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Abstract

Advances in Zero-Knowledge Proofs: Bridging the Gap between Theory and Practice

By

Tiancheng Xie

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Dawn Song, Chair

This dissertation presents a series of novel zero-knowledge proof (ZKP) protocols—Libra, deVirgo,
Orion, and Pianist—each achieving significant improvements in proof generation speed. Zero-
knowledge proofs are critical cryptographic tools, enabling secure and privacy-preserving trans-
actions without revealing sensitive information. However, their practical adoption is hindered by
the inefficiency of existing proof generation methods.

Our research proposes four distinct protocols, each making substantial contributions to the effi-
ciency of ZKP generation. We begin with the Libra protocol, which introduces a more efficient
proof construction method compared to state-of-the-art ZKPs at that time. Next, we present the de-
Virgo protocol, which builds upon Libra’s design and further optimizes proof generation by lever-
aging the power of parallelization.

The third protocol, Orion, takes a different approach, resulting in significant improvements in proof
generation speed. We detail the innovative design and methodology of Orion, highlighting its
unique features and performance gains.

Finally, we introduce the Pianist protocol, which employs parallel computation strategies to achieve
remarkable improvements in proof generation speed and is compatible with existing popular pro-
tocol Plonk. Pianist builds upon the foundation established by Plonk, while incorporating novel
techniques to enhance performance.

The dissertation includes a comprehensive comparative analysis of the four proposed protocols,
evaluating their scalability, security, and practicality. In conclusion, our research contributes to
the field of cryptography by providing a series of innovative ZKP protocols that significantly en-
hance proof generation speed, paving the way for more widespread adoption of privacy-preserving
technologies.
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Chapter 1

Introduction

The rapid advancement of technology has led to a growing need for secure and efficient crypto-
graphic protocols, particularly in the realm of privacy-preserving computation. Zero-knowledge
proofs (ZKPs) have emerged as a powerful cryptographic primitive, enabling one party to prove
the validity of a statement without revealing any additional information about the underlying data.
However, a major challenge in the practical deployment of ZKPs is the efficiency of proof gen-
eration, as it has a direct impact on the overall performance and scalability of privacy-preserving
applications.

This thesis focuses on the development and optimization of novel techniques to significantly
improve the proof generation speed of zero-knowledge proofs. We propose a series of innovative
protocols, divided into two parts: the first part, consisting of Libra and Orion, aims to achieve opti-
mal prover complexity, while the second part, comprising deVirgo and Pianist, focuses on enabling
distributed provers. These protocols leverage cutting-edge cryptographic techniques, advanced opti-
mizations, and novel constructions to enhance the performance and scalability of ZKPs in real-world
applications.

In the first part of this thesis, we introduce Libra, a protocol that addresses the existing limi-
tations of proof generation speed by employing an optimal GKR protocol and introducing several
optimizations. We then present Orion, which provides an optimal polynomial commitment, offer-
ing substantial performance improvements over previous protocols and combined with Libra, we
can achieve optimal prover complexity.

In the second part, we describe deVirgo, a protocol that builds upon the advancements made
by Libra and Orion, and focuses on enabling distributed provers. deVirgo further improves proof
generation speed by incorporating a novel recursive composition technique. Lastly, we introduce
Pianist, a groundbreaking protocol that leverages parallelization techniques to facilitate distributed
provers, setting a new benchmark in the field of zero-knowledge proofs.

Throughout this thesis, we provide rigorous security analysis and comprehensive performance
evaluations for each proposed protocol, demonstrating their practicality and effectiveness in various
privacy-preserving applications. By significantly improving the proof generation speed of zero-
knowledge proofs and enabling distributed provers, our work not only advances the state-of-the-
art in cryptographic research but also paves the way for more widespread adoption of privacy-



1.1. ACHIEVING OPTIMAL PROVER TIME 2

preserving technologies across diverse domains.

1.1 Achieving Optimal Prover time
Previous protocols require a prover running quasi-linear time in the statement size, and each state-
ment needs a separate trusted setup. They are both time-consuming. The first part of this thesis
focuses on the development and optimization of Libra[XZZPS19a] and Orion[XZS22], two innova-
tive zero-knowledge proof systems that aim to achieve optimal prover complexity. These protocols
build upon cutting-edge cryptographic techniques and advanced optimizations to improve the effi-
ciency of proof generation in various privacy-preserving applications. We also developed libraries
of these protocols and released codes online [Libb; Vira; Virb] for developers.

1.1.1 Libra
Libra is built upon a new linear-time algorithm for the prover of the interactive proof protocol by
Goldwasser, Kalai, and Rothblum[GKR15], also known as the GKR protocol. Additionally, Libra
employs an efficient approach to convert the GKR protocol into a zero-knowledge proof using small
masking polynomials. Notably, Libra features a one-time trusted setup that depends only on the size
of the input to the circuit and not on the circuit logic.

Not only does Libra boast excellent asymptotic performance, but it is also highly efficient in
practice. For instance, our implementation demonstrates that it takes only 200 seconds to generate a
proof for constructing a SHA2-basedMerkle tree root on 256 leaves, outperforming all existing zero-
knowledge proof systems. Both the proof size and verification time of Libra are highly competitive,
making it a significant advancement in the field of zero-knowledge proofs.

1.1.2 Orion
In this subsection, we introduce Orion, a groundbreaking zero-knowledge argument system that
achieves O(N) prover time of field operations and hash functions, and O(log2 N) proof size. Orion
stands out for its concretely efficient performance, addressing the high overhead on proof generation
time that has limited the efficiency and scalability of existing schemes with succinct proof size.

Our implementation of Orion demonstrates remarkable performance, with a prover time of 3.09
seconds and a proof size of 1.5MB for a circuit with 220 multiplication gates. Notably, the prover
time is the fastest among all existing succinct proof systems, and the proof size is an order of
magnitude smaller than a recent scheme proposed by Golovnev et al. in 2021 [GLSTW].

Orion’s efficiency improvements can be attributed to two novel techniques. Firstly, we propose a
new algorithm for testing whether a random bipartite graph is a lossless expander graph based on the
densest subgraph algorithm. This approach allows us to sample lossless expander with overwhelm-
ing probability, improving the efficiency and/or security of all existing zero-knowledge argument
schemes with linear prover time. The testing algorithm based on the densest subgraph may also be
of independent interest for other applications of expander graphs.
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Secondly, we develop an efficient proof composition scheme called code switching, which re-
duces the proof size from square root to polylogarithmic in the size of the computation. This scheme
is built on the encoding circuit of a linear code and demonstrates that the witness of a second
zero-knowledge argument is the same as the message in the linear code. The proof composition
introduces only a small overhead on the prover time, further enhancing the performance of Orion.

By combining Orion with Libra, a fully optimal prover in terms of complexity can be achieved,
significantly advancing the field of zero-knowledge proofs.

1.2 Distributed Proving
The second part of this thesis presents another line of work focused on parallelizing and distributing
zero-knowledge proof systems. In this direction, we introduce deVirgo[Xie+22], a novel protocol
that builds upon the Libra and Virgo protocols to achieve parallel and distributed proof generation.
This approach improves the scalability and efficiency of zero-knowledge proofs, expanding their
applicability in various privacy-preserving applications.

deVirgo takes advantage of the strengths of both Libra and Virgo. By parallelizing the prover
and enabling distributed proof generation, deVirgo tackles the challenges posed by large-scale
computations and high prover complexity, which have traditionally limited the practicality of zero-
knowledge proof systems.

The development of deVirgo represents a significant advancement in the field of zero-knowledge
proofs, enhancing their performance and scalability.

Another significant protocol is Pianist, a significant protocol built on the Plonk proof system,
leverages key features and optimizations such as bi-variate KZG[KZG] commitments and Lagrange-
based techniques. These innovations make the distributed proving system more scalable and effi-
cient.

The bi-variate KZG commitments with Lagrange-based techniques aim at reducing the size of
communication between machines. As a result, Pianist achieves a significantly reduced communi-
cation overhead of just several kilobytes.

1.2.1 deVirgo
In this subsection, we delve into the details of deVirgo, a distributed SNARK protocol designed
for data-parallel circuits. Data-parallel circuits, as mentioned earlier, consist of multiple identical
sub-circuits with no connections between them. This characteristic allows each sub-circuit to be
processed independently, providing an opportunity to accelerate proof generation by handling them
in parallel.

deVirgo is built upon the Virgo protocol for two main reasons: firstly, Virgo does not require a
trusted setup and is plausibly post-quantum secure; secondly, Virgo is among the fastest protocols
with succinct verification time and proof size for large-scale problems. deVirgo extends Virgo to
handle data-parallel arithmetic circuits, achieving optimal scalability without any overhead on proof
size. The protocol is specifically designed to process data-parallel circuits with N copies using N
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parallel machines, resulting in N times faster performance than the original Virgo while maintaining
the same proof size.

The deVirgo protocol operates with a master node and several ordinary nodes, with the master
node responsible for aggregating messages and proofs from distributed machines. This setup elim-
inates the need for a linear increase in proof size, which would occur if each sub-circuit generated
its proof separately. The protocol is composed of two primary building blocks: the GKR protocol
and the polynomial commitment (PC) scheme.

The GKR protocol consists of d sumcheck protocols for a circuit of depth d, and in the dis-
tributed sumcheck protocol of deVirgo, the master node aggregates messages from all machines
in every round. This approach maintains the same proof size as the original sumcheck protocol,
saving a factor N over the naive distributed protocol.

In the distributed PC protocol, the commitment phase is optimized, allowing the master node to
aggregate N commitments into one, rather than sending N commitments directly to the verifier. Dur-
ing the opening phase, the proof can also be aggregated, improving the proof size by a logarithmic
factor in the size of the polynomial.

By combining these techniques, deVirgo offers a powerful and efficient solution for processing
data-parallel circuits, paving the way for more scalable and practical zero-knowledge proof systems.

1.2.2 Pianist
In this subsection, we introduce Pianist, a fully distributed zero-knowledge proof (ZKP) system de-
signed to enhance the scalability of blockchain technologies such as zkRollups and zkEVM. One of
the primary challenges in deploying blockchains is the limited throughput of transactions. Pianist
addresses this issue by distributing the ZKP generation process across multiple machines, signifi-
cantly reducing the burden on individual machines and improving overall efficiency.

Pianist is built upon Plonk, a highly efficient ZKP system with a universal trusted setup. The
proposed distributed ZKP scheme enables proof generation to be distributed across multiple par-
ticipants in a mining pool-like model. Pianist’s first protocol is tailored for data-parallel circuits,
offering a prover time complexity of O(T log T + M log M) per machine when using M machines
to process M sub-circuits of size T each. This is in contrast to the O(MT log MT ) prover time
complexity of the original Plonk on a single machine.

The protocol ensures minimal communication among machines, with O(1) communication per
machine. The proof size and verifier time complexity are also O(1), which is the same as the orig-
inal Plonk. Furthermore, Pianist’s second protocol, with minor modifications, can support general
circuits with arbitrary connections while maintaining the same proving, verifying, and communica-
tion complexities.

The Pianist system, when implemented, can generate a proof for 8,192 transactions in just 313
seconds using 64 machines. This represents a 64x improvement in scalability compared to the
original Plonk scheme. The communication per machine is a mere 2.1 KB, independent of the
number of machines and circuit size. The proof size is 2.2 KB, and the verifier time is 3.5 ms.
Pianist also shows similar improvements for general circuits; for example, it takes only 5 seconds to
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generate a proof for a randomly generated circuit with 225 gates using 32 machines, which is 24.2
times faster than Plonk on a single machine.

By leveraging Pianist’s distributed ZKP schemes, blockchain technologies can achieve higher
scalability and efficiency, enabling broader adoption in various applications.

1.2.3 Cross-chain bridges for blockchains
In this subsection, we introduce zkBridge, a highly efficient and secure cross-chain bridge designed
for the increasingly diverse blockchain ecosystem. As various blockchains coexist, cross-chain
communication becomes a crucial building block, and zkBridge aims to address this need.

Existing cross-chain bridge solutions often face performance issues or rely on trust assumptions,
which can result in compromised security. With over 1.5 billion USD lost in attacks against bridges,
there is a pressing need for amore secure solution. zkBridge addresses this issue by providing strong
security without external trust assumptions and using succinct proofs to guarantee correctness while
reducing on-chain verification costs.

zkBridge takes advantage of the distributed proof systems deVirgo (or use the alternative Pi-
anist), which offer significant performance improvements over existing solutions. By utilizing these
proof systems, zkBridge can achieve dramatically faster proof generation speed, enabling secure and
efficient cross-chain communication.

Moreover, the modular design of zkBridge allows it to support a wide range of use cases and
capabilities, such as message passing, token transferring, and computational logic operating on
state changes across different chains. To demonstrate the practicality of zkBridge, a prototype
bridge from Cosmos to Ethereum was implemented, showcasing its ability to handle large proof
circuits that other systems cannot efficiently manage. The evaluation of this prototype revealed that
zkBridge achieves practical performance, with proof generation taking less than 20 seconds and on-
chain verification costing less than 230K gas. Additionally, the implementation and evaluation of
the direction from Ethereum to other EVM-compatible chains, like BSC, further proved zkBridge’s
versatility and efficiency.

Overall, zkBridge serves as an innovative and highly effective solution for cross-chain com-
munication in the multi-chain ecosystem, leveraging the power of distributed proof systems like
deVirgo to ensure secure, scalable, and efficient performance.
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Chapter 2

Libra: Succinct Zero-Knowledge Proofs
with Optimal Prover Computation

We present Libra, the first zero-knowledge proof system that has both optimal prover time and
succinct proof size/verification time. In particular, if C is the size of the circuit being proved (i)
the prover time is O(C) irrespective of the circuit type; (ii) the proof size and verification time are
both O(d log C) for d-depth log-space uniform circuits (such as RAM programs). In addition Libra
features an one-time trusted setup that depends only on the size of the input to the circuit and not
on the circuit logic. Underlying Libra is a new linear-time algorithm for the prover of the interactive
proof protocol by Goldwasser, Kalai and Rothblum (also known as GKR protocol), as well as an
efficient approach to turn the GKR protocol to zero-knowledge using small masking polynomials.
Not only does Libra have excellent asymptotics, but it is also efficient in practice. For example, our
implementation shows that it takes 200 seconds to generate a proof for constructing a SHA2-based
Merkle tree root on 256 leaves, outperforming all existing zero-knowledge proof systems. Proof
size and verification time of Libra are also competitive.

This work was previously published in [XZZPS19b].
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2.1 Introduction
Zero-knowledge proofs (ZKP) are cryptographic protocols between two parties, a prover and a ver-
ifier, in which the prover can convince the verifier about the validity of a statement without leaking
any extra information beyond the fact that the statement is true. Since they were first introduced
by Goldwasser et al. [GMR89], ZKP protocols have evolved from pure theoretical constructs to
practical implementations, achieving proof sizes of just hundreds of bytes and verification times of
several milliseconds, regardless of the size of the statement being proved. Due to this successful
transition to practice, ZKP protocols have found numerous applications not only in the traditional
computation delegation setting but most importantly in providing privacy of transactions in de-
ployed cryptocurrencies (e.g., Zcash [Ben+14]) as well as in other blockchain research projects
(e.g., Hawk [KMSWP]).

Despite such progress in practical implementations, ZKP protocols are still notoriously hard to
scale for large statements, due to a particularly high overhead on generating the proof. For most sys-
tems, this is primarily because the prover has to perform a large number of cryptographic operations,
such as exponentiation in an elliptic curve group. And to make things worse the asymptotic com-
plexity of computing the proof is typically more than linear, e.g., O(C log C) or even O(C log2 C),
where C is the size of the statement.

Unfortunately, as of today we are yet to construct a ZKP system whose prover time is optimal,
i.e., linear in the size of the statement C (this is irrespective of whether the ZKP system has per-
statement trusted setup, one-time trusted setup or no trusted setup at all). The only notable exception
is the recent work by Bünz et al. [BBBPWM18] that however suffers from linear verification time—
for a detailed comparison see Table 2.1. Therefore designing ZKP systems that enjoy linear prover
time as well as succinct¹ proof size and verification time is an open problem, whose resolution can
have significant practical implications.
Our contributions. In this paper we propose Libra, the first ZKP protocol with linear prover time
and succinct proof size and verification time in the size of the arithmetic circuit representing the
statement C, when the circuit is log-space uniform. Libra is based on the doubly efficient interactive
proof protocol proposed by Goldwasser et al. in [GKR15] (referred as GKR protocol in this paper),
and the verifiable polynomial delegation scheme proposed by Zhang et al. in [ZGKPP17c]. As such
it comes with one-time trusted setup (and not per-statement trusted setup) that depends only on the
size of the input (witness) to the statement that is being proved. Not only does Libra have excellent
asymptotic performance but also its prover outperforms in practice all other ZKP systems while ver-
ification time and proof size are also very competitive—see Table 2.1. Our concrete contributions
are:

• GKR with linear prover time. Libra features a new linear-time algorithm to generate a GKR
proof. Our new algorithm does not require any pattern in the circuit and our result subsumes
all existing improvements on the GKR prover assuming special circuit structures, such as regular
circuits in [Tha13a], data-parallel circuits in [Tha13a; Wah+17], circuits with different sub-copies
in [ZGKPP18]. See related work for more details.
¹In ZKP literature, “succinct” is poly-logarithmic in the size of the statement C.
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• Adding zero-knowledge. We propose an approach to turn Libra into zero-knowledge efficiently.
In particular, we show a way to mask the responses of our linear-time prover with small random
polynomials such that the zero-knowledge variant of the protocol introduces minimal overhead
on the verification time compared to the original (unmasked) construction.

• Implementation and evaluation. We implement Libra. Our implementation takes an arithmetic
circuit with various types of gates (fan-in 2 and degree ≤ 2, such as +,−,×, AND, XOR, etc.)
and compiles it into a ZKP protocol. We conduct thorough comparisons to all existing ZKP
systems (see Section 2.1.1). We plan to release our system as an open-source implementation.

2.1.1 Comparing to other ZKP Systems
Table 2.1 shows a detailed comparison between Libra and existing ZKP systems. First of all, Libra is
the best among all existing systems in terms of practical prover time. In terms of asymptotics, Libra
is the only system with linear prover time and succinct verification and proof size for log-space uni-
form circuits. The only other system with linear prover time is Bulletproofs [BBBPWM18] whose
verification time is linear, even for log-space uniform circuits. In the practical front, Bulletproofs
prover time and verification time are high, due to the large number of cryptographic operations
required for every gate of the circuit.

The proof and verification of Libra are also competitive to other systems. In asymptotic terms,
our proof size is only larger than libSNARK [BSCTV14c] and Bulletproofs [BBBPWM18], and
our verification is slower than libSNARK [BSCTV14c] and libSTARK [BSBHR19]. Compared to
Hyrax [WTSTW18], which is also based on similar techniques with our work, Libra improves the
performance in all aspects (yet Hyrax does not have any trusted setup). One can refer to Section 2.5
for a detailed description of our experimental setting as well as a more detailed comparison.

Finally, among all systems, libSNARK [BSCTV14c] requires a trusted setup for every statement,
and Libra requires an one-time trusted setup that depends on the input size. See Section 2.5.3 for a
discussion on removing trusted setup in Libra.
Log-space uniform circuits. Though the prover time in Libra is optimal for all circuits, the ver-
ification time is succinct only when the circuit is structured (log-space uniform with logarithmic
depth). This is the best that can be achieved for all ZKP protocols without per-circuit setup, as
the verifier must read the entire circuit, which takes linear time in the worst case. We always refer
to log-space uniform circuits when we say our scheme is succinct in this paper, to differentiate
from schemes with linear verification time on all circuits (irrespective of whether the circuits are
log-space uniform or not). Schemes such as libSTARK [BSBHR19], zkVSQL [ZGKPP17a] and
Hyrax [WTSTW18] also have such property.

In practice, with the help of auxiliary input and circuit squashing, most computations can be
expressed as log-space uniform circuits with low depth, such as matrix multiplication, image scal-
ing and Merkle hash tree in Section 2.5. Asymptotically, as shown in [BSCTV14c; ZGKPP18;
BSBHR19], all random memory access (RAM) programs can be validated by circuits that are log-
space uniform with log-depth in the running time of the programs (but linear in the size of the
programs) by RAM-to-circuit reduction, which justifies the expressiveness of such circuits.
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Table 2.1: Comparison of Libra to existing ZKP systems, where (G,P,V, |π|) denote the trusted setup
algorithm, the prover algorithm, the verification algorithm and the proof size respectively. Also, C is
the size of the log-space uniform circuit with depth d, and n is the size of its input. The numbers are
for a circuit computing the root of a Merkle tree with 256 leaves (511 instances of SHA256).²

libSNARK Ligero Hyrax libSTARK Aurora Libra
[BSCTV14c] [AHIV17] [WTSTW18] [BSBHR19] [BSCRSVW19]

O(C) O(n)
G per-statement no trusted setup one-time

trusted setup trusted setup
P O(C log C) O(C log C) O(C log C) O(C log2

C) O(C log C) O(C)
V O(1) O(C) O(

√
n + d log C) O(log2

C) O(C) O(d log C)
|π| O(1) O(

√
C) O(

√
n + d log C) O(log2

C) O(log2
C) O(d log C)

G 1027s NA 210s
P 360s 400s 1,041s 2,022s 3199s 201s
V 0.002s 4s 9.9s 0.044s 15.2s 0.71s
|π| 0.13KB 1,500KB 185KB 395KB 174.3KB 51KB

2.1.2 Our Techniques
Our main technical contributions are a GKR protocol with linear prover time and an efficient ap-
proach to turn the GKR protocol into zero-knowledge. We summarize the key ideas behind these
two contributions. The detailed protocols are presented in Section 2.3 and 2.4 respectively.
GKR with linear prover. Goldwasser et al. [GKR15] showed an approach to model the evaluation
of a layered circuit as a sequence of summations on polynomials defined by values in consecutive
layers of the circuit. Using the famous sumcheck protocol (see Section 2.2.3.1), they developed a
protocol (the GKR protocol) allowing the verifier to validate the circuit evaluation in logarithmic
time with a logarithmic size proof. However, the polynomials in the protocol are multivariate with
2s variables, where S is the number of gates in one layer of the circuit and s = log S. Naively
running the sumcheck protocol on these polynomials incurs S2 prover time, as there are at least
22s = S2 monomials in a 2s-variate polynomial. Later, Cormode et al. [CMT12] observed that
these polynomials are sparse, containing only S nonzero monomials and improved the prover time
to S log S.

In our new approach, we divide the protocol into two separate sumchecks. In each sumcheck, the
polynomial only contains s variables, and can be expressed as the product of two multilinear poly-
nomials. Utilizing the sparsity of the circuit, we develop new algorithms to scan through each gate
of the circuit and compute the closed-form of all these multilinear polynomials explicitly, which
takes O(S) time. With this new way of representation, the prover can deploy a dynamic program-

¹STARK is in the RAM model. To compare the performance, we convert a circuit of size C to a RAM program
with T = Θ(C) steps.
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ming technique to generate the proofs in each sumcheck in O(S) time, resulting in a total prover
time of O(S).
Efficient zero-knowledge GKR. The original GKR protocol is not zero-knowledge, since the mes-
sages in the proof can be viewed as weighed sums of the values in the circuit and leak information.
In [ZGKPP17a; WTSTW18], the authors proposed to turn the GKR protocol into zero-knowledge
by hiding the messages in homomorphic commitments, which incurs a big overhead in the verifi-
cation time. In [CFS17], Chiesa et al. proposed an alternative approach by masking the protocol
with random polynomials. However, the masking polynomials are as big as the original ones and
the prover time becomes exponential, making the approach mainly of theoretical interest.

In our scheme, we first show that in order to make the sumcheck protocol zero-knowledge, the
prover can mask it with a “small” polynomial. In particular, the masking polynomial only contains
logarithmically many random coefficients. The intuition is that though the original polynomial
has O(2ℓ) or more terms (ℓ is the number of variables in the polynomial), the prover only sends
O(ℓ) messages in the sumcheck protocol. Therefore, it suffices to mask the original polynomial
with a random one with O(ℓ) coefficients to achieve zero-knowledge. In particular, we set the
masking polynomial as the sum of ℓ univariate random polynomials with the same variable-degree.
In Section 2.4.1, we show that the entropy of this mask exactly counters the leakage of the sumcheck,
proving that it is sufficient and optimal.

Besides the sumcheck, the GKR protocol additionally leaks two evaluations of the polynomial
defined by values in each layer of the circuit. To make these evaluations zero-knowledge, we mask
the polynomial by a special low-degree random polynomial. In particular, we show that after the
mask, the verifier in total learns 4 messages related to the evaluations of the masking polynomial
and we can prove zero-knowledge by making these messages linearly independent. Therefore, the
masking polynomial is of constant size: it consists of 2 variables with variable degree 2.

2.1.3 Related Work
In recent years there has been significant progress in efficient ZKP protocols and systems. In this
section, we discuss related work in this area, with the focus on those with sublinear proofs.
QAP-based. Following earlier work of Ishai [IKO], Groth [Gro10] and Lipmaa [Lip12], Gennaro
et al. [GGPR13] introduced quadratic arithmetic programs (QAPs), which forms the basis of most
recent implementations [PHGR13; BSCGTV13; BFRSBW13; BSCTV14a; Cos+15; WSRBW15;
FFGKOP16] including libSNARK [BSCTV14c]. The proof size in these systems is constant, and the
verification time depends only on the input size. Both these properties are particularly appealing and
have led to real-world deployments, e.g., ZCash [Ben+14]. One of the main bottlenecks, however,
of QAP-based systems is the high overhead in the prover running time and memory consumption,
making it hard to scale to large statements. In addition, a separate trusted setup for every different
statement is required.
IOPs. Based on “(MPC)-in-the-head” introduced in [IKOS07; GMO16; Cha+17], [AHIV17] pro-
posed a ZKP scheme called Ligero. It only uses symmetric key operations and the prover time is fast
in practice. However, it generates proofs of size O(

√
C), which is several megabytes in practice for
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moderate-size circuits. In addition, the verification time is quasi-linear to the size of the circuit. It
is categorized as interactive PCP, which is a special case of interactive oracle proofs (IOPs). IOP
generalizes the probabilistically checkable proofs (PCPs) where earlier works of Kilian [Kil92] and
Micali [Mic00] are built on. In the IOP model, Ben-Sasson et al. built libstark [BSBHR19], a
zero-knowledge transparent argument of knowledge (zkSTARK).libstark does not rely on trusted
setup and executes in the RAM model of computation. Their verification time is only linear to
the description of the RAM program, and succinct (logarithmic) in the time required for program
execution. Recently, Ben-Sasson et al. [BSCRSVW19] proposed Aurora, a new ZKP system in the
IOP model with the proof size of O(log2 C).
Discrete log. Before Bulletproof [BBBPWM18], earlier discrete-log based ZKP schemes include
the work of Groth [Gro09], Bayer and Groth [BG12] and Bootle et al. [BCCGP16]. The proof size
of these schemes are larger than Bulletproof either asymptotically or concretely.
Hash-based. Bootle et al. [BCGGHJ17] proposed a ZKP scheme with linear prover time and
verification time. The verification only requires O(C) field additions. However, the proof size is
O(
√

C) and the constants are large as mentioned in the paper [BCGGHJ17].
Interactive proofs. The line of work that relates to our paper the most is based on interactive
proofs [GMR89]. In the seminal work of [GKR15], Goldwasser et al. proposed an efficient inter-
active proof for layered arithmetic circuits. Later, Cormode et al. [CMT12] improved the prover
complexity of the interactive proof in [GKR15] to O(C log C) using multilinear extensions instead
of low degree extensions. Several follow-up works further reduce the prover time assuming special
structures of the circuit. For regular circuits where the wiring pattern can be described in constant
space and time, Thaler [Tha13a] introduced a protocol with O(C) prover time; for data parallel
circuits with many copies of small circuits with size C ′, a O(C log C ′) protocol is presented in the
same work, later improved to O(C +C ′ log C) byWahby et al. in [Wah+17]; for circuits with many
non-connected but different copies, Zhang et al. showed a protocol with O(C log C ′) prover time.

In [ZGKPP17c], Zhang et al. extended the GKR protocol to an argument system using a proto-
col for verifiable polynomial delegation. Zhang et al. [ZGKPP18] and Wahby et al. [WTSTW18]
make the argument system zero-knowledge by putting all the messages in the proof into homo-
morphic commitments, as proposed by Cramer and Damgard in [CD98]. This approach intro-
duces a high overhead on the verification time compared to the plain argument system without
zero-knowledge, as each addition becomes a multiplication and each multiplication becomes an ex-
ponentiation in the homomorphic commitments. The multiplicative overhead is around two orders
of magnitude in practice. Additionally, the scheme of [WTSTW18], Hyrax, removes the trusted
setup of the argument system by introducing a new polynomial delegation, increasing the proof
size and verification time to O(

√
n) where n is the input size of the circuit.

Lattice-based. Recently Baum et al. [BBCDPGL18] proposed the first lattice-based ZKP system
with sub-linear proof size. The proof size is O(

√
C log3 C), and the practical performance is to be

explored.
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2.2 Preliminaries
2.2.1 Notation
In this paper, we useλ to denote the security parameter, and negl(λ) to denote the negligible function
in λ. “PPT” stands for probabilistic polynomial time. We use f(), h() for polynomials, x, y, z for
vectors of variables and g, u, v for vectors of values. xi denotes the i-th variable in x. We use bold
letters such as A to represent arrays. For a multivariate polynomial f , its ”variable-degree” is the
maximum degree of f in any of its variables.
Bilinear pairings. Let G,GT be two groups of prime order p and let g ∈ G be a generator. e :
G × G → GT denotes a bilinear map and we use bp = (p,G,GT , e, g) ← BilGen(1λ) for the
generation of parameters for the bilinear map. Our scheme relies on the q-Strong Bilinear Diffie-
Hellman (q-SBDH) assumption and an extended version of the Power Knowledge of Exponent
(PKE) assumption.

Assumption 1 (q-Strong Bilinear Diffie-Hellman). For any PPT adversaryA, the following holds:

Pr


bp← BilGen(1λ)

s
R← Z∗

p : (x, e(g, g)
1

s+x )← A(1λ, σ)

σ = (bp, gs, ..., gs
q

)

 ≤ negl(λ)

The second assumption is a generalization of the q-PKE assumption [Gro10] to multivariate
polynomials, proposed in [ZGKPP17c; ZGKPP17a]. LetWℓ,d be the set of all multisets of {1, ..., ℓ}
with the cardinality of each element being at most d.

Assumption 2 ((d, ℓ)-Extended Power Knowledge of Exponent). For any PPT adversary A, there
is a polynomial time algorithm E (takes the same randomness ofA as input) such that for all benign
auxiliary inputs z ∈ {0, 1}poly(λ) the following probability is negligible:

Pr



bp← BilGen(1λ)

s1, ..., sℓ, sℓ+1, α
R← Z∗

p , s0 = 1

σ1 = ({g
∏

i∈W
si}W ∈Wℓ,d,g

sℓ+1 ) e(h, gα) = e(h̃, g)

σ2 = ({gα
∏

i∈W si}W ∈Wℓ,d
, gαsℓ+1) :

∏
W ∈Wℓ,d

gaW

∏
i∈W

sigbsℓ+1 ̸= h

σ = (bp, σ1, σ2, gα)
G×G ∋ (h, h̃)← A

(
1λ, σ, z

)
(

a0, . . . , a|Wℓ,d|, b
)
← E

(
1λ, σ, z

)



≤ negl(λ)
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2.2.2 Interactive Proofs and Zero-knowledge Arguments
Interactive proofs. An interactive proof allows a prover P to convince a verifier V the validity of
some statement. The interactive proof runs in several rounds, allowing V to ask questions in each
round based on P’s answers of previous rounds. We phrase this in terms of P trying to convince
V that f(x) = 1. The proof system is interesting only when the running time of V is less than the
time of directly computing the function f . We formalize interactive proofs in the following:

Definition 2.2.1. Let f be a Boolean function. A pair of interactive machines ⟨P ,V⟩ is an interac-
tive proof for f with soundness ϵ if the following holds:

• Completeness. For every x such that f(x) = 1 it holds that Pr[⟨P ,V⟩(x) = accept] = 1.

• ϵ-Soundness. For any x with f(x) ̸= 1 and any P∗ it holds that Pr[⟨P∗,V⟩ = accept] ≤ ϵ

Zero-knowledge arguments. An argument system for an NP relationship R is a protocol between
a computationally-bounded prover P and a verifier V . At the end of the protocol, V is convinced by
P that there exists a witness w such that (x; w) ∈ R for some input x. We focus on arguments of
knowledge which have the stronger property that if the prover convinces the verifier of the statement
validity, then the prover must know w. We use G to represent the generation phase of the public
key pk and the verification key vk. Formally, consider the definition below, where we assume R is
known to P and V .

Definition 2.2.2. Let R be an NP relation. A tuple of algorithm (G,P ,V) is a zero-knowledge
argument of knowledge for R if the following holds.

• Correctness. For every (pk, vk) output by G(1λ) and (x, w) ∈ R,

⟨P(pk, w),V(vk)⟩(x) = accept

• Soundness. For any PPT proverP , there exists a PPT extractor ε such that for every (pk, vk)
output by G(1λ) and any x, it holds that

Pr[⟨P(pk),V(vk)⟩(x) = accept ∧ (x, w) /∈ R|w ← ε(pk, x)] ≤ negl(λ)

• Zero knowledge. There exists a PPT simulator S such that for any PPT adversary A, auxil-
iary input z ∈ {0, 1}poly(λ), (x; w) ∈ R, it holds that
Pr
[
⟨P(pk, w),A⟩ = accept : (pk, vk)← G(1λ); (x, w)← A(z, pk, vk)

]
=

Pr
[
⟨S(trap, z, pk),A⟩ = accept : (pk, vk, trap)← S(1λ); (x, w)← A(z, pk, vk)

]

We say that (G,P ,V) is a succinct argument system if the running time of V and the total commu-
nication between P and V (proof size) are poly(λ, |x|, log |w|).
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Protocol 1 (Sumcheck). The protocol proceeds in ℓ rounds.

• In the first round, P sends a univariate polynomial

f1(x1)
def=

∑
b2,...,bℓ∈{0,1}

f(x1, b2, . . . , bℓ) ,

V checks H = f1(0) + f1(1). Then V sends a random challenge r1 ∈ F to P .

• In the i-th round, where 2 ≤ i ≤ l − 1, P sends a univariate polynomial

fi(xi)
def=

∑
bi+1,...,bℓ∈{0,1}

f(r1, . . . , ri−1, xi, bi+1, . . . , bℓ) ,

V checks fi−1(ri−1) = fi(0) + fi(1), and sends a random challenge ri ∈ F to P .

• In the ℓ-th round, P sends a univariate polynomial

fℓ(xℓ)
def= f(r1, r2, . . . , rl−1, xℓ) ,

V checks fℓ−1(rℓ−1) = fℓ(0) + fℓ(1). The verifier generates a random challenge rℓ ∈
F. Given oracle access to an evaluation f(r1, r2, . . . , rℓ) of f , V will accept if and only if
fℓ(rℓ) = f(r1, r2, . . . , rℓ). The instantiation of the oracle access depends on the application
of the sumcheck protocol.

2.2.3 GKR Protocol
In [GKR15], Goldwasser et al. proposed an efficient interactive proof protocol for layered arith-
metic circuits, which we use as a building block for our new zero-knowledge argument and is re-
ferred as the GKR protocol. We present the detailed protocol here.

2.2.3.1 Sumcheck Protocol.

The sumcheck problem is a fundamental problem that has various applications. The problem is to
sum a polynomial f : Fℓ → F on the binary hypercube∑

b1,b2,...,bℓ∈{0,1}
f(b1, b2, ..., bℓ).

Directly computing the sum requires exponential time in ℓ, as there are 2ℓ combinations of b1, . . . , bℓ.
Lund et al. [LFKN92] proposed a sumcheck protocol that allows a verifier V to delegate the com-
putation to a computationally unbounded prover P , who can convince V that H is the correct sum.
We provide a description of the sumcheck protocol in Protocol 1. The proof size of the sumcheck
protocol is O(dℓ), where d is the variable-degree of f , as in each round, P sends a univariate poly-
nomial of one variable in f , which can be uniquely defined by d + 1 points. The verifier time of the



2.2. PRELIMINARIES 15

protocol is O(dℓ). The prover time depends on the degree and the sparsity of f , and we will give
the complexity later in our scheme. The sumcheck protocol is complete and sound with ϵ = dℓ

|F| .

2.2.3.2 GKR protocol

Using the sumcheck protocol as a building block, Goldwasser et al. [GKR15] showed an interactive
proof protocol for layered arithmetic circuits.

Definition 2.2.3 (Multi-linear Extension). Let V : {0, 1}ℓ → F be a function. The multilinear
extension of V is the unique polynomial Ṽ : Fl → F such that Ṽ (x1, x2, ..., xl) = V (x1, x2, ..., xl)
for all x1, x2, . . . , xl ∈ {0, 1}l.

Ṽ can be expressed as:

Ṽ (x1, x2, ..., xl) =
∑

b∈{0,1}ℓ

∏l

i=1
[((1− xi)(1− bi) + xibi) · V (b)]

where bi is i-th bit of b.

Multilinear extensions of arrays. Inspired by the close form equation of the multilinear extension
given above, we can view an array A = (a0, a1, . . . , an−1) as a function A : {0, 1}log n → F such
that ∀i ∈ [0, n− 1], A(i) = ai. Therefore, in this paper, we abuse the use of multilinear extension
on an array as the multilinear extension Ã of A.
High Level Ideas. Let C be a layered arithmetic circuit with depth d over a finite field F. Each gate
in the i-th layer takes inputs from two gates in the (i + 1)-th layer; layer 0 is the output layer and
layer d is the input layer. The protocol proceeds layer by layer. Upon receiving the claimed output
from P , in the first round, V and P run the sumcheck protocol to reduce the claim about the output
to a claim about the values in the layer above. In the i-th round, both parties reduce a claim about
layer i− 1 to a claim about layer i through the sumcheck protocol. Finally, the protocol terminates
with a claim about the input layer d, which can be checked directly by V , or is given as an oracle
access. If the check passes, V accepts the claimed output.
Notation. Before describing the GKR protocol, we introduce some additional notations. We denote
the number of gates in the i-th layer as Si and let si = ⌈log Si⌉. (For simplicity, we assume Si is
a power of 2, and we can pad the layer with dummy gates otherwise.) We then define a function
Vi : {0, 1}si → F that takes a binary string b ∈ {0, 1}si and returns the output of gate b in layer
i, where b is called the gate label. With this definition, V0 corresponds to the output of the circuit,
and Vd corresponds to the input layer. Finally, we define two additional functions addi, multi :
{0, 1}si−1+2si → {0, 1}, referred as wiring predicates in the literature. addi (multi) takes one gate
label z ∈ {0, 1}si−1 in layer i− 1 and two gate labels x, y ∈ {0, 1}si in layer i, and outputs 1 if and
only if gate z is an addition (multiplication) gate that takes the output of gate x, y as input. With
these definitions, Vi can be written as follows:

Vi(z) =
∑

x,y∈{0,1}si+1

(addi+1(z, x, y)(Vi+1(x) + Vi+1(y))

+multi+1(z, x, y)(Vi+1(x)Vi+1(y)))
(2.1)
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for any z ∈ {0, 1}si .
In the equation above, Vi is expressed as a summation, so V can use the sumcheck protocol to

check that it is computed correctly. As the sumcheck protocol operates on polynomials defined on
F, we rewrite the equation with their multilinear extensions:

Ṽi(g) =
∑

x,y∈{0,1}si+1 fi(x, y)

=
∑

x,y∈{0,1}si+1 ( ˜addi+1(g, x, y)(Ṽi+1(x) + Ṽi+1(y))

+ ˜multi+1(g, x, y)(Ṽi+1(x)Ṽi+1(y))) , (2.2)

where g ∈ Fsi is a random vector.
Protocol. With Equation 2.2, the GKR protocol proceeds as follows. The prover P first sends
the claimed output of the circuit to V . From the claimed output, V defines polynomial Ṽ0 and
computes Ṽ0(g) for a random g ∈ Fs0 . V and P then invoke a sumcheck protocol on Equation 2.2
with i = 0. As described in Section 2.2.3.1, at the end of the sumcheck, V needs an oracle access to
fi(u, v), where u, v are randomly selected in Fsi+1 . To compute fi(u, v), V computes ˜addi+1(u, v)
and ˜multi+1(u, v) locally (they only depend on the wiring pattern of the circuit, but not on the
values), asks P to send Ṽ1(u) and Ṽ1(v) and computes fi(u, v) to complete the sumcheck protocol.
In this way, V and P reduces a claim about the output to two claims about values in layer 1. V and
P could invoke two sumcheck protocols on Ṽ1(u) and Ṽ1(v) recursively to layers above, but the
number of claims and the sumcheck protocols would increase exponentially in d.
Combining two claims: condensing to one claim. In [GKR15], Goldwasser et al. presented a
protocol to reduce two claims Ṽi(u) and Ṽi(v) to one as following. V defines a line γ : F→ Fsi such
that γ(0) = u, γ(1) = v. V sends γ(x) to P . Then P sends V a degree si univariate polynomial
h(x) = Ṽi(γ(x)). V checks that h(0) = Ṽi(u), h(1) = Ṽi(v). Then V randomly chooses r ∈ F and
computes a new claim h(r) = Ṽi(γ(r)) = Ṽi(w) on w = γ(r) ∈ Fsi . V sends r, w to P . In this
way, the two claims are reduced to one claim Ṽi(w). Combining this protocol with the sumcheck
protocol on Equation 2.2, V and P can reduce a claim on layer i to one claim on layer i + 1, and
eventually to a claim on the input, which completes the GKR protocol.
Combining two claims: random linear combination. In [CFS17], Chiesa et al. proposed an
alternative approach using random linear combinations. Upon receiving the two claims Ṽi(u) and
Ṽi(v), V selects αi, βi ∈ F randomly and computes αiṼi(u) + βiṼi(v). Based on Equation 2.2, this
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random linear combination can be written as

αiṼi(u) + βiṼi(v)
=αi

∑
x,y∈{0,1}si+1

( ˜addi+1(u, x, y)(Ṽi+1(x) + Ṽi+1(y)) + ˜multi+1(u, x, y)(Ṽi+1(x)Ṽi+1(y)))

+βi

∑
x,y∈{0,1}si+1

( ˜addi+1(v, x, y)(Ṽi+1(x) + Ṽi+1(y)) + ˜multi+1(v, x, y)(Ṽi+1(x)Ṽi+1(y)))

=
∑

x,y∈{0,1}si+1

((αi
˜addi+1(u, x, y) + βi

˜addi+1(v, x, y))(Ṽi+1(x) + Ṽi+1(y))

+ (αi
˜multi+1(u, x, y) + βi

˜multi+1(v, x, y))(Ṽi+1(x)Ṽi+1(y))) (2.3)

V and P then execute the sumcheck protocol on Equation 2.3 instead of Equation 2.2. At the end
of the sumcheck protocol, V still receives two claims about Ṽi+1, computes their random linear
combination and proceeds to an layer above recursively until the input layer.

In our new ZKP scheme, we will mainly use the second approach. The full GKR protocol using
random linear combinations is given in Protocol 2.

Theorem 2.2.4. [VSBW13][Tha13a][CMT12][GKR15]. Let C : Fn → Fk be a depth-d layered
arithmetic circuit. Protocol 2 is an interactive proof for the function computed by C with soundness
O(d log |C|/|F|). It uses O(d log |C|) rounds of interaction and running time of the prover P is
O(|C| log |C|). Let the optimal computation time for all ˜addi and ˜multi be T , the running time of
V is O(n + k + d log |C|+ T ). For log-space uniform circuits it is T = polylog |C|.
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Protocol 2. Let F be a prime field. Let C: Fn → Fk be a d-depth layered arithmetic circuit. P wants to
convince that out = C(in) where in is the input from V , and out is the output. Without loss of generality,
assume n and k are both powers of 2 and we can pad them if not.

• Define the multilinear extension of array out as Ṽ0. V chooses a random g ∈ Fs0 and sends it to P .
Both parties compute Ṽ0(g).

• P and V run a sumcheck protocol on

Ṽ0(g(0)) =
∑

x,y∈{0,1}s1

˜mult1(g(0), x, y)(Ṽ1(x)Ṽ1(y)) + ˜add1(g(0), x, y)(Ṽ1(x) + Ṽ1(y))

At the end of the protocol, V receives Ṽ1(u(1)) and Ṽ1(v(1)). V computes ˜mult1(g(0), u(1), v(1)),
˜add1(g(0), u(1), v(1)) and checks that ˜mult1(g(0), u(1), v(1))Ṽ1(u(1))Ṽ1(v(1)) +
˜add1(g(0), u(1), v(1))(Ṽ1(u(1)) + Ṽ1(v(1))) equals to the last message of the sumcheck.

• For i = 1, ..., d− 1:

– V randomly selects α(i), β(i) ∈ F and sends them to P .
– P and V run the sumcheck on the equation

α(i)V̇i(u
(i)) + β(i)V̇i(v

(i)) =∑
x,y∈{0,1}si+1

((α(i) ˜multi+1(u(i), x, y) + β(i) ˜multi+1(v(i), x, y))(Ṽi+1(x)Ṽi+1(y))

+(α(i) ˜addi+1(u(i), x, y) + β(i) ˜addi+1(v(i), x, y))(Ṽi+1(x) + Ṽi+1(y))

– At the end of the sumcheck protocol, P sends V Ṽi+1(u(i+1)) and Ṽi+1(v(i+1)).

– V computes the right hand side of the above equation by replacing x and y by u(i+1) and
v(i+1) respectively, and checks if it equals to the last message of the sumcheck. If all checks
in the sumcheck pass, V uses Ṽi+1(u(i+1)) and Ṽi+1(v(i+1)) to proceed to the (i + 1)-th layer.
Otherwise, V outputs reject and aborts.

