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Abstract

Integrated Signal Processing for Massive MIMO Systems

by

Yue Dai

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Science

University of California, Berkeley

Professor Borivoje Nikolić, Chair

The massive multiple-input-multiple-output (MIMO) wireless communication technology is
one of the critical parts in the 5G and 5G+ communication systems, which offers an energy-
and cost-efficient, secure, and robust solution for the next generation of communication
systems. This dissertation focuses on developing integrated signal processing for massive
MIMO systems to improve the performance and efficiency of massive MIMO for future
communication systems. It provides a comprehensive analysis of the design and prototyping
of scalable mmWave massive MIMO testbeds from both algorithmic and hardware architecture
perspectives. It focuses on achieving better data aggregation, linear scaling of computation
complexity, cost and energy efficiency, and sustainable development. It demonstrates the
feasibility of such systems by designing an algorithm-adaptable, scalable, and platform-
portable generator for massive MIMO baseband processing systems, which can be customized
for different MIMO systems and hardware configurations. The generator is evaluated by
using various channel estimation methods, such as the flat fading, line-of-sight, Rician,
and QuaDRiGa channel models, and various hardware parameter values, demonstrating
its algorithmic adaptability and effectiveness. The results show that the generator has
competitive power consumption and can significantly improve the demodulation error vector
magnitude by integrating beamspace methods. Additionally, to show the power of machine
learning in the integrated signal processing of massive MIMO systems, a complex-valued
neural network aided channel estimation method for massive MIMO systems with interference
is proposed and evaluated. The network is trained with a wideband interference, and the
method is evaluated with different design and training choices. The result shows an up to
3.16 times improvement in channel estimation performance with a shorter pilot overhead
compared to the traditional method, demonstrating the effectiveness of the proposed method.
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Chapter 1

Introduction

The massive MIMO communication technology is one of the key components in the 5th-
generation (5G) and 5G+ communication systems. According to the analysis and projection
by Ericsson [29] shown in Fig. 1.1, by 2028, the mobile data traffic can reach 325 exabytes
per month, which is 29.5 times higher than the data traffic in 2017, and 3.6 times higher than
today’s data traffic. With the explosive growth of mobile devices and the increasing demand
for high-speed data transfer, traditional point-to-point wireless communication systems
employing capacity-achieving codes and modulation schemes have reached the theoretical
Shannon limit [2], and it has become difficult to meet the demand for data using point-to-point
communication techniques alone.
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Figure 1.1: The 4G and 5G mobile data traffic projection.
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Base Station Base Station
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a). Uplink b). Downlink

Figure 1.2: Massive MIMO communication systems assuming in a single cell: a) Uplink; b)
Downlink.

Massive MIMO offers a solution for further increasing the channel capacity by expanding
the spatial resolution of the base station using a large number of antennas, which allows
each user equipment to have a low-interference, high-capacity link to the base station (BS)
[76]. Combined with the mmWave frequency technology, it can further expand the signal
bandwidth and reduce hardware component sizes, providing an energy-efficient, cost-efficient,
secure, and robust solution for the next generation of communication systems [62, 103].

Fig. 1.2 shows the uplink and the downlink communication in a single-cell massive MIMO
communication system. Uplink communication is where the user equipment (UE) sends
information to the base station, while downlink communication is where the base station
sends information to UEs through formed beams. As a result, massive MIMO, combined
with other capacity-achieving techniques, can help meet the growing demand for wireless
data transfer and enables fast media streaming, information sharing, and compute-on-edge
applications.

1.1 Massive MIMO Implementation Challenges

As the number of antennas at the base station increases in massive MIMO systems, the
difficulty of designing and prototyping scalable systems also increases. This challenge arises
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Figure 1.3: Challenges for the scalable massive MIMO system design and prototyping.

from multiple aspects summarized in Fig. 1.3. The first challenge is data aggregation. In
systems with hundreds or thousands of antennas operating at mmWave frequencies, the raw
signal data collected can reach terabytes per second. However, the bandwidth of commonly
used high-speed interconnects, such as PCIe and Ethernet, is several tens to hundreds of
gigabytes per second. Therefore, a simple BS interconnect network design cannot easily
achieve real-time operation.

The second challenge is the computational complexity of the signal processing. In massive
MIMO systems, the manufacturing and distributing of hardware components can create more
hardware mismatches, which must be calibrated and corrected. The beamforming complexity
increases quadratically or even cubically as the number of antennas and UEs the system
supports grows. This complexity can prevent the scaling up of the massive MIMO system,
especially regarding matrix multiplications and inversions.

Another challenge for implementing massive MIMO systems is the cost and energy
consumption. As the system scale increases, even a slight increase in the cost of a single
array component can significantly elevate the total cost. The same logic applies to energy
consumption. Therefore, it is vital to build cost- and energy-efficient massive MIMO systems
while working under the budget, power supply, and cooling limitations.

For prototyping massive MIMO systems for research purposes, it is also essential to
consider development sustainability. As massive MIMO is being adopted in practical settings,
new algorithms are being proposed to solve practical challenges and enhance performance.
Some novel techniques are the beamspace domain algorithms [83, 3], the compressed-sensing
based method [56], and machine learning algorithms [6, 54] for the performance improvement
on channel estimation, channel prediction, and signal detection. As a result, massive MIMO
system design needs to be flexible to adapt new algorithms or hardware for further development
and support partial updates without rebuilding the entire testbed or system from scratch.
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1.2 Massive MIMO Channel Estimation Challenges

In massive MIMO communication systems, accurate estimation of channel state information
(CSI) is important to form a high-capacity and robust communication link. The massive
MIMO can achieve the full gain from the scaling of the antenna arrays if the channel estimation
is perfect; otherwise, the performance loss will happen.

As shown in Fig. 1.2, at the uplink communication, BS estimates the pairwise channel
between UEs and the receiving antennas in BS. Based on the estimation, BS precodes the
transmission signals at the downlink communication and forms the beam to the targeted
UEs. For the system employing frequency division duplexing (FDD) scheme, the channel
estimation is required for both uplink and downlink communication because the uplink and
downlink communication will share the same signal bandwidth simultaneously, as shown in
Fig. 1.4. Then the required number of pilots are proportional to the number of antennas [61].
The state-of-the-art channel estimation methods for FDD mode are compressed sensing based
channel estimation [32] and time-correlation based channel estimation with a trellis-extended
or an angle of departure-adaptive subspace codebook [18, 111]. However, those methods
either require the full signal processing on the user side, or rely on accurate uplink estimation
to simplify the downlink channel estimation procedures. Time division duplexing (TDD)
scheme does not require this up/downlink acknowledgment due to the channel reciprocal
principle, and the pilot requirement is also irrelevant to the number of antennas. For this
reason, most of the massive MIMO systems uses TDD mode. The state-of-the-art channel
estimators include least square [76] and minimum least square error (MMSE) [69] based
channel estimation methods which are shown good estimation performance, especially under
frequency-flat fading channels. The maximum likelihood estimator is also proposed to improve
the inter- and intra-cell channel estimation performance with lower computational complexity
than MMSE-based estimator [31]. However, the efficiency of the above estimation methods is
based on either perfectly received signals or no interference in the channel, which cannot be
true all the time.

Although accurate CSI estimation is vital to the performance of massive MIMO systems,
getting a perfect CSI estimation is still challenging. Multiple factors, such as frontend
distortions, pilot contamination, and jammings, can cause the imperfection and distort the
estimation. In addition, CSI is also time-varying and has to be estimated within the channel
coherence time. As a result, how to perform the channel estimation in a shorter time is
essential as well.

The frontend non-ideality, such as IQ impairments, carrier frequency offsets (CFOs),
sampling time offsets (STOs), and frontend non-linearity, can distort the training sequences
or the pilot signals, which introduces interference and makes the channel estimation imperfect.
In addition, for massive MIMO systems, to reduce the cost and energy consumption, simpler
and lower-resolution ADCs can be used. Meanwhile, due to the resolution reduction and
quantization error, longer pilots are needed to get accurate CSI, which will reduce the
scalability of the system. In order to perform the CSI estimation, signal processing for the
distortion calibration and compensation is necessary.
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Figure 1.4: Communication methods: a). frequency division duplexing (FDD); b). time
division duplexing (TDD).

Pilot contamination can also be a factor for inaccurate channel estimation. For the best
channel estimation performance, orthogonal pilots are needed for individual UE in the same
cell. However, the number of orthogonal pilots is limited in the specified bandwidth. As a
result, UEs in the neighboring cells may reuse the same set of orthogonal pilots, and the BS
may receive the same pilot from both the current cell and the neighboring cell. The same
pilot sent from the neighboring cell will influence the channel estimation between the UE
and the BS in the same cell.

Another factor that can impact the channel estimation is signal jamming or interference
colliding in the same signal bandwidth. With the increasing number of devices, there can
be some chances that the signal sent by other devices collides with the pilot signals, which
interferes with the channel estimation. Signal jammings can also happen to block the normal
communication between UEs and the BS. Some typical jammings that can affect the channel
estimation are high-power, constant, or periodic signals sharing the same channel with the
targeted UEs or the specifically designed signals that can destroy the channel estimation
for the targeted pilots. As a result, getting a more accurate channel estimation in a noisy
environment takes effort.

1.3 Machine Learning in Massive MIMO systems

With the increasing complexity in the channel environment and the hardware mismatch
due to the array scaling-up, it is harder and harder to estimate the channel and perform
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beamforming in the traditional way. More signal processing procedures are needed to calibrate
and compensate for the channel loss.

It is the same for some other challenges existing in the current massive MIMO systems,
such as pilot overhead reduction with the increasing number of UEs in the systems, the
dynamic channel estimation caused by the UE mobility, the imperfect and nonlinear channel
characteristics caused by the hardware impairment or environment, and the long computation
latency due to the additional signal processing procedures. However, those challenges have
the potential to be solved using a data-driven manner or, more specifically, machine learning
methods. A neural network based joint pilot and downlink channel estimation design is
proposed in [78] to improve the FDD channel estimation performance with reduced pilot
overhead by using pruning. Authors in [45] propose a deep neural network based calibration
framework to calibrate the nonlinear channel between uplink and downlink for both FDD and
TDD massive MIMO systems. A deep learning based decision-directed channel estimation
method is proposed in [80] to estimate channels of high-speed vehicles where different Doppler
rates exist in different signal packets. In addition, a deep learning method, proposed in [70],
is shown to be able to unfold an existing iterative massive MIMO detection method and
simplify the signal processing.

The state-of-the-art machine learning methods have also proven to be efficient in improving
the performance on the complex channel modeling, pilot contamination and codebook
designs, coding and decoding scheme presentation, and CSI estimation for 5G and beyond
communication networking [107, 127]. The top three commonly used machine learning
architectures for the 5G and beyond communication applications are fully-connected networks,
long short-term memory (LSTM) networks, and convolutional neural networks [107]. For the
physical layer design of single-cell communication systems, the machine learning solutions
to improve the CSI estimation are attractive, and multiple machine learning based CSI
estimations are proposed to solve the challenges mentioned previously [115, 144, 63, 41, 10,
137]. The emergence of machine learning algorithms for massive MIMO signal processing
shows the potential of the data-driven manner of the next communication systems.

1.4 Dissertation Overview

This dissertation focuses on integrated signal processing for massive MIMO systems. It
provides a comprehensive analysis of different choices and considerations for designing and
prototyping scalable massive MIMO systems from the perspective of both algorithms and
hardware architectures. The design and prototyping of the scalable massive MIMO systems
should focus on better data aggregation, linear scaling of the computational complexity,
improving cost- and energy- efficiency, and maintaining development sustainability. This
is achievable by designing modular, adaptable, and reusable massive MIMO systems to fit
different beamforming techniques, baseband signal processing algorithms, and hardware
component designs.

To further demonstrate the feasibility of designing such massive MIMO systems, an
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algorithm-adaptable, scalable, and platform-portable generator for massive MIMO baseband
processing systems is designed and emulated. This generator is written in Chisel [17] hardware
construction language and produces instances that implement distributed massive MIMO
BS processing, including channel estimation and beamforming. The generator can be reused
for different MIMO systems and hardware datapath designs by changing the parameters.
The generator is paired with a Python-based system simulator, which, incorporated together,
can emulate a system testing various baseband signal processing algorithms. The field
programmable gate array (FPGA) emulation is performed with generated instances using
various parameter values. To demonstrate the algorithmic adaptability, a Golay-sequence-
based channel estimation method, a beamspace calibration method [30], and a channel
denoising algorithm [83] are evaluated across a range of channel models. The performance
of the generator, the necessity of the algorithmic adaptability, and the ease of hardware
generation are evaluated and discussed. The power consumption of the FPGA implementation
is 5.4W, which is competitive with the state-of-the-art implementations with both channel
estimation and beamforming implemented. The emulated register-transfer level (RTL)
implementation with different system parameters shows that with beamspace methods, the
demodulation error vector magnitude is improved by up to 29.8%.

As discussed in the previous section, ML plays an important role in the 5G and beyond
communication systems. To further improve the massive MIMO system channel estimation
performance under the nosier channel environments, a complex-valued neural network (CVNN)
aided channel estimation is proposed. The CVNN takes the fast Fourier transformed (FFT)
received Golay pilots as the input and outputs predicted Golay pilots. The correlation-based
channel estimator then estimates the channel based on the prediction. The CVNN is trained
with a wideband jamming signal centering at different frequencies within the pilot signal
bandwidth. Different CVNN designs and training choices are compared and analyzed, and the
channel estimation performance is compared with the traditional correlation-based estimator.
The result shows that with the aid of CVNN, the channel estimation performance can be
improved up to 3.16× with shorter pilots.
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Chapter 2

Design and Prototyping of Scalable
mmWave Massive MIMO Systems

2.1 Key components in massive MIMO systems

In this section, the key components in the algorithms of massive MIMO systems are discussed.
Although the range of algorithms is large, in order to limit the scope of discussion, this
thesis focuses mainly on modulation/demodulation-related physical layer signal processing
topics in single-cell massive MIMO communication systems. Other important algorithms,
such as encoding/decoding and MAC layer scheduling, are out of the discussion range of this
dissertation. The main components in the massive MIMO physical layer algorithms include
beamforming and baseband signal processing, as shown in Fig. 2.1. Different techniques
and algorithms will be summarized and discussed on digital vs. hybrid methods used in
beamforming, signal recovery, channel estimation, and signal synchronization algorithms used
in the baseband signal processing.

2.1.1 Beamforming Techniques

In order to improve the communication quality, beamforming techniques, which combine and
focus signals from the array on a specific direction and reduce the response of signals coming
from other directions, are employed especially in multiple user scenarios [39]. The widely
used beamforming techniques include digital beamforming and hybrid digital and analog
beamforming. The summary of the beamforming techniques can be found in Table. 2.1.

Digital Beamforming

In digital beamforming, the weighted sum of the vectors of the input signal needs to be
used to form the beam [99]. It has the advantages of high precoding freedom, precise
beamforming, multiple beam flexibility, etc, but is also power-consuming and expensive due
to the large number of radio frequency (RF) chains required [136]. In digital beamforming
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Figure 2.1: Key signal processing algorithms in massive MIMO physical layer, assuming
single-cell communication systems.

architectures, the number of RF chains is the same as the number of the antenna array
because all the operations are performed after the analog-to-digital conversion or before
the digital-to-analog conversion. The traditional digital beamforming techniques include
maximum ratio combining (MRC), zero-forcing (ZF), and minimum mean square error
(MMSE) based methods [89]. The following discussion is based on uplink communication,
and downlink beamforming can be naturally derived using the reciprocal property assuming
TDD mode. The main goal of maximum ratio combining is to maximize the received
signal-to-noise ratio (SNR). Assume the system, with K users and M antennas at the base
station, has the knowledge of perfect channel state information (CSI), and the channel
noise is the independently and identically distributed (i.i.d) additive white Gaussian noise
(AWGN). Let method ∈ {MRC,ZF,MMSE}, Hmethod ∈ CM×K being the channel matrix
with hij, i ∈M, j ∈ K as each element, Dmethod ∈ CK×1 being the beamformed signal with
dk, k ∈ K as each element, x ∈ CK×1 being the transmitted signal with xk, k ∈ K as each
element, y ∈ CM×1 being the received signal as yi, i ∈M as each element. MRC [89] can be
expressed as

DMRC = α−1HHy, (2.1)

where α = diag{
∑M

i=1 |hi1|2, ...,
∑M

i=1 |hiK |2}.
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If we expand the formula, we can get

dk,MRC =
1∑M

i=1 |hik|2

M∑
i=1

h∗
iky

= xk +
1∑M

i=1 |hik|2

M∑
i=1

K∑
j ̸=i

h∗
ikhijxj +

1∑M
i=1 |hik|2

M∑
i=1

h∗
iknk,

(2.2)

with nk being the i.i.d AWGN. For the massive MIMO system, where a significantly large
number of antennas can be assumed, the user-base station channel vectors show the pairwise
orthogonality [9]. However, in reality, since the number of antennas is limited, the channel
vectors are not orthogonal with each other, which introduces inter-user interference (IUI) as
shown in Eq (2.2). To remove IUI, zero forcing beamforming is used. Instead of using the
hermit conjugate of the channel matrix, the zero forcing method employs the pseudo-inverse
of the channel matrix, and can be expressed as [89]

DZF = (HHH)−1HHy = x+ (HHH)−1HHn, (2.3)

by expanding the formula, and let wij,ZF , i, j ∈ K be the elements in W = (HHH)−1 and
(HHn)j be the j-th element in the noise vector, we can get

dk,ZF = xk +
m∑
j=1

wkj,ZF (H
Hn)j. (2.4)

Compared with Eq (2.2), Eq (2.4) doesn’t have the IUI components, but at the same
time, the noise got amplified, which is also shown in Fig. 2.2 when the number of antennas is
64, and SNR is lower than -18dB. Authors in paper [74] also explore the impact of frontend
imperfection on MRC and ZF beamforming. The result shows that with a large number of
antenna arrays, the impact of the IQ imbalance on the overall detection performance is minor,
which also shows the efficiency of the linear receiver design in massive MIMO systems.

Another typical digital beamforming technique is the MMSE-based beamforming, where
the noise effect will be minimized. In another word, find the MMSE-based weights WMMSE ∈
CK×M that E{(WMMSEy − x)yH} = 0. Then, one can derive that

WMMSE = E{xyH}E{yyH}−1

= E{x(Hx+ n)H}E{(Hx+ n)(Hx+ n)H}−1

= (E{xxH}HH)(E{HxxHHH +HxnH + nxHHH + nnH}−1)

= (E{xxH}HH)(HE{xxH}HH + E{nnH})−1.

(2.5)

Assume Ptx = E{xxH} be the transmission power, and n ∼ CN (0, σ2IM). The Eq. 2.5
can be expressed as

WMMSE = E{xyH}E{yyH}−1

= (PtxI)H
H(H(PtxI)H

H + σ2I)−1

= HH(HHH +
σ2

Ptx

I)−1.

(2.6)
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MMSE beamforming can be expressed as

DMMSE = HH(HHH +
σ2

Ptx

I)−1y. (2.7)

Compared with ZF method, MMSE-based method has a minimum noise effect, and
has the best beamforming performance among the three digital beamforming techniques
under the current assumption. In addition, the MMSE-based method can be extended to
other scenarios. The above MMSE-based method only considers a single-cell communication
scenario. Authors in paper [69] proposed a multi-cell MMSE (M-MMSE) based scheme to
suppress both intra-cell and inter-cell interference (ICI) by estimating the inter-cell channel
information and fusing the estimated inter-cell channel matrix into Eq. (2.7). M-MMSE
method can further improve the performance of MMSE-based beamforming even with inter-
cell interference. For multiple-user antenna scenarios, MMSE digital beamforming method
is not optimal anymore. As a result, block-diagonalization based digital beamforming is
proposed to achieve a better performance for multiple-user antenna beamforming [116, 118].
However, due to the need for matrix inversion in ZF and MMSE-based beamforming, the
computational complexity of ZF and MMSE methods is much higher than MRC beamforming,
which also makes the system hard to scale up. Fig. 2.2 shows the beamformed symbol MSE
vs. SNR for different beamforming methods with different numbers of base station antennas,
and the results match the discussion in this section.

