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Abstract

Probabilistic Ising Architectures for Combinatorial Optimization, Machine Learning and
Neuromorphic Computing

by

Saavan K Patel

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Sayeef Salahuddin, Chair

As the demand for big data increases and the speed of traditional CPUs cannot keep pace,
new computing paradigms and architectures are needed to meet the demands for our data
hungry world. To keep pace with this, Ising Computing and probabilistic computing have
emerged as a method to solve NP-Hard optimization problems (such as logistics, place and
route in circuits), perform Machine Learning training and inference, model decision making
in animal brains, and much more.

This work centers around parallelized computing algorithms and hardware based on prob-
abilistic formulations of the Ising Model, known as Boltzmann Machines. The algorithms
demonstrated use techniques from machine learning, structured algorithmic mapping, and
mixed approaches. Using these algorithms we demonstrate potential solutions to 16 bit In-
teger Factorization, 3-SAT, LDPC Codes and scalable techniques for solutions to a variety
of problems.

We map these algorithms to a variety of hardware, from small and medium scale (≈ 1000s
of nodes) FPGA approaches to large and ultra large (> 100, 000 nodes) scale on GPU and
TPU instances. These accelerated instances demonstrate state of the art performance on
the MAX-CUT benchmark problem.

We finally demonstrate the Parallel Asynchronous Stochastic Sampler (PASS), a neuromor-
phic, clock-free accelerator that mimics brain-like asynchronous computation using the Ising
Model. This has the potential for orders of magnitude speed increase over traditional meth-
ods for solving these problems while being the first on-chip, fully CMOS, demonstration of
such an architecture.
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Chapter 1

Introduction, Ising Model
Computation

1.1 Introduction

As the demand for big data increases and the speed of traditional CPUs cannot keep pace, a
new need for domain specific accelerators and new computing paradigms has arisen. Prob-
lems in the class of NP-Hard and NP-Complete are particularly challenging as they scale
exponentially with problem size, causing traditional CPUs and hardware to struggle to solve
them. From scheduling and logistics to analysis of physical systems and machine learning,
these hard problems exist all around us. This leads to an interest in novel algorithms, ar-
chitectures, and systems to solve these problems. The Ising Model problem is an example
of this type of problem, with foundations in statistical physics [1, 2, 3]. For this reason,
the Ising Model has emerged as an efficient way of mapping these problems onto various
physical accelerators [4, 5, 6, 7, 8]. In this work, we explore the usage of the Ising Model,
with emphasis on hardware acceleration of Ising Model problems, to solve hard problems in
a variety of different fields.

1.2 The Ising Model

Physical Systems

The Ising model was originally formulated by Ernst Ising and Wilhem Lenz as a model of
interaction between electronic spins in a lattice almost 100 years ago in 1924. It was originally
used to understand magnetic phase change and spontaneous magnetization in ferromagnetic
materials [9, 10]. Notably the model only includes local interactions between spins, but is
able to capture global phenomena in the material. The equation describing the Ising Model
is listed below.
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a) b)

Figure 1.1: Left: The Ising Model as a lattice spin system. The Energy is modeled as the
quadratic coupling between spins. Right: Finding the energy minimum of the Ising model
problem is a non-convex optimization problem with many local minima. It can be modeled
probabilistically by taking the exponential of the energy function (note that the normalizing
constant is not shown)

E(s) =
1

2

∑
ij

Jijsisj +
∑
i

bisi (1.1)

In the equation above, the Hamiltonian E describes the global energy of the spin system.
Each spin has a scalar interaction between every other spin (i.e. Jij ∈ R), and spins are
quadratically coupled (i.e. only pairwise sisj interactions are included rather than terms of
higher order, like sisjsk). The spin values are usually constrained to being si ∈ {−1, 1},
representing up and down spin values. There are many extensions of the Ising Model to
higher dimensions and including greater than binary spin states. These extensions have
direct mappings onto the simplified binary spin, quadratic interaction Ising model shown
below. Some of these will be discussed in later sections.

Neural Computation

A probabilistic extension of the Ising Model, known as the Boltzmann Machine, was first
introduced in 1983, with an associated learning algorithm [11, 12]. The Boltzmann Machine
was originally introduced as a constraint satisfaction network based on the Ising model
problem, where the weights would encode some global constraints, and stochastic units were
used to escape global minima. However, learning was very slow with this model due to the
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difficulties with sampling and convergence, as well as the inability to exactly calculate the
partition function.

A subset of the Boltzmann Machine, the Restricted Boltzmann Machine (RBM) was able
to circumvent some of the issues with sampling and convergence using a simplified learning
algorithm and a parallelized sampling algorithm which has the ability to be efficiently learned
[13]. The RBM found favor through much of the early 2000s up until the rise of deep learning
and generative algorithms. With the ability to map a variety of problems from various
domains, it was a popular tool for Machine Learning before the large scale advent of Deep
Learning algorithms.

Optimization Problems

Finding the ground state of solution for the Ising Model problem has been demonstrated to
be NP-Hard, with the decision form of the problem being NP-Complete. [1, 2, 3, 14] This
puts it in a class of exponential time scaling systems, and gives it strong connections to other
NP-Hard optimization problems [15, 16].

In the context of Optimization problems the Ising Model has also been referred to as the
Quadratic Unconstrained Binary Optimization (QUBO) problem. The problem formulation
is the same, but the variables usually take values of si ∈ {0, 1}. This mapping has been
variously applied to problems such as the MAX-CUT problem, Travelling Salesman Problem,
Quadratic Assignment Problem, Set Assignment Problem, and many others. [3, 14]. So far,
there has not been a successful application of Ising Model based optimization problems
in large industrial scale problems. This has been mainly due to a need for more effective
mappings as well as large, fast solvers that can solve problems at a scale that is relevant to
real life problems.

In the optimization context, each variable in the QUBOmodel system usually corresponds
to a decision variable, (i.e. xi might correspond to whether node i is on on the right or the
left side of the cut in a MAX-CUT problem). Depending on the problem, there many be a
1 to 1 mapping of QUBO variables to problem variables (such as the MAX-CUT problem)
or there may be a many to 1 mapping of QUBO variables to problem variables (such as
the Travelling Salesman Problem, where n cities correspond to n2 QUBO variables in the
naive implementation). Integers may be mapped onto the QUBO model as well by using
n variables to represent an n-bit number. The QUBO model, in the form described here,
cannot however model continuous variables unless the continuous variable is discretized.
Constraints may be mapped via the use of a Lagrangian multiplier for the given constraint
combined with the energy function of the minimization problem.

No Free Lunch Theorems

The no free lunch theorem (in basic terms) states that no algorithm will be able to perform
uniformly better on all search and optimization problems than another. If one algorithm
performs better than another algorithm on a given set of problems, it necessarily performs
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worse than the other algorithm on a different set of problems. Without knowledge of prior
structure of the problem, and choosing an algorithm that exploits the known structure of
the problem, we will be unable to do better than simply random search [17].

