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Abstract

Browsing in the Library of Babel:
Leveraging Evolutionary Information to Improve Protein Modeling

by

Neil Thomas

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Yun S. Song, Chair

Proteins are the molecular machines that perform the vast majority of natural biological
functions. Discovering proteins to perform novel functions or optimizing them for an existing
function are central goals of synthetic biology. Doing so is challenging primarily because for
most proteins there is limited understanding of how they function, let alone how to modify
them; experimental characterization and crystal structures are expensive and time-consuming
to collect. For a given protein, however, genes performing related functions can be found
in the the genomes of diverse organisms – the natural result of the process of evolution.
With improved techniques for genetic sequencing, an abundance of data deposited in protein
sequence databases has become available. This presents a tantalizing modeling opportunity:
models that can understand protein function through the observation of related sequences
can reduce the reliance on experimental characterization and unlock new possibilities for
protein discovery and optimization. Building such models has been a goal of bioinformatics
research, and has more recently emerged as a goal of machine learning research. In particular,
“protein language models,” models trained to learn a distribution over sequence data, have
shown promise in predicting functional properties of proteins.

This work leverages the information in protein sequence databases to the following ends.
First, it presents a benchmark for the effectiveness of protein language models using a
suite of protein prediction tasks. Second, it draws a connection between a well-established
graphical model of protein families and the neural network architecture of protein language
models. Third, it presents a framework for deriving synthetic protein fitness landscapes from
evolutionary data that can be used to evaluate strategies for model-guided protein design in
silico.
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For David, Griffin,
Тевье и Циле,

Instinct and study; love and hate;
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Chapter 1

Introduction

1.1 The Library of Babel
In his 1941 short story, The Library of Babel, Jorge Luis Borges imagines a fictional library
that contains all permutations of the orthographic symbols [1]:

. . . its bookshelves contain all possible combinations of the twenty-two orthographic
symbols (a number which, though unimaginably vast, is not infinite) – that is, all
that is able to be expressed, in every language.

The library is larger than the universe, and contains all possible books. Those who live in
the library seek meaning in the books they pull off the shelves and often go mad doing so.
Every book that they could ever want is in the library, if they could only find it.

Replace the orthographic symbols with the 20 genetically-encoded amino acids and we
are presented with our own protein Library of Babel. The number of possible proteins with
100 amino acids is 20100 ≈ 10130, far greater than the number of atoms in the observable
universe. Frances Arnold, in her Nobel Prize acceptance speech in 2018 for her work on
Directed Evolution [2], referenced Borges’s short story to emphasize the difficulty of searching
through protein space.

Finding meaningful proteins in this immense combinatorial space is impactful across
diverse fields such as green energy, therapeutics, and basic science. Proteins are molecular
workhorses that we can think of as “solutions” to biochemical problems. Finding meaningful
proteins means enabling new molecular tools like CRISPR gene editing [3], new enzymes for
bioremediation [4], and antibodies against emerging viral threats [5].

How do we search the space of all possible proteins to find anything meaningful? For this,
we turn to evolution.
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Figure 1.1: An illustration of the Structural Classification Of Proteins (SCOP), showing the
hierarchical relationship between related structures.

1.2 Information in Evolution
Nature has been incredibly successful in exploring the vast combinatorial space of possible
proteins. “Nature is a tinkerer, not an inventor” [6], and every gene that we discover is related
to similar genes in other organisms, derived from common ancestral genes by the natural
process of mutation, recombination, and selection. We call these related genes homologs. In
the same way that human arms and bat wings exhibit homologous bone structures of the
humerus and ulna, homologous proteins exhibit common structural folds. The Structural
Classification Of Proteins (SCOP) [7] classifies proteins according to a structural taxonomy
(see Figure 1.1). At the highest level, proteins in the same class share secondary structure
composition and order. Proteins in the same fold share gross structural similarity. Proteins
in the same superfamily are hypothesized to have a common ancestor, and proteins within
the same family have a clear evolutionary relationship and high sequence similarity. We can
utilize these relationships to understand novel proteins.

For a given protein, related proteins can be found in sequence databases like UniProt,
UniParc, or BFD [8, 9]. These sequence databases growing exponentially as the cost and ease
of genetic sequencing decreases. New genes and the proteins they encode are constantly being
discovered and deposited, some from entirely new phyla of life [10]. These raw, unannotated
protein sequences we think of as unlabeled data. We have many orders of magnitude more
unlabeled sequences than labeled sequences. By way of comparison, there are 500 million
sequences in UniParc compared to 200 thousand protein crystal structures in PDB [11].
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Figure 1.2: Left: An evolutionary tree for a cartoon loop protein with three possible amino
acids (blue, yellow, red) at each of four positions. Substitutions, insertions, and deletions
accumulate across evolutionary time, resulting in the genes at the leaves of the tree. Right:
the multiple sequence alignment derived from this collection of homologous proteins.

1.3 Retrieval and Storage Methods
Reuse is pervasive in biology, and there are hundreds of millions of sequences from the natural
process of evolution from which to learn these patterns of reuse. Broadly, there are two
approaches to leveraging evolutionary information: retrieval and storage. In the retrieval
approach, a query sequence is scanned against a database to construct a multiple sequence
alignment full of homologous sequences, from which we can then extract conservation and
coevolution information. In contrast, in the storage approach, a model (such as a pretrained
neural network) stores evolutionary information in its parameters. Instead of querying a
database, one can query the model directly. The following sections go into slightly more
detail on each approach.

Retrieval Methods: Potts and Independent Sites

For a novel protein sequence, the established method for classifying its function and under-
standing the effect of mutations is to use a multiple sequence alignment (MSA). Given a query
sequence that we want to understand better, we can use a search tool such as BLAST [12] or
HMMer [13] to search a database like UniRef to return a set sequences that are evolutionarily
related across potentially disparate species, along with their likely alignment (see Figure 1.2).
For a classic overview of sequence alignment methods, see Durbin et al. [14]. If the query
returns a high-likelihood hit to a sequence with a known fold or function, we can confidently
declare our query sequence to have the same fold or function. This is the simplest way to do
transfer learning from labeled sequences to unlabeled sequences.

From this multiple sequence alignment, we can derive a further understanding of the
function of the protein family. We can derive conservation information using a Position-
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Specific Scoring Matrix (PSSM). A position is conserved if it rarely changes across evolutionary
homologs, i.e., if the position has low entropy in the derived PSSM. The PSSM models
each amino acid in the protein as an independent draw from a per-position distribution
parameterized by θi. For a sequence x of length L, where each amino acid at position i is
given by xi, the likelihood of the sequence under the independent sites model is given by:

LPSSM(x; θ) =
L∏
i

p(xi|θi).

We fit the parameters θ = {θ1, ..., θL} of this model by maximizing the likelihood of the aligned
sequences, which results in matching the first-order statistics (i.e., amino acid occurrence
frequencies) in the alignment. Conservation on its own is a powerful feature, telling us
which positions have been preserved across evolutionary time. High conservation indicates
the position is essential for function, like a charged residue in the active site of an enzyme.
Introducing a mutation that drastically reduces the model likelihood by breaking a conserved
site will likely destroy the function of the protein.

We can further derive coevolutionary information, (i.e., which positions evolve together),
from an MSA using a Potts model [15, 16, 17, 18]. A Potts model assigns scores to coupling
interactions. A pair of positions are inferred to be co-evolving if the interaction has a high
coupling score in the fitted Potts model. It has been shown that high coupling scores are
correlated with positions that are close together, or in contact, in the 3D structure of the
protein [15, 18]. In a Potts model, the likelihood of a sequence is given by a Boltzmann
distribution where the statistical energy is given explicitly by the sum of the marginal terms
h and coupling scores J :

LPotts(x;h, J) ∝ exp

[
−

L∑
i

hi(xi)−
L∑
i=1

L∑
j=1

Jij(xi, xj)

]
.

Multiple approaches to fitting this model to match the first and second-order statistics of
an aligned set of sequences have been explored in the literature, including pseudolikelihood
maximization and Boltzmann-machine learning [15, 18, 19, 20].

Potts and PSSMs are examples of alignment-based, single-family models. We call these
“retrieval” methods because they rely on a database lookup to retrieve an alignment. Potts
models in particular have been shown to be effective at predicting protein contacts [15, 18],
predicting variant effects [21, 22], improving downstream structure prediction [23, 24], and
generating novel functional sequences [20].

Storage Methods: Protein Language Models

How do we take advantage of the broader patterns of reuse across protein folds and functions?
Is there a way to leverage information from more distantly related sequences to help with
modeling on sequences for which no good quality alignments exist?
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To model multiple families simultaneously and capture higher order interactions, we can
use more flexible model classes like neural networks. Since proteins can be encoded as strings
of characters, where each character is an amino acid, multiple groups have tried to leverage
techniques for learning from documents in natural language processing (NLP) to learn from
protein sequences

The amount of unannotated protein sequence data has an analogy in the ever-increasing
amount of raw text available on the web. NLP models like GPT-3 [25] and BERT [26] leverage
this raw text by combining a pretraining procedure with the Transformer architecture [27],
and learn how to perform natural language tasks like question-answering. By pretraining
on hundreds of billions of words, scraped from all across the web, these models are able
to recapitulate linguistic patterns – syntax and semantics. Pretraining allowed models like
GPT-3 to achieve state-of-the-art performance on few-shot learning tasks, (i.e., where labeled
data is scarce), such as translations into a target language or sentence parsing.

The key aspect of a protein language model is how it is pretrained. In order to learn
from unlabeled data, unlabeled data must be used for some sort of predictive task. For
protein language models, this means training using masked language modeling. For millions
of protein sequences, a sequence is drawn, a set of positions are masked, and the model is
tasked with predicting what the amino acid at the masked positions should be. For a model
parameterized by θ, the masked language modeling objective for an input sequence x with
masked position indexes M and unmasked positions x\M = {xi|i /∈ M} is given by:

LMLM(θ;x,M) =
∑
i∈M

log pθ(xi|x\M).

Maximizing this objective is a way of learning a probability distribution over a set of sequences,
without necessarily relying on any insights from linguistics.

At each position, prior to outputting the distribution over amino acids, the neural network
produces an internal per-position representation of some dimension, which can then be
used for other tasks. During pretraining, this representation is used to do masked language
modeling, but we can take this same representation and transfer it to some specific task
where we have a smaller amount of labeled data.

This approach is part of a framework called semi-supervised learning, which combines
labeled and unlabeled data to build predictive models. By observing unlabeled data, a
model can learn to embed proteins in a high dimensional space where certain manifolds
corresponding to function or fold become more obvious. A classifier which takes protein
embeddings as input can use the manifolds in the embedding space to make better predictions.

Protein language models, pretrained on large databases of raw sequence data, have shown
incredible promise for their ability to predict protein contacts [28], predict variant effects [29],
improve downstream structure prediction [30], and generate novel functional sequences [31].
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1.4 Dissertation Outline
This dissertation leverages evolutionary information to improve protein modeling, with the
goal of enabling applications in structure prediction, functional annotation, and protein
design.

Chapter 2 presents a benchmark of protein representations in the semi-supervised setting.
It introduces Tasks Assessing Protein Embeddings (TAPE), a set of five biologically relevant
tasks spread across different domains of protein biology. It benchmarks a range of approaches
to semi-supervised protein representation learning, and finds that, while self-supervised
pretraining is helpful for almost all models on all tasks, features from simple retrieval methods
such as PSSMs are better for structure prediction tasks..

After the development of this benchmark, an insight from Vig et al. [32] revealed how to
extract structural contacts directly from protein language models and enabled benchmarking
on contact extraction in a fully unsupervised fashion. Building on this insight, Chapter 3
argues that the key operation in neural network architectures for protein language models,
that is, attention [27], is grounded in real properties of protein family data. It introduces an
energy-based attention layer, factored attention, which recovers a Potts model in a certain
limit. This model is then used to contrast Potts and Transformers. Chapter 3 explores
the extent to which the Transformer leverages signal across protein families and shows that
Transformer contact prediction performance beats Potts when the number of sequences in
the MSA is small.

AlphaFold2’s [33] dominant performance at the CASP14 structure prediction competition
created additional opportunities for problems in protein function prediction and protein design.
To further applications in protein design, Chapter 4 develops a framework for constructing
synthetic landscapes for benchmarking pipelines for model-guided protein design. These
synthetic landscapes are based on Potts models, are biologically-motivated, and exhibit
tunable difficulty. Chapter 4 establishes that without a tuning framework, Potts models are
easy to optimize, while landscapes constructed with the tuning framework are sufficiently
challenging to benchmark pipelines for model-guided protein design.
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Chapter 2

Evaluating Protein Transfer Learning
with TAPE

This chapter is based on collaborative work done with Roshan Rao, Nick Bhattacharya, Yan
Duan, Xi Chen, John Canny, Pieter Abbeel and Yun S. Song, which was published in the
conference proceedings of NeurIPS 2019 [34].

2.1 Introduction
New sequencing technologies have led to an explosion in the size of protein databases over
the past decades. These databases have seen exponential growth, with the total number of
sequences doubling every two years [8]. Obtaining meaningful labels and annotations for
these sequences requires significant investment of experimental resources, as well as scientific
expertise, resulting in an exponentially growing gap between the size of protein sequence
datasets and the size of annotated subsets. Billions of years of evolution have sampled the
portions of protein sequence space that are relevant to life, so large unlabeled datasets of
protein sequences are expected to contain significant biological information.

Advances in natural language processing (NLP) have shown that self-supervised learning
is a powerful tool for extracting information from unlabeled sequences [35, 26, 25], which
raises a tantalizing question: can we adapt NLP-based techniques to extract useful biological
information from massive sequence datasets?

To help answer this question, we introduce the Tasks Assessing Protein Embeddings
(TAPE ), which to our knowledge is the first attempt at systematically evaluating semi-
supervised learning on protein sequences. TAPE includes a set of five biologically relevant
supervised tasks that evaluate the performance of learned protein embeddings across diverse
aspects of protein understanding.

We choose our tasks to highlight three major areas of protein biology where self-supervision
can facilitate scientific advances: structure prediction, detection of remote homologs, and
protein engineering. We constructed data splits to simulate biologically relevant generalization,
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such as a model’s ability to generalize to entirely unseen portions of sequence space, or to finely
resolve small portions of sequence space. Improvement on these tasks range in application,
including designing new antibodies [36] and finding new antimicrobial genes hiding in the so-
called “Dark Proteome”: tens of millions of sequences with no labels where existing techniques
for determining protein similarity fail [37].

We assess the performance of three representative models (recurrent, convolutional, and
attention-based) that have performed well for sequence modeling in other fields to determine
their potential for protein learning. We also compare two recently proposed semi-supervised
models (Bepler et al. [38], Alley et al. [39]). With our benchmarking framework, these
models can be compared directly to one another for the first time.

We show that self-supervised pretraining improves performance for almost all models on
all downstream tasks. Interestingly, performance for each architecture varies significantly
across tasks, highlighting the need for a multi-task benchmark such as ours. We also show that
non-deep alignment-based features [40, 41, 42] outperform features learned via self-supervision
on secondary structure and contact prediction, while learned features perform significantly
better on remote homology detection.

Our results demonstrate that self-supervision for proteins is promising but considerable
improvements need to be made before self-supervised models can achieve breakthrough
performance. All code and data for TAPE are publicly available1, and we encourage members
of the machine learning community to participate in these exciting problems.

2.2 Background

Protein Terminology

Proteins are linear chains of amino acids connected by covalent bonds. We encode amino
acids in the standard 25-character alphabet, with 20 characters for the standard amino acids,
2 for the non-standard amino acids selenocysteine and pyrrolysine, 2 for ambiguous amino
acids, and 1 for when the amino acid is unknown [43, 8]. Throughout this paper, we represent
a protein x of length L as a sequence of discrete amino acid characters (x1, x2, . . . , xL) in this
fixed alphabet.

Beyond its encoding as a sequence (x1, . . . , xL), a protein has a 3D molecular structure.
The different levels of protein structure include primary (amino acid sequence), secondary
(local features), and tertiary (global features). Understanding how primary sequence folds
into tertiary structure is a fundamental goal of biochemistry [44]. Proteins are often made up
of a few large protein domains, sequences that are evolutionarily conserved, and as such have
a well-defined fold and function.

Evolutionary relationships between proteins arise because organisms must maintain certain
functions, such as replicating DNA, as they evolve. Evolution has selected for proteins that
are well-suited to these functions. Though structure is constrained by evolutionary pressures,

1https://github.com/songlab-cal/tape

https://github.com/songlab-cal/tape


CHAPTER 2. EVALUATING PROTEIN TRANSFER LEARNING WITH TAPE 9

sequence-level variation can be high, with very different sequences having similar structure.
Two proteins that share a common evolutionary ancestor are called homologs. Homologous
proteins may have very different sequences if they diverged in the distant past.

Quantifying these evolutionary relationships is very important for preventing undesired
information leakage between data splits. We mainly rely on sequence identity, which measures
the percentage of exact amino acid matches between aligned subsequences of proteins [45].
For example, filtering at a 25% sequence identity threshold means that no two proteins in
the training and test set have greater than 25% exact amino acid matches. Other approaches
besides sequence identity filtering also exist, depending on the generalization the task attempts
to test [46].

