive the autoregressive model of the V1 L2/3 circuit with Hodgkin-Huxley neurons.
Figure 4.1 summarizes the autoregressive model derivation.

Figure 4.1: Summary of the autoregressive model derivation from Hodgkin-Huxley model
neurons.

We model the dynamics of the neural network as an autoregressive process of photo-
stimulation profiles and network responses. To achieve this, we derive a system of equations
that models the circuit dynamics using neurons that are connected via axons and synapses
that conduct electrical currents. Each neuron receives both excitatory and inhibitory input
currents. Individual neurons follow the Hodgkin-Huxley model. The Hodgkin-Huxley model
states that for a single neuron, the total membrane current is

I = C
dV

dt
+

K∑
k=1

σk (V − Uk) , (4.11)

where C is the membrane capacitance, V is the membrane potential, σk is the electrical con-
ductance of ion or leak channel k, and Uk is the reversal potential of channel k. Conduction
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of currents in this circuit follows known laws of physics (e.g., Kirchhoff’s Current and Voltage
laws) with consideration of propagation delay. For a circuit of N neurons, we can regard
every neuron as a junction or a node in a network, where In is the total current generated
by neuron n and Inm is the current flow from neuron n to neuron m. By Kirchhoff’s Current
Law (KCL),

In =
N∑
`=1

In`. (4.12)

Then, we have

C
dVn
dt

+
∑
k

σk (Vn − Uk) =
N∑
`=1

In` = In. (4.13)

Assuming that the extracellular fluid acts as the common ground, we have

N∑
n=1

In = 0 (4.14)

from Kirchhoff’s Current Law and
N∑
n=1

Vn = 0 (4.15)

from Kirchhoff’s Voltage Law (KVL). Combining KCL and KVL, we have

In =
N∑
`=1

an`V`, (4.16)

where anm terms are to be determined. Substituting, we obtain

C
dVn
dt

+
K∑
k=1

σk (Vn − Uk) =
N∑
`=1

an`V`. (4.17)

We assume that only DC current exists. Let us now consider propagation delay. With
propagation delay, we obtain

C
dVn
dt

+
∑
k

σk (Vn − Uk) =

p∑
i=1

N∑
`=1

an`(ti)V`(ti). (4.18)

Because our experimental measurement of neural activity is acquired at discrete time points,
we discretize Equation 4.18. In discrete time and assuming that we have a causal system,
we obtain

C
Vn[m]− Vn[m− 1]

∆t
+
∑
k

σk (Vn[m]− Uk) =

p∑
i=1

N∑
`=1

an`[i]V`[m− i] (4.19)

C

∆t
Vn[m]− C

∆t
Vn[m− 1] +

∑
k

σkV`[m]−
∑
k

σkUk =

p∑
i=1

N∑
`=1

an`[i]V`[m− i]. (4.20)
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Combining the discretized equations and rearranging, we have(
C

∆t
+
∑
k

σk

)
Vn[m] =

p∑
i=1

N∑
`=1

an`[i]V`[m− i] +
C

∆t
Vn[m− 1] +

∑
k

σkUk (4.21)

=

p∑
i=1

N∑
`=1

an`[i]V`[m− i] +
C

∆t
Vn[m− 1] +

∑
k

σkUk (4.22)

=

p∑
i=1

N∑
`=1

(
an`[i] +

C

∆t
δn`δk1

)
V`[m− i] +

∑
k

σkUk. (4.23)

where δij is the Kronecker delta. Define now the following:

gn`[i] :=
an`[i] + C

∆t
δn`δk1

C
∆t

+
∑

k σk
, (4.24)

V0 :=

∑
k σkUk

C
∆t

+
∑

k σk
. (4.25)

Note that V0 is a constant. Then, we obtain

Vn[m] =

p∑
i=1

N∑
`=1

gn`[i]V`[m− i] + V0. (4.26)

Considering stimulation and noise, which subsumes V0, we arrive at

Vn[m] =

p∑
i=1

N∑
`=1

gn`[i]V`[m− i] + sn`d`[m] + εn[m], (4.27)

which describes an autoregressive relationship for a sequence of voltage Vn[m] of neuron
n at time step m. Equation 4.27 also includes the external stimulation dn and noise εn
associated with neuron n. gn`[k] is a dimensionless physical parameter that relates the
voltage of neuron ` to the present and past voltage of neuron n at time point m − i. This
term includes contributions from propagation delay hn`, membrane capacitance Cn and ion
channel conductance σk. On the other hand, sn` is a parameter that describes the direct
effect of the photostimulation. gn`[k] and sn` are the unknowns that need to be estimated by
varying the stimulation patterns dn[m]. Given N neurons in the circuit, the total number of
unknowns are of order N2. The parameter sn` defines the elements of the photostimulation
connectivity matrix S; gn`[i] defines the elements of the autoregressive connectivity matrix
Gi of order i. These matrices characterize the effective connections among the observed
neurons as well as the coefficients that describe the temporal dynamics of the circuit.
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Noise Model

The term ε[m] is the spontaneous activity noise vector based on the Poisson arrival process.
We assume that there is no image noise in the observed image data, and use the spontaneous
activities of individual neurons as the sole quantified noise source in the autoregressive model.
For each neuron, we model its spontaneous activity by a Poisson arrival process with a
common rate parameter ν, which we can estimate from observation before stimulation. We
choose this stochastic process model because with the Poisson arrival process, the interarrival
time between two arrival events follows the exponential distribution. We can exploit the
memorylessness property of exponential random variables to simplify our observation model.
Consider Tn ∼ Exp(ν) for n = 1, . . . , N , and let τ be the sampling interval, i.e., the period
between observations or the time lag between steps m+ 1 and m is τ . Then, the nth element
of ε[m] is given by

εn[m] = I(Tn ≤ τ), (4.28)

where I(·) denotes the indicator random variable.

4.3 GCaMP Autoregressive Model

The network responses are mapped to normalized potential outcome values to form the fol-
lowing model. For every m ≥ mk, where m denotes the time index of imaging mk is the start
time index of the kth stimulation, we have mk = Lk, where L is the interstimulus interval
(ISI), the number of imaging time steps taken per one stimulation step. For brevity and
clarity in explanation, we simply refer to this sampling rate expander as d. Recall that y is
the standardized network response vector, where standardization was performed using the
cumulative distribution function (CDF) of the activated state Gaussian in the approximate
superpopulation model. The CDF function specific to every neuron profile normalizes the
respective potential outcomes for population-level analysis. The term ε models the sponta-
neous activity noise in the system. The model parameters of interest are Gis, the effective
connectivity matrices, and Sjs, the photostimulation effects matrices. We also estimate ψ,
the vector weight coefficients that serve the role of the convolution kernel capturing the tem-
poral GCaMP dynamics. This model can be written as follows if the interstimulus interval L
is large enough to account for the complete decay of the GCaMP dynamics. In this case, one
stimulation profile is decoupled from another, and the autoregressive model after ignoring
noise for every m ≥ ms, where ms is the start time index of the kth stimulation-response
observation pair, becomes the following.

Initialize mh = mk. For every m ≥ mk and the kth photostimulation profile dk defined
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by the corresponding 3D-SHOT hologram, we have

y [m] =

p−1∑
i=0

G+
i [m] max

{
Y (i)[m]

}
NG[m]

ψ (m;mh) + S+
j [m]dk, (4.29)

mh =


m′ + 1, if y[m′] ≤ θ0, mh ≤ m′ ≤ m

m′, if y[m′] ≥ θ1, mh ≤ m′ ≤ m

mh, otherwise

, (4.30)

where

G+
i [·] := GiI(· − (iu+ 1) ≥ ms), (4.31)

NG[·] := max

{
1,

p−1∑
j=0

I(· − (ju+ 1) ≥ ms)

}
, (4.32)

max
{
Y (i)
n [·]

}
:= max

{
yn[· − (i+ 1)u]I(· − (i+ 1)u ≥ ms), . . . , (4.33)

yn[· − (iu+ 1)]I(· − (iu+ 1) ≥ ms)
}
∀ n, (4.34)

S+
j [·] := S

min{b ·−md−mk
v

c,q−1}I(· −md ≥ mk), (4.35)

ψ (·;mh) := b+ (1− b)e−τ [·−mh]+ . (4.36)

There are p autoregressive connectivity matrices Gis and q photostimulation effects matrices
Sjs. The indicator functions are denoted by the superscript + in the above autoregressive
model equation in the definitions of the connectivity and photostimulation effects matrices
G+
i s and S+

j s, respectively. These indicator functions ensure that the network responses from
decoupled stimuli do not affect the temporal portion of the dynamics under investigation.
In terms of estimation, the indicator functions prevent data from other decoupled stimuli
from contaminating the estimation process. The term NG counts the number of active
autoregressive connectivity matrices Gis as higher order Gis may not be active near the
beginning of the start of the response observation of every stimulation. This term enforces
proper normalization of the right-hand-side regardless of the number of active G matrices.