However, as the number of base station antennas increases, ZF and MMSE-based methods
become increasingly unrealistic to implement due to the high computational complexity and
the high data transferring bandwidth requirement. To keep good beamforming performance
and improve scalability at the same time, digital beamforming needs to be distributed. The
distribution can either be partially distributed or fully distributed. Partially distributed
digital beamforming, such as a two-stage beamforming method [113, 60] combining MRC and
ZF, can reduce data transmission between antenna clusters and the centralized processor,
while a fully distributed method can almost remove the centralized processing or require only a
small amount. Coordinate descent (CD) [100] and alternating direction method of multipliers
(ADMM) [67] methods are proposed to approximate ZF beamforming in fully decentralized
ways. The CD method uses the gradient descent method to find the unconstrained least
square solution iteratively. The beamforming weights associated with each antenna are
derived in the antanna order distributively, and the update step size is used for controlling the
IUI removal amount at each step. Unlike the CD method, where the beamforming weights of
each antenna are solved individually, ADMM-based beamforming provides the transmission
symbols for each antenna cluster. ADMM-based beamforming aims to find the transmission
symbols that can both minimize the transmitting energy and make the interference residual
within the precoding constraint by using only local knowledge at each cluster. Both methods
can enable the scalability of the system deploying digital beamforming.
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Figure 2.2: The beamforming performance comparison among MRC, ZF, and MMSE-based
with a different number of antennas M in the system. The simulation considers 8 UEs in the
system under flat i.i.d channel model and AWGN, and uses 64-QAM for symbols.

Hybrid analog-digital beamforming

To avoid costly frontend hardware designs and still keep high beamforming quality, hybrid
analog-digital beamforming architectures are widely used. Unlike digital beamforming
architecture, hybrid beamforming architectures use less number of RF chains or analog-digital
converters than the number of antennas, which is feasible because data stream number
constraints the RF chain or analog-digital converter number, but the gain of beamforming
comes from the number of antennas [84]. The analog beamforming in the hybrid beamforming
can be implemented in either the RF domain or the baseband domain. For the phase shifter-
based analog beamforming implemented in the RF domain, shown in Fig.2.3 (a), the phase
shifting can cancel undesired components received by the antenna array before any other
distortions are added, such as the dynamic range saturation and the distortion coming from
mixers. But due to the high operating frequency, the beamforming performance is sensitive to
the circuit fabrication nonideality, which leads to inaccurate phase shifting. The vulnerability
of the analog beamforming can be relieved by implementing phase shifters in the baseband,
shown in Fig.2.3 (b). However, each antenna requires a mixer, making the circuit, especially
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Figure 2.3: Hybrid analog-digital beamforming: (a) RF domain hybrid beamforming; (b)
baseband hybrid beamforming.

the LO distribution, more complicated [21]. In hybrid architectures, both digital baseband
processing and analog phase shifters are used, and can be categorized according to the phase
shifter connection. The types of hybrid architecture include fully connected phase shifter
structure, partially connected phase shifter structure, and switch connected structure [49,
84, 81]. Compared with the partially connected phase shifter structure, a fully-connected
phase shifter network can get the full antenna array gain, while may suffer from the coupling
issue and user interference. Phase shifter-based structure designs have a wide range of design
considerations, such as noise figures, circuit linearity, and phase resolutions, but switch-based
designs mainly need to consider the switching speed. The low power consumption of switches
also makes the switched-based structure attractive. However, the performance of switch-based
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Figure 2.4: Hybrid analog-digital beamforming: (a) fully connected phase shifter-based
architecture; (b) partially connected phase shifter-based architecture; and (c) switch-based
architecture.

analog beamforming is vulnerable to the noncoherent signal combination, where the combined
signals have different phases [81]. The performance of the switch network can be improved
by combining it with phase shifter-based networks.

However, due to the split of the digital beamforming stage and the analog beamforming
stage, the optimal beamformer matrix for digital and analog is hard to find. In addition,
the analog beamforming structure adds more constraints on the optimization function to
find the optimal analog beamforming matrix [84]. Due to the ON-OFF constraints in the
beamforming matrix for the switch-based architecture, designing the optimal combiner is
even harder than the phase shifter-based analog beamforming [81]. Because of the difficulty
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of finding the optimal solution, the performance of the hybrid beamforming can be worse
than the digital beamforming techniques. The author in paper [143] compare the performance
between MMSE hybrid beamforming and MMSE fully digital beamforming with different
resolutions of ADC, and the result shows that MMSE fully digital beamforming outperforms
the hybrid beamforming even with a smaller antenna array size.

To reduce the performance gap between hybrid beamforming and fully digital beamforming,
many optimization methods are proposed. One proposed method is by using minimal gap
iterative quantization and greedy ratio trace maximization to find the optimal analog combiner
solution that can minimize the mean square error between the analog combiner and the
corresponding optimal digital combiner solution, which is proposed by authors in paper [49].
For a multiple-user antenna scenario, authors in paper [12] use digital block-diagonalization
beamforming as a reference, and employs weighted sum mean square error minimization to
find the hybrid analog and digital beamforming matrix that minimize the performance gap
between the reference digital beamforming and the hybrid beamforming. An optimization
method that uses the low complexity Gram-Schmidt method and MMSE method to obtain
the analog beamforming matrix and the digital beamforming matrix is also proposed in
[66], where the inter-user interference is reduced at both stages. Besides improving the
optimization procedure, authors in paper [87] propose a hybrid beamforming design in the
time domain to improve the hybrid beamforming performance. With the special analog phase
matrix design, the wideband signal can be perfectly reconstructed at the sampling points for
the equivalent fully digital beamforming design, and the hybrid beamforming performance
can achieve that of digital beamforming.

Besides hybrid analog-digital beamforming, adaptive beamforming techniques are devel-
oped to form more flexible beams and suppress the interference and noise [99]. The widely
used methods include least mean square, normalized least mean square method, and recursive
least square, which can adaptively approximate the optimal beamforming [5].

2.1.2 Baseband signal processing

Fig. 2.5 shows the key components in massive MIMO baseband digital signal processing,
which include the frontend impairment correction, the channel estimation, the signal time-
domain and frequency-domain synchronization, and the digital beamforming. Baseband signal
processing also includes symbol modulation/demodulation and data encoding/decoding, but
in this dissertation, we will mainly focus on the discussion on frontend impairment, channel
estimation, and signal synchronization.

Frontend Impairment Correction

Imperfections in the manufacturing process or deployment scenarios can cause imbalanced
amplitude and phase in the in-phase and quadrature-phase (IQ) channels of the frontend
design, which can severely affect the bit error rate (BER) versus SNR in MIMO systems
[110, 120]. To estimate IQ imbalance parameters, traditional methods such as least square
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Table 2.1: Beamforming technique summary.

BF Method Pros Cons

Digital

MRC
low complexity

high scalability
contain IUI

ZF no IUI

high complexity

low scalability

noise amplified

MMSE
minimum noise effect

remove ICI

high complexity

low scalability

power estimation

Multi-stage
reduce data transfer

reduce complexity
extra ChEst

CD or

ADMM-based

fully decentralized

high scalability

iterative method

longer latency

Overall
easy algorithm dev

optimal solution
power consuming

Hybrid

Domain
RF less distortion less phase accuracy

Baseband higher phase accuracy
more distortion

require mixer

Network

Fully

connected
full array gain

complex connection

coupling issue

low scalability

Partially

connected

simpler connection

high scalability

more BF constraints

less array gain

Switch
simplest connect

power efficient

high vulnerability

high BF constraints

Overall power saving
suboptimal solution

longer design cycle

Adaptive flexible beams iterative method
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Figure 2.5: Key components in the baseband digital signal processing.

and minimum mean square equalization in the frequency domain have been proven effective
for OFDM-modulated signals. IQ imbalance parameters can also be estimated using the
statistics of the signal. By calculating the auto-correlation and cross-correlation of the QAM
signals, the gain difference and phase rotation between the I channel and the Q channel
can be found. To provide robust IQ imbalance parameter estimation in the time domain, a
pre-FFT adaptive distortion correction method was proposed in [120] to correct IQ before
FFT operation.

One of the properties of millimeter-wave (mmWave) massive MIMO systems is the wide
bandwidth of the signal, which can lead to incoherent frequency response and frequency-
dependent IQ imbalance. To address this issue, a technique for estimating IQ correction
parameters was proposed in [131], which involves dividing the wideband into multiple subbands
and estimating the frequency-dependent parameters using a least square algorithm. Another
method presented in [106] uses a time-varying training sequence, which is designed and
scheduled to guarantee no interference on active subcarriers, to find the LS optimal solution
for frequency-selective IQ imbalance estimation in wideband OFDM signals. As the number
of antennas increases, the frontend design can be less expensive as the ADC resolution can
be lower. However, lower-resolution ADCs may suffer from IQ imbalance and nonlinear
quantization loss. A two-stage IQ parameter estimation method is proposed in [129] to solve
this issue, where the uplink iteratively estimates a phase-shifted version of the parameters by
gradient descent and the downlink corrects the estimated parameters’ phase.

Another imperfection in the frontend design is the DC signal offset, which can cause
unwanted carrier leakage. To remove DC offset, the commonly used method is to eliminate
the mean of the received signal generated by a single tone from an ideal transmitter. However,
manufacturing mismatches between the frontend chains in the array for beamspace algorithms
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can cause the channel to be non-sparse, leading to a breakdown in beamspace algorithms.
To address this issue, the authors of [30] proposed an in-the-field MIMO array calibration
method that estimates the array phase offsets due to manufacturing mismatches and recovers
channel sparsity.

Channel Estimation

Time domain methods In a narrow-band TDD mode massive MIMO systems, a frequency
flat fading channel model is typically considered, and the channel information can be estimated
using special pilot designs such as Zadoff-Chu sequences, Golay sequences, and Golden code
sequences, based on the autocorrelation results. Least square (LS) and minimum mean square
error (MMSE) estimators are widely used methods for channel estimation [108, 138]. Assume
that the modeled channel impulse response haveR taps with hTDD = [h[0], h[1], ..., h[R−1]]T ∈
CR×1, the pilot symbol vector have L length s = [s[0], s[1], ....s[L− 1]] ∈ CL, and noise vector
nTDD ∈ C(L−R)×1. Then the signal received at each antenna yTDD = [y[0], y[1], ..., y[L−R−1]]
can be formulated as

y[0]
y[1]
...

y[L−R− 1]

 =


s[0]
s[1] s[0]
. . .

s[L− 1] s[L− 2] · · · s[L−R− 1]

hTDD +


n[0]
n[1]
...

n[L−R− 1]


(2.8)

And it can be simplified as

yTDD = STDDhTDD + nTDD. (2.9)

The LS estimator ĥLS can be expressed as

ĥLS = (SH
TDDSTDD)

−1SH
TDDyTDD. (2.10)

And the MMSE estimator ĥMMSE can be expressed as below, assuming that Rh =
E{hTDDh

H
TDD} and Rn = E{nTDDn

H
TDD}

ĥMMSE = (R−1
h + SH

TDDR
−1
n STDD)

−1SH
TDDR

−1
n yTDD. (2.11)

The above two estimators are localized channel estimators, where the channel estimation
is performed at each antenna locally. The MMSE channel estimator can also be extended to
the centralized MMSE (C-MMSE) channel estimator [138] by

ĥC−MMSE = (R−1
H + SH

C,TDDR
−1
n SC,TDD)

−1SH
C,TDDR

−1
n Y TDD, (2.12)

where H = [hT
0 ,h

T
1 , ...,h

T
M−1]

T , RH = E{HHH}, and SC,TDD = IM ⊗ STDD.
Fig. 2.6 shows the simulation results of the above three channel estimation methods.

Compared with LS and L-MMSE channel estimation, M-MMSE channel estimation has the
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Figure 2.6: Channel estimation performance comparison among L-MMSE, C-MMSE, and
LS. The metric is the mean square error (MSE) vs. per symbol SNR, assuming multipath
Rayleigh fading with 3 taps channel impulse response, 32 pilots, 64 antennas in an equal
spacing linear array, and additive white Gaussian noise (AWGN).

least estimation MSE under AWGN channel, even in the low SNR range, but requires more
statistical information for the channel.

To address inter-cell pilot contamination and improve channel estimation performance
with lower computation than MMSE, the maximum likelihood estimator was proposed by
the author in [31].

Frequency/beamspace/angular domain methods MMSE and LS channel estimators
can also be applied in the frequency domain by using FFT and converting the OFDM pilot
into the frequency domain. In [138], the performance and complexity comparison between
the localized MMSE (L-MMSE) and C-MMSE under AWGN channel model are established.
And it shows that C-MMSE has a lower channel estimation mean square error but much
higher computational complexity than L-MMSE. This leads to the proposal of a distributed
C-MMSE channel estimation method in the frequency domain to reduce the computational
complexity to the same magnitude as L-MMSE with better performance by combining
L-MMSE estimations iteratively to approach the global optimal solution.
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In practice, the mmWave channel is sparse, which means the number of multipath
components in the environment is limited and has been proved with measurements in [42].
To exploit the wireless channel sparsity in mmWave with higher estimation accuracy and
less pilot overhead, compressed sensing (CS) techniques have been favored recently, aiming
to reconstruct the compressible signal with far less sampling rate than Nyquist’s sampling
rate [20, 73]. Some optimization algorithms to solve this underdetermined matrix with the
minimum L1 norm include matching pursuit, tree matching pursuit, and orthogonal matching
pursuit (OMP) [7]. Compared with matching pursuit, OMP can achieve faster convergence.
Various channel estimation methods based on OMP are proposed to solve different difficulties
in massive MIMO channel estimations [98, 64, 132, 40, 34]. An OMP-based hybrid far-near
channel estimation for extremely large-scale massive MIMO (XL-MIMO) is proposed to
estimate both far-field and near-field channel path components more accurately, which is
hard for traditional methods because the scatters in the far and near field are different. The
basis mismatching problem that happens in the discretized CS methods can also be avoided
using Newtonized OMP (NOMP) [119]. [34, 40] use NOMP to extract massive MIMO uplink
frequency-independent channel information with high accuracy. Authors of [34] deploy joint
NOMP to reduce the computational complexity further. For a large number of antenna array
systems, the nonzero positions of the channel impulse responses from different antennas can
be the same. Better utilization of the channel joint sparsity can reduce the pilot overhead a
lot. For this reason, blocked optimized OMP is proposed in [98] to jointly recover the nonzero
channel matrices, which also outperforms the localized OMP method.

As the number of antennas for massive MIMO base stations increases, energy consump-
tion and hardware complexity become important considerations. To address these issues,
beamspace MIMO has gained attention because it reduces the requirement for a large number
of RF chains [13, 22]. In a recent paper [22], the authors proposed a beamspace channel
estimation algorithm with lens array, which utilizes a supporting detection (SD) approach.
This method achieves higher accuracy than traditional compressive sensing (CS) techniques
such as OMP, particularly in low SNR scenarios, while maintaining lower computational
complexity. Another paper [83] introduced a denoising-based beamspace channel estimation
method that relies on Stein’s unbiased risk estimator, taking advantage of the directional
nature of wave propagation at mmWave frequencies. The low computational complexity of
this algorithm facilitates hardware implementation.

Other channel estimation methods, such as approximate message passing (AMP) [101,
46, 11, 145], can achieve higher performance, especially for the hybrid beamforming archi-
tectures, but they rely on complex assumptions about the prior distribution. Consequently,
implementing these channel estimation methods on hardware can be challenging.

Machine-learning based estimation Most traditional channel estimation methods treat
each antenna path separately, which fails to utilize the geometric information of the antenna
array. To improve channel estimation performance in more challenging scenarios, machine
learning techniques are being applied to channel estimation. For instance, a recent paper
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Table 2.2: Channel estimation method summary.

Category Method Example

Time Domain

LS [108]

MMSE [138]

Maximum likelihood [31]

Frequency/Beamspace

/Angular Domain

LS/MMSE [138]

OMP [7, 98, 64, 132, 40, 34]

Beamspace [13, 22]

AMP [101, 46, 11, 145]

ML-based

DNN [115, 144, 63, 41]

Multilayer-perceptron [10]

RNN [137]

[115] proposed a deep neural network (DNN) denoising-based channel estimation method
for OFDM systems. The network takes the LS estimation from each antenna as input.
It produces higher-resolution channel estimation, which outperforms traditional LS and
approximate linear MMSE (ALMMSE) solutions in low SNR scenarios with additive white
Gaussian noise (AWGN). Another paper [144] introduced a DNN-based channel estimation
method for 1-bit ADC massive MIMO systems. Rather than estimating the channel for each
antenna separately, this method takes all antenna signals in the array as input. In a different
approach, a paper [10] proposed a multi-layer perceptron channel estimation method that
exploits similarities in channel dynamics across spatial dimensions. The computational cost
of this method is fixed, regardless of the size of the antenna array, making it suitable for
implementation at the edge. In another paper [63], the author used three different deep
learning networks to refine the per-antenna LS channel estimation solution, and the results
demonstrated the robustness of the system to Doppler effects. Meanwhile, another paper
[137] proposed a CNN-autoregressive predictor and CNN-recurrent neural network (RNN) to
improve channel estimation performance with channel aging, compared with using only an
autoregressive predictor. Furthermore, in addition to spatial and frequency domains, another
paper [41] proposed a learned denoising-based AMP network for beamspace mmWave massive
MIMO systems to achieve better performance with a small number of RF chains.

A summary of channel estimation methods for massive MIMO systems is shown in Table.
2.2.
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Signal Time and Frequency Synchronization

To achieve higher channel capacity and better energy and spectral efficiency, mmWave
massive MIMO with OFDM signal modulation is widely considered as a promising approach.
However, to enable the advantages of massive MIMO systems, accurate synchronization
is important, especially for wideband signals. Massive MIMO synchronization includes
timing synchronization and frequency synchronization. Sampling timing offsets (STOs)
will introduce inter-symbol interference (ISI) and frequency-dependent phase rotation to
subcarriers in the frequency domain, and carrier frequency offsets (CFOs) will destroy the
orthogonality of subcarriers, involving inter-carrier interference (ICI). The imperfection
of signal synchronization consequently degrades the massive MIMO system performance,
regardless of whether the antenna model is collocated or distributed [16].

Traditional synchronization methods for OFDM communication include Moose’s algorithm
[86] and Schmidl-Cox algorithm [109], which are based on the autocorrelation result of two
identical training sequences. However, for multi-user massive MIMO systems, each pair
between transmitter and receiver antenna needs to be estimated. As the number of antennas
at the base station increases, the computational complexity for signal synchronization will
increase drastically. To reduce the amount of computation, authors in paper [105] propose an
estimation strategy which firstly estimates frequency offsets between the reference antenna
and all other antennas in BS, and then estimates CFOs between the reference antenna and
all users. With the prior knowledge of BS antennas, CFOs of each user-BS antenna pair
can be derived, and no need to estimate all user-BS antenna CFOs individually. Traditional
CFO estimation methods need repetitive training sequences. To reduce the overhead and
CFO compensation complexity, authors of paper [104] proposed a frequency synchronization
method that only needs one training symbol and compensates CFOs after the antenna signal
combining. Based on the assumption that the number of BS antennas is large, the algorithm
finds the CFO estimation minimizing the power of the orthogonal projection of the received
signal onto the space spanned by all users’ training sequences. Besides frequency domain
synchronization methods, authors in paper [142, 35] proposed an angle domain adaptive
filtering (ADAF) based frequency synchronization method to estimate and compensate CFOs.
The author in paper [35] further improved the ADAF method to remove the constraint in
[142] that users cannot have overlapped angle-of-arrival regions.

To get a good communication system performance, STO should be estimated accurately as
well. Besides the traditional auto-correlation based STO estimation methods in [86, 109], the
author in paper [141] applied selection transmitting and maximum ratio combining scheme to
estimate timing offsets with the help of a designed training sequence. Authors of paper [51] also
comprehensively analyze the impact of residual STO and residual CFO on the performance
of highly quantized MIMO-OFDM systems, and show that simple synchronization techniques
are sufficient even for highly quantized systems.

Recently, researchers are also deploying machine learning to improve the accuracy of
timing and frequency synchronization. Authors of paper [134, 93] use deep learning based
timing or frequency offset estimation to achieve better performance. However, due to the
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property of deep learning networks, the computational complexity is large. To reduce the
complexity and maintain the high accuracy of ML-based algorithms, the author in paper [72]
estimated the residual STO and residual CFO by using the extreme learning machine (ELM)
approach, which incorporates the traditional STO method. Compared with the deep learning
methods in [134, 93], ELM approach doesn’t need the perfect information about channels,
which makes it more practical.