Modeling Evolutionary Relationships with Sequence Alignments

The key technique for modeling sequence relationships in computational biology is alignment
[12, 42, 40, 14]. Given a database of proteins and a query protein at test-time, an alignment-
based method uses either carefully designed scoring systems [12] or Hidden Markov Models
(HMMs) [42] to align the query protein against all proteins in the database. Good alignments
give information about local perturbations to the protein sequence that may preserve, for
example, function or structure. The distribution of aligned residues at each position is also
an informative representation of each residue that can be fed into downstream models.

Semi-supervised Learning

The fields of computer vision and natural language processing have been dealing with the
question of how to learn from unlabeled data for years [47]. Images and text found on the
internet generally lack accompanying annotations, yet still contain significant structure. Semi-
supervised learning tries to jointly leverage information in the unlabeled and labeled data,
with the goal of maximizing performance on the supervised task. One successful approach to
learning from unlabeled examples is self-supervised learning, which in NLP has taken the form
of next token prediction [35], masked token prediction [26], and next sentence classification
[26]. Analogously, there is good reason to believe that unlabelled protein sequences contain
significant information about their structure and function [44]. Since proteins can be modeled
as sequences of discrete tokens, we test both next token and masked token prediction for
self-supervised learning.

2.3 Related Work
The most well-known protein modeling benchmark is the Critical Assessment of Structure
Prediction (CASP) [48], which focuses on structure modeling. Each time CASP is held, the
test set consists of new experimentally validated structures which are held under embargo
until the competition ends. This prevents information leakage and overfitting to the test
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set. The recently released ProteinNet [49] provides easy to use, curated train/validation/test
splits for machine learning researchers where test sets are taken from the CASP competition
and sequence identity filtering is already performed. We take the contact prediction task from
ProteinNet. However, we believe that structure prediction alone is not a sufficient benchmark
for protein models, so we also use tasks not included in the CASP competition to give our
benchmark a broader focus.

Semi-supervised learning for protein problems has been explored for decades, with lots of
work on kernel-based pretraining [50, 51]. These methods demonstrated that semi-supervised
learning improved performance on protein network prediction and homolog detection, but
couldn’t scale beyond hundreds of thousands of unlabeled examples. Recent work in protein
representation learning has proposed a variety of methods that apply NLP-based techniques
for transfer learning to biological sequences [52, 38, 39, 53, 54]. In a related line of work,
Riesselman et al. [55] trained Variational Auto Encoders on aligned families of proteins
to predict the functional impact of mutations. Alley et al. [39] also try to combine self-
supervision with alignment in their work by using alignment-based querying to build task-
specific pretraining sets.

Due to the relative infancy of protein representation learning as a field, the methods
described above share few, if any, benchmarks. For example, both Rives et al. [54] and Bepler
et al. [38] report transfer learning results on secondary structure prediction and contact
prediction, but they differ significantly in test set creation and data-splitting strategies.
Other self-supervised work such as Alley et al. [39] and Yang et al. [56] report protein
engineering results, but on different tasks and datasets. With such varied task evaluation, it
is challenging to assess the relative merits of different self-supervised modeling approaches,
hindering efficient progress.

2.4 Datasets
Here we describe our unsupervised pretraining and supervised benchmark datasets. To create
benchmarks that test generalization across large evolutionary distances and are useful in
real-life scenarios, we curate specific training, validation, and test splits for each dataset.
Producing the data for these tasks requires significant effort by experimentalists, database
managers, and others. Following similar benchmarking efforts in NLP [57], we describe a set
of citation guidelines in our repository2 to ensure these efforts are properly acknowledged.

Unlabeled Sequence Dataset

We use Pfam [58], a database of thirty-one million protein domains used extensively in
bioinformatics, as the pretraining corpus for TAPE . Sequences in Pfam are clustered into
evolutionarily-related groups called families. We leverage this structure by constructing a test
set of fully heldout families (see Appendix A.5 for details on the selected families), about 1%

2https://github.com/songlab-cal/tape#citation-guidelines

https://github.com/songlab-cal/tape#citation-guidelines
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Figure 2.1: Structure and Annotation Tasks on protein KgdM Porin (pdbid: 4FQE). (a)
Viewing this Porin from the side, we show secondary structure, with the input amino acids
for a segment (blue) and corresponding secondary structure labels (yellow and white). (b)
Viewing this Porin from the front, we show a contact map, where entry i, j in the matrix
indicates whether amino acids at positions i, j in the sequence are within 8 angstroms of
each other. In green is a contact between two non-consecutive amino acids. (c) The fold-level
remote homology class for this protein.

of the data. For the remaining data we construct training and test sets using a random 95/5%
split. Perplexity on the uniform random split test set measures in-distribution generalization,
while perplexity on the heldout families test set measures out-of-distribution generalization
to proteins that are less evolutionarily related to the training set.

Supervised Datasets

We provide five biologically relevant downstream prediction tasks to serve as benchmarks. We
categorize these into structure prediction, evolutionary understanding, and protein engineering
tasks. The datasets vary in size between 8 thousand and 50 thousand training examples (see
Table A.1 for sizes of all training, validation and test sets). Further information on data
processing, splits and experimental challenges is in Appendix A.1. For each task we provide:

(Definition) A formal definition of the prediction problem, as well as the source of the data.
(Impact) The impact of improving performance on this problem.
(Generalization) The type of understanding and generalization desired.
(Metrics) The metric reported in Table 2.2 to report results and additional metrics presented

in Appendix A.8

Task 1: Secondary Structure (SS) Prediction (Structure Prediction Task)
(Definition) Secondary structure prediction is a sequence-to-sequence task where each input

amino acid xi is mapped to a label yi ∈ {Helix(H), Strand(E),Other(C)}. See Figure 2.1a
for illustration. The data are from Klausen et al. [59].

(Impact) SS is an important feature for understanding the function of a protein, especially
if the protein of interest is not evolutionarily related to proteins with known structure [59].
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SS prediction tools are very commonly used to create richer input features for higher-level
models [60].

(Generalization) SS prediction tests the degree to which models learn local structure. Data
splits are filtered at 25% sequence identity to test for broad generalization.

(Metrics) We report accuracy on a per-amino acid basis on the CB513 [61] dataset. We
further report three-way and eight-way classification accuracy for the test sets CB513,
CASP12, and TS115.

Task 2: Contact Prediction (Structure Prediction Task)
(Definition) Contact prediction is a pairwise amino acid task, where each pair xi, xj of

input amino acids from sequence x is mapped to a label yij ∈ {0, 1}, where the label
denotes whether the amino acids are “in contact” (< 8Å apart) or not. See Figure 2.1b for
illustration. The data are from the ProteinNet dataset [49].

(Impact) Accurate contact maps provide powerful global information; e.g., they facilitate
robust modeling of full 3D protein structure [62]. Of particular interest are medium- and
long-range contacts, which may be as few as twelve sequence positions apart, or as many
as hundreds apart.

(Generalization) The abundance of medium- and long-range contacts makes contact pre-
diction an ideal task for measuring a model’s understanding of global protein context.
We select the data splits that was filtered at 30% sequence identity to test for broad
generalization.

(Metrics) We report precision of the L/5 most likely contacts for medium- and long-range
contacts on the ProteinNet CASP12 test set, which is a standard metric reported in CASP
[48]. We further report Area under PR Curve and Precision at L, L/2, and L/5 for
short-range, medium-range and long-range contacts in Appendix A.

Task 3: Remote Homology Detection (Evolutionary Understanding Task)
(Definition) This is a sequence classification task where each input protein x is mapped to

a label y ∈ {1, . . . , 1195}, representing different possible protein folds. See Figure 2.1c for
illustration. The data are from Hou et al. [63].

(Impact) Detection of remote homologs is of great interest in microbiology and medicine;
e.g., for detection of emerging antibiotic resistant genes [64] and discovery of new CAS
enzymes [3].

(Generalization) Remote homology detection measures a model’s ability to detect struc-
tural similarity across distantly related inputs. We hold out entire evolutionary groups
from the training set, forcing models to generalize across large evolutionary gaps.

(Metrics) We report overall classification accuracy on the fold-level heldout set from Hou
et al. [63]. We further report top-one and top-five accuracy for fold-level, superfamily-level
and family-level holdout sets in Appendix A.

Task 4: Fluorescence Landscape Prediction (Protein Engineering Task)
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Figure 2.2: Protein Engineering Tasks. In both tasks, a parent protein p is mutated to explore
the local landscape. As such, dots represent proteins and directed arrow x → y denotes that
y has exactly one more mutation than x away from parent p. (a) The Fluorescence task
consists of training on small neighborhood of the parent green fluorescent protein (GFP) and
then testing on a more distant proteins. (b) The Stability task consists of training on a broad
sample of proteins, followed by testing on one-mutation neighborhoods of the most promising
sampled proteins.

(Definition) This is a regression task where each input protein x is mapped to a label y ∈ R,
corresponding to the log-fluorescence intensity of x. See Figure 2.2a for illustration. The
data are from Sarkisyan et al. [65].

(Impact) For a protein of length L, the number of possible sequences m mutations away
is O(Lm), a prohibitively large space for exhaustive search via experiment, even if m
is modest. Moreover, due to epistasis (second- and higher-order interactions between
mutations at different positions), greedy optimization approaches are unlikely to succeed.
Accurate computational predictions could allow significantly more efficient exploration of
the landscape, resulting in better optima. Machine learning methods have already seen
some success in related protein engineering tasks [66].

(Generalization) The fluorescence prediction task tests the model’s ability to distinguish
between very similar inputs, as well as its ability to generalize to unseen combinations
of mutations. The train set is a Hamming distance-3 neighborhood of the parent green
fluorescent protein (GFP), while the test set has variants with four or more mutations.
Hamming distance is measured at the amino acid level.
The choice of Hamming distance between amino acids does not always reflect evolution, since
not all proteins at the same Hamming distance correspond to equal “evolutionary” distance
in the sense of number of nucleotide substitutions. Since we are trying to highlight the
protein engineering setting, we believe that this is an important feature of the Fluorescence
task. Our goal is to test the models’ ability to accurately predict phenotype as a function
of an input molecule (e.g. one presented by a protein designer)

(Metrics) We report Spearman’s ρ (rank correlation coefficient) on the test set. We further
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Random Families Heldout Families Heldout Clans

Acc Perp ECE Acc Perp ECE Acc Perp ECE

Transformer 0.45 8.89 6.01 0.35 11.77 8.87 0.28 13.54 10.76
LSTM 0.40 8.89 6.94 0.24 13.03 12.73 0.13 15.36 16.94
ResNet 0.41 10.16 6.86 0.31 13.19 9.77 0.28 13.72 10.62
Bepler et al. [38] 0.28 11.62 10.17 0.19 14.44 14.32 0.12 15.62 17.05
Alley et al. [39] 0.32 11.29 9.08 0.16 15.53 15.49 0.11 16.69 17.68
Random 0.04 25 25 0.04 25 25 0.04 25 25

Table 2.1: Language modeling metrics: Language Modeling Accuracy (Acc), Perplexity (Perp)
and Exponentiated Cross-Entropy (ECE).

report MSE and Spearman’s ρ for the full test set, only bright proteins, and only dark
proteins in Appendix A.

Task 5: Stability Landscape Prediction (Protein Engineering Task)
(Definition) This is a regression task where each input protein x is mapped to a label y ∈ R

measuring the most extreme circumstances in which protein x maintains its fold above a
concentration threshold (a proxy for intrinsic stability). See Figure 2.2b for illustration.
The data are from Rocklin et al. [67].

(Impact) Designing stable proteins is important to ensure, for example, that drugs are
delivered before they are degraded. More generally, given a broad sample of protein
measurements, finding better refinements of top candidates is useful for maximizing yield
from expensive protein engineering experiments.

(Generalization) This task tests a model’s ability to generalize from a broad sampling of
relevant sequences and to localize this information in a neighborhood of a few sequences,
inverting the test-case for fluorescence above. The train set consists of proteins from four
rounds of experimental design, while the test set contains Hamming distance-1 neighbors
of top candidate proteins.

(Metrics) We report Spearman’s ρ on the test set. In Appendix A we also assess classification
of a mutation as stabilizing or non-stabilizing. We report Spearman’s ρ and accuracy for
this task broken down by protein topology in Appendix A.

2.5 Models and Experimental Setup
Losses: We examine two self-supervised losses that have seen success in NLP. The first
is next-token prediction, which models p(xi | x1, . . . , xi−1). Since many protein tasks are
sequence-to-sequence and require bidirectional context, we apply a variant of next-token
prediction which additionally trains the reverse model, p(xi | xi+1, . . . , xL), providing full
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context at each position (assuming a Markov sequence). The second is masked-token prediction
[26], which models p(xmasked | xunmasked) by replacing the value of tokens at multiple positions
with alternate tokens.

Protein-specific loss: In addition to self-supervised algorithms, we explore another protein-
specific training procedure proposed by Bepler et al. [38]. They suggest that further supervised
pretraining of models can provide significant benefits. In particular, they propose supervised
pretraining on contact prediction and remote homology detection, and show it increases
performance on secondary structure prediction. Similar work in computer vision has shown
that supervised pretraining can transfer well to other tasks, making this a promising avenue
of exploration [68].

Architectures and Training: We implement three architectures: an LSTM [69], a
Transformer [27], and a dilated residual network (ResNet) [70]. We use a 12-layer Transformer
with a hidden size of 512 units and 8 attention heads, leading to a 38M-parameter model.
Hyperparameters for the other models were chosen to approximately match the number of
parameters in the Transformer. Our LSTM consists of two three-layer LSTMs with 1024
hidden units corresponding to the forward and backward language models, whose outputs
are concatenated in the final layer, similar to ELMo [35]. For the ResNet we use 35 residual
blocks, each containing two convolutional layers with 256 filters, kernel size 9, and dilation
rate 2. We chose these hyperparameters based on common choices from the literature. Our
supervised tasks are of similar size to most of those in the GLUE [71] benchmark, which has
been instrumental in demonstrating the success of self-supervision in NLP. Since the models
that were applied to GLUE have tens to hundreds of millions of parameters, we chose to make
our models roughly the same size. See Appendix A.7 for model size ablation experiments.
See Appendix A.2 for details of how these pretrained models are fed into downstream tasks.

In addition, we benchmark two previously proposed architectures that differ significantly
from the three above. The first, proposed by Bepler et al. [38], is a two-layer bidirectional
language model, similar to the LSTM discussed above, followed by three 512 hidden unit
bidirectional LSTMs. The second, proposed by Alley et al. [39], is a unidirectional mLSTM
[72] with 1900 hidden units. Details on implementing and training these architectures can be
found in the original papers.

The Transformer and ResNet are trained with masked-token prediction, while the LSTM
is trained with next-token prediction. Both Alley et al. and Bepler et al. are trained with
next-token prediction. All self-supervised models are trained on four NVIDIA V100 GPUs
for one week.

Baselines: We evaluate learned features against two baseline featurizations. The first is a
one-hot encoding of the input amino acid sequence, which provides a simple baseline. Most
current state-of-the-art algorithms for protein classification and regression take advantage
of alignment or HMM-based inputs (see Section 2.2). Alignments can be transformed into
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various features, such as mutation probabilities [63] or the HMM state-transition probabilities
[59] for each amino acid position. These are concatenated to the one-hot encoding of the
amino acid to form another baseline featurization. For our baselines we use alignment-based
inputs that vary per task depending on the inputs used by the current state-of-the-art method.
See Appendix A.3 for details on the alignment-based features used for each task. We do not
use alignment-based inputs for protein engineering tasks. Proteins in the engineering datasets
differ by only a single amino acid, while alignment-based methods search for proteins with
high sequence identity, so alignment-based methods return the same set of features for all
proteins we wish to distinguish between.

Experimental Setup: The goal of our experimental setup is to systematically compare all
featurizations. For each task we select a particular supervised architecture, drawing from
state-of-the-art where available, and make sure that fine-tuning on all language models is
identical. See Appendix A.3 for details on supervised architectures and training.

2.6 Results
Table 2.1 contains accuracy, perplexity, and exponentiated cross entropy (ECE) on the
language modeling task for the five architectures we trained with self-supervision as well as a
random model baseline. We report metrics on both the random split and the fully heldout
families. Supervised LSTM metrics are reported after language modeling pretraining, but
before supervised pretraining. Heldout family accuracy is consistently lower than random-
split accuracy, demonstrating a drop in the out-of-distribution generalization ability. Note
that although some models have lower perplexity than others on both random-split and
heldout sets, this lower perplexity does not necessarily correspond to better performance on
downstream tasks. This replicates the finding in Rives et al. [54].

Table 2.2 contains results for all benchmarked architectures and training procedures on
all downstream tasks in TAPE . We report accuracy, precision, or Spearman’s ρ, depending
on the task, so higher is always better and each metric has a maximum value of 1.0. See
Section 2.4 for the metric reported in each task. Detailed results and metrics for each task
are in Appendix A.8.

We see from Table 2.2 that self-supervised pretraining improves overall performance across
almost all models and all tasks. Further analysis reveals aspects of these tasks with room for
significant improvement. In the fluorescence task, the distribution is bimodal with a mode of
bright proteins and a mode of dark proteins (see Figure 2.3). Since one goal of using machine
learning models in protein engineering is to screen potential variants, it is important for these
methods to successfully distinguish between beneficial and deleterious mutations. Figure 2.3
shows that the model does successfully perform some clustering of fluorescent proteins, but
that many proteins are still misclassified.