The model takes the maximum response observed in each time bin window in the past
corresponding to the respective autoregressive connectivity matrix Gi to explain the present
observation. The parameters u and v specify how many imaging frames each G matrix and S
matrix integrates, respectively, to explain the present observation. This approach strength-
ens the model’s robustness, especially against slight unwanted temporal variations in the
fluorescence observations due to the slow decay rate of GCaMP with respect to the sampling
rate. The slowly decaying GCaMP dynamics is modeled by ψ, which depends on both the
current time index m and the time index of the last fully activated or rested state of every
neuron mh. A neuron’s state is determined using the fitted two-component Gaussian mix-
ture model profile of that particular neuron. Whenever a fluorescence signature of a neuron
is not at its fully excited or rested state, a timer starts, and exponential decay modeling



CHAPTER 4. BIOPHYSICS MODEL 23

the dynamics of GCaMP is applied to prevent GCaMP decay dynamics from degrading the
interpretation of the autoregressive connectivity matrices. Subscript + denotes the Recti-
fied Linear Unit activation function. Due to the slow dynamics of GCaMP, observations
are delayed by approximately a few hundred milliseconds. This system-wide delay factor is
captured by md. The above equations collectively describe the mesoscale dynamics of the
population of neurons under observation. θ0 is set to be the mean of the baseline Gaussian
and θ1 is set to be the mean of the Gaussian corresponding to the activated state in the
fitted Gaussian mixture model. The term b is set to be the standard deviation of baseline
activity, or the noise standard deviation.

4.4 Spike Autoregressive Model

GCaMP has served as the proxy for action potentials in our system. The above autoregressive
model can easily be converted to a spike-based model if neural population activity is measured
directly in terms of action potential spikes. In the case where sampling rate is fast enough
to capture single action potential spikes, y can be interpreted as a binary vector of action
potential events for all neurons in the field-of-view. Then, the spike-based autoregressive
model can be written as follows.

Drawing parallels, we initialize mh = mk. Then, for every m ≥ mk and the kth photo-
stimulation profile dk, we have

y [m] =

p−1∑
i=0

G+
i [m] max

{
Y (i)[m]

}
NG[m]

+ S+
j [m]dk, (4.37)

where

G+
i [·] := GiI(· − (iu+ 1) ≥ ms), (4.38)

NG[·] := max

{
1,

p−1∑
j=0

I(· − (ju+ 1) ≥ ms)

}
, (4.39)

max
{
Y (i)
n [·]

}
:= max

{
yn[· − (i+ 1)u]I(· − (i+ 1)u ≥ ms), . . . , (4.40)

yn[· − (iu+ 1)]I(· − (iu+ 1) ≥ ms)
}
∀ n, (4.41)

S+
j [·] := S

min{b ·−md−mk
v

c,q−1}I(· −md ≥ mk), (4.42)

(4.43)

The notations used in the spike-based autoregressive model remain the same as in the afore-
mentioned GCaMP-based autoregressive model. By removing the GCaMP dynamics model
and changing the representation of the observation vector y, we arrive at a model that can
be used to address questions regarding synaptic–rather than effective–connections. This
derivative version of the model may be insightful and useful in cases where action potentials
of neurons in the field-of-view can be measured in conjunction with holography optogenetics
setup.
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Chapter 5

Estimation Algorithm

We interrogate circuit dynamics efficiently with compressed sensing and optogenetics. The
AR model will characterize the circuit dynamics with order N2 parameters. Determining
these parameters generally requires at least N2 independent experimental measurements,
which is impractical. To overcome this challenge, we employ sparse 2P holographic op-
togenetic stimulation. The approach combines optogenetic stimulation via 3D-SHOT and
large-scale volumetric calcium imaging to optimally estimate the unknown AR model param-
eters describing the circuit dynamics of neurons residing inside a volume that is hundreds of
microns in dimensions. The problem of choosing which neurons to stimulate at each stimu-
lation step to recover the underlying neural network dynamics with as few observations as
possible is equivalent to designing the measurement (sensing) matrix in compressed sensing.
By parallelizing and constructing a general sensing matrix, we can design an incoherent sens-
ing matrix that can recover the unknowns of the underdetermined system of linear equations
at hand. According to compressed sensing theory, the best method of selection is to ran-
domly choose from a set of available neurons to stimulate [16]. In the context of our problem
formulation, we have a sensing matrix with columns that are fixed (elements are time lags of
the potential outcome observations) while the last qN columns correspond to the indicator
of each neuron’s inclusion in the stimulation profile for every corresponding photostimulus
matrix. In this part of the sensing matrix where we can design, every row is the stimulation
profile vector d, where the elements of the vector are randomly selected to be 1 or 0 (dn = 1
specifies that neuron n is targeted for stimulation) such that the sum of the vector is equal
to the maximum number of neurons that can be stimulated at one instance in time. The
compressed sensing framework allows us to efficiently interrogate the circuit and learn the
AR model.

5.1 Parameter Estimation

In this section, we detail how we estimate the parameters of the autoregressive model of
arbitrary order p as well as arbitrary number q of feed-forward dynamics governed by the
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photostimulations: the effective connectivity matrices G, which we know from neurobiology
to be sparse, as well as the photostimulation effect matrices S.

5.2 Compressed Sensing

The problem of choosing which neurons to stimulate at each stimulation step to recover the
underlying neural network with as few observations as possible is equivalent to designing
the measurement (sensing) matrix in compressed sensing. By parallelizing and constructing
a general sensing matrix, we can design an incoherent sensing matrix that can recover the
unknowns (gn`, the elements of Gi for all n, ` ∈ {1, . . . , N} and for all i ∈ {0, . . . , p − 1};
and sn`, the elements of Sj for all n, ` ∈ {1, . . . , N} and for all j ∈ {0, . . . , q − 1}) of
the underdetermined system of linear equations at hand. According to compressed sensing
theory, the best method of selection is to randomly choose from a set of available neurons to
stimulate. In the context of our problem formulation, we have a sensing matrix with columns
that are fixed (elements are time lags of the potential outcome observations) while the last N
columns correspond to the indicator of each neuron’s inclusion in the stimulation profile. In
this part of the sensing matrix where we can design, every row is the stimulation profile vector
d, where dn(·) ∈ {0, 1}, n ∈ {1, . . . , N}, is randomly selected such that

∑N
n=1 dn(·) = Nmax,

the maximum number of neurons that can be stimulated at one instance in time. The
technology we have today allows stimulation of up to 50 neurons at one time. To elaborate,
Nmax randomly selected elements of d(·) are 1, and the rest are 0. The structure of the
sensing matrix that recovers the estimands of our problem is detailed below.

In the context of our problem formulation, compressed sensing concerns recovering the
sparse solution g ∈ RN2

in an underdetermined system y = Ag, where y ∈ RM and A ∈
RM×N2

is the sensing matrix. Using compressed sensing techniques, we need only M =
O (k logN2) to uniquely recover g, where k is the sparsity level or the number of nonzero
entries of g, i.e. ‖g‖0. M = O (k logN2) is known as the information rate.

Compressed Sensing for Individual Neuron Model

The simple model failed to capture the network dynamics, so the autoregressive model was
developed. Even with the autoregressive model, the fixed, restrictive structure of the model
renders the associated inverse problem of recovering the unknowns of the model impossible.
In the autoregressive model, estimating the effective connectivity matrix and the autore-
gressive coefficients using compressed sensing at once becomes impractical. We circumvent
this issue by recasting the full autoregressive model into what we call “individual neuron
observations.”