2.2 Massive MIMO prototyping

2.2.1 System Topology

Centralized vs. distributed massive MIMO testbeds The traditional topology of
massive MIMO base station implementation employs the centralized architecture, where the
radio frontends receive the signals and transmit to the central compute unit. Then the central
computing unit performs the baseband signal processing, beamforming, and demodulation.
The simplicity of the architecture makes the design of the base station straightforward, where
only the off-the-shelf radio frontends, interconnection modules, and a PC are theoretically
needed. An example of the centralized massive MIMO base station implementation is
LuMaMi [75]. LuMaMi base station prototype is built with software-defined radios for
OFDM transceiving, the switch and router system, centralized co-processors, and a central
control unit. The baseband signal processing, such as channel estimation and beamforming,
is performed in the centralized co-processors. The router system is specially designed to
support a large amount of data transmission between the SDR frontends and the centralized
processing unit. However, as the number of antenna arrays increases, due to the large amount
of data transmission and data processing, the interconnect router design and the baseband
signal processing become increasingly complex, contributing to high power consumption. In
addition, the increase of those complexity leads to slow computation, and in the end, the
computation time exceeds the channel coherent time. The high power consumption, high
computational complexity, and low scalability make the centralized architecture impractical
for the real-time massive MIMO base station implementation.

To relieve the burden of interconnection and computational complexity, the base sta-
tion architecture has to be distributed. Instead of implementing complex router designs
and centralized computation units, some parts of the baseband signal processing can be
implemented distributively near frontends. With the help of localized signal processing, less
amount of data needs to be aggregated or disaggregated, and the computational complexity
of the central computing unit can also be reduced. An example of the distributed massive
MIMO base station implementation is Argos [112]. Argos consists of 16 WARP modules
containing radio daughter boards and FPGA for signal processing, a hub for data switch
and clock distribution, and a central controller for centralized signal processing. In Argos,
channel estimation and beamforming are performed in the distributed WARP modules. As a
result, for downlink beamforming, only CSI and the calculated downlink beamforming weights
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Figure 2.7: Massive MIMO base station topology: (a) centralized architecture; and (b)
decentralized architecture.

need to be transferred between the centralized computing unit and WARP modules, and the
transmission symbols need to be distributed to all WARP modules equally. The relaxation of
the interconnection bandwidth and computational complexity makes the distributed base
station architecture more power efficient and scalable.
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Figure 2.8: Network strategies for distributed architecture: (a) daisy-chain network; and
(b) star network. Suppose the data rate of each distributed DSP is B bit per second (bps)
and the data rate of the root DSP is BN,out bps, the processing latency of each DSP unit is
Ti,proc, the transmission latency between the distributed DSP and its communication target
is Ttrans, and the total processing time, when all distributed and root units are working, is
Ttotal. The processing latency, transmission bandwidth required without stalling, and the
buffer or memory size required for each DSP unit of both networks are shown.

Daisy-chain network vs. star network In the distributed base station architecture,
the centralized baseband signal processing is dissembled and reallocated to the frontend
array. Distributive baseband signal processing includes two parts: decentralized computing
units and the centralized computing unit. Some typical topologies for the distributed base
station architecture include the star networks and the daisy-chain networks. In the star
network topology, the decentralized computing units connect directly to the centralized
computing unit. Argos [112] is implemented using the star topology. The author in paper [58]
proposed a decentralized Newton method for large-scale massive MIMO uplink detection, and
implemented with the star topology. The variables used to estimate the symbols are updated
at each cluster, and summed up at the central cluster at each step. Then, the estimated
symbol is updated with the variables iteratively in the central cluster.

In the daisy-chain network topology, decentralized computing units are chained up together.
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Each decentralized computing unit can only exchange data between neighboring units, and
the last decentralized computing unit in the chain connects to the centralized computing
unit. Hydra testbed from UC Berkeley is implemented with the daisy-chain topology [60].
Hydra employs a two-stage beamforming architecture, where the first stage is implemented
with the distributed MRC beamforming to maximize the signal SNR, and the second stage is
implemented with the centralized ZF beamforming. The distributed MRC beamformed signal
from each subarray is summed up through the daisy chain, and the combined signal is passed
to the centralized computing unit from the last subarray. ZF beamforming is performed
in the centralized computing unit to remove inter-user interference. Authors of paper [100]
proposed a decentralized coordinate descent method to obtain the precoder and the uplink
detection. Each decentralized computing unit is attached to a subarray, and the weights
are updated using coordinate descent at each antenna sequentially, in the order of antenna
placement. The information used to calculate the weight at the neighboring antenna is passed
through the daisy chain. The detected symbols at each antenna are also accumulated along
the chain using the combining weights. Then the final detected symbols at the last antenna
in the last subarray are passed to the centralized computing unit.

Compared with the star topology, the daisy-chain topology has less interconnection
bandwidth requirement, which is almost irrelevant to the scale of the number of subarrays
since the combination of the decentralized computation results happens along the daisy-
chain. Even though the decentralized signal processing can reduce the amount of total data
transmission between the decentralized units and the centralized unit, because the data
combination happens at the centralized unit, as the number of arrays increases, the possibility
for data transmission congestion still exists, and special router design is still needed. However,
due to the sequential operation of the data combination, the daisy-chain topology requires
larger buffers in each decentralized computing unit for data synchronization between the
neighboring units. The buffer or memory size required for real-time signal processing scales
up along with the increase of the arrays. And the delay of sequential combination operation
may also hurt the real-time performance. As a result, the interconnect router design needs
more consideration for the star topology implementation, while for the daisy-chain topology,
the computation latency and buffer size need more consideration.

2.2.2 Software simulator

Massive MIMO software simulators are essential for hardware and software algorithm de-
velopers because they can quickly model and simulate the overall system behaviors with
new features at a low cost. Fig. 2.9 shows the components that a massive MIMO software
simulator should have. The simulator should be able to simulate the behaviors of user ends,
the base station, and the transmission channels. In addition, to better simulate the overall
system, the hardware behaviors should be modeled and simulated.

The simulator should include the signal packet generation, variable sampling rates and
carrier frequencies, antenna modeling, frontend or hardware impairments, and signal pro-
cessing algorithms for both the user ends and the base station. The generation of signal
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Figure 2.9: Key components in massive MIMO simulators.

packets should consider payload generation, data encoding, and modulation schemes. The
user end should also consider pilot designs for the base station channel estimation. Signal
sampling rates and carrier frequencies need to be set as parameters to help system developers
to explore more possibilities. The frontend impairments should be considered in the simulator
to simulate the frontend behavior more realistically. The frontend impairments include IQ
imbalance, DC offsets, ADC skews, non-linearity, CFO, SFO, phase offset, etc. Different
signal wavelength requires different antenna supports. For this reason, antenna setups, such
as the shape, spacing, transmission and receiving gain, and dynamic range, should be modeled.
Besides the components discussed above, signal processing algorithms should be implemented
for the user end and the base station. The signal processing part in the software simulator
should be modularly implemented to ease future algorithm development and adaption. For
the base station and multi-antenna users, combiners and precoders are needed in the signal
processing for the MIMO beamforming.

Another important component in the software simulator is the channel simulation. The
channel simulation should at least be parameterized on the types of the channel model, user
end and base station geometry settings, and noise simulation. At the simulator backend,
system performance analysis is necessary. The analysis metrics can include beamforming SINR,
BER, error vector magnitude (EVM), data rate, sum rate, channel estimation accuracy, etc.
To better help with performance analysis and debugging, visualization is highly recommended.
The software simulator can also be helpful for hardware realization if the simulator implements
hardware modeling, such as the data quantization and the datapath bitwidth change. Then
the hardware implementation behavior can be modeled and analyzed before the hardware
realization has been finished.

An example of such a simulator is the 5G MIMO simulator released by REMCOM [1]. It
offers a comprehensive approach to 5G network design and deployment, covering everything
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from system and MIMO antenna design to performance evaluation in realistic simulated
environments and deployment planning [1]. Another example can be the Python-based
massive MIMO simulator built along with the Hydra testbed by UC Berkeley [25]. It
simulates the Hydra system uplink communication with various channel models and flexible
system settings. A GUI is also designed to visualize the result and the partial result easily.
The baseband signal processing algorithm is modularly designed so that DSP algorithm
developers can test the performance of their blocks in the overall massive MIMO system
without implementing the whole system from scratch. The hardware non-idealities are
considered in the Hydra simulator as well. As a result, this simulator is useful for hardware
implementation pre-analysis and debugging.

2.2.3 Hardware implementation

Platform choices

Software defined radio (SDR) based testbeds SDR is a platform cooperated by
hardware and software. The key components in SDRs include radio frequency (RF) frontend,
analog-to-digital and digital-to-analog converters, sample rate converters, interconnections,
and digital signal processing units [114]. Different from the implementation assembled from
discrete components, the flexible RF frontends and sampling rate converters can support a
broader range of signals which has different carrier frequencies, bandwidth, and sampling
rates. The RF frontends can be configured and controlled by the software. In SDRs, the
baseband processing is performed on software. The platforms for software implementation
can be general-purpose processors, GPUs, and FPGAs.

One of the most commonly used baseband signal processing platforms is the general-
purpose processor. SDRs, for example, Universal Software Radio Peripheral (USRP) [121],
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can be configured, and the data can be transmitted using C++ programs. The baseband
algorithms can also be integrated into C++ programs or implemented on higher-level languages
to realize near real-time signal processing. A well-known open source toolkit, GNU Radio, can
be installed on general-purpose processors to help with the baseband algorithm development
and simulation of SDR systems [133]. GNU radio has a user-friendly interface that developers
can design their own algorithms and connect to hardware configuration blocks in the graphical
user interface (GUI) easily. The real-time result visualization makes debugging and analysis
more efficient. Many state-of-the-art massive MIMO testbeds are implemented with SDRs
and general purpose processors, such as ArgosV2 [113], an HW-SW co-operated baseband
research platform proposed in [38], and the mmWave phased antenna array based testbed
[128]. Due to the high programmability, the SDR system with general-purpose processors
is a useful platform for fast prototyping and proof-of-concept implementation. In addition,
because programming on general-purpose processors does not need hardware background
knowledge, this platform can be used by a larger range of designers.

Graphic processing units (GPUs) are suitable choices for the implementation of SDR
systems as well. The architecture of GPU, which is simultaneous multithreading (SIMT),
substantially exploits data level parallelism and thread level parallelism. For massive MIMO
baseband signal processing, a well-designed decentralized uplink or downlink beamforming
algorithm can also expose significant parallelism by distributing the baseband processing
across the wideband frequencies or across the antenna array [75, 67]. The high parallelism of
the baseband signal processing makes it suitable on GPU. Authors of paper [67] proposed a
decentralized ADMM-based beamforming algorithm, and the author in paper [68] proposed a
reconfigurable soft-output MMSE MIMO detection algorithm better to exploit the parallelism
in the baseband processing algorithm. Both of the algorithms are implemented on GPU
clusters, and show the scalability, low latency, and high throughput for potential real-time
massive MIMO baseband processing on GPU. By adding flexible frontends, the SDR system
with GPU can realize high-speed and highly parallelized baseband algorithms. Compared
with general-purpose processors, GPU has a higher parallel computing ability, which makes
it especially suitable for prototyping decentralized baseband processing algorithms. However,
due to the generalization of the hardware architectures for both general-purpose processors
and GPUs, they are not a power-efficient choice for building massive MIMO base stations.

Another widely used platform for developing the baseband algorithms for SDR systems is
the field programmable gate array (FPGA). FPGAs are composed of clusters of logic cells,
interconnected via programmable routing resources [65]. With the specialized circuitry design
and the reduction of operating system overhead, FPGA can be used to implement real-time
and more power-efficient digital signal processing (DSP) than general-purpose processors
and GPUs. The programmability of FPGAs makes algorithmic upgrading easy at the same
time. The famous massive MIMO testbeds, LuMaMi from Lund University [75] and MIMO
prototyping system by National Instrument [48], employ FPGAs for DSP co-processor designs.
However, programming FPGA requires a higher bar than the previous two platforms, and
the developer has to have a hardware programming background. Moreover, the difficulty for
FPGA development, such as design and verification, is higher than general-purpose processors
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and GPUs since the memory size of FPGAs is more limited, and circuitry-level bugs are
harder to detect and fix.

The RF frontend flexibility and high programmability, SDR systems can support a wide
range of signal parameters, and are suitable for fast and proof-of-concept prototyping and
multiple iterations of baseband algorithm upgrading. However, attackers can also utilize
those properties to reconfigure the systems or install malicious software, which leads to severe
security issues [114]. Also, due to design generalization, some of the hardware inside SDRs
might be redundant for a particular usage, which leads to area waste and higher power
consumption. Moreover, the high cost of SDRs makes it hard to build large-scale massive
MIMO testbeds. As a result, building robust, low-cost, and power-efficient massive MIMO
testbeds using SDRs is still challenging.

Discrete components Besides using SDRs, massive MIMO testbeds can be implemented
with discrete components. The discrete components can be customized designs or off-the-
shelf products, including antennas, power amplifiers (PAs), low noise amplifiers (LNAs),
(de)modulators, ADCs and DACs, filters, and digital baseband processing units. Compared
with SDRs, the testbed built with discrete components can only support a smaller range of
or a specific carrier frequency, bandwidth, and sampling rate. But the cost, area overhead,
antenna array spacing, and packaging difficulty can be reduced, and the massive MIMO
system with customized high-performance parameters can be realized.

The scalable Hydra massive MIMO testbed is implemented with discrete components,
FPGAs, and a general-purpose processor for baseband signal processing [60]. The base
station receiver array is built with off-the-shelf components, and well-designed receiver PCBs
package the discrete components to balance the trade-off in yield and area utilization. The
receiver arrays then connect to the grouped ADCs, and ADCs connect to daisy-chained
FPGAs. The general-purpose processor receives the pre-processed signal from FPGAs, and
performs the baseband signal processing. Another fully digital beamforming massive MIMO
testbed, operated at 28GHz, is also implemented with discrete components. The customized
transceiver front-end elements are placed in a 2-D array, and connected to the intermediate
frequency and baseband subsystems through a bent substrate-integrated waveguide (SIW)
network.

Compared with SDRs, such as USRP, where each contains only 2 transceivers, the
Hydra testbed contains 8 transceivers at each FPGA panel, which leads to much higher
area utilization. The customized transceiver front-end design also decreases the total power
consumption. Moreover, both testbeds are operated at a radio frequency of more than 60GHz,
which none of the existing commercial USRP daughter boards can support. In order to build
high performance, power efficient, and high area utilization testbed for relatively fast massive
MIMO system prototyping, discrete components are better choices.

Application-specified integrated circuits (ASICs) For massive MIMO testbeds imple-
mented with fully digital beamforming, SDRs can be suitable platforms for the implementation.
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However, for testbeds implemented with hybrid analog-and-digital beamforming, SDRs can’t
provide enough functionality for the analog beamforming stage. Although there are off-the-
shelf programmable phase shifters, to achieve better area and power efficiency, and better
performance, ASICs should be used.

In [85], a fully-connected hybrid beamforming with 8 antenna inputs and 2 baseband
outputs ASIC is proposed. The analog beamforming is performed on chip, which implements
RF-domain Heterodyne Cartesian-phase shifting and operates at 25-30GHz. With RF-domain
phased arrays, higher power efficiency can be reached with a large number of antenna arrays
[85]. Besides the fully-connected architecture, a 71-86GHz 16-element array receiver ASIC
is proposed for the hybrid beamforming implementation on Hydra massive MIMO testbed
[88]. The phase shifters on the chip are operated at the baseband, and can support up
to 16 users. The two-stage beamforming architecture in the Hydra testbed is realized by
the phase shifter-based MRC beamforming ASIC and the general-purpose processor with
ZF beamforming. The power consumption per antenna per beam is only 7mW including
LO circuits and output buffers. Compared with the equivalent digital design implemented
on FPGA [25], consuming 338mW per antenna per beam, the analog beamforming ASIC
consumes 48.3x less power, and is only 16mm2. This shows the power and area efficiency of
ASICs for massive MIMO testbed implementation.

Digital signal processing implementation considerations

Design reusability Hardware design is time-consuming because of the efforts on functional
verification and the hardness on circuitry optimization. In addition, the corresponding
software development, associated with ASIC designs and respins, can contribute to this high
design costs [92]. Take FFT for example. Even a single FFT instance for a specific application
may take months to design and verify [126]. As a result, in order to reduce the hardware
design cost, modularity and reusability should be taken into consideration. The modular
and reusable DSP hardware, including logic design and its physical implementation, can be
realized by designing generators, instead of instances. Besides modularity, generators should
also satisfy the properties of user-friendly programming, highly parameterizable RTL design,
and the associated Very Large Scale Integration (VLSI) flow [59]. Then the design reuse can
be enabled through generator extensions.

Some methods for the generator creation are Genesis2 by Stanford University [36], Chisel by
University of California, Berkeley [8], SpinalHDL [117], and Migen from M-Labs [82]. Unlike
Verilog or VHDL where index notation is tedious, or Matlab where no RTL implementation
is integrated, generator construction languages can realize both easy programming and RTL
generations by using high-level programming languages. Genesis2 is based on Perl, while
Chisel and SpinalHDL are implemented with Scala. Although both Perl and Scala are
high-level programming languages, Scala is more widely used among programmers. Take
Chisel for example. Chisel is a hardware construction language that facilitates parameterized
circuit generation for both ASIC and FPGA digital logic designs [17]. This domain-specific
extension of the Scala programming language streamlines the process of designing digital
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hardware by abstracting hardware components into higher-level descriptions. This abstraction
process generates a circuit graph, which is then translated into synthesizable Verilog code for
implementation on FPGAs or ASICs [92]. The Chisel DSP library, ACED, is developed to
help with the realization of signal processing solutions. Compared with Chisel and SpinalHDL,
Migen is implemented with Python and generates the hardware design from Python functions.
It targets especially for FPGA implementations.

A scalable generator for the distributed MRC beamforming stage of the Hydra testbed
baseband DSP, the Spine generator, is proposed in [25]. The generator is implemented in
Chisel and parameterized on the number of antennas per subarray, the number of users in
the system, pilot and signal parameters, datapath bitwidth, and datapath parallelization.
Along with the Spine generator, multiple DSP generators, such as the Golay correlation
generator and the matrix multiplication generator, are also developed which can be reused
for other applications in the future. With the help of generator designs, the hardware design
reusability can be enabled, and the design cost can be cut down.

Ease of development Another challenge for hardware implementation, especially for
VLSI, is the change of platforms, technologies, and system settings for respins. The platforms
can be either FPGAs or ASICs. Different platforms and technologies may create different
timing issues for the RTL design. By designing generators, the RTL can be regenerated with
the new parameters, such as more pipeline stages, less datapath bitwidth, and more datapath
parallelization, to relax the timing constraints from the level of architecture designs. As a
result, complicated RTL revisions for the change of platforms or technologies are no longer
needed, and faster design respins with fewer human resources can be achieved.

Generators can also make respins with different system parameters easier. If a respin
wants to implement a massive MIMO system with a different number of antennas at the base
station and users in the system, by using generators, a new RTL realization can be regenerated
by simply changing the parameters. The Spine generator can quickly generate RTL code
for different parameters. It is faster than manually designing instances and redesigning the
top-level integration, which takes a longer time. According to [25], the Spine generator takes
9 minutes and 17 seconds to generate the new RTL for different parameters. For the above
reasons, the ease of DSP hardware development can be obtained by designing generators as
well. The details of the Spine generator will be discussed in the next chapter.

Antenna array design

MmWave is attractive in 5G+ massive MIMO communication due to its wide bandwidth,
low interference, and high robustness. The short wavelength of mmWave signals enables
smaller spacing of antennas, and as a result, smaller components. One of the most popular
choices for mmWave antenna array is the patched antenna array. Patched antenna arrays are
cheap, efficient, and small sizes, which is also compatible with planar PCB and packaging
technologies [97]. One example of the PCB integrated antenna array is the Hydra testbed
antenna array.
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Even though patched antennas have the advantages of small sizes and low costs, it is
difficult to increase the bandwidth and the gain of the antennas. The improvement of the
bandwidth can be realized by patch stacking, and the gain improvement can be achieved by
serializing multiple elements together. However, the cost of stacked multi-layer patch antennas
is much higher, and the serialized array requires narrow bandwidth. Another antenna option
for mmWave communication systems is the sectoral horn antenna array, which can offer high
gain and wide bandwidth but at a higher cost. An example of the sectoral horn antenna array
is from Plextek, which is implemented on TI’s IWR6843 radar-on-chip device and shows a
wide coverage [50].
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Chapter 3

DSP Hardware Generation for
Adaptable Massive MIMO Systems

To demonstrate the feasibility of the massive MIMO system that can satisfy the design
considerations in Chap 2, a scalable, adaptable, and platform-portable DSP generator for the
distributed massive MIMO systems will be introduced and discussed in this chapter.