• At the input layer d, V has two claims Ṽd(u(d)) and Ṽd(v(d)). V queries the oracle of evaluations
of Ṽd at u(d) and v(d) and checks that they are the same as the two claims. If yes, output accept;
otherwise, output reject.

2.2.4 Zero-Knowledge Verifiable Polynomial Delegation Scheme
Let F be a finite field, F be a family of ℓ-variate polynomial over F, and d be a variable-degree parameter.
A zero-knowledge verifiable polynomial delegation scheme (zkVPD) for f ∈ F and t ∈ Fℓ consists of the
following algorithms:
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• (pp, vp)← KeyGen(1λ, ℓ, d),

• com← Commit(f, rf , pp),

• {accept, reject} ← CheckComm(com, vp),

• (y, π)← Open(f, t, rf , pp),

• {accept, reject} ← Verify(com, t, y, π, vp).

A zkVPD scheme satisfies correctness, soundness and zero knowledge, which we formally define below.

Definition 2.2.5. Let F be a finite field, F be a family of ℓ-variate polynomial over F, and d be a variable-
degree parameter. A zero-knowledge verifiable polynomial delegation scheme (zkVPD) consists of the fol-
lowing algorithms: (pp, vp)← KeyGen(1λ, ℓ, d), com← Commit(f, rf , pp),
{accept, reject} ← CheckComm(com, vp), (y, π) ← Open(f, t, rf , pp), {accept, reject} ← Verify

(com, t, y, π, vp), such that

• Perfect Completeness For any polynomial f ∈ F and value t, the following probability is 1.

Pr
rf


(pp, vp)← KeyGen(1λ, ℓ, d)

com← Commit(f, rf , pp) : CheckComm(com, vp) = accept ∧
(y, π)← Open(f, t, rf , pp) Verify(com, t, y, π, vp) = accept


• Binding For any PPT adversary A and benign auxiliary input z1, z2 the following probability is
negligible of λ:

Pr



(pp, vp)← KeyGen(1λ, ℓ, d) CheckComm(com∗, vp) = accept ∧
(π∗, com∗, y∗, state)← A(1λ, z1, pp) : Verify(com∗, t∗, y∗, π∗, vp) = accept ∧

(f∗, t∗, r∗
f )← A(1λ, z2, state, pp) com∗ = Commit(f∗, r∗

f , pp) ∧
(y∗, π∗) = Open(f∗, t∗, r∗

f , pp) ∧
f∗(t∗) ̸= y∗


• Zero Knowledge For security parameter λ, polynomial f , adversaryA, and simulator S, consider the
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following two experiments:

RealA,f (1λ):

1. (pp, vp)← KeyGen(1λ, ℓ, d)

2. com← Commit(f, rf , pp)

3. k ← A(1λ, com, vp)

4. For i = 1, ..., k repeat

a) ti ← A(1λ, com, y1, ..., yi−1, π1,
..., πi−1, vp)

b) (yi, πi)← Open(f, ti, rf , pp)

5. b← A(1λ, com, (y1, ..., yk, π1, ..., πk), vp)

6. Output b

IdealA,S(1λ):

1. (com, pp, vp, σ)← Sim(1λ, ℓ, d)

2. k ← A(1λ, com, vp)

3. For i = 1, ..., k repeat:

a) ti ← A(1λ, com, y1, ..., yi−1, π1,
..., πi−1, vp)

b) (yi, πi, σ)← Sim(ti, σ, pp)

4. b← A(1λ, com, (y1, ..., yk, π1, ..., πk), vp)

5. Output b

For any PPT adversary A and all polynomial f ∈ F, there exists simulator S such that

|Pr[RealA,f (1λ) = 1]− Pr[IdealA,S(1λ) = 1]| ≤ negl(λ).

2.3 GKR Protocol with Linear Prover Time
In this section we present a new algorithm (see Algorithm 6) for the prover of the GKR protocol [GKR15]
that runs in linear time for arbitrary layered circuits. Before that, we present some necessary building blocks.

2.3.1 Linear-time sumcheck for a multilinear function [Tha13a]
In [Tha13a], Thaler proposed a linear-time algorithm for the prover of the sumcheck protocol on a multilinear
function f on ℓ variables (the algorithm runs in O(2ℓ) time). We review this algorithm here. Recall that in
the i-th round of the sumcheck protocol the prover sends the verifier the univariate polynomial on xi∑

bi+1,...,bℓ,∈{0,1}
f(r1, . . . , ri−1, xi, bi+1, . . . , bℓ) ,

where r1, . . . , ri−1 are random values chosen by the verifier in previous rounds. Since f is multilinear, it
suffices for the prover to send two evaluations of the polynomial at points t = 0 and t = 1, namely the
evaluations ∑

bi+1,...,bℓ,∈{0,1}
f(r1, . . . , ri−1, 0, bi+1, . . . , bℓ) (2.4)

and ∑
bi+1,...,bℓ,∈{0,1}

f(r1, . . . , ri−1, 1, bi+1, . . . , bℓ) . (2.5)
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Algorithm 1 F ← FunctionEvaluations(f, A, r1, . . . , rℓ)
Input: Multilinear f on ℓ variables, initial bookkeeping table A, random r1, . . . , rℓ;
Output: All function evaluations f(r1, . . . , ri−1, t, bi+1, . . . , bℓ);
1: for i = 1, . . . , ℓ do
2: for b ∈ {0, 1}ℓ−i do ▷ b is both a number and its binary representation.
3: for t = 0, 1, 2 do
4: Let f(r1, . . . , ri−1, t, b) = A[b] · (1− t) + A[b + 2ℓ−i] · t
5: end for
6: A[b] = A[b] · (1− ri) + A[b + 2ℓ−i] · ri

7: end for
8: end for
9: Let F contain all function evaluations f(.) computed at Step 4

10: return F

To compute the above sums the prover maintains a bookkeeping table A for f . This table, at round i, has
2ℓ−i+1 entries storing the values

f(r1, . . . , ri−1, bi, bi+1, . . . , bℓ)

for all bi, . . . , bℓ ∈ {0, 1} and is initialized with evaluations of f on the hypercube. For every entry of A, the
prover subsequently computes, as in Step 4 of Algorithm 1 FunctionEvaluations² two values

f(r1, . . . , ri−1, 0, bi+1, . . . , bℓ) and f(r1, . . . , ri−1, 1, bi+1, . . . , bℓ) .

Once these function evaluations are in place, the prover can easily sum over them and compute the required
sumcheck messages as reguired by Relations 2.4 and 2.5. This is done in Algorithm 2 SumCheck³.
Complexity analysis. Both Algorithms 1 and 2 run in O(2ℓ) time: The first iteration takes O(2ℓ), the second
O(2ℓ−1) and so on, and therefore the bound holds.

2.3.2 Linear-time sumcheck for products of multilinear functions [Tha13a]
The linear-time sumcheck in the previous section can be generalized to a product of two multilinear functions.
Let now f and g be two multilinear functions on ℓ variables each, we describe a linear-time algorithm to
compute the messages of the prover for the sumcheck on the product f · g, as proposed in [Tha13a]. Note
that we cannot use Algorithm 2 here since f ·g is not multilinear. However, similarly with the single-function
case, the prover must now send, at round i, the following evaluations at points t = 0, t = 1 and t = 2∑

bi+1,...,bℓ,∈{0,1}
f(r1, . . . , ri−1, t, bi+1, . . . , bℓ) · g(r1, . . . , ri−1, t, bi+1, . . . , bℓ)

²To be compatible with other protocols later, we use three values t = 0, 1, 2 in our evaluations instead of just two.
³We note here that although these two steps can be performed together in a single algorithm and without the need

to store function evaluations, we explicitly decouple them with two different algorithms (FunctionEvaluations and
SumCheck) for facilitating the presentation of more advanced protocols later.
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Algorithm 2 {a1, . . . , aℓ} ← SumCheck(f, A, r1, . . . , rℓ)
Input: Multilinear f on ℓ variables, initial bookkeeping table A, random r1, . . . , rℓ;
Output: ℓ sumcheck messages for ∑

x∈{0,1}ℓ f(x). Each message ai consists of 3 elements
(ai0, ai1, ai2);
1: F ← FunctionEvaluations(f, A, r1, . . . , rℓ)
2: for i = 1, . . . , ℓ do
3: for t ∈ {0, 1, 2} do
4: ait = ∑

b∈{0,1}ℓ−i f(r1, . . . , ri−1, t, b) ▷ All evaluations needed are in F .
5: end for
6: end for
7: return {a1, . . . , aℓ};

Algorithm 3 {a1, . . . , aℓ} ← SumCheckProduct(f, Af , g, Ag, r1, . . . , rℓ)
Input: Multilinear f and g, initial bookkeeping tables Af and Ag, random r1, . . . , rℓ;
Output: ℓ sumcheck messages for ∑

x∈{0,1}ℓ f(x)g(x). Each message ai consists of 3 elements
(ai0, ai1, ai2);
1: F ← FunctionEvaluations(f, Af , r1, . . . , rℓ)
2: G ← FunctionEvaluations(g, Ag, r1, . . . , rℓ)
3: for i = 1, . . . , ℓ do
4: for t ∈ {0, 1, 2} do
5: ait = ∑

b∈{0,1}ℓ−i f(r1, . . . , ri−1, t, b) · g(r1, . . . , ri−1, t, b) ▷ All evaluations needed are
in F and G.

6: end for
7: end for
8: return {a1, . . . , aℓ};

The above can be easily computed by computing evaluations for functions f and g separately using Algo-
rithm 1 and the combining the results using our new Algorithm 3 SumCheckProduct. We now have the
following lemma:

Lemma 2.3.1. Algorithm SumCheckProduct runs in time O(2ℓ)

Proof. All loops in SumCheckProduct require time 2ℓ +2ℓ−1 + . . . = O(2ℓ). Also SumCheckProduct calls
FunctionEvaluations twice (one for f and one for g) and each such call takes O(2ℓ) time.
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2.3.3 Linear-time sumcheck for GKR functions
Let us now consider the sumcheck problem on a particular class of functions that are relevant for the GKR
protocol (that is why we call them GKR functions). In particular we want to compute the sumcheck∑

x,y∈{0,1}ℓ f1(g, x, y)f2(x)f3(y) , (2.6)

for a fixed point g ∈ Fℓ, where f2(x), f3(x) : Fℓ → F are multilinear extensions of arrays Af2
, Af3

of size
2ℓ, and function f1 : F3ℓ → F is the multilinear extension of a sparse array with O(2ℓ) (out of 23ℓ possible)
nonzero elements. It is not hard to see that the sumcheck polynomials in GKR given by Equations 2.2 and 2.3
satisfy these properties.

We note here that applying Algorithm 1 FunctionEvaluations for this particular class of polynomials
would lead to quadratic prover time. This is because f1 has 22ℓ variables to sum on yielding O(22ℓ) complex-
ity. However, one could take advantage of the sparsity of f1: the prover can store only the O(2ℓ) non-zero
values of the bookkeeping table A. This is exactly the approach used in many prior work [CMT12; Wah+17;
ZGKPP18]. However, with this approach, the number of nonzero values that must be considered in Step 2
is always at most 2ℓ, since it is not guaranteed that this number will reduce to half (i.e., to 2ℓ−i) after every
update in Step 6 of Algorithm 1 because it is sparse. Therefore, the overall complexity becomes O(ℓ · 2ℓ).

In this section we effectively reduce this bound to O(2ℓ). Our protocol divides the sumcheck into two
phases: the first ℓ rounds bounding the variables of x to a random point u, and the last ℓ rounds bounding
the variables of y to a random point v. The central idea lies in rewriting Equation 2.6 as follows

∑
x,y∈{0,1}ℓ f1(g, x, y)f2(x)f3(y) =

∑
x∈{0,1}ℓ f2(x)

∑
y∈{0,1}ℓ f1(g, x, y)f3(y)

=
∑

x∈{0,1}ℓ f2(x)hg(x) ,

where hg(x) =
∑

y∈{0,1}ℓ f1(g, x, y)f3(y).

2.3.3.1 Phase one.
With the formula above, in the first ℓ rounds, the prover and the verifier are running exactly a sumcheck on a
product of two multilinear functions f2 ·hg, since functions f2 and hg can be viewed as functions only in x—
y can be considered constant (it is always summed on the hypercube). To compute the sumcheck messages
for the first ℓ rounds, given their bookkeeping tables, we can call

SumCheckProduct(hg(x), Ahg
, f2(x), Af2

, u1, . . . , uℓ)

in Algorithm 3. By Lemma 2.3.1 this will take O(2ℓ) time. We now show how to initialize the bookkeeping
tables in linear time.
Initializing the bookkeeping tables:
Initializing the bookkeeping table for f2 in O(2ℓ) time is trivial, since f2 is a multilinear extension of an
array and therefore the evaluations on the hypercube are known. Initializing the bookkeeping table for hg in
O(2ℓ) time is more challenging but we can leverage the sparsity of f1. Consider the following lemma.
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Lemma 2.3.2. LetNx be the set of (z, y) ∈ {0, 1}2ℓ such that f1(z, x, y) is non-zero. Then for allx ∈ {0, 1}ℓ,
it is hg(x) =

∑
(z,y)∈Nx

I(g, z) · f1(z, x, y) · f3(y), where I(g, z) =
∏ℓ

i=1((1− gi)(1− zi) + gizi)).

Proof. As f1 is a multilinear extension, as shown in [Tha13a], we have f1(g, x, y) =
∑

z∈{0,1}ℓ I(g, z)
f1(z, x, y), where I is the multilinear extension of the identity polynomial, i.e., I(w, z) = 1 iff w = z for all
w, z ∈ {0, 1}ℓ. Therefore, we have

hg(x) =
∑

y∈{0,1}ℓ

f1(g, x, y)f3(y) =
∑

z,y∈{0,1}ℓ

I(g, z)f1(z, x, y)f3(y) =
∑

(z,y)∈Nx

I(g, z) · f1(z, x, y) · f3(y)

Moreover, I(w, z) =
∏ℓ

i=1((1−wi)(1− zi) + wizi)) is the unique polynomial that evaluates to 1 iff w = z
for all w, z ∈ {0, 1}ℓ. As the multilinear extension is unique, we have I(g, z) =

∏ℓ
i=1((1 − gi)(1 − zi) +

gizi)).

Lemma 2.3.3. The bookkeeping table Ahg
can be initialized in time O(2ℓ).

Proof. As f1 is sparse,
∑

x∈{0,1}ℓ |Nx| = O(2ℓ). From Lemma 2.3.2, given the evaluations of I(g, z) for all
z ∈ {0, 1}ℓ, the prover can iterate all (z, y) ∈ Nx for all x to compute Ahg

. The full algorithm is presented
in Algorithm 4.

Procedure Precompute(g) is to evaluate G[z] = I(g, z) =
∏ℓ

i=1((1−gi)(1−zi)+gizi)) for z ∈ {0, 1}ℓ.
By the closed-form of I(g, z), the procedure iterates each bit of z, andmultiples 1−gi for zi = 0 andmultiples
gi for zi = 1. In this way, the size of G doubles in each iteration, and the total complexity is O(2ℓ).

Step 8-9 computes hg(x) using Lemma 2.3.2. When f1 is represented as a map of (z, x, y), f1(z, x, y) for
non-zero values, the complexity of these steps isO(2ℓ). In theGKRprotocol, this is exactly the representation
of a gate in the circuit, where z, x, y are labels of the gate, its left input and its right input, and f1(z, x, y) = 1.

With the bookkeeping tables, the prover runs SumCheckProduct(hg(x), Ahg
, f2(x), Af2

, u1, . . . , uℓ) in
Algorithm 3 and the total complexity for phase one is O(2ℓ).

2.3.3.2 Phase two.
At this point, all variables in x have been bounded to random numbers u. In the second phase, the equation
to sum on becomes ∑

y∈{0,1}ℓ f1(g, u, y)f2(u)f3(y)

Note here that f2(u) is merely a single value which we already computed in phase one. Both f1(g, u, y) and
f3(y) are polynomials on y with ℓ variables. Similar to phase one, to compute the messages for the last ℓ
rounds we can call

SumCheckProduct(f1(g, u, y), Af1
, f3(y) · f2(u), Af3

· f2(u), , v1, . . . , vℓ) .

Note here that Af1
is the bookkeeping table for f1(g, u, y), not the original sparse function f1(g, x, y).

Initializing the bookkeeping table for f1:
It now remains to initialize the bookkeeping table for f1(g, u, y) efficiently. Similar to phase one, we have
the following lemma:
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Algorithm 4 Ahg
← Initialize_PhaseOne(f1, f3, Af3

, g)
Input: Multilinear f1 and f3, initial bookkeeping tables Af3

, random g = g1, . . . , gℓ;
Output: Bookkeeping table Ahg

;
1: procedure G← Precompute(g) ▷ G is an array of size 2ℓ.
2: Set G[0] = 1
3: for i = 0, . . . , ℓ− 1 do
4: for b ∈ {0, 1}i do
5: G[b, 0] = G[b] · (1− gi+1)
6: G[b, 1] = G[b] · gi+1
7: end for
8: end for
9: end procedure

10: ∀x ∈ {0, 1}ℓ, set Ahg
[x] = 0

11: for every (z, x, y) such that f1(z, x, y) is non-zero do
12: Ahg

[x] = Ahg
[x] + G[z] · f1(z, x, y) · Af3

[y]
13: end for
14: return Ahg

;

Lemma 2.3.4. LetNy be the set of (z, x) ∈ {0, 1}2ℓ such that f1(z, x, y) is non-zero. Then for all y ∈ {0, 1}ℓ,
it is f1(g, u, y) =

∑
(z,x)∈Ny

I(g, z) · I(u, x) · f1(z, x, y).

Proof. This immediately follows from the fact that f1 is a multilinear extension. We have f1(g, u, y) =∑
z,y∈{0,1}ℓ I(g, z) · I(u, x) · f1(z, x, y), where the closed from of I is given in Lemma 2.3.2.

Lemma 2.3.5. The bookkeeping table Af1
can be initialized in time O(2ℓ).

Proof. Similar to Algorithm 4, he prover again iterates all non-zero indices of f1 to compute it using
Lemma 2.3.4. The full algorithm is presented in Algorithm 5.

We now summarize the final linear-time algorithm for computing the prover messages for the sumcheck
protocol on GKR functions. See Algorithm 6 SumCheckGKR.

Theorem 2.3.6. Algorithm SumCheckGKR runs in O(2ℓ) time.

Proof. Follows from Lemma 2.3.1, 2.3.3 and 2.3.5.
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Algorithm 5 Af1
← Initialize_PhaseTwo(f1, g, u)

Input: Multilinear f1, random g = g1, . . . , gℓ and u = u1, . . . , uℓ;
Output: Bookkeeping table Af1

;
1: G← Precompute(g)
2: U← Precompute(u)
3: ∀y ∈ {0, 1}ℓ, set Af1

[y] = 0
4: for every (z, x, y) such that f1(z, x, y) is non-zero do
5: Af1

[y] = Af1
[y] + G[z] · U[x] · f1(z, x, y)

6: end for
7: return Af1

;

Algorithm 6 {a1, . . . , a2ℓ} ← SumCheckGKR(f1, f2, f3, u1 . . . , uℓ, v1, . . . , vℓ, g)
Input: Multilinear extensions f1(z, x, y) (with O(2ℓ) non-zero entries), f2(x), f3(y) and their book-
keeping tables Af2

, Af3
, randomness u = u1, . . . , uℓ and v = v1, . . . , vℓ and point g;

Output: 2ℓ sumcheck messages for∑
x,y∈{0,1}ℓ f1(g, x, y)f2(x)f3(y);

1: Ahg
← Initialize_PhaseOne(f1, f3, Af3

, g)
2: {a1, . . . , aℓ} ← SumCheckProduct(∑

y∈{0,1}ℓ f1(g, x, y)f3(y), Ahg
, f2, Af2

, u1, . . . , uℓ)
3: Af1

← Initialize_PhaseTwo(f1, g, u)
4: {aℓ+1, . . . , a2ℓ} ← SumCheckProduct(f1(g, u, y), Af1

, f3(y) · f2(u), Af3
· f2(u), v1, . . . , vℓ)

5: return {a1, . . . , a2ℓ}

2.3.3.3 Generalizations of our technique.
Our technique can be extended to sumchecks of the general type∑

x1,x2,...,xc∈{0,1}c f0(g, x1, x2, . . . , xc)f1(x1)f2(x2)...fc(xc) ,

where c is a constant, functions fi are multilinear and f0() is sparse and consists of linearly-many nonzero
monomials. We divide the protocol into c phases similarly as above. This generalization captures the sum-
check in the original GKR paper with identity polynomials (see [GKR15]), and our new algorithms also
improve the prover time of this to linear.
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2.3.4 Putting everything together
The sumcheck protocol in GKR given by Equation 2.2 can be decomposed into several instances that have
the form of Equation 2.6 presented in the previous section. The term∑

x,y∈{0,1}si+1

˜multi+1(g, x, y)(Ṽi+1(x)Ṽi+1(y))

is exactly the same as Equation 2.6. The term
∑

x,y∈{0,1}si+1
˜addi+1(g, x, y)(Ṽi+1(x) + Ṽi+1(y)) can be

viewed as: ∑
x,y∈{0,1}si+1

˜addi+1(g, x, y)Ṽi+1(x) +
∑

x,y∈{0,1}si+1

˜addi+1(g, x, y)Ṽi+1(y)

The first sum can be computed using the same protocol in Algorithm 6without f3(y), and the second sum can
be computed without f2(x). The complexity for both cases remains linear. Due to linearity of the sumcheck
protocol, the prover can execute these 3 instances simultaneously in every round, and sum up the individual
messages and send them to the veriifer.
Combining two claims. After the sumcheck in the GKR protocol is completed, as described in Section 2.2.3,
the prover and the verifier need to combine the two claims about Ṽi+1 received at the end of the sumcheck
protocol to one to avoid the exponential blow-up. There are two ways to combine the two claims and we
show how to do each of them in linear time.

The second approach using random linear combinations is rather straight forward. After the output
layers, P and V execute sumcheck protocol on Equation 2.3 instead of Equations 2.2, which still satisfies the
properties of Equation 2.6. One could view it as 6 instances of Equation 2.6 and the prover time is still linear.
Moreover, there is a better way to further improve the efficiency. Taking

∑
x,y∈{0,1}si+1 (αi

˜multi+1(u, x, y)+
βi

˜multi+1(v, x, y))Ṽi+1(x)Ṽi+1(y) as an example, in Algorithm 4, the prover runs Precompute twice on
u and v to generate two arrays (G1 and G2), and sets G[b] = αiG1[b] + βiG2[b] for all b. The rest of the
algorithms remains the same. This only incurs a small overhead in practice in our implementation, compared
to the original algorithm on Equation 2.6.

Thoughwith the approach abovewe already have a linear prover GKRprotocol, the technique to condense
two points to one proposed in the original GKR protocol [GKR15] may still be interesting in some scenarios
(e.g., in our implementation, we use this approach in the last layer and only make one query to the multi-linear
extension of the input, which is more efficient practice). We present an algorithm to reduce two claims about
Ṽi+1 to one in linear time. Recall that as described in Section 2.2.3, in the i-th layer, after the sumcheck, the
verifier receives two claims Ṽ (u), Ṽ (v). (Again we omit the superscript and subscript of i for the ease of
interpretation.) She then defines a line γ(x) : F→ Fs such that γ(0) = u, γ(1) = v and the prover needs to
provide Ṽ (γ(x)), a degree s univariate polynomial, to V . If the prover computes it naively, which was done
in all prior papers, it incurs O(s2s) time, as it is equivalent to evaluating Ṽ () at s + 1 points.
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Algorithm 7 Compute Ṽ (γ(x)) = ∑
y∈{0,1}s I(γ(x), y)Ṽ (y)

1: Initialize a binary tree T with s levels. We use Tj[b] to denote the b-th node at level j.
2: for b ∈ {0, 1}s do
3: Ts[b] = Ṽ (b).
4: Multiply Ts[b] with bs(csx + ds) + (1− bs)(1− csx− ds).
5: end for
6: for j = s− 1, . . . , 1 do
7: for b ∈ {0, 1}j do
8: Tj[b] = Tj+1[b, 0] + Tj+1[b, 1].
9: Tj[b] = Tj[b] · (bj(cjx + dj) + (1− bj)(1− cjx− dj)).

10: end for
11: end for
12: Output T1[0].

In our new algorithm, we write Ṽ (γ(x)) =
∑

y∈{0,1}s I(γ(x), y)Ṽ (y), where I(a, b) is an identity
polynomial I(a, b) = 0 iff a = b. This holds by inspection of both sides on the Boolean hypercube. We
then evaluate the right side in linear time with a binary tree structure. The key observation is that the identity
polynomial can be written as I(a, b) =

∏s
j=1(ajbj + (1 − aj)(1 − bj)), and we can process one variable

(aj , bj) at a time and multiply them together to get the final result.
We construct a binary tree with 2s leaves and initialize each leaf b ∈ {0, 1}s with Ṽ (b). As γ(x) is a

linear polynomial, we write it as γ(x) = [c1, . . . , cs]T x + [d1, . . . , ds]T . At the leaf level, we only consider
the last variable of I(γ(x), y). For each leaf b ∈ {0, 1}s, we multiply the value with bs(csx + ds) + (1 −
bs)(1− csx−ds), the result of which is a linear polynomial. For a node b ∈ {0, 1}j in the intermediate level
j, we add the polynomials from its two children, and multiply it with bj(cjx + dj) + (1− bj)(1− cjx− dj),
the part in I that corresponds to the j-th variable. In this way, each node in the j-th level stores a degree j
polynomial. Eventually, the root is the polynomial on the right side of degree s, which equals to Ṽ (γ(x)).
The algorithm is given in Algorithm 7.

To see the complexity of Algorithm 7, both the storage and the polynomial multiplication at level j is
O(s − j + 1) in each node. So the total time is O(

∑s
j=1 2j(s − j + 1)) = O(2s), which is linear to the

number of gates in the layer.
An alternative way to interpret this result is to add an additional layer for each layer of the circuit in GKR

relaying the values. That is,
Ṽi(g) =

∑
x∈{0,1}si

I(g, x)Ṽi+1(x),

where Ṽi = Ṽi+1. Then when using the random linear combination approach, the sumcheck is executed on

αṼi(u) + βṼi(v) =
∑

x∈{0,1}si

(αI(u, x) + βI(v, x))Ṽi+1(x).
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At the end of the sumcheck, the verifier receives a single claim on Ṽi+1 = Ṽi. The sumcheck can obviously
run in linear time, and the relay layers do not change the result of the circuit. This approach is actually the
same as the condensing to one point in linear time above conceptually.

2.4 Zero-Knowledge Argument Protocols
In this section, we present the construction of our new zero-knowledge argument system. In [ZGKPP17c],
Zhang et al. proposed to combine the GKR protocol with a verifiable polynomial delegation protocol, re-
sulting in an argument system. Later, in [ZGKPP17a; WTSTW18], the construction was extended to zero-
knowledge, by sending all the messages in the GKR protocol in homomorphic commitments and performing
all the checks by zero-knowledge equality and product testing. This incurs a high overhead for the verifier
compared to the plain version without zero-knowledge, as each multiplication becomes an exponentiation
and each equality check becomes a Σ-protocol, which is around 100× slower in practice.

In this paper, we follow the same blueprint of combining GKR and VPD to obtain an argument system,
but instead show how to extend it to be zero-knowledge efficiently. In particular, the prover masks the GKR
protocol with special random polynomials so that the verifier runs a “randomized” GKR that leaks no extra
information and her overhead is small. A similar approach was used by Chiesa et al. in [CFS17]. In the fol-
lowing, we present the zero-knowledge version of each building block, followed by the whole zero-knowledge
argument.

2.4.1 Zero Knowledge Sumcheck
As a core step of the GKR protocol, P and V execute a sumcheck protocol on Equation 2.2, during which
P sends V evaluations of the polynomial at several random points chosen by V . These evaluations leak
information about the values in the circuit, as they can be viewed as weighted sums of these values.

To make the sumcheck protocol zero-knowledge, we take the approach proposed by Chiesa et al. in
[CFS17], which is masking the polynomial in the sumcheck protocol by a random polynomial. In this ap-
proach, to prove

H =
∑

x1,x2,...,xℓ∈{0,1}
f(x1, x2, . . . , xℓ),

the prover generates a randompolynomial g with the same variables and individual degrees of f . She commits
to the polynomial g, and sends the verifier a claim G =

∑
x1,x2,...,xℓ∈{0,1}

g(x1, x2, . . . , xℓ). The verifier picks

a random number ρ, and execute a sumcheck protocol with the prover on

H + ρG =
∑

x1,x2,...,xℓ∈{0,1}
(f(x1, x2, . . . , xℓ) + ρg(x1, x2, . . . , xℓ)).

At the last round of this sumcheck, the prover opens the commitment of g at g(r1, . . . , rℓ), and the verifier
computes f(r1, . . . , rl) by subtracting ρg(r1, . . . , rℓ) from the last message, and compares it with the oracle
access of f . It is shown that as long as the commitment and opening of g are zero-knowledge, the protocol is
zero-knowledge. Intuitively, this is because all the coefficients of f are masked by those of g. The soundness
still holds because of the random linear combination of f and g.

Unfortunately, themasking polynomial g is as big as f , and opening it to a random point later is expensive.
In [CFS17], the prover sends a PCP oracle of g, and executes a zero-knowledge sumcheck to open it to a
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random point, which incurs an exponential complexity for the prover. Even replacing it with the zkVPD
protocol in [ZGKPP17a], the prover time is slow in practice.

In this paper, we show that it suffices to mask f with a small polynomial to achieve zero-knowledge. In
particular, we set g(x1, . . . , xℓ) = a0 + g1(x1) + g2(x2) + . . . + gℓ(xℓ), where gi(xi) = ai,1xi + ai,2x2

i +
. . . + ai,dxd

i is a random univariate polynomial of degree d (d is the variable degree of f ). Note here that the
size of g is only O(dℓ), while the size of f is exponential in ℓ.

The intuition of our improvement is that the prover sends O(dℓ) messages in total to the verifier during
the sumcheck protocol, thus a polynomial g with O(dℓ) random coefficients is sufficient to mask all the
messages and achieve zero-knowledge. We present the full protocol in Construction 1.

The completeness of the protocol holds obviously. The soundness follows the soundness of the sumcheck
protocol and the random linear combination in step 2 and 3, as proven in [CFS17]. We give a proof of zero
knowledge here.

Theorem 2.4.1 (Zero knowledge). For every verifierV∗ and every ℓ-variate polynomial f : Fℓ → Fwith vari-
able degree d, there exists a simulator S such that given access to H =

∑
x1,x2,...,xℓ∈{0,1} f(x1, x2, . . . , xℓ),

S is able to simulate the partial view of V∗ in step 1-4 of Construction 1.

Proof. We build the simulator S as following.

Construction 1. We assume the existence of a zkVPD protocol defined in Section 2.2.4. For sim-
plicity, we omit the randomness rf and public parameters pp, vp without any ambiguity. To prove
the claim H = ∑

x1,x2,...,xℓ∈{0,1}
f(x1, x2, . . . , xℓ):

1. P selects a polynomial g(x1, . . . , xℓ) = a0 + g1(x1) + g2(x2) + . . . + gl(xℓ), where
gi(xi) = ai,1xi + ai,2x

2
i + . . . + ai,dxd

i and all ai,js are uniformly random. P sends
H = ∑

x1,x2,...,xℓ∈{0,1}
f(x1, x2, . . . , xℓ), G = ∑

x1,x2,...,xℓ∈{0,1}
g(x1, x2, . . . , xℓ) and comg =

Commit(g) to V .

2. V uniformly selects ρ ∈ F∗, computes H + ρG and sends ρ to P .

3. P and V run the sumcheck protocol on

H + ρG =
∑

x1,x2,...,xℓ∈{0,1}
(f(x1, x2, . . . , xℓ) + ρg(x1, x2, . . . , xℓ))

4. At the last round of the sumcheck protocol, V obtains a claim hℓ(rℓ) = f(r1, r2, . . . , rℓ) +
ρg(r1, r2, . . . , rℓ). P and V opens the commitment of g at r = (r1, . . . , rℓ) by (g(r), π) ←
Open(g, r), Verify(comg, g(r), r, π). If Verify outputs reject, V aborts.

5. V computes hℓ(rℓ)− ρg(r1, . . . , rℓ) and compares it with the oracle access of f(r1, . . . , rℓ).
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1. S selects a random polynomial g∗(x1, . . . , xℓ) = a∗
0+g∗

1(x1)+g∗
2(x2)+· · ·+g∗

ℓ (xℓ), where g∗
i (xi) =

a∗
i,1xi + a∗

i,2x2
i + · · · + a∗

i,dxd
i . S sends H , G∗ =

∑
x1,x2,··· ,xℓ∈{0,1}

g∗(x1, x2, · · · , xℓ) and comg
∗ =

Commit(g∗) to V .

2. S receives ρ ̸= 0 from V∗.

3. S selects a polynomial f∗ : Fℓ → F with variable degree d uniformly at random conditioning on∑
x1,x2,··· ,xℓ∈{0,1}

f∗(x1, x2, · · · , xℓ) = H . S then engages in a sumcheck protocol with V on H +

ρG∗ =
∑

x1,x2,··· ,xl∈{0,1}
(f∗(x1, x2, · · · , xℓ) + ρg∗(x1, x2, · · · , xℓ))

4. Let r ∈ Fℓ be the point chosen by V∗ in the sumcheck protocol. S runs (g∗(r), π) ← Open(g∗, r)
and sends them to V .

As both g and g∗ are randomly selected, and the zkVPD protocol is zero-knowledge, it is obvious that
step 1 and 4 in S are indistinguishable from those in the real world of Construction 1. It remains to show
that the sumchecks in step 3 of both worlds are indistinguishable.

To see that, recall that in round i of the sumcheck protocol, V receives a univariate polynomial hi(xi) =∑
bi+1,...,bℓ∈{0,1}

h(r1, . . . , ri−1, xi, bi+1, . . . , bℓ) where h = f + ρg. (The view of V∗ is defined in the same

way with h∗, f∗, g∗ and we omit the repetition in the following.) As the variable degree of f and g is d, P
sends V hi(0), hi(1), . . . , hi(d) which uniquely defines hi(xi). These evaluations reveal d + 1 independent
linear constraints on the coefficients of h. In addition, note that when these evaluations are computed honestly
by P , hi(0) + hi(1) = hi−1(ri−1), as required in the sumcheck protocol. Therefore, in all ℓ rounds of the
sumcheck, V and V∗ receives ℓ(d + 1)− (ℓ− 1) = ℓd + 1 independent linear constraints on the coefficients
of h and h∗.

As h and h∗ are masked by g and g∗, each with exactly ℓd + 1 coefficients selected randomly, the two
linear systems are identically distributed. Therefore, step 3 of the ideal world is indistinguishable from that
of the real world.

2.4.2 Zero knowledge GKR
To achieve zero-knowledge, we replace the sumcheck protocol in GKR with the zero-knowledge version
described in the previous section. However, the protocol still leaks additional information. In particular, at
the end of the zero-knowledge sumcheck, V queries the oracle to evaluate the polynomial on a random point.
When executed on Equation 2.2, this reveals two evaluations of the polynomial Ṽi defined by the values in
the i-th layer of the circuit: Ṽi(u) and Ṽi(v).

To prevent this leakage, Chiesa et al.[CFS17] proposed to replace the multi-linear extension Ṽi with a
low degree extension, such that learning Ṽi(u) and Ṽi(v) does not leak any information about Vi. Define a
low degree extension of Vi as

V̇i(z) def= Ṽi(z) + Zi(z)
∑

w∈{0,1}λ Ri(z, w), (2.7)
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where Z(z) =
∏si

i=1 zi(1 − zi), i.e., Z(z) = 0 for all z ∈ {0, 1}si . Ri(z, w) is a random low-degree
polynomial and λ is the security parameter. With this low degree extension, Equation 2.2 becomes

V̇i(g) =
∑

x,y∈{0,1}si+1
˜multi+1(g, x, y)(V̇i+1(x)V̇i+1(y)) (2.8)

+ ˜addi+1(g, x, y)(V̇i+1(x) + V̇i+1(y)) + Zi(g)
∑

w∈{0,1}λ Ri(g, w)

=
∑

x,y∈{0,1}si+1 ,w∈{0,1}λ(I (⃗0, w) · ˜multi+1(g, x, y)(V̇i+1(x)V̇i+1(y)) (2.9)

+ ˜addi+1(g, x, y)(V̇i+1(x) + V̇i+1(y)) + I((x, y), 0⃗)Zi(g)Ri(g, w))

where I (⃗a, b⃗) is an identity polynomial I (⃗a, b⃗) = 0 iff a⃗ = b⃗. The first equation holds because V̇i agrees with
Ṽi on the Boolean hyper-cube {0, 1}si , as Zi(z) = 0 for binary inputs. The second equation holds because
the mask in V̇i is in the form of a “sum” and can be moved into the sumcheck equation.

When executing the zero-knowledge sumcheck protocol on Equation 2.8, at the end of the protocol, V
receives V̇i+1(u) and V̇i+1(v) for random points u, v ∈ Fsi+1 chosen by V . They no longer leak informa-
tion about Vi+1, as they are masked by Zi+1(z)

∑
w∈{0,1}λ Ri+1(z, w) for z = u and z = v. V computes

˜multi+1(g, u, v) and ˜addi+1(g, u, v) as before, computes Zi(g), I (⃗0, c), I((u, v), 0⃗) where c ∈ Fλ is a ran-
dom point chosen by V for variable w, opens Ri(g, w) at c with P through a polynomial commitment, and
checks that together with V̇i+1(u), V̇i+1(v) received from P they are consistent with the last message of the
sumcheck.V then uses V̇i+1(u), V̇i+1(v) to proceed to the next round.

Unfortunately, similar to the zk sumcheck, the masking polynomial Ri is very large in [CFS17]. Opening
Ri at a random point takes exponential time forP either using a PCP oracle as in [CFS17] or potentially using
a zkVPD, as R has si + 2si+1 + λ variables.

In this section, we show that we can set Ri to be a small polynomial to achieve zero-knowledge. In
particular, Ri has only two variables with variable degree 2. This is because in the (i − 1)-th round, V
receives two evaluations of Vi, V̇i(u) and V̇i(v), which are masked by

∑
w Ri(u, w) and

∑
w Ri(v, w); in

the i-th sumcheck, V opens Ri at Ri(u, c) and Ri(v, c). It suffices to make these four evaluations linearly
independent, assuming the commitment and opening of Ri are using a zkVPD. Therefore, we set the low-
degree term in Equation 2.7 as Zi(z)

∑
w∈{0,1} Ri(z1, w), i.e. Ri only takes two variables, the first variable

z1 of z and an extra variable w ∈ {0, 1} instead of {0, 1}λ, with variable degree 2.
The full protocol is presented in Construction 2. Here we use superscriptions (e.g., u(i)) to denote random

numbers or vectors for the i-th layer of the circuit.

Construction 2. 1. On a layered arithmetic circuit C with d layers and input in, the proverP sends
the output of the circuit out to the verifier V .

2. P randomly selects polynomials R1(z1, w), . . . , Rd(z1, w) : F2 → F with variable degree 2. P
commits to these polynomials by sending comi ← Commit(Ri) to V for i ∈ [1, d].

3. V defines V̇0(z) = Ṽ0(z), where Ṽ0(z) is the multilinear extension of out. V̇0(z) can be viewed as
a special case with R0(z1, w) being the 0 polynomial. V evaluates it at a random point V̇0(g(0))
and sends g(0) to P .
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4. P and V execute the zero knowledge sumcheck protocol presented in Construction 1 on

V̇0(g(0)) =
∑

x,y∈{0,1}s1

˜mult1(g(0), x, y)(V̇1(x)V̇1(y))

+ ˜add1(g(0), x, y)(V̇1(x) + V̇1(y))

If u(1)
1 = v

(1)
1 ,P aborts. At the end of the protocol, V receives V̇1(u(1)) and V̇1(v(1)). V computes

˜mult1(g(0), u(1), v(1)), ˜add1(g(0), u(1), v(1)) and checks that

˜mult1(g(0), u(1), v(1))V̇1(u(1))V̇1(v(1)) + ˜add1(g(0), u(1), v(1))(V̇1(u(1)) + V̇1(v(1)))

equals to the last message of the sumcheck (evaluation oracle).

5. For layer i = 1, . . . , d− 1:

a) V randomly selects α(i), β(i) ∈ F and sends them to P .
b) Let Multi+1(x, y) = α(i) ˜multi+1(u(i), x, y) + β(i) ˜multi+1(v(i), x, y) and

Addi+1(x, y) = α(i) ˜addi+1(u(i), x, y) + β(i) ˜addi+1(v(i), x, y). P and V run the zero
knowledge sumcheck on the equation

α(i)V̇i(u
(i)) + β(i)V̇i(v

(i)) =∑
x,y∈{0,1}si+1

w∈{0,1}

(I (⃗0, w) ·Multi+1(x, y)(V̇i+1(x)V̇i+1(y))

+ Addi+1(x, y)(V̇i+1(x) + V̇i+1(y))

+ I((x, y), 0⃗)(α(i)Zi(u
(i))Ri(u

(i)
1 , w) + β(i)Zi(v

(i))Ri(v
(i)
1 , w)))

If u
(i+1)
1 = v

(i+1)
1 , P aborts.

c) At the end of the zero-knowledge sumcheck protocol,P sendsV V̇i+1(u(i+1)) and V̇i+1(v(i+1)).
d) V computes

ai+1 = α(i) ˜multi+1(u(i), u(i+1), v(i+1)) + β(i) ˜multi+1(v(i), u(i+1), v(i+1))

and

bi+1 = α(i) ˜addi+1(u(i), u(i+1), v(i+1)) + β(i) ˜addi+1(v(i), u(i+1), v(i+1))

locally. V computes Zi(u
(i)), Zi(v

(i)), I (⃗0, c(i)), I((u(i+1), v(i+1)), 0⃗) locally.

e) P and V open Ri at two points Ri(u
(i)
1 , c(i)) and Ri(v

(i)
1 , c(i)) using Open and Verify.
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f) V computes the following as the evaluation oracle and uses it to complete the last step of
the zero-knowledge sumcheck.

I (⃗0, c(i))(ai+1(V̇i+1(u(i+1))V̇i+1(v(i+1)))+

bi+1(V̇i+1(u(i+1)) + V̇i+1(v(i+1))))+

I((u(i+1), v(i+1)), 0⃗)(α(i)Zi(u
(i))Ri(u

(i)
1 , c(i)) + β(i)Zi(v

(i))Ri(v
(i)
1 , c(i)))

If all checks in the zero knowledge sumcheck and Verify passes, V uses V̇i+1(u(i+1)) and
V̇i+1(v(i+1)) to proceed to the (i + 1)-th layer. Otherwise, V outputs reject and aborts.

6. At the input layer d, V has two claims V̇d(u(d)) and V̇d(v(d)). V opens Rd at 4 points Rd(u(d)
1 , 0),

Rd(u(d)
1 , 1), Rd(v(d)

1 , 0), Rd(v(d)
1 , 1) and checks that V̇d(u(d)) = Ṽd(u(d)) + Zd(u(d))

∑
w∈{0,1}

Rd

(u(d)
1 , w) and V̇d(v(d)) = Ṽd(v(d)) + Zd(v(d))

∑
w∈{0,1}

Rd(v(d)
1 , w), given oracle access to two

evaluates of Ṽd at u(d) and v(d). If the check passes, output accept; otherwise, output reject.

Theorem 2.4.2. Construction 2 is an interactive proof protocol per Definition 2.2.1, for a function f defined
by a layered arithmetic circuit C such that f(in, out) = 1 iff C(in) = out. In addition, for every verifier
V∗ and every layered circuit C, there exists a simulator S such that given oracle access to out, S is able to
simulate the partial view of V∗ in step 1-5 of Construction 2.

The completeness follows from the construction explained above and the completeness of the zero knowl-
edge sumcheck. The soundness follows the soundness of the GKR protocol with low degree extensions, as
proven in [GKR15] and [CFS17]. We give the proof of zero knowledge here.

Proof. With oracle access to out, and the simulator Ssc of the zero-knowledge sumcheck protocol in Sec-
tion 2.4.1 as a subroutine, we construct the simulator S as following:

1. S sends the out to V∗.

2. S randomly selects polynomials R∗
1(z1, w), . . . , R∗

d(z1, w) : F2 → F with variable degree 2. S
commits to these polynomials by sending comi ← Commit(R∗

i ) to V∗ for i ∈ [1, d].

3. S receives g(0) from V∗.

4. S calls Ssc to simulate the partial view of the zero knowledge sumcheck protocol on

V̇0(g(0)) =
∑

x,y∈{0,1}s1

˜mult1(g(0), x, y)(V̇1(x)V̇1(y)) + ˜add1(g(0), x, y)(V̇1(x) + V̇1(y))

If u
(1)
1 = v

(1)
1 , S aborts. At the end of the sumcheck, S samples V̇ ∗

1 (u(1)) and V̇ ∗
1 (v(1)) such that

˜mult1(g(0), u(1), v(1))V̇ ∗
1 (u(1))V̇ ∗

1 (v(1)) + ˜add1(g(0), u(1), v(1)) (V̇ ∗
1 (u(1)) + V̇ ∗

1 (v(1))) equals to the
last message of the sumcheck.