Focusing on one single neuron and designing a compressed sensing scheme for estimating
all parameters of the model related to the individual neuron frees the inverse problem from
the limiting structure. For every neuron n, we have a total of M observations.
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5.3 Compressed Sensing for Individual Neurons

We can write the mth observation for neuron n as

yn[m] =

p−1∑
i=0

g>ni max
{
Y (i)[m]

}
ψn (m;mh) I (m− (iu+ 1) ≥ ms)

max
{

1,
∑p−1

j=0 I(m− (ju+ 1) ≥ ms)
} (5.1)

+ s>
nmin{bm−md−mk

v
c,q−1}dkI (m−md ≥ mk) (5.2)

= s>
nmin{bm−md−mk

v
c,q−1}dk (5.3)

+ g>n0

max
{
Y (0)[m]

}
ψn (m;mh)

max
{

1,
∑p−1

j=0 I(m− (ju+ 1) ≥ ms)
} (5.4)

+ g>n1

max
{
Y (1)[m]

}
ψn (m;mh)

max
{

1,
∑p−1

j=0 I(m− (ju+ 1) ≥ ms)
} (5.5)

+ · · · (5.6)

+ g>n(p−1)

max
{
Y (p−1)[m]

}
ψn (m;mh)

max
{

1,
∑p−1

j=0 I(m− (ju+ 1) ≥ ms)
} , (5.7)

where g>n and s>n are the nth rows of G and S, respectively, and indicator functions have
been omitted for brevity. For every neuron n, define the following:

ρn[m] := yn[m], (5.8)

χn :=
[
g>n0 g>n1 · · · g>n(p−1) s>n0 · · · s>n(q−1)

]>
. (5.9)

For brevity, we omit the indicator functions in the following equations. Denote by a>m the
mth row of the measurement matrix A:

a>m :=

[
max{Y (0)[m]}ψn(m;mh)

max

{
1,
p−1∑
j=0

I(m−(ju+1)≥ms)
} · · · max{Y (p−1)[m]}ψn(m;mh)

max

{
1,
p−1∑
j=0

I(m−(ju+1)≥ms)
} d>k ⊗

e>
min{bm−md−mkv c,q−1}

]
, (5.10)

where ek is the (q − 1)-length standard basis vector. Then, rewriting to solve for the un-
knowns, the mth observation for neuron n becomes

ρn[m] = a>mχn. (5.11)

Collecting M measurements and letting ρn denote the vector with elements ρn[m], the autore-
gressive model parameter estimation procedure–the problem of estimating the effective con-
nectivities and the photostimulus effect weights–materializes into the following constrained
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Least Absolute Shrinkage and Selection Operator (LASSO) optimization problem:

min
gn,sn

F (gn, sn) :=
1

2M
‖ρn − Aχn(gn, sn)‖2

2 + λG ‖χn(gn)‖1 + λS ‖χn(sn)‖1 (5.12)

s.t. |gn| ≤ 1 (5.13)

|sn| ≤ 1. (5.14)

Let
χ∗n :=

[
g∗>n0 g∗>n1 · · · g∗>n(p−1) s∗>n0 · · · s∗>n(q−1)

]> ∈ R(p+q)N×1. (5.15)

denote the unique solution to the above convex optimization problem. We can solve the above
optimization problem using the Greedy Fast Iterative Shrinkage-Thresholding Algorithm
(Greedy FISTA), which is the novel accelerated version of the proximal gradient algorithm
on the LASSO, with projection steps to address the constraints. The implemented iterative
method is detailed in Algorithm 2 is detailed below.

Algorithm 2: Greedy FISTA to find ε-optimal solution

Input : Sensing matrix A, observation y, regularization parameters λ, and
L = 1

M
λmax

(
A>A

)
, the smallest Lipschitz constant of the gradient

∇F (χn).
Output: u(k).

1 Initialize: Let t ∈ [ 1
L
, 2
L

], ξ < 1, S > 1, u(0) ∈ RN , u(−1) = u(0).

2 kmax =
⌈
C√
ε
− 1
⌉
, where C =

√
2L‖u(0) − u∗‖2

2.

3 for k = 1 to kmax do
4 1. v(k) = u(k) +

(
u(k) − u(k−1)

)
5 2. u(k+1) = p 1

t

(
v(k)
)

6 Restarting:

7 if
(
v(k) − u(k)

)> (
u(k+1) − u(k)

)
≥ 0 then

8 v(k) = u(k)

9 end
10 Safeguard:

11 if
∥∥u(k+1) − u(k)

∥∥
2
≥ S

∥∥u(1) − u(0)
∥∥

2
then

12 t = max
{
ξt, 1

L

}
13 end

14 end

FISTA has the convergence rate

F(χ(k)
n )−F(χ∗n) ≤

4λmax

(
A>A

)
‖χ(0)

n − χ∗n‖2
2

(k + 1)2
, (5.16)
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where the operator λmax denotes the maximum eigenvalue of the argument. After M =
O (k log(p+ 1)N) observations, we can expect to recover the unique solution χ∗n.

We expect that the sparsity level k is in the order of 10% of the total number of possible
connections N2, i.e., k = 0.1N2 [40]. The unknowns g>n and s>n in the individual neuron
observation model can be mapped directly to the full autoregressive model parameters. For
example, g>n is the nth row of G, i.e.,

Gi =


←− g∗>0i −→
←− g∗>1i −→

...
←− g∗>Ni −→

 ∈ [−1, 1]N×N . (5.17)

Parallel Computation

By selecting a general incoherent sensing matrix A for every neuron n ∈ {1, . . . , N}, we can
significantly decrease the time needed to compute the estimated Gs and Ss from compressed
sensing. Because we observe the calcium trace of every neuron in the field-of-view, we
can solve the aforementioned optimization problem for all n ∈ {1, . . . , N}, i.e., run Greedy
FISTA N times in parallel, once per every neuron n. We can then obtain Gs and Ss using
only M = O (k log(p+ 1)N) observations.

5.4 Measurement Matrix

We sacrifice the maximum incoherence we can obtain for the measurement (sensing) ma-
trix A in order to allow for parallel computation. By having one general A for all neurons
n ∈ {1, . . . , N}, we can significantly decrease the computational cost associated with recon-
structing Gs and Ss.

Due to the autoregressive nature of the model and how the unknowns of the system are
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placed in the model, we have, given that the experiment starts at time-step m:

A
: =

             

m
a
x
{Y

(0
)
[m

] }
ψ
n

(m
;m

h
)

m
a
x

{ 1
,p
−
1 ∑ j

=
0
I(
m
−

(j
u

+
1
)≥
m
s
)} ·
··

m
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x
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(p
−
1
)
[m

] }
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n
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;m

h
)

m
a
x

{ 1
,p
−
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=
0
I(
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u

+
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)≥
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> k
⊗
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             ,

(5.18)

A ∈ RM×(p+q)N , where dn(·) ∈ {0, 1}, n ∈ {1, . . . , N}, is randomly assigned such that∑N
n=1 dkn(·) = Nmax, the maximum number of neurons that can be stimulated (Nmax ran-

domly selected elements of dk(·) are 1, and the rest are 0).
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Figure 5.1 below highlights the dichotomous structure of the above compressed sensing
measurement matrix, where the left pN columns are constructed from the past activity
observations of the neurons in the field-of-view and are used to estimate Gis; and the right
qN columns are based on the photostimulation profiles and are used to estimate Sjs.

Figure 5.1: Graphical representation of the compressed sensing measurement matrix specific
to the autoregressive model setting. The matrix is built from the past observations of neurons
in the field-of-view as well as the photostimulation profiles.