From the Ising Model Optimization problem perspective this means that we need to
design our algorithms and problems for the Ising model accelerators. One of the goals of this
research was to understand which kinds of problems the Ising Model is well suited to solve,
and which problems it is ill-suited to solve, and to design both algorithms and hardware to
reflect the parts of Ising Computing that it is well suited for. Similarly, it is possible to make
modifications to the underlying algorithms that are used to solve the Ising Model depending
on the problem type being mapped to this. This would insinuate that just one accelerator
is not necessary, but a family of accelerators to solve a family of problems.

1.3 Hardware Accelerators for Ising Model Problems

Recently the Ising Model has received attention for optimization problem due mainly to its
connections to Adiabatic Quantum Computing and Quantum Annealing as put out by the
DWave Computer [18]. This has led to a Renaissance of accelerators based on a variety of
computing topologies. These are roughly divided into three categories “Digital Hardware”,
“Analog Hardware”, and “New Physics” Based systems.

Digital Hardware Based Accelerators

A variety of digital hardware based accelerators have been created to solve Ising model
problems as well. Most rely on an annealing mechanisms to slowly force each neuron into a
0 or 1 (-1 or +1) state. [19, 4].

The digital mixed signal systems will generally rely on updating each spin based on a
probabilistic update rule, and accepting the change with some probability. This is similar
to a Markov Chain Monte Carlo, or a Simulated Annealing based scheme, which is further
discussed in Chapter 2.

If the accelerator used obeys traditional rules of sampling and simulated annealing, they
can provide a guarantee of convergence that analog and physical accelerators may not be
able to provide. The digital accelerator systems may not be able to take advantage of the
physical nature of the Ising Model accelerator as a set of interacting spins, instead they
chose to model the systems simply as a mathematical model of optimization. This has the
advantage of reducing the system to a set of mathematical equations which can be easily
modeled by hardware, but may leave some performance gains on the table by not tying the
physical process directly to computation.

Analog Accelerators

Analog Accelerators based on the ising model rely on the dynamics of an analog circuit
system. These systems use an analog dynamical system to evolve the set of Ising spins to a
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Analog HardwareDigital Hardware New Physics

Figure 1.2: Left: Digital Accelerators Based on the Ising model, primarily using annealing
mechanisms to reach the ground state [19, 4], Middle: Analog Accelerators based on coupled
oscillators [20, 21] Right: Accelerators based on new physics. Top is the ”Coherent Ising
Machine” based on optical physics, bottom is the DWave Quantum Annealer [22, 18]

global solution [22, 21, 24].
A notable example of analog systems are those based on coupled oscillators which have

gained favor recently. These systems use free running oscillators which are coupled to-
gether by electronic components. They are perturbed by a signal at twice the oscillation
frequency which causes them to fall into the 0 deg or 180 deg phase, a phenomenon known
as Sub-Harmonic Injection Locking (SHIL), demonstrated in 1.3. These coupled oscillators
have been variously modeled through mathematics in digital systems [20], analog coupled
oscillators based on ring oscillators [21], and physical oscillating devices [24].

Physical Accelerators

Physical accelerators rely on the application of physics equations to find ground state so-
lutions of an Ising Model. Instead of using the dynamics of an analog electronics based
system, they use the dynamics of a physical system to evolve the Ising model and find the
ground state of the system. As the Ising Model itself is a model of interacting systems, this
formulation can naturally arise from interacting devices in a system. There are three notable
categories of physical accelerators, probabilistic accelerators based on stochastic interacting
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Figure 1.3: Pictoral description of sub-harmonic injection locking, the mechanism used in
many oscillator based Ising Machines. The sub-harmonic injection locking allows for different
oscillators to be out of phase from one another, representing a +1 and a -1 state. Figure
from [23]

elements, optical accelerators using coupled light waves, and the quantum accelerators based
on quantum annealing and quantum adiabatic computing.

Probabilistic accelerators usually rely on a stochastic element (such as an unstable mag-
netic tunnel junction [7]) that produces telegraphic noise that can be biased up or down based
on a sigmoidal activation function. Couplings are created by combining the telegraphic out-
puts of each system into analog or digital inputs that modulate the stochastic input. These
probabilistic accelerators are the ones that will be most examined in this thesis.

Organization of Thesis

This thesis explores a series of hardware accelerators and algorithms based on the Boltz-
mann Machine framework of the Ising Model. The hardware demonstrated ranges from
traditional CPU algorithms, to specialized work on the TPU (Tensor Processing Unit) and
GPU (Graphics Processing Unit), to lower level hardware development in the form of FPGA
(Field Programmable Gate Array) and a specialized ASIC. The thesis is divided into two
main parts, the first part explores algorithms based on the Ising Model framework, with
an emphasis on methods that have the ability to apply to specific hardware accelerators.
The second part of the thesis examines implementation of different accelerated hardware
strategies on a field of different hardware accelerators.
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Chapter 2

Stochastic Sampling Methods

2.1 Introduction

For most of this thesis, I have chosen to model the Ising Model problem using a probabilistic
framework. By using this framework, we can have greater assurances of convergence of our
algorithms, as well as the ability to use the rich mathematics and theory from statistical
sampling methods. Probability frameworks also allow to mix in Machine Learning based
methods, which rely on understanding of the underlying probability distribution. The prob-
abilistic formulation of the Ising Model (known as the Boltzmann Machine [12]) is shown
below in Equation 2.1.

p(x) =
1

Z
e−E(x) (2.1)

This transformation effectively maps low energy states s⃗ to high probability states p(s⃗).
It additionally forces all states to have a positive probability. When sampling from the above
distribution we can expect that we are more likely to sample low energy states than we are
to sample from high energy states. This changes the problem of finding the ground state of
the Ising Model to a problem of sampling from the Boltzmann Machine distribution. What
makes this distribution hard to sample from absolutely is the presence of the normalizing
”partition function” Z, whose definition is shown in equation 2.2.

Z =
∑
x

e−E(x) =
∑
x1

∑
x2

...
∑
xn

e−E(x1,x1,...xn) (2.2)

The partition function is especially challenge to calculate as you must sum over all 2n

possible states. This makes it exponentially hard to solve as the size of the state space
increases causing it is computationally infeasible to calculate the exact probability of a
state within the system, only the unnormalized probability. Because of this, we cannot
analytically get samples from this distribution for generic values of the energy function. In
general, there are only a few instances of the Ising Model and Boltzmann Machine where the



CHAPTER 2. STOCHASTIC SAMPLING METHODS 8

partition function can be tractably computed, and it is generally in the category of NP-Hard
problems [25, 26].

2.2 Monte Carlo Methods for sampling

To take samples from the Boltzmann Machine distribution listed above, many algorithms
have been developed. A first motivational algorithm would be simply to numerically sample
points to estimate the partition function, and use this to estimate where maximal probability
points are. This basic algorithm is outlined below.