3.1 Background

3.1.1 Maximum-Ratio Combining (MRC) Beamforming

Consider a MIMO system with K single antenna users and M antennas at BS. The received
uplink signal from a single user rk ∈ CM×1 at BS with spatial white Gaussian noise is

rk = hkxk + nk (3.1)

where hk ∈ CM×1 is the channel vector for user k, xk ∈ C is the user k transmitted signal
dependent on time, and nk ∼ CN (0, σ2IM ) is the independently and identically distributed
(i.i.d) spatial white Gaussian noise vector.

The maximum-ratio combiner architecture for a single isolated link is shown in Fig. 3.1,
where rk = [rk,1, ..., rk,M ]T and ĥk = [ĥk,1, ..., ĥk,M ]T . Then, the combiner output for user k
can be expressed as

x̂k = ĥ
H

k rk

= ĥ
H

k hkxk + ĥ
H

k nk,
(3.2)

where ĥk ∈ CM×1 contains the combiner weights. According to Eq. 3.2, one can get the
signal-to-noise ratio γk of the combiner output as

γk =
∥xt∥2∥ĥ

H

k hk∥2

E{∥ĥ
H

k nk∥2}
=
∥xt∥2ĥ

H

k hkh
H
k ĥk

σ2ĥ
H

k ĥk

. (3.3)



CHAPTER 3. DSP HARDWARE GENERATION FOR ADAPTABLE MASSIVE MIMO
SYSTEMS 35
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Figure 3.1: The architecture of the maximum ratio combiner.

Assuming the transmission power is Pt, Eq. 3.3 can be expressed as

γk =
Ptĥ

H

k hkh
H
k ĥk

σ2ĥ
H

k ĥk

. (3.4)

Then, the optimal weight that maximizes the SNR

ĥ
⋆

k = argmax
ĥk

γk, (3.5)

can be obtained by calculating the zero point of the conjugate derivative with respect to ĥk,
which is ĥ

⋆

k ∝ hk. As a result, for the MIMO system with K single antenna users and M

antennas at BS, the optimal weights ĥ
⋆
that maximize each user’s SNR in the isolated link

are:
Ĥ

⋆
= H , (3.6)

where H ∈ CM×K and H = [h1, ...,hK ]. Note, however, that during payload transmission,
when users are simultaneously transmitting, there is correlation between received chan-
nels. This is not captured during MRC channel estimation, resulting in residual inter-user
interference and reduced SNR after MRC beamforming alone.

3.1.2 Golay sequence based channel estimation

The previous sub-section shows that the optimal weights that maximize the output SNR for
MRC beamforming are the channel matrix, assuming isolated links. The channel matrix can
be estimated by using Golay sequences.
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The Golay sequence contains a complementary pair of sequences with the same length
n. According to [37], given A = [a1, ..., an] and B = [b1, ..., bn] of length n, with ak, bk
∈ {−1,+1} for 1 ≤ k ≤ n, the complementary sequence pair (A,B) satisfies

A[z]A[z−1] +B[z]B[z−1] = 2n, (3.7)

where A[z] =
∑n−1

i=0 ai+1z
−i and B[z] =

∑n−1
i=0 bi+1z

−i for z ∈ C.
Assume the channel variation is negligible during the transmission of a sequence pair.

The received Golay pair at BS with M antennas and spatial white Gaussian noise is

rA[z] = hA[z] + nA

rB[z] = hB[z] + nB,
(3.8)

where h ∈ CM×1 is the channel vector, and nA,nB ∼ CN (0, σ2IM) is the spatial white
Gaussian noise vector. Using Eq. 3.7, one can get

E
{ 1

2n

(
rA[z]A[z

−1] + rB[z]B[z−1]
)}

= h+
1

2n
(E{nA}A[z−1] + E{nB}B[z−1])

= h,

(3.9)

which shows that the sum of the cross-correlation of the sequence pair is an unbiased estimator
of the channel vector.

According to Theorem 1.3.2 in [52], Golay sequences can be generated recursively when
n is a positive integer power of 2, and the reverse of a Golay sequence pair still gives
a Golay sequence pair. Assume the length of the sequence pair is n, the delayed value
sequence D is any permutation of the set {20, 21, ..., 2log2(n)−1}, and the weight sequence
W = [w1, ..., wlog2(n)] with wi ∈ {−1,+1} ∀1 ≤ i ≤ log2(n). Then, the concatenation of the
Golay sequence pair g can be generated using Algorithm 1

However, the performance of the channel estimation from Golay sequence pairs may be
affected by the quantization noise introduced by the hardware datapath design. Suppose no
channel noise, and the quantization noise introduced is ∆ ∈ CM , where E[∆∆H ] = σ2

qIM .
The channel estimation square error of this method caused by quantization noise is σ2

q/2n.
The computational complexity of this method for a K-user M-antenna massive MIMO system
is O(KMlog2(2n))

3.1.3 BEACHES algorithm

BEACHES is an adaptive and low-complexity channel estimation algorithm for massive
MIMO systems [83]. It exploits the sparsity of channels in the beamspace domain in order
to perform adaptive denoising via Stein’s unbiased risk estimate (SURE). Let hest be each
user’s estimated channel vector. To transfer the channel into the beamspace domain, the
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Algorithm 1 Golay sequence pair generation

Require: n, D, W
Ensure: g

Create two empty arrays gA and gB of size log2(n) + 1 by n
gA[0, 0]← 0, gB[0, 0]← 0
for 0 ≤ k < n do
for 0 ≤ i < log2(n) do
if k ≥ D[i] then
gA[i+ 1, k]←W[i]gA[i, k] + gB[i, k −D[i]]
gB[i+ 1, k]←W[i]gA[i, k]− gB[i, k −D[i]]

else
gA[i+ 1, k]←W[i]gA[i, k]
gB[i+ 1, k]←W[i]gA[i, k]

end if
end for

end for
g← Concatenation of the reverse of gA[log2(n)] and the reverse of gB[log2(n)]
return g

discrete Fourier transform (DFT) is performed on the channel vector with a M ×M DFT
matrix F to get h̄est = Fhest in BEACHES. The soft-thresholding is performed on each entry
of h̄est by the MSE-optimal threshold τ ⋆. BEACHES finds τ ⋆ by relying on a proxy for the
actual MSE between the ground-truth channel and the denoised channel estimate, and the
proxy is obtained by SURE. Then the beamspace denoised channel vector is converted back
to the antenna domain using an inverse DFT, after the magnitudes of the entries in h̄est are
soft-thresholded.

3.1.4 In-situ calibration

Manufacturing variability affects circuits at small wavelengths, as small variations in RF
circuitry and local oscillator distribution paths can cause large, often unpredictable changes
in the RF chain response of different array elements. For beamspace algorithms, the sparsity
of the beamspace domain channel vectors is very important. However, due to the array
nonidealities, which stem from gain and phase offsets in receivers, the channel estimation
from pilots may not be sparse. To extract and calibrate out those array offsets, compressive
techniques can be applied, and the mm-wave channel sparsity can be leveraged. [30, 77].

The In-situ calibration method yields the coefficients for array calibration by rotating all
channel-user pairs and observing the strongest common direction by spectral decomposition.
Then, the line-of-sight (LoS) spatial frequency difference between channel-user pairs can be
estimated.
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With the in-situ calibration, the sparsity is leveraged, which can guarantee the effectiveness
of the beamspace algorithms.

3.2 System Overview

User 1

Head1... Spine
1

Head M/N

Head M/N+1... Spine
2

Head 2M/N

Head M-M/N+1... Spine
N

Head M

...

Tail

User K

…
…

...

Base stationChannel

Figure 3.2: The uplink baseband processing architecture for the salable massive MIMO at
BS.

The BS system architecture is shown in Fig. 3.2. The Head modules consist of the
mm-wave frontend radios including antennas and mixers that downconvert the signal to the
baseband. Each Spine module is implemented with a sub-array MRC beamformer, and a
daisy chain architecture connects the Spine modules together. The Tail module removes the
inter-user and inter-symbol interference by the frequency-selective decorrelation. The details
of this two-stage beamforming algorithm are shown in the following section.

3.2.1 Two-stage beamforming

This two-stage beamforming system has been proposed in [60] to strengthen both the
scalability and energy efficiency of the signal processing.

Distributed MRC beamformer

The first stage in this architecture is the frequency-flat MRC beamformer which maximizes the
output signal-to-noise-ratio (SNR) theoretically and is implemented in the Spine. From the
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time-interleaved Golay sequence pilots transmitted from users, the sub-array MRC channel
matrix can be estimated. Assume the same multi-user MIMO (MU-MIMO) system described
in Sec. 3.1. The received signal at BS is

rBS = Hx+ n, (3.10)

where the transmitted signal vector x = [x1, ..., xk]
T , and n ∼ CN (0, σ2IM ) is the i.i.d spatial

white Gaussian noise vector.
The MRC beamformer can be divided into multiple subarrays, forming a distributed

system. Each subarray performs the local MRC beamforming which is implemented in each
Spine, and the local beamformed signal sums together through a daisy chain. Let N be the
number of subarrays, and the total number of antennas M be an integer multiple of N . The
MRC beamformer weights can be expressed as

ĤMRC = [b̂
T

1 , ..., b̂
T

N ]
T , (3.11)

where b̂i ∈ CM/N×K ∀ 0 < i ≤ N . The MRC beamformed signal x̂MRC is

x̂MRC =
N∑
i=1

b̂
H

i rBS,i, (3.12)

where rBS,i ∈ CM/N×1, ∀ 0 < i ≤ N , and rBS = [rT
BS,1, ..., r

T
BS,N ]

T .

Frequency-selective decorrelation

The second stage performs the frequency-selective decorrelation, which is implemented in
the Tail. After MRC beamforming, the inter-symbol and inter-user interference still exist
in the wideband-channel signal. To remove them, zero-forcing (ZF) is used for each narrow
subcarrier group. In the Tail, carrier frequency offset (CFO) is estimated with orthogonal
frequency division multiplexing (OFDM) pilots. Subcarriers are grouped to expand the CFO
estimation range [94]. The ZF weights can be obtained from the OFDM pilots, which are time-
interleaved and follows the Golay pilots. To perform the frequency selective ZF on payloads,
the quadrature amplitude modulated (QAM) payloads are divided into blocks, whose lengths
are the same as each OFDM pilot block length LOFDM . Let ŜMRC,p[i] = FFT (ŝMRC,p)[i] be
the i-th sample of the p-th payload block ŝMRC,p in the frequency domain, and in the q-th
subcarrier group, the zero-forcing estimator in the spatial domain gives

x̂[p× LOFDM + i] = IFFT (X̂MRC,p)[i], (3.13)

where X̂MRC,p[i] = Ĥ
H

ZF,q(ĤZF,qĤ
H

ZF,q)
−1ŜMRC,p[i], and ĤZF,q ∈ CK×K is the estimated

channel matrix for q-th subcarrier group.
This two-stage beamforming method removes the inter-user interference and increases

the signal-to-interference-plus-noise ratio (SINR) in a distributed fashion. In addition,
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compared with the traditional centralized beamforming architecture, the two-stage distributed
beamforming architecture relaxes the interconnection bandwidth. Suppose the MU-MIMO
system with the total number of M BS antennas and K single antenna users implemented
with the signal bandwidth Ws, the oversampling rate at BS receiver s, and analog-to-
digital converter (ADC) resolution d, then the interconnection bandwidth for the traditional
centralized architecture, which is shown in 2.7, is

Bandwidthcentral ≥MWssd bits/s ∝M (3.14)

which is proportional to the number of BS antennas. This proportionality limits the scalability
of the traditional centralized BS architecture. However, with the help of the two-stage
beamforming architecture, the interconnection bandwidth between the first stage and the
second stage reduces to

Bandwidth2−stage ≥ KWsd bits/s ∝ K (3.15)

which is proportional to the number of users in the system, and independent of the number
of antennas at BS. Fig. 3.3 shows the change of minimum bandwidth requirements with
respect to scaling of the number of antennas for both centralized and distributed architecture,
and assumes the system has 16 users, 200MHz signal bandwidth, oversampling by 2, and
16 bits ADC resolution. The figure shows that for the traditional centralized architecture,
the minimum bandwidth requirement can reach 1.6 Tbps with 256 antennas in the array,
while the distributed two-stage beamforming architecture requires x32 smaller bandwidth.
The relaxation of the interconnection bandwidth enables the scalability of this work. The
reduction of the data movement also improves energy efficiency.

In addition, compared to a traditional centralized frequency-selective ZF beamforming
system, the two-stage beamforming requires fewer multiply-and-add operations. Assuming
that the payload length is L,M ≫ K, and the rest of signal processing for the two architectures
is similar, the number of multiply-and-add operations that the centralized frequency-selective
ZF beamforming requires after matrix inversion is M2L+KML. However, the two-stage
beamforming requires KML+ 2K2L number of multiply-and-add operations. Besides the
reduction on multiply-and-adds, the matrix inversion size also reduces from M ×M to K×K.
The relaxation on the computational complexity leads to less hardware resources and better
energy efficiency.

3.2.2 Signal packet format

Fig. 3.4 shows the individual user’s signal packet and the uplink signal received at each
antenna in BS. The time-interleaved Golay sequence pilots and the binary phase-shift keying
(BPSK) modulated OFDM pilots, sent by each user, help with the channel estimation in the
two-stage beamformer. Both pilots include guard intervals. The payloads are chosen to be
QAM to allow for a larger CFO range and phase noise caused by hardware imperfections, and
each payload block comprised the same structure as OFDM, except for the OFDM symbols.
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Figure 3.3: Minimum bandwidth requirement comparison between centralized and distributed
architecture, assuming a MIMO system with 16 users, 200MHz signal bandwidth, oversampling
by 2, and 16 bits ADC resolution.

All users send the payload simultaneously after pilots are sent. A beacon signal is propagated
to all users and BS at the beginning of each packet as the timing reference.

3.2.3 The Spine Generator

A major challenge for the design of moderate-volume ASICs is the large design costs stemming
from the engineering design and verification efforts, as well as for the software development,
associated with chip designs and respins [91]. Design costs can be reduced through more
effective reuse, which can be achieved by employing generators for the logic design and its
physical implementation. Generators employ higher-level programming constructs to create
modular, highly parameterizable RTL hardware designs and Very Large Scale Integration
(VLSI) flows [59], enabling design reuse via generator extension. Each unique design instance
is a result of generator parameterization.

The digital signal processing (DSP) hardware in this work is generated by using Chisel, a
hardware construction language that facilitates parameterized circuit generation for both
ASIC and FPGA digital logic designs [17]. Chisel is a domain-specific extension of the
Scala programming language, which abstracts primitive hardware components, generates
the corresponding circuit graph, and translates the graph into the synthesizable Verilog
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Figure 3.4: The format of the user-transmitted signal packet.

representation [91]. The Spine generator in this work enables design reusability as well as
platform and technology portability.

The Spine generator generates the MRC beamformer in the BS architecture. The
parameterization of the generator is

• the subarray antenna number

• the system user number

• the signal oversampling rate

• the Golay pilot design parameters

• he number of root-raised cosine (RRC) taps

• the Lagrange polynomial order

• the datapath bitwidth

• the datapath parallelization

Fig. 3.5 shows the Spine generator datapath. It consists of multiple DSP generators
implemented using ACED [125], a reusable Chisel DSP library. The Spine generator is also
extended to enable signal processing with beamspace algorithms.

The inputs of the Spine DSP areM/N antennas of 2x oversampled in-phase and quadrature
(IQ) signals. Datapath parallelism is determined in the generator configuration at the
configuration time. The final outputs are the K users’ MRC beamformed signals summed
with the signal coming from the previous neighboring Spine in the daisy chain and sent to
the next neighboring Spine. Fig. 3.5 shows the Spine generator datapath. The parameters of
each module generator are shown in the light blue boxes.
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Figure 3.6: Module architecture for IQ correction.

Signal Correction

The signal correction group for each antenna includes a 65-tap RRC filter, an IQ signal
synchronizer, and a direct current (DC) offset cancellation. The RRC filter is generated by
the strength-reduced FIR filter generator, based on tree reduction with parameterizable tap
numbers and configurable coefficients. The coefficients in the IQ synchronizer and DC offset
canceller need to be manually set.

IQ correction As discussed in Chapter 2, to address front-end impairments, the datapath
includes an IQ synchronizer and a DC offset cancellation module, which are manually
calibrated to balance the impairments. The IQ imbalance originates from two sources:

• differences in gains, where gi and gq represent the gains for the I and Q channels,
respectively

• phase offsets, where θi and θq represent the phase offsets that cause the I and Q channels
to be non-orthogonal.

Let y = yi + j · yq be the signal without IQ imbalance for a single channel, and yim =
yim,i+j ·yim,q be the signal with IQ imbalance due to the frontend. Then yim can be expressed
as [

yim,i

yim,q

]
= P

[
yi
yq

]
=

[
gi sin θi gq cos θq
−gi cos θi gq sin θq

] [
yi
yq

]
. (3.16)
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Figure 3.7: Tree-reduced strength-reduced FIR filter generator generated example instance.
The example instance has 6 taps and is parallelized by 2.

To correct the IQ imbalanced signal, P−1 should be multiplied with the imbalanced signal.
Then [

yi
yq

]
= P−1

[
yim,i

yim,q

]
=

[
a b
c d

] [
yim,i

yim,q

]
. (3.17)

Based on the equation, the architecture of IQ synchronizer is shown in Fig. 3.6.
The parameters of the IQ synchronizer are the coefficient matrix, ranging from (−1, 1).

RRC filter The RRC filter is created using a tree-reduced strength-reduced FIR filter
generator. The number of taps can be adjusted as a parameter, and the coefficient array is
customizable. Figure 3.7 displays an example of an FIR filter generated by the FIR generator
with 6 taps and parallelized by 2. Each valid cycle, way-0 and way-1 shift registers shift
to the right by one, and are multiplied by their corresponding coefficient. The way-0 and
way-1 multiplication results are accumulated through way-0 and way-1 pipelined tree adders,
respectively. The FIR filter generator can also be extended to apply symmetric FIR filters
with less hardware. Assuming that the number of taps in an RRC filter is Nt, and since the
RRC filter coefficients are symmetric, to reduce the number of multipliers in the design, the
input of the FIR filter is the summation of samples i and Nt − i− 1 for i ∈ [0, NT ).

The verification of the FIR filter generator is being performed using random number tests
in Chisel. An equivalent software function has been developed in Scala, which serves as the
ground truth generator. During each round of testing, the number of taps for the FIR filter
generator is randomly determined. Additionally, the parallelization is being tested with 1, 2,
4, and 8 taps. The filter taps and input are randomly generated for each round of testing,
and the output of the generator is compared with the result generated by the ground truth
Scala function.
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Figure 3.8: The generated Golay correlator architecture.

MRC channel estimation

Sec. 3.1 mentions that the cross-correlation of the Golay sequence pilots is an unbiased
estimator for the optimal MRC weights. The pipelined parallelizable Golay correlator
generator is designed based on the Algorithm 1. Because the reverse of a Golay sequence
pair is also a Golay sequence pair, the Golay correlator is equivalent to the Golay generator
of the reverse sequence. Compared with the design in [33], the proposed design is pipelined
and parallelized, to achieve a higher throughput. The datapath is pipelined by log2(n) stages.
The datapath parallelism determines the input of each multiply-add (MA) unit shown in
Fig. 3.8 and the structure of the delay registers. The MA input can be either from the delay
registers or the pipeline registers. This correlator generator is parameterizable for D, and
runtime configurable for W. The correct correlation is guaranteed by switching the input
of W at the corresponding user’s time interval controlled by the sequencing controller. Fig.
3.8 shows the generated architecture of an oversampling-2, length-4 Golay correlator with
parallelism of 4.

The functionality of the Golay correlator is being tested using oversampling rates of 2,
and lengths of 4, 16, 32, and 64. Additionally, parallelization is being tested with values of 2,
4, and 8. During testing, the output of the Golay correlator generator is being compared
with a matched filter software implemented in Scala. The input of the Golay correlator is
being generated using a random W sequence.

The channel delay estimation includes the coarse delay estimation and the fine delay
estimation. The coarse delay estimation estimates the channel delay difference of an integer
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Figure 3.9: An example of the peak detection architecture with parallelization of 4.

multiple times per clock period, and the fine delay estimation corrects the sampling time
skews.