The Greedy Fast Iterative Shrinkage-Thresholding Algorithm (Greedy FISTA) applied
to the optimization problem 5.12 is detailed in Algorithm 2. Denote by G : R(p+1)N 7→ R
a continuous, convex function which may be nonsmooth, and denote by H : R(p+1)N 7→
R a smooth, convex function that is continuously differentiable with Lipschitz continuous
gradient, i.e. ‖∇H(x) − ∇H(y)‖ ≤ L‖x − y‖ ∀ x, y ∈ R(p+1)N , where L is the Lipschitz
constant of the gradient of H. Following the convention by Beck and Teboulle [2], denote
by pL(v) the solution to the proximal operator, i.e.,

pL(v) = arg min
u

{
G(u) +

L

2

∥∥u− (v − 1

L
∇H(v)

)∥∥2

2

}
. (5.19)

For G (χn) = λ ‖χn‖1 and H (χn) = 1
2
‖ρn − Aχn‖2

2,

pL(v) = T λ
L

(
v − 2

L
A>(Av − y)

)
, (5.20)

where the soft-thresholding operator is defined

Tα(·) := (| · | − α)+ sgn(·). (5.21)

Algorithm 2 finds the ε-optimal solution, i.e. F (χn)−F (χ∗n) ≤ ε.
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Chapter 6

In silico Results and Validations

In silico, we built a ground truth network consisting of 500 cortical neurons (a purposely
smaller number of neurons was considered for best visibility) whose dynamics follows the
AR model with considerable noise. We set both connection probability and strength in the
network as functions of distance between pairs of neurons. Connection probabilities were
sampled from the Gamma distribution with parameters α = 3 and β = 1/40 to best match
what has been observed in vivo. The connection strengths were set such that the strength
was inversely proportional to the distance between the two connected neurons. Using the
aforementioned algorithm and the estimation procedure, we calculated the model parameters
using 400 stimulation profiles, each consisting of 30 neurons being stimulated at a time. With
the sampling interval matching that of the in vivo experiment to be described in the next
chapter (τ = 1/6.3 s), and reasonable spontaneous activity built into the simulated system
(the exponential random variable with rate parameter is set to ν = τ/10), we demonstrate
near-perfect recovery of the ground truth effective connectivity matrices.

6.1 In silico Experiment Setup

A key consideration in actual experiments is that neurons outside the field-of-view (FOV),
which can neither be controlled nor imaged, will likely influence the neurons within the FOV
through their spontaneous activity and potentially through polysynaptic effects. Although
much of cortical connectivity is local, and in real experiments, we attempt to minimize
the number of these neurons through large FOVs and dense imaging, some neurons will
always evade direct observation (such as those from deeper brain structure or distant brain
areas) [40]. Computationally, we treat these inaccessible neurons as unknown sources in our
model. To investigate the impact of this uncertainty, we simulated the setting where we
stimulate and observe only a partial region (the center field-of-view marked by the green
square) of the defined circuit while some neurons are deliberately excluded. This setup is
illustrated in Figure 6.1 below, which shows the ground truth connectivity represented in
one photostimulus matrix S. We performed in silico 2P imaging and photostimulation in a
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constrained region containing 129 neurons while the system as whole contained 500 neurons.
As described above, these neurons were placed randomly in the field-of-view with connection
strengths and sign determined with statistics grounded in what is known in mouse V1.
Algorithm 3 detailed below was used to generate the ground truth system to be recovered
using our estimation algorithm.

Figure 6.1: In silico experiment setup where observations and photostimulations are limited
to the neurons residing in the center field-of-view denoted by the green square. All neurons
in the system, including those outside the field-of-view, determine the observed dynamics.
The neurons outside this field-of-view are considered latent, and are treated as noise sources.

6.2 Results

Despite the limited field-of-view and the additional unknown sources simulated as coming
from neurons outside the FOV, the reconstruction algorithm correctly recovered the ground
truth model parameters when compared with the ground truth. The results are shown in
Figure 6.2. As technology advances, we will address these “non-observed neurons” by scaling
up our imaging and perturbation capabilities, primarily by increasing our field of view via a
2P holographic mesoscope and fast remote focusing to acquire more z-planes of the volume.
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Algorithm 3: Ground truth connectivity matrices generation algorithm

Input : the number of neurons N and the sparsity level k.
Output: Gis ans Sjs.

1 Initialize: i = 0.
2 Randomly generate x- and y-coordinate positions of every neuron by sampling from

the uniform distribution.
3 while i < k do
4 1. Randomly choose two neurons and calculate distance.
5 2. With probability calculated from Γ(α, β), establish a connection.
6 3. Determine connection strength that is proportional to 1

distance
.

7 4. i = i+ 1.

8 end
9 Form G.
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Figure 6.2: In silico limited field-of-view experiment results. Estimated, ground truth, and
absolute error matrices for both the selected autoregressive and photostimulus matrices are
shown.
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Chapter 7

In vivo Results and Validations

We test and validate the photo-stimulation method for circuit estimation in V1 of both
awake and anesthetized mice. To establish the feasibility of our approach in vivo, we con-
ducted 3D-SHOT photo-stimulation and recording of the mouse primary visual cortex (V1)
neurons in L2/3. We used transgenic mice expressing GCaMP6s in all forebrain excita-
tory neurons (camk2a-tTA;tetO-GCaMP6s) [46], and expressed microbial opsins via adeno-
associated viruses (AAV) injected intravenously using PhP.eB. This expression paradigm
helps ensure even, stable and widespread co-expression of the calcium sensor and opsin in
the great majority of cortical excitatory neurons. In the future, we plan to leverage newly
developed transgenic lines for ChroME2.0 and GCaMP8. In some experiments, we plan
to additionally label and photo-stimulate GABAergic interneurons by co-injecting an AAV
driving ChroME fused to a blue fluorescent protein and co-expressing GCaMP with the mDlx
enhancer (AAV-mDlx-ChroME-tagBFP2-p2A-GCaMP8f) [15]. Trials with excessive brain
motion, high run speed, and low stimulation success rate, which all could lead to spatially
mistargeted photo-stimulation were discarded. In the same session, we characterized the
visual responses properties of the neurons in the volume, especially their tuning to orien-
tation with conventional drifting grating stimuli. We use this physiological data to better
interpret the AR model. In each experimental session we designed 100-120 unique ensembles
of neurons for co-stimulation and repeated each ensemble photo-stimulation across 15-30
trials (total experimental time approximately 2-3 hours). In the future, we will scale up
both the number of trials and the number of ensembles by optimizing experimental design
and additionally aggregating data from the same network over days by precisely returning
to the same imaging volume. This will also allow us to empirically validate our approach
by computing photo-stimulation patterns offline (between experimental sessions), and then
presenting those that are predicted to have specific effects on the network (such as net excita-
tion or net inhibition). Finally, to maximize throughput we stimulated more neurons in each
photo-stimulus by leveraging ChroME2.0 opsins which dramatically increased the number
of L2/3 pyramidal neurons that we can simultaneously photo-stimulated. Such an increase
in scale is necessary to probe more of the putative input network at higher rates, which will
become particularly important as we include ever larger field-of-views. We collected data in
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7 sessions from 3 mice virally expressing ChroME and transgenically expressing GCaMP6s.
The virus also drives a separate nuclear red fluorescent protein (H2B-mRuby3), which serves
to identify opsin expressing neurons and facilitates their automatic segmentation in vivo.
We targeted opsin expression to excitatory neurons specifically (via Cre-dependent recombi-
nation in the emx1-IRES-Cre line). Adult mice of both sexes were prepared with standard
cranial windows and mounted under a custom microscope equipped with both volumetric
laser-scanning 2P imaging (Coherent Ultra II) and scanless volumetric holographic photo-
stimulation (Coherent Monaco and a Meadowlark HD SLM).

7.1 Results

To generate the training data, we photo-stimulated randomly generated ensembles of 30
neurons throughout the 3D volume. Figure 7.1 canonically shows the mean data across the
trials from one such experiment.

Figure 7.1: Across trial mean data matrix from one random stimulation experiment using
3D-SHOT with settings tailored to the AR model parameter estimation routine pipeline.

In each experiment, we tested 100 unique ensembles, resulting in 15 trials/ensemble. In
the following particular experiment, we conducted the random stimulation experiment and
performed calcium imaging in the same field-of-view comprised of the same set of neurons in
the same mouse, but across two different brain states: awake and under mild concentration
of chlorprothixene and isoflurane. The correlation matrices resulting from the training data
from the two different brain states: under anesthesia and awake, are shown in Figure 7.2
and Figure 7.3, respectively.
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Figure 7.2: Correlation matrix calculated from the training data from mouse V1 under mild
anesthesia.