Algorithm 1 Naive Sampling

Require: Distribution p(x) =
ˆp(x)
Zp

of dimension N Samples Desired Ns

while i ≤ Ns do
Generate Ui ∼ Binom(0.5)N

Calculate p̂(Ui)
end while
Ẑp =

∑Ns

j=1 p̂(Ui)

By the law of large numbers, we will expect that the partition function Ẑp will converge
to the desired partition function Z (equivalent to saying that E[Zp] = Z and as it does so we

would be able to have a better estimate for probabilities of each sample. Once we have a Ẑp

that we are sufficiently happy with, then we have the ability to get normalized samples from
the distribution of interest, using a variety of discrete sampling methods [27]. However, this
overlooks a few issues:

• Although each Ui is easy to generate (as it is just a uniformly distributed random 0-1
vector), this doesn’t represent the distribution we are interested well.

• It may take many draws of p(Ui) to get the value of Zp to converge

• For some distributions, most of the probability mass may be centered as a particular
point or area in the probability space (i.e. p(x) >> p(y)∀y. If you don’t sample from
this particular point, your estimates for Zp will be incorrect.

• In high dimensional spaces (for N >> 100), the geometry of the space starts to make
the probability mass further centered around certain points or areas. [28]

These points motivate us to develop alternate sampling schemes which try to address
these problems. In particular the last 2 points are the ones that are most pertinent for Ising
Model problems, as in many cases we are interested in finding the configurations with highest
probability or lowest energy, which would require sampling the highest probability points.
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Figure 2.1: Simple Markov Chain illustrating a 2 state system

2.3 Markov Chains

Markov chains are defined as a stochastic process which are purely defined by state transi-
tions. In particular, they are processes that are fully described by their “one step” transitions,
which are the transition probability to go from one state to the next. This is mathematically
shown below in equation 2.3

p(xn+1|xn, xn−1, ...x1) = p(xn+1|xn) (2.3)

A simple example of a markov chain model in real life is shown in Figure 2.1, here each
state has a probability of staying in it’s current state, or transitioning into the other. In
this case, if it is currently sunny outside, there is a 0.9 probability that the next day will be
sunny and 0.1 chance of rain the next day. Similarly if it is rainy, there is a 0.5 probability
that it will be rainy tomorrow, and a 0.5 probability it will be sunny. This 2 state chain can
be understood by the transition probability matrix P given below it.

P =

(
0.1 0.9
0.5 0.5

)
(2.4)

The state transition matrix P can operate on an initial vector of probabilities x to
generate the state probabilities for the next step. This is shown in the equation below.

xn+1 = xnP (2.5)

Certain classes of Markov Chains (specifically those which are aperiodic and irreducible
[29])) admit what is known as a “stationary distribution”. This can be understood as the
long run state probabilities or limiting distribution if the transition matrix were applied to
the initial distribution. The interesting piece about markov chains which admit stationary
distributions is that it does not matter what the initial state is, with sufficient applications
of the transition matrix the distribution will always approach the stationary one.

π0 = π0P (2.6)

xP n = π0 ∀x, n→∞ (2.7)
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These markov chains admit an interesting set of properties that can be used to help
us sample from most distributions. Specifically, if we can design a Markov Chain whose
stationary distribution is the distribution we want to sample from, then we would be able
to pull samples from this distribution without full knowledge of normalizing constants and
similar quantities.

Detailed Balance

For all states si and sj in the state space S, the product of the probability of transitioning
from si to sj (i.e., Pij) and the probability of being in si (i.e., the equilibrium distribution
πi) is equal to the product of the probability of transitioning from sj to si (i.e., Pji) and the
probability of being in sj (i.e., the equilibrium distribution πj):

πi · Pij = πj · Pji (2.8)

In other words, the rate at which the Markov chain transitions from state si to state sj
under the equilibrium distribution is equal to the rate at which it transitions from state sj
to state si.

The equilibrium distribution π is a stationary probability distribution, meaning that
if the Markov chain starts in this distribution, it will remain in the same distribution as
time progresses. The detailed balance condition ensures that the Markov chain reaches an
equilibrium state where the probabilities of being in different states are constant over time.

Detailed balance is a sufficient (but stronger than necessary) condition for Markov Chain
to admit a stationary distribution. By constructing a Markov Chain that obeys detailed
balance, we can make assumptions about the presence of a stationary distributions, and
design the stationary distribution to converge to the distribution we want to sample from.

2.4 Markov Chain Monte Carlo Sampling

Introduction

With the background of Markov Chains and sampling techniques, we can begin to under-
stand Markov Chain Monte Carlo algorithms. Specifically, if we can use the stationary
distribution of a Markov Chain to encode a probability distribution that we wish to sample
from, and the Markov Transition Operator to progress towards that distribution, we can get
samples from complicated distributions. Below we demonstrate two algorithms that would
allow us to do this, both of which use the principle of detailed balance [29]. The first is
the Metropolis-Hastings (MH) algorithm which is popular for simulation of the Boltzmann
Machine distribution.

The MH algorithm was the first demonstration of a MCMC algorithm which uses the
detailed balance conditions to sample from an arbitrary distribution [31]. It relies on using
a combination of an acceptance probability and a proposal distribution to satisfy these
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Algorithm 2 Metropolis-Hastings Algorithm

Require: Distribution p(x) =
ˆp(x)
Zp

of dimension N , Samples Desired Ns, proposal distribu-

tion g(x)
Initialize State x0

for i = 1 to Ns do
Generate x′ ∼ g(x|xi)

Calculate Acceptance Probability A(x′, xi) = min(1, P (x′)g(xi|x′)
P (xi)g(x′|xi))

Generate U ∼ Unif(0, 1)
if A(x′, xi) > U then

xi+1 = x′

else
xi+1 = xi

end if
end for
Ẑp =

∑Ns

j=1 p̂(xi)

Figure 2.2: Simple figure to understand Metropolis Hastings Algorithm. A proposal dis-
tribution (here shown as prior distribution p(θ)) is used to produce samples given previous
states. These states produce a markov chain which is then used to sample from the more
complicated distribution P (θ|y). Figure copied from [30]
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detailed balance conditions as well. In general the MH algorithm can be tuned with a
proposal distribution that allows for a high acceptance probability generally and that can
move around the state distribution. In general, the usefulness of the algorithm, especially
for more complicated distributions, hinges on a good choice for a proposal distribution.
Especially for very high dimensional state spaces, it can be difficult to put together a good
proposal distribution.

This algorithm also has a special use case for sampling of the Boltzmann Distribution,
in that it gets around the partition function sampling updates. When we are proposing
moves, we are calculating the ratio of the same probability distribution for different states
p(x′)/p(x). This allows us to calculate the acceptance ratio without using the partition
function, only using the unnormalized probability p̂(x) to calculate the next steps.