5. For layer i = 1, . . . , d− 1:
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a) S receives α(i), β(i) from V∗.

b) Let Multi+1(x, y) = α(i) ˜multi+1(u(i), x, y) + β(i) ˜multi+1(v(i), x, y) and
Addi+1(x, y) = α(i) ˜addi+1(u(i), x, y) + β(i) ˜addi+1(v(i), x, y). S calls Ssc to simulate the par-
tial view of the zero knowledge sumcheck protocol on

α(i)V̇i(u
(i)) + β(i)V̇i(v

(i)) =∑
x,y∈{0,1}si+1

w∈{0,1}

(I (⃗0, w) ·Multi+1(x, y)(V̇i+1(x)V̇i+1(y))

+ Addi+1(x, y)(V̇i+1(x) + V̇i+1(y))

+ I((x, y), 0⃗)(α(i)Zi(u
(i))Ri(u

(i)
1 , w) + β(i)Zi(v

(i))Ri(v
(i)
1 , w)))

If u
(i+1)
1 = v

(i+1)
1 , S aborts.

c) At the end of the zero-knowledge sumcheck protocol, if u
(i+1)
1 = v

(i+1)
1 , S aborts. Otherwise,

S samples V̇ ∗
i+1(u(i+1)) and V̇ ∗

i+1(v(i+1)) randomly such that the following equals to the last
message of the sumcheck protocol.

I (⃗0, c(i))(ai+1(V̇ ∗
i+1(u(i+1))V̇ ∗

i+1(v(i+1))) + bi+1(V̇ ∗
i+1(u(i+1)) + V̇ ∗

i+1(v(i+1))))

+I((u(i+1), v(i+1)), 0⃗)(α(i)Zi(u
(i))R∗

i (u(i)
1 , c(i)) + β(i)Zi(v

(i))R∗
i (v(i)

1 , c(i)))

ai+1 = α(i) ˜multi+1(u(i), u(i+1), v(i+1)) + β(i) ˜multi+1(v(i), u(i+1), v(i+1)) and
bi+1 = α(i) ˜addi+1(u(i), u(i+1), v(i+1))+β(i) ˜addi+1(v(i), u(i+1), v(i+1)). S sends V̇i+1(u(i+1))
and V̇i+1(v(i+1)) to V∗.

d) V∗ computes the corresponding values locally as in step 5(d) of Construction 2.

e) S opens R∗
i at two points R∗

i (u(i)
1 , c(i)) and R∗

i (v(i)
1 , c(i)) using Open.

f) V∗ performs the checks as in step 5(f) of Construction 2.

Note here that V∗ can actually behave arbitrarily in step 5(d) and 5(f) above. We include these steps to
be consistent with the real world in Construction 2 for the ease of interpretation.

To prove zero-knowledge, step 1,3, 5(a), 5(d) and 5(f) are obviously indistinguishable as S only receives
messages from V∗. Step 2 and 5(e) of both worlds are indistinguishable because of the zero knowledge
property of the zkVPD, and the fact that R∗ and R are sampled randomly in both worlds. Step 4 and 5(b) are
indistinguishable as proven in Theorem 2.4.1 for Ssc.

It remains to consider the messages received at the end of step 4 and in step 5(c), namely V̇i(u
(i)), V̇i(v

(i))
and V̇ ∗

i (u(i)), V̇ ∗
i (v(i)) for i = 1, . . . , d. In the real world, V̇i(z) is masked by

∑
w∈{0,1}

Ri(z1, w) (Z(z) is

publicly known), thus V̇i(u
(i)) and V̇i(v

(i)) are masked by
∑

w∈{0,1}
Ri(u

(i)
1 , w) and

∑
w∈{0,1}

Ri(v
(i)
1 , w) cor-

respondingly. In addition, in step 5(e), V∗ opens Ri at Ri(u
(i)
1 , c(i)) and Ri(v

(i)
1 , c(i)). To simplify the

notation here, we consider only a particular layer and omit the subscription and superscription of i. Let
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R(z1, w) = a0 + a1z1 + a2w + a3z1w + a4z2
1 + a5w2 + a6z2

1w2, where a0, . . . , a6 are randomly chosen.
We can write the four evaluations above as

2 2u1 1 u1 2u2
1 1 u2

1
2 2v1 1 v1 2v2

1 1 v2
1

1 u1 c cu1 u2
1 c2 c2u2

1
1 v1 c cv1 v2

1 c2 c2v2
1

× [a0 a1 a2 a3 a4 a5 a6
]T

After row reduction, the left matrix is
2 2u1 1 u1 2u2

1 1 u2
1

0 2(v1 − u1) 0 v1 − u1 2(u2
1 − v2

1) 0 u2
1 − v2

1
0 0 2c− 1 (2c− 1)u1 0 2c2 − 1 (2c2 − 1)u2

1
0 0 0 (2c− 1)(v1 − u1) 0 0 (2c2 − 1)(v2

1 − u2
1)


As u1 ̸= v1, the matrix has full rank if 2c2 − 1 ̸= 0 mod p, where p is the prime that defines F. This holds
if 2−1 is not in the quadratic residue of p, or equivalently p ̸≡ 1, 7 mod 8.⁴ In case p ≡ 1, 7 mod 8, we
can add a check to both the protocol and the simulator to abort if 2c2− 1 = 0. This does not affect the proof
of zero knowledge, and only reduces the soundness error by a small amount. ⁵

Because of the full rank of the matrix, the four evaluations are linearly independent and uniformly dis-
tributed, as a0, . . . a6 are chosen randomly. In the ideal world, R∗(u1, c) and R∗(v1, c) are independent
and uniformly distributed, and V̇ ∗(u), V̇ ∗(v) are randomly selected subject to a linear constraint (step 5(c)),
which is the same as the real world. Therefore, they are indistinguishable in the two worlds, which completes
the proof.

2.4.3 Zero knowledge VPD
In this section, we present the instantiations of the zkVPD protocol, as defined in Definition 2.2.5. For
every intermediate layer i, we use the same zkVPD protocol as proposed by Zhang et al. in [ZGKPP17a] to
commit and open the masking polynomials gi(x), Ri(z1, w). In fact, as we show in the previous sections,
these polynomials are very small (gi is the sum of univariate polynomials and Ri has 2 variables with variable
degree 2), the zkVPD protocols become very simple. The complexity of KeyGen, Commit, Open, Verify and
proof size are all O(si) for gi and are all O(1) for Ri. We omit the full protocols due to space limit.

For the zkVPD used for the input layer, we design a customized protocol based on the zkVPD protocol
in [ZGKPP17a]. Recall that at the end of the GKR protocol, V receives two evaluations of the polynomial
V̇d(z) = Ṽd(z)+Zd(z)

∑
w∈{0,1} Rd(z1, w) at z = u(d) and z = v(d). In our zero knowledge proof protocol,

which will be presented in Section 2.4.4, P commits to V̇d(z) using the zkVPD at the beginning, and opens
it to the two points selected by V .

The protocol in [ZGKPP17a] works for any polynomial with ℓ variables and any variable degree, and
is particularly efficient for multilinear polynomials. We modify the protocol for our zero-knowledge proof

⁴From the reduced matrix, we can see that setting a2 = a3 = a4 = 0 does not affect the rank of the matrix, which
simplifies the masking polynomial R in practice.

⁵If one is willing to perform a check like this, we can simplify the masking polynomial R to be multilinear. The
reduced matrix will be the first 4 columns of the matrix showed above, and it has full rank if c ̸= 2−1.
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Construction 3. Let F be a prime-order finite field. Let V̇ (x) : Fℓ → F be an ℓ-variate polynomial such
that V̇ (x) = Ṽ (x) + Z(x)R(x1), where Ṽ (x) is a multilinear polynomial, Z(x) =

∏ℓ
i=1 xi(1 − xi) and

R(x1) = a0 + a1x1.

• (pp, vp) ← KeyGen(1λ, ℓ): Select α, t1, t2, · · · , tl, tℓ+1 ∈ F uniformaly at random, run bp ←
BilGen(1λ) and compute pp = (bp, gα, gtℓ+1 , gαtℓ+1 , {g

∏
i∈W

ti , gα
∏

i∈W
ti}W ∈Wℓ

), where Wℓ is
the set of all subsets of {1, . . . , ℓ}. Set vp = (bp, gt1 , . . . , gtℓ+1 , gα).

• com← Commit(V̇ , rV , rR, pp): Compute c1 = gṼ (t1,t2,··· ,tℓ)+rV tℓ+1 , c2 = gα(Ṽ (t1,t2,··· ,tℓ)+rV tℓ+1),
c3 = gR(t1)+rRtℓ+1 and c4 = gα(R(t1)+rRtℓ+1) output the commitment com = (c1, c2, c3, c4).

• {accept, reject} ← CheckComm(com, vp): Output accept if e(c1, gα) = e(c2, g) and e(c3, gα) =
e(c4, g). Otherwise, output reject.

• (y, π) ← Open(V̇ , rV , rR, u, pp): Choose r1, . . . , rℓ ∈ F at random, and compute polynomials qi

such that
Ṽ (x) + rV xℓ+1 + Z(u)(R(x1) + rRxℓ+1)− (Ṽ (u) + Z(u)R(u1)) =

ℓ∑
i=1

(xi − ui)(qi(xi, . . . , xℓ) + rixℓ+1) + xℓ+1(rV + rRZ(u)−
ℓ∑

i=1
ri(xi − ui)).

Set π = ({gqi(ti...,tℓ)+ritℓ+1 , gα(qi(ti...,tℓ)+ritℓ+1)}i∈[1,ℓ], grV +rRZ(u)−
∑ℓ

i=1 ri(ti−ui),

gα(rV +rRZ(u)−
∑ℓ

i=1 ri(ti−ui))) and y = Ṽ (u) + Z(u)R(u1).

• {accept, reject} ← Verify(com, u, y, π, vp): Parse π as (πi, παi) for i ∈ [1, ℓ + 1]. Check
e(πi, gα) = e(παi, g) for i ∈ [1, ℓ+1]. Check e(c1c

Z(u)
3 /gy, g) =

∏ℓ
i=1 e(πi, gti−ui)·e(gπℓ+1 , gtℓ+1).

Output accept if all the checks pass, otherwise, output reject.

scheme and preserve the efficiency. Note that though V̇d(z) is a low degree extension of the input, it can
be decomposed to the sum of Ṽd(z), a multilinear polynomial, and Zd(z)

∑
w∈{0,1} Rd(z1, w). Moreover,

Zd(u(d)) and Zd(v(d)) can be computed directly by V . Therefore, in our construction, P commits to Ṽd(z)
and

∑
w∈{0,1} Rd(z1, w) separately, and later opens the sum together given Zd(u(d)) and Zd(v(d)), which is

naturally supported because of the homomorphic property of the commitment. Another optimization is that
unlike other layers of the circuit, Rd(z1, w) itself is not opened at two points (V does not receiveRd(u(d), c(d))
and Rd(v(d), c(d)) in Construction 2). Therefore, it suffices to set V̇d(z) = Ṽd(z) + Zd(z)Rd(z1), where Rd

is a univariate linear polynomial. The full protocol is presented in Construction 3.

Theorem 2.4.3. Construction 3 is a zero-knowledge verifiable polynomial delegation scheme as defined by
Definition 2.2.5, under Assumption 1 and 2.

The proof of completeness, soundness and zero knowledge is similar to that of the zkVPD protocol
in [ZGKPP17a]. We only add an extra univariate linear polynomial R(x1), which does not affect the proof.
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We omit the proof due to space limit. Using the same algorithms proposed in in [ZGKPP18; ZGKPP17a],
the running time of KeyGen, Commit and Open is O(2ℓ), Verify takes O(ℓ) time and the proof size is O(ℓ).

2.4.4 Putting Everything Together
In this section, we present our zero knowledge argument scheme. At a high level, similar to [ZGKPP17c;
WTSTW18; ZGKPP17a], V can use the GKR protocol to verify the correct evaluation of a circuit C on input
x and a witness w, given an oracle access to the evaluation of a polynomial defined by x, w on a random point.
We instantiate the oracle using the zkVPD protocol. Formally, we present the construction in Construction 4,
which combines our zero knowledge GKR and zkVPD protocols. Similar to the protocols in [ZGKPP17a;
WTSTW18], Step 6 and 7 are to check that P indeed uses x as the input to the circuit.

Theorem 2.4.4. For an input size n and a finite field F, Construction 4 is a zero knowledge argument for the
relation

R = {(C, x; w) : C ∈ CF ∧ |x|+ |w| ≤ n ∧ C(x; w) = 1},

as defined in Definition 2.2.2, under Assumption 1 and 2. Moreover, for every (C, x; w) ∈ R, the running
time of P is O(|C|) field operations and O(n) multiplications in the base group of the bilinear map. The
running time of V isO(|x|+d·log |C|) ifC is log-space uniform with d layers. P and V interactO(d log |C|)
rounds and the total communication (proof size) is O(d log |C|). In case d is polylog(|C|), the protocol is a
succinct argument.

Proof Sketch. The correctness and the soundness follow from those of the two building blocks, zero knowl-
edge GKR and zkVPD, by Theorem 2.4.2 and 2.4.3.

To prove zero knowledge, consider a simulator S that calls the simulator SGKR of zero knowledge GKR
given in Section 2.4.2 as a subroutine, which simulates the partial view up to the input layer. At the input layer,
the major challenge is that S committed to (a randomly chosen) V̇ ∗

d at the beginning of the protocol, before
knowing the points u(d), v(d) to evaluate on. If S opens the commitment honestly, with high probability the
evaluations are not consistent with the last message of the GKR (sumcheck in layer d − 1) and a malicious
V∗ can distinguish the ideal world from the real world. In our proof, we resolve this issue by using the
simulator SV P D of our zkVPD protocol. Given the trapdoor trap used in KeyGen, SV P D is able to open the
commitment to any value in zero knowledge, and in particular it opens to those messages that are consistent
with the GKR protocol in our scheme, which completes the construction of S.

The complexity of our zero knowledge argument scheme follows from our new GKR protocol with linear
prover time, and the complexity of the zkVPD protocol for the input layer analyzed in Section 2.4.3. The
masking polynomials gi, Ri and their commitments and openings introduce no asymptotic overhead and are
efficient in practice.
Removing interaction. Our construction can bemade non-interactive in the random oraclemodel using Fiat–
-Shamir heuristic [FS86]. ThoughGKR protocol is not constant round, recent results [BSCS16; CCHLRR18]
show that applying Fiat-Shamir only incurs a polynomial soundness loss in the number of rounds in GKR.
In our implementation, the GKR protocol is on a 254-bit prime field matching the bilinear group used in the
zkVPD. The non-interactive version of our system provides a security level of 100+ bits.
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Construction 4. Let λ be the security parameter, F be a prime field, n be an upper bound on input size,
and S be an upper bound on circuit size. We use VPD1, VPD2, VPD3 to denote the zkVPD protocols for
input layer, masking polynomials gi and Ri described in Construction 2.

• G(1λ, n, S): run (pp1, vp1) ← VPD1.KeyGen(1λ, log n), (pp2, vp2) ← VPD2.KeyGen(1λ, log S),
(pp3, vp3)← VPD3.KeyGen(1λ). Output pk = (pp1, pp2, pp3) and vk = (vp1, vp2, vp3).

• ⟨P(pk, w),V(vk)⟩(x): LetC be a layered arithmetic circuit over Fwith d layers, input x and witness
w such that |x|+ |w| ≤ n, |C| ≤ S and C(x; w) = 1. Without loss of generality, assume |w|/|x| =
2m − 1 for some m ∈ N.

1. P selects a random bivariate polynomial Rd with variable degree 2 and commits to the input
of C by sending comd ← VPD1.Commit(V̇d, rV , rR, pp1) to V , where Ṽd is the multilinear
extension of array (x; w) and V̇d = Ṽd + Rd

2. V runs VPD1.CheckComm(comd, vp1). If it outputs reject, V aborts and outputs reject.
3. P and V execute Step 1-5 of the zero knowledge GKR protocol in Construction 2, with the

zkVPDs instantiated with VPD2 and VPD3. If Construction 2 rejects, V outputs reject and
aborts. Otherwise, by the end of this step, V receives two claims of V̇d at u(d) and v(d).

4. P runs (y1, π1) ← VPD1.Open(V̇ , rV , rR, u(d), pp1), (y2, π2) ←
VPD1.Open(V̇ , rV , rR, v(d), pp1) and sends y1, π1, y2, π2 to V .

5. V runs Verify(comd, u(d), y1, π1, vp1) and Verify(comd, v(d), y2, π2, vp1) and output reject if
either check fails. Otherwise, V checks V̇d(u(d)) = y1 and V̇d(v(d)) = y2, and rejects if either
fails.

6. V computes the multilinear extension of input x at a random point rx ∈ Flog |x| and sends rx

to P .
7. P pads rx to r′

x ∈ Flog |x| × 0log |w| with log |w| 0s and sends V (yx, πx) ←
VPD1.Open(Ṽd, rV , rR, r′

x, pp1). V checks Verify(comd, r′
x, yx, πx, vp1) and yx equals the

evaluation of the multilinear extension on x. V outputs reject if the checks fail. Otherwise, V
outputs accept.

2.5 Implementation and Evaluation
Software. We fully implement Libra, our new zero knowledge proof system in C++. There are around 3000
lines of code for the zkGKR protocol, 1000 lines for the zkVPD protocol and 700 lines for circuit generators.
Our system provides an interface to take a generic layered arithmetic circuit and turn it into a zero knowledge
proof. We implement a new class for large integers named u512, and use it together with the GMP[Gnu]
library for large numbers and field arithmetic. We use the ate-pairing[Ate] library on a 254-bit elliptic curve
for the bilinear map used in zkVPD. We plan to open-source our system.
Hardware. We run all of the experiments on Amazon EC2 c5.9xlarge instances with 70GB of RAM and
Intel Xeon platinum 8124m CPU with 3GHz virtual core. Our current implementation is not parallelized
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and we only use a single CPU core in the experiments. We report the average running time of 10 executions.
More gate types with no overhead. We first present a concrete optimization we developed during the
implementation to support various types of gates with no extra overhead. In our protocol in Section 2.3
and 2.4, we only consider addition and multiplication gates, as they are enough to represent all arithmetic
circuits. However, in practice, the size of the circuit can be reduced significantly if we introduce other types
of gate. The GKR protocol still works with these new gates, but they incur an overhead on the prover time
for a circuit of the same size. Therefore, in prior work such as [WHGSW16; ZGKPP18], this is considered
as a trade-off.

Our protocol supports any gate with fan-in ≤ 2 and degree ≤ 2 with no overhead on the prover. Recall
that in the GKR protocol, the values in layer i is represented as a sumcheck of values in layer i + 1 and the
wiring predicates, as shown in Equation 2.2. With a set of gate types T , we can write the polynomial in the
sum as ∑

j∈T

˜gate
(j)
i (g, x, y)G(j)

i (Ṽi+1(x), Ṽi+1(x)),

where G
(j)
i () is the computation of gate type j (e.g., for addition gates, G

(j)
i (Ṽi+1(x), Ṽi+1(x)) = Ṽi+1(x) +

Ṽi+1(x)). As the gates have fan-in≤ 2 and degree≤ 2, G(j)
i has up to 2 variables and total degree atmost 2 for

all j. Therefore, each G
(j)
i can be expressed explicitly as a0 +a1Ṽi+1(x)+a2Ṽi+1(y)+a3Ṽi+1(x)Ṽi+1(y)+

a4Ṽi+1(x)2 + a5Ṽi+1(y)2, at most 6 nonzero monomials. The prover can then combine all the wiring pred-
icates ˜gate

(j)
i (g, x, y) for the same monomial through a summation. With this approach, when generating

the proof in Algorithm 4 and 5, the prover only allocates one array for each monomial, and initializes all 6
arrays with one scan through all the gates in Init_PhaseOne and Init_PhaseTwo. In this way, the prover time
remains the same regardless of the number of gate types.

In our experiments, useful types of gates include subtraction, relay, multiply by constant, x(1 − x) for
binary check, NOT,AND,OR,XOR, etc.

2.5.1 Improvements on GKR protocols
In this section, we compare the performace of our new GKR protocol with linear prover time with all variants
of GKR in the literature on different circuits.
Methodology and benchmarks. For fair comparisons, we re-implement all of these variants in C++ with
the same libraries. The variants include: (1) O(C) for regular circuits, proposed in [Tha13a], where the two
inputs of a gate can be described by two mapping functions with constant size in constant time. See [Tha13a]
for the formal definition of regular circuits. (2) O(C + C ′ log C ′) for data-parallel circuits with a small copy
of size C ′, proposed in [Wah+17]. (3) O(C log C ′) for circuits with non-connected different copies of size
C ′, proposed in [ZGKPP18]. (4) O(C log C) for arbitrary circuits, proposed in [CMT12].

We compare our GKR protocol to these variants on the benchmarks below:

• Matrix multiplication: P proves to V that it knows two matrices whose product equals a public matrix.
The representation of this function with an arithmetic circuit is highly regular⁶. We evaluate on different
dimensions from 4× 4 to 256× 256 and the elements in the matrices are 32-bit integers.

⁶We use the circuit representation of matrix multiplication with O(n3) gates for fair comparisons, not the special
protocol proposed in [Tha13a].
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Matrix
multiplication

Matrix size 4x4 16x16 64x64 256x256
[Tha13a] 0.0003s 0.006s 0.390s 29.0s
Ours 0.0004s 0.014s 0.788s 50.0s

Image scaling
#pixels 112x112 176x176 560x560 1072x1072

[Wah+17] 0.445s 0.779s 7.54s 29.2s
Ours 0.337s 1.25s 19.8s 79.2s

Image scaling with
different parameters

#pixels 112x112 176x176 560x560 1072x1072
[ZGKPP17c] 5.45s 21.8s 348s 1441s

Ours 0.329s 1.22s 19.3s 77.2s

Random circuit
#gates per layer 28 212 216 220

[CMT12] 0.008s 0.179s 3.79s 83.1s
Ours 0.002s 0.039s 0.635s 10.8s

Table 2.2: Prover time of our linear GKR and previous GKR variants.

• Image scaling: It computes a low-resolution image by scaling from a high-resolution image. We use the
classic Lanczos re-sampling[Tur90] method. It computes each pixel of the output as the convolution of
the input with a sliding window and a kernel function defined as: k(x) = sinc(x)/sinc(ax), if− a < x <
a; k(x) = 0, otherwise, where a is the scaling parameter and sinc(x) = sin(x)/x. This function is data
parallel, where each sub-circuit computes the same function to generate one pixel of the output image. We
evaluate by fixing the window size as 16 × 16 and increase the image size from 112x112 to 1072x1072.
The pixels are 8-bit integers for greyscale images.

• Image scaling of different parameters: It is the same computation as above with different scaling param-
eters in the kernel function for different pixels. The circuit of this function consists of different sub-copies.
We evaluate it with the same image sizes as above.

• Random circuit: It is randomly generated layered circuit. We randomly sample the type of each gate,
input value and the wiring patterns. We fix the depth as 3 and increase the number of gates per layer from
28 to 220.

To be consistent with the next section, all the protocols are executed on a 254-bit prime field. This does not
affect the comparison at all, as all the protocols are in the same field. In Table 2.2, we report the prover time
of the protocols. The proof size and the verification time of all the variants are similar.
Results. As shown in Table 2.2, the performance of our GKR protocol is comparable to those special pro-
tocols for structured circuits, and much better than the state-of-the-art on generic circuits. For example, for
matrix multiplication, our protocol is slower by 1.3-2.4×, because the protocol in [Tha13a] writes the wiring
of matrix multiplication explicitly and does not need to compute ˜add and ˜mult. For image scaling, our pro-
tocol is slower by 2.5-4×. This gap would become even smaller when the size of each sub-copy is larger.
Here we use a small 16× 16 block, while the number of copies is 49-4489.

For image scaling with different parameters and generic random circuits, our protocol has a speedup of
4-8×, and the speedup will increase with the scale of the circuits, as indicated by the complexity.

Besides the speedup on complicated circuits, a significant advantage of our new GKR protocol is on the
prover interface of the system. In prior work such as [Wah+17; ZGKPP18], as the protocols are particularly
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efficient for structured circuits, the circuits must be represented as small copies and the numbers of each copy.
Even worse, the structure is explored per layer of the circuit, making the numbers of each copy potentially
different in different layers. (E.g., 6 gates may be considered 3 copies with 2 gates and 2 copies with 3 gates
in two different layers for efficiency purposes.) This constraint makes the interface of these systems hard to
use and generalize. Our result gives a unified solution for arbitrary circuits, and it is the main reason that
our prover can take the description of any layered arithmetic circuit potentially generated by other tools like
Verilog.

2.5.2 Comparing to Other ZKP Schemes
In this section, we show the performance of Libra as a whole and compare it with several state-of-the-art
zero knowledge proof systems.
Methodology. We compare with the following systems: libSNARK [BSCTV14c], Ligero[AHIV17], lib-
STARK[BSBHR19], Hyrax[WTSTW18], Bulletproofs[BBBPWM18] and Aurora [BSCRSVW19]. See Sec-
tion 2.1 for more explanations of these systems and their asymptotic.

• libSNARK: We use jsnark [Jsn] to write the circuits (rank one constraint system (R1CS)), which compiles
them to zero knowledge proofs using the libSNARK backend [Liba].

• Ligero: As the system is not open-source, we use the same number reported in [AHIV17] on computing
hashes.

• libSTARK: After communications with the authors of [BSBHR19], we obtain numbers for proving the
same number of hashes in the 3rd benchmark below from the authors. The experiments are executed on a
server with 512GB of DDR3 RAM (1.6GHz) and 16 cores (2 threads per core) at speed of 3.2GHz.

• Hyrax: We use the open-source implementation of the system at [Hyr].

• Bulletproofs: We use the system re-implemented by [WTSTW18] at [Hyr].

• Aurora: As a recently accepted paper, the system is not available and we extrapolate its performance using
the numbers reported in the paper [BSCRSVW19] for circuits with 210 − 220 R1CS constrains.

Benchmarks. We evaluate the systems on three benchmarks: matrix multiplication, image scaling and
Merkle Tree[Mer87], which are used in [WTSTW18]. Matrix multiplication and image scaling are the same
as explained in Section 2.5.1. In the third benchmark, P proves to V that it knows the value of the leaves
of a Merkle tree[Mer87] that computes to a public root value[BEGKN94]. We use SHA-256 for the hash
function. We implement it with a flat circuit where each sub-computation is one instance of the hash function.
The consistency of the input and output of corresponding hashes are then checked by the circuit. There are
2M − 1 SHA256 invocations for a Merkle tree with M leaves. We increase the number of leaves from 16
to 256. We use the SHA-256 implemented by jsnark [Jsn] in R1CS format to run libSNARK and estimate
Aurora, and we use the SHA-256 arithmetic circuit implemented by Hyrax to run Hyrax, Bulletproofs and
Libra. We only show the performance of Ligero and libSTARK on the third benchmark.

We report the prover time, proof size and verification time in Figure 2.1.
Prover time. As shown in Figure 2.1(a)(b)(c), the prover in Libra is the fastest among all systems in all three
benchmarks we tested. Ligero is one of the best existing ZKP systems on prover time as it is purely based on
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Figure 2.1: Comparisons of prover time, proof size and verification time between Libra and existing
zero-knowledge proof systems.

symmetric key operations. Comparing to Ligero, the prover time of Libra is 1.15× faster on a Merkle tree
with 2 leaves and 2× faster with 256 leaves. Comparing to other systems, Libra improves the prover time by
3.4− 8.9× vs. Hyrax, 7.1− 16.1× vs. Aurora, 10.1− 12.4× vs. libSTARK and 65− 166× vs. Bulletproof.

Libra is also faster than libSNARK on general circuits by 5− 10×, as shown in Figure 2.1(a) and 2.1(b).
The performance of Libra is comparable to libSNARK on Merkle trees in Figure 2.1(c). This is because (1)
most values in the circuit of SHA256 are binary, which is friendly to the prover of libSNARK as the time of
exponentiation is proportional to the bit-length of the values; (2) The R1CS of SHA256 is highly optimized
by jsnark [Jsn] and real world products like Zcash [Ben+14]. There are only 26,000 constrains in one hash.
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In the arithmetic circuit used by Libra, there are 60,000 gates with 38,000 of them being multiplication gates.
Even so, Libra is still as fast as libSNARK on a Merkle tree with 2 leaves and 2× faster with 256 leaves. We
plan to further optimize the implementation of SHA256 as an arithmetic circuit in the future.

The gap between Libra and other systems will become bigger as the size of the circuit grows, as the prover
time in these systems (other than Bulletproof) scales quasi-linearly with the circuit size. The evaluations
justify that the prover time in Libra is both optimal asymptotically, and efficient in practice.
Verification time. Figure 2.1(d)(e)(f) show the verification time. Our verifier is much slower than libSNARK
and libSTARK, which runs in 1.8ms and 28-44ms respectively in all the benchmarks.

Other than these two systems, the verification time of Libra is faster, as it grows sub-linearly with the
circuit size. In particular, our verification time ranges from 0.08− 1.15s in the benchmarks we consider. In
Figure 2.1(f), the verification time of Libra is 8× slower than Aurora when M = 2, and 15× faster when
M = 256. Libra is 2.5× slower than Ligero with M = 2 and 4× faster with M = 256. Comparing to Hyrax
and Bulletproof, our verification is 1.2 − 9× and 27 − 900× faster respectively. Again, the gap increases
with the scale of the circuits as our verification is succinct.
Proof size. We report the proof size in Figure 2.1(g)(h)(i). Our proof size is much bigger than libSNARK,
which is 128 bytes for all circuits, and Bulletproof, which ranges in 2-5.5KBs. The proof size in Libra is in
the range of 30-60KBs, except for the matrix multiplications where it reduces to 5-9KBs. This is better than
Aurora, Hyrax and libSTARK, which also have poly-logarithmic proof size to the circuit. Finally, the proof
size in Ligero is O(

√
C) and grows to several megabytes in practice.

Setup time. Among all the systems, only Libra and libSNARK require trusted setup. Thanks to the opti-
mization described in the beginning of this section, it only takes 202s to generate the public parameters in
our largest instance with n = 224. Libra only needs to perform this setup once and it can be used for all
benchmarks and all circuits with no more inputs. libSNARK requires a per-circuit setup. For example, it
takes 1027s for the Merkle tree with 256 leaves, and takes 210s for 64× 64 matrix multiplications.

2.5.3 Discussions
In this section, we discuss some potential improvements for Libra.
Improving verification time. As shown in the experiments above, the verification time in Libra is already
fast in practice compared to other systems, yet it can be further improved by 1-2 orders of magnitude.

Within the verification of Libra, most of the time (more than 95% in the evaluations above) is spent on
our zkVPD protocols using bilinear pairings. In our current protocol, we use the pairing-based zkVPD both
for the input layer and for the masking polynomials gi, Ri in each intermediate layer. Although the masking
polynomials are small, the verification of our zkVPD still requires O(si) pairings per layer for gi, which is
asymptotically the same as the input layer. For example, for the SHA256 circuit with 12 layers, the zkVPD
verification of each gi is around 46ms, 1

16 of the total verification time.
However, there are many zkVPD candidates for these masking polynomials. Recall that the size of gi is

onlyO(si), logarithmic on the size of the circuit. We could use any zkVPDwith up to linear commitment size,
prover time, proof size and verification time while still maintaining the asymptotic complexity of Libra. The
only property we need is zero knowledge. Therefore, we can replace our pairing-based zkVPDwith any of the
zero knowledge proof systems we compare with as a black-box. Ligero and Aurora are of particular interest
as their verification requires no cryptographic operations. If we use the black-box of these two systems for
the zkVPD of gi, Ri, the prover time and proof size would be affected minimally, and the verification time
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would be improved by almost d times, as only the zkVPD of the input layer requires pairings after the change.
This is a 1-2 orders-of-magnitude improvement depending on the depth of the circuit. In addition, it also
removes the trusted setup in the zkVPD for the masking polynomials. We plan to integrate this approach into
our system when the implementations of Ligero and Aurora become available.
Removing trusted setup. After the change above, the only place that requires trusted setup is the zkVPD for
the input layer. However, replacing our pairing-based zkVPD with other systems without trusted setup may
affect the succinctness of our verification time on structured circuits. For example, using Ligero, Bulletproof
and Aurora as a black-box would increase the verification time to O(n), and using Hyrax would increase the
proof size and verification time to O(

√
n). Using libSTARK may keep the same complexity, as polynomial

evaluation is a special function with short description, but the prover time and memory usage is high in
STARK as shown in the experiments. Designing an efficient zkVPD protocol with logarithmic proof size
and verification time without trusted setup is left as an interesting future work and we believe this paper
serves as an important step towards the goal of efficient succinct zero knowledge proof without trusted setup.
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Chapter 3

Orion: Zero Knowledge Proof
with Linear Prover Time

Zero-knowledge proof is a powerful cryptographic primitive that has found various applications in the real
world. However, existing schemes with succinct proof size suffer from a high overhead on the proof gener-
ation time that is super-linear in the size of the statement represented as an arithmetic circuit, limiting their
efficiency and scalability in practice. In this paper, we present Orion, a new zero-knowledge argument sys-
tem that achieves O(N) prover time of field operations and hash functions and O(log2 N) proof size. Orion
is concretely efficient and our implementation shows that the prover time is 3.09s and the proof size is 1.5MB
for a circuit with 220 multiplication gates. The prover time is the fastest among all existing succinct proof
systems, and the proof size is an order of magnitude smaller than a recent scheme proposed in Golovnev et
al. 2021.

In particular, we develop two new techniques leading to the efficiency improvement. (1) We propose
a new algorithm to test whether a random bipartite graph is a lossless expander graph or not based on the
densest subgraph algorithm. It allows us to sample lossless expanders with an overwhelming probability. The
technique improves the efficiency and/or security of all existing zero-knowledge argument schemes with a
linear prover time. The testing algorithm based on densest subgraph may be of independent interest for other
applications of expander graphs. (2) We develop an efficient proof composition scheme, code switching, to
reduce the proof size from square root to polylogarithmic in the size of the computation. The scheme is built
on the encoding circuit of a linear code and shows that the witness of a second zero-knowledge argument is
the same as the message in the linear code. The proof composition only introduces a small overhead on the
prover time.
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3.1 Introduction
Zero-knowledge proof (ZKP) allows a prover to convince a verifier that a statement is valid, without revealing
any additional information about the prover’s secret witness of the statement. Since it was first introduced in
the seminal paper by Goldwasser, Micali and Rackoff [GMR89], ZKP has evolved from a purely theoretical
interest to a concretely efficient cryptographic primitive, leading to many real-world applications in prac-
tice. It has been widely used in blockchains and cryptocurrencies to achieve privacy (Zcash [Ben+14; Zca])
and to improve scalability (zkRollup [Zkr]). More recently, it also found applications in zero-knowledge
machine learning [ZFZS20; LKKO20; LXZ21; FQZDC21; WYXKW21], zero-knowledge program analy-
sis [FDNZ21], and zero-knowledge middlebox [GAZBW22].

There are three major efficiency measures in ZKP: the overhead of the prover to generate the proof, which
is referred to as the prover time; the total communication between the prover and the verifier, which is called
the proof size; and the time to verify the proof, which is called the verifier time. Despite its recent progress,
the efficiency of ZKP is still not good enough for many applications. In particular, the prover time is one of
the major bottlenecks preventing existing ZKP schemes from scaling to large statements. As pointed out by
Golovnev et al. in [GLSTW], to prove a statement that can be modeled as an arithmetic circuit with N gates,
existing schemes with succinct proof size either perform a fast Fourier transform (FFT) due to the Reed-
Solomon code encodings or polynomial interpolations, or a multi-scalar exponentiation due to the use of
discrete-logarithm assumptions or bilinear maps, over a vector of size O(N). The former takes O(N log N)
field additions and multiplications and the latter takes O(N log |F|) field multiplications, where |F| is the size
of the finite field. With the Pippenger’s algorithm [Pip76], the complexity of the multi-scalar exponentiation
can be improved to O(N log |F|/ log N), which is still super-linear as log |F| = ω(log N) to ensure security.
These operations are indeed the dominating cost of the prover time both asymptotically and concretely. See
Section 3.1.3 for more discussions about existing ZKP schemes categorized by the underlying cryptographic
techniques.

The only exceptions in the literature are schemes in [BCGGHJ17; BCG20; BCL22; GLSTW]. Bootle et
al. [BCGGHJ17] proposed the first ZKP scheme with a prover time of O(N) field operations and a proof size
of O(

√
N) using a linear-time encodable error-correcting code. The proof size is later improved to O(N1/c)

for any constant c via a tensor code in [BCG20], and then to polylog(N) via a generic proof composition with
a probabilistic checkable proof (PCP) in [BCL22]. These schemes are mainly for theoretical interests and
do not have implementations with good concrete efficiency. Recently, Golovnev et al. [GLSTW] proposed
a ZKP scheme based on the techniques in [BCG20] by instantiating the linear-time encodable code with a
randomized construction. However, the security guarantee (soundness error) is only inverse polynomial in
the size of the circuit, instead of negligible. Moreover, the proof size of the implemented scheme is O(

√
N)

(more details are presented in Section 3.1.3). Therefore, the following question still remains open:
Can we construct a concretely efficient ZKP scheme with O(N) prover time and polylog(N) proof size?

3.1.1 Our Contributions
We answer the question above positively in this paper by proposing a new ZKP scheme. In particular, our
contributions include:

• First, we propose a random construction of the linear-time encodable code that has a constant rela-
tive distance with overwhelming probability. Such a code was used in all existing linear-time ZKP
schemes [BCGGHJ17; BCG20; BCL22; GLSTW] and thus our new construction also improves their
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Prover time Proof size Verifier time∗ Soundness Concrete efficiency
[BCGGHJ17] O(N) O(

√
N) O(N) negl(N) 7

[BCG20] O(N) O(N1/c) O(N1/c) negl(N) 7

[BCL22] O(N) polylog(N) polylog(N) negl(N) 7

[GLSTW] O(N) O(
√

N) O(
√

N) O( 1
poly(N)) 3

our scheme O(N) O(log2 N) O(log2 N) negl(N) 3

Table 3.1: Comparison to existing ZKP schemes with linear prover time. N is the size of the cir-
cuit/R1CS and c ≥ 2 is a constant. * The verifier time is achieved in the preprocessing setting. In addi-
tion, the scheme in [GLSTW] achieves O(

√
N) verifier for structured circuits in the non-preprocessing

setting.

efficiency. The key technique is a new algorithm to test whether a random graph is a good expander
graph based on the densest sub-graph algorithm, which may be of independent interest for other ap-
plications of expander graphs [SZT02].

• Second, we propose a new reduction that achieves a proof size of O(log2 N) efficiently. Our tech-
nique is a proof composition named “code switching” proposed in [RR20]. We develop an efficient
instantiation using the encoding circuit of the linear-time encodable code, which reduces the proof
size of the schemes in [BCG20; GLSTW] from O(

√
N) to O(log2 N) with a small overhead on the

prover time.

• Finally, we implement our new ZKP scheme, Orion, and evaluate it experimentally. On a circuit with
220 gates (rank-1-constraint-system (R1CS) with 220 constraints), the prover time is 3.09s, the proof
size is 1.5 MBs and the verifier time is 70ms. Orion has the fastest prover time among all existing ZKP
schemes in the literature. The proof size is 6.5× smaller than the system in [GLSTW]. The scheme is
plausibly post-quantum secure and can be made non-interactive via the Fiat-Shamir heuristic [FS86].

Table 3.1 shows the comparison between our scheme and existing schemes with linear prover time and suc-
cinct proof size.
Verifier time. The verifier time in Table 3.1 is achieved in the preprocessing setting (holographic proofs [CHM-
MVW20]). As all the schemes do not have a trusted setup, their verifier time is O(N) in the worst case, as
the verifier has to read the description of the circuit/R1CS. In the preprocessing setting, the verifier time
becomes sublinear with the commitment of an indexer describing the circuit. This is the best that can be
achieved, and our scheme has a O(log2 N) verifier time in this setting using the techniques in [Set20]. In ad-
dition, the scheme in [GLSTW] can also achieve a verifier time of O(

√
N) in the non-preprocessing setting

if the circuit/R1CS is structured, i.e., the description of the circuit can be computed in sublinear time. Our
scheme has an O(

√
N) verifier in this case, but not O(log2 N). This is because the encoding circuit we use

in the proof compositing is of size O(
√

N) and is not structured.
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Figure 3.1: An example of lossless expander. k = 6, k′ = 9, g = 3, δ = 1, ϵ = 1
6 .

3.1.2 Technical Overview
Testing expander graphs via densest sub-graph. All existing ZKP schemes with linear prover time and
succinct proof size [BCGGHJ17; BCG20; BCL22; GLSTW] use linear-time encodable codes with a con-
stant relative distance proposed in [Spi96; DI14; GLSTW], which in turn all rely on the existence of good
expander graphs. In a good expander graph, any subset of vertices expands to a large number of neighbors.
Figure 3.1 shows an example of a bipartite graph where any subset of vertices on the left of size 2 expands
to at least 5 vertices on the right. See Section 3.2.1 for formal definitions and constructions. However, how
to construct such good expanders remain unclear in practice. Explicit constructions [CRVW02] have large
hidden constants in the complexity and thus are not practical. A random graph tends to have good expansion,
but the probability that a random graph is not a good expander is inverse polynomial in the size of the graph.
The code constructed from a non-expanding graph does not have a good minimum distance, making the ZKP
scheme insecure. Therefore, a randomly sampled graph is not good for cryptographic applications.

In this paper, we propose a new algorithm to efficiently test whether a random graph is a good expander
or not. With the new testing algorithm, we are able to re-sample the random graph until it passes the test,
obtaining a good expander with an overwhelming probability and boosting the soundness error of the ZKP
scheme to be negligible. The testing algorithm is based on the densest sub-graph algorithm [Gol84]. The
density of a graph G = (V, E) is defined as the number of edges divided by the number of vertices |E|

|V | ,
and the densest sub-graph is simply the sub-graph in a graph with the maximum density. We observe that
a good expander graph tends to have a small maximum density. This is because assuming the degree g of
each vertex is a constant, e.g. g = 3 for all vertices on the left in Figure 3.1, given any subset of vertices of
size s in the graph, the total number of edges is fixed as |E| = gs in the sub-graph defined by this subset and
its neighbors. For example, any two vertices on the left in Figure 3.1 as highlighted always have 6 outgoing
edges. Then we differentiate two cases:

• In a good expander graph, any subset expands to a large number of neighbors, thus the total number
of vertices in this sub-graph is large. Therefore, the density of any sub-graph is small;

• In contrast, if the graph is not a good expander, there is at least one subset that does not expand. Taking
the sub-graph defined by this subset and its neighbors, again the number of edges is fixed, while the
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number of vertices is small. Therefore, the density of this sub-graph is large, which will be detected
by the densest subgraph algorithm.

This observation gives us a way to differentiate good expanders. To the best of our knowledge, we are the
first to make the connection between expander and the densest subgraph problem.

The real testing algorithm involves random sampling and repeating the densest sub-graph algorithm
because of additional conditions of the expander. The formal algorithm, theorem and proofs are presented
in Section 3.3.
Proof composition via code-switching. With the expander graph sampled above and the corresponding
linear code, we are able to build efficient ZKP schemes following the approaches in [BCGGHJ17; BCG20;
GLSTW]. However, the proof size is O(N1/c) instead of polylog(N). To reduce the proof size, a common
technique in the literature is proof composition. Instead of sending the proof directly to the verifier, the
prover uses a second ZKP scheme to show that the proof of the first ZKP is indeed valid. In particular,
in [BCGGHJ17; BCG20; GLSTW], the proof consists of several codewords of the linear-time encodable
code, and the checks can be represented as inner products between the messages in the codewords and some
public vectors.

Unfortunately, we do not have a second ZKP scheme based on the linear-time encodable code with a
polylog(N) proof size to prove inner products. If we had it, we would already be able to build a ZKP
scheme with polylog(N) proof size in the first place. Instead, we rely on the fact that the proof consists of
the codewords of the linear code and construct the second ZKP scheme as follows. One component of the
second ZKP scheme is the encoding circuit of the linear-time encodable code. It takes the witness of the
second ZKP scheme, encodes it and outputs several random locations of the codeword. The verifier checks
that these random locations are the same as the proof of the first ZKP scheme, without receiving the entire
proof. By the distance of the linear-time encodable code, we show that the witness of the second ZKP must
be the same as the message in the proof of the first ZKP with overwhelming probability. After that, the other
component of the second ZKP checks the inner product relationship modeled as an arithmetic circuit. A
similar proof composition was also used in [RR20]. We view our approach using the encoding circuit as a
variant of the proof composition that is efficient in practice, and thus we inherit the name “code switching”
from [RR20].

With this idea, we can use any general-purpose ZKP scheme on arithmetic circuits with a polylog(N)
proof size as the second ZKP scheme in the proof composition. The size of this circuit is only O(

√
N), thus

the second ZKP does not introduce any overhead on the prover time as long as its prover time is no more than
quadratic. In our construction, we use the ZKP scheme in [ZXZS20] as the second ZKP. The scheme is based
on the interactive oracle proofs (IOP) and the witness is encoded using the Reed-Solomon code. Therefore,
the technique is called code switching. The formal protocols are presented in Section 2.4.

3.1.3 Related Work
Zero-knowledge proof was introduced in [GMR89] and generic constructions based on PCPs were pro-
posed by Kilian [Kil92] and Micali [Mic00] in the early days. Driven by various applications mentioned
in the introduction, there has been significant progress in efficient ZKP protocols and systems. Catego-
rized by their underlying techniques, there are ZKP systems based on bilinear maps [PHGR13; BSCGTV13;
BFRSBW13; BSCTV14a; Cos+15; WSRBW15; FFGKOP16; GKMMM18; MBKM19; GWC19a; CHM-
MVW20; KPPS20], MPC-in-the-head [GMO16; Cha+17; AHIV17; KKW18], IP [ZGKPP17d; ZGKPP17b;
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WTSTW18; ZGKPP18; XZZPS19c; Zha+21a], discrete logarithm [BBBPWM18; BFS20; Set20; SL20], in-
teractive oracle proofs (IOP) [BSCRSVW19; BSBHR19; ZXZS20; BFHVXZ20; COS20; BDFG20], and
lattices [BBCDPGL18; ESLL19; BLNS20; ISW21]. As mentioned in the introduction, these schemes per-
form either an FFT (such as schemes based on MPC-in-the-head and IOP) or a multi-scalar exponentiation
(such as schemes based on discrete-log and bilinear pairing), making the complexity of the prover time super-
linear in the size of the circuit.