For the stability task, to identify which mutations a model believes are beneficial, we use
the parent protein as a decision boundary and label a mutation as beneficial if its predicted
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Method Structure Evolutionary Engineering

SS Contact Homology Fluorescence Stability

No Pretrain
Transformer 0.70 0.32 0.09 0.22 -0.06
LSTM 0.71 0.19 0.12 0.21 0.28
ResNet 0.70 0.20 0.10 -0.28 0.61

Pretrain

Transformer 0.73 0.36 0.21 0.68 0.73
LSTM 0.75 0.39 0.26 0.67 0.69
ResNet 0.75 0.29 0.17 0.21 0.73
Bepler [38] 0.73 0.40 0.17 0.33 0.64
Alley [39] 0.73 0.34 0.23 0.67 0.73

Baseline One-hot 0.69 0.29 0.09 0.14 0.19
Alignment 0.80 0.64 0.09 N/A N/A

Table 2.2: Results on downstream supervised tasks

stability is higher than the parent’s predicted stability. We find that our best pretrained
model achieves 70% accuracy in making this prediction while our best non-pretrained model
achieves 68% accuracy (see Table A.9 for full results). Improving the ability to distinguish
beneficial from deleterious mutations would make these models much more useful in real
protein engineering experiments.

In the contact prediction task, long-range contacts are of particular interest and can be
hundreds of positions apart. Figure 2.4 shows the predictions of several models on a protein
where the longest range contact occurs between the 8th and 136th amino acids. Pretraining

Log Fluorescence

(a) Dark Mode

Log Fluorescence

(b) Bright Mode (c) Embedding t-SNE

Figure 2.3: Distribution of training, test, and pretrained Transformer predictions on the dark
and bright modes, along with t-SNE of pretrained Transformer protein embeddings colored
by log-fluorescence.
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(a) True Contacts (b) LSTM (c) LSTM Pretrain (d) One Hot (e) Alignment

Figure 2.4: Predicted contacts for chain 1A of a Bacterioferritin comigratory protein (pdbid:
3GKN). Blue indicates true positive contacts while red indicates false positive contacts.
Darker colors represent more certainty from the model.

helps the model capture more long-range information and improves the overall resolution
of the predicted map. However, the hand-engineered alignment features result in a much
sharper map, accurately resolving more long-range contacts. This increased specificity is
highly relevant in structure prediction pipelines [23, 62] and highlights a clear challenge for
pretraining.

2.7 Discussion
Comparison to state of the art. As shown in Table 2.2, alignment-based inputs can
provide a powerful signal that outperforms current self-supervised models on multiple tasks.
Current state-of-the-art prediction methods for secondary structure prediction, contact
prediction, and remote homology classification all take in alignment-based inputs. These
methods combine alignment-based inputs with other techniques (e.g. multi-task training,
kernel regularization) to achieve an additional boost in performance. For comparison,
NetSurfP-2.0 [59] achieves 85% accuracy on the CB513 [61] secondary structure dataset,
compared to our best model’s 75% accuracy, RaptorX [73] achieves 0.69 precision at L/5 on
CASP12 contact prediction, compared to our best model’s 0.49, and DeepSF [63] achieves
41% accuracy on remote homology detection compared to our best model’s 26%.

Need for multiple benchmark tasks. Our results support our hypothesis that multiple
tasks are required to appropriately benchmark performance of a given method. Our Trans-
former, which performs worst of the three models in secondary structure prediction, performs
best on the fluorescence and stability tasks. The reverse is true of our ResNet, which ties the
LSTM in secondary structure prediction but performs far worse for the fluorescence task,
with a Spearman’s ρ of 0.21 compared to the LSTM’s 0.67. This shows that performance
on a single task does not capture the full extent of a trained model’s knowledge and biases,
creating the need for multi-task benchmarks such as TAPE .
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Chapter 3

Interpreting Potts and Transformer
Protein Models Through the Lens of
Simplified Attention

This chapter is based on collaborative work done with Nick Bhattacharya, Roshan Rao,
Justas Dauparas, David Baker, Peter Koo, Yun S. Song, and Sergey Ovchinnikov, which was
published in the conference proceedings of the 2022 Pacific Symposium on Biocomputing [74].

3.1 Introduction
Inferring protein structure from sequence is a longstanding problem in computational biochem-
istry. Potts models, a particular kind of Markov Random Field (MRF), are the predominant
unsupervised method for modeling interactions between amino acids. Potts models are trained
to maximize pseudolikelihood on alignments of evolutionarily related proteins [75, 76, 77].
Features derived from Potts models were the main drivers of improved performance at the
CASP11 competition [78]. Potts models were subsequently used as input features for top
performing supervised neural network models in CASP13 [79, 80, 24].

Inspired by the success of BERT [26], GPT [25] and related unsupervised models in NLP,
a line of work has emerged that learns features of proteins through self-supervised pretraining
[54, 81, 34, 31, 82]. This new approach trains Transformer [27] models on large datasets of
protein sequences. Pretrained model performance raises questions about the importance of
data and model scale [83, 81], whether neural features compete with evolutionary features
extracted by established bioinformatic methods [34], and the benefits of transfer learning [84,
22, 85].

In CASP14, Alphafold2 achieved breakthrough performance by replacing the Potts model
with an attention-based model that directly used the MSA as input [33]. This approach was
adapted subsequently in RoseTTAFold [86]. The performance of these methods established
attention as state-of-the-art for extracting features from MSAs. This raises a natural question
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of how Potts models and attention mechanisms are related.
In this paper, we investigate the ways in which attention-based models and Potts models

trained on alignments can learn meaningful interactions in biological sequence data. To do
so, we introduce a simplified energy-based attention model trained on alignments, factored
attention, which interpolates between the standard attention mechanism and Potts models.
We show that factored attention can successfully share parameters across positions within a
family or share amino acid features across hundreds of families.

3.2 Background
Proteins are polymers composed of amino acids and are commonly represented as strings.
Along with this 1D sequence representation, each protein folds into a 3D physical structure.
Physical distance between positions in 3D is often a much better indicator of functional
interaction than proximity in sequence. One representation of physical distance is a contact
map C, a symmetric matrix in which entry Cij = 1 if the beta carbons1 of i and j are within
8Å of one another, and 0 otherwise.

Multiple Sequence Alignments. To understand structure and function of a protein
sequence, one typically assembles a set of its evolutionary relatives and looks for patterns
within the set. A set of related sequences is referred to as a protein family, commonly
represented by a Multiple Sequence Alignment (MSA). Gaps in aligned sequences correspond
to insertions from an alignment algorithm [87, 41], ensuring that positions with similar
structure and function line up for all members of the family. After aligning, sequence position
carries significant evolutionary, structural, and functional information.

Coevolutionary Analysis of Protein Families. The observation that statistical
patterns in MSAs can be used to predict couplings has been widely used to infer structure
and function from protein families [88, 89, 90, 91].

3.3 Methods
To explore how attention and Potts models learn interactions in protein sequence data, we
compare a number of unsupervised methods which learn contacts with sequence-modeling
objectives. Many of these methods are based on the formalism of Markov Random Fields
(MRFs). We do not extend our analysis to supervised contact prediction models which take
MRF features as input, as these are outside the scope of this work.

Throughout this section, x = (x1, . . . , xL) is a sequence of length L from an alphabet of
size A. This sequence is part of an MSA of length L with N total sequences. Recall that a

1In the case of glycine, the alpha carbon is used.
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fully-connected Pairwise MRF over p variables X1, . . . , Xp specifies a distribution

pθ(x1, . . . , xp) =
1

Z
exp

(∑
i<j

Eθ(xi, xj)

)
, (3.1)

where Z is the partition function and Eθ(xi, xj) is an arbitrary function of i, j, xi and xj.
For all models below, we can introduce an explicit functional Eθ(xi) to capture the marginal
distribution of Xi. When introduced, we parametrize the marginal with Eθ(xi) = bi,xi

for
b ∈ RL×A.

Potts Models

A Potts model is a fully-connected pairwise MRF with L variables, each representing a
position in the MSA. An edge (i, j) is parametrized with a matrix W ij ∈ RA×A. These
matrices are organized into an order-4 tensor which form the parameters of a Potts model.
Note that W ij = W ji. The energy functional of a Potts model is given through lookups,
namely

Eθ(xi, xj) = W ij(xi, xj). (3.2)

Factored Attention

Factored attention has two advantages over Potts for modeling protein families: it shares a
pool of amino acid feature matrices across all positions and it estimates O(L) parameters
instead of O(L2).

Sharing amino acid features. Many contacts in a protein are driven by similar
interactions between amino acids, such as many types of weakly polar interactions [92, 93].
If two pairs of positions (i, j) and (l,m) are both in contact due to the same interaction, a
Potts model must estimate completely separate amino acid features W ij and W lm. In order
to share amino acid features, we want to compute all energies from one pool of A×A feature
matrices. The simplest way to accomplish this is by associating an L× L matrix A to every
A× A feature matrix WV . For H such pairs (A,WV ), we could introduce a factorized MRF:

Eθ(xi, xj) =
H∑

h=1

symm
(
softmax

(
Ah
))

ij
W h

V (xi, xj). (3.3)

A row-wise softmax is taken to encourage sparse interactions and aid in normalization. This
model allows the pairs (i, j) and (l,m) to reuse a single feature W h

V , assuming Ah
ij and Ah

lm

are both large.
Scaling linearly in length. Both Potts and the factorized model in Equation 3.3 have

O(L2) parameters. However, contacts are observed to grow linearly over the wide range
of protein structures currently available [94, 95]. Given that the number of interactions
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we wish to estimate grows linearly in length, the quadratic scaling of these models can be
greatly improved. One way to fix this is by introducing the factorization A = WQW

T
K , where

WQ,WK ∈ RL×d. We use the subscripts Q, K, and V in analogy with the “Query”, “Key”,
and “Value” nomenclature from the attention literature [27]. As before, we employ a row-wise
softmax for sparsity and normalization. Combining feature sharing with linear length scaling
leads to factored attention, defined in Equation 3.4.

Like Potts, factored attention is a fully-connected pairwise MRF with L variables. The
parameters of this model consist of H triples (WQ,WK ,WV ), where WQ,WK ∈ RL×d; WV ∈
RA×A; and d is a hyperparameter. Each such triple is called a head and d is the head size.
Unlike a Potts model, the parameters for each edge (i, j) are tied through the use of heads.
The energy functional is

Eθ(xi, xj) =
H∑

h=1

symm
(
softmax

(
W h

QW
h
K

T
))

ij
W h

V (xi, xj), (3.4)

where symm(M) = (M +MT )/2 ensures the positional interactions are symmetric.
Adding sequence-dependent interactions leads to standard attention, see Appendix B.1.

Single-layer attention

Our single-layer attention model consists of a single Transformer encoder layer: an atten-
tion layer followed by a dense layer, with layer normalization [96] to aid in optimization.
Transformer implementations typically use a sine/cosine positional encoding [27] or learned
Gaussian positional encoding [97], rather than the one-hot positional encoding used in our
single-layer models.

Self-Supervised Losses. Given an MSA, many standard methods estimate Potts model
parameters through pseudolikelihood maximization [95, 76]. On the other hand, BERT-like
attention-based models are typically trained with variants of masked language modeling [26].
Pseudolikelihood is challenging to compute efficiently for generic models, unlike the masked
language modeling loss. Both of these losses require computing conditionals of the form
pθ(xi|x\M), where M is a subset of {1, . . . , L} containing i. The losses LPL and LMLM for
pseudolikelihood and masked language modeling, respectively, are

LPL(θ;x) =
L∑
i=1

log pθ(xi|x\i), LMLM(θ;x,M) =
∑
i∈M

log pθ(xi|x\M).

Regularization for Potts and factored attention are both based on MRF edge parameters,
while single-layer attention is penalized using weight decay. More details can be found in
Appendix B.2.
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Pretraining on Sequence Databases

All single-layer models are trained on a set of evolutionarily related sequences. Given a large
database of protein sequences such as UniRef100 [98] or BFD [9, 99], these models cannot
be trained until significant preprocessing has been done: clustering, dereplication of highly
related sequences, and alignment to generate an MSA for each cluster. In contrast, the
self-supervised approach taken by works such as Refs. [81, 54, 34, 31] applies BERT-style
pretraining directly on the database of proteins with minimal preprocessing.

Given a new sequence of interest and a database of sequences, single-family models require
more steps for inference than pretrained Transformers. To apply a single-family model, one
must query the database for related sequences, dereplicate the set, align sequences into an
MSA, then train a model to learn contacts. On the other hand, a Transformer pretrained on
the database simply computes a forward pass for the sequence of interest and its attention
activations are used to predict contacts. No explicit querying or aligning is performed.

Extracting Contacts

Potts. We follow standard practice and extract a contact map Ĉ ∈ RL×L from the order-4
interaction tensor W by setting Ĉij = ∥W ij∥F .

Factored Attention. Since factored attention is a pairwise MRF, we can compute its
order-4 interaction tensor W and use the same procedure as Potts. See Equation B.2.

Single-Layer Attention. To produce contacts for an MSA, we compute attention maps
from only the positional encoding (without sequence) and average attention maps from all
heads. Each single-layer attention model is trained on one MSA, so the positional encoding
is a feature shared by all sequences in the MSA.

ProtBERT-BFD. We extract contacts from ProtBERT by averaging a subset of attention
maps for an input sequence x. Of the 16 heads in 30 layers, we selected six whose attention
maps had the top individual contact precisions over 500 families randomly selected from the
Yang et al. [80] dataset. Predicted contacts for x are given by averaging the L× L attention
maps from these six heads, then symmetrizing additively. See Appendix Table B.1.

Average Product Correction (APC). Empirically, Potts models trained with Frobenius
norm regularization have artifacts in the outputs Ĉ. These are removed with the Average
Product Correction (APC) [100]. Unless otherwise stated, we apply APC to all extracted
contacts.

3.4 Results
Experimental Setup. We use a set of 748protein families from Ref. [80] to evaluate

all models. For Potts models and single attention layers, we train separate models on each
individual MSA. ProtBERT-BFD is frozen for all experiments. We train models using
PyTorch Lightning [101] and Weights and Biases [102]. We extract contacts from each model
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Figure 3.1: Predicted contact maps and Precision at L for each model on PDB entry 2BFW.
Blue indicates a true positive, red indicates a false positive, and grey indicates a false negative.

following the procedure outlined in Appendix B.6. We compare predicted contact maps Ĉ to
true contact maps C using standard metrics based on precision. A particularly important
metric is precision at L, where L is the length of the sequence [103, 104]. This is computed by
masking Ĉ to only consider positions ≥ 6 apart, predicting the top L entries to be contacts,
and computing precision. We provide more information on data and metrics in Appendix
B.4 and on model hyperparameters in Appendix B.8.

Attention assumptions reflected in 15,051 protein structures. We examine all
15,051 structures in the dataset in Ref. [80] for evidence of two key properties useful for
single-layer attention models: few contacts per residue and the number of contacts scaling
linearly in length. In Appendix Figure B.2, we see that 80% of the 3,747,101 million residues
in these structures have 4 or fewer contacts. Only 1.8% of residues have more than ten
contacts. This shows that the row-wise softmax, which encourages each residue to attend to
only a few other residues per-head, reflects structure found in the data.

Factored attention matches Potts performance on 748 families. Figure 3.1 shows
a representative sample of good quality contact maps extracted from all models. Figure
3.2a summarizes the performance of all models over the set of 748protein families. Factored
attention, Potts, and ProtBERT-BFD have comparable overall performance, with median
precision at L of 0.46, 0.47, and 0.48, respectively. Stratifying by number of sequences reveals
that ProtBERT-BFD has higher precision on MSAs with fewer than 256 sequences. For
MSAs with greater than 1024 sequences, Potts, factored attention, and ProtBERT-BFD have
comparable performance. Single-layer attention is uniformly worse over all MSA depths.

Next, we evaluate the impact of sequence length on performance. Figure 3.2b shows that
factored attention and Potts achieve similar precision at L over the whole range of family
lengths, despite factored attention having far fewer parameters for long families. This shows
that factored attention can successfully leverage sparsity assumptions where they are most
useful.

Long-range contacts are particularly important for downstream structure-prediction
algorithms – long-range precision at L/5 is reported in both CASP12 and CASP13 [103,
104]. Figure 3.3 breaks down contact precisions based on position separation into short
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Figure 3.2: Model performance evaluated on MSA depth and reference length. ProtBERT-
BFD has higher precision on MSAs with fewer than 256 sequences. For larger MSAs,
Potts, Factored Attention, and ProtBERT-BFD perform comparably. Across a variety of
protein lengths, Factored Attention performs comparably to Potts with substantially fewer
parameters.

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
at

L
/5

(a) Short-range

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
at

L
/5

(b) Medium-range

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
at

L
/5

(c) Long-range

Figure 3.3: Contact precision for all models stratified by the range of the interaction, with the
same color correspondence as in Figure 3.2a. Potts, Factored Attention, and ProtBERT-BFD
perform comparably for long and medium-range contacts, while ProtBERT-BFD has slightly
better precision on short-range contacts.

(6 ≤ sep < 12), medium (12 ≤ sep < 24), and long (24 ≤ sep). We see that ProtBERT-BFD
performs best on short-range contacts, with a median increase of 0.068 precision at L/5. On
long-range contacts, there is no appreciable difference in performance to Potts and factored
attention. Across the range of contact bins, factored attention and Potts perform very
similarly.