Coarse delay estimation The coarse delay estimation is based on the correlation norm
peak of Golay pilots in Eq. 3.7. The correlation norm peak detection contains two parts: local
peak detection and global peak detection. The local peak detection detects the maximum
value in each parallel lane, and the global peak detection detects the peak among all lanes.
Fig. 3.9 shows an example of the peak detection architecture with parallelization of 4. The
finite state machine for the local peak detection, which is shown in Fig. 3.10 contains 3 states:

• Wait. In this state, the local peak detector tracks the average power Pavg of the
correlation result for a certain window size WS. If the input correlation power is larger
than threshold× Pavg and larger than lowerbound value, then update Pmax to be
the input correlation power and maximum power buffer index imax to be WS − 1, and
go to Detect state; Otherwise, stay in this state.

• Detect. Track the maximum power for the window size WS−1. If the input correlation
power is larger than current Pmax, then updates Pmax and imax. After finishing tracking
WS − 1 number of correlation power, go to Done state.
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Figure 3.10: The finite state machine for the local peak detection.
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Figure 3.11: The finite state machine for the global peak detection.

• Done. In this state, check whether the input correlation power is larger than the
current Pmax or not. If yes, output this correlation power; Otherwise, output Pmax.
Then go back to Wait state.

The finite state machine for the global peak detection, which is shown in 3.11, contains 3
states as well:
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• Wait. Use the shift register to keep records of the most recent WS× number of lanes
correlation results and their power. If one of the lanes detects the peak, go to Detect
& Output state; Otherwise, stay in the current state.

• Detect & Output. Use a tree-reduced comparator to find the maximum power among
the correlation powers in the current and the previous cycle in all lanes. If the index
of the maximum power in the buffer is larger than or equal to the number of lanes,
output the correlation result corresponding to the maximum power and its adjacent
2l correlation results, shift the buffer, and go back to Wait state; Otherwise, go to
Output state.

• Output state. Output the correlation result corresponding to the maximum power
and its adjacent 2l correlation results, and go back to Wait state.

Fine delay estimation Because of the imperfections of the frontend components, for
example, ADC skews and sampling phase mismatch, the frontend may not be able to sample
the signal at maximum power. In this case, resampling is necessary by interpolating the
correlation norm using Lagrange polynomial L(x). Let c(i) be the interpolation samples,
c(0) be the correlation norm peak, and the interpolation sample length is 2l + 1, where
i ∈ {−l, ..., 0, ...l}. The fine delay estimation ŝ0 is

ŝ0 = argmax
x
L(x)

= argmax
x

l∑
i=−l

[
c(i)

l∏
−l,j ̸=i

x− j

i− j

]
.

(3.18)

Let y(t) be the skewed signal and ŷ(t) be the deskewed signal, which is given by

ŷ(t) =
l∑

i=−l

[
y(t+ i)

l∏
−l,j ̸=i

ŝ0 − j

i− j

]
. (3.19)

In software design, to find ŝ0, one needs to take the derivative of L(x), and use Newton
method to find the maximum point. Loops cannot be avoided when using Newton method to
find the zero point. In order to avoid loop iterations in hardware, the following algorithm is
used to calculate the maximum ŝ0 for a given resolution r.

Let the datapath bitwidth be B. The threshold of the peak detector ranges from [0, 2B−1)
with precision 0.5, and the lower bound of the peak detector ranges from (−1, 1) with precision
2−(B+1). The fine delay estimation ranges from (−1, 1) with precision r, and the fine delay
synchronization coefficient ranges from (−1, 1) with precision 2−(B+1).

MRC beamformer

The MRC beamformer is generated by the pipelined systolic-array-based weight-stationary
matrix multiplier generator, and is parameterized on the matrix dimension and datapath
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Algorithm 2 Fine delay estimation

Require: c, r
Ensure: ŝ0

sq ← q · r, where q ∈ {−1/r, ..., 0, ..., 1/r}
for q from −1/r to 1/r do
Calculate all coefficients cfi ←

∏l
j=−l,j ̸=i

sq−j

i−j
, where i ∈ [−l, l]

ŷq(0)←
∑l

i=−l y(i) · cfi
end for
ŝ0 ← argmaxq ŷq(0)
return ŝ0
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Figure 3.12: The systolic array-based MRC beamformer architecture.

parallelization. In this system, each processing element (PE) is composed of a width-
parameterized complex fixed-point multiplier and an adder. For a massive MIMO system
with K users and M channels per Spine, a single path requires a matrix multiplier dimension
of M ×K.

The architecture of the beamformer is shown in Fig. 3.12, where the weight inputs are
the estimated frequency-flat channel matrix, and the input to each row is the channel’s fine
synchronized signal. To satisfy different timing requirements for different FPGA platforms
and transistor process nodes, the number of pipeline stages between PE columns is also
parameterized.

The parameters K, M , and parallelism can take on any integer value greater than 0. In
this system, the input, coefficients, and output all have the same data range and precision as
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the datapath. To test the MRC beamformer, random numbers are generated as input, and the
resulting output is compared with the ground truth produced by the software implementation
of the matrix multiplier using the same test data in Scala.

Sequencing Controller

To guarantee the performance of the MRC beamforming, all channels need to be synchronized.
The sequencing controller provides the time reference for all processing modules, and helps
with channel synchronization.

At the start of each signal packet, the sequencing controller sends a beacon signal to reset
registers and state machines for all modules. In the case of Golay correlators, the sequencing
controller also manages the change of W for different users. As Golay pilots are sent in TDD
mode, the sequencing controller sets up the W sequence in all Golay correlators to match
user k’s W during the appropriate time slot.

Due to propagation delays and front-end mismatches, even for the same user, signal
arrival times can be mismatched. We denote the time delay caused by user i as Tu,i and the
time delay caused by channel j as Tc,j, where i ranges from 1 to K and j ranges from 1 to
M/N . We can assume that Tu follows a normal distribution with mean µu and variance σ2

u.
The time delay between user i and channel j in the same Spine module is then Tu,i + Tc,j.
To synchronize the channel before the MRC beamformer, a channel time delay estimator is
necessary.

The channel delay estimator is the average of the time delay among all users’ signal
received by the same channel. This estimator is unbiased, which can be shown by

E
[ 1
K

K∑
i=0

(Tc,j + Tu,i)
]
= Tc,j + µu. (3.20)

where Tu,i is the time delay created by the user i signal propagation, and Tc,j is the delay
from channel j, i ∈ [1, K] and j ∈ [1,M/N ].

The user time delay estimation uses the same algorithm as the channel delay estimation.
The downsampling phase selection is determined by the user coarse time delay estimation.

3.2.4 Implementation of the beamspace algorithms

To show the adaptability of the system, the in-situ calibration and BEACHES algorithms are
implemented in the system to improve the channel estimation in the MRC beamforming stage.
The in-situ calibration is applied to the channel estimation from Golay pilots to calibrate
out channel phase offsets. After calibration, the calibration coefficients are multiplied by the
MRC beamformer weights to leverage the sparsity. BEACHES is then used to denoise the
calibrated MRC beamformer weights.
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3.3 Evaluation

3.3.1 Simulator

The massive MIMO system is modeled in a Python-based simulator. The end-to-end
simulation encompasses terminals, channels, and BS simulations, including signal packet
generations, various channel and transceiver front-end models, and the modular signal
processing chain. The modular signal processing that simulates the BS can encompass any
instance from the Chisel generator described in Sec. 3.2 by generating raw samples and
capturing and post-processing the results, which is illustrated in Fig. 3.13 by dashed arrows.
The modular design enables the adaptability of the system to evaluate different processing
algorithms. The calibration and BEACHES algorithms are implemented in MATLAB, and
integrated into the simulator using a MATLAB-to-Python API, Matlab Engine API for
Python [79]. The Spine generator is verified against this “golden” model simulator.

Fig. 3.13 shows the system data flow. The solid rectangles represent Python functions,
and the dashed rectangles represent MATLAB functions. After system parameters are set,
each user’s signal packet is generated according to the system settings, which include pilot
lengths, guard interval lengths, payload modulation schemes, etc. The channel modeling in
the Python simulator includes the flat i.i.d channel, the LoS channel, and Rician channel.
The QuaDRiGa mmMAGIC urban micro line-of-sight (QuadMMLoS) channel is implemented
in MATLAB, and can be called via the API with the corresponding channel model setting.
QuaDRiGa channel model is an enhancement of the WINNER model following a geometry-
based, stochastic channel modeling approach for MIMO [14]. The generated QuaDRiGa
channel matrix is returned to Python for further signal processing. The channel simulation
contains transceiver front-end simulation and noise addition.

The signal processing in the BS has two options: FPGA emulation or Python simulation.
In FPGA emulation, the simulator generates the control and configuration Tcl files for setting
up the signal processing on the FPGA. If Python simulation is chosen for BS signal processing,
the channel estimation and the MRC beamforming will be performed in Python. If BEACHES
is selected at the configuration time, the denoising algorithms will be performed in MATLAB
with the parameter passing through the API. The frequency-selective decorrelation stage
is only applied in the Python simulator regardless of the signal processing options. The
simulator evaluates the demodulation performance based on the bit error rate (BER), the
signal-to-interference-plus-noise ratio (SINR), and the error vector magnitude (EVM).

3.3.2 FPGA Emulation and Simulation

The Spine generator output is mapped to a Xilinx VCU118 FPGA. The FPGA instance
contains

• a Spine DSP core generated by the Spine generator specified by the parameters shown
in 3.1,
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Figure 3.13: The system flow diagram, with software and hardware integration.



CHAPTER 3. DSP HARDWARE GENERATION FOR ADAPTABLE MASSIVE MIMO
SYSTEMS 54

JTAG

DDR4

DMA

Clock
generator

Spine DSP

Memory system

DDR4_clk

clock_div_x

spine_out (i/q)

data 

mem_config 

adc_in (i/q)

spine_config 

Server FPGA

data 

Figure 3.14: The emulation system architecture.

• the memory system containing DMA and DDR4,

• the clock generator to generate the 2 clock domains for the DSP core and the memory
system.

A server connects to the FPGA via JTAG for data transfer and FPGA programming. As
shown in 3.1, a 64 antennas and 4 users BS system is emulated. The FPGA emulation system
architecture is shown in Fig. 3.14. The JTAG connection bitwidth is 64. The on-board
DDR4 memory bitwidth is 512 without the error correction code. The DDR4 is connected
using the DDR4 interface provided by Xilinx.

Before the FPGA emulation starts, the Python simulator first generates the user packets
and simulates the channel. Then the floating-point emulation input data is converted to
fixed-point data format by the simulator. At the same time, the simulator generates the
configuration and control Tcl files to help the transmission of the emulation data to the
on-board DDR4 memory. The DSP core configuration includes:

• Set up DMA with the load and store base addresses and length, and the start signal.

• The beacon signal to indicate the start of each packet.

• The number of users in the system.

• Each user’s W sequence for the Golay pilot.
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Figure 3.15: The control and data flow of the simulator if FPGA emulation is chosen.

• The thresholds for the channel and user correlation peak detector.

• Set up debug ports.

When the Spine DSP core processes the data, data are also streamed from and to the
memory. After the FPGA finishes beamforming, the data are sent back to the server through
JTAG, and reformatted to the floating point data. Meanwhile, the server loads the estimated
MRC beamformer weights from FPGA to be processed for the beamspace algorithms. The
simulator control and data flow is shown in Fig. 3.15.

The evaluation of the Spine generator is based on the SINR after demodulation and
the channel estimation normalized mean square error (NMSE). In the evaluation part, 4
different channel models are considered: 1) The flat i.i.d channel model; 2) Rician channel
model with K factor being 10dB; 3) LoS channel model; and 4) QuadMMLoS channel model
with users placed at least 10m away from the BS and minimum user angle separation 2
degrees. The modulation scheme for the payload is QPSK. The performance evaluation of
the system after integrating the beamspace denoising algorithms is based on the channel
estimation NMSE and the error vector magnitude after demodulation. The measurement
uses the following steps: 1) extracting the FPGA-emulated MRC beamformer weights; 2)
running the beamspace denoising algorithms and getting the denoised beamformer weights;
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Table 3.1: FPGA emulation system parameters.

Parameter Value

System

parameter

MIMO system parameter 32 antennas, 2 users

64 antennas, 4 users

Signal bandwidth 200MHz

Oversampling rate 2

Golay pilot length 64

OFDM pilot length 1024

Subcarriers per group 16

Cyclic prefix length 64

Payload modulation scheme QPSK, 16QAM

Channel model Flat i.i.d, Rician,

LoS, QuadMMLoS

FPGA

parameter

FPGA Type Xilinx VCU118

Number of antennas per Spine 4

Datapath bitwidth 8

Datapath parallelization 8

Baseband clock freq 50MHz

3) rerunning the Python simulation while using the FPGA-emulated beamformer weights
and the denoised weights from 1) and 2).

3.4 Results

3.4.1 Golay pilot length analysis

In this experiment, the channel estimation performance with respect to different Golay pilot
length are discussed, and the results are used to determine the Golay pilot length used in the
test.

The blue lines in Fig. 3.16 show the normalized mean-square error (MSE) of the true
channel matrix and the frequency-flat channel estimation in the FPGA versus SNR for
different Golay pilot lengths in the flat i.i.d channel. The normalized MSE of the channel
estimations decreases as the Golay pilot length increases. From the figure, one can also notice
that when the SNR is lower than 17 dB, 15 dB, and 13dB for the lengths of 8, 16, and 32,
respectively, the MSE increases faster than the higher SNR in the log scale. The change in
the slope is due to the increase in pilot synchronization failure. However, by increasing the
Golay pilot length to 64, the channel estimation MSE reduces to lower than 3× 10−2 for the
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Figure 3.16: Frequency flat normalized channel estimation MSE vs SNR with different Golay
pilot length. Blue lines show the normalized MSE of the true channel matrix and the channel
estimation in the FPGA; red lines show the normalized channel estimation MSE of the
simulator and FPGA.

SNR even lower than 15dB, and the possibility of pilot synchronization failure becomes much
lower.

Based on the result shown in Fig. 3.16, the Golay pilot length of 64 is chosen for the
system emulation to balance the resource usage and performance.

3.4.2 Performance evaluation of the Spine generator

The bit-error rates (BER) are evaluated under different SNR scenarios with 32 antennas and
4 users in the system. The channel models are the flat i.i.d channel and the Rician channel
with K = 10dB. The results of BER vs. SNR for the FPGA emulation system are shown
in Fig. 3.17. The figure shows the BER ranging from 10−6 to 10−3. Inset a) shows the
BER of the quadrature phase-shift keying (QPSK) modulation, and inset b) shows that of
the 16-QAM. The result shows that at SNR 11.9dB for the QPSK modulation and 19dB for
the 16-QAM modulation, the BER reaches 10−3 in the flat i.i.d channel. For both QPSK
and 16-QAM modulation schemes, the emulation BER is very close to the simulation BER
produced by the floating-point golden model in the given SNR range.

The performance of the Spine generator is also evaluated with a larger system, which
has 64 antennas and 4 users, under flat i.i.d, Rician channel with K = 10dB, LoS, and
QuadMMLoS channel models. The FPGA performs the MRC beamformer, and the Python
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Figure 3.17: BER vs SNR for 32 antennas 2 users simulation and emulation results for a).
QPSK modulation scheme and b). 16-QAM scheme.

model simulator performs the beamspace algorithms and the frequency selective decorrelation
stage.

The SINR vs. SNR with various channel models after demodulation is shown in Fig. 3.18.
The results of Python simulation are represented with solid lines, and the results of FPGA
emulation are represented with dashed lines. The results demonstrate the functionality of
the system for the four selected channel models, and validate the given generator parameters.
Moreover, the emulation results are close to the corresponding floating-point simulation
results for flat i.i.d, Rician, and LoS channel models in the high SNR range. The small
performance difference between simulation and emulation under QuadMMLoS is due to the
gain difference for users included in the channel model, which makes the demodulation of this
channel model more sensitive to the channel estimation accuracy and quantization errors.

Fig. 3.18 shows the linear change of the SINR with respect to that of SNR for the given
channel models, when SNR is larger than 12dB. However, when SNR is lower than 12dB for
flat i.i.d and Rician channel models, and 11dB for LoS and QuadMMLoS channel models,
the SINR after demodulation drops abruptly. The performance degradation is due to the
degradation of the channel estimation at the low SNR range. Here, residual noise after
cross-correlation of the Golay sequence pilots might false trigger the peak detection algorithm
for some channels, which leads to completely incorrect channel estimation for those channels.
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Figure 3.18: SINR vs SNR under a) Flat i.i.d, b) Rician with K = 10dB, c) LoS, d)
QuadMMLoS channel models with 64 antennas and 4 users in the system. The results of
Python simulation are represented with solid lines, and the results of FPGA emulation are
represented with dashed lines.

The larger SINR difference between simulation and emulation at the low SNR is caused by
a shorter peak checking interval implemented in the hardware due to timing and hardware
resource considerations, which leads to a higher false peak-trigger possibility when SNR is
low.
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Figure 3.19: Channel estimation NMSE with and without calibration and BEACHES al-
gorithms with 64 antennas and 4 users in the system. For all insets, the NMSE of the
FPGA-emulated channel matrix is shown as the dashed line, while the NMSE of the denoised
one is shown as the solid line.
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Figure 3.20: EVM with and without the beamspace algorithms with 64 antennas and 4 users
in the system.
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3.4.3 Channel estimation performance evaluation

Fig. 3.19 shows the MRC channel estimation NMSE with conventional estimation and with the
BEACHES algorithms with respect to SNR under the Rician, LoS, and QuadMMLoS channel
models. In this evaluation, channels are assumed to be ideal, and no phase offsets between
channels. The NMSE is the error measurement between the channel matrix estimation
and the simulator-generated ground truth. The Golay pilot length is set to 64 due to its
good channel estimation performance evaluated in [23]. For all insets, the NMSE of the
FPGA-emulated channel matrix is shown as the dashed line, while the NMSE of the denoised
one is shown as the solid line. Due to the randomness property of the flat i.i.d channel
model, the denoising algorithm is not applicable. For this reason, the flat i.i.d channel is not
considered in this section.

The channel estimation performance for Rician, LoS, and QuadMMLoS channel models
are evaluated under SNR ranging from 10dB to 16dB, 9dB to 15dB, and 9dB to 16dB,
respectively. From Fig. 3.19 one can notice that BEACHES algorithm can effectively denoise
the estimated channel matrix for all three channel models. The NMSE decreases notably
after applying BEACHES algorithm, compared to the NMSE with Golay estimation.

Fig. 3.19 also shows that as SNR decreases, the improvement of the NMSE after denoising
by BEACHES algorithm increases, demonstrating the algorithm’s efficacy in improving the
channel estimation performance in the SNR range of interest. With BEACHES algorithm,
the channel estimation NMSE can be improved by up to 25.3% for the Rician channel model,
26.2% for the LoS channel model, and 21.6% for the QuadMMLoS channel model.

To further evaluate the impact of the improvement of the channel estimation on the
system, the normalized root-mean-square (RMS) EVM is measured for the three channel
models after demodulation. The normalized RMS EVM is measured by the Python simulator
as follows: 1) load the estimated channel matrix from FPGA; 2) perform the BEACHES
algorithm to denoise the channel matrix; 3) rerun the simulation but with the channel matrix
from both 1) and 2); 4) calculate the RMS EVM.

Fig. 3.20 shows the EVM vs. SNR with conventional and with the BEACHES algorithm
for the three channel models. The solid lines in the figure show the EVM after demodulation
without applying BEACHES algorithm, while the dash-dot lines indicate the EVM of the
demodulation after applying BEACHES algorithm. For all models, the EVM decreases after
applying the BEACHES algorithm. With SNR higher than 15dB for Rician and QuadMMLoS
channel models, and with SNR higher than 14dB for LoS channel model, the EVM with
and without the BEACHES algorithm are almost the same, and the improvement of the
channel estimation MSE has only a small impact to the system; when the SNR is lower
than 15dB and 14dB, respectively, the EVM decreases notably after applying the BEACHES
algorithm. The EVM improvement is more pronounced for lower SNR than for high SNR.
The improvement of the EVM after the calibration and BEACHES algorithms can be up
to 23.3% for the Rician channel, 29.8% for the LoS channel, and 20.4% for QuadMMLoS
channel model.