With the techniques proposed in [XZZPS19c; Zha+21a], the prover time of the schemes based on the
interactive proofs (the GKR protocol [GKR08]) is linear if the size of the input is significantly smaller than
the size of the circuit. However, the goal of this paper is to make the prover time strictly linear without such
a requirement, and our polynomial commitment scheme can also be plugged into these schemes to improve
their efficiency.
Schemes with linear prover time. Asmentioned before, schemes in [BCGGHJ17; BCG20; BCL22; GLSTW]
are the only candidates in the literature with linear prover time and succinct proof size for arithmetic circuits.
They all use linear-time encodable codes based on expander graphs and our first contribution applies to all of
them. Moreover, our ZKP scheme is based on the polynomial commitment in [GLSTW] and the tensor IOP
in [BCG20], and we improve the proof size to O(log2 N) through a proof composition. In fact, the scheme
in [BCL22] also proposes a proof composition with the PCP in [Mie09]. However, the complexity of the
PCP is polynomial time. That is why the scheme in [BCL22] has to be built on the scheme in [BCG20] with
a proof size of O(N1/c) and is not concretely efficient, while our scheme can be built on top of the efficient
scheme in [GLSTW] with a proof size of O(

√
N).

Finally, the scheme in [GLSTW] samples a random graph to build the linear-time encodable code. The
scheme achieves a soundness error of O( 1

poly(N)) and the authors spent great efforts calculating parameters
that achieve a concrete failure probability of 2−100 for large circuits in practice [GLSTW, Claim 2 and Figure
2]. Our sampling algorithm provides the provable security guarantee of a negligible soundness error for
their scheme. Moreover, we improve the proof size from O(

√
N) to O(log2 N) efficiently, solving an open

problem left in [GLSTW].
There are two recent schemes that achieve linear prover time for Boolean circuits [RR22; HR22]. We

mainly focus on arithmetic circuits in this paper, but our techniques may also apply to these schemes to obtain
efficient instantiations.
Schemes with linear proof size. Recently, there is a line of work constructing ZKP based on secure mul-
tiparty computation (MPC) techniques [WYKW20; DIO21; BMRS21; YSWW21] and these schemes have
demonstrated fast prover time in practice. If one treats a block cipher (e.g., AES) as a constant-time operation
because of the CPU instruction, these schemes indeed have a linear time prover (we are using a similar CPU
instruction for the hash function SHA-256 in our scheme to achieve linear prover time). However, they have
linear proof size in the size of the circuit, are inherently interactive, and are not publicly verifiable, which are
not desirable in many applications. We mainly focus on non-interactive ZKP with succinct proof size and
public verifiability in this paper.
Expander testing. Testing the properties of expander graphs is a deeply explored area in computer science.
Many works [NS07; CS07; GR11] have proposed efficient testing algorithms without accessing the whole
graph. However, these algorithms do not directly apply to our testing of lossless expander. For example,
the algorithm in [NS07] based on random walks can differentiate good expanders from graphs that are far
from expanders, while our scheme can differentiate whether a graph is a lossless expander or not with over-
whelming probability. Of course our algorithm accesses the entire graph, which is fine in our application of
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linear-time encodable code. To the best of our knowledge, we are not aware of any testing algorithm with
such properties.

There are also impossibility results on expander testing [KS16]. Due to different definitions of expansion,
our testing algorithm cannot distinguish the cases in [KS16, Theorem 1.1] and thus it does not violate the
impossibility results.

3.2 Preliminary
We use [N ] to denote the set {0, 1, 2, ..., N − 1}. poly(N) means a function upper bounded by a polynomial
in N with a constant degree . We use λ = ω(log N) to denote the security parameter, and negl(N) to denote
the negligible function in N , i.e. negl(N) ≤ 1

poly(N) for all sufficiently large N and any polynomial. Some
papers define negl(λ) as the negligible function. As λ is a function of N , they are essentially the same and
negl(N) ≤ 1

2λ . “PPT” stands for probabilistic polynomial time. ⟨A(x), B(y)⟩(z) denotes an interactive
protocol between algorithms A, B with x as the input of A, y as the input of B and z as the common input.

3.2.1 Linear-Time Encodable Linear Code
Definition 3.2.1 (Linear Code). A linear error-correcting code with message length k and codeword length
n is a linear subspace C ∈ Fn, such that there exists an injective mapping from message to codeword
EC : Fk → C, which is called the encoder of the code. Any linear combination of codewords is also a
codeword. The rate of the code is defined as k

n . The distance between two codewords u, v is the hamming
distance denoted as ∆(u, v). The minimum distance is d = minu,v ∆(u, v). Such a code is denoted as
[n, k, d] linear code, and we also refer to d

n as the relative distance of the code.

Generalized Spielman code. In our construction, we use a family of linear codes that can be encoded in
linear time and has a constant relative distance [Spi96; DI14; GLSTW]. The code was first proposed by
Daniel Spielman in [Spi96] over the Boolean alphabet. Druk and Ishai [DI14] generalized it to a finite field
F, and introduced a distance boosting technique to achieve the Gilbert-Varshamov bound[Gil52; Var57]. We
only use the basic construction over F without the distance boosting, and thus refer to it as the generalized
Spielman code in this paper. The code relies on the existence of lossless expander graphs, which is defined
below:

Definition 3.2.2 (Lossless Expander [Spi96]). Let G = (L, R, E) be a bipartite graph. 0 < ϵ < 1 and
0 < δ be some constants. The vertex set consists of L and R, two disjoint subsets, henceforth the left and
right vertex set. LetΓ(S) be the neighbor set of some vertex set S. We sayG is an (k, k′; g)-lossless expander
if |L| = k, |R| = k′ = αk for some constant α, and the following property hold:

1. Degree: The degree of every vertex in L is g.

2. Expansion: |Γ(S)| ≥ (1− ϵ)g|S| for every S ⊆ L with |S| ≤ δ|L|
g .

Intuitively speaking, a lossless expander has very strong expansion. As the degree of each left vertex
is g, a set of |S| left vertices have at most g|S| neighbors, while the second condition requires that every
set expands to at least (1 − ϵ)g|S| vertices for a small constant ϵ. Meanwhile, as the right vertext set has
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|R| = αk vertices, such an expansion is not possible if |S| > αk
(1−ϵ)g , thus there is a condition |S| ≤ δk

g
bounding the size of S. An example is shown in Figure 3.1.
Construction of generalized Spielman code. With the lossless expander, we give a brief description of the
generalized Spielman code. Let G = (L, R, E) be a lossless expander with |L| = 2t, |R| = 2t−1. Let At

be a 2t × 2t−1 matrix where At[i][j] = 1 if there is an edge i, j in G for i ∈ [2t], j ∈ [2t−1]; otherwise
At[i][j] = 0. The generalized Spielman code is constructed as follows:

1. Let Et
C(x) be the encoder function of input length |x| = 2t, and its output will be a codeword of size

2t+2. We use EC to denote the encoder function when length is clear.

2. If |x| ≤ n0 then directly output x, for some constant n0.

3. Compute m1 = xAt. Each entry of m1 can be viewed as a vertex in R, and value of each vertex is
the summation of its neighbors in L. The length of m1 is 2t−1.

4. Recursively apply the encoder Et−1
C on m1, let c1 = Et−1

C (m1).

5. Compute c2 = c1At+1.

6. Output x⊙ c1 ⊙ c2 as the codeword of size 2t+2. ⊙ denotes concatenation.

Lemma 3.2.3 (Generalized Spielman code, [DI14]). Given a family of lossless expander, that achieves (1−
ϵ)g|S| expansion with |S| ≤ δ|L|

g , for input size k, the generalized Spielman code is a [4k, k, δ
8g k] linear code

over F.

The code in [GLSTW] is a variant of generalized Spielman code. In their construction, random weights
are assigned to each edge of lossless expander at line 3, 5. The output at line 6 is randomized as (x ⊗ r) ⊙
c1 ⊙ c2, where ⊗ denotes element-wise multiplication and r is a random vector.

Definition 3.2.4 (Tensor code). Let C be a [n, k, d] linear code, the tensor code C⊗2 of dimension 2 is the
linear code in Fn

2
with message length k2, codeword length n2, and distance nd. We can view the codeword

as a n× n matrix. We define the encoding function below:

1. A message of length k × k is parsed as a k × k matrix. Each row of the matrix is encoded using EC ,
resulting in a codeword C1 of size k × n.

2. Each column of C1 is then encoded again using EC . The result C2 of size n × n is the codeword of
the tensor code.

3.2.2 Collision-Resistant Hash Function and Merkle Tree
Let H : {0, 1}2λ → {0, 1}λ be a hash function. A Merkle Tree is a data structure that allows one to commit
to l = 2dep messages by a single hash value h, such that revealing any bit of the message require dep + 1
hash values.

AMerkle hash tree is represented by a binary tree of depth depwhere l messages elementsm1, m2, ..., ml

are assigned to the leaves of the tree. The values assigned to internal nodes are computed by hashing the
value of its two child nodes. To reveal mi, we need to reveal mi together with the values on the path from
mi to the root. We denote the algorithm as follows:



3.2. PRELIMINARY 54

1. h← Merkle.Commit(m1, ..., ml).

2. (mi, πi)← Merkle.Open(m, i).

3. {accept, reject} ← Merkle.Verify(πi, mi, h).

To achieve zero-knowledge, we requires the hash function to be hiding, we formally define hiding as
follows:
Hiding property The hiding property specifies that given any hash output y, it is infeasible to find an input
x such that y = H(x|r) is satisfied. Note, we implicitly assumes for each hash function call on input x, we
will append a randomness r.

3.2.3 Zero-Knowledge Arguments
An argument system for an NP relation R is a protocol between a computationally bounded prover P and a
verifier V . At the end of the protocol V will be convinced that there exits a witness w such that (x, w) ∈ R
for some public input x. We focus on arguments of knowledge which require the prover know the witness w.
We formally define zero-knowledge as follows:

Definition 3.2.5 (View). We denote by View(⟨P,V⟩(x)) the view of V in an interactive protocol with P .
Namely, it is the random variable (r, b1, b2, ..., bn, v1, v2, ..., vm) where r is V’s randomness, b1, ..., bn are
messages from V to P , and v1, ..., vm are messages from P to V .

Definition 3.2.6. LetR be an NP relation. A tuple of algorithm (G,P,V) is a zero-knowledge argument of
knowledge forR if the following holds.

• Correctness. For every pp output by G(1λ) and (x, w) ∈ R,

Pr[⟨P(w),V()⟩(pp, x) = accept] = 1.

• Knowledge Soundness. For any PPT adversary P∗, there exists a PPT extractor ε such that for every
pp output by G(1λ) and any x, the following probability is negl(N):

Pr[⟨P∗(),V()⟩(pp, x) = accept, (x, w) /∈ R|w ← ε(pp, x, View(⟨P∗(),V()⟩(pp, x)))]

• Zero knowledge. There exists a PPT simulator S such that for any PPT algorithm V∗, (x, w) ∈ R,
pp output by G(1λ), it holds that

View(⟨P(w),V∗()⟩(x)) ≈ SV∗
(pp, x)

Where SV∗
(x) denotes that S is given oracle accesses to V∗’s random tape.

We say that (G,P,V) is a succinct argument system if the total communication between P and V (proof size)
is poly(λ, |x|, log |w|).

Definition 3.2.7 (Arithmetic circuit). An arithmetic circuit C over F and a set of variables x1, ..., xN is a
directed acyclic graph as follows:
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1. Each vertex is called a “gate”. A gate with in-degree zero is an input gate and is labeled as a variable
xi or a constant field element in F.

2. Other gates have 2 incoming edges. It calculates the addition or multiplication over the two inputs
and output the result.

3. The size of the circuit is defined as the number of gates N .

3.2.4 Polynomial Commitment
A polynomial commitment consists of three algorithms:

• PC.Commit(ϕ(·)): the algorithm outputs a commitmentR of the polynomial ϕ(·).

• PC.Prove(ϕ, x⃗,R): given an evaluation point ϕ(x⃗), the algorithm outputs a tuple ⟨x⃗, ϕ(x⃗), πx⃗⟩, where
πx⃗ is the proof.

• PC.VerifyEval(πx⃗, x⃗, ϕ(x⃗),R): given πx⃗, x⃗, ϕ(x⃗),R, the algorithm checks if ϕ(x⃗) is the correct eval-
uation. The algorithm outputs accept or reject.

Definition 3.2.8 ((Multivariate) Polynomial commitment). A polynomial commitment scheme has the follow-
ing properties:

• Correctness. For every polynomial ϕ and evaluation point x⃗, the following probability holds:

Pr


PC.Commit(ϕ)→R

PC.Prove(ϕ, x⃗,R)→ x⃗, y, π

y = ϕ(x⃗)
PC.VerifyEval(π, x⃗, y,R)→ accept

 = 1

• Knowledge Soundness. For any PPT adversaryP∗ with PC.Commit∗, PC.Prove∗, there exists a PPT
extractor E such that the probability below is negligible:

Pr


PC.Commit∗(ϕ∗)→R∗

PC.Prove∗(ϕ∗, x⃗,R∗)→ x⃗, y∗, π∗

PC.VerifyEval(π∗, x⃗, y∗,R∗)→ accept
: ϕ∗ ← E(R∗, x⃗, π∗, y∗) ∧ y∗ ̸= ϕ∗(x⃗)


• Zero-knowledge. For security parameter λ, polynomial ϕ, any PPT adversary A, there exists a sim-
ulator S = [S0,S1], we consider following two experiments:
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RealA,ϕ(pp):
1. R← Commit(pp, ϕ)
2. x⃗← A(R, pp)
3. (x⃗, y, π)← Prove(ϕ, x⃗,R)
4. b← A(π, x⃗, y,R)
5. Output b

IdealA,SA(pp):

1. R← S0(1λ, pp)
2. x⃗← A(R, pp)
3. (x⃗, y, π) ← SA

1 (x⃗, pp), given oracle ac-
cess to y = ϕ(x⃗)

4. b← A(π, x⃗, y,R)
5. Output b

For any PPT adversary A, two experiments are identically distributed:

Pr[|RealA,f (pp)− IdealA,SA(pp)| = 1] ≤ negl(N)

3.3 Testing Algorithm for Lossless Expander
As explained above, the generalized Spielman code relies on the existence of lossless expanders. On one
hand, there are explicit constructions of lossless expanders in the literature [CRVW02]. However, there are
large hidden constants in the complexity and the constructions are not practical. On the other hand, a random
bipartite graph is a lossless expander with a high probability of 1−O( 1

poly(k)), where k is the size of the left
vertex set in the bipartite graph. However, this is not good enough for cryptographic applications.

In this section, we propose a new approach to sample a lossless expander with a negligible failure prob-
ability. The key ingredient of our approach is a new algorithm to test whether a randomly sampled bipartite
graph is a lossless expander or not. We begin the section by introducing the classical randomized construction
of a lossless expander and its analysis.

3.3.1 Random Construction of Lossless Expander
As defined in Definition 3.2.2, a lossless expander graph is a g-left-regular bipartite graph G = (L, R, E).
Wigderson et al. [HLW06, Lemma1.9] showed that a random bipartite graph is a lossless expander with a
high probability. In particular, we have the following lemma:

Lemma 3.3.1 ([HLW06]). For fixed constant parameters g, δ, α, ϵ, a random g-left-regular bipartite graph
is a (k, k′; g)-lossless-expander with probability 1−O( 1

poly(k)).

Proof. Let G = (L, R, E) be a random bipartite graph with k vertices on the left and k′ = O(k) vertices
on the right, where each left vertex connects to a randomly chosen set of g vertices on the right.

Let s = |S| be the cardinality of a left subset of vertices S ⊆ L such that s ≤ δk
g , and let t = |T | be the

cardinality of a right subset of vertices T ⊆ R such that t ≤ (1 − ϵ)gs. Let XS,T be an indicator random
variable for the event that all the edges from S connect to T . Then for a particular S, if

∑
T ∈R XS,T = 0,

then the number of neighboring vertices of S must be larger than (1 − ϵ)gs. Otherwise, if there exists a
T ∈ R such that XS,T = 1, i.e., all edges from S connect to T , the graph is not a lossless expander. As the
edges are sampled randomly, the probability of this non-expanding event is ( t

k
′ )sg. Therefore, summing over

all S and by the union bound, the probability of a non-expanding graph is:
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Pr[(
∑
S,T

XS,T ) > 0] ≤
∑
S,T

Pr[XS,T = 1] =
∑
S,T

( t

k′ )
sg

≤

δk
g∑

s=2

(
k

s

)(
k′

t

)
( t

k′ )
sg ≤

δk
g∑

s=2

(
k

s

)(
k′

(1− ϵ)gs

)
((1− ϵ)gs

k′ )sg

Using the inequality
(k

s

)
≤ (ke

s )s, the probability above is

≤

δk
g∑

s=2
(ke

s
)s( k′e

(1− ϵ)gs
)(1−ϵ)gs((1− ϵ)gs

k′ )sg

=

δk
g∑

s=2
(ke

s
)se(1−ϵ)gs((1− ϵ)gs

k′ )ϵgs

=

δk
g∑

s=2
e(1−ϵ)gs+s · (k

s
)s · ((1− ϵ)gs

k′ )ϵgs (3.1)

When s, ϵ, g are constants and k′ = O(k), e(1−ϵ)gs+s is a constant, (k
s )s is O(poly(k)), and ( (1−ϵ)gs

k
′ )ϵgs

is O( 1
poly(k)). Therefore, the overall upper bound is at least O( 1

poly(k)).

The derivation above shows that the probability that a random graph is not a lossless expander is upper-
bounded by O( 1

poly(k)), which is not negligible. Furthermore, we show that the lower-bound of the non-
expanding probability is also not negligible through a simple argument here.

We focus on the case where s is a constant. The number of all possible sub-graphs induced by a left
subset of vertices S is at most k′sg = O(poly(k)). That is, the size of the entire probability space is bounded
by a polynomial. The number of non-expanding graphs is at least 1 (e.g., all edges from S connect to a single
vertex in R). Therefore, the non-expanding probability is at least O( 1

poly(k)).
Lossless expander in [GLSTW] As explained in Section 3.2.1, in [GLSTW], the authors extended the gen-
eralized Spielman code by adding random weights to the edges in the bipartite graph. However, the graph
still needs to be a lossless expander in order to achieve a constant relative distance, and the same issue above
applies to their construction. In particular, as shown by [GLSTW, Claim 2], the probability of not sampling
a lossless expander is

2kH(15/k)+αkH(19.2/(αk))−15g log αk
19.2 ,

where H(x) = −x log x − (1 − x) log(1 − x). We show that the probability above is not negligible. First,
for any constant const,

xH(const/x) = x(−const
x

log const
x
− (1− const

x
) log(x− const

x
)

= (const log(x)− const log const) + (1− const
x

) log(x− const
x

).
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By taking the limit, we have limx→∞ xH(const/x) = (const log(x)− const log const) + 1× 0. Therefore,
xH(const/x) = O(log x). Applying this fact to the equation above, kH(15/k) + αkH(19.2/(αk)) =
O(log k), and −15g log αk

19.2 = −O(log k). Therefore, 2kH(15/k)+αkH(19.2/(αk))−15g log αk
19.2 is at least

2−O(log k) = 1
poly(k) . The failure probability is similar to the upper bound in Equation 3.1.

3.3.2 Algorithm based on Densest Sub-graph
To reduce the non-expanding probability of the random construction, we take a closer look at the equations
above. Equation 3.1 shows that the probability that a random bipartite graph is a not lossless expander
is upper bounded by 1

poly(k) . However, we observe that within the summation, the probability is actually
negligible when s is large. In particular, if we decompose the summation in Equation 3.1 into two sums, one
for 2 ≤ s ≤ log log k, and the other for s ≥ log log k, the second part is

δk
g∑

s=log log k

e(1−ϵ)gs+s · (k

s
)s · ((1− ϵ)gs

k′ )ϵgs. (3.2)

Lemma 3.3.2. Equation 3.2 is negligible if the following conditions are met:

1. (1− ϵ)δ + δ
g + δ

g log(g
δ ) + log( δ

α)ϵδ < −0.001,

2. ϵd > 2.

Here -0.001 is just any small constant that is less than 0. We give a proof in Appendix 3.7. To provide
an intuition on how these parameters are set, we give an example here: δ = 1

11 , ϵ = 7
16 , g = 16, k′ = 1

2k.
We can verify the condition:

1. ϵg = 7 > 2.

2. (1− ϵ)δ + δ
g + δ

g log(g
δ ) + log( δ

α)ϵδ = −0.009 < −0.001.

Sampling lossless expander with negligible failure probability. The observation above shows that the
non-expanding probability is dominated by small sub-graphs with size 2 ≤ s ≤ log log k. This actually
matches our lower bound in Section 3.3.1, as there are only polynomially many such sub-graphs and there
exist ones that do not expand. Therefore, in order to reduce the non-expanding probability, we propose a new
algorithm that detects small sub-graphs of size s ≤ log log k that do not expand. The algorithm is based on
the densest sub-graph problem, and we are the first to make the connection between the densest sub-graph
and the lossless expander.

Definition 3.3.3 (Densest Sub-graph Problem). Let G = (V, E) be an undirected graph, and let S =
(ES , VS) be a subgraph of G. The density of S is defined to be den(S) = ES

VS
. The densest sub-graph

problem is to find S such that it maximizes den(S). We denote the maximum density by Den(G).

Theorem 3.3.4. [Gol84] For any graph G = (V, E), there is a polynomial time algorithm that find the
densest sub-graph G′ = (V ′, E′) such that V ′ ⊆ V and G′ is the sub-graph. And |E′|

|V ′|
is maximized. The

running time of the algorithm is O(|V ||E| log |E| log |V |).
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We will use this algorithm as a building block of our testing algorithm. First, we define a notion of
perfect expander, and then derive the density of a perfect expander.

Definition 3.3.5 (Perfect expander). Let G = (L, R, E) be a bipartite graph. We say G is an (k∗, k′; g)-
perfect expander if |L| = k∗, |R| = k′, the following property holds (whereΓ(S) denotes the set of neighbors
of a set S in G):

1. Degree: every vertex a ∈ L, it has constant degree g.

2. Expansion: |Γ(S)| ≥ (1− ε)g|S| for every S ⊆ L.

Compared to lossless expander, the perfect expander does not have the upper bound on |S| in the ex-
pansion property. Therefore, k′ has to be much larger than k∗, unlike the case of lossless expander where
k′ = O(k). Now we show that the density of a perfect expander is low:

Theorem 3.3.6. If a bipartite graph is a perfect expander, its density is at most g
1+(1−ϵ)g ; otherwise, the

density of the graph is larger than g
1+(1−ϵ)g .

Proof. We first show that the density of a perfect expander is at most g
1+(1−ϵ)g . For any subset L′ ⊆ L,

we prove that among all sub-graphs that L′ is the left vertex set, the graph induced by (L′, Γ(L′)) has the
maximum density.

To see this, suppose V ′ = (L′, R′), R′ ̸= Γ(L′) has density |E′|
|V ′|

that is the densest sub-graph with L′ as
its left vertex set.

Case 1: If there exists a vertex y ∈ R′, y /∈ Γ(L′), then there is no edge between y and L′. We can increase
the density by removing y from R′, as |E′|

|V ′|−1
> |E′|

|V ′|
. This is a contradiction. Therefore, R′ ⊆ Γ(L′).

Case 2: If there exists an element y ∈ Γ(L′), y ̸∈ R′, let c ≥ 1 be the number of edges between y and L′,
by adding y to R′, the density becomes |E′|+c

|V ′|+1
> |E′|

|V ′|
. This is a contradiction again and thus Γ(L′) ⊆ R′.

Therefore, we have Γ(L′) = R′ and V ′ = (L′, Γ(L′)) maximizes the density among all sub-graphs with
L′ as the left vertex set. Let that sub-graph be G′. By the expansion property of the perfect expander,
den(G′) = |E′|

|V ′|
≤ |L′|g

|L′|+(1−ϵ)g|L′|
= g

1+(1−ϵ)g . Therefore, the maximum density Den(G) = maxL
′⊆L

den(G′) ≤ g
1+(1−ϵ)g .

Next, we show that if a bipartite graph is not a perfect expander, its density is larger than g
1+(1−ϵ)g . Let S∗

be the set such that |Γ(S∗)| < (1− ϵ)g|S∗|, then the density of the sub-graph G′ = (V ′ = (S∗, Γ(S∗)), E′)
is |E′|

|V ′|
> g|S∗|

|S∗|+(1−ϵ)g|S∗| = g
1+(1−ϵ)g , so Den(G) ≥ den(G′) > g

1+(1−ϵ)g .

3.3.3 Testing Random Lossless Expander
Theorem 3.3.6 suggests a way to test whether a random graph is a lossless expander. As discussed in lemma
3.3.2, when s ≥ log log k, the non-expanding probability is negligible. Thus, it suffices to test whether there
is a sub-graph of size s < log log k that does not expand. In particular, we are trying to distinguish the
following two cases:



3.3. TESTING ALGORITHM FOR LOSSLESS EXPANDER 60

Algorithm 8 Distinguisher
1: Let G = (L, R, E) be the random bipartite graph.
2:
3: for i ∈ [(g

δ
)log log k] do

4: Sample a random set L′, where |L′| = δk
g
.

5: Run densest graph algorithm in [Gol84] on the subgraph induced by L′: G∗ =
((L′, Γ(L′)), E ′) to find its densest subgraph.

6: if Den(G∗) > g
1+(1−ε)g then

7: return FAIL
8: return SUCC

1. Yes case: For G = (L, R, E), ∀S ⊆ L, |S| ≤ log log k, we have |Γ(S)| ≥ (1− ϵ)g|S|.

2. No case: For G = (L, R, E), there exists a subset S∗ ⊆ L, |S∗| ≤ log log k, such that |Γ(S∗)| <
(1− ϵ)g|S0|.

To distinguish these two cases, we cannot directly apply the densest sub-graph algorithm on the entire
bipartite graph, because the expansion property only holds for |S| ≤ δk

g by Definition 3.2.2 of the lossless
expander. The densest sub-graph algorithm would return a large sub-graph with |S| > δk

g even if it is a
lossless expander, as the density of the large sub-graph could be larger than g

1+(1−ϵ)g by Theorem 3.3.6.
Instead, we randomly sample sub-graphs G∗ = ((L′, Γ(L′)), E′) with δk

g vertexes in the left vertex set.
If there exists a small non-expanding sub-graph with at most log log k vertices on the left, the density of this
small sub-graph is larger than g

1+(1−ϵ)g and the probability of it is in the sub-graph G∗ is at least ( δ
g )log log k.

Once it is contained in G′, the densest-sub-graph algorithm will output a sub-graph with density larger than
g

1+(1−ϵ) . We will sample G∗ g
δ

log log k times to amplify the probability. The formal algorithm is presented in
Algorithm 8.

Theorem 3.3.7 (Distinguisher). Algorithm 8 achieves the following properties:

1. If G is a Yes case, then the algorithm will return SUCC with probability 1.

2. If G is a No case, then the algorithm will return FAIL with probability at least 1− 1
e .

Proof. By Theorem 3.3.6, if the random graph is in Yes case, then the distinguisher will always return
SUCC, since for every induced sub-graph G∗, it is a perfect expander. Otherwise, if the random graph
contains a subset S0 ⊆ L, |S0| ≤ log log k such that |Γ(S0)| < (1 − ϵ)g|S0|, then with probability at least

(
δk
g

k )log log k = ( δ
g )log log k, S0 will be a subset of L′ sampled by the algorithm. In this case, L′ is not a perfect

expander graph and by Theorem 3.3.6, Den(G∗) > g
1+(1−ϵ)g and the algorithm will return FAIL. Since we

repeat it g
δ

log log n times, the probability that we did not successfully sample S0 is (1− ( δ
g )log log k)( g

δ
)log log k

.

By the inequality (1− 1
n)n ≤ 1

e , we have (1− ( δ
g )log log k)( g

δ
)log log k

≤ 1
e .
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By repeating the distinguisher λ times, we can amplify the detection probability of the No case to 1− 1
e

λ .
Finally, we re-sample the random graph until the distinguisher returns SUCC. The successful probability
of one sampling is 1 − O( 1

poly(k)), so the expected number of sampling is a constant. The algorithm runs
λ(g

δ )log log k instances of the densest sub-graph algorithm, and each instance involves a graph with at most δ k
g

vertices and δk edges, so the total running time is O(λ(g
δ )log log kk2 log2 k) = O(λpolylog(k)k2). The same

algorithm can also apply to the lossless expander graph in [GLSTW]. Our sampling algorithm is very efficient
in practice. First, it does not involve any cryptographic operations and is done once. Second, k =

√
N in our

protocol of the polynomial commitment in the next section, so the complexity is actually quasi-linear in the
size of the zero-knowledge argument instance. Finally, the complexity of the densest sub-graph algorithm
in Theorem 3.3.4 is for arbitrary graphs. As observed in our experiments, the algorithm is faster on random
bipartite graphs and we conjecture that there is a better complexity analysis, which is left as an interesting
future work.

3.4 Our new Zero-Knowledge Argument
In this section, we present the construction of our zero-knowledge argument scheme. Many existing papers
show that one can build zero-knowledge arguments from polynomial commitments [WTSTW18; ZXZS20;
CHMMVW20; Set20; GWC19a; BFS20; GLSTW]. We adopt the same technique and focus on constructing
a polynomial commitment because of its simplicity and efficiency, but our approach can be applied directly
to the zero-knowledge arguments for R1CS in [BCG20; BCL22] to improve the prover time and the proof
size. We start the section by describing the polynomial commitment scheme in [GLSTW] based on the tensor
IOP protocol in [BCG20] with a proof size of O(

√
N).

3.4.1 Polynomial commitment from tensor query
In [GLSTW], Golovnev et al. observed that a polynomial evaluation can be expressed as a tensor product.
Here we only consider multilinear polynomial commitments, which can be used to construct zero-knowledge
arguments based on the approaches in [ZGKPP17b; WTSTW18; XZZPS19c; ZXZS20; Set20], but our
scheme can be extended to univariate polynomials. In particular, given a multilinear polynomial ϕ, its eval-
uation on input vector x0, x1, ..., xlog N−1 is:

ϕ(x0, x1, ..., xlog N−1) =
1∑

i0=0

1∑
i1=0

...
1∑

ilog N−1=0
wi0i1...ilog N−1

x
i0
0 x

i1
1 ...x

ilog N−1
log N−1.

The degree of each variable is either 0 or 1 by the definition of a multilinear polynomial, and thus there
are N monomials and coefficients with log N variables. We let i =

∑log N−1
j=0 2jij , that is, i0i1...ilog N−1

is the binary representation of number i. We use w to denote the coefficients where w[i] = wi0i1...ilog N−1
.

Similarly we define Xi = x
i0
0 x

i1
1 ...x

ilog N−1
log N−1. Let k =

√
N , r0 = {X0, X1, ..., Xk−1},

r1 = {X0×k, X1×k, X2×k, ..., X(k−1)×k}. Then we haveX = r0⊗r1. The polynomial evaluation is reduced
to a tensor product ϕ(x0, x1, ..., xlog N−1) = ⟨w, r0 ⊗ r1⟩. Using the tensor IOP protocol in [BCG20], one
can build a polynomial commitment [GLSTW] and we present the protocol in Protocol 9 for completeness.
Here we reuse the notation k as it is exactly the message length of the linear code.
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Protocol 9 Polynomial commitment from [BCG20; GLSTW]
Public input: The evaluation point x⃗, parsed as a tensor product r = r0 ⊗ r1;
Private input: the polynomial ϕ, the coefficient of ϕ is denoted by w.
Let C be the [n, k, d]-linear code, EC : Fk → Fn be the encoding function, N = k × k. If N
is not a perfect square, we can pad it to the next perfect square.
We use a python style notation to select the i-th column of a matrix mat[:, i].

1: function PC.COMMIT(ϕ)
2: Parse w as a k× k matrix. The prover computes the tensor code encoding C1, C2 locally as

defined in Definition 3.2.4. Here C1 is a k × n matrix and C2 is a n× n matrix.
3: for i ∈ [n] do
4: Compute the Merkle tree root Rooti = Merkle.Commit(C2[:, i]).
5: Compute a Merkle tree root R = Merkle.Commit([Root0, ..., Rootn−1]) and output R as

the commitment.
6: function PC.PROVE(ϕ, x⃗,R)
7: The prover receives a random vector γ0 ∈ Fk from the verifier.
8: cγ0

= ∑k−1
i=0 γ0[i]C1[i], yγ0

= ∑k−1
i=0 γ0[i]w[i]. ▷ Proximity

9: c1 = ∑k−1
i=0 r0[i]C1[i], y1 = ∑k−1

i=0 r0[i]w[i]. ▷ Consistency
10: Prover sends c1, y1, cγ0

, yγ0
to the verifier.

11: Verifier randomly samples t ∈ [n] indexes as an array Î and send it to prover.
12: for idx ∈ Î do
13: Prover sends C1[:, idx] and the Merkle tree proof of Rootidx for C2[:, idx] under R to

verifier
14: function PC.VERIFYEVAL(πx⃗, x⃗, y = ϕ(x⃗),R)
15: ∀idx ∈ Î , cγ0

[idx] == ⟨γ0, C1[:, idx]⟩ and EC(yγ0
) == cγ0

. ▷ Proximity
16: ∀idx ∈ Î , c1[idx] == ⟨r0, C1[:, idx]⟩ and EC(y1) == c1. ▷ Consistency
17: y == ⟨r1, y1⟩. ▷ Tensor product
18: ∀idx ∈ Î , EC(C1[:, idx]) is consistent with Rootidx, and Rootidx’s Merkle tree proof is valid.

19: Output accept if all conditions above holds. Otherwise output reject.

As shown in the protocol, to commit to a polynomial, PC.Commit parses the coefficients w as a k ×
k matrix and encodes it using the tensor code with dimension 2 as defined in Definition 3.2.4. Then the
algorithm constructs a Merkle tree commitment for every column C2[:, i] of the n × n codeword C2, and
finally builds another Merkle tree on top of their roots as the final commitment.

To answer the tensor query, there are two checks in the protocol: a proximity check and a consistency
check. The proximity check ensures that the matrix in the commitment is indeed close to a codeword of
the tensor code. The consistency check ensures that y = ⟨r0 ⊗ r1, w⟩ assuming R is a commitment of a
codeword.
Proximity check. The proximity check has two steps. First, the verifier sends a random vector γ0 to the prover,
and the prover computes the linear combination of all rows of C1 and w with γ0, as in Step 8 in Protocol 9.
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𝐸𝐶(rowi)

Check 1:

Check 2:  = 𝐸𝐶( )
Check 3:  𝑦 = ⟨𝑦1, 𝑟1⟩

Check 4: = 𝐸𝐶
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= ⟨𝑟0, ⟩

𝐸𝐶(coli = )

𝐸𝐶(𝑦1 = )

Codeword

Encoding Circuit
𝐸𝐶

Input:

Random selector 𝐼
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product 
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Final output 
Size 𝑂(𝜆):

Check consistency 
on few outputs

Code-Switch

Figure 3.2: An illustration of code switching. The circuit on the right for Check 1,2 and Check 3,4 is
the same.

Because of the property of a linear code, cγ0
is a codeword with message yγ0

, and this step is referred to as
the “fold” operation in [BCG20]. Second, the prover shows that cγ0

is indeed computed from the committed
tensor codeword. To do so, the verifier randomly selects t columns and the prover opens them with their
Merkle tree proofs. The verifier checks that the inner product between each column and the random vector
γ0 is equal to the corresponding element of cγ0

(Step 15). As shown in [BCGGHJ17; BCG20], if the linear
code has a constant relative distance, the committed matrix is close to a tensor codeword with overwhelming
probability.
Consistency check. The consistency check follows exactly the same steps of the proximity check. Instead of
using a random vector from the verifier, the linear combination is done with r0 of the tensor query r0 ⊗ r1.
Similarly, c1 is a codeword of the linear code with message y1, and ϕ(x) = ⟨y1, r1⟩ by the definition of tensor
product and polynomial evaluation. As shown in [BCG20], by the check in Step 16, if the committed matrix
in R is close to a tensor codeword, then y = ϕ(x) with overwhelming probability. In particular, there exist
an extractor to extract a polynomial ϕ from the commitment such that y = ϕ(x).

Theorem 3.4.1 (Polynomial commitment [BCG20; GLSTW]). Protocol 9 is a polynomial commitment that
is correct and sound as defined in Definition 3.2.8.

Efficiency. The prover’s computation is dominated by encoding the tensor code, which takes O(N) time
using a linear-time encodable code such as the generalized Spielman code. The proof size is O(t

√
N), as

the prover opens t random columns of size
√

N to the verifier. The verifier time is also O(t
√

N) to check
the inner products and to encode t columns.
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3.4.2 Efficient Proof Composition via Code Switching
The proof size of the polynomial commitment in Protocol 9 is O(

√
N) (the complexity hides a security pa-

rameter t). There are three steps that incur O(
√

N) proof size in Protocol 9: Step 8, 9, and 13. In this section,
we present a new protocol that reduces the proof size to O(log2 N) via the technique of proof composition.
The idea is to use a second proof system to prove that the checks of these three steps are satisfied, without
sending the proofs of these steps to the verifier directly.

To design the second proof system efficiently, our key observation is that the values sent by the prover in
these three steps are messages of the linear-time encodable code. That is, yγ0

is the message of cγ0
in Step 8,

y1 is the message of c1 in Step 9 and C1[:, idx] is the message of C2[:, idx] for every idx in Step 13. Therefore,
the second proof system takes yγ0

, y1 and C1[:, idx] for idx ∈ I as the witness, and performs the following
computations:

1. It encodes the witness using the encoding circuit of the linear-time encodable code.

2. It outputs a subset of random indices of the codewords chosen by the verifier. By checking whether
the values of these indices are consistent with the commitments by the prover via the Merkle tree, it
guarantees that the witness is indeed the same as the messages specified above with overwhelming
probability because of the minimum distance property of the code.

3. Finally, it checks that these messages and their codewords satisfy the conditions in line 15, 16 and 17
of Protocol 9.

The idea is illustrated in Figure 3.2, and we formally present the statement of the second proof system in
Protocol 10. Note that Î is the random set chosen by the verifier in Protocol 9, and is only used as a notation
for the subscripts in Protocol 10. I is the random set chosen by the verifier for the code switching. In this
way, we switch the message encoded using the linear-time encodable code to the witness of the second proof
system. In our implementation, we are using an IOP-based zero-knowledge argument with the Reed-Solomon
code, thus this can be viewed as an efficient instantiation of the “code switching” technique in [RR20].

We apply any zero-knowledge argument scheme ZK on the statement and then check the consistency
between the output and theMerkle tree commitmentR of the codeword of the linear-time encodable code. We
present the new protocol in Protocol 11 and highlight the differences from Protocol 9 in blue. As shown in the
protocol, instead of sending c1, y1, cγ0

, yγ0
, the prover commits to c1 and cγ0

in Step 8 and 9. The codeword
C2 was already committed column-wise in R. The prover then proves the constraints of c1, y1, cγ0

, yγ0
and

C1[:, idx] using the code switching technique in Step 13. In this way, we are able to reduce the proof size of
Protocol 9 to O(log2 N).

Theorem 3.4.2. Protocol 11 is a polynomial commitment that is correct and sound, as defined in Defini-
tion 3.2.8 without zero-knowledge property.

The proof is presented in Appendix 3.8.
Complexity of Protocol 11. The prover time remains O(N). This is because in Step 8 and 9, the prover
additionally commits to c1, cγ0

, which only takes O(n) = O(
√

N) time. In Step 13, the prover invokes
another zero-knowledge argument on CCS. CCS consists of t + 2 encoding circuits EC of the linear-time
encodable code and t+2 inner products. InAppendxi 3.9, we show that the encoding circuit of the generalized
Spielman code is of size O(k). The circuit to compute an inner product is of size O(k), thus the overall circuit
size is O(t · k). By using any zero-knowledge argument scheme with a quasi-linear prover time, the prover
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Protocol 10 Code Switching Statement CCS

Witness: yγ0
, y1, C1[:, idx] ∀idx ∈ Î in Protocol 9.

Public input: γ0, r0, r1, y.
Public information: Î and I chosen by the verifier.

1: Encode cγ0
:= EC(yγ0

), c1 := EC(y1).
2: for idx ∈ Î do
3: Encode C2[:, idx] := EC(C1[:, idx)
4: for idx ∈ Î do
5: Check if cγ0

[idx] == ⟨γ0, C1[:, idx]⟩. ▷ Proximity
6: Check if c1[idx] == ⟨r0, C1[:, idx]⟩. ▷ Consistency
7: Check if ⟨r1, y1⟩ == y. ▷ Tensor product
8: for 0 ≤ j < |I| do ▷ Encoder check
9: Output c1[I[j]], cγ0

[I[j]].
10: for idx ∈ Î do
11: Output C2[I[j], idx]

time of this step is O(t · k log k). Since k =
√

N , the prover time is still O(N) dominated by the encoding
and the commitment of the k × k matrix. With the code switching technique, the proof size and becomes
O(t log2 N).

Since we apply ZK in a black-box way, the verification time of the protocol will be O(
√

N) due to the
size of recursive circuit. However, in the holographic setting with preprocessing, the verifier time can be
reduced to O(log2 N) using the techniques in [Set20]. Note that the code switching circuit depends on I
randomly selected by the verifier, which is not known during preprocessing. (Î is also not known, but it
does not affect the structure of CCS.) Fortunately, we are able to preprocess most of the circuits (Step 1-7 in
Protocol 10) and the verifier time is O(log2 N) + O(|I| · |Î|) = O(log2 N) in this setting.

3.4.3 Putting Everything Together
In this section, we show how to achieve zero-knowledge on top of our new polynomial commitment in Pro-
tocol 11, and sketch how to build a zero-knowledge argument using the polynomial commitment.
Achieving zero-knowledge. We apply a masking technique similar to the one in [BCGGHJ17]. The codeword
C2 is masked by a codeword MSK of a masking polynomial with random coefficients m. We use our proof
system to prove yw+m = ⟨(w + m), r0⊗ r1⟩ and ym = ⟨m, r0⊗ r1⟩ simultaneously, and the final answer of
the polynomial evaluation is y = yw+m − ym. We present the protocol in Protocol 12.

Theorem 3.4.3. Protocol 12 is a zero-knowledge polynomial commitment scheme by definition 3.2.8.

We present the proof in Appendix 3.10.
Zero-knowledge argument. Finally, we build our zero-knowledge argument system by combining the multi-
variate polynomial commitment with the sumcheck protocol as in [Set20; GLSTW]. We state the theorem
here and refer the readers to [Set20; GLSTW] for the construction and the proof.
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Protocol 11 Polynomial commitment with code-switching
Public input: The evaluation point x⃗, parsed as a tensor product r = r0 ⊗ r1;
Private input: the polynomial ϕ with coefficients w.

1: function COMMIT(ϕ)
2: Parse w as a k× k matrix. The prover computes the tensor code encoding C1, C2 locally as

defined in Definition 3.2.4.
3: for i ∈ [n] do
4: Compute the Merkle tree root Rooti = Merkle.Commit(C2[:, i]).
5: Compute a Merkle tree root R = Merkle.Commit([Root0, ..., Rootn−1]) and output R as

the commitment.
6: function PROVE(ϕ, x⃗,R)
7: The prover receives a random vector γ0 ∈ Fk from the verifier.
8: c1 = ∑k−1

i=0 r0[i]C1[i], y1 = ∑k−1
i=0 r0[i]w[i],Rc1

= Merkle.Commit(c1)
9: cγ0

= ∑k−1
i=0 γ0[i]C1[i], yγ0

= ∑k−1
i=0 γ0[i]w[i],Rγ0

= Merkle.Commit(cγ0
)

10: The prover computes the answer y := ⟨y1, r1⟩. Prover sendsRc1
,Rγ0

, y to the verifier.
11: The verifier randomly samples t ∈ [n] indexes as an array Î and send it to prover.
12: The verifier randomly samples another index set I ⊆ [k], |I| = t and sends it to the prover.
13: The prover calls the zero-knowledge argument protocolZK.P on CCS. Let πzk be the proof

of the zero-knowledge argument. The prover sends the output of CCS: C2[I[j], idx] ∀idx ∈
Î , c1[I[j]], cγ0

[I[j]] and πzk to the verifier.
14: The prover sends the Merkle tree proofs of C2[I[j], idx] ∀idx ∈ Î under Rootidx.
15: The prover sends the Merkle tree proofs of Rootidx ∀idx ∈ Î underR.
16: The prover sends the Merkle tree proofs of c1[I[j]], cγ0

[I[j]] underRc1
,Rcγ0

.

17: function VERIFYEVAL(πx⃗, x⃗, y = ϕ(x⃗),R)
18: The verifier calls the zero-knowledge argument protocol ZK.V on CCS.
19: The verifier checks the Merkle tree proofs of C2[I[j], idx] ∀idx ∈ Î .
20: The verifier checks the Merkle tree proofs of Rootidx ∀idx ∈ Î usingR.
21: The verifier checks the Merkle tree proofs of c1[I[j]], cγ0

[I[j]] usingRc1
,Rcγ0

.
22: Output accept if all checks pass. Otherwise output reject.

Theorem 3.4.4. There exists a zero-knowledge argument scheme by definition 3.2.6 with O(N) prover time,
O(log2 N) proof size and O(N) verifier time.