Fewer heads can match Potts on L/5 contacts. We probe the limits of parameter
sharing by lowering the number of heads in factored attention and evaluating whether fewer
heads can be used to precisely estimate contacts. Figure 3.4a shows that 128 heads can be
used to estimate L/5 contacts as precisely as Potts over the full set of 748 families. In Figure
3.4b, we see that factored attention with 32 and 64 heads is still able to achieve reasonable



CHAPTER 3. SIMPLIFIED ATTENTION MODELS OF PROTEINS 26

0.0 0.5 1.0
Potts

0.00

0.25

0.50

0.75

1.00

Fa
ct

or
ed

A
ttn

(H
=

12
8)

256

1024

4096

16384

#
of

M
SA

se
qu

en
ce

s

(a) 128 heads versus Potts P@L/5

8 16 32 64 128 256 512 Potts
Number of heads

0.00

0.25

0.50

0.75

1.00

Pr
ec

is
io

n
at

L
/5

(b) P@L/5 for varying number of heads.

Figure 3.4: Examining impact of number of heads on precision at L/5. Left: Comparing
performance of Potts and 128 heads over each family shows comparable performance. Right:
Precision at L/5 drops off slowly until 32 heads, then steeply declines beyond that.
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(b) Training dynamics of models on 3n2a.

Figure 3.5: Factored attention with 4 heads can learn the top L/5 contacts on PDB 3n2a.

overall performance compared to Potts. 32 and 64 heads have precision at L/5 at least as
high as Potts for 329 and 348 families, respectively. If we wish to recover the top L contacts,
256 heads are required to match Potts across all families, as seen in Appendix Figure B.3.
Having more heads than 256 does not further increase performance. Intriguingly, Appendix
Figure B.4 demonstrates that both Spearman and Pearson correlation between the order-4
interaction tensors of factored attention and Potts improve even when increasing to 512 heads.
We do not observe the same trends for increasing head size, as shown in Appendix Figure B.5

For some families, the number of heads can be reduced even further. We show an example
on the MSA built for PDB entry 3n2a. In Figure 3.5a, we see that merely 4 heads are
required to recover L/5 contacts nearly identical to those recovered by Potts. This shows
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Figure 3.6: Precision at L comparison, which illustrates that a single set of frozen value
matrices can be used for all families.

that shared amino acid features and interaction parameters can enable identical performance
with a 300× reduction in parameters. The training dynamics of these models are shown
in Figure 3.5b. Both factored attention with 256 heads and Potts converge after roughly
100 gradient steps, whereas factored attention with 4 heads requires nearly 10,000 steps to
converge. In Appendix Figure B.6, we show that the top L contacts are significantly worse
for 4 heads compared to Potts.

One set of amino acid features can be used for all families. Thus far we have only
examined models that share parameters within single protein families. Since ProtBERT is
trained on an entire database, it can leverage feature sharing across families to attain greater
parameter efficiency and improved performance on small MSAs.

To explore the possibility that attention can share parameters across families, we train
factored attention using a single set of frozen value matrices. We first train factored attention
normally on 3n2a with 256 heads, then freeze the learned value matrices for the remaining
747 families. The query and key parameters are trained normally. In Figure 3.6, we compare
the precision at L of factored attention with frozen 3n2a features to that of factored attention
trained normally. Using a single frozen set of features results in only 6 families seeing precision
at L decrease by more than 0.05, with a maximum drop of 0.11. This suggests that, even for
a single-layer model, a single set of value matrices can capture amino acid features across
functionally and structurally distinct protein families.

Factored attention reduces total parameters estimated. For an MSA of length L
with alphabet size A, Potts models require

(
L
2

)
A2 parameters. Factored attention with H

heads and head size d requires H(2Ld+ A2) parameters. In Figure B.7, we plot number of
parameters versus length for various values of H and d = 32. Potts requires a total of 12
billion parameters to model all 748families. Factored attention with 256 heads and head size
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Figure 3.7: Effect of loss on precision at L over many families. Pseudolikelihood has a uniform
but small benefit over masked language modeling for both models.

32 has 3.2 billion parameters; lowering to 128 heads reduces this to 790 million. Half of this
reduction comes from 107 families of length greater than 400. ProtBERT-BFD is the most
efficient, with 420 million parameters.

Impact of training loss function. The choice of loss function had a uniform but small
impact for factored attention and Potts. As seen in Figure 3.7, pseudolikelihood training
slightly improves contact accuracy over masked language modeling training.

Ablations. APC has a considerable impact on both Potts and factored attention, creating
a median increase in precision at L of 0.1 and 0.07, respectively. The effect of APC is negligible
for single-layer attention and ProtBERT. Addition of the single-site potential bi increases
performance slightly for attention layers, but not enough to change overall trends. To compare
to ProtBERT-BFD, we train our single-layer attention models on unaligned families and
found that performance degrades significantly. See Appendix Figures B.8-B.10.

3.5 Discussion
We have shown that single-layer factored attention models and the ProtBert-BFD Transformer
achieve performance comparable to Potts models on unsupervised contact extraction. We have
also shown that the assumptions encoded by attention reflect important properties of protein
families. These results suggest that attention has a natural role in protein representation
learning, without analogy to attention’s success in the domain of NLP.

Our results also show that hierarchical signal within and across families can be captured
by even simple attention models. The MSA Transformer [105] explicitly ties weights within
families to achieve improved results on contact extraction, showing that modeling of hier-
archical structure is beneficial for larger models trained on entire databases. There have
been extensive efforts to organize the relationships between protein families and folds, most
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notably the SCOP [106] and CATH [107] hierarchies. Further leveraging such rich structure
will be essential to the development of powerful protein representations.
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Chapter 4

Tuned Fitness Landscapes for
Benchmarking Model Guided Protein
Design

This chapter is based on collaborative work with Atish Agarwala, David Belanger, Lucy
Colwell and Yun S. Song, and is available as a preprint on bioRxiv [108].

4.1 Introduction
Directed evolution (DE) [109, 110, 2] has revolutionized bioengineering, enabling the de-
velopment of proteins with novel function across industries including food, chemicals, and
therapeutics [110, 111, 112]. Part of the power of directed evolution is its simplicity: syn-
thesize a set of variants, screen them for the desired function, induce mutagenesis in the
top variants that passed the screen and repeat. This selective pressure pushes the variants
towards the desired activity without requiring any prior knowledge of how mutations affect
function. We can view DE as a genetic algorithm exploring a high-dimensional landscape,
where higher points correspond to greater levels of desired activities. DE works under the
assumption that functional landscapes are relatively smooth [2, 113], that is, combining
high-performing mutations results in further improved variants.

With sufficient experimental throughput, DE can successfully climb smooth fitness land-
scapes. However, testing a set of variants for activity is a costly and time-consuming process,
requiring specialized laboratory expertise. For example, experimental throughput to test the
turnover rate of an enzyme can be on the order of tens of variants per round over a 10-round
campaign [114]. Each inactive design comes at a great cost, not only because of the cost of the
single negative result, but also comes at an opportunity cost as the inactive variant cannot be
leveraged for designs in future rounds of DE. Thus, a practitioner wants to make efficient use
of their experimental budget by carefully curating the designed variants. Guiding the designs
can be done with rational design, which uses an understanding of the protein’s structural and
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functional properties to avoid poor designs. However, these properties are often unknown:
an arbitrary wildtype starting sequence may not have any associated structure [37], or any
characterization besides its homology to other sequences. To gain the understanding that
would enable rational design would require experimental characterization which could be
even more costly than the rest of the protein design campaign.

Effectively exploring rough (i.e., not smooth) landscapes with limited experimental
throughput is a challenge for DE [115, 116, 117]. Thankfully, the confluence of advancements
in DNA synthesis (bespoke oligonucleotide sequences), DNA sequencing (high throughput
screens), and machine learning have enabled a new paradigm of machine learning guided
directed evolution (MLDE) [118, 119, 120, 121] which can address the challenge of exploring
rough landscapes with limited data. In each round of MLDE, a set of (variant, activity) pairs
are collected, which a practitioner can use to train a genotype-phenotype model to predict
the effect of variants. In the next round, that model can be used to propose candidates (see
Figure 1 in [118]). MLDE has been successfully applied to designing proteins, such as AAV
capsids with preferential delivery to specific organs in the body [122, 123], or increasing the
fluorescence of GFP [124].

Despite early successes, there is no consensus on best practices for MLDE. There are
many decisions involved in the design of an MLDE pipeline. What data should be collected?
Which model class should be used? What optimization objective should be used for model
training? How should models be selected? How should proposals be generated using a trained
model? How does one trade off between “exploiting” model confidence and “exploring” regions
of model uncertainty when synthesizing the next round of designs [125, 126]? Each choice
interacts nonlinearly with every other choice, complicating the meta-optimization problem.

Running experiments is expensive, so it is essential to test the pipeline before using
it in a new design campaign. One approach is to use empirical landscapes from publicly
available experimental datasets. However, these datasets are limited by the prohibitive cost of
producing enough high-quality data to benchmark an MLDE pipeline across multiple rounds.
Datasets like [127, 128, 119, 123, 129] curate the highest quality protein function datasets
from Deep Mutational Scanning [130], but focus on one- or two-mutation regions around a
wildtype sequence [22]. Other landscapes contain all possible multi-mutants, but only cover
a small portion of the overall protein (4 positions of the binding domain (B1) of protein G
[131]), or test a limited allele vocabulary [132].

In parallel with deeply characterized empirical landscapes, synthetic landscapes are being
explored as testing grounds for MLDE [133, 126]. Synthetic landscapes are defined by a
software function that can be queried for any sequence of interest [134, 135, 133, 136, 125,
116, 137]. In this paper, we propose a specific synthetic landscape with two key properties:

• Properties grounded in the statistics of real protein families.

• Tunable, interpretable difficulty to match a range of plausible optimization land-
scapes.
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To obtain these properties, we introduce and validate an MLDE benchmarking framework
called SLIP: “Synthetic Landscape Inference for Proteins.” SLIP is a set of synthetic fitness
landscapes based on Potts models [138, 139, 15, 17, 18], combined with utilities for tuning
the landscape difficulty. SLIP is open-source and is available at https://github.com/
google-research/slip.

4.2 Background and Related Work
We define a fitness landscape F as a scalar-valued function over sequences x of length L with
A alleles at each position. In practice, “fitness” is used to refer to a molecular phenotype (e.g.,
fluorescence) or organismal fitness (e.g., reproductive rate). Empirical landscapes measure
the underlying fitness through a noisy observation process. Our synthetic fitness landscapes
refer to the underlying, noiseless quantity.

We will consider a sequence design process which starts at “wildtype” x0, which has allele
ai at site i. The goal of the design process is to maximize the fitness (as opposed to the
minimization of the loss function that occurs in traditional supervised learning). Therefore,
we focus on the fitness gain F(x) − F(x0). A successfully designed sequence will, at a
minimum, display F(x)−F(x0) > 0.

Epistasis and Landscape Ruggedness

In order to test an MLDE pipeline, we need landscapes that cannot be effectively navigated
without guidance from an ML model. Thus it is useful to tune the nonlinearity (or “difficulty”)
of a landscape. Two basic quantities we can use to understand the difficulty of task are 1)
the single-mutant effects and 2) pairwise epistasis.

Single-mutant effects.

Letting xiβ denote the sequence obtained by mutating the wildtype allele at site i to allele β,
the single mutant effect siβ is defined as:

siβ = F(xiβ)−F(x0). (4.1)

Landscapes with many adaptive single mutations (site-allele pairs where siβ > 0) tend to be
easier to optimize.

Pairwise epistasis.

If the fitness of multi-mutants was given by the sum of single-mutant effects, then the
landscape would be linear and easy to optimize – simply combining adaptive single mutants
would lead to good sequences x with high values of F(x). Nonlinear interactions between
mutations make optimization more difficult. These nonlinear effects are known as epistasis, a

https://github.com/google-research/slip
https://github.com/google-research/slip
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pervasive property in empirical landscapes [115, 140, 141, 142, 143, 144]. For two mutations
ai → β at site i and aj → γ at site j, we can define the pairwise epistasis ϵiβ,jγ by

ϵiβ,jγ = F(xiβ,jγ)−F(x0)− (siβ + sjγ) . (4.2)

In other words, pairwise epistasis is the part of the fitness difference between xiβ,jγ and x0

which cannot be explained by the single mutants. Deleterious epistatic interactions between
adaptive single mutants (known as reciprocal sign epistasis) make it more difficult to combine
good individual mutations to obtain good multi-mutants, confounding a linear model of the
landscape.

Note that both pairwise epistasis and the single-mutant fitness differences must be defined
relative to a reference sequence - in our case, the wildtype x0.

Synthetic Landscapes

Synthetic landscapes are designed so that F can be evaluated quickly for arbitrary sequences,
even if computing all LA values is prohibitive (in memory or time). Many of these landscapes
were originally designed to study evolutionary processes [145, 116, 137].

More recently, synthetic landscapes have been applied to benchmark sequence design
algorithms [133, 126, 136]. We can divide synthetic landscapes into four broad, overlapping
classes: supervised neural models, biophysical models, random models, and graphical models,
briefly described below.

Supervised neural models.

Supervised neural models are trained on experimental data to predict a regression output [146,
34, 147, 148]. Of particular note is the structural score given by AlphaFold2, which can be
used as an optimization objective to find sequences likely to fold into a desired structure [149,
147]. If the model is sufficiently good, model outputs can be used as a synthetic replacement
for the experimental target. Neural models are fast to evaluate with a single forward pass.
However, they can exhibit pathological behavior when used as optimization objectives, giving
high scores to unrealistic sequence [150, 151] or giving outsize influence to irrelevant parts of
the sequence [152]. While trained neural models can exhibit high levels of ruggedness [153],
it is not straightforward to tune the optimization difficulty of a neural landscape.

Biophysical models.

Biophysical models explicitly model the energetic interactions in the protein. Prominent
examples of biophysical models are ViennaRNA [146] and Rosetta [154], which provide a score
for an input sequence representing the free energy of the folded structure at equilibrium. These
models return globally characterized landscapes without unexpected pathologies. However,
they require a computationally expensive optimization procedure to report the free energy
minimum for each query sequence. Since physical assumptions like physical constants and
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potential energy functions are baked into the model, there is no principled tuning procedure
to make the landscapes more difficult to optimize.

Random models.

Random models generate a landscape by drawing a random function on the configuration
space {1, . . . , A}L with a particular distribution. The NK-model explicitly models order-K
interactions for a sequence of length N to provide tunably rugged fitness landscapes which
exhibit high-order correlations [134, 135]. The generalized NK-model, which explicitly models
sparse blocks of interacting positions, has been shown to reflect the sparsity of empirical
fitness function when conditioned on real structures [155]. Distance-dependent models [117]
have interactions at all orders, and are defined by fixing a functional form for the covariance
between sequences as a function of genetic distance. All of these models have been applied to
study evolutionary dynamics, and are typically not fit to data.

Graphical models.

Graphical models explicitly represent the interactions between positions in the sequence as
edges in a graph. Profile HMMs do not model epistasis, and only model first-order interactions
(i.e., amino acid distributions at aligned positions). Despite this, they serve as powerful
protein family classifiers [13], and HMM likelihoods have been used as synthetic optimization
objectives [133]. Profile HMMs can also flexibly handle insertions and deletions, and do not
require aligned sequences as input. We describe in detail below a graphical model known as
a Potts model.

Potts Models of Protein Families

Definition.

For a family of proteins of length L with A possible alleles at each position, a Potts model
defines a probability distribution over sequences in the family as

p(x) =
1

Z
exp (F(x)) , (4.3)

where F is a negated statistical energy, and the partition function Z is a normalization
constant such that the p(x) sum to 1. In a Potts model, for an input one-hot encoded
sequence x ∈ RL×A, F is given by the sum over the marginal effects and pairwise interactions:

F(x) =
L∑
i=1

A∑
α=1

hiαxiα +
1

2

L∑
i,j=1

A∑
α,β=1

Hiα,jβxiαxjβ (4.4)

where h = (hiα) is a tensor of dimension L×A representing marginal terms and H = (Hiα,jβ)
is a symmetric tensor of dimension L×L×A×A representing pairwise coupling terms. The
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parameters of a Potts model can be fit using a set of aligned sequences; see Appendix C.1 for
details.

Modeling coevolution.

There has been extensive work establishing that Potts models learn statistics grounded in
protein structure and function. Potts models are useful as unsupervised structure predictors
[15, 16, 17, 18], and are competitive with neural unsupervised structure predictors [156]
on families with large, diverse alignments. The statistical energy of protein variants scored
by a Potts model has been shown to correlate well with empirical fitness [21]. When the
statistical energy is included as an additional feature to a regression model, it has been shown
to improve predictive performance on empirical landscapes [22]. Used as generative models,
Potts models have been shown to propose functional variants of a given protein target [20].
Synthetic sequences evolved in silico on a Potts landscape have been shown to correlate with
summary statistics with in vitro evolved sequences [157]. The parameters of the Potts model
can also be used as input featurizations that improve performance on downstream tasks [158,
159].

4.3 Methods: Tuned Quadratic Landscapes
We can use the statistical energy of the Potts model as the fitness function F to define a
synthetic landscape. In [133], for example, the authors introduced a “PDB-Ising” synthetic
fitness landscape, which combined the contact map of a protein with standard pair potentials
for amino acid substitution to create a simple quadratic landscape with pairwise interactions.
We will instead derive model parameters from alignment data, which has the advantage
that the resulting synthetic landscape exhibits correlations grounded in the coevolutionary
couplings in that family.