Algorithm 3 Gibbs Sampling Algorithm

Require: Distribution p(x) =
ˆp(x)
Zp

of dimension N , Samples Desired Ns, conditional distri-

bution p(x | y), Updates per sample k
Initialize x1, x2, . . . , xn with random initial values.
for t = 1 to Ns do ▷ Number of iterations

for j = 1 to k do
Pick a random index i = 1 . . . n
Sample xi from the conditional p(xi

t+1 | x1
t+1, x

2
t+1, . . . , x

i−1
t , xi+1

t , . . . , xn
t ).

end for
end for

The Gibbs sampler uses a series of serial updates of each variable for the update of the full
state of the system. It relies on the existence of closed form conditional probability for each
of the variables in the distribution rather than a proposal distribution, and each conditional
probability update can be seen as an individual Markov Chain that obeys detailed balance.
Many practical implementations of the Gibbs sampler update each of the states sequentially
x1 to xN , but the sequential form of the Gibbs sampler does not obey the detailed balance
equations [29].

The conditional probability for a Gibbs Sampler of the Boltzmann Machine is also well
defined, and can be used to efficiently calculate the update probability for a given state.
This has been derived in many other works and will not be re-derived here (see, for example
[32, 33]).

p(xi
t+1 = 1 | x1

t+1, x
2
t+1, . . . , x

i−1
t , xi+1

t , . . . , xn
t ) (2.9)

=
p(xi)

p(x1
t+1, x

2
t+1, . . . , x

i−1
t , xi+1

t , . . . , xn
t )

(2.10)

= σ(
∑
j

Jijxj + bi) (2.11)
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σ(x) =
1

1 + e−x
(2.12)

The Gibbs sampler for Ising Model problems is very useful as it also is able to get around
the problem of the partition as well, due to the cancellation of the partition function in the
conditional probability calculation. This reduces the problem of sampling each conditional to
a multiply and accumulate operation, followed by a sigmoid. The original Gibbs sampler and
Boltzmann machine found favour as a method to solve various combinatorial optimization
problems[15]. However, convergence of the sampling and training schemes for use on the
Boltzmann machine has been slow[13].

Additionally, the Gibbs sampler requires mainly serial updates of the conditional proba-
bilities, which can cause convergence to be extremely slow and many samples to be taken.
Some of the other problems that come from Gibbs samplers will be discussed below and in
later chapters.

Convergence of Sampling Algorithm

Markov Chain Samplers (and specifically the Gibbs Sampler mentioned above) have been
proven to converge in a geometric rate with the number of samples. In addition, the dis-
tance in total variation between the sampled distribution and the model distribution strictly
decreases with each Gibbs sampling step [34]. This implies that the quality of our solution
should increase as the sampled distribution approaches equilibrium. This is especially useful
for optimization problems where run time can be traded directly for better solutions.

Many combinatorial optimization problems are highly multimodal, which can lead to
problems of getting stuck in local minima and spurious modes during MCMC. Once the
MCMC algorithm finds a low energy mode it tends to stay around it. To leave the mode, the
Markov Chain must do a traversal from one of these modes to another, which goes as pn where
p is the probability of transition between states and n is the number of transitions needed to
go from one mode to another. As the distribution becomes increasingly multimodal, pseudo-
convergence of the MCMC becomes a problem. This is demonstrated in Figure 2.3 in a toy
form.

Of course, it is considered NP-Hard to solve these optimization tasks, so we cannot expect
the sampling procedure to converge in sub-exponential time on problems which themselves
are NP-Hard [35]. However, there are many algorithms that can help speed up convergence
of the sampler to find the ground state of the system.

An interesting property of convergence of the Gibbs Sampler, specifically within the
Boltzmann Machine framework is that it is directly related to the maximum energy difference
(and thus relative size of couplings Jij) between states. This means that distributions that are
closer to uniform are easier to sample from (small weights and couplings), while distributions
that have large weights and biases become increasingly difficult to sample from [34, 13].
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Figure 2.3: A demonstrative example of the difficulties in performing sampling in a bimodal
distribution. The sampler starts in an area of low probability, and will get stuck in one of
the modes. The sampler then has to traverse the areas of low probability between the two
modes, which becomes increasingly difficult if the distance between the modes are large.

Hitting time vs. Mixing Time

The time domain sampler also shows a large difference between time taken to model the
full distribution (the mixing time) and the time taken to sample the correct solution to the
problem of interest once (the hitting time). We demonstrate this phenomenon in Figure
2.4 for the application of a factorization problem. In this instance, we are looking for the
correct answers to a factorization problem, and see how long it takes for the system to
hit the correct answer once. The difference in time between the mixing time and hitting
time is shown directly in Figure 2.4 C), with the difference in times being close to 4x. By
adding in a sample verification methodology, the time taken to identify correct factors can
be drastically decreased. For NP-Hard problems, the solution can be verified in polynomial
time but finding a given solution is done within exponential time, a feature which is also
present in this factorization problem. This means the relative overhead of checking of factors
is relatively low, and can be done on a regular basis to reduce the sampling time significantly.
This method of adding heuristics to the sampler is present in many different problem types,
and must be done differently for each type of problem. Here we demonstrate both that the
sampler approaches the correct distribution, and that effective heuristics using the hitting
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Figure 2.4: Understanding the hitting time vs. the mixing time of a samplerA
demonstrative example of the difference between hitting and mixing time for a given sampler.
Here we examine the task of using MCMC to factorize a number. A) The distribution of
hitting time for the MCMC sampler to factorize the number. We see that it roughly follows
a poisson type distribution. B) The cumulative distribution function for the hitting time
follows a logarithmic curve C) Zoomed in to part A) demonstrating the distributional
nature of the system. D) Time series analysis showing almost a 4x difference in the time
for mixing time and hitting time.

time are available to reduce the time to solution.
To create a method to take advantage of the difference between mixing time and hitting

time, we can need to design hardware and algorithms for quickly verifying the answers to the
problem of instance. In the following chapters we explore how this is accomplished in two
different types of systems, the FPGA system and the GPU system. By using the approximate
probability of the sample taken, and taking the sample with highest probability, we can
effectively say that the solution to the problem is the sample that possesses the highest
probability.

Parallel Tempering (Replica Exchange Monte Carlo)

Parallel tempering, also known as replica exchange Monte Carlo, is a powerful Markov chain
Monte Carlo (MCMC) method used to improve the sampling efficiency of complex proba-
bility distributions, especially in high-dimensional spaces or when dealing with multimodal
distributions. [33, 36]

The main idea behind parallel tempering is to run multiple copies (replicas) of the MCMC
algorithm in parallel, each at a different ”temperature.” The temperature parameter is a
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scalar that controls the exploration behavior of the Markov chain. Higher temperatures
correspond to more uniform exploration of the state space, while lower temperatures focus
on fine-tuning the exploration around local modes. In the Boltzmann Machine framework,
a different temperature is applied by scaling the Energy Function of the original Boltzmann
Machine. In this context we are using the formulation of inverse temperature where β = 1/T .

pβ(x) =
1

Zβ

e−βE(x) (2.13)

Conceptually, for values of β → 0 the distribution of the Ising model becomes closer
to sampling from a uniform distribution, allowing for the markov chain to progress quickly
through the state space. As β → 1, where we are sampling from the exact distribution that
we have constructed.

The algorithm proceeds as follows:

• Initialization: Create M replicas of the system, each starting from different initial
states.