As we are using the IOP-based scheme in [ZXZS20] as the second zero-knowledge argument in the proof
composition, our scheme is an IOP with a linear proof size and logarithmic query complexity. The scheme
can be made non-interactive via the Fiat-Shamir [FS86] heuristic, and has plausible post-quantum security.
Following the frameworks in [CHMMVW20; COS20; Set20; GLSTW], our scheme can be turned into a
holographic proof with a O(log2 N) verifier time in a straight-forward way.
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Protocol 12 zk-Polynomial commitment
Public input: The evaluation point x⃗, parsed as a tensor product r = r0 ⊗ r1;
Private input: the polynomial ϕ with coefficients w.

1: function ZKCOMMIT(ϕw)
2: The prover randomly samples m ∈ F|w|.
3: OutputRw+m = COMMIT(w + m),Rm = COMMIT(m).
4: function ZKPROVE(ϕ, x⃗,R)
5: Let ϕm be the masking polynomial, ϕw+m be the masked polynomial.
6: Run Prove(ϕw+m, x⃗,Rw+m). Let the random index set used during the protocol be Î0, I0.
7: Run Prove(ϕm, x⃗,Rm). In this step, the verifier samples the random index set Î1, I1. used

during the protocol such that Î0 ∩ Î1 = ∅ ∧ I0 ∩ I1 = ∅.
8: function ZKVERIFY(πw+m

x⃗ , πm
x⃗ , x⃗, yw+m, ym,Rw+m,Rm)

9: The final polynomial evaluation ϕ(x⃗) should be yw+m − ym.
10: Execute VerifyEval(πw+m, x⃗, yw+m,Rw+m).
11: Execute VerifyEval(πm, x⃗, ym,Rm).
12: Output accept if all checks above passes, otherwise output reject.

3.5 Experiments
We have implemented our scheme, Orion, and we present the evaluations of the system and the comparions
to existing ZKP schemes in this section.
Settings and parameters. Our polynomial commitment scheme is implemented in C++ with 6000 lines of
code. The proof composition uses Virgo in [ZXZS20] and its open-source implementation. We combine
the polynomial commitment with a sumcheck protocol to get our zero-knowledge argument following the
approach in [Set20] and we implement our own code for this part.
Expander graph used in our implementation We use a modified version of generalized Spielman code in
[GLSTW]. The code assigns a random weight to each edge of the expander graph, achieving a better min-
imum distance. We take a step further and fine-tune the dimensions more aggressively. With our testing
algorithm, the failure probability of the expander sampling remains negligible. There are two types of ex-
pander graph used in our construction and the parameters are G1: α = 0.33, δ = 0.6, ϵ = 0.78, g = 6; G2:
α = 0.337, g = 6, δ = g, ϵ = 0.88.
Parameters of our linear code. With expanders above, the final relative distance is 0.055. We set the security
parameter λ = 128. This leads to opening t = −128

log (1−0.055) = 1568 columns and locations in Protocol 11.
Hash function and finite field. We use the SHA-256 hash function implemented by [arm]. We use the
extension field of GF((261−1)2) as our underlying field to be compatible with the zero-knowledge argument
in [ZXZS20].
Environment and method. We use an AWS m6i-32xlarge instance with Intel(R) Xeon(R) Platinum 8375C
CPU@2.90GHzCPU and 512GBmemory to execute all of our experiments. However, the largest instance in
our experiment only utilize 16 GB of memory. All experiments are using a single thread except the expander
testing algorithm. For each data point, we run the experiments 10 times and report the average.
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Figure 3.3: Running time of our expander testing algorithm.

3.5.1 Expander Testing
We first show the performance of our expander testing algorithm in Section 3.3. We implemented the densest
sub-graph algorithm in [Gol84], which uses network-flow algorithm as a black-box. In our implementation,
we use Dinic’s algorithm [Din70], the complexity of which is O(|V |2|E|) on general graphs. However, on
random bipartite graphs, the Dinic’s algorithm runs significantly faster. As observed in our experiments, it
scales almost linearly in the size of the graph.

Figure 3.3 shows the running time of the algorithm. We vary the size of left vertex set L in the random
bipartite graph from 212 to 218, and the size ofR is set to be |L|×α. The implementation uses multi-threading
utilizing all 128 CPU cores. As shown in the figure, it only takes 163 seconds to test whether a random
bipartite graph with |L| = 215 vertices is a lossless expander with a failure probability negl(N) = 2−128.
The running time almost grows linearly in |L|. As k =

√
N in our zero-knowledge argument, this is enough

for our experiments. As the sampling of the lossless expander is done once, our testing algorithm is very
practical.

3.5.2 Polynomial Commitment
In this section, we report the performance of our polynomial commitment scheme and compare it with the
scheme Brakedown in [GLSTW], which is the only implemented polynomial commitment scheme with a lin-
ear prover time. We use the open-source implementation of Brakedown at [Wa] in the comparison. Our cur-
rent implementation is for the plain version of the polynomial commitment without zero-knowledge, which
is the same as Brakedown.

Figure 3.4 shows the performance of our polynomial commitment and the polynomial commitment in
Brakedown. We vary the size of the polynomials from 215 to 229 and measure the prover time, the proof
size and the verifier time. As shown in the figure, our prover time is even slightly faster than Brakedown.
It only takes 115 seconds for a polynomial with 227 coefficients, while it is 132 seconds in Brakedown.
This is because we use more aggressive parameters of the expander code, while still achieving 128-bit of
security thanks to our expander testing algorithm. Moreover, the additional proof composition in our scheme
involves a second zero-knowledge argument on a circuit of size O(

√
N). In our experiments, this extra zero-

knowledge argument takes less than 20% of the total prover time, justifying that our code switching technique
only introduces a small overhead on the prover time.
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Figure 3.4: Performance of polynomial commitments.

Our proof size and verifier time is significantly smaller than Brakedown. The proof size is only 6 MBs
for a polynomial of size 227, 16× smaller than Brakedown. The verifier time is 70ms for N = 227, 33×
faster than Brakedown. The result demonstrates the improvement of the O(log2 N) proof size and verifier
time in our scheme.

Note that there is a jump from N = 221 to N = 223 in the proof size and verifier time. This is because
in our implementation, instead of directly parsing the coefficients into

√
N ×

√
N matrix, we optimize

the dimensions for better performance. When N < 223, it is not meaningful to do code-switching on the
columns. The prover only does the code-switching on the row (Protocol 11 Step 8 and 9), but opens the
columns directly. We observe that this gives the best prover time and the proof size. When N ≥ 223, the
prover does the code-switching for both the row and the columns (Protocol 11, Step 8–13). Therefore, the
proof size and the verifier time have a big increase because of the larger column size and the additional
code-switching protocol.

3.5.3 Zero-knowledge Arguments
Finally, we present the performance of our zero-knowledege argument scheme for R1CS as a whole in this
section. We focus the comparison to existing schemes that work on R1CS and have transparent setup
and plausible post-quantum security. They include Brakedown [GLSTW], Aurora [BSCRSVW19] and
Ligero [AHIV17]. We use the implementation of Brakedown at [Wa], and the open-source code of Ligero
and Aurora at [Aur] in the experiments.

We randomly generate the R1CS instances and vary the number of constraints from 215 to 220. As shown
in Figure 3.5, Orion has the fastest prover among all schemes. It only takes 3.09 seconds to generate the proof
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Figure 3.5: Performance of zero-knowledge arguments on R1CS.

for N = 220. This is slightly faster than Brakedown for the same reason as explained in Section 3.5.2. It
is 20× faster than Ligero and 142× faster than Aurora because of the linear prover time and the simplified
reduction via polynomial commitments.

The proof size of Orion is significantly smaller than Brakedown and Ligero. It is only 1.5 MB for N =
220, 6.5× smaller than Brakedown and 12.5× smaller than Ligero. The proof size is even comparable to
Aurora, which has O(log2 N) proof size and uses the Reed-Solomon code with a much better minimum
distance than our linear code. The result justifies the improvement of our code switching.

We only implemented and compared with the variants of the protocols with a linear verifier time. As
explained in the introduction, the verifier time of all schemes grow linearly with N in the worst case, and the
comparisons are similar to the prover time. One can reduce the verifier time to sublinear in the holographic
setting using the techniques in [CHMMVW20; COS20; Set20].
Other related schemes. There are several other existing transparent zero-knowledge argument schemes.
Hyrax [WTSTW18], Virgo [ZXZS20] and Virgo++ [Zha+21a] work on layered arithmetic circuits and
STARK [BSBHR19] works on an algebraic intermediate representation that is close to a RAM program.
It is hard to compare directly to R1CS, but we expect our prover time to be faster than these systems for
similar computations based on the results shown in prior papers [ZXZS20; Zha+21a]. Spartan and schemes
in [SL20] are using the same framework of polynomial commitment and sumcheck as in our scheme. How-
ever, they are based on discrete-log and bilinear pairing and thus are not post-quantum secure. As shown
in [GLSTW], their prover time is slower than Brakedown while the proof size is better (tens of KBs). Finally,
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Bulletproofs [BBBPWM18] and Supersonic [BFS20] are based on discrete-log and group of unknown order.
Their prover time is orders of magnitude slower than schemes mentioned above, while providing the smallest
proof size (1-2 KBs) because of the underlying cryptographic techniques.

3.6 Appendix

3.7 Proof of Lemma 3.3.2
Proof. When s ≥ log log k, we have following:

1. e(1−ϵ)gs+s = eO(s) = ec0s for some constant c0.

2. ( (1−ϵ)gs

k
′ )ϵgs ≤ (gs

k
′ )ϵgs

We take the expression in the summation and simplify it:

e(1−ϵ)gs+s · (k

s
)s · ((1− ϵ)gs

k′ )ϵgs ≤ ec0s(k

s
)s(gs

k′ )ϵgs

Let f(x) = ec0x(k
x)x(gx

k
′ )ϵgx, then its derivative f ′(x) = ec0x(k

x)x(gx

k
′ )ϵgx · (c0 +ϵg log gx

k
′ +ϵg +log k

x−1).
Let g(x) = (c0 +ϵg log gx

k
′ +ϵg+log k

x−1), we know that when x > 2, f ′(x) is positive (negative or zero) if
and only if g(x) is positive (negative or zero). Taking the derivative of g(x), g′(x) = ϵg−1

x > 0 so f(x) is a
convex function. Therefore, the maximum of f(x) is maxx∈[log log k, δk

g
](f(x)) = max(f(log log k), f( δk

g )).
We then compute these two values at the boundaries:

1. f(log log k) = logc0(k)( k
log log k )log log k(g log log k

k
′ )ϵg log log k, since k′ = αk, ϵg > 2, the equation is

≤ logc0(k)( k

log log k
)log log k(

g
α log log k

k
)2 log log k = Õ(( log log k

k
)log log k),

which is negligible.

2. f( δk
g ) = e

c0
δk
g (g

δ )
δ
g

k( δk
k

′ )ϵδk = e
( c0δ

g
+ δ

g
log( g

δ
))k+log( δ

α
)ϵδk.

It is negligible if c0δ
g + δ

g log(g
δ ) + log( δ

α)ϵδ < −0.01. Therefore, we set c0 = (1− ϵ)g + 1, and we
have c0δ

g + δ
g log(g

δ ) + log( δ
α)ϵδ = (1− ϵ)δ + δ

g + δ
g log(g

δ ) + log( δ
α)ϵδ < −0.001

The reasoning above shows that every single value in the summation is negligible as the maximum is
negligible, and there are linear number of values in the summation, so the summation is negligible.
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3.8 Proof of Theorem 3.4.2
Proof. Correctness. It follows the correctness of Protocol 9, the zero-knowledge argumentZK on CCS, and
the Merkle trees.

Soundness. By Step 18 of Protocol 11, E first extracts the witness w∗ ∈ F(t+2)k of ZK on CCS using EZK.
Parse w∗ as y∗

γ0
, y∗

1 and C∗
1[:, idx] for idx ∈ Î , each of length k. Let cγ0

, c1 and C2[:, idx] for idx ∈ Î be
vectors committed by P underRγ0

,Rc1
, Rootidx in Step 8, 9 and 4 in Protocol 11. By the check in Step 21,

we have
Pr
(

∆(c1, EC(y∗
1)) >

d

2

)
≤ negl(N).

To see this, since the minimum distance of the code is d = O(k), if the vector in Rc1
is at least d

2 -far
from the codeword of y∗

1 , then the probability that c1 and EC(y∗
1) agrees on any idx is d

2k . Therefore, the
probability to pass all t = O(λ) checks in I in Step 21 is at most (1− d

2k )t, which is negl(N). Similarly,

Pr
(

∆(cγ0
, EC(y∗

γ0
)) >

d

2

)
≤ negl(N),

and
Pr
(

∆(C2[:, idx], EC(C∗
1[:, idx])) >

d

2

)
≤ negl(N),∀idx ∈ Î .

This technique is exactly the proximity check. Therefore, y∗
γ0

, y∗
1 and C∗

1[:, idx] for idx ∈ Î are indeed the
only messages within the distance of d

2 of cγ0
, c1 and C2[:, idx] for idx ∈ Î respectively, except for negl(N)

probability.
Moreover, by the soundness of ZK on CCS,

Pr
(
y ̸= ⟨y∗

1, r0⟩
)
≤ negl(N),

Pr
(
EC(y∗

γ0
)[idx] ̸= ⟨C∗

1[:, idx], γ0⟩
)
≤ negl(N), ∀idx ∈ Î .

and
Pr
(
EC(y∗

1)[idx] ̸= ⟨C∗
1[:, idx], r0⟩

)
≤ negl(N),∀idx ∈ Î .

Therefore, w = y∗
1, y∗

γ0
, (C∗

1[:, idx]∀idx ∈ Î), and EC(y∗
1), EC(y∗

γ0
) passes the PC.VerifyEval in Protocol 9.

By Theorem 3.4.1, E calls the extractor EP C to extract the coefficients of a polynomial ϕ such that ϕ(x⃗) = y,
where x = r0 ⊗ r1, except with negligible probability. This completes the proof of knowledge soundness.

3.9 Encoding circuit
Recall the construction of generalized Spielman code in Preliminary section 3.2.1, we prove the following:

Lemma 3.9.1 (Size of the encoder circuit). The size of the encoder circuit for input size k = 2t, is at most
8dk. And the circuit depth is O(log N)

Proof. We prove by induction:
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1. If k ≤ n0, the lemma holds.

2. Assume for all k∗ ≤ 2t−1 the lemma holds, we prove for k = 2t the lemma holds:

a) The step m1 = xAt can be done in dk steps, since At represents an expander graph with dk
edges, so At is sparse and have only dk non-zeros.

b) The step c1 = Et−1
C (m1) costs at most 8dk

2 = 4dk by induction.

c) The step c2 = c1Bt+1 costs at most 2dk since Bt+1 represents an expander with 2dk edges.

d) In total the cost is 7dk ≤ 8dk.

The circuit depth is O(t) = O(log N) from the construction.

3.10 Proof of Theorem 3.4.3
Proof. The correctness and the soundness follow Theorem 3.4.2. Here we give the proof for zero-knowledge.

The simulator S is constructed in Protocol 13. Next we prove that every message sent by the simulator
is indistinguishable from the real-world execution as follows:

1. In Step 8, S directly runs Prove without anymodification, so it is indistinguishable from the real-world
execution.

2. In Step 14, S sends two hashes and the result y from the oracle access. by the hiding property of the
Merkle tree, they are indistinguishable from the real-world execution.

3. In Step 15, S calls the simulator of ZK, making πZK indistinguishable from the real world without
knowing the witness of the zero-knowledge argument.

4. In Step 16, 17, 18, at most O(|Î0|) entries of the codeword are queried by the verifier, where each
entry is a combination of the message wS . Since |Î0| < k, these queries are uniformly distributed.
The same analysis applies to the real-world execution, which also outputs uniformly random values.

Next we need to show that the simulated proof actually passes verification. In Protocol 13 step 13, S creates a
simulated codeword that only agrees with the random codewordEC(w+m⃗) on queried points. The simulated
codeword c∗

1 and the message are computed by solving a set of linear equations. Let G be the generator matrix
of EC , We have following constraints:

1. ∀i ∈ I0, (y∗
1G)[i] == c1[i],

2. ⟨y∗
1, r1⟩ == y

There are k variables in y∗
1 but only |I0|+ 1 equations, so S can solve this equation using the Gaussian

elimination algorithm and get a valid y∗
1 , then computes c∗

1 := y∗
1G or c∗

1 := EC(y∗
1).

Finally, the verification of ZK and the three Merkle tree checks in step 16,17, 18 all pass. The former
is because of the the simulator SZK. Step 16, 17 naturally passes because C2 is consistent with RwS

. Step
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Protocol 13 Simulators
1: function S0(pp)
2: Randomly sample two vectors w∗, m.
3: OutputRw

∗+m := COMMIT(w∗ + m),Rm := COMMIT(m).
4: function SA

1 (x⃗, pp)
5: The simulator receives a random vector γ0 ∈ Fk from the verifier.
6: The simulator reads A’s random tape to get Î0, I0, Î1, I1.
7: The simulator will abort if Î0 ∩ Î1 ̸= ∅ ∨ I0 ∩ I1 ̸= ∅.
8: The simulator runs Prove(ϕm, x⃗,Rm) over random tape I1, Î1.

Next, the simulator simulates Prove(ϕw+m, x⃗,Rw+m) without knowing the real polynomial w.
9: The simulator makes an oracle query to obtain y := ϕw(x⃗).

10: Let wS := w∗ + m, C1, C2 encodes wS .
11: cγ0

= ∑k−1
i=0 γ0[i]C1[i], yγ0

= ∑k−1
i=0 γ0[i]wS [i],Rγ0

= Merkle.Commit(cγ0
).

12: The simulator computes c1 = ∑k−1
i=0 r0[i]C1[i]

13: The simulator creates c∗
1, y∗

1 , such that ∀i ∈ I0, c∗
1[i] == c1[i], ⟨y∗

1, r1⟩ == y, and
EC(y∗

1) == c∗
1, Rc

∗
1

= Merkle.Commit(c∗
1). y∗

1 can be computed by solving a system of linear
equations.

14: The prover sendsRc
∗
1
,Rγ0

, y to the verifier.
15: The prover calls the zero-knowledge argument protocol simulatorZK.S on CCS. Let πzk be

the proof of the zero-knowledge argument. The prover sends the output of CCS: C2[I0[j], idx]
∀idx ∈ Î0, c1[I0[j]], cγ0

[I0[j]] and πzk to the verifier.
16: The prover sends the Merkle tree proofs of C2[I0[j], idx] ∀idx ∈ Î0 under Rootidx.
17: The prover sends the Merkle tree proofs of Rootidx ∀idx ∈ Î0 underRwS

.
18: The prover sends the Merkle tree proofs of c1[I0[j]], cγ0

[I0[j]] underRc
∗
1
,Rcγ0

.

18 will pass because c∗
1 is constructed to agree with c1 on index set I0. Therefore, all the checks in the

verification are satisfied.
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Chapter 4

Pianist: Scalable zkRollups via Fully
Distributed Zero-Knowledge Proofs

In the past decade, blockchains have seen various financial and technological innovations, with cryptocurren-
cies reaching a market cap of over 1 trillion dollars. However, scalability is one of the key issues hindering the
deployment of blockchains in many applications. To improve the throughput of the transactions, zkRollups
and zkEVM techniques using the cryptographic primitive of zero-knowledge proofs (ZKPs) have been pro-
posed and many companies are adopting these technologies in the layer-2 solutions. However, in these
technologies, the proof generation of the ZKP is the bottleneck and the companies have to deploy powerful
machines with TBs of memory to batch a large number of transactions in a ZKP.

In this work, we improve the scalability of these techniques by proposing new schemes of fully distributed
ZKPs. Our schemes can improve the efficiency and the scalability of ZKPs usingmultiplemachines, while the
communication among the machines is minimal. With our schemes, the ZKP generation can be distributed
to multiple participants in a model similar to the mining pools. Our protocols are based on Plonk, an efficient
zero-knowledge proof systemwith a universal trusted setup. The first protocol is for data-parallel circuits. For
computation of M sub-circuits of size T each, using M machines, the prover time is O(T log T +M log M),
while the prover time of the original Plonk on a singlemachine isO(MT log(MT )). Our protocol incurs only
O(1) communication per machine, and the proof size and verifier time are both O(1), the same as the original
Plonk. Moreover, we show that with minor modifications, our second protocol can support general circuits
with arbitrary connections while preserving the same proving, verifying, and communication complexity.

We implement Pianist (Plonk vIA uNlimited dISTribution), a fully distributed ZKP system using our
protocols. Pianist can generate the proof for 8192 transactions in 313 seconds on 64machines. This improves
the scalability of the Plonk scheme by 64×. The communication per machine is only 2.1 KB, regardless of
the number of machines and the size of the circuit. The proof size is 2.2 KB and the verifier time is 3.5 ms.
We further show that Pianist has similar improvements for general circuits. On a randomly generated circuit
with 225 gates, it only takes 5s to generate the proof using 32 machines, 24.2× faster than Plonk on a single
machine.
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4.1 Introduction
Blockchain technology has paved the way for innovative services such as decentralized finance, NFTs, and
GameFi. The cryptocurrency market has experienced significant growth, surpassing 1 trillion USD in value
since Bitcoin’s inception 13 years ago [Coi]. Techniques like zkRollups and zkEVM have been proposed
to boost blockchain efficiency and bridge the transaction throughput gap between digital and traditional sce-
narios. Implementing zkRollups could potentially increase transaction throughput by over 100 times, as esti-
mated by Vitalik Buterin [Vit]. Numerous companies have incorporated these techniques into their products,
including zkSync [Zks], Starkware [Sta], Hermez [Her], Aztec [Azt], Scroll [Scr], and others.

zkRollups and zkEVM rely on zero-knowledge proofs (ZKPs), a cryptographic primitive that allows a
prover to convince a verifier the correctness of computations. More specifically, they use Zero-Knowledge
Succinct Non-interactive Argument of Knowledge (ZK-SNARK) systems, which ensures that the proof size
is significantly smaller than the size of computation and enables faster validation. By utilizing ZKPs, a single
server can validate multiple transactions, compute state transitions, and generate a proof that is posted on the
blockchain. Instead of re-executing all transactions, nodes can verify transactions and smart contracts by
checking the proof and updating their status. This approach greatly increases the transaction throughput of
the blockchain.

However, the proof generation remains a significant bottleneck for existing ZKP schemes when applied
to large-scale statements such as zkRollups and zkEVM. For instance, our experiments show that the Plonk
system [GWC19b], a widely-used ZKP protocol in the industry, can only scale to a circuit with 225 gates
on a machine with 200 GB of memory. As a result, companies like Starkware [Sta] and Scroll [Scr] must
deploy powerful clusters with terabytes of memory to generate proofs for zkRollups and zkEVM. In this
paper, we tackle this issue by proposing fully distributed ZKP schemes that enhance both efficiency and
scalability through distributed proof generation across multiple machines. Crucially, our schemes require
minimal communication among machines, with each machine only exchanging a constant number of values
with the master machine. This approach allows us to distribute ZKP generation in zkRollups and zkEVM
among multiple participants, in a similar model to existing mining pools. More transactions can be batched
into a single ZKP within a fixed period, without necessitating participants to stay online and communicate
with each other with high overhead. Participants can potentially share the reward for generating the ZKP,
akin to miners in current proof-of-work blockchains. Furthermore, our scheme can be generalized to create
proofs for arbitrary general circuits, leading us to the name “fully distributed ZKPs”.

Our distributed schemes are built upon Plonk [GWC19b]. Instead of using univariate polynomials to
represent the constraints of a computation, we devise a protocol based on a bivariate constraint system. First,
we claim that this protocol can cater to data-parallel circuits, allowing each machine to generate the witness
for its corresponding sub-circuit. Second, we further generalize it to compute proofs for general circuits
with aribitrary connections, assuming the witness has already been distributed among the machines. In both
cases, our schemes demonstrate that the efficiency and scalability can be improved by a factor of M using
M machines, the proof size remains O(1), and the communication complexity per machine is only O(1).
Our contributions. We have the following contributions:

• We propose two fully distributed ZKP protocols for data-parallel circuits and general circuits, respectively.
To construct the schemes, we first propose a distributed polynomial interactive oracle proof (polynomial
IOP) and then combine it with a polynomial commitment scheme (PCS) that is distributively computable
as well. The polynomial IOP is a bivariate variant of Plonk’s [GWC19b] constraint system. To “compile”
both IOP schemes by polynomial commitments, we use the bivariate variant of the KZG [PST13] scheme
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and demonstrate that it is distributively computable. The use of the Lagrange polynomial in our scheme is
inspired by a sub-scheme in Caulk [ZBKMNS22].

• We further show that our protocols are robust in the presence of malicious machines. We formalize the
notion as Robust Collaborative Proving Scheme (RCPS), for the collaborative generation of proofs among
sub-provers in a malicious environment. In this setting, the master node is able to verify partial proofs
and messages received from other machines before aggregating them to compute the final proof. We show
that our protocols are robust under this definition with an additional step of verification. This property is
crucial for the applications of distributed zkRollups and zkEVM to exclude malicious participants without
ruining the distributed proof generation.

• We implement the fully distributed ZKP system, Pianist, for both data-parallel and general circuits. For the
data-parallel version, we report experimental results for the blockchain application of zkRollups. Utilizing
rollup circuits generated by the Circom compiler [Cira], we show that Pianist can scale to 8192 transactions
on 64 machines with a prover time of 313 seconds. In comparison, the original Plonk scheme can only
scale to 32 transactions with a prover time of 95 seconds on a single machine. The communication between
each machine and the master machine is only 2144 bytes, and the proof size is 2208 bytes. We observe
similar improvements for general circuits. On a circuit of size 225, it only takes 5s to generate the proof
using 32 machines, which is 24.2× faster than Plonk on a single machine, with 2336 Bytes communication
and 2816 Bytes proof size.

Organization of the paper. We review the related work in Section 4.1.1 and present the preliminaries in
Section 4.2. To explain our protocols, we first introduce our distributed polynomial IOP schemes in Sec-
tion 4.3 for data-parallel circuits and general circuits. Then in Section 4.4, we present a bivariate variant of
the polynomial commitment in [KZG; PST13] to compile our polynomial IOP schemes to SNARKs. In Sec-
tion 4.5, we formalize the notion of robust collaborative proving scheme (RCPS) and show that our scheme
is able to detect malicious machines. We showcase the performance of our system in Section 4.6, and present
additional discussions in Section 4.7.

4.1.1 Related works
Zero-knowledge proofs (ZKP) were first introduced by Goldwasser, Micali, and Rackoff in their seminal
paper [GMR]. Driven by real-world applications such as blockchains [Ben+14; KMSWP; Xie+22], there
has been a rapid development of efficient zkSNARK systems in recent years [PHGR13; BSCTV14c; Gro16;
WTSTW18; ZGKPP17a; BSBHR19; BBBPWM18; AHIV17; BSCRSVW19; XZZPS19c; CHMMVW20;
GWC19b; Set20; ZXZS20; Zha+21b]. Despite such progress, it remains challenging to scale ZKP protocols
to large statements due to their high overhead on the prover running time and memory usage.

Distributed ZKPs. To scale existing ZKP protocols to large-scale circuits, distributed algorithms provide
a promising direction. Wu et al. proposed the first distributed zero-knowledge proof protocol called DIZK
in [WZCPS18]. DIZK scales the pairing-based zkSNARK in [Gro16] to handle circuits that are 100 times
larger on 128 machines compared to a single machine. However, DIZK incurs a high communication cost
that is linear in the total size of the circuit among different machines because the scheme runs a distributed
number theoretic transformation (NTT) algorithm among the machines using the Map-Reduce framework.
Additionally, the recent work of zkBridge [Xie+22] proposed deVirgo, a distributed ZKP protocol based on
the ZKP scheme in [ZXZS20], to build bridges between two blockchains using ZKPs. The protocol achieves
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linear improvement on both the prover time and scalability in the number of machines. However, deVirgo
also incurs a linear communication cost among the machines, and the proof size grows with the number of
machines. This seems inevitable due to the use of the FRI protocol in [BSBHR18] withMerkle trees [Mer87].
By contrast, our schemes offer optimal linear scalability in prover time and minimal communication among
distributed machines simultaneously. We provide comparisons in Table 4.1.

PCD and IVC Proof-Carrying Data (PCD [CT10; BCCT13]) is a cryptographic technique that breaks down
computation into a sequence of steps. In each step, the prover convinces the verifier not only of the current
step’s correctness but also of all previous steps. It is an alternative solution for data-parallel circuits when
memory is limited. There are generally two ways to achieve PCD: one is from succinct verification, and
the other is from accumulation. In the succinct verification approach, for each step, the prover generates
a proof for the current step computation and verification for the proof generated from the previous step,
as seen in[BCCT13; BSCTV14b; COS20], etc. The accumulation approach postpones and accumulates
the verification of SNARK proofs (or some expensive part of it) at each recursion step and proves it all
at once at the last step, as demonstrated in [BCMS20; Hal; BCLMS20; KST22; KS22], etc. Although
there is no direct correspondence for general circuits, some of these techniques, including but not limited
to [KST22; KS22], claim to achieve Incremental Verifiable Computation (IVC). IVC focuses on dividing long-
running computations into stages that can be verified incrementally. For instance, Nova [KST22] supports
proof generation when the computation involves a nondeterministic function f and the result of fn(z0).
These techniques are widely employed in various applications, however, we identify several drawbacks when
compared to our proposed solution. See details in Section 4.7.

Distributed computation from proof aggregation Similar to our approach, aPlonk [ABST22] is a dis-
tributed solution based on Plonk that requires prover nodes to share the same Fiat-Shamir randomness, ne-
cessitating synchronization several times during the proving process. In their scheme, they propose a multi-
polynomial commitment to combine parties’ polynomial commitments and attest to the batch opening using
a generalized Inner-Product Argument (IPA) from [BMV19]. Additionally, they delegate the verification of
the constraint system through all evaluations to the prover. We also include the discussion for their protocol
in Section 4.7.

Scheme Pi time Comm. |π| & V time Robust
DIZK [WZCPS18] O(T log2 T ) O(N ) O(1) 7

deVirgo [Xie+22] O(T log T ) O(N ) O(log2 N) 7

Pianist O(T log T ) O(M ) O(1) 3

Table 4.1: Comparisons of our schemes to existing distributed ZKP protocols given M distributed
machines on the circuit with M sub-circuits and total N gates, where each sub-circuit has T = N

M
gates. Pi time denotes the prover time per machine, Comm. denotes the total communication among
machines, |π| denotes the proof size, and V time denotes the verifier time.
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4.2 Preliminaries
Our construction follows the framework proposed in [BFS20] and achieves SNARK by first compiling a
public-coin Polynomial IOP into a doubly-efficient public-coin interactive argument of knowledge using a
polynomial commitment scheme. Subsequently, the non-interactive property is achieved through the Fiat-
Shamir transform. We present the notations and corresponding definitions below

4.2.1 Notations
In our distributed setting, the size of the entire circuit is N , and there are M machines (or users acting as
sub-provers) participating in this protocol. Consequently, each party is responsible for generating a proof for
a sub-circuit of size T = N

M .
We use bivariate polynomials to help construct the constraint system in the scheme. In our constraint

system, for the i-th party, it holds its local witness vector a⃗i = (ai,0, ai,1, . . . , ai,T −1). We can transform
this witness vector into a univariate polynomial ai(X) =

∑T −1
j=0 ai,jLj(X), where Lj(X) is the Lagrange

polynomial defined from the T -th roots of unity, with the close-form Lj(X) = ω
j
X
T ·

X
T −1

X−ω
j
X

. Furthermore, we

aggregate the witness polynomial from all parties as a bivariate polynomial A(Y, X) =
∑M−1

i=0 ai(X)Ri(Y ),
where Ri(Y ) is also the Lagrange polynomial defined by the M -th roots of unity, with the close-form
Ri(Y ) = ω

i
Y

M ·
Y

M −1
Y −ω

i
Y

Unless specifically stated, for polynomials, we use lowercase letters such as a, b, c to denote the univari-
ate polynomial storing local information, and uppercase letters A, B, C to denote the bivariate polynomial
aggregating information throughout the entire circuit. In addition, we use lowercase letters x, y to denote
a specific assignment or evaluation for the polynomial, and uppercase letters X, Y to denote unassigned
variables.

4.2.2 Interactive Argument
Definition 4.2.1 (Interactive Argument). We say that ARG = (G,P,V) is an interactive argument of knowl-
edge for a relationR if it satisfies the following completeness and knowledge properties.

• Completeness: For every adversary A

Pr

[
(x,w) ̸∈ R or pp← G(1λ)

⟨P(pp,x,w),V(pp,x)⟩ = 1 : (x,w)← A(pp)

]
= 1

• Witness-extended emulation: ARG has witness-extended emulation with knowledge error κ if there
exists an expected polynomial-time algorithm E such that for every polynomial-size adversary A it
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holds that ∣∣∣∣∣∣∣Pr

 pp← G(1λ)
A(aux, tr) = 1 : (x, aux)← A(pp)

tr← ⟨A(aux),V(pp,x)⟩



− Pr

 A(aux, tr) = 1 pp← G(1λ)
and if tr is accepting : (x, aux)← A(pp)

then (x,w) ∈ R (tr,w)← EA(aux)(pp,x)


∣∣∣∣∣∣∣ ≤ κ(λ)

Above E has oracle access to (the next-message functions of) A(aux).

If the interactive argument of knowledge protocol ARG is public-coin, is has been shown that by the
Fiat-Shamir transform [FS86], we can derive a non-interactive argument of knowledge from ARG. If the
scheme further satisfies the following property:

• Succinctness. The proof size is |π| = poly(λ, log |C|) and the verification time is poly(λ, |x|, log |C|),

then it is a Succinct Non-interactive Argument of Knowledge (SNARK).
For the applications of zkRollups and zkEVM, we only need a SNARK that is complete, sound, and

succinct. Our constructions can be made zero-knowledge via known transformations with random masks
and we omit the details in this paper.

4.2.3 Polynomial Interactive Oracle Proof
Definition 4.2.2 (Public-coin Polynomial Interactive Oracle Proof [BFS20]). LetR be a binary relation and
F be a finite field. Let X = (X1, . . . , Xµ) be a vector of µ indeterminates. A (µ, d) Polynomial IOP for R
over F with soundness error ϵ and knowledge error δ consists of two stateful PPT algorithms, the prover P ,
and the verifier V , that satisfy the following requirements:

• Protocol syntax. For each i-th round there is a prover state stP
i and a verifier state stV

i . For any
common input x and R witness w, at round 0 the states are stP

0 = (x, w) and stV
0 = x. In the

i-th round (starting at i = 1) the prover outputs a single proof oracle P(stP
i−1) → πi, which is a

polynomial πi(X) ∈ F[X]. The verifier deterministically computes the query matrix i ∈ Fµ×ℓ from
its state and a string of public random bits coinsi ← {0, 1}∗, i.e, V(stV

i−1, coinsi) → Σi. This query
matrix is interpreted as a list of ℓ points in Fµ denoted (σi,1, . . . , σi,ℓ). The oracle πi is queried on all
points in this list, producing the response vector (πi(σi,1), . . . , πℓ(σi,ℓ)) = ai ∈ F1×ℓ. The updated
prover state is stP

i ← (stP
i−1), Σi) and verifier state is stV

i ← (stV
i−1, Σi, ai). Finally, V(stV

t ) returns
1 or 0.
(Extensions: multiple and prior round oracles; various arity. The syntax can be naturally extended
such that multiple oracles are sent in the i-th round; that the verifier may query oracles sent in the
i-th round or earlier; or that some of the oracles are polynomials in fewer variables than µ.)

Furthermore, a Polynomial IOP is stateless if for each i ∈ [t],V(stV
i−1, coinsi) = V(i, coinsi).
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4.2.4 Polynomial Commitment Scheme (PCS)
Definition 4.2.3 (Polynomial commitment scheme (PCS)). A Polynomial commitment scheme Γ is a tuple
Γ = (KeyGen, Commit, Open, Verify) of PPT algorithms where:

• KeyGen(1λ,F)→ pp generates public parameters pp;

• Commit(f, pp)→ comf takes a secret polynomial f(X) where X = (X0, . . . , Xµ−1) and outputs a
public commitment comf ;

• Open(comf , x, pp)→ (z, πf ) evaluates the polynomial y = f(X) on a point x and generate a proof
πf ;

• Verify(comf , x, z, πf , pp)→ b ∈ {1, 0} is a protocol between the prover P and verifier V , verifying
whether f(x) is z through pp, comf and πf ;

which satisfies the following properties:

• Completeness. For any polynomial f ∈ F and x ∈ Fµ, the following probability is 1.

Pr

 pp← KeyGen(1λ,F)
Verify(comf , x, z, πh, pp) = 1 : comf ← Commit(f, pp)

(z, πf )← Open(f, x, pp)


• Knowledge soundness. For any PPT adversary P∗, there exists a PPT extractor E with access to P∗’s
messages during the protocol, the following probability is negl(λ).

Pr


Verify(com∗, x∗, z∗, π∗, pp) = 1 pp← KeyGen(1λ,F)

∧com∗ = Commit(f∗, pp) : (z∗, x∗)← P∗(1λ, pp)

∧f∗(x∗) ̸= z∗ (com∗, π∗)← P∗(1λ, pp)

f∗ ← EP∗(·)(1λ, pp)


It is worth noting that in [BFS20], although they demonstrate that if the polynomial commitment protocol

satisfieswitness-extended emulation, the compiled interactive argument also inherits this knowledge property.
However, they also point out that it has been proven in [Lin01] that every knowledge sound protocol satisfies
witness-extended emulation as well.

4.3 Constraint System And Distributed Polynomial IOP
Protocol

In this and the following sections, we demonstrate how to construct our distributively computable SNARK
for data-parallel circuits (which accommodate various sub-circuits) and arbitrary general circuits. In both
settings, we distribute the input and computation across M machines, each capable of evaluating one sub-
circuit Ci of size T = N

M locally. In this section, we first present the constraint system, and then design
an IOP protocol proving the constraints. We prove that our IOP protocol has knowledge soundness and can
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be transformed into a distributed double-efficient interactive argument of knowledge after compiling with a
distributive computable bivariate PCS. In the next section, wewill instantiate our protocol with bivariate KZG
and provide a detailed analysis of proving time, verification time, proof size, and communication complexity.

Before diving into the details, we first explain our intuition. We opt for the distributed system to avoid
the substantial overhead introduced by recursive proof (see Section 4.7 for a detailed discussion). PCD-
and-IVC-based solutions rely on recursive proofs because they handle each sub-circuit in a separate proof
waiting to be aggregated. Instead, we treat all sub-circuits as a whole and exploit the succinctness of SNARK,
resulting in a small proof size and verification time. However, DIZK [WZCPS18] shows that directly applying
distribution techniques to the original univariate SNARK system leads to linear communication costs due to
the significantly interleaving network required to run the NTT algorithm. Taking both hazards into account,
we propose a solution leveraging bivariate polynomial constraints to both ”split” the NTT instances, avoiding
substantial communication, and ”combine” the proof for each sub-circuit as a whole, eliminating the need
for expensive aggregation costs. The details are as follows.

4.3.1 Arithmetic Constraint System for Each Party
Our constraint system inherits the original Plonk [GWC19b]. The original Plonk works for a fan-in-two
arithmetic circuit, where each gate takes at most two inputs. In Plonk, the left input, the right input, and
the output of each gate are encoded by three univariate polynomials respectively. The verifier can check the
computation of each gate by a polynomial equation, which we refer to as the gate constraint. Additionally, the
verifier also checks that the input and output of the gates are connected correctly as defined by the structure
of the circuit, which we refer to as the copy constraint.
Gate Constraint For the i-th party, let ai,j , bi,j and oi,j be the left input, right input, and output of gate
j of the sub-circuit Ci, for j = 0, . . . , T − 1. We define a polynomials ai(X) =

∑T −1
j=0 ai,jLj(X) where{

Lj(X)
}

j
is the Lagrange polynomials defined from the T -th roots of unity. The coefficient representation of

ai(X) can be computed using polynomial interpolation and the complexity is O(T log T ) via NTT algorithm.
Similarly, we define polynomials bi(X) and oi(X) using

(
bi,j

)
j
and

(
oi,j

)
j
. If gate j is an addition gate, then

ai,j + bi,j = oi,j , and thus ai(ω
j
X) + bi(ω

j
X) = oi(ω

j
X); if gate j is a multiplication gate, then aij · bij = oij ,

and thus ai(ω
j
X) · bi(ω

j
X) = oi(ω

j
X). Following the design of Plonk, we can write the relationship of all

gates as one polynomial in Equation 4.1.

gi(X) := qa,i(X)ai(X) + qb,i(X)bi(X) + qo,i(X)oi(X)
+ qab,i(X)ai(X)bi(X) + qc,i(X) = 0.

(4.1)

Here the polynomials qa,i(X), qb,i(X), qo,i(X), qab,i(X), qc,i(X) are defined by the structure of Ci

satisfying

• Addition gate: qa,i(ω
j
X) = 1, qb,i(ω

j
X) = 1, qo,i(ω

j
X) = −1, qab,i(ω

j
X) = 0, qc,i(ω

j
X) = 0.

• Multiplication gate: qa,i(ω
j
X) = 0, qb,i(ω

j
X) = 0, qo,i(ω

j
X) = −1, qab,i(ω

j
X) = 1, qc,i(ω

j
X) = 0.

• Public input: qa,i(ω
j
X) = 0, qb,i(ω

j
X) = 0, qo,i(ω

j
X) = −1, qab,i(ω

j
X) = 0, qc,i(ω

j
X) = ini,j if the

j-th gate in Ci is a public input gate with the value of ini,j .
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In this way, the correct evaluation of the circuit is equivalent to Equation 4.1 being 0 for all X ∈ ΩX , where
ΩX denotes the set

{
ω0

X , · · · , ωT −1
X

}
.

Copy Constraint In addition to checking the gate constraint, the verifier also needs to check that the con-
nections of wires are correct as defined by the circuit. In particular, there are redundancies in the vectors
ai,j , bi,j and oi,j , since the output of one gate is the input of other gates in the circuit. The method used in
Plonk is derived from a product argument, which can show that if a set of values {fi}i∈I are identical, then
the following two sets are equal:

{(fi, i)}i∈I = {(fi, σ(i))}i∈I

where σ defines a cycle connecting all indexes. The protocol reduces the argument to 2 polynomial equations.
The details of the permutation argument is as follows: ∀X ∈ ΩX , ai(σi(X)) = a′

i(X), where ai(X)
and a′

i(X) are two univariate polynomials in F and σi is a public permutation from ΩX to ΩX . Particularly,
in the protocol checking the consistency of ai(X), bi(X), oi(X) in the gate constraint, given two random
points η, γ ∈ F from the verifier, the prover defines the running product polynomial zi(X) on F defined as
follows:

zi(ω
j
X) :=

∏j−1
k=0

fi(ω
k
X)

f ′
i(ω

k
X)

(4.2)

where for simplicity, the notation of fi(X) and f ′
i(X) are used to indicate

fi(X) :=(ai(X) + ησa,i(X) + γ)(bi(X) + ησb,i(X) + γ)
(oi(X) + ησc,i(X) + γ),

f ′
i(X) :=(ai(X) + ηkaX + γ)(bi(X) + ηkbX + γ)

(oi(X) + ηkoX + γ),

(4.3)

where ka = 1, kb is any quadratic non-residue, and ko is a quadratic non-residue not contained in kbΩX . The
j-th cell in ai, bi, ci is denoted by ωj

X , k1ωj
X , k2ωj

X , respectively, and σa,i(ω
j
X) denotes the destination that

the j-th cell in ai is mapped to (σb,i and σc,i are defined similarly). The goal of the permutation argument is

to prove
∏T −1

k=0
fi(ω

k
X)

f
′
i(ωk

X)
= 1, leading to the following constraints:

pi,0(X) := L0(X)(zi(X)− 1) (4.4)
pi,1(X) := zi(X)fi(X)− zi(ωXX)f ′

i(X) (4.5)

which equals 0 when X ∈ ΩX .
Finally, since the constraints gi(X), pi,0(X) and pi,1(X) all equal 0 when X ∈ ΩX , then given a random

challenge λ from the verifier, there must exist a quotient polynomial hi(X) satisfying

gi(X) + λpi,0(X) + λ2pi,1(X) = VX(X)hi(X), (4.6)

where VX(X) = XT − 1.
Polynomial IOP protocol for Plonk. In the original Plonk, the IOP process sends oracles to the verifier in
three rounds. Suppose the verifier knows the structure of the circuit and have oracles of{

q{a,b,o,ab,c}(X), σ{a,b,o}(X)
}
. In the first round, the prover sends the polynomial oracles for

a(X), b(X), o(X). In the second round, after receiving random challenge η, γ from the verifier, the prover
constructs the oracle z(X) for the verifier. In the remaining round, with the randomness λ from the verifier,
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the prover computes the quotient polynomial h(X) and sends its oracle to the verifier. After having access
to all the oracles, the verifier queries them on a random point X = α and an extra point X = ωX · α for
z(X). With the evaluation, the verifier can verify all the constraints.

4.3.2 Constraint System for Data-parallel Circuit
In this section, we show how to aggregate the polynomials from all separated sub-circuits into a single bi-
variate polynomial and remain the constraint structure. Inheriting the general-purpose arithmetic constraints
from Plonk, it is clear that we not only have a constraint system proving data-parallel circuits but also for a
more general case: we allow the sub-circuits to be different.