While useful in their own right, Potts models derived from alignment data are not
challenging synthetic landscapes, as they can be optimized by combining top mutations one
at a time (akin to an in silico DE algorithm). We quantify these shortcomings in Section 4.5.
To benchmark the performance of MLDE pipelines on more difficult optimization scenarios,
we require synthetic landscapes where strategies guided by nonlinear models can substantially
outperform those guided by linear models. In what follows, we develop a framework for
tuning quadratic landscapes to a desired level of difficulty.
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Tuning Model Statistics

For a fitness function defined by a Potts model, the single-mutant and pairwise epistasis
terms can be written explicitly in terms of the model parameters h and H:

siβ = hiβ − hiai +
L∑

j=1

(
Hiβ,jaj − Hiai,jaj

)
, (4.5)

ϵiβ,jγ = Hiβ,jγ − Hiβ,jaj − Hiai,jγ + Hiai,jaj , (4.6)

where again ai is the allele of the wildtype x0 at site i. Note that single-mutant effect siβ
depends on both the linear and quadratic parameters of the Potts model. See Appendix C.2
for a detailed derivation.

Once we reparameterize the Potts model in terms of the single-mutant and pairwise
epistasis terms, the fitness decomposes into the form

F(x)−F(x0) =
∑

(i,β)∈M

siβ +
1

2

∑
(i,β),(j,γ)∈M :(i,β)̸=(j,γ)

ϵiβ,jγ, (4.7)

where M is the set of mutations in x encoded as site-allele pairs (i, β).
Introducing shift (µs, µϵ) and scale (λs, λϵ) parameters for single-mutant and epistatic

terms, we can parameterize a family of tuned fitness functions F̃ with parameters s̃ and ϵ̃
given by

s̃iβ = λs(siβ + µs) and ϵ̃iβ,jγ = λϵ(ϵiβ,jγ + µϵ). (4.8)

The four parameters (µs, µϵ, λs, λϵ) allow for the mean and variance of both s̃ and ϵ̃, taken
over position-allele pairs, to be independently tuned. This allows us the flexibility of changing
the difficulty of the landscape (e.g., by making epistasis more negative on average) while
maintaining much of the structure of the original problem (e.g., preserving the coevolutionary
couplings).

Epistatic Horizon

For untuned landscapes, the single-mutant fitness effects approximate the double-mutant
fitness effects well (Figure 4.1, blue), meaning the landscape is very linear. If combining
random adaptive single mutants (mutations where siβ > 0) is not a viable strategy, a naïve
design strategy will struggle. For example, in Figure 4.1, points with siβ + sjγ > 0 but
F(x) − F(x0) < 0 (bottom right, in orange) would be candidate proposals by a naïve
algorithm that would fail an experimental screen on a rugged landscape. One way to quantify
the linearity (or non-linearity) of the landscape is to define an “epistatic horizon” Kepi – the
number of mutations after which the linear approximation breaks down. With an eye towards
tuning optimization difficulty, we define Kepi as follows.

Let s̄+ be the average of siβ over adaptive singles, and ϵ̄+,+ the mean epistatic effect
over random adaptive pairs. Then, the sequence design problem is difficult if the average
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Figure 4.1: Tuning the epistatic horizon increases the ruggedness of the resulting landscape.
Fitness F(x) of 5000 variants with 2 mutations (centered so that F(x0) = 0). The untuned
fitness landscape with epistatic horizon Kepi = 166 (blue) is roughly linear, while the tuned
fitness landscape with epistatic horizon Kepi = 8 (orange) exhibits more ruggedness. This
landscape is derived from the alignment for PDB id 3er7. Note that the untuned epistatic
horizon is greater than the length of the protein, Kepi = 166 > 118 = L.

interaction between individually good mutations is negative: ϵ̄+,+ < 0. Taking K random
adaptive mutations, the average change in fitness for a K-mutant xK is

E xK
[F(xK)−F(x0)] = Ks̄+ +

(
K

2

)
ϵ̄+,+. (4.9)

As K increases, the relative effect of epistasis grows relative to the single-mutant effects.
We can compute a crossover value when ExK

[F(xK)−F(x0)] = 0. Motivated by this example,
we define the epistatic horizon Kepi as the non-zero solution to the equation:

Kepis̄+ +
Kepi(Kepi − 1)

2
ϵ̄+,+ = 0. (4.10)

This definition suggests two ways in which synthetic landscapes can fail to be difficult for
MLDE:

• Kepi > L. In this case, the landscape is relatively linear at all relevant length scales.
Combining adaptive single mutants leads to adaptive multi-mutants even for a large
number of mutations.
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• Kepi < 0. In this case, ϵ̄+,+ is positive; that is, on average, adaptive single-mutants
combine to be better than the sum of their parts. In this case, combining adaptive
single-mutants also leads to adaptive multi-mutants, since typical pairs will interact
positively with each other.

All the untuned landscapes we studied have Kepi > L, and many also have Kepi < 0; see
Figure 4.1 and Appendix Table C.1. This means that the untuned landscapes are unsuitable
for testing MLDE pipelines as is.

However, we can use tuning parameters to adjust Kepi and generate landscapes which
are more non-linear and harder to optimize (Figure 4.1, orange). In the next section, we
derive a tuning procedure which adjusts Kepi while leaving many other statistics of the fitness
landscape fixed, thereby allowing us to benchmark MLDE pipelines.

Tuning Procedure

With four free parameters (two shift and two scale parameters), we can introduce additional
constraints on the fitness landscape. First, we normalize the landscape such that the single-
mutant effects have unit variance by setting λs = σ(s)−1, where σ(s) is the standard deviation
of the {siβ}. Second, we preserve the fraction of adaptive single mutants αs+ ≡ #{siβ >
0}/L(A− 1) by setting µs = 0. Finally, to preserve the relative magnitudes (i.e., the ratios)
of the pairwise epistasis terms, we set µϵ = 0. This leaves λϵ free. By fixing a target Kepi, we
can use Equation (4.10) to solve for λϵ.

To summarize: given a target epistatic horizon Kepi > 0, the tuning parameters are given
by equations:

µs = µϵ = 0, (4.11)
λs = σ(s)−1, (4.12)

and
Kepiλss̄+ +

Kepi(Kepi − 1)

2
λϵϵ̄+,+ = 0, (4.13)

where s̄+ and ϵ̄+,+ are the values for the untuned landscape. Note that other tunings are
possible for a given Kepi. This specific tuning scheme was chosen to preserve as much of the
co-evolutionary structure of the Potts model as possible.

4.4 Methods: In silico Validation
To validate that our tuned synthetic landscapes are sufficiently difficult, we aim to create
landscapes where nonlinear models outperform linear (naïve) models on sequence design
tasks. To do so, we design an experimental framework which evaluates how effective linear
and nonlinear models are at using training data to accurately rank design candidates.

We use the following procedure for each untuned landscape; see Figure 4.2 for a schematic:
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Figure 4.2: In silico validation workflow. Panel A shows the tasks that are performed once
for each PDB ID. After training a Potts model on an aligned set of sequences, we derive a set
of evaluation sequences. Panel B shows the tasks that are performed for each replicate of the
regression experiment: we tune the landscape, sample a set (x, y) ∈ D of training sequences x
with their associated synthetic fitnesses y, train a model on D, and then evaluate the model
predictions on the evaluation sets. The evaluation sets are fixed for all landscapes derived
from the same untuned Potts initialization.

1. Tune the epistatic horizon to Kepi = 2ℓ for ℓ ∈ {1, 2, . . . , 10} as in Section 4.3. Center
at F(x0) = 0.

2. Sample a dataset D = {(x, y)} of sequences x with their associated fitness y, where
|D| = 5000. Each sample (x, y) is obtained by sampling a number of mutations from the
wildtype x0 uniformly at random from {1, 2, 3} and then sampling a variant uniformly
at random at the selected distance.

3. Train Ridge and convolutional neural network (CNN) regression models across many
different hyperparameter choices.

4. For the best performing model of each type, compute a paired performance metric on
the evaluation set.
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Untuned Landscapes

To select a suitable set of synthetic landscapes, we first initialize h and H by training Potts
models on alignments of protein sequences. We choose protein targets to span a range of
functions, structural folds, and primary sequence lengths, while ensuring the resulting Potts
model has excellent contact accuracy on a high resolution structure. From the 748 Potts
models trained in [74], the models corresponding to the 5 PDB IDs in Figure 4.3 were selected
manually from the top performing models with respect to contact prediction accuracy. See
Appendix Figure C.1 for predicted contact maps. We set the wildtype sequence x0 to be the
alignment query sequence.

Evaluation Sets

We choose an evaluation set relevant for the objective of sequence design. Combining top
single mutations is a common strategy for proposing variants [112], and properly ranking
these proposals is directly relevant to the objective of MLDE. For each (untuned) landscape,
we construct evaluation sets at mutation distance 6 from the wildtype by taking the top 20
single mutants, combining them to construct variants at the desired distance, and then taking
a random subset of the desired size (200). Because the set of top 20 single mutants does
not change in response to tuning (i.e., single-mutant rankings are preserved by tuning), the
evaluation set for a given PDB ID is fixed to the same set of 200 sequences (note that their
fitness F̃(x) changes with tuning). See Appendix C.1 for a discussion of other evaluation
sets.

Models

Ridge regression.

Our baseline linear model uses the sklearn implementation of Ridge regression, which has
a single hyperparameter representing the L2 penalty. The grid of hyperparameters used
during model selection is reported in Appendix Table C.3. This is a strong baseline especially
for landscapes where the level of epistasis is low. In addition, Hsu et al. [22] showed that
the ridge penalty induces a powerful inductive bias that generalizes to unseen mutations by
setting the effect of unseen mutations to the average effect seen at the same position. We
remove the intercept term, since centering ensures F̃(x0) = 0.

Convolutional Neural Network.

Convolutional neural networks (CNNs) have been used to great success in protein sequence
modeling [123, 160, 161], so we select them as our nonlinear model class. The CNN model
architecture is 3 layers of 1D convolutions, followed by a dense layer. On 3er7 (L = 118),
a CNN architecture with 32 filters, kernel size 5, and hidden size 64 results in a model
with 255,329 parameters. The CNN is trained using an Adam optimizer [162] to minimize
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Figure 4.3: Tuning the epistatic horizon interpolates between linear and non-linear model
performance on ranking combinations of 6 adaptive singles after training on 5000 examples.
The grey line shows ∆ρ = 0 for ease of visualization of the threshold for one model outper-
forming the other. The orange line shows the difference between maximum CNN Spearman’s
ρ and maximum Ridge Spearman’s ρ, with error bands showing ±1 standard deviation across
20 random training set replicates. The x-axis corresponds to inverse epistatic horizon, so
that more linear landscapes are to the left and more non-linear landscapes are to the right.
The blue band shows model performance on the untuned landscape. The blue star shows the
position on the x-axis which corresponds to the magnitude of the untuned epistatic horizon
|Kepi|.

MSE loss. We tune the learning rate, number of filters, batch size, and number of training
epochs. See Appendix Table C.4 for tuned hyperparameters and Appendix Table C.5 for
fixed hyperparameters.

Paired Performance Metrics

An important driver of variability in evaluation performance are the training and evaluation
sets. By keeping these fixed while allowing the model class to vary, we can isolate performance
differences due to modeling capacity. For each sampled training set, we select the best Ridge
model and the best CNN model in terms of ranking the given evaluation set. We then
compare the computed performance metric on the given evaluation set and take the difference.
“Differential Spearman ρ” (or ∆ρ) refers to the difference, given a fixed training set, between
the maximum CNN Spearman ρ and the maximum Ridge Spearman ρ on the evaluation set.
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4.5 Results

Untuned Landscapes are Linear

In Figure 4.1, we plot the variant fitness as a function of the sum of constituent single-mutant
effects. The untuned landscape fitness (in blue) follows a linear trend, where the fitness
of a double-mutant can be well predicted by the sum of constituent single-mutant effects.
Compared to the tuned landscape, the untuned landscape exhibits much less ruggedness.
In Figure 4.3, the blue line corresponds to the differential performance of the CNN model
compare to the Ridge model on the untuned landscape. Across all untuned landscapes except
3gfb, the CNN models have a mean performance change ∆ρ < 0, i.e., that the CNN does not
significantly boost performance on ranking combinations of adaptive singles compared to the
Ridge model. This shows that untuned Potts models do not provide landscapes useful for
benchmarking sequence design guided by nonlinear models, motivating the development of
our tuning framework.

Epistatic Horizon Tunes the Nonlinearity of the Landscape

We aim to validate that our tuning framework can create fitness landscapes difficult enough
to require nonlinear models. In Figure 4.3, for four of the five PDB IDs, as the epistatic
horizon increases (to the left in the figure), evaluation set performance skews in favor of the
Ridge model, confirming that as the landscape is tuned to be more linear, linear models
are preferred to nonlinear models. Conversely, as the epistatic horizon decreases (to the
right in the figure) and the landscape becomes dominated by nonlinear effects, evaluation set
performance shifts to favor the CNN model. The intermediate-length proteins (3er7, 3my2,
5hu4 – the middle three panels of Figure 4.3), show consistent behavior, indicating that the
epistatic horizon is a generalizable metric of landscape difficulty.

On the intermediate-length proteins 3er7, 3my2, and 5hu4, Spearman’s ρ improves for
the nonlinear model by between 0.2 and 0.4. For example, 3er7 shows an improvement
in evaluation set performance from 0.1 to 0.3 (Appendix Figure C.2). For comparison,
the authors in [118] found that zero-shot predictors on the 4-position GB1 landscape with
a Spearman’s ρ of 0.2 are sufficient to substantially improve sequence design. Across all
landscapes, all models get worse with increased tuning, indicating that decreasing the epistatic
horizon increases the landscape difficulty for nonlinear as well as linear models (see Appendix
Figure C.2 for unpaired model performance). For horizons Kepi ≫ L, the Ridge model
achieves near perfect ranking accuracy ρ ≈ 1 (see Appendix Figure C.2).

On 3gfb (far right in Figure 4.3), differential model performance remains roughly constant
around ∆ρ = 0.2 across all tested tunings. On 3bfo (the first panel of Figure 4.3), the shortest
protein, differential model performance favors linear models for increased epistatic horizons,
but does not achieve a regime where nonlinear models significantly outperform linear models.
This may be due to CNN models overfitting on the short protein.
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4.6 Discussion and Future Work
Using nonlinear models to guide sequence design has made a large impact in practice [120,
119, 123, 163], but many questions still remain in regard to how to use these models as part
of an MLDE pipeline. Our experimental results validate that our quadratic landscape tuning
framework can generate synthetic landscapes which require nonlinear models for effective
optimization. By deriving our landscapes from Potts models trained on real alignments, we
ground the properties of our synthetic landscape in the structural and biochemical features
of real proteins. These two properties enable tuned quadratic landscapes to be used to
benchmark machine learning-guided protein design.

Our landscape tuning procedure relied on an optimization-motivated definition of the
epistatic horizon Kepi. There are other scenarios where a more general definition for Kepi

may be more relevant; for example, in a regression setting, the relevant crossover may be the
point at which the variance in nonlinear fitness components is more than the variance of the
linear components. Additionally, we focused on a tuning which increased the difficulty of
combining adaptive mutants; there are other forms of nonlinearity which make ML-aided
design more useful. One such situation is finding individually non-adaptive single mutants
which combine to make adaptive mutants. Our landscape tuning framework is flexible enough
to allow tuning of these types of properties.

Another frontier of ML for biological sequence design is making efficient use of labeled
data with protein-specific priors provided, for example, by large language models [34, 81,
28]. There is room for model development to incorporate priors that allow sequence models
such as CNNs to learn more nonlinear landscapes. By providing realistic datasets for model
training, tuned quadratic landscapes are a useful sandbox environment for proposing modeling
advancements that can take advantage of small datasets.

Optimizing MLDE pipelines involves more than tuning a neural network architecture. In
MLDE, design choices ranging from training set curation to sequence proposal distributions
can have a huge impact on the overall effectiveness of the pipeline. Benchmarking these
choices against tuned quadratic landscapes would allow practitioners of MLDE to understand
how to optimize their pipeline before having to collect expensive experimental data. Often,
a new protein design campaign will have very specific constraints, such as assay-specific
noise, or limitations on experimental throughput. Our tuned quadratic landscapes lend
themselves easily to multiple extensions that allow an MLDE practitioner to impose these
specific constraints and see how their pipeline performs. For a new design campaign with
a sequence alignment, a bespoke synthetic landscape can be derived directly to match the
structural constraints of the target. In addition, MLDE design choices can be correlated
with landscape difficulty by testing across a range of tuning parameters. We hope that the
benchmarks enabled by SLIP will further support the development of robust and efficient
methods for biological sequence design.
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Appendix A

Evaluating Protein Transfer Learning
with TAPE

A.1 Dataset Details
In Table A.1 we show the size of all train, validation, and test sets.

We provide further details about dataset sources, preprocessing decisions, data splitting,
and experimental challenges in obtaining labels for each of our supervised tasks below. For
ease of reading, each section starts with the following items:
(Dataset) The source of the dataset and creation of train/test splits.
(Labeling) The current approach to acquiring supervised labels for this task.