The correlation matrices are symmetric and dense; and they do not provide any mean-
ingful insight into the underlying model-driven circuit mechanism. We can however conclude
that the mouse brain has changed drastically from the application of anesthesia.

The parameters of the autoregressive biophysical model: the autoregressive effective con-
nectivity and photostimulus effect matrices among the stimulated, opsin-expressing cells cor-
responding to the mouse V1 under anesthesia and awake conditions are shown in Figure 7.4
and Figure 7.5, respectively.

Compared to simple correlation matrices, we see that the recovered matrices are sparse.
The disappearing diagonal connection weights, which characterize a neuron’s connection to
itself, or the decay rate dynamic, for higher order Gs and Ss are consistent with the physics
and the observed data. Higher order Gs, which characterize the effect of neurons’ activity
from farther back in history should be smaller in magnitude. Effects from photostimulation
should also decay over time, which is reflected in higher order S matrix having less overall
energy, especially in its diagonal weights. The photostimulation effects matrices Ss especially
show sparsely populated driving cells that exhibit strong, directed connectivity influence that
effectively drives the one specified receiving cell.

Another interesting observation is that there exist connections among the same pair
of neurons that survive the application of anesthesia. While there are multiple evidences
of brain “re-wiring,” there do exist few strong excitatory connections that do not change
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Figure 7.3: Correlation matrix calculated from the training data from awake mouse V1.

even though the brain state has changed extensively. It is also interesting to note that
the matrices corresponding to the neurons under anesthesia have weaker weights and less
significant connections overall. The autoregressive biophysical model obtained from in vivo
experiments easily yield conclusive population-level signatures associated with specific brain
states.

7.2 Cross-Validations

To test the reliability of the recovered model parameters, we perform cross-validations using
the in vivo experimental data from the mouse V1 under anesthesia. We first split the
entire experiment data in two approximately equal halves in chronological order. Direct
comparison of the connection weights from G0, G1, S0, and S1 obtained from the first half
of the experiment and those obtained from the last half of the experiment are shown in
Figure 7.6 below.

We then split the entire experiment data by collecting odd-only and even-only trials.
Direct comparison of the connection weights from G0, G1, S0, and S1 obtained from the
odd-numbered trials of the experiment and those obtained from the even-numbered trials of
the experiment are shown in Figure 7.7 below.

We see that despite the different sparsity hyperparameters for different splits of the
experimental data, we obtain similar corresponding matrices in comparison. The slopes
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of the regression lines for the elements of the photostimulation effects matrices S0 and S1

calculated using the above cross-validation methods are not perfectly one. This difference
may have been due to the system-level differences in the optimized sparsity hyperparameters
during the estimation steps or simply insufficient number of trials to overcome the signal-to-
noise ratio caused by significant spontaneous activity, animal behavior, and/or experiment
conditions. They could also signify a biological constraint that we cannot ignore. Although
these results show that both strong and weak connections recovered from different training
set data exhibit consistent trends, there exist signs that the brain may have developed minor
plasticity across the duration of the lengthy experiment. This finding emphasizes the need
for shorter experiment session duration. Our estimation algorithm pipeline is nevertheless
robust to slight variations and noise in experimental data.

7.3 Prediction

One of the strengths of our approach is our model’s predictive power. To evaluate the AR
model’s predictive power, we held out test set data containing 25% of the entire experimental
data. This data set was not used for training, i.e., the estimation algorithm did not see this
data and only used the training data set comprised of 75% of the entire experimental data.
With the ratio between the training and test sets set to 3:1, 80% of the test set stimuli were
used to make up the validation data set. The validation data were used to tune, or optimize,
the sparsity hyperparameters λG and λS via K-fold cross-validation, where K was set to the
number of filtered trials. The remaining 20% of the test set data were used for the purposes
of evaluating the AR model’s predictive power. Figure 7.8 is the graphical illustration of
how the training and test data sets were created using the in vivo experimental data.

Using the AR model with the model parameters fitted to experimental data, we can gen-
erate and predict network responses to specific optogenetic stimuli. We use the biophysical
model with model parameters determined using training data from the mouse V1 under
anesthesia to generate two versions of predictions for held-out test set random stimulations.
First, we generate the response of the neural network purely from the model, starting from
zero activity for every neuron under consideration. We call this prediction the generated re-
sponse. Second, we test the predictive power of just the connectivity matrices by taking the
past test set neural activity that the autoregressive model requires to generate predictions.
Instead of generating these past observations the model requires from scratch, we apply the
held-out past test set neural activity to generate predictions. We call this prediction the
predicted response. The trial-to-trial generated, predicted, and observed network responses
to the held-out test set stimulation profiles are shown in Figure 7.9 below.

Figure 7.10 below shows the generated response to one canonical example test set stim-
ulation and compares the response to the mean observed response for comparison. We see
that the biophysical model’s prediction accurately matches the responses of the stimulated
cells as well as cells that have not been directed stimulated. The model correctly predicts one
strong indirect response, a response arising from connection rather than direct stimulation.



CHAPTER 7. IN VIVO RESULTS AND VALIDATIONS 40

Furthermore, the generated network response from the shown test set stimulus show that the
AR model accurately forecasts the relative excitation strengths of neurons that have been
targeted for direct photostimulation. These observations demonstrate that the biophysical
AR model can achieve substantial predictive power, and we can conclude that the model
accurately predicts circuit dynamics to photo-stimulation data that were not used to train
the model.

7.4 Jackknife Resampling

Results from the leave-one-out jackknife resampling across the trial dimension of in vivo ex-
periment data suggest that the AR model accurately captures reliable connections among the
neurons in the field-of-view. Complete Jackknife means and standard error measures of the
parameters of the autoregressive biophysical model: the autoregressive effective connectivity
and photostimulus effect matrices among all cells in the field-of-view corresponding to the
mouse V1 under anesthesia and awake conditions are shown in Figure 7.11 and Figure 7.12,
respectively. Only driving influences of stimulated cells can be recovered using our model-
driven estimation approach in the photostimulation effects matrices Sjs. Nevertheless, the
effective driving connections from the stimulated cells to all cells (entire columns of Sjs) can
be computed.

In both the anesthesia and awake conditions, the Jackknife mean estimates of the effec-
tive connectivity matrices shows that both strong excitatory and inhibitory connections are
associated with low corresponding standard error metrics. Therefore, we can conclude that
reliable, meaningful connections can be procured using our AR model and the associated
estimation algorithm pipeline described in the previous chapters.

7.5 Biological Validations

We further validate the connections we recovered using the model-driven estimation approach
by comparing the connection features to what is known in the V1 circuitry. We expect con-
nection probability, and thus connection weights to decrease with increasing distance between
each pair of neurons in the V1 circuitry [40]. We also expect neurons sharing similar tuning
properties, orientation tuning specifically, to share stronger connection strengths we know
connection probability is higher for neurons with the same preferred orientation [22, 23].
Because much of the literature on the mouse V1 circuit properties among excitatory L2/3
pyramidal cells focuses on connection probabilities, connection strengths may exhibit differ-
ent patterns. However, we expect connection strengths and probabilities to be correlated.

Distance

Figure 7.13 and Figure 7.14 show the calculated excitatory and inhibitory connectivity
weights of G0, G1, S0, and S1 obtained using experimental data from mouse V1 under
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anesthesia as a function of distance between the connected neurons, respectively. Diagonal
connectivity weights, i.e., a neuron’s influence onto itself, have been discarded. We generally
see a monotonically decreasing trend for both excitatory and inhibitory connection weights
for all matrices.

Figure 7.15 and Figure 7.16 show the calculated excitatory and inhibitory connectivity
weights of G0, G1, S0, and S1 obtained using experimental data from awake mouse V1 as
a function of distance between the connected neurons, respectively. Diagonal connectiv-
ity weights, i.e., a neuron’s influence onto itself, have been omitted. We generally see a
monotonically decreasing trend for both excitatory and inhibitory connection weights for all
matrices.