• Temperature Ladder: Assign a temperature to each replica, typically on a logarithmic
scale, ranging from low to high temperatures.

• Simultaneous Evolution: Run each replica independently using an MCMC algorithm,
such as Metropolis-Hastings or Gibbs sampling, but with the added modification of
temperature-dependent proposal distributions.

• Replica Exchange: Periodically attempt exchanges of states between replicas with
neighboring temperatures. Higher temperature replicas are more likely to accept moves
from lower temperature replicas, allowing the replicas to explore different regions of
the state space effectively.

Parallel tempering is particularly useful when the target distribution has rugged energy
landscapes or multiple modes, where a single MCMC chain may get trapped in a local
mode and struggle to explore the entire space efficiently. By using multiple replicas with
different temperatures, parallel tempering encourages better exploration and enhances the
chances of finding global modes. This alleviates the problem shown in Figure 2.3, as it allows
many chains to proceed independently and explore different areas of the state space, while
exchanging pieces to sample from the distribution of interest.

2.5 The Restricted Boltzmann Machine (RBM) for

Parallelized Sampling

The Restricted Boltzmann Machine is a stochastic neural network that encodes an exponen-
tial family probability distribution over binary variables, taking the form given in Equation
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Algorithm 4 Parallel Tempering

1: Initialize M replicas of the system with different initial states xi,0.
2: for t = 1 to T do ▷ Number of iterations
3: for i = 1 to M do ▷ Update each replica in parallel
4: Sample xi,t using Preferred Method (Gibbs, Metropolis Hastings, etc.)
5: end for
6: for i = 1 to M − 1 do ▷ Replica exchange
7: Generate a random number u ∼ Uniform(0, 1).

8: Calculate Pswap =
pi+1(xi,t)pi(xi+1,t)

pi+1(xi+1,t)pi(xi,t)

9: if u < min (1, Pswap) then
10: Exchange the states of replicas i and i+ 1: xi,t ↔ xi+1,t.
11: end if
12: end for
13: end forreturn Samples from all replicas: x1,T , x2,T , . . . , xM,T .

2.14. The energy function E(v, h) is typically set to reflect the problem being solved, and
can take a variety of possible forms [29]. Here we choose the energy function to reflect
linear synaptic weights with two body interactions to allow for simplicity of hardware and
algorithmic implementation.

p(v, h) =
1

Z
e−E(v,h), v ∈ {0, 1}n, h ∈ {0, 1}m (2.14)

To sample from the RBM probability distribution, we perform block Gibbs sampling [13],
a type of Markov Chain Monte Carlo, on the RBM nodes. Each neuron has a stochastic
activation function where p(vi = 1|h) = σ(wT

i h+ bi) and σ(x) = (1 + e−x)−1, with wi being
the ith row vector of the weight matrix, and bi being the bias associated with that neuron.
The lack of intra-layer connections allows for each neuron in a layer to be sampled in parallel,
creating a massively parallel sampling scheme. Each layer is sampled and the result is passed
to the next layer to get the next sample.

The conditional nature of the Blocked Gibbs Sampling means that many neurons can
be updated in parallel. On standard computing CPU platforms, this allows for vectorized
updates using standard linear algebra libraries to perform the matrix multiplication in a
parallel fashion (using baseline SIMD instructions and the like). On more parallel friendly
platforms, such as FPGAs, GPUs, and TPUs, this parallelism can be exploited even further
due to the parallel cores available for computation. This is especially useful on large and
very-large problem scales, where many nodes can be updated in parallel. These ideas of
exploiting parallelism will be explored further in the following chapters.
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Chapter 3

Inverse Logic Algorithms

3.1 Introduction

In the previous sections, we have demonstrated that the Boltzmann Machine and Restricted
Boltzmann Machine can be used to model complex probability distributions, and introduced
methods for finding solutions to them. In recent years, the Restricted Boltzmann Machine
(RBM) has experienced a resurgence as a generative model that is able to fully approximate a
probability distribution over binary variables due to its ease of computation and training via
the contrastive divergence method [13]. However, the success of the RBM as a generative
model has been limited due to the difficulties in running the Markov chain Monte Carlo
(MCMC) algorithm to convergence [37, 38].

Here, we use the RBM as generative model composed of multiple learned modules that is
able to solve a larger problem than the individually trained parts. This allows us to circum-
vent the problem of training large modules (which is equivalent to solving the optimization
problem in the first place, as we are simply providing the correct answers to the module as
training data), thus minimizing training time. As RBMs have the ability to fill in partial
values and solutions, this approach is very flexible to the broad class of combinatorial opti-
mization problems which can be composed of individual atomic operations or parts. Most
notably, we show that our approach of using “invertible boolean logic” is a method of solving
the boolean satisfiability problem, which can be mapped to a large class of combinatorial
optimization problems directly [39, 40]. The ability of RBMs to fully model a probability
distribution ensures model convergence and gives ideas about the shape of the underlying
distribution.

3.2 The Restricted Boltzmann Machine

An RBM is a bipartite graph model comprising a visible layer (input layer) and a hidden
layer. The neurons within each layer are connected, but there are no connections within the
same layer. The state of the visible layer is determined by the input data, while the hidden
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layer captures important features and interactions between the visible units. The energy
function of an RBM is given by:

E(v, h) = −
∑
i

aivi −
∑
j

bjhj −
∑
i

∑
j

viwijhj (3.1)

where v represents the visible layer state, h represents the hidden layer state, ai and bj
are biases, and wij denotes the weight between visible unit i and hidden unit j.

3.3 Contrastive Divergence Learning

Contrastive Divergence is an iterative algorithm that aims to approximate the gradient of the
log-likelihood of the training data with respect to the model parameters. The CD learning
procedure is as follows:

Algorithm 5 Contrastive Divergence Learning on RBM

1: Initialize RBM parameters: ai, bj and wij.
2: Sample a training data instance vdata.
3: Perform Gibbs sampling to obtain the hidden layer sample hdata:
4: Sample hdata from P (h|vdata) using the sigmoid activation function.
5: for t = 0 to T do
6: Sample vrecon from P (v|hdata).
7: Sample hrecon from P (h|vrecon).
8: end for
9: Update gradients using data and reconstructions:
10: ∆wij = ϵ

(
vdatah

T
data − vreconh

T
recon

)
11: ∆ai = ϵ (vdata − vrecon)
12: ∆bj = ϵ (hdata − hrecon)
13: Update RBM parameters:
14: wij ← wij +∆wij

15: ai ← ai +∆ai
16: bj ← bj +∆bj
17: Repeat steps 2-9 for a number of training iterations.

In Algorithm 5, P (h|v) and P (v|h) denote the conditional probabilities of the hidden and
visible units, respectively, given the states of the other layer. T represents the number of
Gibbs sampling steps performed during CD.