Secondary Structure Details

(Dataset) We use a training and validation set from Klausen et al. [59], which is filtered
such that no two proteins have greater than 25% sequence identity. We use three test sets,
CB513 [61], CASP12 [48], and TS115 [164]. The training set is also filtered at the 25%

Table A.1: Dataset sizes

Task Train Valid Test

Language Modeling 32,207,059 N/A 2,147,130 (Random) / 44,313 (Heldout)
Secondary Structure 8,678 2,170 513 (CB513) / 115 (TS115) / 21 (CASP12)
Contact Prediction 25,299 224 40 (CASP12)
Remote Homology 12,312 736 718 (Fold) / 1254 (Super) / 1272 (Family)
Fluorescence 21,446 5,362 27,217
Stability 53,679 2,447 12,839
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identity threshold with these test sets. This filtering tests the model’s ability to generalize
in the interesting case where test proteins are not closely related to train proteins.

(Labeling) Determining the secondary structure of a protein experimentally requires high-
resolution imaging of the structure, a particularly labor intensive task for structural
biologists. Imaging often uses Cryo Electron-Microscopy or X-Ray Crystallography, which
can take between weeks and years and can cost over $200, 000 [165].

Contact Prediction Details

(Dataset) We use training, validation, and test sets from ProteinNet [49], which uses a test
set based on the CASP12 [48] competition, with training and validation sets filtered at
the 30% sequence identity threshold. This tests the ability of the model to generalize to
proteins that are not closely related to any train proteins.

(Labeling) Determining the contacts of a protein requires knowing its full 3D structure. As
with secondary structure, determining the 3D structure requires imaging a protein.

Remote Homology Details

(Dataset) We use a training, validation, and test set from [63], derived from the SCOP 1.75
database [7] of hierarchically classified protein domains. All proteins of a given fold are
further categorized into related superfamilies. Entire superfamilies are held out from the
training set, allowing us to evaluate how the model generalizes across evolutionary distance
when structure is preserved.

(Labeling) Each fold is annotated from the structure of the sequence, which SCOP pulls
from the Protein DataBank [11, 7]. Finding new superfamilies with the same fold is
a challenging task, requiring sequencing in extreme environments as is often done in
metagenomics [166].

Fluorescence Details

(Dataset) We use data generated by an experimental technique called Deep Mutational
Scanning (DMS) [65]. This technique allows for extensive characterizations of small
neighborhoods of a parent protein through mutagenesis. We create training, validation, and
test splits ourselves, partitioning the data so that train and validation are in a Hamming
distance 3 neighborhood of the original protein, while test data is a sample from the
Hamming distance 4-15 neighborhood.

(Labeling) DMS is efficient for local characterization near a single protein, but its samples
become vanishingly small once neighborhoods start to expand outside of Hamming distance
2.



APPENDIX A. EVALUATING PROTEIN TRANSFER LEARNING WITH TAPE 59

Stability Details

(Dataset) We use data generated by a novel combination of parallel DNA synthesis and
protein stability measurements [67]. We create training, validation, and test splits ourselves,
partitioning the data so that training and validation sets come from four rounds of experi-
mental data measuring stability for many candidate proteins, while our test set consists of
seventeen 1-Hamming distance neighborhoods around promising proteins observed in the
four rounds of experimentation.

(Labeling) This approach for observing stability is powerful because of its throughput,
allowing the authors to find the most stable proteins ever observed for certain classes [67].
The authors observe that the computational methods used to guide their selection at each
stage could be improved, meaning that in this case better models could actually lead to
better labeled data in a virtuous cycle.

A.2 Featurization of Pretrained Models
We followed standard practice for feeding large pretrained models into downstream supervised
architectures. For the Transformer, ResNet, and UniRep we extracted a vector of dimension
512, 256 and 1900, respectively, at each position. For the LSTM and Bepler, we obtained
a forward and backward vector at each position, which we concatenated. This resulted in
vectors of dimension 2048 and 1024, respectively. For details on how these vectors were used
for downstream tasks, see the next section.

A.3 Supervised Architectures
For each task, we fixed one supervised architecture and tried one-hot, alignment-based,
and neural net based features. We did not perform hyperparameter tuning or significant
architecture optimization, as the main goal was to compare feature extraction techniques.

For each task we define the supervised architecture below. If this is a state of the art
architecture from other work, we highlight any novel training procedure or inputs they take.

Secondary Structure Architecture

We used the NetSurfP2.0 model from Klausen et al [59]. The model consists of two con-
volutional layers followed by two bidirection LSTM layers and a linear output layer. The
convolutional layers have filter size 32 and kernel size 129 and 257, respectively. The
bidirectional LSTM layers have 1024 hidden units each.

In the original model, the authors take in thfe outputs of an HMM-HMM alignment
method called HHblits [41] in addition to a one-hot encoding of the sequence, giving 50-
dimensional inputs at each position. They train the model on multiple tasks including
secondary structure prediction (3 and 8 class), bond-angle prediction, and solvent accessibility
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prediction. For clarity, we only compared to the model trained without the multitask training,
which in our experiments contributed an extra one to two percent in test accuracy. In addition
to multitask training, they balance the losses between different tasks to achieve maximum
accuracy on secondary structure prediction. All features and code to do the full multitask
training is available in our repository.

Contact Prediction Architecture

We used a supervised network inspired by the RaptorX-Contact model from Ma et al [73].
Since a contact map is a 2D pairwise prediction, we form a 2D input from our 1D features
by concatenating the features at position i and j for all i, j. This 2D input is then passed
through a convolutional residual network with. The 2D network contains 30 residual blocks
with two convolutional layers each. Each convolution in the residual block has filter size 64
and a kernel size of 3.

The original RaptorX method inputs uses alignment-based methods to find similar proteins,
then passes these through CCMpred [167] - a Markov Random Field based contact prediction
method. This outputs a 2D featurization including mutual information and pairwise potential.
This, along with 1D HMM alignment features and the one-hot encoding of each amino acid
are fed their network. Unfortunately the code and features are not publically available, so
we used the 1D alignment-based features available in ProteinNet [49] instead. While this
improved performance significantly, the numbers reported by RaptorX are higher than those
we obtained with our implementation.

Remote Homology Architecture

Remote homology requires a single prediction for each protein. To obtain a sequence-length
invariant protein embedding we compute an attention-weighted mean of the amino acid
embeddings. More precisely, we predict an attention value for each position in the sequence
using a trainable dense layer, then use those attention values to compute an attention-weighted
mean protein embedding. This protein embedding is then passed through a 512 hidden
unit dense layer, a relu nonlinearity, and a final linear output layer to predict logits for all
1195 classes. We note that Hou et al. [63] propose a deep architecture for this task and
report state of the art performance. When we compared the performance of this supervised
architecture to that of the attention-weighted mean above, the attention-based embedding
performed better for all featurizations. As such, we choose to report results using the simpler
attention-based downstream architecture.

The current state of the art method in this problem, DeepSF [63], takes in a one-
hot encoding of the amino acids, predicted secondary structure labels, predicted solvent
accessibility labels, and a 1D alignment-based features. In an ablation study, the authors
show that the secondary structure labels are most useful for performance of their model. We
report only one-hot and alignment-based results in the main paper to maintain consistency
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with alignment-based featurizations for other tasks. All input features used by DeepSF are
available in our repository.

Protein Engineering Architectures

Protein engineering also requires a single prediction for each protein. Therefore we use the
same architecture as we do for remote homology, computing an attention-weighted mean
protein embedding, a dense layer with 512 hidden units, a relu nonlinearity and a final linear
output layer to predict the quantity of interest (either stability or fluorescence).

Since we create these training, validation, and test splits ourselves, no clear previous state
of the art exists. Related work on protein engineering has used a similar architecture by
computing a single protein embedding followed by some form of projection (linear or with a
small feed forward network) [39, 54]. These methods also do not take in alignment-based
features and only use one-hot amino acids as inputs.

A.4 Training Details
Self-supervised models were all trained on four NVIDIA V100 GPUs on AWS for 1 week.
Training used a learning rate of 10−3 with a linear warm up schedule, the Adam optimizer,
and a 10% dropout rate. Since proteins vary in length significantly, we use variable batch sizes
depending on the length of the protein. These sizes also differ based on model architecture, as
some models (e.g. the Transformer) have significantly higher memory requirements. Specific
batch sizes for each model at each protein length are available in our repository.

Supervised models were trained on two GPUs until convergence (no increase in validation
accuracy for 10 epochs) with the exception of the memory-intensive Contact Prediction task,
which was trained on four GPUs until convergence. Training used a learning rate of 10−4 with
a linear warm up schedule, the Adam optimizer, and a 10% dropout rate. We backpropagated
fully through all models during supervised fine-tuning.

In addition, due to high memory requirements of some downstream tasks (especially
contact prediction) we use memory saving gradients [168] to fit more examples per batch on
the GPU.

A.5 Pfam Heldout Families
The following Pfam clans were held out during self-supervised training: CL0635, CL0624,
CL0355, CL0100, CL0417, CL0630. The following Pfam families were held out during self-
supervised training: PF18346, PF14604, PF18697, PF03577, PF01112, PF03417. First, a
“clan” is a cluster of families grouped by the maintainers of Pfam based on shared function
or evolutionary origin (see [58] for details). We chose holdout clans and families in pairs,
where a clan of novel function is held out together with a family that is similar in sequence
but different evolutionarily or functionally. This serves to simultaneously test generalization
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Table A.2: Results for small pretrained models on downstream supervised tasks

Method Structure Evolutionary Engineering

SS Contact Homology Fluorescence Stability

Transformer (small) 0.70 0.31 0.13 0.68 0.68
LSTM (small) 0.73 0.26 0.18 0.66 0.67
ResNet (small) 0.73 0.37 0.11 0.43 0.68

across large distances (entirely held out families) and between similar looking unseen groups
(e.g. the paired holdout clan and holdout family).

A.6 Bepler Supervised Training
We perform supervised pretraining using the same architecture described in Bepler et al.
[38]. We train on the same tasks, a paired remote homology task and contact map prediction
task. However, in order to accurately report results on downstream secondary structure,
contact map, and remote homology datasets, which were filtered by sequence identity, we
perform this same sequence identity filtering on the supervised pretraining set. This reduced
the supervised pretraining dataset size by 75% which likely reduced the effectiveness of the
supervised pretraining. Both filtered and unfiltered supervised pretraining datasets are made
available in our repository.

A.7 Model Size Ablation
In this benchmark we made the choice to train relatively large, 40 million parameter models
as larger models have been found to improve performance in other applications of deep
learning. To determine whether this trend holds for our benchmark, as well as to quantify the
performance difference, we evaluate smaller versions of our three models (the Transformer,
LSTM, and ResNet).

Our Transformer model has 6 layers, a hidden dimension of 256, a filter dimension of 512,
and 8 attention heads, for a total of 3,315,200 parameters. Our LSTM model has 3 layers
with 128 hidden units each, for a total of 796288 parameters. Our ResNet has 8 layers, a filter
size of 256, a kernel size of 3, and a dilation rate of 2, for a total of 3,268,992 parameters.
Each model was trained for 1,000,000 gradient updates on Pfam, in the same manner that
the corresponding large models were trained. Results are reported in Table A.2.

We note several interesting phenomena from this table. First, we see a drop in performance
across all models and tasks, with the exception of the ResNet on the Contact Prediction
task and the Transformer on the Fluorescence task. Second, with the exception of the
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Table A.3: Detailed secondary structure results

Three-Way Accuracy (Q3) Eight-Way Accuracy (Q8)

CB513 CASP12 TS115 CB513 CASP12 TS115

No Pretrain
Transformer 0.70 0.68 0.73 0.51 0.52 0.58
LSTM 0.71 0.69 0.74 0.47 0.48 0.52
ResNet 0.70 0.68 0.73 0.55 0.56 0.61

Pretrain

Transformer 0.73 0.71 0.77 0.59 0.59 0.64
LSTM 0.75 0.70 0.78 0.59 0.57 0.66
ResNet 0.75 0.72 0.78 0.58 0.58 0.64
Bepler [38] 0.73 0.70 0.76 0.58 0.57 0.65
Alley [39] 0.73 0.72 0.77 0.57 0.59 0.63

Baseline One-hot 0.69 0.68 0.72 0.52 0.53 0.58
Alignment 0.8 0.76 0.81 0.63 0.61 0.68

Contact Prediction task, the relative ordering of the models is preserved, even while overall
performance decreases. As the Contact Prediction task has the most complicated downstream
architecture, it suggests that the downstream architecture has a large effect on performance.

A.8 Detailed Results on Supervised Tasks
Here we provide detailed results on each task, examining multiple metrics and test-conditions
to further determine what the models are learning.

Secondary Structure Results

We perform both three-class and eight-class secondary structure classification following the
DSSP labeling system [169]. Three way classification tags each position as either Helix,
Strand or Other. Eight-way classification breaks these three labels into more specialized
classes, for example Helix is broken into 3-turn, 4-turn or 5-turn helix. Table A.3 shows
results on these tasks. We note that test-set performance is comparable for all three test sets,
in particular alignment does better at both eight-way and three-way classification by a large
margin.

We follow the standard notation, where Q3 refers to three-way classification accuracy and
Q8 refers to eight-way classification accuracy.
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Table A.4: Detailed short-range contact prediction results. Short range contacts are contacts
between positions separated by 6 to 11 positions, inclusive.

AUPRC P@L P@L/2 P@L/5

No Pretrain
Transformer 0.29 0.25 0.32 0.4
LSTM 0.23 0.22 0.26 0.33
ResNet 0.2 0.18 0.24 0.31

Pretrain

Transformer 0.35 0.28 0.35 0.46
LSTM 0.35 0.26 0.36 0.49
ResNet 0.32 0.25 0.34 0.46
Bepler [38] 0.33 0.27 0.35 0.44
Alley [39] 0.27 0.23 0.3 0.39

Baseline One-hot 0.3 0.26 0.34 0.42
Alignment 0.51 0.35 0.5 0.66

Table A.5: Detailed medium-range contact prediction results. Medium range contacts are
contacts between positions separated by 12 to 23 positions, inclusive.

AUPRC P@L P@L/2 P@L/5

No Pretrain
Transformer 0.2 0.18 0.24 0.31
LSTM 0.13 0.13 0.15 0.19
ResNet 0.15 0.14 0.18 0.23

Pretrain

Transformer 0.23 0.19 0.25 0.33
LSTM 0.23 0.2 0.26 0.34
ResNet 0.23 0.18 0.25 0.35
Bepler [38] 0.26 0.22 0.29 0.37
Alley [39] 0.2 0.17 0.23 0.32

Baseline One-hot 0.2 0.17 0.23 0.3
Alignment 0.45 0.32 0.45 0.59
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Table A.6: Detailed long-range contact prediction results. Long range contacts are contacts
between positions separated by 24 or more positions, inclusive.

AUPRC P@L P@L/2 P@L/5

No Pretrain
Transformer 0.09 0.15 0.17 0.19
LSTM 0.05 0.1 0.12 0.15
ResNet 0.06 0.11 0.13 0.15

Pretrain

Transformer 0.1 0.17 0.2 0.24
LSTM 0.11 0.2 0.23 0.27
ResNet 0.06 0.1 0.13 0.17
Bepler [38] 0.11 0.18 0.22 0.26
Alley [39] 0.09 0.17 0.2 0.22

Baseline One-hot 0.07 0.13 0.16 0.22
Alignment 0.2 0.33 0.42 0.51

Contact Prediction Results

We report all metrics commonly used to capture contact prediction results [73] in tables A.5
and A.6. The metrics “P@K” are precision for the top K contacts, where all contacts are
sorted from highest confidence to lowest confidence. Note that L is the length of the protein,
so “P@L/2”, for example, denotes the precision for the L/2 most likely predicted contacts in
a protein of length L. In Table A.5 we report all metrics for medium range contacts, which
are contacts for positions between five and twelve amino acids apart. In Table A.6 we report
all metrics for long range contacts, which are contacts for positions greater than 12 amino
acids apart.

All results decay as we transition from short range to long range contacts, which we note
is not the case for many state of the art methods from recent CASP competitions [73, 23].

Remote Homology Results

In Table A.7, we report results on three remote homology test datasets constructed in Hou
et al [63]. Recall that “Fold” has the most distantly related proteins from train, while
“Superfamily” and “Family” are increasingly related (see Section A.1 for more details). This is
reflected in the accuracy in Table A.7, which increases drastically as the test sets get easier.

Fluorescence Results

Fluorescence distribution in the train, validation, and test sets is bimodal, with one mode
corresponding to bright proteins and one mode corresponding to dark proteins. The dark
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Table A.7: Detailed remote homology prediction results

Fold Superfamily Family

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

No Pretrain
Transformer 0.09 0.21 0.07 0.2 0.31 0.58
LSTM 0.12 0.28 0.13 0.29 0.68 0.85
ResNet 0.1 0.24 0.07 0.19 0.39 0.6

Pretrain

Transformer 0.21 0.37 0.34 0.51 0.88 0.94
LSTM 0.26 0.43 0.43 0.59 0.92 0.97
ResNet 0.17 0.29 0.31 0.44 0.77 0.87
Bepler [38] 0.17 0.30 0.20 0.36 0.79 0.91
Alley [39] 0.23 0.39 0.38 0.54 0.87 0.94

Baseline One-hot 0.09 0.21 0.08 0.21 0.39 0.66
Alignment 0.09 0.21 0.09 0.24 0.53 0.77

Table A.8: Detailed fluorescence prediction results. ρ denotes Spearman’s ρ.