Intuitively, we can use the powers of another variable Y to randomly combine the polynomials from
different parties. For example A(Y, X) =

∑M−1
i=0 Y iai(X), where ai(X) is hold by the i-th party. However,

when we leverage this formula in the polynomial formula, such as
(∑M−1

i=0 Y iai(X)
) (∑M−1

i=0 Y ibi(X)
)
−(∑M−1

i=0 Y ici(X)
)
, the cross-terms with the form Y iai(X) · Y jbj(X) for i ̸= j in the expansion will

be very annoying. To avoid the cross-term, instead, we combine the polynomials with Lagrange polyno-
mials Ri(Y ). This idea is inspired by a sub-scheme in the recent work Caulk [ZBKMNS22]. In partic-
ular, for each univariate polynomial in Equation 4.1, Equation 4.4, Equation 4.5 and Equation 4.6, i.e.,
si ∈ {qa,i, qb,i, qo,i, qab,i, qc,i, σa,i, σb,i, σo,i, ai, bi, oi, zi, hi}, we define a bivariate polynomial as

S(Y, X) =
∑M−1

i=0
Ri(Y )si(X). (4.7)

Then we have an aggregated gate constraint:

G(Y, X) := Qa(Y, X)A(Y, X) + Qb(Y, X)B(Y, X) (4.8)
+ Qab(Y, X)A(Y, X)B(Y, X)
+ Qo(Y, X)O(Y, X) + Qc(Y, X)

P0(Y, X) := L0(X)(Z(Y, X)− 1) (4.9)

P1(Y, X) := Z(Y, X)
∏

S∈{A,B,O}
(S(Y, X) + ησa(Y, X) + γ) (4.10)

− Z(Y, ωXX)
∏

S∈{A,B,O}
(S(Y, X) + ηksX + γ)

Then after transforming Equation 4.6, we have

G(Y, X) + λP0(Y, X) + λ2P1(Y, X)− VX(X)HX(Y, X) (4.11)

which equals 0 for all Y ∈ ΩY . It is no hard to see that this is equivalent to Equation 4.6 holds for all i ∈ [M ],
because by the definition of the Lagrange polynomial Ri(Y ), there is only one non-zero term gi(X), pi,0(X)
and pi,1(X) in Equation 4.6 when Y = ωi

Y . Therefore, evaluating Equation 4.11 at Y = ωi
Y is exactly the

same as Equation 4.6 for Ci.
Finally, to check Equation 4.11 vanishes on Y ∈ ΩY , we compute HY (Y, X) such that

G(Y, X) + λP0(Y, X) + λ2P1(Y, X)− VX(X)HX(Y, X)
= VY (Y )HY (Y, X)

(4.12)
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where VY (Y ) = Y M − 1. This concludes the bivariate constraint system in our solution.

A sketch of the distributed IOP for the previous system. In Protocol 3, we introduce the polynomial
IOP protocol for the previous constraint system (excluding the orange characters). From this protocol, we
observe that, aside from sending and assisting the verifier with querying the polynomial oracles, the prover
only needs to distributively maintain each oracle. We will later prove that this property is sufficient to con-
struct a distributed SNARK proof generation. We also observe that this property trivially holds for all poly-
nomials except HY (Y, X). To circumvent this obstacle, the prover receives an opening point α from the
verifier and only sends the univariate oracle HY (Y, α). We claim that after this modification, the protocol
remains knowledge-sound and can be distributively computed. For simplicity, we provide the strict proof in
Section 4.3.4 after explaining the system for general circuits.

Remark 4.3.1. For the witness generation, since all sub-circuits are separated, each party can generate its
witness locally.

Remark 4.3.2. Although we assume the sub-circuits are independent of each other, it is easy to observe
that if we introduce custom gates and rotation along with the variable Y , then we can support some simple
connections among different sub-circuits. In addition, we can also introduce local lookup arguments in our
constraint system. Further discussion on custom gates and lookup arguments are in Section 4.7.

4.3.3 Constraint System for General Circuit
In this section, we show the great potential of our system by generalizing it to generate proofs for arbitrary
circuits. Recall that in the original Plonk, it leverages σa(X), σb(X), and σc(X) to navigate the next wire
in the circuit with equal value, and computes the running product polynomial z(X) as a helper polynomial
to prove the product of

∏j−1
k=0

f(ωk
X)

f
′(ωk

X)
= 1. Similarly, we present how to indicate the position to the next wire

and how to construct the product proof through the whole circuit.
Since we need to indicate which sub-circuit the next wire locates, we define{(

σY,s,i(X), σX,s,i(X)
)}

s∈{a,b,o} as: if for the i-th party, for the j-th entry in the polynomial s is mapped to

the i′-th party, j′-th entry in the polynomial s′ polynomial, then
(
σY,s,i(ω

j
X), σX,s,i(ω

j
X)
)

=
(

ωi
′

Y , ks
′ωj

′

X

)
.

Therefore, we need to prove that
M−1∏
i=0

T −1∏
j=0

fi(ω
j
X)

f ′
i(ω

j
X)

= 1 (4.13)

where

fi(X) :=(ai(X) + ηY σY,a,i(X) + ηXσX,a,i(X) + γ)
(bi(X) + ηY σY,b,i(X) + ηXσX,b,i(X) + γ)
(oi(X) + ηY σY,o,i(X) + ηXσX,o,i(X) + γ)

f ′
i(X) :=(ai(X) + ηY Y + ηXX + γ)

(bi(X) + ηY Y + ηXk1X + γ)
(oi(X) + ηY Y + ηXk2X + γ)
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Then we show how to construct the constraints for the product argument. Similarly, each party remains

the running product zi(X), however for the one after the last entry, z∗
i = zi(ω

T −1
X ) fi

(
ω

T −1
X

)
f

′
i

(
ω

T −1
X

) no longer equals

1. Therefore, comparing with Equation 4.4 and Equation 4.5, we have the following constraints instead:

pi,0(X) :=L0(X)(zi(X)− 1) (4.14)
pi,1(X) :=(1− LT −1(X)) (4.15)

·
(
zi(X)fi(X)− zi(ωXX)f ′

i(X)
)

After constructing zi, each party will send the product of their slices z∗
i to the master node, which then

generates another helper polynomial W (X) to denote the running product through
(
z∗

0 , . . . , z∗
M−1

)
. There-

fore, we have two more constraints that for 0 ≤ i < M :

pi,2 := w0 − 1 which is 0 for all i (4.16)
pi,3(X) := LN−1(X) (4.17)

·
(
wizi(X)fi(X)− w(i+1)%M f ′

i(X)
)

Therefore we compute hi(X) and HX(Y, X) through the following equation instead:

hi(X) =
gi(X) + λpi,0 + λ2pi,1 + λ4pi,3

XT − 1

HX(Y, X) =
M−1∑
i=0

Ri(Y )hi(X)
(4.18)

Finally, by multiplying polynomials with Ri(Y ), the permutation argument becomes

P0(Y, X) := L0(X)(Z(Y, X)− 1) (4.19)
P1(Y, X) := (1− LN−1(X)) (4.20)

·
(
Z(Y, X)F (Y, X)− Z(Y, ωXX)F ′(Y, X)

)
P2(Y ) := R0(Y )(W (Y )− 1) (4.21)

p3(Y, X) := LN−1(X) (4.22)

·
(
W (Y )Z(Y, X)F (Y, X)−W (ωY Y )F ′(Y, X)

)
where F (Y, X) and F ′(Y, X) are just notations to denote

F (Y, X) :=
∏

S∈{A,B,O}
(S(Y, X) + ηY σY,s(Y, X)

+ ηXσX,s(Y, X) + γ)

F ′(Y, X) :=
∏

S∈{A,B,O}
(S(Y, X) + ηY Y + ηXksX + γ)

By combining with the same gate constraint as for data-parallel circuits, we finally have the equation to
define HY (Y, X), which concludes our constraint system for general circuits.

G(Y, X) + λP0(Y, X) + λ2P1(Y, X) + λ3P2(Y )
+ λ4P3(Y, X) = VX(Y, X)HX(Y, X) + VY (Y )HY (Y, X)

(4.23)
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4.3.4 Distributedly Computable Polynomial IOP Protocol
We present our polynomial IOP protocol in Protocol 3. The text in orange denotes the additional steps for
general circuits. We have the following theorem:

Theorem 4.3.3. Protocol 3 is a polynomial IOP protocol forR with negligible knowledge error.

The proof is in Appendix 4.8.

Theorem 4.3.4. Protocol 3 is a Polynomial IOP protocol that can be compiled into a distributedly com-
putable double efficient non-interactive proof that has witness-extended emulation, using a distributed com-
putable PCS, with only a constant increase in communication andO(N log T +M log M) additional proving
time compared to the PCS used.

Proof. We prove the theorem as follows:

Security. In [BFS20], they provide a detailed proof demonstrating that if the polynomial commitment
scheme Γ has witness-extended emulation, and if the t-round Polynomial IOP for a relationR has negligible
knowledge error, an interactive argument forR with witness-extended emulation exists.

We present a sketch of the proof: for an arbitrary adversary prover P IP for the IP scheme, we can con-
struct an adversary prover P IOP. With DKZG that guarantees witness-extended emulation, it enables P∗IOP
to simulate the transcript with P∗IP to extract polynomials. After sending the oracles to VIOP and receiving
challenges, PIOP can rewind the transcript with PIP to insert the same randomness from VIOP. Consequently,
due to the knowledge soundness of PCS, the reduction succeeds with high probability. Then from the knowl-
edge soundness proven in Theorem 4.3.3, an upper bound of the knowledge error for the IP protocol is
achieved.

We kindly refer to [BFS20] for the complete proof.

Efficiency. To analyze the extra communication, for all polynomials except HY (Y, X) and W (Y ), it is
divided into slices and stored in each party. Then with a PCS which can generate commitments and proofs
in this scenario, we can handle all oracle constructions and queries to those polynomials. As for W (Y ),
it is computed by P0 from z∗

i received from the i-th parties. Therefore, it can be easily computed from
constant message exchange between each node to the master. While the difficulty occurs when computing
HY (Y, X), instead of computing the full description, P0 only deals with it after receiving the first opening
coordinate X = α and computes HY,α(Y ) = HY (Y, α). Therefore, for 0 ≤ i < M , Pi sends si(α) for
s ∈ {qa, qb, qo, qab, qc, a, b, c, z, hx} and recover the corresponding polynomial S(Y, α), P0 can compute
G(Y, α), P{0,1,2,3}(Y, α) and compute HY,α(Y ) according to Equation 4.23. Additionally considering the
distribution of random challenges, the compiled polynomial IOP protocol only has a constant number of
more communication than PCS.

As for the proving time, it requires at most O(T log T ) together to compute zi(X), hi(X) for each party
and O(M log M) for P0 to compute W (Y ) and HY,α(Y ), the extra proving time is up to O(T log T +
M log M) for a single machine and O(N log T + M log M) in total.
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Protocol 3 (Polynomial IOP for Data-parallel and General Circuits). Suppose the circuit struc-
ture is known by P and V , therefore, V knows the following oracles:

• {Qa(Y, X), Qb(Y, X), Qo(Y, X), Qab(Y, X), Qc(X)}.

•
{
σY,a(Y, X), σY,b(Y, X), σY,o(Y, X), σX,a(Y, X), σX,b(Y, X), σX,o(Y, X)

}
.

When generating proof for a new instance, P and V go through the following rounds:

1. P sends the oracles of {A(Y, X), B(Y, X), C(Y, X)} to V .

2. After receiving ηY , ηX , γ from V , P sends the oracle of Z(Y, X) and W (Y ) to V .

3. After receiving λ from V , P computes HX(Y, X) = ∑M−1
i=0 Ri(Y ) ·

gi(X)+λpi,0(X)+λ
2
pi,1(X)+λ

4
pi,3(X)

X
T −1

and sends the oracle to V .

4. After receiving α from V , P computes HY,α(Y ) =
G(Y,α)+λP0(Y,α)+λ

2
P1(Y,α)+λ

3
P2(Y )+λ

4
P3(Y,α)−(αT −1)HX(Y,α)

Y
M −1

and sends the oracle to V .

5. V queries all oracles on X = α, Y = β and assign the evaluations to the corresponding
polynomials in Equation 4.12 or Equation 4.23. If this equation holds, then V output 1,
otherwise 0.

4.4 Fully Distributed SNARK
In Theorem 4.3.4, we show that with a distributed PCS, we can build a fully distributed double-efficient
interactive argument of knowledge protocol from distributed polynomial IOP. In this section, we instantiate
Theorem 4.3.4 by a distributed bivariate KZG.

4.4.1 Distributed KZG
In this section, we present a distributedly computable PCS based on a bivariate variant the KZG scheme
in [KZG; PST13].

In our distributed setting, the total size of the polynomial isN , and there areM machines ofP0, · · · ,PM−1
with part of the polynomial on each machine of size T = N/M . The goal of the fully distributed polyno-
mial commitments is to accelerate the prover time by B times while keeping the communication complexity
among the machine’s minimum. Moreover, both the proof size and the verifier time should remain the same
as the original polynomial commitment schemes. We present the distributed protocol in Protocol 4.

Theorem 4.4.1. Given polynomial f(Y, X) ∈ FM × F
N
M , Protocol 4 is PCS satisfying completeness and

knowledge soundness. The total proving computation consists of O(N) group operations, while O
(

N
M

)
group operations for each node and O

(
N
M + M

)
group operations for the master node. The total commu-
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Protocol 4 (Distributed Bivariate Polynomial Commitment). Suppose P has M machines of
P0, · · · ,PM−1 and suppose P0 is the master node. Given the bivariate polynomial f(Y, X) =∑M−1

i=0 fi,jRi(Y )Lj(X), each machine holds fi(X) =
∑T −1

j=0 fi,jLj(X) The protocol proceeds as follows.

• DKZG.KeyGen(1λ, M, T ) : Generate pp =
(

g, gτX , gτY , (Ui,j)0≤i<M,
0≤j<T

=
(
gRi(τY )Lj(τX)

)
0≤i<M,
0≤j<T

)
,

with trapdoor τY and τX . Let P,V hold pp.

• DKZG.Commit(f, pp) : In the commitment phase, each Pi computes the commitment comfi
=∏T −1

j=0 U
fi,j

i,j and sends it to P0, where fi,j is the j-th entry in the evaluation representation of fi(X).
After receiving commitments from others, P0 computes comf =

∏M−1
i=0 comfi

.

• DKZG.Open(f, β, α, pp) :

1. Each Pi computes fi(α) and q
(i)
0 (X) = fi(X)−fi(α)

X−α . Pi computes π
(i)
0 = gRi(τY )q(i)

0 (τX) using the
public parameters and sends fi(α), π

(i)
0 to P0.

2. After receiving
{(

fi(α), π
(i)
0

)}
0≤i<M

,P0 computes π0 =
∏M−1

i=0 π
(i)
0 , and also recover f(Y, α) =∑M−1

i=0 Ri(Y )fi(α).

3. P0 computes f(β, α) and q1(Y ) = f(Y,α)−f(β,α)
Y −β . P0 computes π1 = gq1(τY ) and sends z =

f(β, α) and πf = (π0, π1) to V .

• DKZG.Verify(comf , β, α, z, πf , pp): V parses πf = (π0, π1), and checks if e
(
comf /gz, g

) ?=
e
(
π0, gτX−α

)
e
(
π1, gτY −β

)
. It outputs 1 if the check passes, and 0 otherwise.

nication between Pi and P0 is O(1). The commitment and proof size are both O(1) group elements. The
verification cost is O(1) group operations.

Proof. We prove the theorm as follows:

For security. We kindly refer to [ZGKPP17d] for a full proof of the knowledge soundness for the multivari-
ate KZG protocol.

For efficiency. For the proving complexity, to commit the polynomial f(Y, X), each prover node Pi need
to compute comfi

, which costs O
(

N
M

)
group operations, and the master prover products them up in O(M)

group operations. To open the polynomial on a point (β, α), each node needs to evaluate fi(α) and compute
π

(i)
0 , from which the master node derives f(Y, α), and π0, with the same number of group operations as

computing the commitment. Finally P0 computes π1 in O(M) group operations. For the communication,
Pi only sends comfi

, fi(α) and π
(i)
0 toP0, and receives random challengeα fromP0, thus the communication

complexity is constant. It is easy to observe that the proof size and verification time are both constant.
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4.4.2 Using DKZG to Compile Protocol 3
We show our full instantiation in Protocol 5. From this protocol, we have the following theorem for general
circuits, which implies the security and efficiency of the data-parallel setting.

Theorem 4.4.2. Given a general circuit C with N gates, Protocol 5 is a double-efficient public-coin interac-
tive argument of knowledge protocol with witness-extended emulation for the relation of C(x;w) = 1 when
splitting C into M parts (C0, . . . , CM−1) each with T = N

M gates. The total proving computation consists
of O(N log T + M log M) field operations and O(N) group operations, with each Pi computes O(T log T )
field operations and O(T ) group operations, while P0 computes O(T log T + M log M) field operations
plus O(M + T ) group operations. The communication is O(1) per machine. The final proof size is O(1).
The verification cost is O(1) given the access to the commitments of the public polynomials defined by the
circuit in the preprocessing model.

Proof. We prove the theorem as follows:

For security. Following the security proof in Theorem 4.3.4, by combining the knowledge soundness of
DKZG in Theorem 4.4.1 and polynomial IOP in Theorem 4.3.3, we prove that Protocol 5 is a double efficient
public-coin interactive argument of knowledge protocol with negligible knowledge error.

For efficiency. The complexity for the efficiency is directly implied by Theorem 4.3.4 and Theorem 4.4.1.

Since Protocol 5 operates in the public-coin setting, it can be transformed into a SNARK protocol using
the Fiat-Shamir transform.

4.5 Robust Collaborative Proving System
In the previous sections, we propose a distributed ZKP protocol that divides the proving computation across
multiple machines and generates a constant-size proof, with constant communication and minimal overhead
in terms of proving and verification time compared to prior work. In this section, we introduce the definition
of the Robust Collaborative Proving System (RCPS) scheme and then propose a scheme in Protocol 5, demon-
strating the potential of our protocol in a malicious environment where each prover node might sabotage the
entire proof by intentionally generating a bad proof.

Definition 4.5.1 (Robust Collaborative Proving System (RCPS)). Suppose for the computation C, we de-
fine a system for M participants to be Robust Collaborative Proving System (RCPS) and has the following
functionalities:

• Setup
(
1λ
)
→ pp

• SplitCircuit (C, M)→ C = (C0, . . . , CM−1)

• MasterKeyGen (C, M, pp)→ (mpk, vk).

• KeyGeni (Ci, mpk)→ pki.

• SplitWitness (C,x)→ (w0, . . . ,wM−1).

• CoProve(P0)
i (pki,xi ∈ x,wi)→ π

(i)
0
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• Testi

(
xi, π

(i)
0 , mpk

)
→ bi ∈ {1, 0}

• Merge
(
(b0, . . . , bM−1) ,

(
π

(0)
0 , . . . , π

(M−1)
0

))
→ π.

• Verify (x, π, vk)→ {1, 0}.

It satisfies the following properties: completeness, witness-extended emulation, partial correctness, and
partial witness-extended emulation. Because the verifier’s view is identical to an interactive argument, we
directly inherit the definition of the completeness, witness-extended emulation in Definition 4.2.1 and only
present the definition of partial correctness and witness-extended emulation:

• Partial correctness. Given pp and the circuit partition for C, for each 0 ≤ i < M , if Ci(xi;wi) = 1
and π

(i)
0 = CoProve(P0)

i (pki,xi ∈ x,wi), then

Pr
[
Testi

(
xi, π

(i)
0 , mpk

)
= 1

]
= 1.

• Partial witness-extended emulation. With a valid pp, a circuit partition C for C, with |C| = M , and
mpk← MasterKeyGen (C, M, pp), an RCPS has partial witness-extended emulation if that: for each
0 ≤ i < M , and any PPT adversaryAi, there exists a PPT extractor Ei with access toAi’s messages
during the protocol such that (xi, auxi)← Ai(mpk), (wi, tri)← E

Ai(auxi)
i (xi, mpk), and

|Pr [Ai(auxi; tri) = 1 ∧ tr is accepting⇒ Ci(xi,wi) = 1]
− Pr [Ai(auxi; tri) = 1]| ≤ negl(λ)

We further show that with additional verification, our protocol for data-parallel circuits is an RCPS. The
full protocol is presented in Protocol 5 and after receiving the partial proofs and messages from Pi, P0
performs the checks at the end of Step 4). In this way, the protocol is secure in the presence of malicious
machines. P0 can identify the cheating party and exclude her from the final proof.

Theorem 4.5.2. For a data-parallel circuit C consisting of M independent sub-circuits, Protocol 5 is an
RCPS with completeness, witness-extended emulation, partial correctness, and partial witness-extended em-
ulation.

Please refer to the proof in Appendix 4.9.

4.6 Experiments
We have implemented the fully distributed ZKP system, Pianist and we present the implementation details
and evaluation results in this section.

Software and hardware. Our implementation is based on the Gnark [Gna] library written by Golang.
Our scheme is implemented using 3700+ lines of code in Go. The bilinear map is instantiated using a
BN254 curve. It provides around 100 bits of security and the pairing instruction is supported in Solidity, the
programming language of Ethereum smart contracts. The experiments were executed on AWS m6i.16xlarge
machines with 64 vCPUs and 256 GiB memory. We used the multi-threading enabled by the Gnark library.
We opened 2–64 machines over the two regions of California and Oregon.
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Design of the experiments. The goal of the experiments is to evaluate and demonstrate the following three
advantages of Pianist:
1. Linear scalability: we measure the running time and memory usage and demonstrate that Pianist has

linear scalability in the number of machines. The running time decreases linearly as the machine number
grows. The maximum size of the circuit supported by the system grows linearly with the number of
machines.

2. Minimum communication and synchronization: wemeasure the communication between themachines
to demonstrate that Pianist only incurs O(1) communication per machine in O(1) round.

3. Constant proof size and verifier time: we report the proof size and the verifier time and show that they
remain small in practice.

These three properties are critical for blockchain applications where with our new system, users can con-
tribute to ZKP generations in these applications in a model similar to mining pools.

4.6.1 Evaluations of Pianist for zkRollups
We first present the performance of Pianist on data-parallel circuits in the application of zkRollups. We use
the rollup circuit by PolygonHermez [Her]. The circuit is compiled usingCircom [Cira] and the output format
is the rank-1-constraint-system (R1CS). As Pianist and the original Plonk do not support R1CS directly,
we further compile the R1CS to Gnark’s Plonk constraint. The number of R1CS constraints is about 86k
per transaction and the final Plonk circuit we use in our experiments is about 660k per transaction. This
transformation introduces a big overhead compared to manually designed circuits. In practice, the size of the
Plonk circuit can be reduced significantly with special gates and lookup arguments. For example, Scroll [Scr]
designed more than 2000 custom gates for the zkEVM circuit. Unfortunately, we could not find any open-
source code of the Plonk circuit for zkRollups (even with custom gates). However, the big overhead of the
transformation does not defeat the purpose of our experiments. No matter how many transactions can be
supported on a single machine, we show that Pianist can scale it to M times more using M machines with
small communication.

Prover time. We run our distributed proof generation on 2-64machines and Figure 4.1 shows the result. The
x-axis is the number of transactions to batch in the zkRollups and the y-axis is the prover time. We report the
prover time of each Pi in our scheme and the running time of the original Plonk scheme on a single machine
as a baseline. We introduced additional optimizations to Plonk on a single machine to improve the memory
usage, and the performance shown in all of our experiments are based on the optimized version. We run each
case to the maximum number of transactions until the machines run out of memory. As shown in the figure,
with 64 machines, Pianist can prove up to 8192 transactions in 313s, while the original Plonk can only scale
to 32 transactions with a prover time of 95s. The number of transactions and thus the maximum circuit size
scales linearly in the number of machines. Moreover, given a fixed number of transactions, the prover time
is accelerated by the number of machines. For example, it only takes 17.5s to prove 32 transactions using 4
machines, 5.4× faster than on a single machine. In addition, the additional time on P0 to generate the final
proof is only 2-16ms in all of our experiments, which is extremely fast compared to the prover time of each
machine.

Constant communication, proof size, and verifier time. In our experiments, each machine only sends
1984 bytes of messages for data-parallel circuits (or 2080 for general circuits) in 4 rounds to the master node
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and receives 160 bytes for data-parallel (or 256 for general) circuits from the master node, regardless of the
total number of machines. Because of this, the bandwidth and the network delay of the machines do not affect
the results at all. This feature enables large-scale zkRollups with the help of users globally in a model similar
to a mining pool, as the nodes do not have to stay online and deal with massive communication with other
nodes in a Map-Reduce framework as in [WZCPS18]. The proof size is 27 G1 (or 34 for general circuits)
and 15 (or 20 for general circuits) F elements (2208 bytes or 2816 for general circuits) and the verifier time is
3.5ms in all cases regardless of the number of transactions. Compared to the original Plonk, we use bivariate
polynomials, which increase the proof size by 18 (or 25 for general circuits)G1, 7 (or 12 for general circuits)
F elements, and the verifier time by two pairings.

4.6.2 Evaluations on General Circuits
In this section, we further demonstrate that Pianist supports the distributed proof generation of general cir-
cuits with arbitrary connections. We vary the total size of the circuit from 221 to 225, and randomly sample
the type and the connection of each gate. The circuit is evaluated and the witness is distributed evenly to
multiple machines. In practice, the memory usage of the circuit evaluation is not the bottleneck and the
evaluation of the entire circuit can be executed on each machine individually.

Prover time. In Figure 4.2, the x-axis is the number of machines and the y-axis is the prover time of
each machine Pi. As shown in the Figure, the running time is decreasing with the number of machines. In
particular, for a random circuit of size 225, it takes 121s to generate the proof using Plonk on a single machine
(with our optimizations), while it takes 76.9s on 2 machines in Pianist, 1.57× faster than Plonk. It is further
reduced to 5s using 32 machines, which is 24.2× faster than Plonk.

In addition, Table 4.2 shows the additional time on P0 to merge proofs and messages from Pis. As shown
in the table, this step only takes several milliseconds in all instances.

Overhead vs. Plonk To show that the overhead of proving time between Pianist and Plonk, we illustrate the
case with the same circuit size as 221 per instance in Figure 4.4. From this result, we show that the overhead
of Pianist is negligible.

Memory usage. Figure 4.3 shows the memory usage of the machines. As shown in the figure, in Pianist,
the memory usage on each machine decreases with the number of machines. For example, for a circuit of size
224, it takes 70.7GB of memory to run the original protocol on a single machine, while it only takes 31.7GB
on each machine to run Pianist using two machines. It is further improved to 1.92GB using 32 machines,
which is 36.8× smaller than Plonk. The improvement is critical for zkRollups and zkEVM as the memory
consumption of existing ZKP systems is large. Pianist is able to increase the scalability of these schemes
linearly in the number of machines, thus batching more transactions in one ZKP with the help of the fully
distributed proof generations.

Communication, proof size, and verifier time. Similar to the case of data-parallel circuits, they all remain
O(1) for general circuits. In particular, the communication is 2336 bytes per machine, the proof size is 2816
bytes and the verifier time is 3ms.
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Circuit Size 8 Nodes 16 Nodes 32 Nodes
221 2.764 ms 3.576ms 4.629ms
222 2.975 ms 3.666ms 4.800ms
223 3.073 ms 3.687ms 5.009ms
224 3.120 ms 3.692ms 5.705ms

Table 4.2: Extra time to merge proofs on P0.

4.7 Discussions
Comparison with PCD and IVC As highlighted in Section 4.1.1, Proof-Carrying Data (PCD)[CT10;
BCCT13] generates a proof at each step for newly received transactions. To ensure the correctness of previous
proofs, there are two approaches: either aggregating a recursive proof for the previous succinct verification
circuits in the current proof[BCCT13; BSCTV14b; COS20], or merging each proof into an accumulator and
verifying them all at once [BCMS20; Hal; BCLMS20; KST22; KS22]. By using either the aggregated veri-
fication circuit or the accumulator, the prover does not need to store the entire circuit, making these methods
suitable alternatives when memory is limited.

Nonetheless, these techniques share some common drawbacks. First, they all utilize recursive proofs,
which depend on the assumption that the random oracle (RO) used in the Fiat-Shamir transform can be
efficiently instantiated. Second, their proofs are generated sequentially, potentially imposing an upper bound
on TPS. Third, either the succinct verification aggregation or the accumulator demands extra effort from
the prover, which will at least increase linearly as the number of steps grows, resulting in reduced practical
performance. Our work, on the other hand, avoids these issues since we do not employ recursive proofs.

We also mentioned Incremental Verifiable Computation (IVC) for incrementally verifying stages of long-
run computation, such as Nova [KST22] and SuperNova [KS22]. While Nova and SuperNova are suitable
for real-world applications like zkRollups and zkEVM, they expose the output of each stage, which cannot
guarantee a zero-knowledge property throughout the entire process. We argue that our work not only supports
general circuits, offering a more powerful computation model but can also achieve zero-knowledge properties
using common techniques.

Comparison with aPlonk [ABST22] In Section 4.1.1, we mentioned an alternative solution, aPlonk, which
is based on Plonk and generalized IPA under the same settings (distributed, shared Fiat-Shamir randomness)
as our approach. However, due to the use of IPA, their final verification cost is logarithmic with respect to
the number of parties. Additionally, they only propose a solution for data-parallel circuits and their solution
involves recursive proofs. In contrast, our proof does not require recursive circuits, our verification cost is
independent of the number of parties, and our approach is more flexible when generalizing to circuits with
connections and general circuits. Consequently, our solution delivers better performance, both theoretically
and practically.

Custom gates. A key advantage of the Plonk scheme lies in its support for custom gates. Users can define
their own gate constraints, differing from Equation 4.1, by altering term forms and introducing rotations.
Custom gates may increase the degree and total number of terms in Equation 4.1, but typically reduce the
overall gate count in the circuit, leading to significant improvements in prover time in practice. As mentioned
earlier, Scroll [Scr] designed over 2000 custom gates to enhance Plonk’s performance in their zkEVM im-
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plementation. Our new schemes are fully compatible with custom gates by following the outline introduced
in Section 4.3.

Additionally, as mentioned in Section 4.3, rotations can be introduced for the variable Y , and simple,
regular connections among different sub-circuits can be established based on the data-parallel setting. For
instance, in a zkEVM context, if we treat a block of instructions as a sub-circuit, we can define the constraint
Spc(X)fpc(Y, X)+∆ = Spc(X)fpc(ωY Y, X) to represent the program counter change between the previous
and current blocks, where Spc(X) serves as a selector to indicate the row recording the program counter.

Lookup arguments. Lookup arguments play a crucial role in the implementation of zkRollups and zkEVM,
as they help construct proofs for RAM and chiplet computations. Since these lookup arguments are compiled
into polynomial equations, we assert that they are compatible with our system. We can identify two primary
use cases for lookup arguments:

1. Lookup arguments with local tables. In this scenario, each sub-circuit possesses its own lookup
arguments, independent of other sub-circuits. This setup is well-suited for situations where each ma-
chine runs a program with its local memory, for example.

2. Lookup arguments with global tables. This configuration allows applications to define global
lookup tables, such as range tables or chiplet computing. We argue that, by leveraging the latest
lookup argument research [Hab22; EFG22] based on logarithmic derivatives, this can be easily imple-
mented. These protocols eliminate the need for cumbersome permutations of input and table vectors,
requiring only the counting of occurrences and the execution of a sumcheck protocol. Furthermore,
by employing rotation on the variable Y , global tables can be distributed across different machines,
thus reducing the workload for the master node.
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Protocol 5 (Distributedly Computable Double-efficient Public-coin Interactive Argument of
Knowledge). P is a prover with M machines of P0, · · · , PM−1, with master node P0. Given a fan-in two arithmetic circuit C of size N

with M sub-circuits, each of size T = N/M . P wants to convince V that Ci

(
x

(i);w(i)
)

= 1 for all i ∈ [M ], where x(i) is the public input

andw(i) is the witness of Ci. Each Pi holds the sub-circuit Ci.

• Key generation and preprocessing procedure: Let (pk = {pki}0≤i<M , vk). Run DKZG.KeyGen(1λ
, M, T ) and generate

g, g
τX , g

τY , U = (Ui)0≤i<M =
(

g
Ri(τY )Lj (τX )

)
0≤i<M
0≤j<T

, and derive V =
(

g
Ri(τY )

)
0≤i<M

. Compute commit-

ments comS for each of the following polynomial set Spp: Spp = {Qa(Y, X), Qb(Y, X), Qo(Y, X), Qab(Y, X), Qc(Y, X),
σY,a(Y, X), σY,b(Y, X), σY,o(Y, X),σX,a(Y, X), σX,b(Y, X), σX,o(Y, X)} Let si(X) be defined by S(Y, X) =∑M−1

i=0 Ri(Y )si(X), we define pk0 =
((

V, U0, {s0(X)}S∈Spp

))
, pki =

(
Ui, {si(X)}S∈Spp

)
, vk =(

g
τX , g

τY , {comS}S∈Spp

)
• Proving procedure:

1. Each Pi evaluates Ci and defines polynomials ai(X), bi(X), oi(X). P invokes the distributed algorithm Commit in Protocol 4 to
obtain comA, comB , comO as commitments of A(Y, X), B(Y, X), O(Y, X) and sends them to V .

2. After receiving random points ηY , ηX and γ from V , each Pi computes zi(X) , and sends the last entry zi,T −1 to the P0, from which
P0 computes W (Y ) =

∑M−1
i=0 wiRi(Y ). Then, P invokes the Commit algorithm in Protocol 4 to obtain comZ , comW and sends

them to V .
3. After receiving λ from V , P0 shares it to Pi. Each Pi computes hi(X) according to Equation 4.6 or Equation 4.18. Then, P

invokes algorithm Commit in Protocol 4 to obtain comHX
=
{

comHX,0
, comHX,1

, comHX,2
, comHX,3

}
as commitments of

HX(Y, X) =
∑M−1

i=0 Ri(Y )hi(X), and sends them to V . The form of comHX
due to the fact that HX(Y, X) has degree 3T − 2

or 4T − 2 with respect to X .

4. After receiving the random point α from V , P0 sends α to each Pi. We define Swit = {A, B, O, Z} Then P process the following
computation:

– for each polynomial S ∈ Spp ∪ Swit, run Step 1 & 2 in DKZG.Open function, computing S(Y, α) and the first entry of πS as
πS [0].

– Furthermore, P0 also recovers Z(Y, ωX · α) and π
′
Z [0] when running DKZG.Open for opening Z(Y, X) on X = ωX · α.

– With all {S(Y, α)}S∈Swit∪Spp
and Z(Y, ωXα), P computes HY,α(Y ) according to Equation 4.12 or Equation 4.23 and

the univariate commitment comHY
=
{

comHY,0
, comHY,1

, comHY,2
, comHY,3

}
as commitments of HY (Y, X) =∑M−1

i=0 hy,α,iRi(Y ), and sends them to V . The degree of HY,α(Y ) has degree 3T − 2 or 4T − 2 with respect to Y .

– Finally, P sends {πS [0]}S∈Swit∪Spp
∪
{

π
′
Z [0], comhY

}
to V .

In the malicious setting: Pi for i ̸= 0 might be dishonest, P0 needs to check whether the other nodes have sent malicious proof.
Since P0 has received the commitments

(
comsi

)
0≤i<M

for each s ∈ Swit ∪
{

hX,0, hX,1, hX,2, hX,3
}

and {wi}0≤i<M when

distributively committing polynomials, and the corresponding evaluations {si(α)} and opening proof
{

π
(i)
0,s

}
when distributively

opening the polynomials with α, P0 can verify Equation 4.1, Equation 4.14, Equation 4.15, Equation 4.16, Equation 4.17 with evalua-
tions and the following paring check: e(comsi

/g
si(α)

, g) ?= e(π(i)
0,s, g

τX −α) If for some i
∗, the check doesn’t pass, P0 discards

all messages sent from P
i
∗ and replaces them with dummy messages.

5. After receiving β from V , P executes Step 3 in the Open algorithm in Protocol 4 to compute the evaluations on S(β, α) and πS [1] for
S ∈ Swit ∪ Spp and Z(β, ωXα), HX(β, α). P also computes HY (β), πHY

and W (β), πW . In the end, P sends all the evaluations
and proofs to V .

• Verification procedure: V verifies the following steps:

1. V verifies the evaluation and proof S(β, α), πS for S ∈ Swit ∪ Spp ∪ {Z(Y, ωXX), HX(Y, X)}, together with HY (β), W (β) with
corresponding proofs by invoking the Verify algorithm in Protocol 4.

2. With the evaluations, V verifies the gate constraint Equation 4.8.
3. With the evaluations, V verifies the copy constraints according to Equation 4.9, Equation 4.10, or Equation 4.19, Equation 4.20, Equa-

tion 4.21, Equation 4.22.

If all checks pass, V outputs 1; otherwise V outputs 0.
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Figure 4.1: Prover time of Pianist for zkRollups transaction verification.
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Figure 4.4: Comparison between the prover time of a single node in Pianist and Plonk for sub-circuit
with the same size
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4.8 Proof of Theorem 4.3.3
Theorem 4.3.3. Protocol 3 is a Polynomial IOP protocol with negligible knowledge error.

Proof. For simplicity, we only prove the theorem in the general-circuit setting. We assume the adversary P∗

has unbounded power. At the beginning, both P∗ and V hold the following precomputed polynomial set Spp:

1. {Qa(Y, X), Qb(Y, X), Qo(Y, X), Qab(Y, X), Qc(Y, X)}

2. {σY,a(Y, X), σY,b(Y, X), σY,o(Y, X) σX,a(Y, X), σX,b(Y, X), σX,o(Y, X)}

With arbitrary invalid witness a∗, b∗, o∗ ∈ FM×T generated by P∗, the possibility that V outputs 1 is negili-
gible.

1. For each f ∈
{
a∗, b∗, o∗}, P∗ define the polynomial F (Y, X) =

∑M−1
i=0

∑T −1
j=0 fi,jLj(X)Ri(Y ) =∑M−1

i=0 fi,jLj(X), Z∗(Y, X) and W ∗(Y ) are derived from the witnesses.

2. In the round after V sends β to P∗, which is the last round, V queries all oracles in Spp and Swit ={
A∗(Y, X), B∗(Y, X), O∗(Y, X), Z∗(Y, X), W ∗(Y )

}
with random challenge α and β and verifies

the Equation 4.23. Since V has received all oracles before sending β to P , by the Schwartz-Zipple
Lemma [Sch80; Zip79], it implies that there exists
Q0(Y ) := Gα(Y ) +

∑3
i=0 λi+1Pi,α(Y )−

(
αT − 1

)
HX(Y, α) where

Gα(Y ) := Qa(Y, α)A∗(Y, α) + Qb(Y, α)B∗(Y, α)
+ Qab(Y, α)A∗(Y, α)B∗(Y, α)
+ Qo(Y, α)O∗(Y, α) + Qc(Y, α)

P0,α(Y ) := L0(α)(Z∗(Y, α)− 1)
P1,α(Y ) := (1− LN−1(α))

·
(
Z∗(Y, α)Fα(Y )− Z∗

α,nxt(Y )F ′
α(Y )

)
P2,α(Y ) := R0(Y )(W ∗(Y )− 1)
P3,α(Y ) := LN−1(α)

(
W ∗(Y )Z∗(Y, α)Fα(Y )

− W ∗(ωY Y )F ′
α(Y )

)
Fα(Y ) :=

∏
S∈{A∗

,B
∗
,O

∗}
(S(Y, α) + ηY σY,s(Y, α)

+ ηXσX,s(Y, α) + γ)

F ′
α(Y ) :=

∏
S∈

{A∗
,B

∗
,O

∗}

(S(Y, α) + ηY Y + ηXksα + γ)

(4.24)

such that
Q0(Y ) =

(
Y M − 1

)
HY,α(Y ) (4.25)

which means, for 0 ≤ i < M , Q(ωi
Y ) = 0. From the form of F ∈

{
A∗, B∗, O∗, Z∗, HX

}
,

F (Y, X) =
∑M−1

i=0 fi(X)Ri(Y ) and W ∗(Y ) =
∑M−1

i=0 w∗
i Ri(Y ), we know that for 0 ≤ i < M
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after assigning the value a∗
i (α), b∗

i (α), o∗
i (α), z∗

i (α), z∗
i (ωXα) and wi to the corresponding polynomi-

als of Y in Equation 4.24, we will derive q0,i = Q0(ωi
Y ) = 0.

In the following rounds, we go through the proof for 0 ≤ i < M .

3. In the round after V sends α to P . Since V∗ has oracles for all polynomials, before sending α to
P∗, which is equivalent to have oracles of si(X) ∈

(
a∗

i (X), b∗
i (X), c∗

i (X), z∗
i (X), hX,i(X)

)
since

si(r) = S(ωi
Y , r). In addition, V has the oracle W (Y ) fromwhich he can query wi = W (ωi

Y ). Again
from the Schwartz-Zipple Lemma, there exists qi(X) := gi(X)+λpi,0(X)+λ2pi,1(X)+λ4pi,3(X),
where

gi(X) := qa,i(X)a∗
i (X) + qb,i(X)b∗

i (X) + qc,i(X)
+ qab,i(X)a∗

i (X)b∗
i (X) + qo,i(X)o∗

i (X)
p0,i(X) := L0(X)(z∗

i (X)− 1)
p1,i(X) := (1− LN−1(X))

·
(
z∗

i (X)fi(X)− z∗
i (ωXX)f ′

i(X)
)

p3,i(X) := LN−1(X)
(
wiz

∗
i (X)fi(X)− wi+1f ′

i(X)

fi(X) :=
∏

s∈{a∗
,b

∗
,o

∗}
(si(X) + ηY ωi

Y

+ ηXσX,s,i(X) + γ)

f ′
i(X) :=

∏
s∈

{a∗
,b

∗
,o

∗}

(si(X) + ηY ωi
Y + ηXksX + γ)

(4.26)

such that
qi(X) =

(
XT − 1

)
hX,i(X) (4.27)

which means, for 0 ≤ i < M , Q(ωi
Y ) = 0. From the form of f ∈

{
a∗, b∗, o∗, z∗, hX

}
, fi(Y, X) =∑T −1

j=0 fi,jLj(X), we know that for 0 ≤ j < T after assigning the value a∗
i,j , b∗

i,j , o∗
i,j , z∗

i,j , z∗
i,j+1 to

the corresponding polynomials of X in Equation 4.26, we will derive qi,j = qi(ω
j
X) = 0.

4. In the round after V sends γ to P∗, since V∗ has received oracles(
a∗

i (X), b∗
i (X), c∗

i (X), z∗
i (X), w∗

i , w∗
i+1
)
before sending λ to P , from Schwartz-Zipple Lemma, it

implies for each 0 ≤ j < T , gi(ω
j
X) = p0,i(ω

j
X) = p1,i(ω

j
X) = p2,i(ω

j
X) = 0.

After combine the claims for 0 ≤ i < M , it implies (a∗, b∗, c∗) ∈ (FM×T ,FM×T ,FM×T ) is a valid witness
for gate constraints. From the constraints related to Z and W , suppose (σY,i,j , σX,i,j) correctly describe the
permutation cycles similar to the permutation cycles in Plonk, we prove the argument that

(
ai,j , σY,a,i,j , σX,a,i,j

)(
bi,j , σY,b,i,j , σX,b,i,j

)(
oi,j , σY,o,i,j , σX,o,i,j

)
 =


(ai,j , ωi

Y , kaωj
X)

(bi,j , ωi
Y , kbω

j
X)

(oi,j , ωi
Y , koωj

X)


Therefore, (a∗, b∗, c∗) ∈ (FM×T ,FM×T ,FM×T ) also satisfies the copy constraints which is equivalent to
the copy constraints in original Plonk. The possibility P∗ successfully cheats V is bounded by 5M+5T +O(1)

|F| .
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4.9 Proof of Theorem 4.5.2
Theorem 4.5.2. For a data-parallel circuit C consisting of M independent sub-circuits, Protocol 5 is an RCPS
with completeness, witness-extended emulation, partial correctness, and partial witness-extended emulation.

Proof. We prove this theorem by first utilizing Protocol 5 in a data-parallel setting to implement RCPS and
subsequently demonstrating that the instantiation possesses the witness-extended emulation property.

Implementation. We implement the functionalities in Definition 4.5.1 as follows:

• Setup
(
1λ
)
→ pp: run DKZG.KeyGen(1λ, Mmax, Tmax) and generate all bases needed for creating

and verifying polynomial commitments.

• SplitCircuit (C, M) → C = (C0, . . . , CM−1): split C into M independent sub-circuits, denoted as
C0, . . . , CM−1.

• MasterKeyGen (C, M, pp)→ (mpk, vk): call DKZG.Commit(S, pp) to compute{(
comS , comsi

)}
s∈Spp

. We define mpk =
(
comsi

)
s∈Spp

0≤i<M
,pp

. Set vk as in the key generation and

preprocessing procedure from Protocol 5.

• KeyGeni (Ci, mpk) → pki: generate pki for Pi following the key generation and preprocessing
procedure in Protocol 5.

• SplitWitness (C,x)→ (w0, . . . ,wM−1): each prover Pi holds the witness wi in Ci.

• CoProve(P0)
i (pki,xi ∈ x,wi) → π

(i)
0 : execute the proving procedure between P0 and other nodes

in Protocol 5 from Step 1 to Step 4, collecting all messages from Pi as π
(i)
0 .

• Testi

(
xi, π

(i)
0 , mpk

)
→ bi ∈ {1, 0}: P0 performs the checking procedure, as shown in the malicious

setting in Protocol 5. If all checks pass, output 1; otherwise, output 0.

• Merge
(
(b0, . . . , bM−1) ,

(
π

(0)
0 , . . . , π

(M−1)
0

))
→ π: P0 replaces π

(i)
0 with a dummy proof if bi = 0,

and run Step 5 in Protocol 5 to generate the proof π.

• Verify (x, π, vk)→ {1, 0}: V runs the verification procedure in Protocol 5.