The patterns we observe are consistent with our expectations. The high standard error
metrics associated with connection strengths between neurons placed at great distances from
one another are due to small sample size. Despite insufficient number of data points, the
distance-based validations above provide a powerful physiological support that the model
parameters we estimate are biologically meaningful.

Orientation Tuning

It is difficult to conclude that neurons that share orientation tuning preference share a higher
degree of interconnectivity due to the small number of “tuned” neurons that have also been
stimulated. It is known that in the mouse V1, similarly tuned cells, i.e., cells that respond to
specifically oriented visual grating stimuli with statistical significance, share higher connec-
tion probability [22, 23]. This trend is not immediately obvious in both our awake mouse V1
and anesthetized mouse V1 data. In the particular mouse used to generate the above results,
only 15 cells in the field-of-view were both stimulated and orientation tuned. Therefore, data
from multiple experiments across multiple mice are needed to make meaningful claims and
conclusions regarding orientation tuning selectivity and effective connectivity strengths. Fig-
ure 7.17 and Figure 7.18 show the excitatory and inhibitory connection weights, with the
diagonal weights excluded, of orientation tuned and stimulated neurons obtained from mouse
V1 under anesthesia and awake mouse V1, respectively, as a function of degree difference in
preferred orientation.
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Figure 7.4: Autoregressive effective connectivity and photostimulus effect matrices among
the stimulated cells recovered from random stimulation experiment in mouse V1 under anes-
thesia.
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Figure 7.5: Autoregressive effective connectivity and photostimulus effect matrices among
the stimulated cells recovered from random stimulation experiment in awake mouse V1.
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Figure 7.6: Heatscatter comparison plot of the autoregressive model connectivity matrices
weights arising from two different (first and last) halves of the experiment.
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Figure 7.7: Heatscatter comparison of the autoregressive model connectivity matrices weights
arising from odd and even trials of the experiment.
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Figure 7.8: Illustration of the in vivo data set arising from one experiment. The ratio
between the training and test sets was 3:1. Of the test set data, 80% of the test set stimuli
were used as validation data sets, which were used to tune the sparsity hyperparameters.
The remaining 20% of the test set data were used for the purposes of evaluating the AR
model’s predictive power.
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Figure 7.9: Trial-by-trial generated, predicted, and observed neural network responses to
held-out test set stimulations.
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Figure 7.10: Comparison between the biophysical model generated response and the ob-
served mean response to one canonical example test set stimulation. The model generated
network response correctly predicts the activation of neurons that were not targeted for pho-
tostimulation. The relative strengths of excitation from photostimulation are also accurately
forecasted.
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Figure 7.11: Autoregressive effective connectivity and photostimulus effect matrices among
all cells recovered from random stimulation experiment in mouse V1 under anesthesia.
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Figure 7.12: Autoregressive effective connectivity and photostimulus effect matrices among
all cells recovered from random stimulation experiment in awake mouse V1.



CHAPTER 7. IN VIVO RESULTS AND VALIDATIONS 51

50 100 150 200 250 300 350 400 450 500 550

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

50 100 150 200 250 300 350 400 450 500 550

6

7

8

9

10

11

10
-3

100 200 300 400 500 600

0

0.005

0.01

0.015

0.02

0.025

100 200 300 400 500 600

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Figure 7.13: Excitatory connection weights ofG0, G1, S0, and S1 obtained using experimental
data from mouse V1 under anesthesia as a function of distance between the connected
neurons.
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Figure 7.14: Inhibitory connection weights of S0 and S1 obtained using experimental data
from mouse V1 under anesthesia as a function of distance between the connected neurons.
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Figure 7.15: Excitatory connection weights ofG0, G1, S0, and S1 obtained using experimental
data from awake mouse V1 as a function of distance between the connected neurons.
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Figure 7.16: Inhibitory connection weights of S0 and S1 obtained using experimental data
from awake mouse V1 as a function of distance between the connected neurons.
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Figure 7.17: Excitatory and inhibitory connection weights of orientation tuned neurons
obtained from mouse V1 under anesthesia as a function of degree difference in preferred
orientation.
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Figure 7.18: Excitatory and inhibitory connection weights of orientation tuned neurons
obtained from awake mouse V1 as a function of degree difference in preferred orientation.
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Chapter 8

Summary Statistics

The objective of optogenetics experimentation here is to estimate the effective connectivity of
the neural network inside one region of the brain. We described an algorithm that allows us
to estimate the neural network under investigation within a field-of-view using optogenetics.
Building on these estimated connections and applying the ideas in interference effects from
experimental design, we now present a framework for estimating the individual direct, as well
as indirect (spillover), causal effect of selected neurons as higher-fidelity effective connectivity
metrics.

8.1 Exposure Mapping

We apply the formulation introduced in [1] and adapt the exposure mapping framework to fit
our setting. Recall U , the finite population of neurons indexed by n = 1, . . . , N . Randomized
stimulation according to the aforementioned sensing matrix is performed on U . Recall the

treatment assignment vector d :=
[
d1 · · · dN

]>
, which is the stimulation profile, where

dn ∈ {0, 1}. We restricted treatment assignments to the support Ω := {n : Prob(dn) > 0},
i.e. we direct our attention towards opsin-positive neurons that are available for stimulation.
Focusing on one autoregressive effective connectivity matrix G, the exposure mapping is the
function

M : Ω×Θ(e) ×Θ(i) 7→ ∆, (8.1)

where ∆ is the set of all possible exposures dk; and

θ(e)
n ∈ Θ(e) =

[
θ

(e)
n1 · · · θ

(e)
nN

]>
, (8.2)

θ
(e)
nj = I(gnj > 0), and

θ(i)
n ∈ Θ(i) =

[
θ

(i)
n1 · · · θ

(i)
nN

]>
, (8.3)

θ
(i)
nj = I(gnj < 0), are respectively the unit-specific excitatory and inhibitory connectivity

traits estimated using the aforementioned compressed sensing algorithm. Of course, we can
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choose to only consider strong excitatory and inhibitory connections of neuron n by defining
θ

(e)
nj := I(gnj > φ) and θ

(i)
nj := I(gnj < −φ), where φ satisfies 0 < φ < 1.

We can view the exposure dk of neuron n as changes in the standardized ∆F
F0

, F (yn).
Then, the exposure mapping can be written

M(d, θ(e)
n , θ(i)

n ) =



(Direct + Indirect Excitatory & Inhibitory Exposure)

δ111 : dnI(d>θ(e)
n > 0)I(d>θ(i)

n > 0) = 1

(Direct + Indirect Excitatory Exposure)

δ110 : dnI(d>θ(e)
n > 0)I(d>θ(i)

n = 0) = 1

(Direct + Indirect Inhibitory Exposure)

δ101 : dnI(d>θ(e)
n = 0)I(d>θ(i)

n > 0) = 1

(Isolated Direct Exposure)

δ100 : dnI(d>θ(e)
n = 0)I(d>θ(i)

n = 0) = 1

(Indirect Excitatory & Inhibitory Exposure)

δ011 : (1− dn)I(d>θ(e)
n > 0)I(d>θ(i)

n > 0) = 1

(Indirect Excitatory Exposure)

δ010 : (1− dn)I(d>θ(e)
n > 0)I(d>θ(i)

n = 0) = 1

(Indirect Inhibitory Exposure)

δ001 : (1− dn)I(d>θ(e)
n = 0)I(d>θ(i)

n > 0) = 1

(No Exposure)

δ000 : (1− dn)I(d>θ(e)
n = 0)I(d>θ(i)

n = 0) = 1

. (8.4)

Estimands of Interest

We are particularly interested in estimating the following interference effects for selected
neurons n:

• (Isolated Direct Effect of Treatment on Neuron n)
E [yn(δ100)− yn(δ000)],

• (Spillover Effect from Excitatory and Inhibitory Connections to n)
E [yn(δ011)− yn(δ000)],

• (Spillover Effect from Excitatory Connections to Neuron n)
E [yn(δ010)− yn(δ000)],