Full Test Set Bright Mode Only Dark Mode Only

MSE ρ MSE ρ MSE ρ

No Pretrain
Transformer 2.59 0.22 0.08 0.08 3.79 0
LSTM 2.35 0.21 0.11 0.05 3.43 -0.01
ResNet 2.79 -0.28 0.07 -0.07 4.1 -0.01

Pretrain

Transformer 0.22 0.68 0.09 0.60 0.29 0.05
LSTM 0.19 0.67 0.12 0.62 0.22 0.04
ResNet 3.04 0.21 0.12 0.05 4.45 0.02
Bepler [38] 2.17 0.33 0.08 0.06 3.17 0.02
Alley [39] 0.20 0.67 0.13 0.63 0.24 0.04

Baseline One-hot 2.69 0.14 0.08 0.03 3.95 0.0
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Table A.9: Overall stability prediction results

Spearman’s ρ Accuracy

No Pretrain
Transformer -0.06 0.5
LSTM 0.28 0.6
ResNet 0.61 0.68

Pretrain

Transformer 0.73 0.70
LSTM 0.69 0.69
ResNet 0.73 0.66
Bepler [38] 0.64 0.67
Alley [39] 0.73 0.69

Baseline One-hot 0.19 0.58

mode is significantly more diverse in the test set than the train and validation sets, which
makes sense as most random mutations will destroy the refined structure necessary for
fluorescence. With this in mind, we report Spearman’s ρ and mean-squared-error (MSE) on
the whole test-set, on only dark mode, and on only the bright mode in Table A.8. The drop
in MSE for both modes shows that pretraining helps our best models distinguish between
dark and bright proteins. However low Spearman’s ρ for the dark mode suggests that models
are not able to rank proteins within this mode.

Stability Results

The goal of the Rocklin et al. [67] experiment was to find highly stable proteins. In the last
stage of this experiment they examine variants of the the most promising candidate proteins.
Therefore we wish to measure both whether our model was able to learn the landscape around
these candidate proteins, as well as whether it successfully identified those variants with
greater stability than the original parent proteins. In Table A.9 we report Spearman’s ρ to
measure the degree to which the landscape was learned. In addition, we report classification
accuracy of whether a mutation is beneficial or harmful using the predicted stability of the
parent protein as a decision boundary.

In Table A.10 report all metrics separately for each of the four protein topologies tested
in Rocklin et al [67], where α denotes a helix and β denotes a strand (or β-sheet). We do this
because success rates varied significantly by topology in their experiments, so some topologies
(such as ααα were much easier to optimize than others (such as αββα). We find that our
prediction success also varies significantly by topology.



APPENDIX A. EVALUATING PROTEIN TRANSFER LEARNING WITH TAPE 68

Table A.10: Stability prediction results broken down by protein topology

ααα αββα βαββ ββαββ

ρ Acc ρ Acc ρ Acc ρ Acc

No Pretrain
Transformer -0.39 0.49 -0.41 0.47 0.52 0.5 0.25 0.52
LSTM -0.07 0.57 0.39 0.7 -0.43 0.56 -0.34 0.56
ResNet 0.64 0.69 0.16 0.69 0.63 0.67 0.65 0.67

Pretrain

Transformer 0.66 0.68 0.48 0.73 0.65 0.71 0.65 0.67
LSTM 0.71 0.7 0.17 0.73 0.68 0.67 0.67 0.7
ResNet 0.68 0.68 0.15 0.63 0.61 0.68 0.6 0.68
Bepler [38] 0.33 0.66 0.24 0.79 0.54 0.7 0.58 0.53
Alley [39] 0.72 0.66 0.11 0.76 0.68 0.66 0.65 0.67

Baseline One-hot 0.58 0.59 0.04 0.58 -0.05 0.58 0.54 0.58
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Appendix B

Interpreting Potts and Transformer
Protein Models Through the Lens of
Simplified Attention

B.1 Recovering Factored Attention from Standard
Attention

Potts and Factored Attention estimate a single undirected graphical model from the training
data. While a single graph can be a good approximation for the structure associated with
a protein family, many families have subfamilies with different functional specializations
and even different underlying contacts [170, 171]. Since subfamily identity is rarely known,
allowing edge weights to be a function of sequence could enable the estimation of a family of
graphs.

In the language of the Transformer, factored attention estimates a single graph because it
computes queries and keys using only the positional encoding. We show more precisely that
factored attention can be recovered from standard attention by computing queries and keys
from one-hot positional encodings and values from one-hot sequence embeddings.

Single attention layer. Given a sequence of dense vectors x = (x1, . . . , xL) with xi ∈ Rp,
the attention mechanism of the Transformer encoder (multihead scaled dot product self-
attention) produces a continuous representation y ∈ RL×p. If head size is d, this representation
is computed using H heads (WQ,WK ,WV ), where WQ,WK ,WV ∈ Rp×d. Queries, keys, and
values are defined as Q = xWQ, K = xWK , V = xWV . For a single head (WQ,WK ,WV ), the
output is given by

y = softmax
(QKT

√
d

)
V.

The full output in RdH is produced by concatenating all head outputs. A single Transformer
encoder layer passes the output through a dense layer, applying layer-norms and residual
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connection to aid optimization.
For the first layer, the input x is a sequence of discrete tokens. To produce a dense vector

combining sequence and position information, positional encodings and sequence embeddings
are combined. The positional encoding Epos ∈ RL×e produces a dense vector of dimension e for
each position i. The sequence embedding Eseq ∈ RA×e maps each element of the vocabulary to
a dense vector of dimension e. Typically these are combined through summation to produce
a dense vector x̃i = Eseq(xi) + Epos(i), which is input to the Transformer as described above.

For this paper, we use only multi-head self-attention without the dense layer, layer norm,
or residual connections, as these drastically hurt performance when employed for one layer.

Factored attention from standard attention. Written explicitly, the input Trans-
former layer computes queries for a single head with Q = (Epos + Eseq(x))WQ. Keys and
values are computed similarly. To recover factored attention, we instead compute queries
and keys via Q = EposWQ and K = EposWK , while values are given by V = Eseq(x)WV . For
simplicity, we one-hot encode both position and sequence, which corresponds using identity
matrices Epos = IL ∈ RL×L and Eseq = IA ∈ RA×A.

Implicit single-site term in single-layer attention. For a single layer of attention,
the product EposWV is a matrix in RL×A. This matrix does not depend on sequence inputs,
thus allowing it to act as a single-site term. This suggests why inclusion of an explicit
single-site term in Figure B.10 had no effect for single-layer attention.

B.2 Losses
The loss for all three models is of the form

ℓ(θ;x) = L(θ;x) + cR(θ), (B.1)

where L is either pseudolikelihood or masked language modeling and R is a regularizer.
Potts regularization. Consider the order-4 interaction tensor W , where W ij ∈

RA×A gives the parameters associated to edge (i, j). We regularize W by setting R(θ) =∑
i<j ∥W ij∥2F . This term is multiplied by λ · L · A, following [172].
Factored attention regularization. Since factored attention is also a fully connected

pairwise MRF, we use identical regularization to that of Potts. The order-4 tensor W is given
by

W ij
ab =

H∑
h=1

symm
(
softmax

(
W h

QW
h
K

T
) )

ij
W h

V (a, b). (B.2)

Single-layer attention regularization. Due the lack of an MRF interpretation for
single-layer attention, we chose to use weight decay as is typically done for attention models.
This corresponds to setting R(θ) to be the sum of Frobenius norm squared for all weights
WQ, WK and WV .

Single-site term. When any model has a single-site term, we follow standard practice
and regularize its Frobenius norm squared.
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B.3 ProtBERT-BFD head selection

layer head P@L
29 7 0.517
29 8 0.396
29 4 0.394
29 2 0.353
29 11 0.333
29 0 0.299
28 3 0.275
29 15 0.177
29 6 0.167
29 12 0.158
28 4 0.141
29 9 0.139
28 6 0.125
28 5 0.125
3 4 0.115
28 11 0.106

Table B.1: The top 16 heads in ProtBERT-BFD whose attention maps gave the most precise
contact maps across 500 validation families. Most of the top performing heads are found in
the last layer. The top six heads were selected for our contact extraction in all results.

B.4 Data and Metrics

B.5 Selection of Protein Families
We used the following sets of families for model development:

1. A set of 748 families was chosen for performance evaluation. All metrics reported in the
paper are on this set, with a single choice of hyperparameters for Potts models, factored
attention, and standard attention. The 748 families were chosen randomly from the
Yang et al. [80] dataset, which consists of 15,051 MSAs generated from the databases
UniClust30 and UniRef100 [98], as well as metagenomic datasets. Our random sample
is representative of the range of MSA depths and protein lengths, see Figure B.1.

2. A set of six families from the 748 was chosen to choose hyperparameters for single-layer
attention. They were chosen to span a range of MSA depth (large and small), as well
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as three different regimes of Potts performance (Good, Ok, Poor). These families were
used to tune hyperparameters as described in Section B.9. See Table B.2.

3. A set of ten families from the 748 was chosen where factored attention performed very
poorly in our initial experiments. Half were chosen to be long proteins and the other
half to be short. This set was used to optimize learning rate and regularization for
factored attention to ensure reasonable model performance. See Table B.3.

4. 500 entirely disjoint families were further selected randomly from [80] and used to
compute average precision for each head in ProtBERT-BFD [81]. Performance on these
families was used for selecting the top 6 heads, see Table B.1.

PDB Sequences Length Potts Performance
3er7_1_A 33673 118 Good
5fo5_1_B 17560 88 Ok
2w18_1_A 33619 308 Poor
4gnr_1_A 2073 351 Good
5mkc_1_A 515 207 Ok
3e9l_1_A 146 292 Poor

Table B.2: 6 families chosen for hyperparameter optimization for single-layer attention.

PDB Sequences Length
4k61_1_A 2145 140
4l3r_1_A 5535 143
3cy4_1_B 1064 154
6fdg_1_A 2325 155
3p6b_1_B 4353 186
1jm1_1_A 17130 202
4yt2_1_A 15481 343

3vmm_1_A 4383 471
4egc_1_A 9929 539
3gq7_1_A 6568 605

Table B.3: 10 families chosen for hyperparameter optimization for factored attention

B.6 Producing Contact Maps
A PDB structure gives 3D coordinates for every atom in a structure. We use Euclidean
distance between the beta carbons to define distance between any pair of positions. In the
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Figure B.1: The length and MSA size distribution for our 748 family subset (red) compared
to the full 15,051 families in the trRosetta dataset selected for training

case of glycine, the alpha carbon is used. A pair of positions where this distance is less than
8Å is declared to be a contact.

B.7 Scoring Contact Predictions

Given a predicted contact map Ĉ ∈ RL×L and a true contact map C ∈ {0, 1}L×L, we describe
metrics for scoring Ĉ.

A sequence x = (x1, . . . , xL) of length L has
(
L
2

)
potential contacts. Since we see O(L)

contacts, contact prediction a sparse prediction task. Accordingly, we focus on precision-recall
based quantitative analyses of Ĉ. Common practice in the field is to sort all

(
L
2

)
entries

of Ĉ in decreasing order and evaluate precision at various length thresholds, such as the
top L or L/10 predictions [104]. Note that this analysis is similar to choosing recall cutoffs
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along a precision-recall curve, where sorted length index plays the role of recall on the x
axis. Unlike recall, length-based cutoffs do not rely on knowledge of the actual number of
contacts. In addition to the precision at various length (recall) cutoffs, we also computed
Area Under the Precision-Recall Curve (AUC), which we define as the average of Precision @
L for L = 1, ..., 10. AUC is a widely used metric for comparing classifiers when the positive
class is rare.

B.8 Hyperparameters
Potts. We used λ = 0.5, learning rate of 0.5, and batch size 4096. Pad, gap, and mask

were all encoded with the same token. The Potts model is trained using a modified version of
Adam presented in Ref. [173]. This modification was made to improve performance of Adam
to match that of L-BFGS.

Factored attention. We AdamW with a learning rate of 5× 10−3 and set λ = 0.01. The
default head size was set to 32 unless stated otherwise.

Single-layer attention. We set embedding size of 256, head size of 64, and number of
heads 128. The model is trained with AdamW using a learning rate of 5× 10−3 and weight
decay of 2× 10−3. Attention dropout of 0.05 is also applied. The batch size is 32 and mask
prob for masked language modeling is 0.15. We use a separate mask token and pad,gap token.

ProtBERT-BFD. ProtBERT-BFD has 30 layers each with 16 heads and a hidden size
of 1024. The training dataset is a mixture of UniRef50 [174] and BFD. It has 2, 122 million
protein sequences. See [81] more information.

B.9 Hyperparameter Sweep Details
Potts. The Potts model implementation using psuedolikelihood has been optimized by

others, so we did not tune performance. Since performance with MLM was comparable to
pseudolikelihood, we did not sweep for MLM either.

Single-layer attention. Standard attention is by far the most sensitive model to
hyperparameters. To find a reasonable set of hyperparameters, we first swept over the six
families in Table B.2, performing a grid search over

• H ∈ {32, 64, 128, 256, 512}

• d ∈ {32, 64, 128, 256, 512}

• e ∈ {128, 256, 512}

• attention dropout in {0, 0.05, 0.1}

• learning rate in {5× 10−3, 1× 10−2}

• weight decay in {0, 1× 10−3, 2× 10−3}
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We found that the choice H = 256, d = 64, e = 256, attention dropout of 0.05, learning
rate of 5 × 10−3 and weight decay of ×10−3 performed well across all six families. Due to
GPU memory constraints, we had to set H = 128 for further runs.

Factored attention. We swept factored attention over the families in Table B.3,
performing a grid search over

• learning rate in {1× 10−3, 5× 10−3, 1× 10−2, 5× 10−2}

• regularization coefficient in {1× 10−4, 5× 10−4, 1× 10−3, 5× 10−3, 1× 10−2}

We found that learning rate of 5× 10−3 and regularization of 0.01 were effective, but that
other configurations such as regularization of 5× 10−3 also performed well. Both H and d
are evaluated extensively in our results.

B.10 Additional Figures
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Figure B.2: The empirical CDF of number of per-residue contacts for 3,747,101 residues in
15,051 structures in the trRosetta dataset.
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Figure B.3: Reducing the number of heads causes a much steeper decrease in precision at L.
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Figure B.4: Effect of number of heads on correlation between the order-4 weight tensors for
factored attention (see Equation B.2) and Potts (see Section 3.3).
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Figure B.5: Effect of head size on factored attention precision at L and L/5 over 748 families.
Increasing head size has a small effect on precision, though not nearly as pronounced as the
number of heads.
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Figure B.6: Factored attention with 4 heads has degraded performance for precision at L for
family 3n2a.
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Figure B.7: Number of parameters versus length for MRF models.
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Figure B.8: APC has a significant positive effect on the performance of Potts and factored
attention. It makes only a slight difference on the performance of the other two models.
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Figure B.9: Training on unaligned families degrades performance on almost all families.
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Figure B.10: The addition of a single-site term to either factored or standard attention
produces little additional benefit.



81

Appendix C

Tuned Fitness Landscapes for
Benchmarking Model Guided Protein
Design

C.1 Potts Models and Evaluation Sets

Landscape Details

PDB Length # Seqs Prec. @ L Epistatic Horizon αs+ pϵ ϵ̄+,+ σ(s)
3bfo 85 12153 0.78 -72.3 0.0099 0.42 0.013 2.22
3er7 118 33672 0.71 166.6 0.036 0.51 -0.0087 2.15
3my2 126 5497 0.82 -358.4 0.011 0.48 0.0049 3.01
5hu4 145 6440 0.81 -389.3 0.016 0.36 0.0052 2.87
3gfb 347 13554 0.76 -689.7 0.041 0.46 0.0027 2.91

Table C.1: Untuned landscape details. Contact precision is computed in the standard way:
predicting the top L entries (>6 apart in the primary sequence) in H to be contacts, and
computing precision [175, 176]. αs+ refers to the fraction of adaptive singles with effect
siβ > 0. pϵ refers to the fraction of reciprocal sign epistasis for pairs of adaptive singles.

pϵ =
#{ϵ+,+ < 0}
#{ϵ+,+}
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PDB Functional Keywords
3bfo Immunoglobulin-like beta sandwich
3er7 Nuclear transport factor
3my2 Transmembrane protein
5hu4 Prokaryotic Sortase
3gfb L-threonine Dehydrogenase

Table C.2: Functional keywords associated with the selected PDBs.

Fitting Potts Models

The initial training of the Potts model involves sampling batches from an alignment X. We
train the model to maximize the regularized pseudolikelihood objective

Loss(h,H;X) = L(h,H;X) +R(h,H),

where the regularization term is given by

R(h,H) =
1

2
λAL||H||2F + λ||h||2F ,

following the scaling procedure in [172]. The Potts model is trained using a modified version
of Adam [162] presented in Dauparas, et al. [173], modified to improve performance of
Adam to match that of L-BFGS, using batches Xb from the overall alignment X. Before
computing any forward passes, we symmetrize H and mask the diagonal. All models were
trained using λ = 0.01, Adam learning rate 0.5, and batch size 128. Training was done
for 200 steps on a NVIDIA GeForceRTX 2080 Ti GPU. The training script can be found
at https://github.com/songlab-cal/factored-attention. Models are trained using the
“use-bias” flag to explicitly include h. From the 748 potts models trained in Bhattacharya et
al. [74], the 5 PDB ids listed in Table C.1 were selected manually from the top performing
models with respect to contact precision @ L. Note that the deeper the alignment, the more
robust the Potts model training is to hyperparameter choices.