3.4 Merging RBMs

The difficulty of training large RBMs means that new innovations are necessary at the train-
ing step. [37, 38, 41] In this work, we propose merging smaller models, that are already
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trained, to form an initial condition for larger models as a way of improving the training of
large RBMs. This methodology is inspired from the digital logic where larger functions can
be constructed by combining small functional blocks [42]. Notably, all NP-hard problems
can be formulated through the Boolean Satisfiability problem. Therefore, constructing the
RBM in the aforementioned way provides a natural approach to solving hard optimization
problems. An example of this is shown in Figure 3.1 F) where we solve a toy example of a
3SAT Boolean Satisfiability problem. This shows that this method has the representational
power to solve a wide variety of NP-Hard problems. There has been many efforts to combine
individual machine learning and statistical models through ensemble learning methods[43].
In a similar vain, RBMs have been combined to produce joint predictions across multiple
problem domains [44]. There has also been work on using fully connected Boltzmann Ma-
chines to solve similar problems [42, 45] with some success. Our approach is unique in its
usage of machine learning models and Restricted Boltzmann Machines which give it bet-
ter performance than fully connected models, while offering a parallelized sampling scheme
which can be exploited by an efficient hardware accelerator.

Merging is performed by combining RBMs along their common visible neuron connec-
tion. We show the mechanics of the merging process in Figure 3.1 C) and D) where we
combine digital logic gates together in this manner. Merging across the visible neurons like
this retains the bi-partite, product of experts nature of the RBM while giving the expected
distribution if we were combining gates to perform logical synthesis. Using this as inspira-
tion, we construct adders and multipliers as shown in Figure 3.1 E) to combine trained n-bit
adder and multiplier units into 2n-bit multiplier units. Detailed information of this merging
protocol has been provided in the Methods section.

After smaller models have been trained and merged, we retrain the larger models to
fine-tune them. As shown in Equation 3.12, the models are good approximations for the
correct distribution we are interested in, and provide a good initial conditions for training
of the final model. Importantly, merging in this way retains the bi-directional nature of
the network. The same RBM can be queried to solve what the output is for a given input
(the “forward” direction), and queried what outputs caused a given input (the “reverse”
direction). In Figure 3.2 A), B), and C) we see the consequence of the bi-directional nature
where the same model can perform multiplication, division and factorization, as it learns the
full joint distribution over variables. In these tasks, the model must get the exact solution
as the mode of the sampled distribution. Performance is reported as pcorrect whi en number
of samples. We sample for the given number of samples and check whether the mode of
the sampled distribution corresponds to the correct answer to the problem of interest. We
also validate our merging approach by showing in these figures that training of an RBM
via Contrastive Divergence without merging catastrophically fails in these problems, while
our merging procedure allows for successful training. The blue curve in Figures 3.2 A),
B), C) represents the baseline of trying to train this machine on the 16-bit factorization
via Contrastive Divergence, showing close to 0 success probability, even after 100 hours of
training (see Table 3.1 for further details). Merging smaller units alone boosts performance
to the green curve, while using these merged units as an initial condition for further fine-
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Figure 3.1: Demonstration of RBM structure and sampling algorithm
(A) Structure of the RBM neural network. The Restricted Boltzmann Machine is a bi-
nary neural network structured in a bipartite graph structure. (B) The RBM maps out the
non-convex state space of a probability distribution. Low energy states map to high prob-
ability states which the network identifies through a Markov Chain Monte Carlo (MCMC)
algorithm. (C) A graphical mapping of RBMs to gate level digital circuits. The visible
nodes correspond to the inputs and outputs of the logic gate, and the hidden nodes are
the internal representation of the logic gate. (D) Graphical Demonstration of the merging
procedure, showing how two RBMs which represent an AND gate and an OR gate can be
merged together to form a connection. (E) We can create arbitrary adders and multipliers
by merging together smaller units to create the logical equivalent of larger units. The left-
most image shows how we create a 2n bit multiplier using n bit multiplications and n bit
additions. The color coding shows how the partial products are broken apart amongst the
adders and multipliers. To the right of that we show how we perform 4, n-bit input 2n-bit
output multiplications, and then accumulate the result. (F) Using this strategy of merging
logical units to solve a simple 3SAT, Combinatorial Optimization problem.

tuning boosts performance further to the red curve. This result proceeds from the fact that
the error in KL-divergence of the combined distribution is approximately the sum of the
originals (see Section 3.5 for further details). Indeed, if there were no error in the models
before merging, there would be no error in the final model after merging. The fine-tuning
step is simply to reduce the error created by merging imperfect models together.

By merging together small RBMs using the principles of logic synthesis, many complex
and NP-Hard problems can be solved using the bi-directional nature of RBMs. In Figure
3.1 D) we see the mechanics of this procedure, while Figure 3.1 E) shows how it can apply
to integer factorization and Figure 3.1 F) shows how it can apply to 3SAT and boolean
satisfiability. We note that the logic gates formed in part 3.1 C) can be operated in reverse
to find solutions to the given satisfiability problem with 3SAT. This is the canonical example
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D)

Figure 3.2: Performance on 16 Bit Multiplication, Division and Factorization
(A), (B), (C) Showing the performance on multiplication, division, and factorization per-
formed by directly training a 16 bit network (trained 16 bit), merging two 8 bit networks
(merged 8 bit), or merging two 8 bit networks and retraining (retrained 8 bit). (D) An ex-
ample of a factorized distribution after 107 samples showing factorization of a 16 bit number
into its two prime factors. The sampled distribution shows clear peaks at the two correct
answers to the factorization problem.

of an NP-Hard problem, which maps directly to all other NP-Hard problems, showing that
these networks have the representational power to solve a variety of such problems. [39, 40].
These problems are at the heart of many computationally difficult problems. We additionally
show how this type of training can outperform directly trained models. Figure 3.2 A), B) and
C) show that merging smaller models and retraining them drastically outperforms directly
training the model, with errors close to 3-10x less for problems of interest. In Figures 3.2
D) we show how these models can factor a semi-prime number into its two factors with high
accuracy. The factorization of a semi-prime number into its two co-primes is at the heart of
the RSA cryptography algorithm and is the basis of most of modern encryption systems.
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3.5 Mathematical details of Merging RBMs

Given two RBMs we wish to merge along a common connection (see Figure 3.1) with the
following parameters: WA ∈ Rn×r and WB ∈ Rm×s, visible biases bA ∈ Rn and bB ∈ Rm, and
hidden biases aA ∈ Rr and aB ∈ Rs. The energies and probabilities of these are as follows:

EA(v, h) = −vTWAh− aTAh− bTAv; pA(v, h) =
1

ZA

e−EA(v,h)

EB(v, h) = −vTWBh− aTBh− bTBv; pB(v, h) =
1

ZB

e−EB(v,h)
(3.2)

We can write the weight matrices as a series of row vectors corresponding to one visible
unit’s connections to a set of hidden units.