The channel estimation evaluation on the NMSE and the EVM after demodulation proves
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the effectiveness of BEACHES algorithm to the conventional massive MIMO processing. The
necessity of integrating BEACHES algorithm into the system further indicates the importance
of the adaptability of massive MIMO systems to other algorithms.

3.4.4 Impact of channel phase offsets
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Figure 3.21: The NMSE of the denoised channel estimation w/ and w/o in-situ calibration
algorithm with channel nonidealities.

In this section, the impact of channel phase offsets on BEACHES and the importance
of the in-situ calibration algorithm are evaluated. In this section, a random phase offset
∆θ ∈ [−π, π) is applied to each antenna in channel simulations to model mismatches in the
delay of the RF chain between antennas, and LoS channel model is considered. Fig. 3.21
shows denoised FPGA emulated channel matrix NMSE with and without applying in-situ
calibration when per-channel phase offsets are modeled. The result shows that without
channel calibration, the NMSE stays at 1.7 regardless of the change of SNRs. This shows that
uncalibrated channel phase offsets break the beamspace sparsity of the channel, rendering
the beamspace channel denoising algorithms useless. This emphasizes the need for channel
calibration for successful beamspace channel denoising.

Fig. 3.22 shows the MSE between the estimated channel phase offset by the in-situ
calibration algorithm and the ground truth with SNR ranging from 9dB to 16dB. Though the
MSE increases as SNR decreases, the MSE is less than 2%. The solid line in Fig. 3.21 shows
the NMSE of the denoised FPGA emulated channel matrix with both in-situ calibration and
BEACHES applied. The NMSE drops from 1.7 to the order of magnitude of 10−2, which
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Figure 3.22: The MSE of the channel phase offset estimation by the in-situ calibration
algorithm.

agrees with the result in Fig. 3.19 inset b), where ideal channels are assumed. The results
indicate the effectiveness and importance of the in-situ calibration for beamspace algorithms.

3.4.5 Ease of Spine generation

The advantages of the generator-based design can be considered from two aspects: Straight-
forward design validation, and portability to various MIMO system implementations.

The powerful Chisel extension for DSP design, ACED, and features of Scala as the host
language make the validation of the DSP design easier. The Spine generator can support both
fixed-point and floating-point data types in the RTL simulation by declaring generic data
types in the generator parameters. By initiating a generator parameter class with DspReal()

data type, the RTL simulation uses floating-point data type, which is used for the generator
functionality validation; by initiating a generator parameter class with FixedPoint() data
type, the RTL simulation uses the fixed-point data type defined in the parameter, which can
simulate the quantization impact on the system performance. All submodule generators in
this work are validated by this method.

Fig. 3.23 shows two Spine DSP core implementations with different system parameter
settings. Inset a) is the FPGA implementation with 4 antennas and 2 users, while inset b) is
the implementation with 4 antennas and 4 users. The Spine generator can generate the RTL
for those 2 implementations by simply changing the generator parameters. Compared with
designing instances and redesigning the top-level integration, which takes a long time, the
Spine generator generates the new RTL for different parameters in just 9 minutes and 17
seconds. The fast generation of new designs shows the high portability of the Spine generator.
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a). 4 antennas and 2 users 

b ). 4 antennas and 4 users 

Figure 3.23: The Spine DSP core generated by the Spine generator implemented on Xilinx
VCU118 FPGA with a). 4 antennas and 2 users; b) 4 antennas and 4 users.

The power consumption estimation for the 4 antennas and 4 users implementation given by
Xilinx power estimator [124] is 5.4W, with 3.1W dynamic power and 2.3W static power.

3.4.6 Discussion on scalability limitations

Scaling the real-time processing in the Spine, is constrained similarly to other two-stage
systems. In this discussion, we assume the testbed is implemented with VCU118 FPGAs.

Interconnection bandwidth

The QSFP interface on VCU118 has maximum 112Gbps (4× 28 Gbps) bandwidth. With the
implementation parameters shown in Table 3.1, and by applying Eq. 3.15, the maximum
number of users the system can support using Spine real-time processing is 28, assuming
8b/10b encoding and without considering the hardware utilization limitation.
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Interconnection delay along the daisy chain

This work uses a daisy chain architecture to sum up all Spine results together, so the data
transmission latency between Spine modules limits the number of modules that can be
chained together. Assume the interconnection latency between 2 Spines is 100ns, including
the transmission overhead, and assume each Spine has a 2K Byte buffer used for buffering
the data coming from the upper steam Spine. By using the parameters in Table 3.1, the total
number of Spines that the system can support for real-time operation is 50, which means the
system can scale up to 200 antennas.

FPGA utilization
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Figure 3.24: FPGA utilization breakdown of the 4 antennas 4 users per subarray FPGA
implementation.

Fig. 3.24 shows that the bottleneck of the FPGA resources on VCU118 is the DSPs.
The design with 4 antennas and 4 users utilized 53% of DSP resources. Signal correction
blocks take 43.7% of DSP utilization and the MRC beamformer takes 5.6%. Although further
increasing the antenna count in the Spine is hard, scaling up the number of users is possible,
since it mainly affects the beamformer utilization instead of the signal correction utilization.
Based on Fig. 3.24, the system can support up to 28 users and 4 antennas, if the FPGA is
fully utilized.

3.4.7 Summary

Table 3.2 summarizes our work and some state-of-the-art massive MIMO BS implementations.
ArgosV2 [113] can scale up to 96 antennas and support 32 users, which is implemented with
a distributed architecture and the conjugate beamforming method. LuMaMi [75] is a BS
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testbed that supports up to 100 antennas and 12 users with a centralized architecture, and
it is implemented with MRC, ZF, and regularized ZF (RZF) beamforming methods. Both
ArgosV2 and LuMaMi use OFDM modulation with a signal bandwidth 20MHz. The work in
[90] implements a successive over relaxation (SOR) based beamforming algorithm with the
assumption of perfect channel estimations on FPGA. The hardware implementation contains
64 antennas and 8 users with only simulation and synthesis results reported. Compared with
[75] and [90], our work currently only contains uplink baseband processing, but is highly
portable and parameterizable, and can be implemented either on FPGAs or ASICs. The
scalability of the system is enabled by the distributed architecture, and the extension for
emerging algorithm implementation is enabled by the modular design. This work has also
been tested in a massive MIMO system with more antennas and users, and evaluated under
various channel models than with our earlier works [23] and [24]. The efficient implementation
of the beamspace algorithms demonstrates the algorithmic adaptability of this work. The fully
utilized FPGA power estimation per user per antenna for this work is 0.076W/user/antenna.
In addition, due to the portability of this work, the generator can be potentially implemented
in an ASIC, yielding more antennas and users in a single chip, along with better energy
efficiency.
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Chapter 4

Complex-valued Neural Network
Aided Channel Estimation

In Chapter 3, a beamspace domain channel estimation method is integrated into the massive
MIMO system to improve the channel estimation performance degraded by the hardware
datapath quantization noise. This chapter introduces a machine learning (ML) aided channel
estimation method to improve the estimation performance with strong interference, which
also shows the potential of ML methods for integrated signal processing of massive MIMO
systems.

4.1 Motivations

In the previous chapter, a distributed massive MIMO system has been evaluated and analyzed
with various channel models. It is under the assumption that BS and UEs are the only
signal-generation sources in the environment. However, with the increasing number of mobile
and electronic devices enabled by innovations in wireless communication technologies, the
channel environment has become more complex and noisier. Although massive MIMO
communication systems can allocate spectrum and channels to minimize interference from
UEs within the same system, interference can still occur and degrade the performance of
wireless communication systems. That interference can stem from various sources, which is
shown in Fig. 4.1, such as signals from neighboring channels, electrical devices, distortions
caused by frontend hardware, and jamming.

The interference sources can generate either narrowband or wideband interference inside
the desired signal bandwidth and further distort the desired signals. Overall, despite the
remarkable advancements in wireless technology, challenges remain in managing interference
and ensuring reliable performance in increasingly complex and noisy environments.

As discussed in Chapter 1, accurate CSI estimation is crucial for the high performance
of massive MIMO systems. The presence of interference can degrade or even corrupt the
channel estimation. The interference caused by jamming is one of the main reasons leading
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Figure 4.1: The sources of interference in the massive MIMO systems.

to this degradation.
Jamming is a deliberately designed or generated interference that intentionally or unin-

tentionally interferes with or blocks normal wireless communication. Despite advancements
in high-capacity and low-interference techniques, massive MIMO systems remain sensitive
and vulnerable to radio jamming due to several reasons [96]:

• The ease of generating jamming with the help of commercial programmable radio
devices and by various sources that can cause jamming, such as UEs from other network
cells.

• The chain reaction caused by signal distortion in the physical (PHY) layer, which
disables decoding, error correction, or other functions in subsequent stages of the PHY
layer or Media Access Control (MAC) layer.

• The limitations of effective anti-jamming techniques.

Common jamming types for massive MIMO systems include generic jamming attacks,
synchronization jamming attacks, and channel estimation jamming attacks [96]. The jamming
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Figure 4.2: The jamming regions relative to the desired signal packet. 1). The generic
jamming attack can target the whole desired signal packet; 2). The synchronization jamming
attack targets mostly on pilot symbols; and 3). The channel estimation jamming attack
focuses on sending jamming pilots to distort or nullify the desired signal pilots.

regions relative to the desired signals are shown in Fig. 4.2. Generic jamming attacks typically
involve high-power, constant, or periodic signals that can cover most or all of the targeted
channel bandwidth, even for the wideband signals enabled by mmWave [53]. Synchronization
jamming attacks aim to disrupt either timing synchronization or frequency synchronization of
massive MIMO communication systems by sending specifically designed signals that interfere
with the pilot bandwidth or camouflage pilot symbols to mislead synchronization [95, 71].
Additionally, jamming attacks can focus on disabling channel estimation of the multi-user
massive MIMO systems by distorting or even nullifying pilots, leading to completely inaccurate
CSI estimation [19]. Besides those, pilot contamination can also be one of the jamming
sources in massive MIMO systems. Due to the finite size of the codebook, the users in
neighboring cells may share the same pilots as the users in the current cell. The same pilot
sent from different cells causes inter-cell interference and disturbs the BS channel estimation.

For massive MIMO communication systems, some state-of-the-art anti-interference tech-
niques include:

• Regularized zero-forcing receiver filters to null the jamming signals using the jointly
estimated legitimate user and jamming user channels, which considers a constant
jamming scenario happening both on pilot and data transmission phases [27].

• The random matrix theory-based jamming rejection technique, which rejects the jam-
ming signal by projecting the received signal to the legitimate users eigensubspace
identified from the received signal covariance matrix [122].
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• The blind jamming mitigation algorithm, which uses a linear spatial filter to cancel the
jamming signals from the unknown jammers and recover the desired signal from the
legitimated sender, and this algorithm is applicable to scenarios that contain multiple
jammers in the system [140].

• The blind channel separation method for channel estimation under active jamming
attack, where malicious users send the jamming symbols that are correlative to those
of the legitimate users. The method is implemented with the alphabet extractor and
alphabet decomposition to separate the channel, and then estimate the channels of
legitimate users and malicious users separately [15].

However, the disadvantages of the existing anti-interference techniques listed above make
conventional approaches hard to implement in real massive MIMO applications. In [27],
the proposed regularized zero-forcing method requires the knowledge of the signal statistic
of the jamming signals, which needs extra steps to estimate. In [122], the random matrix
theory-based method needs the distinguishable power difference between the signal and
jamming in order to identify the subspace of user signals. Although the methods proposed
in [27, 122, 140] can null the jamming signals in the uplink, the user CSI is still unknown
to the communication system, which creates difficulties for the downlink channel prediction.
Extra works are still necessary to estimate the user CSI. The user CSI can be estimated using
the blind channel separation method, but the active jamming signal in [15] is required to be
specially designed with the prerequisite of the known user pilot and time-synchronized with
the user pilot frame, is a strong assumption and hard to realize.

Inspired by the success of ML on image denoising, restoration, or prediction [28, 47], many
ML-based massive MIMO channel estimation methods are proposed. In [144], a DNN-based
channel estimation method is introduced for fewer-bit ADC massive MIMO systems to realize
the channel estimation with very low-resolution inputs and low pilot overheads. Authors
in [137] propose a CNN-autoregressive predictor and CNN-recurrent neural network (RNN)
to get better channel estimation with the channel aging problem. The ML-based method
proposed in [63] demonstrates the robustness of the channel estimation using ML to Doppler
effects with three different deep learning networks to refine the per-antenna LS channel
estimation solution. For the signal jamming problem, authors in [135] propose a jamming
classification method using CNN. The CNN classifier shows the strong separation of 5 different
jamming types, which also shows the potential for ML in signal strong interference problems.
With the success of the state-of-the-art ML-based massive MIMO channel estimation methods
under complex channel scenarios and jamming classification, the channel estimation under
strong interference should also have the potential to be solved by using ML methods.

In this chapter, a complex-value neural network (CVNN) aided channel estimation method
is proposed to improve the channel estimation of the massive MIMO systems discussed in
Chapter 3 under strong wideband interference or jamming scenarios, where the frequency-
domain symbols are strongly distorted. The contributions of this work include:
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• propose a complex-valued convolutional neural network with its preprocessing and
postprocessing for the MRC beamforming stage channel estimation of the massive
MIMO systems discussed in Chapter 3, assuming strong wideband interference existing
in the pilot and distorting the channel estimation.

• discuss and analyze different neural network architecture choices to the impact of the
channel estimation performance.

• evaluate the performance and robustness of the proposed method with the change of
center frequency of the interference. And the results show that the mean square error of
the proposed channel estimation can be improved 316% compared with the traditional
method with less pilot overhead.

4.2 Background

In this section, different design choices of ML methods, specifically for massive MIMO
communication systems, are reviewed and discussed. The discussion focuses on the types
of neural network architectures, complex-valued neural networks versus real-valued neural
networks, and optimization methods that can be used for training neural networks.

4.2.1 Types of Network Architectures for Communication
Systems

Wireless communication systems share similarities with image, voice, and speech processing,
particularly the locality property embedded in the signal. As a result, researchers are exploring
the potential of ML algorithms to enhance the performance of wireless communication systems.

According to [107], the three most commonly used neural networks for current 5G
techniques are fully-connected neural networks (FCNN), convolutional neural networks
(CNN), and recurrent neural networks (RNN). These networks are suitable for different
purposes based on the properties of applications they are applied.

Fully-connected Neural Network (FCNN)

The architecture of FCNN, as shown in Fig. 4.3, consists of the input layer, the hidden layers,
and the output layer. In FCNN, each neuron in one layer is connected to every neuron in the
next layer. In other words, at each layer, all inputs of that layer contribute to each one of
the outputs at that layer. Suppose that a fully-connected neural layer has P number of input
x ∈ RP and Q number of output neurons y ∈ RQ, and the weights of layer is W ∈ RQ×P

and the bias is B ∈ RQ×P , then the fully connected neural layer can be expressed as

y = f
(
Wx+B

)
, (4.1)
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… … ……

input layer1 layer2 output

Figure 4.3: The architecture of an FCNN example, which consists of the input layer, hidden
layers, and the output layer.

where f(·) is the non-linear activation function.
Since all the neurons are tightly connected, important features can be extracted, and

irrelevant information can be suppressed through the feed-forward operation. FCNNs have
been proven to be effective approximators for general finite dimensional space mappings [44],
and the method proposed in [144] employs this property to estimate high-resolution CSIs
with fewer-bit ADC at frontends, by approximating the mapping from the highly quantized
measurement to the true channels.

Convolutional Neural Network (CNN)

. . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . 

. . . . . . . . . . . . 

input Conv1 Pool1 Conv2 Pool2 Hiddens output

Figure 4.4: The architecture of a CNN example, which consists of the convolutional layers,
pooling layers, and fully connected layers.
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Fig. 4.4 shows the architecture of CNNs. A basic CNN contains convolutional layers,
pooling layers, and fully connected layers. Compared with FCNNs where all the input neurons
will contribute to the output, CNNs exploit the spatial correlation of input to extract and
abstract features by using convolutions and pooling, and then use fully connected layers for
classification or regression. Due to the shorter correlation range of CNNs, the number of
parameters that CNN needs to be learned is largely reduced compared to FCNN models of
the same depth, which makes CNN suitable for learning complex models.

For a 2-dimensional convolutional layer with a square input x ∈ RN×P×P , a square weight
w ∈ RM×N×L×L, the striding step s ∈ R, one-side padding d ∈ R and bias b ∈ RM×Q×Q, the
square output of the convolutional layer y ∈ RM×Q×Q is

y = f
(
x ∗w + b

)
, (4.2)

where Q = P+2d−L
s

+ 1, and f(·) is the non-linear activation function. According to the
above equation, a proper padding size needs to be picked in order to get the desired output
size. Some commonly used pooling methods are maximum pooling and average pooling.

The success of AlexNet in ImageNet competition shows the power of CNNs in image
processing [57], and highlights the learning ability for complex models. CNNs can also be
expanded to process other data types that exhibit strong spatial correlation, such as preambles,
pilot signals, and channel matrices in wireless communication systems. Furthermore, CNNs
can be useful for estimating CSIs under complex environments by exploiting the correlation
embedded in the input.

Recurrent neural network (RNN)

Another commonly used neural network in wireless communication is RNN, and Fig. 4.5
shows a basic architecture for RNN. The basic architecture of RNN is very similar to FCNN,
which contains an input layer, hidden layers, and an output layer. However, different from
the FCNN, the state of the hidden layers h(t) is time-variant, and the output is also time-
dependent. The state of the hidden layers is determined by the input x, the input layer
weights hin, the update weight w, the hidden layer state of the previous timestamp h(t− 1),
and bias bh

h(t) = fh

(
hinx(t) +wh(t− 1) + bh

)
, (4.3)

and the output y(t) depends on the current hidden layer state, the weights of output
layer hout, and bias by

y(t) = fo

(
houth(t) + by

)
, (4.4)

where fh(·) and fo(·) are non-linear activation functions.
According to Eq. 4.3 and Eq. 4.4, one can easily see that RNN exploits the temporal

correlation of the input data, which has strong potential for solving time-dependent and high
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Figure 4.5: The sources of interference in the massive MIMO systems.

temporal-correlated problems. The examples in wireless communication systems that can
apply RNN models are channel aging estimation and Doppler effect estimation, where the
temporal correlation of the pilots can be exploited to estimate channel aging parameters
and Doppler shift frequency [137]. An RNN-based method is proposed by [130] to explore
the inter-packet correlation to improve the CSI feedback resolution for FDD massive MIMO
systems. However, due to the sequential order of the training data and the feedback procedure,
training RNN models can be much more computationally intensive than training FCNN and
CNN models.

4.2.2 Complex-valued vs. Real-valued

Many state-of-the-art ML architectures for image, voice, or speech signal processing applica-
tions use real-valued input data. Even when using frequency domain information instead of
spatial or time domain information, such as FFT pre-processed signals, the input data of the
neural network is typically the power spectrum of the raw data, which remains in the real
domain.

However, in wireless communications, the demodulation of the radio frequency signals
involves the use of quadrature signals, which consist of two signals of equal frequency with a
90-degree phase separation. As a result, unlike image, voice, or speech data, the signals used
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in wireless communication are represented by complex numbers. Moreover, the phase of the
quadrature signals is crucial for the successful establishment of wireless communication, and
the phase correlations embedded in the wireless communication signals can be useful for ML
algorithms.

LO

LO+90°rx
signal

Q

I
Q

QI

I Q

I

(1)

(2)

(3)

Figure 4.6: Ways of the RF signal conversion for neural network input: (1) treat I and Q as
two independent channels for the real-valued neural network; (2) concatenate I and Q into a
single vector for the real-valued neural network; (3) use the complex-valued vector of I +Qj
for a complex-valued neural network.

Real-valued neural networks can also be used for processing complex-valued signals by
converting the input from the complex domain to the real domain. The conversions can
be either treating I and Q signals as two real-valued input channels or concatenating I
and Q signals to a single real-valued vector. The real-valued input conversion from the
complex-valued input is shown in Fig. 4.6. Even though Fig. 4.6 illustrates the conversion of
the time-domain received RF signals, those methods can be expanded to other complex-valued
data as well. Moreover, complex-valued neural networks (CVNN) can reduce the degree of
freedom of the neuron layers while preserving the phase information of the complex number
since it is derived from the complex value multiplication. This shows the potential of CVNNs
to achieve as good performance as real-valued neural networks (RVNN) with less number
of parameters [43]. The outperforming of CVNN over RVNN in magnetic resonance (MRI)
fingerprinting [123] and symmetric data detection [4] further highlights the potential of CNVV.
For those reasons, CVNN models get more and more attention in wireless communication
applications.