Ridge Hyperparameter Grid
L2 penalty (α) 10x for x ∈ {−3,−2.5,−2, ..., 1.0, 1.5, 2.0}

Table C.3: Tuned hyperparameters for the Ridge model. (Grid size: 11)

https://github.com/songlab-cal/factored-attention
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CNN Hyperparameter Grid
Learning Rate (Adam) 10x for x ∈ {−3,−2.9,−2.8, ..., 2.0}
Batch Size {64, 128}
Num Training Epochs {100, 500, 1000}
Num filters {16, 32, 64}

Table C.4: Tuned hyperparameters for the CNN model. (Grid size: 198)

CNN Hyperparameter Fixed Value
Kernel Size 5
Hidden Size 64
Activation Function ReLU
Dropout probability 25%

Table C.5: Fixed hyperparameters for the CNN model.

Epistasis-enriched evaluation sets

In Section 4.4 we describe an evaluation set based on combining multiple adaptive singles into
multi-mutants. In this section we describe two additional evaluation sets for each landscape
based on enrichment for epistasis. The motivation for selecting variants with large magnitude
epistatic effects is to confound the linear model, and test the nonlinear model’s ability to
learn epistasis from a training set of multi-mutants. We build two evaluation sets: Adaptive
Epistasis and Deleterious Epistasis. For both sets the procedure for constructing them is the
same, but with the sign of the epistatic terms inverted.

We construct the full L× L×A×A tensor of epistatic terms ϵiβ,jγ . Ranking these terms
by their value, we pick out the highest 1000 terms (for Deleterious Epistasis, we pick out the
lowest 1000). From this set of strong epistatic interactions, we construct a pool of site-allele
pairs: M = {(iβ1, jγ1), . . . , (iβ1000, jγ1000)}. From this pool of pairs M we construct variants
at the desired distance from the wildtype. For an evaluation set at distance 6, we choose 3
pairs at random and combine them. We continue to sample combinations of epistatic pairs
until we have an evaluation set of the desired size n = 200. Note that some site-allele pairs
conflict with one another by mutating the same position. We discard combinations that do
not reach the desired distance.
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C.2 Quadratic Landscape Theory
In the following, we develop the basic theory for quadratic landscapes in detail. We will
derive a tuning scheme which allows us to separately control the distribution of single mutant
fitness effects double mutant fitness effects. This will allow us to tune landscapes in order to
explore different regimes of the overall optimization space.

We will be interested in understanding fitness landscapes defined on sequence space. We
will consider sequences of length L on A characters, encoded by vectors x of length LA, which
are one-hot every A elements. (In computational settings, the sequence is often represented
as an L× A matrix, one-hot in the second index.)

Quadratic fitness function

Consider a fitness function F given by

F(x) = h⊤x +
1

2
x⊤Hx. (C.1)

Here H is an LA× LA symmetric coupling matrix, and h is a length LA vector. Note that
in computational settings, H is often implemented as a tensor of dimension L× L× A× A,
and h as a tensor of dimension L× A.

We note that in biological applications, we generally care about fitness differences; fitness
functions which differ by a constant value are considered to be the same.

Given the L-hot structure of x, we see that the L distinct A×A-dimensional subblocks of
H corresponding to within-site interactions are special. In particular, only the diagonal terms
contribute to F , since x is one-hot within a block. Due to this one-hot structure, without
loss of generality we can absorb the within-site interactions into the linear term by setting
ĥiα = hiα + 1

2
Hiα,iα, and Ĥiα,iβ = 0 for each site i and characters α and β, and Ĥ = H

otherwise. The functional form of our fitness is unchanged:

F(x) = ĥ
⊤
x +

1

2
x⊤Ĥx. (C.2)

Thus, for the remainder of the notes we guarantee, without loss of generality, that in addition
to being symmetric, H has 0 diagonal, i.e. Hiα,iβ = 0.

Local statistics

We are interested in the statistics near a particular sequence x0, which we call the “wildtype”
sequence. For example, in enzyme design, we often start with a wildtype sequence which can
be used in a reaction of interest, and the goal of the optimization is to arrive at a designed
sequence which carries out the reaction more efficiently.

Without loss of generality, for the remainder of the notes we will refer to the wildtype
sequence with a generic character x0(i) = a at all positions i. We often consider the relative
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fitness F(x)−F(x0) rather than the absolute fitness F(x). The quadratic model is defined
by two quantities: the single mutant fitness effects s and the pairwise epistasis ϵ. The single
mutant fitness effects are defined by s(x1) = F(x1) − F(x0), where x1 is a single mutant
which differs from x0 in exactly one of the L positions. We can write out the effect explicitly.
Let x0(i) denote the character at position i in the wildtype sequence x0. Consider a mutation
siβ at site i, which takes character x0(i) = a to character β. We have:

siβ = hiβ − hia +
L∑

j=1

(Hiβ,ja − Hia,ja) . (C.3)

In many cases, these linear effects are enough to begin to design sequences and optimize over
the fitness landscape. Note that this linear structure depends on both h and H.

The higher order interactions can be quantified using pairwise epistasis. In general, the
term epistasis is used by geneticists to refer to interaction between the effects of multiple
mutations. There are many ways to quantify these interactions. We focus on a definition of
pairwise epistasis which measures the deviation from linearity of a landscape.

Given a double mutant x12, with single mutant sequences given by x1 and x2, we define
the pairwise epistasis ϵ(x12) by

ϵ(x12) = F(x12)−F(x1)−F(x2) + F(x0). (C.4)

This definition can be motivated by re-writing as

ϵ(x12) = F(x12)−F(x0)− (F(x1)−F(x0) + F(x2)−F(x0))

= F(x12)−F(x0)− (s(x1) + s(x2)) .

In other words, it’s the part of the fitness difference between x12 and x0 which can’t be
explained by the single mutants x1 and x2.

If the two mutations are a → β at site i and a → γ at site j, then the epistasis ϵiβ,jγ is
given by

ϵiβ,jγ = Hiβ,jγ − Hiβ,ja − Hia,jγ + Hia,ja. (C.5)

Difference expansion

It is useful to explicitly write the fitness difference F(x)−F(x0) for some general x, in order
to understand and manipulate local statistics. Let M = {m1,m2, ...mk} be the sequence of k
mutations from wildtype in x, where ml = (il, βl). No two mutations affect the same position,
so il ̸= il′ for l ̸= l′. We have

F(x)−F(x0) = h⊤x +
1

2
x⊤Hx − h⊤x0 −

1

2
x⊤
0 Hx0 (C.6)

We can rewrite this in terms of the sequence difference δ ≡ x − x0. We have

F(x)−F(x0) = (h⊤ + x⊤
0 H)δ +

1

2
δ⊤Hδ. (C.7)
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The first term captures linear effects with respect to δ, and the second term captures quadratic
effects. By comparing the first term to equation C.3, we can see that it in fact corresponds
to the sum of the single mutant fitness effects:

(h⊤ + x⊤
0 H)δ =

∑
(i,β)∈M

siβ. (C.8)

The second term is related to the epistatic effects, which we show explicitly. We have

δ⊤Hδ =
∑

(i,β),(j,γ)∈M2

Hiβ,jγ − Hiβ,ja − Hia,jγ + Hia,ja, (C.9)

where M2 refers to ordered pairs of mutations drawn from M . For i ̸= j,

Hiβ,jγ − Hiβ,ja − Hia,jγ + Hia,ja = ϵiβ,jγ (C.10)

δ⊤Hδ =
∑

(i,β)̸=(j,γ)∈M2

ϵiβ,jγ +
∑

(i,β)∈M

(Hiβ,iβ − 2Hiβ,ia + Hia,ia) .

(C.11)

We showed that without loss of generality, we can reparameterize H and h so that H has
no diagonal terms. Assume this is the case. Then, we can write

1

2
δ⊤Hδ =

1

2

∑
(i,β)̸=(j,γ)∈M2

ϵiβ,jγ. (C.12)

So we have shown that the second term in Equation C.7 is the sum of the pairwise epistatis
effects for all pairs of mutations in x relative to the wildtype x0.

The expansion in Equation C.7 is useful for two reasons. Theoretically, it shows that the
single mutant effects and epistatic effects control fitness differences completely, and gives us
an easy way to compute them:

F(x)−F(x0) =
∑

(i,β)∈M

siβ +
1

2

∑
(i,β)̸=(j,γ)∈M2

ϵiβ,jγ. (C.13)

The practical consequence is that we can use the decomposition to separately manipulate the
single mutant and epistasis properties of the landscape, as we will discuss in Section C.2.

Tuning landscapes

In order to benchmark and understand methods for exploring fitness landscapes, we want
to test those methods on fitness landscapes with variable properties. In particular, given
some fitness function F of interest, we are interested in modifications of F which make the
problem “easier” or “harder” by some metric.
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For a quadratic F , a set of simple modifications is given by shifting and scaling the
distribution of fitnesses of single and double mutants relative to the wildtype. In particular,
we can independently shift (add a constant to) and scale (multipy by a constant) the single
mutant statistics s and the epistasis statistics ϵ uniformly for all sequences.

As we will see, this is different from simply modifying h and H. Modifying s and ϵ
corresponds to modifying the landscape in terms of first and second order expansions around
the wildtype x0. In many biological problems, we care about understanding behavior near
the wildtype; in addition, inferred landscape (e.g. using DCA [15]) are likely correlated with
the “true” fitness landscape in limited neighborhood of the wildtype.

The shifting and scaling approach we outline maintains the relative ordering of fitnesses
within the single mutants and within the double mutants. If we start with a fitness landscape
whose properties are relevant for optimization, the modified landscape is one which has some
similar qualitative features (e.g. important interactions in the original landscape are important
in the tuned landscape). The modified landscapes can also probe different questions, such as
“What happens when epistasis is more important than single mutant effects?”

We note that in most applications, we only care about the relative values of F (e.g.
F(x) − F(x0)), rather than the absolute values. We will take that approach here. If the
absolute value also matters, for example if F(x0) needs to be set to 0, then this can be
accomplished by adding the appropriate constant to F .

Shifting the single-mutant distribution.

Suppose we wish to shift the distribution of single mutant fitness effects, relative to wildtype,
by some constant µs, without modifying ϵ. This can be accomplished by modifying h such
that h̃ = h + v. Given F with parameters h and H, we define F̃ as

F̃(x) = (h + v)⊤x +
1

2
x⊤Hx (C.14)

Using the expansion in Equation C.7, we have

F̃(x)− F̃(x0) = (h + v + x0H)⊤ δ +
1

2
δ⊤Hδ (C.15)

We know that the first term controls s and the second controls ϵ. Therefore, with the
appropriate choice of v, we can modify s without modifying ϵ.

Let v = −µsx0. We note that (x⊤
0 δ)iβ = −1 when x has a mutation a → β at position i,

and 0 otherwise. Then we have:

s̃iβ = hiβ − hia + µs +
L∑

j=1

(Hiβ,ja − Hia,ja)

= siβ + µs

which corresponds exactly to the desired shift.
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We note that the choice of v is not unique, since the quadratic form of F , coupled with
the gauge symmetry induced by the structured L-hot nature of of x means that the constant
function can be written in many different ways. For example, the shift h̃ = h+ c

L
1 is equivalent

to adding a constant c to the fitness function. This lack of uniqueness is not a problem
computationally because our chosen form for v achieves the desired s and ϵ distributions -
which are all that’s needed to define F(x)−F(x0).

Shifting the epistatic distribution.

Shifting the epistatic distribution is more complicated. From Equation C.7, we see that
modifying H affects both the epistasis distribution as well as the single-mutant distribution.
Therefore, we will modify both H and h in order to modify ϵ without changing any of the s.

We shift H̃ = H+C and h̃ = h+w. Since H̃ and H are symmetric and have 0 diagonal,
C must be symmetric and have 0 diagonal. Our desired modified fitness function F̃ therefore,
is:

F̃(x)− F̃(x0) = (h + w + x0(H + C))⊤ δ +
1

2
δ⊤(H + C)δ (C.16)

which has the same s as F , but all ϵ shifted by µϵ. We proceed by deriving C to modify ϵ,
and then compute w to ensure there is no change in s.

From Equation C.5, we see that one way to change the epistasis is to modify the (ia, ja)
terms in H, and no others. This suggests that C should be proportional to x0x⊤

0 , which is
equal to 1 at (ia, ja) and 0 otherwise. We define

Ciβ,jγ =

{
µϵ for i ̸= j, β = γ = a

0 otherwise
(C.17)

In other words,
C = µϵ

(
x0x⊤

0 − diag
(
x0x⊤

0

))
Computing the epistasis for the modified H̃ = H + C using Equation C.5, we have:

ϵ̃iβ,jγ = Hiβ,jγ − Hiβ,ja − Hia,jγ + Hia,ja + µϵ

= ϵiβ,jγ + µϵ

which gives us the intended shift. To ensure that s is unchanged, we set

h + w + (H + C)x0 = h + Hx0

Which gives us w = −Cx0. Note that x⊤
0 x0 = L and diag(x0x⊤

0 )x0 = x0. Then,

w = −Cx0

= −µϵx0x⊤
0 x0 + µϵdiag

(
x0x⊤

0

)
x0

= −Lx0 + x0

= −µϵ(L− 1)x0
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Setting w = −µϵ(L− 1)x0, s is left unchanged as desired.

Scaling the distributions.

Now we consider the problem of scaling the distributions. That is, we want to modify h and
H such that s and ϵ are multiplied uniformly by constants λs and λϵ respectively. Using the
difference expansion in equation C.7, we can see that to accomplish this we need to choose
constants A,B and vector u such that:

BH = λϵH (C.18)

and
Ah + u +BHx0 = λs(h + Hx0). (C.19)

We immediately see that B = λϵ. In order to obtain the correct scaling of s, we have:

Ah + u +BHx0 = λs(h + Hx0). (C.20)

With our extra degree of freedom, we choose to set A = λs, so we have:

u = (λs − λϵ)Hx0. (C.21)

Our final fitness function is therefore

F̃(x)− F̃(x0) = (λsh + (λs − λϵ)Hx0)
⊤δ +

1

2
δ⊤(λϵH)δ. (C.22)

Each of the modifications outlined in Sections C.2, C.2 and C.2 can be composed:

F̃(x)− F̃(x0) = λs

∑
(i,β)∈M

[siβ + µs] +
λϵ

2

∑
(i,β) ̸=(j,γ)∈M2

[ϵiβ,jγ + µϵ] . (C.23)

C.3 Supplemental Figures
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(a) 3bfo (b) 3er7 (c) 3my2

(d) 5hu4 (e) 3gfb

Figure C.1: Predicted contact maps derived from Potts models fit to the corresponding
alignment. Shown are Top L predicted contacts after APC correction [177], with the precision
shown in the title of each plot. Blue are true predictions, red are false predictions. In grey
are all contacts.
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(a) Copy of Figure 4.3. Differential performance (∆ρ) of the CNN versus the Ridge model on ranking
combinations of adaptive singles.

(b) Performance (ρ) of the CNN model on ranking combinations of adaptive singles.

(c) Performance (ρ) of the Ridge model on ranking combinations of adaptive singles. ρ ≈ 1 for linear
landscapes with large horizons.

Figure C.2: Performance (ρ) on ranking sequences constructed from combinations of adaptive
singles.
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(a) Differential performance (∆ρ) of the CNN versus the Ridge model on ranking sequences enriched
for deleterious epistasis

(b) Performance (ρ) of the CNN model on ranking sequences enriched for deleterious epistasis.

(c) Performance (ρ) of the Ridge model on ranking sequences enriched for deleterious epistasis.

Figure C.3: Performance (ρ) on ranking sequences enriched for deleterious epistasis.
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(a) Differential performance (∆ρ) of the CNN versus the Ridge model on ranking sequences enriched
for adaptive epistasis.

(b) Performance (ρ) of the CNN model on ranking sequences enriched for adaptive epistasis.

(c) Performance (ρ) of the Ridge model on ranking sequences enriched for adaptive epistasis.

Figure C.4: Performance (ρ) on ranking sequences enriched for adaptive epistasis.
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Figure C.5: Evaluation set: Adaptive Singles. One-sided Wilcoxon signed-rank test p-value
on ∆ρ where samples are paired by training set replicates. This tests the null hypothesis that
the two models have similar evaluation performance (i.e., the distribution of ∆ρ is symmetric).
The grey line indicates the significance threshold p=0.05. 3er7, 3my2, 5hu4 all exhibit a clear
transition point where the distribution of CNN model performance is significantly better
than the distribution of Ridge model performance. The CNN significantly outperforms the
Ridge model across all horizons for 3gfb.

Figure C.6: Evaluation set: Adaptive Epistasis. One-sided Wilcoxon signed-rank test p-value
on ∆ρ where samples are paired by training set replicates. This tests the null hypothesis that
the two models have similar evaluation performance (i.e., the distribution of ∆ρ is symmetric).
The grey line indicates the significance threshold p=0.05.
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Figure C.7: Evaluation set: Deleterious Epistasis. One-sided Wilcoxon signed-rank test
p-value on ∆ρ where samples are paired by training set replicates. This tests the null
hypothesis that the two models have similar evaluation performance (i.e., the distribution of
∆ρ is symmetric). The grey line indicates the significance threshold p=0.05.

Figure C.8: Evaluation set: Adaptive Singles. One-sided Wilcoxon signed-rank test p-value
on ∆MSE where samples are paired by training set replicates. This tests the null hypothesis
that the two models have similar evaluation performance (i.e., the distribution of ∆MSE is
symmetric). The grey line indicates the significance threshold p=0.05.
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