Completeness and witness-extended emulation properties are inherited from Protocol 5 as proven in
Theorem 4.4.2. Partial correctness is straightforward. Consequently, we only need to prove that the given
implementation possesses witness-extended emulation. We note that the underlying polynomial IOP is de-
rived from the constraints in Equation 4.1, Equation 4.4, and Equation 4.5, compiled with a variant of KZG
protocol. As a result, we follow the same framework used in the proof for Theorem 4.3.4.

The knowledge error in the IOP. By replacing V with P0, we claim that the second part of the proof in
Appendix 4.8, which argues for 0 ≤ i < M , provides evidence of the knowledge error in this implementation.

The knowledge soundness of PCS. We observe that the PCS scheme between Pi and P0 is a variant of the
KZG protocol, with pp =

(
gRi(τY )Lj(τX)

)
0 ≤ j < T instead of

(
gLi(τX)

)
for the standard KZG protocol

with pp in the Lagrange basis. To prove the knowledge soundness of the KZG variant, we proceed as follows:
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assuming pp =
(
gLj(τX)

)
0 ≤ j < T , the adversary A for the KZG protocol generates z∗, x∗, com∗, π∗.

Then, A creates pp′ =
(
gRi(τY )LJ (τX)

)
for the KZG variant using a randomly sampled τY . If an extrac-

tor EA′(·)(1λ, pp′) can successfully compute f∗ such that f∗(x∗) = z∗, we can construct EA(·)(1λ, pp) by
invoking E ′ and returning f∗. Therefore, we proved that the KZG variant also has knowledge soundness.
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Chapter 5

zkBridge: Trustless Cross-chain Bridges
Made Practical

Blockchains have seen growing traction with cryptocurrencies reaching a market cap of over 1 trillion dollars,
major institution investors taking interests, and global impacts on governments, businesses, and individuals.
Also growing significantly is the heterogeneity of the ecosystem where a variety of blockchains co-exist.
Cross-chain bridge is a necessary building block in this multi-chain ecosystem. Existing solutions, however,
either suffer from performance issues or rely on trust assumptions of committees that significantly lower
the security. Recurring attacks against bridges have cost users more than 1.5 billion USD. In this paper,
we introduce zkBridge, an efficient cross-chain bridge that guarantees strong security without external trust
assumptions. With succinct proofs, zkBridge not only guarantees correctness, but also significantly reduces
on-chain verification cost. We propose novel succinct proof protocols that are orders-of-magnitude faster
than existing solutions for workload in zkBridge. With a modular design, zkBridge enables a broad spectrum
of use cases and capabilities, including message passing, token transferring, and other computational logic
operating on state changes from different chains. To demonstrate the practicality of zkBridge, we imple-
mented a prototype bridge from Cosmos to Ethereum, a particularly challenging direction that involves large
proof circuits that existing systems cannot efficiently handle. Our evaluation shows that zkBridge achieves
practical performance: proof generation takes less than 20 seconds, while verifying proofs on-chain costs
less than 230K gas. For completeness, we also implemented and evaluated the direction from Ethereum to
other EVM-compatible chains (such as BSC) which involve smaller circuits and incurs much less overhead.

This work was previously published in [Zha+21a].



5.1 Introduction
Since the debut of Bitcoin, blockchains have evolved to an expansive ecosystem of various applications and
communities. Cryptocurrencies like Bitcoin and Ethereum are gaining rapid traction with the market cap
reaching over a trillion USD [Coi] and institutional investors [Ham22; Win21] taking interests. Decentral-
ized Finance (DeFi) demonstrates that blockchains can enable finance instruments that are otherwise impos-
sible (e.g., flash loans [QZLG21]). More recently, digital artists [Bee] and content creators [You] resort to
blockchains for transparent and accountable circulation of their works.

Also growing significantly is the heterogeneity of the ecosystem. A wide range of blockchains have
been proposed and deployed, ranging from ones leveraging computation (e.g., in Proof-of-Work [Nak08]),
to economic incentives (e.g., in Proof-of-Stake [GHMVZ17; BLMR14; KRDO17; DGKR17; BPS16]), and
various other resources such as storage [RD16; Fil; DFKP15; ABFG14], and even time [Int]. While it is rather
unclear that one blockchain dominates others in all aspects, these protocols employ different techniques and
achieve different security guarantees and performance. It has thus been envisioned that (e.g., in [Amu; Mul;
But]) the ecosystem will grow to a multi-chain future where various protocols co-exist, and developers and
users can choose the best blockchain based on their preferences, the cost, and the offered amenities.

A central challenge in the multi-chain universe is how to enable secure cross-chain bridges through
which applications on different blockchains can communicate. An ecosystem with efficient and inexpensive
bridges will enable assets held on one chain to effortlessly participate in marketplaces hosted on other chains.
In effect, an efficient system of bridges will do for blockchains what the Internet did for siloed communication
networks.

The core functionality of a bridge between blockchains C1 and C2 is to prove to applications on C2 that
a certain event took place on C1, and vice versa. We use a generic notion of a bridge, namely one that can
perform multiple functions: message passing, asset transfers, etc. In our modular design, the bridge itself
neither involves nor is restricted to any application-specific logic.

The problem. While cross-chain bridges have been built in practice [Rai; Polb; Lay; Axe], existing solutions
either suffer from poor performance, or rely on central parties.

The operation of the bridge depends on the consensus protocols of both chains. If C1 runs Proof-of-
Work, a natural idea is to use a light client protocol (e.g., SPV [Nak08]). Specifically, a smart contract on
C2, denoted by SC2, will keep track of block headers of C1, based on which transaction inclusion (and other
events) can be verified with Merkle proofs. This approach, however, incurs a significant computation and
storage overhead, since SC2 needs to verify all block headers and keep a long and ever-growing list of them.
For non-PoW chains, the verification can be even more expensive. For example, for a bridge between a Proof-
of-Stake chain (like Cosmos) and Ethereum, verifying a single block header on Ethereum would cost about
64 million gas [Nea] (about $6300 at time of writing), which is prohibitively high.

Currently, as an efficient alternative, many bridge protocols (PolyNetwork,Wormhole, Ronin, etc.) resort
to a committee-based approach: a committee of validators are entrusted to sign off on state transfers. In these
systems, the security boils down to, e.g., the honest majority assumption. This is problematic for two reasons.
First, the extra trust assumption in the committee means the bridged asset is not as secure as native ones,
complicating the security analysis of downstream applications. Second, relying on a small committee can
lead to single point failures. Indeed, in a recent exploit of the Ronin bridge [Ron], the attackers were able to
obtain five of the nine validator keys, through which they stole 624 million USD, making it the largest attack
in the history of DeFi by Apr 2022¹. Even the second and third largest attacks are also against bridges ($611m

¹see the ranking at https://rekt.news/leaderboard
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was stolen from PolyNetwork [Pola] and $326m was stolen from Wormhole [Wora]), and key compromise
was suspected in the PolyNetwork attack.

Our approach. We present zkBridge to enable an efficient cross-chain bridge without trusting a centralized
committee. Themain idea is to leverage zk-SNARK,which are succinct non-interactive proofs (arguments) of
knowledge [WTSTW18; XZZPS19b; Zha+21a; BSBHR19; BSCTV14c; AHIV17; BSCRSVW19; COS20;
CHMMVW20; ZGKPP17d; ZGKPP18; BBBPWM18; GWC19b; Set20]. A zk-SNARK enables a prover to
efficiently convince SC2 that a certain state transition took place on C1. To do so, SC2 will keep track of
a digest D of the latest tip of C1. To sync SC2 with new blocks in C1, anyone can generate and submit a
zk-SNARK that proves to SC2 that the tip of C1 has advanced from D to D′.

This design offers three benefits. First, the soundness property of a zk-SNARK ensures the security of
the bridge. Thus, we do not need additional security requirements beyond the security of the underlying
blockchains. In particular zkBridge does not rely on a committee for security. Second, with a purpose-built
zk-SNARK, C2 can verify a state transition of C1 far more efficiently than encoding the consensus logic of C1
in SC2. In this way, as an example for zkBridge from Cosmos to Ethereum, we reduce the proof verification
cost from∼ 80M gas to less than 230K gas on C2. The storage overhead of the bridge is reduced to constant.
Third, by separating the bridge from application-specific logic, zkBridge makes it easy to enable additional
applications on top of the bridge.

Technical challenges. To prove correctness of a given computation outcome using a zk-SNARK, one first
needs to express the computation as an arithmetic circuit. While zk-SNARK verification is fast (logarithmic
in the size of the circuit or even constant), proof generation time is at least linear, and in practice can be
prohibitively expensive. Moreover, components used by real-world blockchains are not easily expressed as
an arithmetic circuit. For example, the widely used EdDSA digital signature scheme is very efficient to verify
on a CPU, but is expensive to express as an arithmetic circuit, requiring more than 2 million gates [Cirb]. In
a cross-chain bridge, each state transition could require the verification of hundreds of signatures depending
on the chains, making it prohibitively expensive to generate the required zk-SNARK proof. In order to make
zkBridge practical, we must reduce proof generation time.

To this end, we propose two novel ideas. First, we observe that the circuits used by cross-chain bridges
are data-parallel, in that they contain multiple identical copies of a smaller sub-circuit. Specifically, the
circuit for verifying N digital signatures contains N copies of the signature verification sub-circuit. To
leverage the data-parallelism, we propose deVirgo, a novel distributed zero-knowledge proofs protocol based
on Virgo [ZXZS20]. deVirgo enjoys perfect linear scalability, namely, the proof generation time can be
reduced by a factor of M if the generation is distributed over M machines. The protocol is of independent
interest andmight be useful in other scenarios. Other proof systems can be similarly parallelized [WZCPS18].

While deVirgo significantly reduces the proof generation time, verifying deVirgo proofs on chain, es-
pecially for the billion-gate circuits in zkBridge, can be expensive for smart contracts where computational
resources are extremely limited. To compress the proof size and the verification cost, we recursively prove the
correctness of a (potentially large) deVirgo proof using a classic zk-SNARK due to Groth [Gro16], hereafter
denoted Groth16. The Groth16 prover outputs constant-size proofs that are fast to verify by a smart contract
on an EVM blockchain. We stress that one cannot use Groth16 to generate the entire zkBridge proof because
the circuits needed in zkBridge are too large for a Groth16 prover. Instead, our approach of compressing
a deVirgo proof using Groth16 gives the best of both worlds: a fast deVirgo parallel prover for the bulk of
the proof, where the resulting proof is compressed into a succinct Groth16 proof that is fast to verify. We
elaborate on this technique in Section 5.5. This approach to compressing long proofs is also being adopted
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in commercial zk-SNARK systems such as [Pold; Polc; Ris].

Implementation and evaluation. To demonstrate the practicality of zkBridge, we implement an end-to-
end prototype of zkBridge from Cosmos to Ethereum, given it is among the most challenging directions
as it involves large circuits for correctness proofs. Our implementation includes the protocols of deVirgo
and recursive proof with Groth16, and the transaction relay application. The experiments show that our
system achieves practical performance. deVirgo can generate a block header relay proof within 20s, which
is more than 100x faster than the original Virgo system with a single machine. Additionally, the on-chain
verification cost decreases from ∼80M gas (direct signature verification) to less than 230K gas, due to the
recursive proofs. In addition, as a prototype example, we also implement zkBridge from Ethereum to other
EVM-compatible chains such as BSC, which involves smaller circuits for proof generation and incurs much
less overhead.

5.1.1 Our contribution
In this paper, we make the following contributions:

• In this paper, we propose zkBridge, a trustless, efficient, and secure cross-chain bridge whose security
relies on succinct proofs (cryptographic assumptions) rather than a committee (external trust assumptions).
Compared with existing cross-chain bridge projects in the wild, zkBridge is the first solution that achieves
the following properties at the same time.

– Trustless and Secure: The correctness of block headers on remote blockchains is proven by zk-
SNARKs, and thus no external trust assumptions are introduced. Indeed, as long as the connected
blockchains and the underlying light-client protocols are secure, and there exists at least one honest
node in the block header relay network, zkBridge is secure.

– Permissionless and Decentralized: Any node can freely join the network to relay block headers,
generate proofs, and claim the rewards. Due to the elimination of the commonly-used central or
Proof-of-Stake style committee for block header validation, zkBridge also enjoys better decentraliza-
tion.

– Extensible: Smart contracts using zkBridge enjoy maximum flexibility because they can invoke the
updater contract to retrieve verified block headers, and then perform their application-specific verifi-
cation and functionality (e.g., verifying transaction inclusion through auxiliary Merkle proofs). By
separating the bridge from application-specific logic, zkBridge makes it easy to develop applications
on top of the bridge.

– Universal: The block header relay network and the underlying proof scheme in zkBridge is universal
– Efficient: With our highly optimized recursive proof scheme, block headers can be relayed within a

short time (usually tens of seconds for proof generation), and the relayed information can be quickly
finalized as soon as the proof is verified, thus supporting fast and flexible bridging of information.

In summary, zkBridge is a huge leap towards building a secure, trustless foundation for blockchain inter-
operability.

• We propose a novel 2-layer recursive proof system, which is of independent interest, as the underlying zk-
SNARK protocol to achieve both reasonable proof generation time and on-chain verification cost. Through
the coordination of deVirgo and Groth16, we achieve a desirable balance between efficiency and cost.
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– For the first layer, aiming at prompt proof generation, we introduce deVirgo, a distributed version
of Virgo proof system. deVirgo combines distributed sumcheck and distributed polynomial com-
mitment to achieve optimal parallelism, through which the proof generation phase is much more
accelerated by running on distributed machines. deVirgo is more than 100x faster than Virgo for the
workload in zkBridge.

– For the second layer, aiming at acceptable on-chain verification cost, we use Groth16 to recursively
prove that the previously generated proof by deVirgo indeed proves the validity of the corresponding
remote block headers. Through the second layer, the verification gas cost is reduced from an
estimated ∼ 80M to less than 230K, making on-chain verification practical.

• We implement an end-to-end prototype of zkBridge and evaluate its performance in two scenarios: from
Cosmos to Ethereum (which is the main focus since it involves large proof circuits that existing systems
cannot efficiently handle), and from Ethereum to other EVM-compatible chains (which in comparison in-
volves much smaller circuits). The experiment results show that zkBridge achieves practical performance
and is the first practical cross-chain bridge that achieves cryptographic assurance of correctness.

5.2 Background
In this section we cover the preliminaries, essential background on blockchains, and zero-knowledge proofs.

5.2.1 Notations
Let F be a finite field and λ be a security parameter. We use f(), h() for polynomials, x, y for single variables,
bold letters x, y for vectors of variables. Both x[i] and xi denote the i-th element in x. For x, we use notation
x[i : k] to denote slices of vector x, namely x[i : k] = (xi, xi+1, · · · , xk). We use i to denote the vector of
the binary representation of some integer i.

Merkle Tree. Merkle tree [Mer87] is a data structure widely used to build commitments to vectors because
of its simplicity and efficiency. The prover time is linear in the size of the vector while the verifier time and
proof size are logarithmic in the size of the vector. Given a vector of x = (x0, · · · , xN−1), it consists of
three algorithms:

• rt← MT.Commit(x)

• (x[i], πi)← MT.Open(x, i)

• {1, 0} ← MT.Verify(πi, x[i], rt).

5.2.2 Blockchains
A blockchain is a distributed protocol where a group of nodes collectively maintains a ledger which consists
of an ordered list of blocks. A block blk is a data-structure that stores a header blkH and a list of transactions,
denoted by blk = {blkH; trx1, . . . , trxt}. A block header contains metadata about the block, including a
pointer to the previous block, a compact representation of the transactions (typically a Merkle tree root),
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validity proofs such as solutions to cryptopuzzles in Proof-of-Work systems or validator signatures in Proof-
of-Stake ones.

Security of blockchains. The security of blockchains has been studied extensively. Suppose the ledger in
party i’s local view is LOGr

i = [blk1, blk2, . . . , blkr] where r is the height. For any 2 ≤ k ≤ r and the k-th
block blkk , blkk.ptr = blkHk−1, so every single block is linked to the previous one. For the purpose of this
paper, we care about two (informal) properties:

1. Consistency: For any honest nodes i and j, and for any rounds of r0 and r1, it must be satisfied that
either LOGr0

i is a prefix of LOGr1
j or vice versa.

2. Liveness: If an honest node receives some transaction trx at some round r, then trx will be included
into the blockchain of all honest nodes eventually.

Smart contracts and gas. In addition to reaching consensus over the content of the ledger, many blockchains
support expressive user-defined programs called smart contracts, which are stateful programs with state
persisted on a blockchain. Without loss of generality, smart contract states can be viewed a key-value store
(and often implemented as such.) Users send transactions to interact with a smart contract, and potentially
alter its state.

A key limitation of existing smart contract platforms is that computation and storage are scarce resources
and can be considerably expensive. Typically smart contract platforms such as Ethereum charge a fee (some-
times called gas) for every step of computation. For instance, EdDSA signatures are extremely cheap to
verify (a performant CPU can verify 71000 of them in a second [BDLSY12]), but verifying a single EdDSA
signature on Ethereum costs about 500K gas, which is about $49 at the time of writing. Storage is also ex-
pensive on Ethereum. Storing 1KB of data costs about 0.032 ETH, which can be converted to approximately
$90 at the time of writing. This limitation is not unique to Ethereum but rather a reflection of the low capacity
of permissionless blockchains in general. Therefore reducing on-chain computation and storage overhead is
one of the key goals.

5.2.3 Light client protocol
In a blockchain network, there are full nodes as well as light ones. Full nodes store the entire history of the
blockchain and verify all transactions in addition to verifying block headers. Light clients, on the other hand,
only store the headers, and therefore can only verify a subset of correctness properties.

The workings of light clients depend on the underlying consensus protocol. The original Bitcoin paper
contains a light client protocol (SPV [Nak08]) that uses Merkle proofs to enable a light client who only stores
recent headers to verify transaction inclusion. A number of improvements have been proposed ever since. For
instance, in Proof-of-Stake, typically a light client needs to verify account balances in the whole blockchain
history (or up to a snapshot), and considers the risk of long range attacks. For BFT-based consensus, a light
client needs to verify validator signatures and keeps track of validator rotation. We refer readers to [CBC21]
for a survey.

To abstract consensus-specific details away, we use

LightCC(LCSr−1, blkHr−1, blkHr)→ {true, false}
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to denote the block validation rule of a light client: given a new block header blkHr, LightCC determines if
the header represents a valid next block after blkHr−1 given its current state LCSr−1. We define the required
properties of a light client protocol as follows:

Definition 5.2.1 (Light client protocol). A light client protocol enables a node to synchronize the block
headers of the state of the blockchain. Suppose all block headers in party i’s local view is LOGHr

i =
[blkH1, blkH2, ..., blkHr], the light client protocol satisfies following properties:

1. Succinctness: For each state update, the light client protocol only takes O(1) time to synchronize the
state.

2. Liveness: If an honest full node receives some transaction trx at some round r, then trx must be
included into the blockchain eventually. A light client protocol will eventually include a block header
blkHi such that the corresponding block includes the transaction trx.

3. Consistency: For any honest nodes i and j, and for any rounds of r0 and r1, it must be satisfied that
either LOGH

r0
i is a prefix of LOGH

r1
j or vice versa.

5.2.4 Zero-knowledge proofs
An argument system for an NP relationship R is a protocol between a computationally-bounded prover P
and a verifier V . At the end of the protocol, V is convinced by P that there exists a witness w such that
(x; w) ∈ R for some input x. We use G to represent the generation phase of the public parameters pp.
Formally, consider the definition below, where we assumeR is known to P and V .

Definition 5.2.2. Let λ be a security parameter andR be an NP relation. A tuple of algorithm (G,P,V) is
a zero-knowledge argument of knowledge forR if the following holds.

• Completeness. For every pp output by G(1λ), (x; w) ∈ R and π ← P(x, w, pp),

Pr[V(x, π, pp) = 1] = 1

• Knowledge Soundness. For any PPT prover P∗, there exists a PPT extractor E such that for any
auxiliary string z, pp← G(1λ), π∗ ← P∗(x, z, pp), w ← EP∗(·)(x, z, pp), and

Pr[(x; w) /∈ R ∧ V(x, π∗, pp) = 1] ≤ negl(λ),

where EP∗(·) represents that E can rewind P∗,

• Zero knowledge. There exists a PPT simulator S such that for any PPT algorithm V∗, (x; w) ∈ R,
pp output by G(1λ), it holds that

View(V∗(pp, x)) ≈ SV∗
(x),

where View(V∗(pp, x)) denotes the view that the verifier sees during the execution of the interactive
process with P , SV∗

(x) denotes the view generated by S given input x and transcript of V∗, and ≈
denotes two perfectly indistinguishable distributions.
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We say that (G,P,V) is a succinct argument system² if the total communication (proof size) between P and
V , as well as V’s running time, are poly(λ, |x|, log |R|), where |R| is the size of the circuit that computesR
as a function of λ.

5.3 zkBridge Protocol
At a high level, a smart contract is a stateful program with states persisted on a blockchain. A bridge like
zkBridge is a service that enables smart contracts on different blockchains to transfer states from one chain
to another in a secure and verifiable fashion.

Below we first explain the design of zkBridge and its workflow through an example, then we specify the
protocol in more detail. For ease of exposition, we focus on one direction of the bridge, but the operation of
the opposite direction is symmetric.

<latexit sha1_base64="tYgHYaKMpEZiSDeCN0ly/hYNnFw="></latexit>

C1
<latexit sha1_base64="7XQOCflByiY2WT/gU2Gj8PuOfm8="></latexit>

C2

Block Header 
Relay Network

Receiver chainSender chain
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<latexit sha1_base64="jvw1MaLVBryCo/LfYVFXeQGUOJY="></latexit>
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User U

❶ Lock v tokens ❻ Mint v tokens

Figure 5.1: The design of zkBridge illustrated with the example of cross-chain token transfer. The
components in shade belongs to zkBridge. For clarity we only show one direction of the bridge and the
opposite direction is symmetric.

5.3.1 Overview of zkBridge design
To make it easy for different applications to integrate with zkBridge, we adopt a modular design where we
separate application-specific logic (e.g., verifying smart contract states) from the core bridge functionality
(i.e., relaying block headers).

Figure 5.1 shows the architecture and workflow of zkBridge. The core bridge functionality is provided
by a block header relay network (trusted only for liveness) that relays block headers of C1 along with
correctness proofs, and an updater contract on C2 that verifies and accepts proofs submitted by relay nodes.
The updater contract maintains a list of recent block headers, and updates it properly after verifying proofs
submitted by relay nodes; it exposes a simple and application-agnostic API, from which application smart

²In our construction, we only need a succinct non-interactive arguments of knowledge (SNARK) satisfying the first
two properties and the succinctnes for validity. The zero knowledge property could be used to further achieve privacy.
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contracts can obtain the latest block headers of the sender blockchain and build application-specific logic on
top of it.

Applications relying on zkBridge will typically deploy a pair of contracts, a sender contract and a receiver
contract on C1 and C2, respectively. We refer to them collectively as application contracts or relying contracts.
The receiver contract can call the updater contract to obtain block headers of C1, based on which they can
perform application specific tasks. Depending on the application, receiver contracts might also need a user
or a third party to provide application-specific proofs, such as Merkle proofs for smart contract states.

As an example, Fig. 5.1 shows the workflow of cross-chain token transfer, a common use case of bridges,
facilitated by zkBridge. Suppose a user U wants to trade assets (tokens) she owns on blockchain C1 in an
exchange residing on another blockchain C2 (presumably because C2 charges lower fees or has better liquidity),
she needs to move her funds from C1 to C2. A pair of smart contracts SClock and SCmint are deployed on
blockchains C1 and C2 respectively. To move the funds, the user locks $v tokens in SClock (step ① in Fig. 5.1)
and then requests $v tokens to be issued by SCmint. To ensure solvency, SCmint should only issue new tokens
if and only if the user has locked tokens on C1. This requires SCmint to read the states of SClock (the balance
of U , updated in step ② ) from a different blockchain, which it cannot do directly. zkBridge enables this
by relaying the block headers of C1 to C2 along with proofs (step ③ and ④ ). SCmint can retrieve the block
headers from the smart contract frontend (the updater contract), check that the balance of user U is indeed
$v (step ⑤ ), and only then mint $v tokens (Step ⑥ ).

Besides cross-chain token transfer, zkBridge can also enable various other applications such as cross-
chain collateralized loans, general message passing, etc. We present three use cases in Section 5.3.3.

5.3.2 Protocol detail
Having presented the overview, in this section, we specify the protocol in more detail.
Security and system model

For the purpose of modeling bridges, we model a blockchain C as a block-number-indexed key-value
store, denoted as C[t] : K → V where t is the block number, K and V are key and value spaces respectively.
In Ethereum, for example, V = {0, 1}256 and keys are the concatenation of a smart contract identifier SC
and a per-smart-contract storage address K. For a given contract SC, we denote the value stored at address
K at block number t as SC[t, K], and we call SC[t, ·] the state of SC at block number t. Again, for ease of
exposition, we focus on the direction from SC1 to SC2, denoted as BR[SC1 → SC2].
Functional and security goals. We require the bridge BR[SC1 → SC2] to reflect states of SC1 correctly
and timely:

1. Correctness: For all t, K, SC2 accepts a wrong state V ̸= SC1[t, K] with negligible probability.

2. Liveness: Suppose SC2 needs to verify SC1’s state at (t, K), the bridge will provide necessary informa-
tion eventually.

Security assumptions. For correctness, zkBridge does not introduce extra trust assumptions besides those
made by the underlying blockchains. Namely, we assume both the sender blockchain and the receiver
blockchain are consistent and live (Section 5.2), and the sender chain has a light client protocol to enable
fast block header verification. For both properties, we assume there is at least one honest node in the relay
network, and that the zk-SNARK used is sound.
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Construction of zkBridge
As described in Section 5.3, a bridge BR[SC1 → SC2] consists of three components: a block header

relay network, a updater contract, and one or more application contracts. Below we specify the protocols for
each component.

Block header relay network. We present the formal protocol of block header relay network in Protocol 14.

Protocol 14 Block header relay network
procedure RELAYNEXTHEADER(LCSr−1, blkHr−1)

Contact k different full nodes to get the block headers following blkHr−1, namely blkHr.
Generate a ZKP π proving

LightCC(LCSr−1, blkHr−1, blkHr)→ true.

Send (π, blkHr, blkHr−1) to the updater contract.

Nodes in the block header relay network run RelayNextHeader with the current state of the updater
contract (LCSr−1, blkHr−1) as input. The exact definition of LCSr−1 is specific to light client protocols
(see [CBC21] for a survey). The relay node then connects to full nodes in C1 and gets the block header blkHr

following blkHr−1. The relay node generates a ZKP π showing the correctness of blkHr, by essentially
proving that blkHr is accepted by a light client of C1 after block blkHr−1. It then sends (π, blkHr) to the
updater contract on C2. To avoid the wasted proof time due to collision (note that when multiple relay nodes
send at the same time, only one proof can be accepted), relay nodes can coordinate using standard techniques
(e.g., to send in a round robin fashion). While any zero-knowledge proofs protocol could be used, our highly
optimized one will be presented later in Section 5.4.

To incentivize block header relay nodes, provers may be rewarded with fees after validating their proofs.
We leave incentive design for futurework. A prerequisite of any incentive scheme is unstealability [SCPTZ21],
i.e., the guarantee that malicious nodes cannot steal others’ proofs. To this end, provers will embed their iden-
tifiers (public keys) in proofs, e.g., as input to the hash function in the Fiat-Shamir heuristic [FS86].

We note that this design relies on the security of the light client verifier of the sender chain. For example,
the light client verifier must reject a valid block header that may eventually become orphaned and not part of
the sender chain.

The updater contract. The protocol for the updater contract is specified in Protocol 15.
The updater contract maintains the light client’s internal state including a list of block headers of C1

in headerDAG. It has two publicly exposed functions. The HeaderUpdate function can be invoked by any
block header relay node, providing supposedly the next block header and a proof as input. If the proof verifies
against the current light client state LCS and blkHr−1, the contract will do further light-client checks, and
then the state will be updated accordingly. Since the caller of this function must pay a fee, DoS attacks are
naturally prevented.

The GetHeader function can be called by receiver contracts to get the block header at height t. Receiver
contracts can use the obtained block header to finish application-specific verification, potentially with the
help of a user or some third party.

Application contracts. zkBridge has a modular design in that the updater contract is application-agnostic.
Therefore in BR[SC1 → SC2], it is up to the application contracts SC1 and SC2 to decide what the informa-
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Protocol 15 The updater contract
headerDAG := ∅ ▷ DAG of headers
LCS := ⊥ ▷ light client state
procedure HEADERUPDATE(π, blkHr, blkHr−1)

if blkHr−1 ̸∈ headerDAG then
return False ▷ skip if parent block is not in the DAG

if π verifies against LCS, blkHr−1, blkHr then
Update LCS according to the light client protocol.
Insert blkHr into headerDAG.

procedure GETHEADER(t) ▷ t is a unique identifier to a block header
if t ̸∈ headerDAG then

return ⊥ ▷ tell the caller to wait
else

return headerDAG[t], LCS ▷ The LCS will help users to determine if t is on a fork.

tion to bridge is. Generally, proving that SC1[t, K] = V is straightforward: SC2 can request for a Merkle
proof for the leaf of the state Trie Tree (at block number t) corresponding to address K. The receiver con-
tract can obtain blkHt from the updater contract by calling the function GetHeader(t). Then it can verify
SC1[t, K] = V against the Merkle root in blkHt. Required Merkle proofs are application-specific, and are
typically provided by the users of SC2, some third party, or the developer/maintainer of SC2.

Security arguments. The security of zkBridge is stated in the following theorem.

Theorem 5.3.1. The bridge BR[SC1 → SC2] implemented by protocols 14 and 15 satisfies both consistency
and liveness, assuming the following holds:

1. there is at least one honest node in the block header relay network;

2. the sender chain is consistent and live;

3. the sender chain has a light-client verifier as in Def. 5.2.1; and

4. the succinct proof system is sound.

Proof (sketch). To prove the consistency of DAG, we first need to convert the DAG into a list of blocks to
match the definition of blockchain consistency. We define an algorithm Longest : DAG → List such that
given a DAG, the algorithm will output a list MainChain representing the main chain. For example, if the
sender chain is Ethereum, the algorithmLongest will first calculate the path with themaximum total difficulty
in the DAG represented by L, and then output MainChain := L[: −K]. Here K is a security parameter. By
assumption 1 and 2, there will be an honest node in our system running either a full node or a light node,
which will be consistent with the sender chain. Also, according to assumption 1, at least one prover node
is honestly proving the light client execution. By assumption 4 that the proof system is sound, the updater
contract will correctly verify the light-client state. We argue that the updater contract is correctly running the
light-client protocol. Therefore, by the consistency of the light-client protocol, MainChain will be consistent
with any other honest node.
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The liveness of our protocol directly follows from the liveness of C1 and its light client protocol.

5.3.3 Application use cases
In this section, we present three examples of applications that zkBridge can support.

Transaction inclusion: a building block. A common building block of cross-chain applications is to verify
transaction inclusion on another blockchain. Specifically, the goal is to enable a receiver contract SC2 on C2
to verify that a given transaction trx has been included in a block Bt on C1 at height t. To do so, the receiver
contract SC2 needs a user or a third-party service to provide the Merkle proof for trx in Bt. Then, SC2 will
call the updater contract to retrieve the block header of C1 at height t, and then verify the provided Merkle
proof against the Merkle root contained in the header.

Next, we will present three use cases that extend the building block above.

1. Message passing and data sharing. Cross-chain message passing is another common building block
useful for, e.g., sharing off-chain data cross blockchains.

Message passing can be realized as a simple extension of transaction inclusion, by embedding the mes-
sage in a transaction. Specifically, to pass a message m from C1 to C2, a user can embed m in a transaction
trxm, send trxm to C1, and then execute the above transaction inclusion proof.

2. Cross-chain assets transfer/swap. Bridging native assets is a common use case with growing demand.
In this application, users can stake a certain amount of token TA on the sender blockchain C1, and get the same
amount of token TA (for native assets transfer if eligible) or a certain amount of token TB of approximately the
same value (for native assets swap) on the receiver blockchain C2. With the help of the transaction inclusion
proof, native assets transfer/swap can be achieved, as illustrated at a high level in Section 5.3.1. Here we
specify the protocol in more detail.

To set up, the developers will deploy a lock contract SClock on C1 and a mint contract SCmint on C2. For
a user who wants to exchange nA of token TA for an equal value in token TB , she will first send a transaction
trxlock that transfers nA of token TA to SClock, along with an address addrC2

to receive token TB on C2.
After trxlock is confirmed in a block B, the user will send a transaction trxmint to SCmint, including sufficient
information to verify the inclusion of trxlock. Based on information in trxmint, SCmint will verify that trxlock
has been included on C1, and transfer the corresponding TB tokens to the address addrC2

specified in trxlock.
Finally, SCmint will mark trxlock as minted to conclude the transfer.

3. Interoperations for NFTs. In the application of Non-fungible Token (NFT) interoperations, users al-
ways lock/stake the NFT on the sender blockchain, and get minted NFT or NFT derivatives on the receiver
blockchain. By designing the NFT derivatives, the cross-chain protocol can separate the ownership and util-
ity of an NFT on two blockchain systems, thus supporting locking the ownership of the NFT on the sender
blockchain and getting the utility on the receiver blockchain.

5.3.4 Efficient Proof Systems for zkBridge
The most computationally demanding part of zkBridge is the zero-knowledge proofs generation that relay
nodes must do for every block. So far we have abstracted away the detail of proof generation, which we will
address in Sections 5.4 and 5.5. Here, we present an overview of our solution.

For Proof-of-Stake chains, the proofs involve verifying hundreds of signatures. A major source of over-
head is field transformation between different elliptic curves when the sender and receiver chains use different
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cryptography implementation, which is quite common in practice. For example, Cosmos uses EdDSA on
Curve25519 whereas Ethereum natively supports a different curve BN254. The circuit for verifying a sin-
gle Cosmos signature in the field supported by Ethereum involves around 2 million gates, thus verifying a
block (typically containing 32 signatures) will involve over 64 million gates, which is too big for existing
zero-knowledge proofs schemes.

To make zkBridge practical, we propose two ideas.

Reducing proof time with deVirgo We observe that the ZKP circuit for verifying multiple signatures is
composed of multiple copies of one sub-circuit. Our first idea is to take advantage of this special structure
and distribute proof generation across multiple servers. We propose a novel distributed ZKP protocol dubbed
deVirgo, which carefully parallelizes the Virgo [ZXZS20] protocol, one of the fastest ZKP systems (in terms
of prover time) without a trusted setup. With deVirgo, we can accelerate proof generation in zkBridge with
perfect linear scalability. We will dive into the detail of deVirgo in Section 5.4.

Reducing on-chain cost by recursive verification. While verifying deVirgo proofs on ordinary CPUs is
very efficient, on-chain verification is still costly. To further reduce the on-chain verification cost (compu-
tation and storage), we use recursive verification: the prover recursively proves the correctness of a (poten-
tially large) Virgo proof using a smart-contract-friendly zero-knowledge protocol to get a small and verifier-
efficient proof. At a high level, we trade slightly increased proof generation time for much reduced on-chain
verification cost: the proof size reduces from 200+KB to 131 bytes, and the required computation reduces
from infeasible amount of gas to 210K gas. We will present more detail of recursive verification in Sec-
tion 5.5.

5.4 Distributed proof generation
As observed previously, the opportunity for fast prover time stems from the fact that the circuit for verifyingN
signatures consists of N copies of identical sub-circuits. This type of circuits is called data-parallel [Tha15].
The advantage of data-parallel circuits is that there is no connection among different sub-copies. Therefore,
each copy can be handled separately. We consider accelerating the proof generation on such huge circuits
by dealing with each sub-circuit in parallel. In this section, we propose a distributed zk-SNARK protocol on
data-parallel circuits.

There aremany zero knowledge proofs protocols [ZXZS20; XZZPS19b; Set20;WTSTW18; BSCTV14c;
BSCRSVW19; AHIV17; BSBHR19; Zha+21a; GWC19b; COS20] supporting our computation. We choose
Virgo as the underlying ZKP protocols for two reasons: 1. Virgo does not need a trusted setup and is plausi-
bly post-quantum secure. 2. Virgo is one of the fastest protocols with succinct verification time and succinct
proof size for problems in large scale. We present a new distributed version of Virgo for data-parallel arith-
metic circuits achieving optimal scalability without any overhead on the proof size. Specifically, our protocol
of deVirgo on data-parallel circuits with N copies using N parallel machines is N times faster than the orig-
inal Virgo while the proof size remains the same. Our scheme is of independent interest and is possible to
be used in other Virgo-based systems to improve the efficiency.

We provide the overall description of deVirgo as follows. Suppose the prover has N machines in total,
labeled fromP0 toPN−1. AssumeP0 is themaster node while other machines are ordinary nodes. AssumeV
is the verifier. Given a data-parallel arithmetic circuit consisting ofN identical structures, the naïve algorithm
of the distributed Virgo is to assign each sub-circuit to a separate node. Then each node runs Virgo to generate
the proof separately. The concatenation of N proofs is the final proof. Unfortunately, the proof size in this
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naive algorithm scales linearly in the number of sub-circuits, which can be prohibitively large for data-parallel
circuits with many sub-copies. To address the problem, our approach removes the additional factor of N in
the proof size by aggregating messages and proofs among distributed machines. Specifically, the original
protocol of Virgo consists of two major building blocks. One is the GKR protocol [GKR15], which consists
of d sumcheck protocols [LFKN92] for a circuit of depth d. The other is the polynomial commitment (PC)
scheme. We design distributed schemes for each of the sumcheck and the polynomial commitment (PC). In
our distributed sumcheck protocol, a master node P0 aggregates messages from all machines, then sends
the aggregated message to V in every round, instead of sending messages from all machines directly to V .
Our protocol for distributed sumcheck has exactly the same proof size as the original sumcheck protocol,
thus saving a factor N over the naïve distributed protocol. Additionally, in our distributed PC protocol, we
optimize the commitment phase and make P0 aggregate N commitments into one instead of sending N
commitments directly to V . During the opening phase, the proof can also be aggregated, which improves the
proof size by a logarithmic factor in the size of the polynomial.

We present preliminaries in Section 5.4.1, the detail of the distributed sumcheck protocol in Section 5.4.2
and the detail of the distributed PC protocol in Section 5.4.3. We combine them all together to build deVirgo
in Section 5.4.4.

5.4.1 Preliminaries

Multi-linear extension/polynomial. Let V : {0, 1}ℓ → F be a function. The multi-linear exten-
sion/polynomial of V is the unique polynomial Ṽ : Fℓ → F such that Ṽ (x) = V (x) for all x ∈ {0, 1}ℓ. Ṽ
can be expressed as:

Ṽ (x) =
∑

b∈{0,1}ℓ

∏ℓ

i=1
((1− xi)(1− bi) + xibi)) · V (b),

where bi is i-th bit of b.

Identity function. Let β : {0, 1}ℓ × {0, 1}ℓ → {0, 1} be the identity function such that β(x, y) = 1 if
x = y, and β(x, y) = 0 otherwise. Suppose β is the multilinear extension of β. Then β can be expressed
as: β(x, y) =

∏ℓ
i=1((1− xi)(1− yi) + xiyi).

5.4.2 Distributed sumcheck

Background: the sumcheck protocol. The sumcheck problem is to sum a multivariate polynomial f :
Fℓ → F over all binary inputs:

∑
b1,··· ,bℓ∈{0,1} f(b1, · · · , bℓ). The sumcheck protocol allows the prover P

to convince the verifier V that the summation is H via a sequence of interactions, and the formal protocol is
presented in Protocol 8.

The high-level idea of the sumcheck protocol is to divide the verification into ℓ rounds. In each round, the
prover only sends a univariate polynomial to the verifier. The verifier checks the correctness of the polynomial
by a single equation. Then this variable will be replaced by a random point sampled by the verifier. As there
are totally ℓ variables in f , after ℓ rounds, the claim about the summation will be reduced to a claim about f
on a random vector r. Given the oracle access to f on a random vector, the verifier can check the last claim.

The GKR protocol. We follow the convention in prior works of GKR protocols [CMT12; Tha13b;
ZGKPP17d; XZZPS19b; ZXZS20]. We denote the number of gates in the i-th layer as Si and let si =
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Protocol 8 (Sumcheck). The protocol proceeds in ℓ rounds.

• In the first round, P sends a univariate polynomial

f1(x1)
def=

∑
b2,...,bℓ∈{0,1}

f(x1, b2, . . . , bℓ) ,

V checks H = f1(0) + f1(1). Then V sends a random challenge r1 ∈ F to P .

• In the i-th round, where 2 ≤ i ≤ ℓ− 1, P sends a univariate polynomial

fi(xi)
def=

∑
bi+1,...,bℓ∈{0,1}

f(r1, . . . , ri−1, xi, bi+1, . . . , bℓ) ,

V checks fi−1(ri−1) = fi(0) + fi(1), and sends a random challenge ri ∈ F to P .

• In the ℓ-th round, P sends a univariate polynomial

fℓ(xℓ)
def= f(r1, r2, . . . , rl−1, xℓ) ,

V checks fℓ−1(rℓ−1) = fℓ(0) + fℓ(1). The verifier generates a random challenge rℓ ∈
F. Given oracle access to an evaluation f(r1, r2, . . . , rℓ) of f , V will accept if and only if
fℓ(rℓ) = f(r1, r2, . . . , rℓ). The oracle access can be instantiated by PC.

⌈log Si⌉. (For simplicity, we assume Si is a power of 2, and we can pad the layer with dummy gates oth-
erwise.) We then define a function Vi : {0, 1}si → F that takes a binary string b ∈ {0, 1}si and returns
the output of gate b in layer i, where b is called the gate label. With this definition, V0 corresponds to
the output of the circuit, and Vd corresponds to the input layer. Finally, we define two additional functions
addi, multi : {0, 1}si−1+2si → {0, 1}, referred to as wiring predicates in the literature. addi (multi) takes
one gate label z ∈ {0, 1}si−1 in layer i − 1 and two gate labels x, y ∈ {0, 1}si in layer i, and outputs 1 if
and only if gate z is an addition (multiplication) gate that takes the output of gate x, y as input. With these
definitions, for any z ∈ {0, 1}si , Vi can be written as:

Vi(z) =
∑

x,y∈{0,1}si+1 (addi+1(z, x, y)(Vi+1(x) + Vi+1(y))

+multi+1(z, x, y)Vi+1(x)Vi+1(y))
(5.1)

In the equation above, Vi is expressed as a summation, so V can use the sumcheck protocol to check that
it is computed correctly. As the sumcheck protocol operates on polynomials defined on F, we rewrite the
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equation with their multi-linear extensions:

Ṽi(g) =
∑

x,y∈{0,1}si+1 hi(g, x, y)

=
∑

x,y∈{0,1}si+1 ( ˜addi+1(g, x, y)(Ṽi+1(x) + Ṽi+1(y))

+ ˜multi+1(g, x, y)Ṽi+1(x)Ṽi+1(y)) , (5.2)

where g ∈ Fsi is a random vector.
With Equation 5.2, the GKR protocol proceeds as following. The prover P first sends the claimed output

of the circuit to V . From the claimed output, V defines polynomial Ṽ0 and computes Ṽ0(g) for a random
g ∈ Fs0 . V andP then invoke a sumcheck protocol on Equation 5.2 with i = 0. As described in Protocol 8, at
the end of the sumcheck, V needs an oracle access to hi(g, u, v), where u, v are randomly selected in Fsi+1 .
To compute hi(g, u, v), V computes ˜addi+1(g, u, v) and ˜multi+1(g, u, v) locally (they only depend on the
wiring pattern of the circuit, not on the values), asks P to send Ṽ1(u) and Ṽ1(v) and computes hi(g, u, v) to
complete the sumcheck protocol. In this way, V and P reduce a claim about the output to two claims about
values in layer 1. V and P could invoke two sumcheck protocols on Ṽ1(u) and Ṽ1(v) recursively to layers
above, but the number of the sumcheck protocols would increase exponentially.

One way to combine two claims Ṽi(u) and Ṽi(v) is using random linear combinations, as proposed
in [CFS17; WTSTW18]. Upon receiving the two claims Ṽi(u) and Ṽi(v), V selects αi,1, αi,2 ∈ F randomly
and computes αi,1Ṽi(u) + αi,2Ṽi(v). Based on Equation 5.2, this random linear combination can be written
as

αi,1Ṽi(u) + αi,2Ṽi(v)

=αi,1
∑

x,y∈{0,1}si+1

˜addi+1(u, x, y)(Ṽi+1(x) + Ṽi+1(y))

+ ˜multi+1(u, x, y)Ṽi+1(x)Ṽi+1(y)

+αi,2
∑

x,y∈{0,1}si+1

˜addi+1(v, x, y)(Ṽi+1(x) + Ṽi+1(y))

+ ˜multi+1(v, x, y)Ṽi+1(x)Ṽi+1(y)

=
∑

x,y∈{0,1}si+1

(αi,1 ˜addi+1(u, x, y) + αi,2 ˜addi+1(v, x, y))(Ṽi+1(x) + Ṽi+1(y))

+ (αi,1 ˜multi+1(u, x, y) + αi,2 ˜multi+1(v, x, y))Ṽi+1(x)Ṽi+1(y) (5.3)

V and P then execute the sumcheck protocol on Equation 5.3 instead of Equation 5.2. At the end of the
sumcheck protocol, V still receives two claims about Ṽi+1, computes their random linear combination and
proceeds to the layer above recursively until the input layer. The formal GKR protocol is presented in Proto-
col 9.