WA =

 wA
1
...

wA
n

 , WB =

 wB
1
...

wB
m

 , (3.3)

With this definition, the merge operation is shown below. If unit k of RBM A is merged
with unit l of RBM B the associated weight matrix WA+B ∈ R(n+m−1)×(r+s) , visible bias
vA+B ∈ Rn+m−1 and hidden bias hA+B ∈ Rr+s dictate the probabilities and energies for
the merged RBM. Merging multiple units between these two RBMs corresponds to moving
multiple row vectors fromWB toWA, which creates the associated decrease in dimensionality
ofWA+B and bA+B (whereWA+B ∈ R(n+m−d)×(r+s) and vA+B ∈ Rn+m−d where d is the number
of merged units.

WA+B =

WA

0
wB

l

0

0 WB\l

 =



wA
1
...

wA
k
...

wA
n

0

wB
l

0

0

wB
1
...

wB
l−1

wB
l+1
...

wB
m



(3.4)
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bA+B =



bA1
...

bAk + bBl
...
bAn
bB1
...

bBl−1

bBl+1
...
bBm



aA+B =



aA1
...
aAr
aB1
...

aBs


(3.5)

Below, we show how this relates to the original energies and probabilities. The vectors
v and h correspond to the visible vector put into the combined RBM, while vA, vB, hA and
hB correspond to the equivalent state vectors that would be inputted into the single RBMs.
Using these equations, we can see that the combined RBM energy factorizes into a sum of
the original RBM energies and the probability is the product of the original probabilities.

v =

 v1
...

vn+m−1

 h =

 h1
...

hr+s

 (3.6)

vA =


v1
...
vl
...
vn

 , vB =



vn+1
...

vn+l−1

vl
vn+l
...

vn+m−1


, (3.7)

hA =

h1
...
hr

hB =

hr+1
...

hr+s

 (3.8)

EA+B(v, h) = EA(vA, hA) + EB(vB, hB), (3.9)

pA+B(v, h) =
1

ZA+B

e−EA+B(v,h) ∝ pA(vA, hA)pB(vB, hB) (3.10)

Because of the probabilities approximately multiplying (Eq. 3.11), we can also say that if
each of the distributions differed from the “ideal” distribution (denoted here by q), then we
can expect the error (as measured by the KL divergence eqn. 3.12) to increase approximately
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Model Visible Units Hidden Units Training Time
(minutes)

1 bit Adder 5 6 1
2 bit Adder 8 28 13.5
4 bit Adder 14 64 133
8 bit Adder 26 96 201
16 bit Adder 50 128 321
32 bit Adder 98 192 13000 (approx.)
4 bit Multiplier 8 16 46
6 bit Multiplier 12 48 79
8 bit Multiplier 16 64 655
10 bit Multiplier 20 144 4063
12 bit Multiplier (Merged) 60 352 512
16 bit Multiplier 32 512 3611
16 bit Multiplier (Merged) 78 576 5156

Table 3.1: Model sizes and training times for various RBMs As the size of the RBM
grows, both the training time for model convergence and the number of hidden units needed
to model the distribution both increase. We find that the largest multiplier model that can
be fit on our version of the FPGA design is the 16 Bit Multiplier/Factorizer. Model analysis
and training for models larger than the 16 bit multiplier took too long to train, and are not
displayed here.

linearly with the number of distributions summed together. As contrastive divergence learn-
ing approximately follows the gradient of the KL divergence, the merged model represents
a good initial condition for training of the larger model [46]. This means that only small
corrections in CD training are needed on the merged model to create a good trained model
for the larger network. Training the merged model is possible as intermediate nodes are
represented as extra visible units, and can be calculated based on the input and outputs of
the dataset. The data for the merged models can be calculated as if we were propagating
values through a digital circuit and keeping track of intermediate values, which become the
data for the merged model to be trained on.

p = pA(vA, hA)pB(vB, hB), q = qA(vA, hA)qB(vB, hB) (3.11)

DKL(p∥q) ≈ DKL(pA∥qA) +DKL(pB∥qB); (3.12)

3.6 Convergence Theorems of Merged RBMs

As sampling from the full distribution of an RBM is intractable due to the the partition
function, a Markov chain Monte Carlo based technique is used to generate samples from
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the model distribution during inference both while training and while solving. Due to the
bipartite graph nature of RBMs, Gibbs sampling is computationally efficient and can be
done in 2 steps. Gibbs sampling converges to the model distribution in a geometric number
of steps [29]. Exact estimates of the convergence rate is intractable, as it involves calculating
the SLEM (Second Largest Eigenvalue Modulus) of the gibbs transition matrix. However,
a theoretical bound can be analyzed using Dobrushin’s Ergodic Coefficient as shown below.
A similar derivation is also shown in [29].

|µP n − π| ≤ 1

2
|µ− π|(1− e−2∆)n (3.13)

∆ = sup
x,y∈{0,1}N

{|E(xv, xh)− E(yv, yh))|}

A proof of this is shown in Section 3.6. In this equation, µ is the starting distribution
(or starting point) P is the transition probability matrix (represented by applying the gibbs
transition operator on all units), π is the stationary distribution and n is the number of tran-
sition steps taken. The convergence parameter ∆ represents the maximum energy difference
between two states in the RBM, where we denote the to states x and y, with visible and
hidden states (xv, xh) and (yv, yh) respectively.

From our derivation above, we can estimate the effects of merging on the upper bound of
convergence rate. If we combine two RBMs A and B, with parameters labeled as such the
highest energy states correspond to “correct” answers (Emax

A , Emax
B ) and the lowest energy

states correspond to “incorrect” answers (Emin
A , Emin

B ). Denote the maximum and minimum
energy of the combined RBM as Emax

comb and Emin
comb, and ∆comb as the convergence coefficient

for the combined RBM.

Emax
comb ≤ Emax

A + Emax
B ; Emin

comb ≥ Emin
A + Emin

B

∆comb ≤ ∆A +∆B

|µP n − π| ≤ 1

2
|µ− π|(1− e−2∆comb)n ≤ 1

2
|µ− π|(1− e−2(∆A+∆B))n

This implies a considerable decrease in convergence rate over the original RBMs, amounting
to an exponential increase in the upper bound of convergence constant as more RBMs are
combined together. We note that this is meant to be a theoretical upper bound on conver-
gence, and thus the bound is never tight. Empirical results show that in many cases, this
bound tends to be very loose, even while merging. For this reason, an empirical study is
necessary to understand the effects of merging RBMs. We additionally note that when we
train the RBM after merging (as is demonstrated in fig 3.2, these convergence theorems are
no longer valid as the model has changed. We see that the performance gets remarkably
better than this bound with the post-merging training step, so this proof provides a loose
bound on performance to help us gauge worst case behavior.
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Proof of Merged RBM Convergence Equations

This proof follows a similar structure to [29], but has further simplifications and additions
due to the conditional independence structure of the RBM.

Gibbs Transitions over the RBM can be be factored into two stages, a transition prob-
ability distribution over visible units, and a transition probability distribution over hidden
units. The respective transition matrices are multiplied to yield the full state transition
matrix. We will call P the full transition matrix with elements pxy, and Pv, Ph the visible
and hidden transitions with elements pvxy and phxy respectively.