• (Spillover Effect from Inhibitory Connections to Neuron n)
E [yn(δ001)− yn(δ000)],

where the expectation can be estimated using the sample average taken over the trials. The
aforementioned estimands: isolated direct effect of treatment, spillover effect from entire
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connections, spillover effect from excitatory connections, and spillover effect from inhibitory
connections for selected neurons n provide additional insights into the effective connectivity
of the neurons, and are more robust to random biological, physical, and cross-trial variations.
These estimands therefore serve as higher-fidelity summary statistics that build on the more
crude estimates of the effective connectivity to provide more robust estimates of connectivity.
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Chapter 9

Closed-loop Control

The ability to modulate circuit dynamics in a defined manner is extremely useful to test
candidate mechanisms governing cortical activity patterns and their link to modulation of
behavioral outcomes. The AR model yields optimized strategies to efficiently modulate cir-
cuit dynamics with optogenetic stimulation, which demonstrates the model’s utility and the
estimated connectivity matrices’ worths. The effective connectivity matrices, especially the
photostimulation effects matrices can be used to determine the optimal photo-stimulation
patterns to generate desired circuit dynamics, such as driving the network into specific activ-
ity states. Possible target dynamics include recreating sensory evoked patterns, amplifying
certain sub-networks of neurons while suppressing others, and deliberately generating maxi-
mal population activity levels or deliberately generating maximal suppression of the network
under study. We focus on the latter problem in the next few sections.

We can formulate the question as solving an unconstrained inverse problem based on the
learned AR model using stochastic control and optimization. We can consider a control cost
function based on a descriptive statistics of the neural activity including GCaMP response
or firing rate over a given time period. The control input variables are stimulation patterns
over space and time both with and without sparsity constraints. By generating and testing
such predictions empirically (in the same mice) we can reveal basic mechanisms that drive
circuit dynamics. For example, there may exist “hub-like” neurons that play outsize roles
in cortical dynamics by exhibiting higher levels of interconnectivity or especially strong
connections strengths. There may exist strong evidence for highly recurrently connected
subnetworks that amplify their own activity while suppressing the activity of others. By
further relating these predicted and validated patterns to the visual response properties,
spatial locations, and cell types of the neurons in the predicted photo-stimulus the AR
model can provide insights into cortical coding strategies. One particularly simple example
based on recent work [28] is that we expect the AR model to predict co-stimulating an
ensemble of iso-oriented excitatory neurons, which should preferentially drive activity across
other iso-oriented neurons. But a key power of this approach is that we can test many
hypotheses in silico and then select those photo-stimulation paradigms for in vivo validation
that are predicted to generate outsize effects on the network.
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We present two different algorithms to determine the spatiotemporal stimulation patterns
for controlling circuit dynamics. The most näıve approach is to attempt to control each
and every neuron in the network through direct optogenetic stimulation. This approach
however is neither the most efficient nor effective. Given the sheer number of neurons in any
cortical network, the aforementioned approach is neither feasible nor informative. Instead,
we rely on the AR model’s predictive power. We can use the photostimulation effect matrix
to find subsets of neurons that we can photo-stimulate to drive the network as a whole
into the desired state very efficiently. By capitalizing on the recovered connectivity matrix
to specifically target neuronal subsets that show highly levels of interconnectivity, we can
achieve the desired objectives.

Prior approaches have used purely observational data to achieve a similar goal [8], but
the AR model is far more flexible and appropriate as it relies on a physically meaningful
understanding of network connectivity. Two simple closed-loop control algorithms to ad-
dress the tasks of generating maximal population activity levels and maximal suppression of
networks are outlined below. One utilizes a specific centrality measure from graph theory
and another directly uses the AR model.

9.1 Ranked Katz Centrality Algorithm

The Katz centrality measure of a node in a graph describes the importance of that node in a
graph. In our setting, a node is a neuron and the graph is the network we estimate, charac-
terized by the connectivity matrix. Katz centrality of one neuron, defined by Equation 9.1
below, takes into account contributions from all adjacent neurons as well as the all neurons
connected k hops away for every k.

CK(x) =
∞∑
k=1

∑
wk

y−→x

wkαk. (9.1)

In practice, we limit k because neurons that are not adjacently connected do not influence
the neuron under investigation. In simulated small-world networks with both excitatory and
inhibitory connections, Katz centrality is quite predictive of the firing rates of neurons [18].
Using this fact, we can use the photostimulation effect matrix to calculate the Katz centrality
measures of every neuron under investigation. We can then rank the cells based on their Katz
centrality measures. With the limited laser power of the 3D-SHOT setup constraining the
total number of cells we can photostimulate simultaneously, we can then select a hologram
that includes as many cells as the 3D-SHOT system permits with the highest Katz centrality
measures to drive the network to a maximally excited state, and select a hologram that
includes as many cells as the system allows with the most negative Katz centrality measures
to drive the network to a maximally suppressed state. The pseudocode of this approach is
detailed in Algorithm 4 below.
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Algorithm 4: Ranked Katz centrality algorithm

Input : S0, the lowest order photostimulation effects matrix, and Nmax, the
maximum number of neurons in a hologram

Output: d∗, the optimal hologram

1 Initialize: α < 1
λmax(S0)

.

2 for n = 1, . . . , N do
3 Compute the Katz Centrality measure corresponding using the nth column:
4

CK(n) =
∞∑
k=1

∑
skin
i−→n

skinα
k

5 end
6 Rank the neurons according to their Katz centrality measures in

ascending/descending order for maximally suppressed/excited brain state,
respectively.

7 Define the threshold γ := CK(n∗), where CK(n∗) is the Katz Centrality measure of
the neuron n∗ ranked at Nmax

th place.
8 Define I := {n : CK(n) ≥ γ}.
9

d∗n =

{
1 if n ∈ I
0 otherwise

∀ n = 1, . . . N.

9.2 AR Model Holograms

We can also use the AR model to predict photostimulation patterns that will maximize or
minimize the overall network activity. In simulation, we can identify specific photostimulus
patterns that are predicted to generate maximally or minimally excited states. Similar
to the Ranked Katz Centrality Algorithm described above, we can rank neurons based on
their abilities to excite or suppress the network from stimulations. We can then choose as
many highest ranked neurons (according to our network-level objective) as the laser power
allows. The selection of these neurons constitutes the optimal hologram that can achieve the
objective of achieving the maximally excited or suppressed brain states.

9.3 Potential Problems

A practical concern is that the theoretically most informative stimulation patterns may
not be experimentally practical due to the technical limitations on the number neurons
that we can stimulate at a time. Nonetheless, the technical advances with more potent
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opsins and optimized photostimulation protocols will mitigate these concerns, and we can
develop algorithms to determine the optimal stimulation patterns based on the AR model
under specific experimental constraints mentioned above. The two algorithms detailed above
computes highly efficient photostimulation patterns that can achieve the desired network
dynamics while requiring stimulation of the fewest neurons. It remains as future work to
test these “optimal” stimulation patterns in vivo to see if they produce the predicted circuit
dynamics. It is probable that the mathematically optimal solution for driving the network
into a specific activity state may not be what occurs biologically, or at least in a condition
we can observe. Even so, we expect this approach to inform on candidate mechanisms that
govern network activity states. More importantly, they should allow us to test hypotheses
for what patterns may optimally alter behavior.
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Chapter 10

Conclusion

Our explainable artificial intelligence approach combined behavior and neurophysiological
data: the machine learning model we developed was interpretable due to its base in real bio-
logical and physical principles of the neurons and networks. Furthermore, the interpretability
was greatly enhanced because of the model’s sparsity, modular nature, and stimulatability.
The sparsity originated from the sparse connectivity of neocortical neurons, which permitted
our compressed sensing approach, greatly increasing throughput. The governing equations
allowed us to simulate the circuit dynamics in response to arbitrary perturbations. Our
approach was also modular as it was comprised of two independent processes: the circuit-
to-dynamics model and the dynamics-to-behavior model, both of which can be tuned to any
circuit or brain region by training with the appropriate data. Our model was therefore gen-
eralizable. This modular approach overcame a significant limitation of “black box” methods
or post-hoc analysis of “black box” approaches that attempt to fit ensemble neural activity
directly to behavior data.