4.2.3 Optimization Techniques for Model Learning

The training and learning of the neural networks are based on back-propagation algorithms
and appropriate optimization techniques. The purpose of optimization algorithms in neural
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networks is to find the optimal parameters that result in the highest performance, while
avoiding overfitting or being stuck in a local minimum.

Stochastic gradient descent (SGD) is one of the popular optimizers for training CNN
models. It has the advantages of shorter converging time and less memory usage, but the
disadvantages on the high learning variance of model parameters and the unstable learning
process [102]. To reduce the variance during the optimization, momentum is taken into
consideration, which allows the algorithm to move faster in the optimizing direction and
smooth out oscillations in the parameter updates.

AdaDelta is one of the improved optimization techniques based on SGD [139]. It can
dynamically update the learning rate to avoid large variations in the parameter update at
each step caused by the gradient noise [139]. AdaDelta has been used in the optimization
procedure for MNIST classification training [26]. The detailed algorithm is shown in Alg. 3.

Algorithm 3 AdaDelta optimizer

Require: w0 (parameters), ρ (decay), γ (step size), ϵ (constant)
Ensure: wT

Initialize: a0 ← 0, b0 ← 0
for t = 1 : T do
Get the gradient: gt
at ← ρat−1 + (1− ρ)g2t

vt ← gt

√
bt−1 + ϵ√
at + ϵ

bt ← ρbt−1 + (1− ρ)v2t
wt ← wt−1 − γvt

end for
return wT

Instead of just considering the first-order momentum during the weight update process,
adaptive moment estimation (Adam) also considers the second-order momentum of the
gradient [55] to avoid the fast change of velocity and missing the optimal solution caused
by overshooting. By incorporating the second-order information, Adam can obtain a better
solution than Adadelta. The algorithm of Adam is summarized in Alg. 4.

4.3 Problem Setup

In this work, the same single-cell massive MIMO uplink system, which has been described
in Chapter 3, is considered. This system contains K single antenna UEs and a M antenna
BS. During the uplink communication, user Golay pilots will be sent by each user in the
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Algorithm 4 Adam optimizer

Require: w0 (parameters), β1, β2 (betas), γ (step size), ϵ (constant)
Ensure: wT

Initialize: first moment v0 ← 0, second moment a0 ← 0
for t = 1 : T do
Get the gradient: gt
vt ← β1vt−1 + (1− β1)gt
at ← β2at−1 + (1− β2)g

2
t

v̂t ← vt/(1− βt
1)

ât ← at/(1− βt
2)

wt ← wt−1 − γv̂t/(
√
ât + ϵ)

end for
return wT

UE1 UEK
… Data

Interference

…

Interference 
generator

UE1 UEK

Figure 4.7: The massive MIMO system contains K UEs and an interference generator. The
20MHz in-band interference will constantly occur during the TDD Golay pilot transmission,
which is shown in the zoomed-in inset.

time-interleaved manner, which are used for the distributed MRC beamforming channel
estimation. Then at the BS receiver, the Golay-correlator-based channel estimator is used to
extract CSIs according to Eq. 3.9. Moreover, perfect frontends and perfect synchronization
are assumed.

However, during the transmission of user Golay pilots, a constant in-band 20MHz additive
Gaussian interference occurs, and it comes from the interference generator as illustrated in
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Fig. 4.7. The signal power of the interference xinf is the same as the signal power of the
user Golay pilots xgp, which also means E[xgpx

H
gp] = E[xinfx

H
inf ]. In this work, the AWGN

with a relatively high beamforming SNR and LOS channel model is considered. In addition,
E[hih

H
i ] = E[hjh

H
j ] for all i, j ∈ {1, ..., K} is assumed for the UE k channel vector hk ∈ CM .

Unfortunately, the noisy channel environment can easily degrade the performance of the
correlator-based channel estimator, leading to a lower SNR gain in the MRC stage and an
inaccurate downlink channel prediction. Fig. 4.8 shows the channel estimation MSE using the
correlator-based channel estimator with and without the existence of the interference. The
result shows that the MSE can increase 3 times when the center frequency of the wideband
interference is swept from −150MHz to 150MHz. Therefore, it is important to find a better
solution to improve the channel estimation performance under this challenging scenario.

×3 increase

Figure 4.8: Channel estimation (CHEST) MSE using the correlator-based channel estimator
vs the center frequency of the in-band wideband interference with Golay sequence length of
64. The blue line shows the CHEST MSE by the pilot with interference (INF), and the black
line shows the CHEST MSE by the pilot only.

4.4 The Architecture of CVNN-Aided Channel

Estimation

The CVNN-aided channel estimation method is proposed to improve the channel estimation
performance. The entire flow includes pre-processing, CVNN prediction, and post-processing
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for channel estimation. It takes the per-UE, per-BS-antenna, time domain Golay pilot xgp as
the input, and pre-processes it by using shifted FFT. The frequency domain Golay pilots are
then fed into the CVNN. After the prediction, the predicted signals are converted back to
the time domain by IFFT post-processing. Then the correlation-based channel estimator,
as described in Eq. 3.9, is employed to estimate CSIs. The data flow of the CVNN-aided
channel estimation method is shown in Fig. 4.10.
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Figure 4.9: Input difference. Direct FFT vs. FFT shifted

4.4.1 Pre-processing

At BS receivers, the incoming baseband user Golay pilots are pre-processed with the shifted
FFT to convert the signal vectors from the time domain to the frequency domain. The
frequency domain signals show more distinguishable features due to the bandwidth difference
between the user pilot and interference. One of the problems of using FFT directly is
the feature edge-crossing problem, in which the interference frequency domain features are
separated to the two ends of the input vectors when the interference center frequency is close
to 0Hz. By using shifted FFT, the index of signal vectors can range from [−f/2, f/2) MHz,
instead of [0, f) MHz, as shown in Fig. 4.9. As a result, the shifted FFT method can avoid
the feature edge-crossing problem and help with the feature correlation and extraction for
the convolution layers.
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Shifted FFT

CVNN

IFFT

𝒙𝒙𝑔𝑔𝑔𝑔 (antenna m, UE k)

hm,k

Correlator based CHEST

UE1
… DataUEK𝒙𝒙𝑟𝑟 (antenna m)

Figure 4.10: The data flow of the CVNN-aided channel estimation method.

4.4.2 The Architecture of CVNN

As mentioned in Sec. 4.2.1, CNN models have great potential for channel estimation due
to their powerful feature extraction ability and good prediction performance. Although in
this work, both the wideband interference and AWGN exist in the channel, the pilot pattern
should still be embedded in the received signals and could be predicted by using ML methods.
As a result, the CNN model is chosen in this work. To achieve good prediction performance
with fewer model parameters by taking advantage of the phase information preserved in the
learning procedure, the CVNN model is employed in this work.

Fig. 4.11 shows the architecture of the proposed CVNN model. It contains two complex-
valued convolution layers, two complex-valued max-pooling layers, two complex-valued fully
connected layers, and two dropout layers activated only during training to avoid overfitting.
The dimensions, kernel sizes, or the parameter numbers of each layer are shown in Table. 4.1,
where L is the length of the user Golay pilot.

Complex-valued Convolution Layer

Both 1-dimensional convolution layers in the proposed CVNN model are implemented in the
complex domain. The complex-valued convolution layer consists of a real convolution layer
and an imaginary convolution layer with Cin number of input channels and Cout number of



CHAPTER 4. COMPLEX-VALUED NEURAL NETWORK AIDED CHANNEL
ESTIMATION 83

1@
64

8@
64

8@
16

32
@

16
32

@
4

12
8

12
8

64

C
pl

xC
on

v1
1×

16
C

pl
xM

ax
Po

ol
1

1×
4

Ta
nh

C
pl

xC
on

v2
1×

4
C

pl
xM

ax
Po

ol
2

1×
4

Ta
nh

fla
tte

n
C

pl
xF

C
1

12
8×

12
8

Ta
nh

C
pl

xF
C

2
12

8×
64

im
ag

in
ar

y

re
al

F
ig
u
re

4.
11
:
T
h
e
n
et
w
or
k
ar
ch
it
ec
tu
re

of
th
e
co
m
p
le
x
-v
al
u
e
n
eu
ra
l
n
et
w
or
k
.



CHAPTER 4. COMPLEX-VALUED NEURAL NETWORK AIDED CHANNEL
ESTIMATION 84

Table 4.1: The dimension or parameters of each CVNN layer.

Layer name
(Dimin, Dimout)

/Param
Kernel Layer Activation

Conv1 (1, L) (8, L) 16 Train & Inference

MaxPool1 (8, L) (8, L) 4 Train & Inference

Conv2 (8, L/4) (32, L/4) 4 Train & Inference

MaxPool2 (32, L/4) (32, L/4) 4 Train & Inference

DropOut1 0.1 Train

FC1 32×L/16 32×L/16 Train & Inference

DropOut2 0.1 Train

FC2 32×L/16 L Train & Inference

output channels. Let Ldata be the length of the input and the output, Lk be the kernel size of
both layers, x ∈ CCin×Ldata be the convolution layer input, y ∈ CCout×Ldata be the convolution
layer output, and let wi ∈ CCin×Lk for i ∈ {1, ..., Cout}. The input and the kernel of the
real convolution layer are Re{x} and Re{w}, and the input and the kernel of the imaginary
convolution layer are Im{x} and Im{w}. The output of the complex-valued convolution
layer is

Re{y}[i] = Re{x} ∗Re{wi} − Im{x} ∗ Im{wi}
Im{y}[i] = Re{x} ∗ Im{wi}+ Im{x} ∗Re{wi}.

(4.5)

Let us consider an alternative convolution layer implementation using real numbers, with
2×Cin number of input channels and 2×Cout number of output channels. The corresponding
real-valued kernel can be expressed as w′

i ∈ R2Cin×Lk for i ∈ {1, ..., 2Cout}. Re{x} and
Im{x} are treated as two input channels of this real-valued convolution layer, stacked in an
interleaved manner as shown in Fig. 4.6 (1). Compared with this real-valued convolution
layer, the number of weights of the complex-valued layer with the same dimension can reduces
by half, and the output phase information or the correlation between the real and imaginary
parts embedded in the complex-valued multiplication can be preserved without distortion.

Consider another real-valued convolution layer implementation with Cin number of
input channels and Cout number of output channels, and the kernel can be expressed as
w′′

i ∈ RCin×2Lk for i ∈ {1, ..., Cout}. The number of weights for this real-value convolution
layer can be the same as the proposed complex-valued convolution layer. But the phase
information can be distorted during the feedforward learning procedure.

Besides the choices between using complex-valued or real-valued networks, another factor
that can affect the performance of the complex-valued convolution layer is the padding
method. The most commonly used padding method is the zero padding mode, where the
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padding area are assigned with 0 + 0j as shown in Fig. 4.12. However, due to the circularity
property of FFT, in this work, circular padding is used to improve the feature extraction of
the convolution layer when the interference center frequency is close to the bandwidth limit
of the pilot signal.

1 2 3 4 5�0 �0 �0 �0

1 2 3 4 54 5 1 2

zero padding

circular padding

Figure 4.12: Zero padding vs circular padding. The blue squares represent the input data,
and the grey squares represent the padding area.

Complex-valued max-pooling Layer

The purpose of the max-pooling layer in CNN models is the important feature extraction and
data downsampling. Images are the targeted input data type for most of the state-of-the-art
CNN models, which are often represented by 8-16 bit non-negative integers. The max-pooling
layer can simply choose the largest number within a certain window size, and then forward
the selected features to the next layer.

However, for CVNN models, targeted inputs x are complex-valued, while the rule to
compare two complex numbers is vague. One way to implement the complex-valued max-
pooling layer is by choosing the largest value from the input real part and input imaginary
part separately, and then using the two largest value to form the “maximum” complex-valued
output, which can be expressed in Eq. 4.6.

Max(x) = Max(Re{x}) + j ·Max(Im{x}). (4.6)

Unfortunately, by this method, the maximum real and imaginary value may not come
from the same pair, and the data can be distorted after the max pooling, leading to the loss
of the correlation hidden in the signal. To keep the correlation between the real part and
the imaginary part of the data, a maximum power pooling method is implemented in this
work. It means that the complex number with the maximum power within the window will
be selected and passed to the next layer. Let the window size be Lwin, then the maximum
power pooling can be expressed as Eq. 4.7.

im = argmax
i∈{1,...,Lwin}

Re{x(i)}2 + Im{x(i)}2

Max(x) = x(im).
(4.7)
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By using Eq. 4.7, the phase information can be preserved, and the important features
can also be extracted.

As shown in Fig. 4.11, the nonlinear activation function is performed after complex-valued
max-pooling layers, and the activation function used in this work is the extended version of
the hyperbolic tangent function to the complex domain, which can be expressed as

f(x) =
eRe{x} − e−Re{x}

eRe{x} + e−Re{x} + j · e
Im{x} − e−Im{x}

eIm{x} + e−Im{x} (4.8)

The hyperbolic tangent function is widely used in regression models, and in this work,
it is applied to the real and imaginary parts of the data separately, as shown in Eq. 4.8.
The reasons for putting the activation function after the pooling layer are the computation
reduction and the more accurate feature extraction. The hyperbolic tangent function involves
exponential operations which is computation-hungry. The max-pooling layer can downsample
the data, which reduces the number of exponential operations required in the activation layer.
In addition, applying the max-pooling layer directly after the convolution layer can guarantee
the non-distorted power in the input data, so the feature extraction of the complex-valued
max-pooling layer can be more accurate. For those reasons, the complex-valued hyperbolic
tangent activation function is applied after the complex-valued max-pooling layer.

Complex-valued Fully-connected Layer

The multi-channel outputs of the complex-valued max-pooling are flattened into the real
vector and the imaginary vector after being applied with the activation function. The flattened
vectors are then fed into the complex-valued fully-connected layer. The complex-valued
fully-connected layer is also composed of a real fully-connected layer and an imaginary
fully-connected layer. Let Lin and Lout be the input vector length and output vector length,
xFC ∈ CLin be the fully-connected layer input, yFC ∈ CLout be the fully-connected layer
output, and wFC ∈ CLout×Lin be the weights of this layer. The input and weights of the
real fully-connected layer are Re{xFC} and Re{wFC}, and the input and weights of the
imaginary fully-connected layer are Im{xFC} and Im{wFC}. The output of the complex-
valued fully-connected layer can be expressed as

Re{yFC} = Re{wFC}Re{xFC} − Im{wFC}Im{xFC}
Im{yFC} = Im{wFC}Re{xFC}+Re{wFC}Im{xFC}.

(4.9)

4.4.3 Post-processing

After CVNN prediction, IFFT converts the predicted signal from the frequency domain back
to the time domain. Then the correlator-based channel estimator is employed to estimate
CSIs. The channel estimation MSE can be reduced while the pilot length increases, which
will be discussed in detail in the result section.
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4.5 Training and Inference Setup for CVNN

4.5.1 Dataset

In this work, the training and inference dataset are synthetic and generated using the Hydra
Python simulator described in Chapter 3. The channel noise includes both AWGN and
wideband interference. In the massive MIMO system, the BS has 64 antennas and serves 4
UEs. The channel model assumed is the LOS channel model, and user channel losses are the
same. The total length of the Golay pilot is 64, and the length of each sequence in a Golay
pair is 32. Because the high-power wideband interference is the main focus of this work, a
relatively high SNR, 15dB, for AWGN is considered.

AWGN and interference with various center frequencies. The target outputs of the CVNN
model are BS-received Golay pilots without noise. The Python simulator generates BS
received signals and reshapes the received Golay pilots to an array with the size (M ×K,
Lgp). The reshaped array vectors are fed into the CVNN model because the CVNN takes
per-channel per-user Golay pilots as inputs. The total number of training data is 33280, and
the total number of inference data is 88320. The center frequencies of the 20MHz interference
for training and inference dataset are shown in the Table. 4.2.

Although the training dataset for the proposed CVNN is synthetic, the real-world measured
training data can also be applied to train the model. The strategy for the measured training
data collection will be discussed in the Discussion section.

Table 4.2: The dataset generation parameters.

Parameter Value

BS antenna and UE 64 antennas and 4 UEs

Signal bandwidth 400MHz

Channel model LOS

Golay pilot length 64

SNR (AWGN) 15dB

Interference bandwidth 20MHz

Psig/Pinf 1

Training center freqs [MHz] ±150, ±125, ±100, ±75, ±50, ±25, 0
Training size 8519680 (33280× 64× 4)

Inference center freqs [MHz]
±150, ±137.5, ±125, ±100, ±87.5, ±75,
±62.5, ±50, ±37.5, ±25, ±12.5, 0

Inference size 22609920 (88320× 64× 4)
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4.5.2 Training

During the training phase, the training data are shuffled first to ensure the order of the input
data will not contribute to the model training. To avoid overfitting, the CVNN model also
applies dropout layers with a 10% dropout rate after MaxPool2 and FC1 layers. The dropout
layers will be skipped during inference.

The loss function used for training is the square error loss between the prediction and
the target output. Suppose the vector length of the prediction and the target output is Lgp,
the predicted output is yp ∈ CLgp , and the target output is yp ∈ CLgp . The square error
loss function can be expressed as Eq. 4.10. The ultimate goal of the CVNN model is to
predict the output with as minimum square error as possible with the target output. Thirteen
different interference center frequencies are involved in training the CVNN model, and each
center frequency contributes 655360 training data points.

L(yp) = (yp − yt)
H(yp − yt). (4.10)

In the model training, two different optimization techniques are compared to get a better
set of trained parameters. The two optimizers used are Adadelta and Adam, which have
been discussed in Sec. 4.2, and optimizer parameters for both methods are summarized in
Table. 4.5.2.

Table 4.3: The parameters for optimizers.

γ ρ/(β1, β2) ϵ

AdaDelta 1.0 0.9 10−6

Adam 0.005 (0.9, 0.999) 10−8

Fig. 4.13 shows the training loss vs. training epoch using the two optimization techniques.
The curve shows that AdaDelta has a faster convergence speed but a less optimal solution.
Due to the introduction of the second-order momentum, Adam has a slower convergence
speed but can reach a more optimal point. As a result, Adam optimizer is used to train the
proposed CVNN model.

4.5.3 Inference

During the inference phase, the dropout layers are inactive. 21 different interference center
frequencies are involved in testing the prediction performance and the generalization ability
of the CVNN model. The inference dataset is also generated by the Python simulator but is
not included during the training phase.

Besides the center frequencies that have been included for training the model, 8 more
interference center frequencies are involved in the inference to test the generalization of the
trained CVNN model. The predicted inference outputs are transformed back to the time
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Figure 4.13: Training loss vs. training epoch. The red line represents the training loss curve
using ADAM, and the black line represents the training loss curve using AdaDelta.

domain and post-processed in the Python simulator to estimate CSIs. The CVNN-aided
channel estimation performance is evaluated based on the channel estimation MSE.

4.6 Peformance Analysis

4.6.1 CVNN design choices comparison

Different design choices that can affect the channel estimation performance of the proposed
method are evaluated and compared in this section. The design choices are whether use the
direct FFT or shifted FFT to convert pilots from the time domain to the frequency domain
and use the zero or the circular padding mode for the complex-valued convolution layers.

In this evaluation, the proposed CVNN model is trained with the received Golay pilots
containing interference whose baseband center frequencies locate at 100MHz and -100MHz.
The total training size is 8519680, and the channel estimation performance of the proposed
method is evaluated with the interference center frequency ranging from -150MHz to 150MHz
to evaluate the generalization of the model and the symmetry of the curve by using different
designs. In this evaluation, design choices that can contribute to a more symmetric curve of
the MSE vs. frequency are preferable because the symmetric curve indicates that training
the CVNN model implementing those design choices at a set of center frequencies that are
symmetric to 0Hz is reasonable.

Let Hest,i ∈ CM×K be the estimated channel matrix, Hi ∈ CM×K be the ground truth
channel matrix, and the total number of tests evaluated is Nt. The channel estimation MSE
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is measured as

MSE =

∑Nt

i ||Hest,i −Hi||2

Nt ×M ×K
. (4.11)
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Figure 4.14: Channel estimation (CHEST) MSE vs 20MHz interference center frequency. The
blue line shows the MSE of the correlator-based channel estimator, and the red line shows the
MSE of the channel estimator with CVNN. The dotted red line represents the MSE by using
direct FFT input, while the solid red line represents the MSE by using shifted FFT input.