Complexity of the sumcheck protocol in GKR protocol. For simplicity in the complexity analysis, we
define the sumcheck equation in GKR protocol as

Ṽi(g) =
∑

x∈{0,1}ℓ

f(x, Ṽi+1(x)), (5.4)
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Protocol 9 (GKR). Let F be a finite field. Let C: Fm → Fk be a d-depth layered arithmetic
circuit. P wants to convince that C(x) = 1 where x is the input from V , and 1 is the output.
Without loss of generality, assume m and k are both powers of 2 and we can pad them if not.

1. V chooses a random g ∈ Fs0 and sends it to P .

2. P and V run a sumcheck protocol on

1 =
∑

x,y∈{0,1}s1

( ˜add1(g(0), x, y)(Ṽ1(x) + Ṽ1(y)) + ˜mult1(g(0), x, y)Ṽ1(x)Ṽ1(y))

At the end of the protocol, V receives Ṽ1(u(1)) and Ṽ1(v(1)). V computes
˜mult1(g(0), u(1), v(1)), ˜add1(g(0), u(1), v(1)) and checks that ˜add1(g(0), u(1), v(1))

(Ṽ1(u(1)) + Ṽ1(v(1))) + ˜mult1(g(0), u(1), v(1)) Ṽ1(u(1))Ṽ1(v(1)) equals to the last mes-
sage of the sumcheck.

3. For i = 1, ..., d− 1:

• V randomly selects αi,1, αi,2 ∈ F and sends them to P .
• P and V run the sumcheck on the equation

αi,1Ṽi(u(i)) + αi,2Ṽi(v(i)) =∑
x,y∈{0,1}si+1

((αi,1 ˜addi+1u(i), x, y) + αi,2 ˜addi+1(v(i), x, y))(Ṽi+1(x) + Ṽi+1(y))

+(αi,1 ˜multi+1(u(i), x, y) + αi,2 ˜multi+1(v(i), x, y))Ṽi+1(x)Ṽi+1(y))

• At the end of the sumcheck protocol, P sends V Ṽi+1(u(i+1)) and Ṽi+1(v(i+1)).
• V computes the right-hand side of the above equation by replacing x and y by u(i+1)

and v(i+1) respectively. checks if it equals to the last message of the sumcheck. If
all checks in the sumcheck pass, V uses Ṽi+1(u(i+1)) and Ṽi+1(v(i+1)) to proceed
to the (i + 1)-th layer. Otherwise, V outputs 0 and aborts.

4. At the input layer d, V has two claims Ṽd(u(d)) and Ṽd(v(d)). V evaluates Ṽd at u(d) and
v(d) using the input and checks that they are the same as the two claims. If yes, output 1;
otherwise, output 0.

where f is some polynomial from Fℓ to F and g is a random vector in Fℓ. For the multivariate polynomial
of f defined in Equation 5.4, the prover time in Protocol 8 is O(2ℓ). The proof size is O(ℓ) and the verifier
time is O(ℓ).
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In the setting of data-parallel circuits, we distribute the sumcheck polynomial f among parallel machines.
Suppose the data-parallel circuit C consists of N identical sub-circuits of C0, · · · , CN−1 and N = 2n for
some integer n without loss of generality. The polynomial f : Fℓ → F is defined on C by Equation 5.4.

The idea of our distributed sumcheck protocol is to treat each sub-copy as a new circuit as there is no
wiring connections across different sub-circuits. We define polynomials of f (0), · · · , f (N−1) on
C0, · · · , CN−1 : Fℓ−n → F respectively by Equation 5.4 in the GKR protocol, which have the same form as
f defined on C. The naïve approach is running the sumcheck protocol on these polynomials separately. As
there are N proofs in total and each size is O(ℓ − n), the total proof size will be O(N(ℓ − n)). To reduce
the proof size back to ℓ, the prover needs to aggregate N proofs to generate a single proof on f . We observe
that the sumcheck protocol on data-parallel circuits satisfies f (i)(x) = f(x, i). As shown in Protocol 8, the
protocol proceeds for ℓ variables round by round. We first run the sumcheck protocol on variables that are
irrelevant to the index of sub-copies in the circuit. In the first (ℓ − n) rounds, each prover Pi generates the
univariate polynomial of f

(i)
j (xj) for f (i)(x) and sends it to P0. P0 constructs the univariate polynomial for

fj(xj) by summing f
(i)
j (xj) altogether since fj(xj) =

N∑
i=0

f
(i)
j (xj), and sends fj(xj) to V in the j-th round.

The aggregation among parallel machines reduces the proof size to constant in each round. Hence the final
proof size is only O(ℓ). A similar approach has appeared in [WHGSW16]. The main focus of [WHGSW16]
was improving the prover time of the sumcheck protocol in the GKR protocol to O(2ℓ(ℓ−n)) for data-parallel
circuits, which was later subsumed by [XZZPS19b] with a prover running in O(2ℓ) time. Instead, our scheme
is focused on improving the prover time by N times with distributed computing on N machines without any
overhead on the proof size.

With this idea in mind, we rewrite the sumcheck equation on f as follows.

H =
∑

b∈{0,1}ℓ

f(b) =
N−1∑
i=0

∑
b∈{0,1}ℓ−n

f (i)(b).

Then we divide the original sumcheck protocol on f into 3 phases naturally in the setting of distributed
computing. We present the formal protocol of distributed sumcheck in Protocol 10.

1. From round 1 to round (ℓ−n) (step 1 in Protocol 10),Pi runs the sumcheck protocol on f (i) and sends
the univariate polynomial to P0. After receiving all univariate polynomials from other machines, P0
aggregates these univariate polynomials by summing them together and sends the aggregated univari-
ate polynomial to the verifier. When P0 receives a random query from the verifier, P0 relays the
random challenge to all nodes as the random query of the current round.

2. In round (ℓ − n) (step 2 in Protocol 10), the polynomials of f (0), · · · , f (N−1) have been condensed
to one evaluation on a random vector r ∈ Fℓ−n. P0 uses these N points as an array to construct the
multi-linear polynomial f ′ : Fn → F such that f ′(x) = f(r, x[1 : n]).³

3. After round (ℓ− n) (step 3 in Protocol 10), P0 continues to run the sumcheck protocol on f ′ with V
in last n rounds.

In this way, the computation of Pi is equivalent to running the sumcheck protocol in Virgo on Ci. It acceler-
ates the sumcheck protocol in Virgo by N times without any overhead on the proof size using N distributed

³The approach can extend to the product of two multi-linear polynomials, which matches the case in Virgo.
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Protocol 10 (Distributed sumcheck). Suppose the prover has N machines P0, · · · ,PN−1 and
supposeP0 is the master node. Each Pi holds a polynomial f (i) : Fℓ−n → F such that f (i)(x) =
f(x[1 : ℓ− n], i). Suppose V is the verifier. The protocol proceeds in 3 phases consisting of ℓ
rounds.

1. In the j-th round, where 1 ≤ j ≤ ℓ− n, each Pi sends P0 a univariate polynomial

f
(i)
j (xj)

def=
∑

b∈{0,1}ℓ−n−j

f (i)(r[1 : j − 1], xj, b) ,

After receiving all univariate polynomials from P1, · · · , PN−1, P0 computes

fj(xj) =
N−1∑
i=0

f
(i)
j (xj)

then sends fj(xj) to V . V checks fj−1(rj−1) = fj(0) + fj(1), and sends a random
challenge rj ∈ F to P0. P0 relays rj to P1, · · · , PN−1.

2. In the j-th round, where j = ℓ − n, after receiving rj from P0, each Pi computes
f (i)(r[1 : j]) and sends f (i)(r[1 : j]) toP0. ThenP0 constructs a multi-linear polynomial
f ′ : Fn → F such that f ′(i) = f (i)(r[1 : j]) for 0 ≤ i < N .

3. In the j-th round, where ℓ− n < j ≤ ℓ, P0 and V run Protocol 8 on the statement:

H ′ =
∑

b∈{0,1}n

f ′(b),

where H ′ = ∑N−1
i=0 f (i)(r[1 : ℓ− n]).

machines, which is optimal for distributed algorithms both in asymptotic complexity and in practice. We
give the complexity of Protocol 10 in the following.

Complexity of the distributed sumcheck protocol. For the multivariate polynomial of f defined in Equa-
tion 5.4, The total prover work isO(2ℓ)while the prover work for eachmachine isO(2ℓ

N ). The communication
between N machines is O(Nℓ). The proof size and the verifier time are both O(ℓ).

5.4.3 Distributed polynomial commitment
In the last step of the sumcheck phase, the prover needs to prove to the verifier y = f(r1, · · · , rℓ) for some
value y. In Virgo, The prover convinces V of the evaluation by invoking the PC scheme. We present the PC
scheme in Virgo and the complexity of the scheme in the following.

Background: the polynomial commitment in Virgo. Let F be a family of ℓ-variate multi-linear poly-
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nomial over F. Let H, L be two disjoint multiplicative subgroups of F such that |H| = 2ℓ and |L| = ρ|H|,
where ρ is a power of 2. The polynomial commitment (PC) in Virgo for f ∈ F and r ∈ Fℓ consists of the
following algorithms:

• pp ← PC.KeyGen(1λ): Given the security parameter λ, the algorithm samples a collision resistant
hash function from a hash family as pp.

• comf ← PC.Commit(f, pp): Given a multi-linear polynomial f , the prover treats 2ℓ coefficients of f
as evaluations of a univariate polynomial fU onH. The prover uses the inverse fast Fourier transform
(IFFT) to compute fU . Then the prover computes fL as evaluations of fU on L via the fast Fourier
transform (FFT). Let comf = MT.Commit(fL).

• (y, πf ) ← PC.Open(f, r, pp): The prover computes y = f(r). Given c = O(λ) random in-
dexes (k1, · · · , kc), the prover computes (fL[k1], πk1

) = MT.Open(fL, k1), · · · , (fL[kc], πkc
) =

MT.Open(fL, kc). Let πf = (fL[k1], πk1
, · · · , fL[kc], πkc

).⁴

• {1, 0} ← PC.Verify(comf , r, y, πf , pp): The verifier parses πf = (qL[k1], πk1
, · · · , qL[kc], πkc

),
then checks that qL[k1], · · · , qL[kc] are consistent with y by a certain equation
p(fL[k1], · · · , fL[kc], y) = 0, ⁵ and checks that fL[k1], · · · , fL[kc] are consistent with comf by
MT.Verify (πk1

, fL[k1], comf ), · · · , MT.Verify (πkc
, fL[kc], comf ). If all checks pass, the verifier

outputs 1, otherwise the verifier outputs 0.

Complexity of PC in Virgo. The prover time is O(ℓ · 2ℓ). The proof size is O(λℓ2) and the verifier time is
O(λℓ2).

In the setting of distributed PC, Pi knows f (i). With the help of β function, we have

f(r) =
N−1∑
i=0

β(r[ℓ− n + 1 : ℓ], i)f (i)(r[1 : ℓ− n]). (5.5)

A straightforward way for distributed PC is that Pi runs the PC scheme on f (i) separately. In particular, Pi

invokes PC.Commit to commit f (i) in the beginning of the sumcheck protocol. In the last round, Pi runs
PC.Open to compute f (i)(r[1 : ℓ−n]) and sends the proof to V . After receiving all f (i)(r[1 : ℓ−n]) fromPi,
V invokesPC.Verify to validateN polynomial commitments separately. ThenV computesβ(r[ℓ−n+1 : ℓ], i)
for each i. Finally, V checks f(r) =

∑N−1
i=0 β(r[ℓ− n + 1 : ℓ], i)f (i)(r[1 : ℓ− n]).

Although the aforementioned naïve distributed protocol achieves O(2ℓ(ℓ− n)) in computation time for
each machine, the total proof size is O(λN(ℓ−n)2) as the individual proof size for each Pi is O(λ(ℓ−n)2).
To reduce the proof size, we optimize the algorithm by aggregating N commitments and N proofs altogether.
For simplicity, we assume ρ = 1 without loss of generality in the multi-linear polynomial commitment⁶. We
present the formal protocol of distributed PC in Protocol 11.

⁴The prover also computes log |L| polynomials of f1, · · · , flog |L| depending on f . But sizes of these polynomials
are |L|

2 , · · · , 1 respectively. The prover commits these polynomial and opens them on at most c locations correspond-
ingly. Our techniques on distributed commitment and opening can apply to these smaller polynomials easily. We
omit the process for simplicity. It brings a logarithmic factor in the size of the polynomial on the proof size and the
verification time.

⁵p also takes all openings on polynomials of f1, · · · , flog |L| (at most c for each polynomial) as input, we omit them
for simplicity.

⁶In Virgo, ρ = 32 for security requirements. Our scheme can extend to ρ = 32 easily.
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Protocol 11 (Distributed PC). Suppose the prover has N machines ofP0, · · · ,PN−1 and suppose
P0 is the master node. Each Pi holds a polynomial f (i) : Fℓ−n → F such that f(x) = β(x[ℓ−n+1 :
ℓ], i)f (i)(x[1 : ℓ − n]). Suppose V is the verifier. Let H and L be two disjoint multiplicative
subgroups of F such that |H| = 2ℓ

N
and |L| = ρ|H|. For simplicity, We assume ρ = 1. Let

pp = PC.KeyGen(1λ). The protocol proceeds in following steps.

1. Each Pi invokes PC.Commit(f (i), pp) to compute f (i)
L by IFFT and FFT.

2. Each Pi sends f (i)
L [1], · · · , f (i)

L [N ] to P0, · · · , PN−1 separately.

3. EachPi receives f (0)
L [i+1], · · · , f (N−1)

L [i+1] from other machines. Assuming h(i)
L = (f (0)

L [i+
1], · · · , f (N−1)

L [i + 1]), Pi computes com
h

(i) = MT.Commit(h(i)
L ) and sends com

h
(i) to P0.

4. Suppose h = (com
h

(0) , · · · , com
h

(N−1)), P0 computes com = MT.Commit(h) and sends com
to V .

5. After receiving the random vector r from V , P0 relays r to each Pi. Each Pi computes
f (i)(r[1 : ℓ− n]) and sends it to V via P0.

6. To prove the correctness of f (i)(r[1 : ℓ − n]), given random index of k1, · · · , kc from V ,
Pk1−1, · · · , Pkc−1 send h(k1−1)

L , · · · , h(kc−1)
L to V via P0.P0 also generates (h[k1], πk1

) =
MT.Open(h, k1), · · · , (h[kc], πkc

) = MT.Open(h, kc) and send them to V .

7. V checks f(r) = ∑N−1
i=0 β(r[ℓ − n + 1 : ℓ], i)f (i)(r[1 : ℓ − n]). V

checks h[k1]=MT.Commit(h(k1−1)
L ), · · · , h[kc]=MT.Commit(h(kc−1)

L ). Then V checks
πk1

, · · · , πkc
by MT.Verify(πk1

, h[k1], com), · · · , MT.Verify(πkc
, h[kc], , com). V also

checks q(f (i)
L [k1], · · · , f (i)

L [kc], f (i)(r[1 : ℓ − n])) = 0 for each i as shown in PC.Verify.
If all checks pass, V outputs 1, otherwise V outputs 0.

The idea of our scheme is that each Pi exchanges data with other machines immediately after computing
f (i)
L instead of invoking MT.Commit on f (i)

L directly. The advantage of such arrangement is that the prover
aggregates evaluation on the same index into one branch and can open them together by a single Merkle tree
proof for this branch. As described in the polynomial commitment of Virgo, the prover needs to open fL
on some random indexes depending on r in PC.Open. As r is identical to each f (i), the prover would open
each f

(i)
L at same indexes. If the prover aggregates f

(i)
L by the indexes, she can open N values in one shot

by providing only one Merkle tree path instead of naïvely providing N Merkle tree paths, which helps her to
save the total proof size by a logarithmic factor in the size of the polynomial.

Specifically, Pi collects evaluations of f (0)
L [i + 1], · · · , f (N−1)

L [i + 1] with identical index of (i + 1) in
L from other machines (step 1 and step 2). Then Pi invokes MT.Commit to get a commitment, com

h
(i) , for

these values, and submits com
h

(i) to P0 (step 3). P0 invokes MT.Commit on com
h

(0) , · · · , com
h

(N−1) to
compute the aggregated commitment, com, and P0 sends com to V (step 4). In the PC.Open phase, given a

123



random index kj from V , P0 retrieves f (N−1)
L [kj ], · · · , f (N−1)

L [kj ] from Pkj−1, computes (com
h

(kj −1) , πkj
)

= MT.Open (com, kj), and sends these messages to V (step 5 and step 6). V can validate N evaluations by
invoking MT.Verify only once (step 7). With this approach, we reduce the proof size to O(λ(N + ℓ2)). And
the complexity of Protocol 11 is shown in the following.

Complexity of distributed PC. Given that f is a multi-linear polynomial with ℓ variables, the total com-
munication among N machines is O(2ℓ). The total prover work is O(2ℓ · ℓ) while the prover work for each
device is (2ℓ

N · ℓ). The proof size is O(λ(N + ℓ2)). The verification cost is O(λ(N + ℓ2)).

5.4.4 Combining everything together
In this section, we combine the distributed sumcheck and the distributed PC altogether to build deVirgo.
Background: The Virgo protocol. By combining the GKR protocol and the polynomial commitment in
Section 5.4.3 We present the formal protocol of Virgo in Protocol 12 and the the complexity of Protocol 12
in the following⁷.

Protocol 12 (Virgo). Let F be a finite field. Let C: Fm → Fk be a d-depth layered arithmetic
circuit. P wants to convince that 1 = C(x, w) where x and w are input and 1 is the output.
Without loss of generality, assume m and k are both powers of 2 and we can pad them if not.

1. Set pp← PC.KeyGen(1λ). P invokes PC.Commit(Ṽd, pp) to generate comṼd
and sends

comṼd
to V .

2. P and V run step 1-3 in Protocol 9.

3. At the input layer d, V has two claims Ṽd(u(d)) and Ṽd(v(d)). P and V invoke PC.Open
and PC.Verify on Ṽd(u(d)) and Ṽd(v(d)) with comṼd

and pp. If they are equal to Ṽd(u(d))
and Ṽd(v(d)) sent by P , V outputs 1, otherwise V outputs 0.

Complexity of Virgo [ZXZS20]. Given a layered arithmetic circuit C with d layers and m inputs, Proto-
col 12 is a zero-knowledge proof protocol as defined in Definition 5.2.2 for the function computed by C. The
prover time is O(|C|+m log m). The proof size is O(d log |C|+λ log2 m) and The verification time is also
O(d log |C|+ λ log2 m).
deVirgo. For a data-parallel layered arithmetic circuit C with N copies and d layers, following the work-
flow of Virgo in Protocol 12, our distributed prover replaces d sumcheck schemes in Virgo by d distributed
sumcheck schemes, and replaces the PC scheme in Virgo by our distributed PC scheme to generate the proof.
We present the formal protocol of deVirgo in Protocol 13. And we have the theorem as follows.

Theorem 5.4.1. Protocol 13 is an argument of knowledge satisfying the completeness and knowledge sound-
ness inDefinition 5.2.2 for the relationC(x, w) = 1, whereC consists ofN identical copies ofC0, · · · , CN−1.

⁷Protocol 12 is a knowledge argument system rather than a zero-knowledge proof protocol as we actually use the
knowledge argument system in our construction.
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Protocol 13 (Distributed Virgo). Let F be a finite field. Let C: FmN → Fk be a d-depth
layered arithmetic circuit. Suppose C is also a data-parallel circuit with N identical copies. P
is a prover with N distributed machines and wants to convince V that 1 = C(x, w) where x
and w are input, and 1 is the output. Without loss of generality, assume m, N , and k are powers
of 2 and we can pad them if not.

1. Set pp ← PC.KeyGen(1λ). Define the multi-linear extension of array (x, w) as Ṽd. P
invokes step 1-4 in Protocol 11 on Ṽd to get comṼd

and sends comṼd
to V .

2. Define the multi-linear extension of array 1 as Ṽ0. V chooses a random g ∈ Fs0 and
sends it to P .

3. P and V run Protocol 10, the distributed sumcheck protocol, on

1 =
∑

x,y∈{0,1}s1

( ˜add1(g(0), x, y)(Ṽ1(x) + Ṽ1(y)) + ˜mult1(g(0), x, y)Ṽ1(x)Ṽ1(y))

At the end of the protocol, V receives Ṽ1(u(1)) and Ṽ1(v(1)). V computes
˜mult1(g(0), u(1), v(1)), ˜add1(g(0), u(1), v(1)) and checks that ˜add1(g(0), u(1), v(1))

(Ṽ1(u(1)) + Ṽ1(v(1))) + ˜mult1(g(0), u(1), v(1)) Ṽ1(u(1))Ṽ1(v(1)) equals to the last mes-
sage of the sumcheck.

4. For i = 1, ..., d− 1:

• V randomly selects αi,1, αi,2 ∈ F and sends them to P .
• P and V run Protocol 10, the distributed sumcheck protocol, on

αi,1Ṽi(u(i)) + αi,2Ṽi(v(i)) =∑
x,y∈{0,1}si+1

((αi,1 ˜addi+1u(i), x, y) + αi,2 ˜addi+1(v(i), x, y))(Ṽi+1(x) + Ṽi+1(y))

+(αi,1 ˜multi+1(u(i), x, y) + αi,2 ˜multi+1(v(i), x, y))Ṽi+1(x)Ṽi+1(y))

• At the end of the sumcheck protocol, P sends V Ṽi+1(u(i+1)) and Ṽi+1(v(i+1)).
• V computes the right-hand side of the above equation by replacing x and y by u(i+1)

and v(i+1) respectively. checks if it equals to the last message of the sumcheck. If
all checks in the sumcheck pass, V uses Ṽi+1(u(i+1)) and Ṽi+1(v(i+1)) to proceed
to the (i + 1)-th layer. Otherwise, V outputs 0 and aborts.

5. At the input layer d, V has two claims Ṽd(u(d)) and Ṽd(v(d)). P invokes step 5-6 in Pro-
tocol 11 to open Ṽd(u(d)) and Ṽd(v(d)) while V invokes step 7 in Protocol 11 to validate
Ṽd(u(d)) and Ṽd(v(d)). If they are equal to Ṽd(u(d)) and Ṽd(v(d)) sent by P , V outputs 1,
otherwise V outputs 0.
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Proof (sketch). Completeness. The completeness is straightforward.

Knowledge soundness. deVirgo generates the same proof as Virgo for d sumcheck protocols. So we only
need to consider the knowledge soundness of distributed PC scheme. If the commitment of f is inconsistent
with the opening of f(r) in the distributed PC scheme, there must exist at least one f (i)(r[1 : ℓ− n]) being
inconsistent with the commitment f by Equation 5.5. Otherwise, when all f (i)(r[1 : ℓ − n]) are consistent
with the commitment of f , f(r) must be consistent with the commitment of f . As shown in Protocol 11,
comf is equivalent to com

f
(i) with additional dummy messages in each element of the vector in the Merkle

tree commitment. It does not affect the soundness of the PC in Virgo in the random oracle model [ZXZS20;
ZXHSZ22]. The verifier outputs 0 in the PC.Verify phase with the probability of (1− negl(λ)). Therefore,
deVirgo still satisfies knowledge soundness.

The zero-knowledge property is not necessary as there is no private witness in the setting of zkbridge.
However, we can achieve zero-knowledge for deVirgo by adding some hiding polynomials. Virgo uses the
same method to achieve zero-knowledge.

Additionally, Fiore and Nitulescu [FN16] introduced the notion of O-SNARK for SNARK over authen-
ticated data such as cryptographic signatures. Protocol 13 is an O-SNARK for any oracle family, albeit in
the random oracle model. To see this, Virgo relies on the construction of computationally sound proofs
of Micali [Mic00] to achieve non-interactive proof and knowledge soundness in the random oracle model,
which has been proven to be O-SNARK in [FN16]. Hence Virgo is an O-SNARK, and so is deVirgo because
deVirgo also relies on the same model.

Protocol 13 achieves optimal linear scalability on data-parallel circuits without significant overhead on
the proof size. In particular, our protocol accelerates Virgo by N times given N distributed machines. Addi-
tionally, the proof size in our scheme is reduced by a factor of N compared to the naïve solution of running
each sub-copy of data-parallel circuits separately and generating N proofs. The complexity of Protocol 13
is shown in the following.

Complexity of distributed Virgo. Given a data-parallel layered arithmetic circuit C with N sub-copies,
each having d layers and m inputs, the total prover work of Protocol 13 is O(|C|+ Nm log m). The prover
work for a single machine is O(|C|/N +m log m), and the total communication amongmachines is O(Nm+
Nd log |C|). The proof size is O(d log |C|+ λ(N + log2 m)). The verification cost is O(d log |C|+ λ(N +
log2 m)).

5.5 Reducing proof size and verifier time
Although deVirgo improves the prover time by orders of magnitude, we want to further reduce the cost of
the verification time and the proof size. As mentioned in the above section, the circuit which validates over
100 signatures is giant due to non-compatible instructions on different curves across different blockchains.
Additionally, Virgo’s proof size, which is around 210KB for a circuit with 10million gates, is large in practice.
Thus we cannot post deVirgo’s proof on-chain and validate the proof directly. Aiming at smaller proof size
and simpler verification on-chain, we propose to further compress the proof by recursive proofs with two
layers. Intuitively, for a large-scale statement (x, w) ∈ R in Definition 5.2.2, the prover generates the proof
π1 by a protocol with fast prover time in the first layer. If the length of π1 is not as short as desired, then
the prover can produce a shorter proof π2 by invoking another protocol for (x, π1) ∈ R′ in the second
layer, where R′ represents that π1 is a valid proof for (x, w) ∈ R. To shrink the proof size and simplify
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the verification as much as possible, we choose Groth16 as the second layer ZKP protocol since Groth16
has constant proof size and fast verification time. Moreover, the curve in Groth16 is natively supported by
Ethereum, which is beneficial for saving on-chain cost on Ethereum. In our approach, the prover invokes
deVirgo to generate π1 on the initial circuit in the first layer. In the second layer, the prover invokes Groth16
to generate π2 on the circuit implementing the verification algorithm of deVirgo where |π2| ≪ |π1|. The
prover only needs to submit π2 on-chain for verification. The recursion helps cross-chain bridges to reduce
gas cost on blockchains because of simple verification on the compatible curve. The security of recursive
proofs relies on random oracle assumption, which can be instantiated by a cryptographic hash function in
practice [COS20].

# of sigs Total circuit size Circuit size for GKR part Circuit size for PC part
1 1.2× 107 gates 8.4× 106 gates 3.3× 106 gates
4 1.2× 107 gates 8.4× 106 gates 4.0× 106 gates
32 1.3× 107 gates 8.4× 106 gates 4.7× 106 gates
128 1.4× 107 gates 8.4× 106 gates 5.4× 106 gates

Table 5.1: The verification circuit size of deVirgo

Performance gains. We use the signature validation circuit for Cosmos [Cos] as an example to show con-
crete numbers of the verification circuit of deVirgo in Table 5.1. We record the size of the whole verification
circuit in the 2nd column, the size for the GKR part in the 3rd column, and the size for the PC part in the
4th column, as the number of signatures in data-parallel circuits increases from 1 to 128 in the 1st column.
The number of gates in the 2nd column equals the sum of numbers of gates in the 3rd column and the 4th

column. As shown in Table 5.1, although the data-parallel circuit size expands, the size for the sumcheck
part in deVirgo’s verification circuit does not change. That is because the verification for the GKR part is
only based on the structure of the sub-circuit, which is identical among different copies. However, the size
for the PC part in deVirgo’s verification circuit up-scales sub-linearly in the number of copies due to the
growth of the polynomial size. Even given 128 copies of the signature validation circuit, the bottleneck of
deVirgo’s verification circuit is the sumcheck part. Therefore, the recursive proof size and the recursive ver-
ification cost are independent of the number of signatures to validate in our instance. In addition, the prover
time of Groth16 on the verification circuit of deVirgo is only 25% of the prover time of deVirgo in practice.
Therefore, our recursive proof scheme reduces the on-chain proof verification cost from ∼ 8 × 107 gas (an
estimation) to less than 2.3× 105 gas.

5.6 Implementation and Evaluation
To demonstrate the practicality of zkBridge, we implement a prototype fromCosmos [Cos] (a PoS blockchain
built on top of the Tendermint [Kwo14] protocol) to Ethereum, and from Ethereum to other EVM-compatible
chains such as BSC. Supports for other blockchains can be similarly implementedwith additional engineering
effort, as long as they support light client protocols defined in Definition 5.2.1. In this section, we discuss
implementation detail, its performance, as well as operational cost.
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The bridge from Cosmos to Ethereum is realized with the full blown zkBridge protocol presented so far
to achieve practical performance. In comparison, the direction from Ethereum to other EVM-compatible
chains incurs much less overhead for proof generation and does not require deVirgo. Therefore, in what
follows, we mainly focus on the direction from Cosmos to Ethereum.

5.6.1 Implementation details
The bridge from Cosmos to Ethereum consists of four components: a relayer that fetches Cosmos block
headers and sends them to Ethereum (implemented in 300+ lines of Python), deVirgo (implemented in 10000+
lines of C++) for distributed proof generation, a handcrafted recursive verification circuit, and an updater
contract on Ethereum (implemented in 600+ lines of Solidity). Our signature verification circuit is based on
the optimized signature verification circuit [Edd]. However, we use Gnark instead of Circom as in [Edd] for
better efficiency for proof generation.
Generating correctness proofs. Relay nodes submit Cosmos block headers to the updater contract on
Ethereum along with correctness proofs, which proves that the block is properly signed by the Cosmos val-
idator committee appointed by the previous block. (In Cosmos a hash of the validator committee members
is included in the previous block.)

In Cosmos, each block header contains about 128 EdDSA signatures (on Curve25519), Merkle roots for
transactions and states, along with other metadata, where 32 top signatures are required to achieve super-
majority stakes. However, the most efficient curve supported by the Ethereum Virtual Machine (EVM) is
BN254. To verify Cosmos digital signatures in EVM, one must simulate Curve25519 on curve BN254,
which will lead to large circuits. Concretely, to verify a Cosmos block header (mainly, to verify about 32
signatures), we need about 64 million gates. We implement deVirgo (Section 5.4) and recursive verification
(Section 5.5) to accelerate proof generation and verification.

Moreover, in practical deployment, multiple relayers can form a pipeline to increase the throughput.
Looking ahead, based on the evaluation results, our implementation can handle 1 second block time in Cos-
mos with 120+ capable relayers in the network.

For proof verification, we build an outer circuit that verifies Virgo proofs and use Gnark [Gna] to generate
the final Groth16 proof that can be efficiently verified by the updater contract on Ethereum.
The updater contract. We implement the updater contract on Ethereum in Solidity that verifies Groth16
proofs and keeps a list of the Cosmos block headers in its persistent storage. The cost of verifying a Groth16
proof on-chain is less than 230K gas.

The updater contract exposes a simple API which takes block height as its input, and returns the corre-
sponding block header. The receiver contracts can then use the block header to complete application-specific
verification.

Batching. Instead of calling the updater contract on every new block header, we implemented batching
where the updater contract stores Merkle roots of batches of B consecutive block headers. The prover will
first collect B consecutive blocks, and then makes a unified proof for all B blocks. The updater contract will
only need to verify one proof for the batch of B blocks. After the verification, the updater contract checks
the difficulty, stores the block headers, and updates the light-client state. Storing one Merkle root every B
blocks also reduces storage cost. Thus B can be set to balance user experience and cost: With a larger B,
users need to wait longer, but the cost of running the system is lower.
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We implement the aforementioned batched proof verification and show the experimental results in Sec-
tion 5.6.2. With batching, the cost for storing block headers and maintaining light-client states is amortized
across B blocks. The bulk of the cost incurred by the updater contract is SNARK proof verification, which
is the focus of our evaluation below.

In addition, we propose a more complex batching optimization presented in the following for further
optimization.

On-chain Gas Cost Optimization To further optimize the on-chain gas cost of block header verification
and storage for a universal zkBridge, we propose the following approach, in which the prover will not bother
to pay for on-chain proof verification or block header storage, and users are encouraged to submit the proof
they need by our incentive design.

In our optimization, the same as the aforementioned batched proof, the prover generates one single proof
for every 2d blocks where d is a system configuration, and each proof checks and shows the validity of all
signatures in the corresponding 2d blocks. However, instead of submitting the Merkle root of the batch along
with the proof on-chain immediately, provers simply post the proof to the users (e.g., through a website), and
it’s up to the users to retrieve and post the proof on-chain. Thus there’s no more on-chain gas cost for provers
through the approach.

For users who want to verify a transaction tx in a block blk, the workflow is as follows.

1. If blk has already been submitted on-chain, go to the next step. Otherwise, retrieve the proofs for
the sequence of blocks from the first unsubmitted one to blk, and then invoke the updater contract to
verify all the proofs on-chain and store the information of the corresponding sequence of blocks. The
process can be expensive. However, once the proofs are verified and the blocks are confirmed by the
updater contract, the user becomes the owner of all these proofs on-chain, and can benefit from the
proofs by charging later users who rely on these proofs to verify their transactions on-chain.

2. Thanks to the previously submitted proofs, the validity of the corresponding block is already proved
at this step. And the work can never be accomplished without the efforts of proving all the blocks
prior to blk (including blk). Suppose blk is the ith block, then for each block with index in the range
[i − t + 1, i], the user should pay a certain amount of fee to the block proof owner in compensation,
where t is a system configuration and the definition of block proof owner is defined in the previous
step.

In this case, provers don’t bother to pay for on-chain verification any more, and the proofs are only
submitted and verified on demand, which is more cost-efficient and can reduce possible waste. Moreover,
through carefully-designed incentive, we can actually encourage users to submit the proofs as a possible
investment, and it can also help with the popularity of our bridge.

Through the optimization, the cost performance of our bridge can be summarized as follows. If there is
high demand, then each proof will be submitted immediately upon generation, and in this case each user needs
to pay for at most one time of on-chain proof verification. It then degenerates into our original batched proof,
but users are responsible of paying for the on-chain verification instead. If the sender chain is so unpopular
that there is little bridging demand from the chain, then we successfully avoid unnecessarily submitting the
proofs on-chain for meaningless but costly verification. And even if a user suddenly exists and requires
bridging in this case, the request can also be fulfilled by retrieving the proofs from provers and sending them
for on-chain verification one by one.

And thus we can see that, the new design can actually benefit both the provers and the users.
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5.6.2 Evaluation
We evaluate the performance of zkBridge (from Cosmos to Ethereum) from four aspects: proof generation
time, proof generation communication cost, proof size, and on-chain verification cost.
Experiment setup. We envision that a relayer node in zkBridge will be deployed as a service in a man-
aged network, therefore we evaluate zkBridge in a data-center-like environment. Specifically, we run all the
experiments on 128 AWS EC2 c5.24xlarge instances with the Intel(R) Xeon(R) Platinum 8275CL CPU @
3.00GHz and 192GB of RAM. Our implementation for the proof generation is parallelized with at most 128
machines. We report the average running time of 10 executions. Whenever applicable, we report costs both
in terms of running time and monetary expenses.

Proof Gen. Time (seconds) Proof Gen. Comm. (GB) Proof Size (Bytes) On-chain Ver. Cost (gas)
# of sigs deVirgo RV total total per-machine w/o RV w/ RV w/o RV w/ RV
8 12.52 4.90 17.42 7.34 0.92 1946476 131 78M 227K
32 12.80 5.41 18.21 32.24 1.01 1952492 131 78M 227K
128 13.28 5.49 18.77 131.89 1.03 1958508 131 79M 227K

Table 5.2: Evaluation results. RV is the shorthand for recursive verification.

Proof generation time of deVirgo. We first evaluate the main cryptographic building block—deVirgo—
and compare its performance with the original Virgo [ZXZS20]. The source code of the original Virgo is
obtained at https://github.com/sunblaze-ucb/Virgo. We run both protocols on the same circuit for
correctness proofs, which mainly consists of N invocation of EdDSA signature verification.

Figure 5.2 shows the prover time (in seconds) against different N . For deVirgo, we repeat the experiment
with 8, 32, 128 distributed machines. According to Fig. 5.2, the prover time of the original Virgo increases
linearly in the number of signatures N , while the prover time of deVirgo is almost independent of N until N is
greater than the number of servers when computation becomes an bottleneck. The linear scalability suggests
that the workload of each machine only depends on its own sub-circuit and the communication overhead
is small. Table 5.2 reports the communication cost among parallel machines. The total communication
cost is linear in the number of machines, consistent with the analysis in Section 5.4.4, with each machine
sending and receiving around 1 GB of data. Since we envision a relayer node in zkBridge to be deployed in
a data-center-like environment, the amount of traffic is reasonable.

In practice, the Cosmos block headers typically have N = 128 signatures while 32 top signatures are
sufficient to achieve super-majority. Therefore, generating a correctness proof for a Cosmos block header
would take more than 400 seconds with the original Virgo, but it decreases to 13.28 seconds with deVirgo,
implying a 30x speedup. In general, as is consistent with the analysis in Section 5.4, deVirgo accelerates
the proof generation on data-parallel circuits with N copies by a factor of almost N , which is optimal for
distributed algorithms.
Proof size and verification time.

To reduce on-chain verification cost, we use the recursive verification technique presented in Section 5.5.
Now we report on its efficacy.

Recursive proof generation time. We implement recursive verification by invoking Groth16 (constructed
using gnark [Gna]) on the verification circuit. We report the proof time in deVirgo, the generation time of
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Figure 5.2: Prover time of deVirgo and the original Virgo for Cosmos block header verification.

recursive proofs (the column marked RV), and the sum, in Table 5.2, for various numbers of signatures. The
RV time almost remains constant in the number of signatures verified by the deVirgo proofs. That is because
of the data-parallel structure of the state transition proof circuit: the size of Groth16 verification circuit is
only a function of the size of a sub-circuit.

The main benefit of recursive verification is a reduction in both proof size and verification cost.

Reduced proof size. Table 5.2 shows the proof size both with and without recursive verification. For the
practical scenario where N = 32, the proof size is reduced from 1.9 MB to 131 Bytes. Overall, for N = 32,
with an increase of about 25% in prover time, we get a reduction of around 14000x in proof size.

Reduced on-chain verification cost. The final proof is 131 Bytes while the final verification only costs 3
pairings. As shown in Table 5.2, the on-chain verification cost is constant (227K). In comparison, without
recursive verification, directly verifying Virgo proofs on-chain would be infeasible. (Our estimation of the
gas cost is 78M, which far exceeds the single block gas limit 30M).
Comparison with optimistic bridges. With batching, the confirmation latency of zkBridge is under 2 min-
utes, including 3 × 32 seconds for waiting for all blocks in the batch and another 20 seconds for proof
generation. While this is not blazing fast, in comparison, optimistic bridges have much longer confirmation
time. E.g., NEAR’s Rainbow bridge has a challenge window of 4 hours [Nea] before which the transfer
cannot be confirmed.
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5.6.3 Cost analysis
In this section, we analyze the operational cost of zkBridge, which consists of off-chain cost (generating
proofs) and on-chain cost (storing headers and verifying proofs).

Off-chain cost. Off-chain cost can vary significantly based on the deployment. While we use AWS in our
performance benchmark, it may not be the best option for practical deployment. AWS service is expensive
due to its high margin, elastic scaling capability, and high reliability, which isn’t necessary for our proof
generation process. To show a representative range, we consider two deployment options: cloud-based and
self-hosted. For cloud-based deployment, we search for reputable and economical dedicated server rental
services and choose Hetzner[Het] as an example. For self-hosted options, we calculate the cost to purchase
the hardware and the on-going cost (mainly the electricity).

On AWS c5.24xlarge, it takes 18 seconds to generate a proof with 32 machines. Renting a server with
a similar spec as AWS c5.24xlarge from Hetzner costs $253.12 per month, thus the cost of cloud-based
deployment with Hetzner will be around $8100 per month for all 32 machines. It translates to $0.02 per
block.

To estimate the cost for self-hosted deployment, we use online tools to configure a machine with a com-
parable spec to that in AWS. Table 5.3 reports the configuration and each machine costs around $4.5k. The
total setup cost is thus around $4.5k ×32 = $144k. For self-hosted servers, the main on-going cost is elec-
tricity. With each machine consuming 657W power, a 32-machine cluster consumes 0.105 kWh per block.
Assuming US average electricity rate $0.12/KWh [Use], the electricity cost is $0.012 per block, or $5184
per month.

Hardware type Hardware name Power Price Quantity
CPU AMD Ryzen Threadripper 3970X 435W $2325.99 1
Memory CMK256GX4M8D3600C18 96W $1129.99 1
Motherboard MSI TRX40 PRO WIFI 80W $565.57 1
Power Supply EVGA 220-T2-1000-X1 94% efficiency $332.88 1
SSD MZ-V8P1T0B/AM 6.2W $129.99 1
Total 657W $4484.42

Table 5.3: Prover hardware configuration.

On-chain cost. On-chain cost refers to the total gas used for on-chain operation, and we report the equivalent
USD cost based on the gas price (about 20 gwei) and ETH price (about 1600 USD) at the time of writing
(August 2022). If we use efficient batched proofs, for a batch of N headers, the bulk of the verification cost
is that of verifying one Groth16 proof, which costs less than 230K gas, roughly $7.36. If we choose N = 32
for example, the on-chain cost will be $0.23 per block. Moreover, if we adopt the optimization mentioned in
Section 5.6.1, we can further reduce the on-chain cost and offload the cost to users if the number of users is
large.
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5.6.4 Ethereum to other EVM-compatible chains
So far we have focused on the bridge from Cosmos to Ethereum because generating and verifying correctness
proofs for that direction is challenging. We also implement a prototype of a bridge from Ethereum to other
EVM-compatible blockchains.

The high level idea is simple: upon receiving a block header, the updater contract on the receiver chain
verifies the PoW and appends it to the list of headers if the verification is passed. However, a wrinkle to
the implementation is that Ethereum uses a memory hard hash function, EthHash [Woo+14], which is pro-
hibitively inefficient to run on-chain. Basically, EthHash involves randomly accessing elements in a 1 giga-
byte dataset (called a DAG) derived from a public seed and the block height. Generating the DAGs on-chain
is prohibitively expensive.

Our idea is to pre-compute many DAGs off-chain and store their hashes on-chain. Specifically, as part of
zkBridge setup, we pre-compute 2,048 DAGs , build a Merkle tree for each DAG using MiMC [AGRRT16],
and store the Merkle roots on-chain. Per EthHash specification, a new DAG is generated every 30,000 blocks,
so 2,048 of them can last for 10 years; the off-chain pre-computation process takes no more than 4 days. Then,
the correctness proofs will show that a given EthHash PoW is correct with respect to the Merkle root of the
DAG corresponding to the block in question. We emphasize that the setup process is verifiable and anyone
can verify the publishedMerkle roots on their own before using the service. The circuit for verifying EthHash
PoW has around 2 million gates.

The rest of the protocol is the same as a regular light client, which involves storing the headers, following
the longest chain by computing accumulated difficulty, resolving forks, etc.

Cost analysis. Since EthHash PoW verification circuit has only around 2 million constraints, a single ma-
chine with the configuration in Table 5.3 can generate a proof within 10 seconds. As long as the receiver
chain is EVM-compatible, the on-chain cost will be close to that presented in Section 5.6.3, since the updater
contract only verifies Groth16 proofs in all cases.

5.7 Related work
In this section, we compare zkBridge to existing cross-chain bridge systems and the line of work on zk-rollups
which also uses ZKPs for scalability and security.

Cross-chain bridges in the wild and security issues. Cross-chain systems are widely deployed and used.
Below we briefly survey the representative ones. The list is not meant to be exhaustive. PolyNetwork [Polb]
is an interoperability protocol using a side-chain as the relay with a two-phase commitment protocol. Worm-
hole [Worb] is a generic message-passing protocol secured by a network of guardian nodes, and its security
relies on 2

3 of the committee being honest. Ronin operates in a similar model. While relying on decentral-
ized committees for security, practical deployment usually opts for relatively small ones for efficiency (e.g.,
9 in case of Ronin). Committee breaches are far from being rare in practice. In a recent exploit against
Ronin [Ron], the attacker obtained five of the nine validator keys, stealing 624 million USD. PolyNetwork
and Wormhole were also recently attacked, losing $611m [Pola] and $326m [Wora] respectively. Key com-
promise was suspected in the PolyNetwork attack.

An alternative design is to leverage economic incentives. Nomad [Nomb] (which recently lost more than
$190m to hackers due to an implementation bug [Noma]) and Near’s Rainbow Bridge [Rai] are such exam-
ples. These systems require participants to deposit a collateral, and rely on awatchdog service to continuously
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monitor the blockchain and confiscate offenders’ collateral upon detecting invalid updates. Optimistic pro-
tocols fundamentally require a long confirmation latency in order to ensure invalid updates can be detected
with high probability (e.g., Near [Rai] requires 4 hours). Moreover, participants must deposit significantly
collateral (e.g., 20 ETH in Near [Rai]). Both issues can be avoided by zkBridge.

In summary, compared to existing protocols, zkBridge achieve both efficiency and cryptographic assur-
ance. zkBridge is “trustless” in that it does not require extra assumptions other than those of blockchains and
underlying cryptographic protocols. It also avoids the long confirmation of optimistic protocols.

zk-rollups. Rollups are protocols that batch transaction execution using ZKPs to scale up the layer-1
blockchains. Starkware [Sta], ZkSync [Zks], and Polygon Zero [Pole] are a few examples.

These zk-rollup solutions have not been applied to the bridge setting, where our work is the first to use
ZKP to enable a decentralized trustless bridge. In addition, the current zk-rollup work in general has not
dealt with such large circuits as in zkBridge, whereas in our work, we need to design and develop a number
of techniques including deVirgo and proof recursion to make building a ZKP-based bridge practical for the
first time. In particular, we leverage the data parallelism of the circuits to obtain a ZKP protocol that is more
than 100x faster than existing protocols for the workload in zkBridge and combine it with proof recursion for
efficient on-chain verification. The idea behind deVirgo protocol may be applicable to zk-rollups too.
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