10.1 Significance

The causal relationships between precise features of neural activity and behavior are largely
unknown. Purely observational approaches can generate hypotheses but cannot test them.
Conventional perturbation paradigms, such as microstimulation or optogenetics, can relate
the activity of specific brain areas or cell types to a behavior, but typically cannot reveal
the causal features of the underlying neural codes. Precisely patterned optogenetics can
address this challenge but given the large number of possible perturbations it quickly becomes
uncertain which perturbations will yield the most insight into the problem. Recent studies
have stimulated ensembles of neurons based on their co-activation during a sensory task [28,
8, 7, 11], but the choice of such perturbations is biased by the narrow set of network states
that are observed in a given experiment.

Machine learning and artificial intelligence techniques offer an alternative strategy to
model a circuit and design perturbations in order to obtain key insight into neural circuit
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mechanisms of behavior. “Black box” machine learning approaches so far have generated
limited insight [35, 17], only superficially categorizing and predicting neural and behav-
ioral outcomes. Without knowing the biological and physical variables critical to a machine
learning-based outcome, it is difficult to achieve a deep mechanistic understanding of brain
functions and the pathophysiology of psychiatric disorders. Our proposed solution was to
fuse machine learning and artificial intelligence techniques with biologically informed net-
work models that are trained by large-scale patterned optogenetic perturbations in behaving
animals. The new approaches use precise optogenetic perturbations in an unbiased manner
to train an autoregressive (AR) model of the neural circuit (mouse primary visual cortex,
V1) that estimates a set of dynamic effective connectivity matrices of the neurons under
study. We then leverage these matrices and the biophysical model to design “optimal” per-
turbations that make testable predictions about circuit connectivity, neural dynamics and
ultimately behavior. Analysis of these impactful perturbations will yield insight into the un-
derlying computations. They will highlight which specific neurons, connections, and spatial
features of network activity can explain the neural processes that drive perception, cogni-
tion, or action. Our approach thus leveraged explainable artificial intelligence to advance
our understanding of the neural codes underlying behavior.

10.2 Limitations

We detail some potential problems of our approach, and provide solutions and alternative
approaches.

There is significant trial-to-trial variability in the neural activity of behaving mice with or
without optogenetic stimulation. Even when a mouse repeats the same behavior experiments,
the observed neural activity exhibits large variations. We hence do not expect that our model
will be able to predict and control individual calcium traces perfectly.

Exact targeting in vivo is never perfect. Many factors affect the targeting of neurons,
e.g., physiological point spread function, motion, etc. We minimize off-target effects with
careful system calibration and exclude trials with significant motion (¿3 µm).

There exists a tradeoff between the accuracy of our estimates and speed. The accuracy
of our estimates increases with more experiment (more unique stimulation profiles) and fur-
ther enhances with more computation time as more algorithm iterations can be devoted for
the parameter estimation task. Online and closed-loop schemes do not become feasible if
time is not spent wisely. To circumvent the bottleneck in time for online and closed-loop
experiments, we reduce the number of unique stimulations and do not run the algorithm iter-
ations to convergence. This shortcuts ensure that the computation is fast enough for online
experiments. We still expect to recover the strong connections even with these sacrifices.

GCaMP only indirectly reports action potentials. A crucial concern is whether our mea-
surements taken via calcium imaging are accurate enough estimations of the underlying firing
rates of neurons in the FOV. GCaMP6s reports spike rates approximately linearly across a
broad range of spike frequencies [20, 26]. The calcium trace indicator’s low signal-to-noise
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compared to electrophysiology means that spike count estimations on individual trials are
not as accurate. However, our model operates on the average calcium response across many
repeats of individual photo-stimulation patterns, mitigating this concern.

The slow decay of GCaMP signals limits the number of unique stimulations we can
perform per unit time, requiring about one second between trials to avoid ambiguity on the
source of a change in a postsynaptic neuron’s response. To address this in part, we expect
to conduct most future experiments with GCaMP8m (or ‘f’), which is much more sensitive
and shows substantially faster dynamics than GCaMP6s [48]. If needed, we can maximize
sampling rate from individual neurons albeit with fewer imaging planes (scanning rates up to
60 Hz albeit in one plane is possible). The faster rise and decay of GcaMP8m and its single
spike sensitivity may allow us to employ deconvolution strategies to reconstruct spike trains
of imaging neurons with much higher accuracy than has been achieved with prior GCaMP
sensors. If and when genetically encoded voltage sensors that can meet our experimental
requirements become available, we will explore 2P voltage imaging as an alternative to
calcium.

Our photo-stimulation regimen could generate long-term, undesired synaptic plasticity.
We addressed this nuisance by randomizing the stimulation patterns as much as possible,
which should minimize the correlated activity that is known to be critical for inducing such
plasticity.

External inputs are always a source of concern. By sampling as many of the putative
inputs to the targeted neurons, we can minimize the impact external inputs have on our
estimation procedure. The contributions from the remaining neurons that will necessarily lie
outside the field-of-view will be treated as external contributions in the parameter estimation
scheme detailed above. If the same local connections respond to external contributions
consistently across multiple trials, the algorithm will recover the neural network’s signature
circuit dynamics associated with the brain state under investigation.

10.3 Future Work

One of the most impactful use cases of the methods described in this dissertation is to con-
duct the AR model-driven closed-loop estimation and control experiments online. There
are situations when online and closed-loop circuit estimation and modulation are necessary
and beneficial. For example, an offline computed stimulation patterns may not produce
accurate dynamics due to an inaccurately estimated AR model or if plasticity develops dur-
ing the experiments. The online approach presently under development aims to estimate
the stimulation patterns adaptively. Using an iterative estimation scheme that performs
the aforementioned model parameter estimation in a batch processing manner, the model
parameters can be updated as new batches are acquired. For 1000 neurons, one cycle of
closed-loop estimation and stimulation can be accomplished within 30 minutes during a be-
havior experiment using a single server with 4 NVIDIA TITAN Xp GPU and with cold start.
Since our algorithm is inherently parallelized as estimation is done for each neuron indepen-
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dently, order of magnitude compute speed acceleration can readily be achieved with more
servers or cloud computing. According to compressed sensing (CS) theory, random ensemble
photostimulation is optimal. With high probability, the sensing matrix that arises from this
stimulation pattern satisfies the restricted isometry property (RIP) condition guaranteeing
unique recovery. Nonetheless, the initial selection of stimulation patterns may not be ideal
for parameter estimation, e.g., experimental and computational effort may be wasted on
recovering zeros in the connectivity matrix, i.e., the weights of disconnected neurons. We
can optimize both the incoherence of the CS measurement matrix for optimal satisfaction
of the RIP condition as well as the experiment and computation time necessary to estimate
the model parameters. We will develop and test the following two approaches to improve
the estimation. Approach 1: estimate the model parameters based on random stimulation
profiles, and then refine the stimulation patterns based on the estimated connectivity. Use
the refined stimulation profiles to estimate the model parameters. Approach 2: partially
estimate the connectivity matrix and perform matrix completion by constructing a low-rank
matrix without the diagonal elements [5, 4]. We expect the standard errors of the model pa-
rameters obtained from resampling procedures to decrease with Approach 1. With Approach
2, we expect the experiment as well as the computation time to decrease significantly.

Additionally, we hope to extend our approach to the mesoscale. By scaling our approach
from the local level (within mouse V1) to include higher cortical areas downstream via a
novel 2P holographic mesoscope, we can both train our AR model on much more of the
relevant inputs and tests its predictions on the outputs of V1. We expect that modeling
and identifying perturbations to V1 that optimally drive downstream cortical regions should
facilitate the identification of activity patterns to potently impact behavior. A key consider-
ation for the AR model is obtaining data on as many potential input neurons as possible to
each neuron within the FOV. We plan to maximize this number in the future by sampling
most of each L2/3’s putative presynaptic cells in V1 by employing fast and dense volumetric
imaging using a holographic 2P mesoscope that can simultaneously sample and stimulate
retinotopically aligned presynaptic zones in higher visual areas. With these further techno-
logical and algorithmic developments, it is our hope that the AR model and the estimation
pipeline can be leveraged to gain further insight into the field of systems neuroscience and to
ultimately understand, predict, modulate, and possibly control the neural codes underlying
animal percept and behavior.
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