Fig. 4.14 shows the channel estimation MSE vs. the interference center frequency by using
the direct FFT and shifted FFT transformed Golay pilots as the inputs of the CVNN model.
In this part, the complex-valued convolution layers use the zero padding mode. As shown
in the figure, the channel estimation performance using both methods is almost the same
when interference center frequencies are at the trained frequencies, 100MHz and -100MHz.
However, for frequencies that are not included in the training phase, the direct FFT method
has a higher channel estimation MSE, especially when the frequency ranges from 0Hz to
50MHz. It is caused by the feature edge-crossing issue when using the direct FFT. When the
interference center frequency closes to 0Hz, the interference frequency-domain features can
locate at the two ends of the input vectors, which distorts the correlation of the input and
degrades the feature extraction of the complex-valued convolution layer. For this reason, it is
better to let the interference information contiguously locate inside the input vector since
the edge-crossing issue can negatively affect the performance of the CVNN-aided channel
estimation.

For the in-band interference, the edge-crossing issue can be avoided using the shifted
FFT method for the signal domain transformation. Unlike the direct FFT method, whose
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Figure 4.15: Channel estimation (CHEST) MSE vs 20MHz interference center frequency. The
blue line shows the MSE of the correlator-based channel estimator, and the red line shows
the MSE of the channel estimator with CVNN. The dotted red line represents the MSE by
using zero padding, while the solid red line represents the MSE by using circular padding.

frequency index ranges from [0Hz, 400MHz), the frequency index of the shifted FFT method
is [-200MHz, 200MHz). Then, interference features can locate inside the input vector without
being separated by the boundary and even keep some distance from the edge for most
scenarios. Therefore, the shifted FFT method removes the feature edge-crossing problem.
Fig. 4.9 shows that using the shifted FFT method, the channel estimation performance can
be improved for the cases where the center frequency of the interference is close to 0Hz, and
the curve is more symmetric compared with the other method. As a result, the shifted FFT
method should be employed for the input data pre-processing of the proposed method.

The padding mode of the complex-valued convolution layer can also affect the performance
of CVNN-aided channel estimation. Fig. 4.15 shows the channel estimation MSE vs.
interference center frequency using the zero and circular padding mode in the CVNN model.
When using the zero padding method, some frequency domain information will be lost when
convolving the first and last several data of the input vector. Due to the circularity property
of FFT, more frequency domain information can be preserved and involved in the convolution
by using the circular padding method, especially when convolving the data at both ends of
the input vector. For this reason, the channel estimation MSE curve with respect to the
interference center frequency is more symmetric by using the circular padding mode than the
zero padding mode. Even though the channel estimation MSE increases when interference
center frequencies are close to the boundary of the signal bandwidth, the performance can be
improved by training with more data points at different center frequencies.



CHAPTER 4. COMPLEX-VALUED NEURAL NETWORK AIDED CHANNEL
ESTIMATION 92

The set of training center frequencies is listed in Table. 4.1. As a result, the proposed
CVNN model implements the shifted FFT method and the circular padding mode.

4.6.2 Channel estimation performance
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Figure 4.16: Channel estimation (CHEST) MSE vs 20MHz interference center frequency. The
black dotted line shows the MSE of the MMSE-based channel estimator with no interference
existing in the system, the blue line shows the MSE of the correlator-based channel estimator,
and the red line shows the MSE of the channel estimator with CVNN.

The CVNN model was trained using the BS received interfered Golay pilots with the set
of interference center frequencies listed in Training center freqs of Table 4.2. 13 different
interference center frequencies were included in the training phase. The performance of
the CVNN-aided channel estimator was evaluated using the BS received interfered Golay
pilots with the set of interference center frequencies listed in Inference center freqs of Table
4.2. Fig. 4.16 illustrates the channel estimation MSE vs. interference center frequencies.
Compared to the solid red line in Fig. 4.15, where the model was trained only with pilots
having interference center frequencies at 100MHz and -100MHz, the model trained with
those 13 different interference center frequencies can achieve a good channel estimation
performance for all interference center frequencies ranging from -150MHz to 150MHz. Even
for center frequencies that were not included in the training, the channel estimation MSE
of those untrained points was close to the trained points. The flattening of the channel
estimation MSE curve achieved by the CVNN-aided channel estimator demonstrates the
good generalization ability of the proposed method.
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With the help of the CVNN, the channel estimation MSE can be reduced 3.16× compared
to using the correlator-based channel estimator alone. The channel estimation performance
of the proposed method is also compared with the performance of the MMSE-based channel
estimator estimating the channel without interference. With the aid of CVNN, the channel
estimation MSE can be reduced close to the estimation by the MMSE-based estimator
using non-interfered pilots. As a result, the CVNN-aided channel estimator can remove the
interference effect in the channel estimation.

4.6.3 Complex-valued and real-valued model comparison

This section compares the channel estimation performance using complex-valued or real-
valued neural networks. Two real-valued CNN models are considered. Both real-valued CNN
models consist of two convolution layers with the circular padding mode, two max-pooling
layers, and two fully-connected layers, the same as the proposed CVNN model.

CNN1 is the real-valued CNN model sharing the same structure as the proposed CVNN
model. For example, the kernel sizes of the convolution layers are the same as CVNN models’,
and the sizes of the fully connected layers are doubled accordingly due to the separation of
the real part and the imaginary part of the complex-valued vector. As discussed in Sec. 4.4.2,
the total number of parameters of the fully-connected layer will be doubled compared with
the complex-valued fully connected layer if the real-valued fully connected layer is used for
complex values.

CNN2 is the real-valued CNN model sharing the same number of weights and the similar
total number of parameters as the proposed CVNN model. The number of weights of the
convolution layers and the fully-connected layers between CVNN and CNN2 are the same by
adjusting the kernel size and the layer dimensions. The slight difference in the total number
of parameters between CVNN and CNN2 models is due to the different number of biases.

The input of CNN1 and CNN2 are the concatenated array of the real part and the
imaginary part of the frequency-domain received Golay pilots, and the Golay pilot length is
64. Table. 4.4 summaries the neural network parameters of the proposed CVNN, CNN1, and
CNN2. All three models are trained and evaluated using the same training and inference
dataset summarized in Table. 4.2.

Table. 4.5 summaries the inference prediction MSE of CVNN, CNN1, and CNN2 at the
trained interference center frequencies. The result shows that for the interference center
frequencies at the boundary of the signal bandwidth, the RVNNs have better performance
than the CVNN because of the concatenation of the real and imaginary parts of the input
vector. Due to the concatenation, although the frequency-domain interference features are
located at the boundary of the bandwidth, either the real part or the imaginary part of the
feature will locate near the center of the input array. As we have discussed in Section 4.6.1,
the CNN model can give a good prediction if the interference features are not close to the
boundary of the input, so real-valued CNN models can obtain better performance than the
CVNN model when the interference center frequency is close to the boundary of the signal
bandwidth. However, the overall neural network prediction performance of the CVNN is
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Table 4.4: The model parameters of CVNN, CNN1, and CNN2. The input of CNN1 and
CNN2 are the concatenated array of the real part and imaginary part of the received Golay
pilot with 64 Golay pilot length.

Layer name
(Channel in, Channel out, kernel)

CVNN CNN1 CNN2

Conv1 (1, 8, 16) (1, 8, 16) (1, 8, 32)

MaxPool1 (8, 8, 4) (8, 8 ,4) (8, 8, 4)

Conv2 (8, 32, 4) (8, 32, 4) (8, 32, 8)

MaxPool2 (32, 32, 4) (32, 32, 4) (32, 32, 4)

FC1 (128, 128, ) (256, 256, ) (256, 128, )

FC2 (128, 64, ) (256, 128, ) (128, 128, )

Total params 51920 99880 51752

still slightly better than both CNN1 and CNN2 for the set of interference center frequencies
included in the training phase.

Table. 4.6 summaries the inference prediction MSE of CVNN, CNN1, and CNN2 for the
untrained interference center frequencies. The result shows that for the untrained interference
frequencies, CNN1 and CNN2 model predictions get worse. For CNN1, the prediction MSE
increases by 3.75×10−4, and for CNN2, the prediction MSE increases by 4.23×10−4. However,
the prediction MSE of CVNN only increases by 0.79× 10−4. The smallest prediction MSE
variation of CVNN shows that it has a better generalization ability than the real-valued
neural networks that have similar network structures or similar numbers of parameters. It
can also indicate that the phase correlation embedded in the complex numbers can help
improve the neural network prediction performance.

In summary, CVNN outperforms the real-valued neural networks either with similar layer
structures or with a similar number of parameters, especially in the model generalization
ability.

4.6.4 Pilot length comparison

The effect of interference can be reduced by increasing the pilot length in the correlator-based
channel estimator because higher SNR can be achieved after correlation. This can be shown
as follows. Suppose the interference ninf in the received pilot hxgp + ninf has the following
properties, that E[ninf ] = 0, and E[ninfn

H
inf ] = σ2

infILgp , then the expectation of the channel
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Table 4.5: The inference prediction MSE comparison between CVNN and CNN models for
the trained interference center frequencies.

inf center frequency
[MHz]

prediction MSE [×10−3]
CVNN CNN1 CNN2

-150 8.722 7.872 7.664
-125 7.436 7.873 7.651
-100 7.557 7.885 7.825
-75 7.511 7.567 7.726
-50 7.646 7.690 7.544
-25 7.215 7.729 7.537
0 7.037 7.631 7.447
25 7.706 7.689 7.637
50 7.665 7.736 7.632
75 7.186 7.697 7.722
100 7.330 7.774 7.788
125 7.786 7.801 7.679
150 8.049 7.829 7.771

Average 7.604 7.752 7.663

Table 4.6: The inference prediction MSE comparison between CVNN and CNN models for
the untrained interference center frequencies.

inf center frequency
[MHz]

prediction MSE [×10−3]
CVNN CNN1 CNN2

-137.5 8.764 8.636 8.361
-87.5 7.522 7.959 8.182
-62.5 7.816 7.887 8.024
-37.5 7.341 7.976 7.814
-12.5 7.069 8.178 7.89
12.5 7.328 8.072 8.092
37.5 7.825 7.903 8.026
62.5 7.497 8.113 8.027
87.5 7.287 8.100 8.172
137.5 8.377 8.442 8.268

Average 7.683 8.127 8.086
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estimation square error with the correlator-based estimator is

E{||ĥ− h||2} = E{|| 1
Lgp

xH
gp(hxgp + ninf )− h||2}

=
1

L2
gp

xH
gpE[nH

infninf ]xgp

=
1

Lgp

E[nH
infninf ]

=
σ2
inf

Lgp

,

(4.12)

with xH
gpxgp = Lgp as shown in Eq. 3.7.
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Figure 4.17: The channel estimation (CHEST) MSE vs the interference center frequency with
various Golay pilot lengths by using CVNN or without using CVNN. The dotted black line
represents the CHEST MSE by using correlator-based estimator only with 64 Golay pilot
length; the dash-dotted black line represents the CHEST MSE by using correlator-based
estimator only with 128 Golay pilot length; the solid black line represents the CHEST MSE
by using correlator-based estimator only with 256 Golay pilot length; and the red solid line
represents the performance of CVNN-aided estimator with 64 Golay pilot length.

This section compares the channel estimation MSE with various Golay pilot lengths.
Fig. 4.17 shows the channel estimation performance vs. the interference center frequency
with various Golay pilot lengths. The red line represents the performance by using the
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CVNN-aided channel estimator, while the black lines represent the performance by only
using the correlator-based channel estimator. Pilot lengths 64, 128, and 256 are evaluated.
The result shows that the Golay pilot length needs to reach 256 to reduce the channel
estimation MSE by the correlator-based estimator to the same order of magnitude as the
channel estimation MSE estimated using the CVNN-aided estimator. This shows that the
CVNN-aided channel estimator can save up to 4× of the pilot length compared with the
traditional correlator-based channel estimator.

4.7 Discussion

4.7.1 Frontend Impairment

In Sec. 4.6, the effectiveness of the CVNN-aided channel estimation method has been
demonstrated. The result shows that the CVNN-aided channel estimation method can
significantly improve the channel estimation performance compared to the traditional method.
However, this is based on the assumption of the perfect frontend design, where the I channel
and the Q channel are balanced. Because IQ signal channels are balanced, the phase
correlation embedded in the signal can be ensured coming from channel modulation only. In
reality, the frontend impairment will exist. Table. 4.7 shows the channel estimation MSE
with perfect frontends or a 10-degree IQ phase offset. Moreover, the model is trained with
and without IQ imbalance. The result shows that the proposed method can still give a
3.11× channel estimation improvement compared to the traditional method when the IQ
impairment exists, but a 1.65% performance degradation is introduced compared to the result
obtained under the assumption of perfect IQ channels.

One alternative way to solve the IQ imbalance problem is to include frontend calibrations
in the proposed CVNN-aided channel estimation method, such as the IQ calibration methods
introduced in Chapter. 1. Because the hardware impairment will not change frequently, the
calibration only needs to be performed once for a long time. The IQ correction hardware is
also inexpensive, as shown in Fig. 3.6. An alternative way to adapt the proposed method to
improve the performance under the IQ imbalance is to use a real-valued neural network and
treat the real and imaginary parts as two channels. With this method, the degree of freedom
of the neural network can be doubled, and the phase correlation could include both channel
modulation and IQ imbalance. However, each antenna needs to be trained independently
because the IQ imbalance factors are different for each frontend, which makes the model
training expensive. In addition, doubling the parameters will increase memory usage, require
more training data, and increase data load and store operation during computing. For those
reasons, correcting IQ before feeding the received signal into the neural network is simpler
and less expensive.
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Table 4.7: Channel estimation MSE for the received signal assuming perfect frontend and
10-degree IQ phase offset.

CHEST MSE [10−3]
trained untrained

inf center
frequency
[MHz]

no IQ
imbalance

10 deg
imbalance

inf center
frequency
[MHz]

no IQ
imbalance

10 deg
imbalance

-150 8.448 8.341 -137.5 8.618 8.493
-125 7.378 7.556 -87.5 7.467 7.607
-100 7.533 7.685 -62.5 7.767 7.640
-75 7.495 7.570 -37.5 7.312 7.562
-50 7.584 7.715 -12.5 7.093 7.230
-25 7.267 7.446 12.5 7.331 7.442
0 7.067 7.149 37.5 7.787 7.789
25 7.708 7.804 62.5 7.449 7.586
50 7.668 7.773 87.5 7.295 7.464
75 7.210 7.405 137.5 8.118 8.412
100 7.291 7.628
125 7.591 7.620
150 7.805 8.24

Average 7.542 7.687 7.624 7.723

4.7.2 Real-world Training

In this work, we train the proposed CVNN model with the simulated signals. Although
the Python simulator can comprehensively simulate the massive MIMO system, training
with actual data is still critical for making the ML method practical in the real world. The
model training strategy applied in this work can be expanded to real-world data collection.
Section 4.6 has shown that by training at interference center frequencies listed in Table 4.2,
the CVNN model can perform well for other frequencies ranging from [−150MHz, 150MHz].
The training data can be collected using the Hydra testbed and an interference generator
in the real world. The target data or the ground truth can be obtained by receiving the
signals sent from UEs without turning on the interference generator. Then, the training
data can be collected by receiving the same signals sent from UEs at the exact location with
the interference generator turned on and adjusting the carrier frequency of the interference
generator to manually place the interference baseband center frequency at the frequencies
listed in Table 4.2. Then the collected training and target data pair can be used for the
real-world training of the proposed CVNN model.
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4.7.3 Interference Detection and Synchronization

Perfect synchronization and the existence of interference are assumed in this work. Interference
detection and the pilot synchronization method are also needed in the system to make the
proposed CVNN-aided channel estimator practical for real-time signal processing. One
possible way to implement interference detection, pilot synchronization, and CVNN-aided
channel estimation together is to design a multi-attention CVNN model, which is inspired by
[146]. The multi-attention CVNN model first uses convolution layers to produce multiple-part
attentions. Then an attention mechanism is applied to generate the part representations.
The results of signal detection, synchronization, and denoised signals could be obtained
simultaneously following different sets of fully-connected layers. The multi-attention CVNN
model can be a future research direction for this work.

4.7.4 Computational Complexity

Although the proposed method outperforms the traditional method, the total number of
complex-valued multiply-and-add required is

W1LCout,1 +W2
L

4
Cin,2Cout,2 +

L

16

L

16
C2

out,2 + L
L

16
Cout,2, (4.13)

whereWi represents the kernel size of each convolution layer, Cin,i, Cout,i represents the number
of input or output channels, and L represents the pilot length. Then the computational
complexity of the proposed method is O(KM(L2+L)), whereas the computational complexity
of the traditional correlator-based method is O(KMlog2(L)) and the method proposed in
[27] is O(KML). The proposed method has a higher computational complexity than others.
As a result, reducing the computational complexity and improving the computation efficiency
is one of the future research directions for this work.

4.8 Summary

Table. 4.8 summarizes this work along with state-of-the-art ML and non-ML methods related
to the interference issue in massive MIMO systems. As we have discussed in Sec. 4.6, CVNN
outperforms two real-valued convolutional neural network designs, CNN1 and CNN2, with
either similar layer structure or similar total number of parameters, especially for the cases
where the interference center frequencies have not been included in the training phase. So
CVNN has a better generalization ability than real-valued neural networks. The proposed
method is also compared with the traditional correlator-based channel estimator, and the
result shows that the proposed method has 3.16 times lower channel estimation MSE than
the correlation-based channel estimator. In addition, the proposed method required four
times shorter pilot length to achieve the same order of magnitude channel estimation MSE
compared to the traditional method. The blind channel separation method proposed in
[15] targets the active jamming attack in the channel and is a non-ML method for the user
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channel estimation under interference. Compared with the blind channel separation method,
the proposed method targets a more generic scenario with fewer restrictions on interference
generation and is more practical in reality. Compared with the random matrix-based method
[122], which also targets constant interference, the proposed method works well when the
power of interference and the power of the desired signal is comparable. In contrast, the
performance of the random matrix-based method degrades drastically when the interference
power and the signal power are similar and cannot separate the user channel CSI. In summary,
the proposed CVNN-aided channel estimation method can effectively improve the channel
estimation performance under a wideband, constant, high-power interference with shorter
pilot overhead. The use of complex-valued neural networks enables better generalization
ability than state-of-the-art real-valued neural networks.
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Chapter 5

Conclusion and Future Works

In conclusion, this dissertation focuses on developing integrated signal processing for massive
MIMO systems. It overviews the state-of-the-art methods of massive MIMO signal processing
and system implementation. It also introduces the Spine DSP generator and the CVNN-aided
channel estimation method that showcase the scalability and adaptability of massive MIMO
systems and the potential of ML methods in future communication systems. The main
contributions of this dissertation include the following:

• Provides a thorough analysis of the choices and considerations involved in designing
and prototyping scalable massive MIMO systems from both algorithmic and hardware
architecture perspectives. The focus is on achieving better data aggregation, linear scal-
ing of computation complexity, cost and energy efficiency, and maintaining development
sustainability. Those can be achieved by the modular, adaptable, and reusable design
of massive MIMO systems that can fit different beamforming techniques, baseband
signal processing algorithms, and hardware component designs.

• Demonstrates the feasibility of such massive MIMO systems by designing and evaluating
an algorithm-adaptable, scalable, and platform-portable generator for massive MIMO
baseband processing systems, which can be customized for different MIMO systems and
hardware configurations. The generator is evaluated using various channel estimation
methods and hardware parameter values, demonstrating its algorithmic adaptability and
effectiveness. The results show that the generator has competitive power consumption
and can significantly improve the demodulation error vector magnitude using beamspace
methods.

• Shows the potential of the ML method for the signal processing of massive MIMO
systems by proposing and evaluating a CVNN-aided channel estimation method for
massive MIMO systems with interference. The CVNN is trained with signals containing
wideband interference, and the method is evaluated with different design and training
choices. The results show an up to 3.16 times improvement in channel estimation
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performance with shorter pilots compared to the traditional method, demonstrating
the effectiveness of the proposed method.

Although this dissertation has given comprehensive research on the design and prototyping
the massive MIMO systems with integrated signal processing and the importance of ML
in the integrated signal processing in massive MIMO systems, this dissertation can also be
extended to further research directions, including:

• System-on-chip solutions of the massive MIMO systems with the Spine generator.

• ML generators for the CVNN-aided channel estimator, and integrate to the massive
MIMO systems.

• Hardware implementations for the CVNN-aided channel estimator and integrated into
the massive MIMO systems.
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