P = PvPh (3.14)

pvxy =
e−E(yv ,xh)∑
v e

−E(v,xh)
, phxy =

e−E(xv ,yh)∑
h e

−E(xv ,h)
(3.15)

The states x and y are parameterized as x = (xv, xh) with visible (xv) and hidden (xh)
portions. The individual transition probabilities pvxy represent the probability of transition-
ing from state x to state y, when only changing the visible states of x. Thus, the entry pvxy
in Pv is nonzero iff xh = yh.

Starting with the convergence inequality from [34].

|µP n − π| ≤ 1

2
|µ− π|(δ(P)n

δ(P) = 1− inf
x,y∈{0,1}N

∑
k∈{0,1}N

min(pxk, pyk)

From here, we can take further bounds on the ergodic coefficient:

δ(P) ≤ 1− 2N inf
x,y

pxy

Defining mv(h) = infv∈{0,1}Nv (E(v, h)) and mh(v) = infh∈{0,1}Nh (E(v, h)), these represent
the states with lowest transition probability from a given input state. The variables Nv and
Nh represents the number of visible and hidden units respectively.

pvxy =
e−(E(yv ,xh)−mv(x))∑
v e

−(E(v,xh)−mv(x))
≥ e−δv

2Nv

δv = sup
h∈{0,1}Nh

(|E(v′, h)− E(v, h)|; v, v′ ∈ {0, 1}Nv)

phxy =
e−(E(xv ,yh)−mh(x))∑
h e

−(E(xv ,h)−mh(x))
≥ e−δh

2Nh

δh = sup
v∈{0,1}Nv

(|E(v, h′)− E(v, h)|;h, h′ ∈ {0, 1}Nh)
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In words, δv is the maximal energy difference between two states that have the same
hidden states, and δh is the maximal energy difference between two states that have the
same visible states. Using this definition, we can define

inf
x,y

pxy ≥
e−(δv+δh)

2N
≥ e−2∆

2N

∆ = sup
x,y∈{0,1}N

{|E(xv, xh)− E(yv, yh))|}

And finally
δ(P) ≤ 1− 2N inf

x,y
pxy ≤ 1− e−2∆

|µP n − π| ≤ 1

2
|µ− π|(δ(P))n ≤ 1

2
|µ− π|(1− e−2∆)n

3.7 Low Density Parity Check Codes and

Communications Algorithms

Introduction

Low-density parity-check (LDPC) codes are a class of linear block error-correcting codes,
which are used in communication systems and data storage devices to correct errors and
ensure the integrity of transmitted or stored data. LDPC codes work based on the idea
of ”parity checks”, which means each bit in the data is checked according to a certain
pattern (the pattern is ”sparse”, or has few ones, hence the name ”low-density”). If an
error is detected, the bit is corrected using an LDPC decoding algorithm [47]. Many modern
communications standards, such as WiFi and 5G, use LDPC codes to correct for transmission
errors. LDPC codes are heavily used as they are very close to the Shannon Limit for coding,
while also having algorithms which can exploit the low density of the codes to achieve good
performance.

The usage of LDPC codes is divided into two steps, first a code word is generated on
the sending side, which uses a “generator matrix” G to create a bit-string to send across the
channel. This message is then passed through a noisy channel, where an error may or may not
occur. On the receiving side, the received message will be passed into a decoding algorithm
which will then extract the original message while attempting to correct for any errors.
Traditionally, the belief propagation algorithm has been used for the decoding process, but
this process can be computationally expensive and does not have guarantees of optimal
decoding. With these in mind, there has been interest in alternate methods for performing
LDPC decoding.
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Figure 3.3: Depiction of multi-XOR (parity check) done 3 different ways. On the left is the
XOR tree using a cascading tree of 2 input XOR gates. The middle is an XOR tree

Maximum Likelihood Decoding using RBMs

Maximum Likelihood Estimation for decoding of LDPC codes is a method of using proba-
bilistic techniques to find the state which minimizes the error function of the input LDPC
coded message. It is summarized by the system in Equation 3.16.

x∗ = argmin
x

[||r − x||2 + λ mod 2(Hx)] (3.16)

In Equation 3.16, r is the received message, x is proposed method, H is the parity
check matrix, and λ is a hyperparameter for optimization. This system can naturally be
reformulated using the system of Inverse Logic and Restricted Boltzmann Machine that we
have demonstrated in previous sections of this chapter. To map this to a probability problem,
we set the visible nodes of the RBM to x, and then use hidden nodes to create correlations
between these bits.

First, the H matrix is a sparse matrix (usually only having 4 to 16 values in each row
which are non-zero), which means when we take the mod 2(Hx) product we only have to
find the parity of the number of non-zero values in each rows. To take care of the mod 2
operation of the input product Hx we use the formulation of mod 2 as an exclusive OR
(XOR) computation. To accomplish this we use an XOR tree and clamp the output of the
tree to to ensure that parity is held at 0 for the full mod 2(Hx) product. This parity check
mod 2 operation is shown using a multi-XOR operation in Figure 3.3 and is done by adding
hidden units between the relevant nodes to create the XOR operation. Finally the received
message r is added as a bias to the input nodes on x.

We have evaluated this decoding scheme against the standard belief propagation algo-
rithm for 16, 32, and 64 length codes at various noise levels. In Figure 3.4 we show this
performance difference. In that figure, BER represents Bit Error Rate (lower is better) and
Eb/No is a measure of the amount of noise in the channel. Lower values of Eb/No repre-
sent higher noise. At smaller code lengths, the RBM based method is able to outperform
belief propagation, but at larger code lengths, we find that the system does not keep pace in
performance. We can attribute this to the vanilla gibbs sampling algorithm used here. We
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Figure 3.4: Performance evaluation of the RBM based LDPC decoder on code lengths of
3 sizes. Here “bp” represents the belief propagation algorithm, “rbm clamp” is the RBM
formulation described here, and “threshold” is decoding by simply founding the input mes-
sage. Left: RBM performance showing superior performance at all noise levels as compared
to the belief propagation algorithm. Middle: For code lengths of 32, we see that the RBM
performs on par with the belief propagation algorithm. Right: For longer code lengths, we
see that the belief propagation has lower error rates than the RBM formulation.

believe that by using Parallel Tempering or something similar, performance on the LDPC
decoding problem would increase.
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Chapter 4

Direct Mapping Algorithms

4.1 Introduction

As many optimization problems have been formulated for the Ising Model [3], they must be
transformed from the fully connected Ising model problem, to the bipartite graph structure
in the RBM as demonstrated in Figures 4.1 A) and B). To do this, each logical node in the
original graph is copied to create two physical nodes in the RBM, with one being in the
visible layer and one being in the hidden layer. The connection between the two physical
copies is referred to here as the “coupling coefficient” (C) and forces both nodes to remain
at the same value. Once the bipartite graph is formed, the RBM energy function is set to
E(v, h) = vTWh with W being the bipartite graph’s weight matrix. This encodes the lowest
energy states in the original Ising Model problem as the highest probability state in the RBM
probability distribution. From there we can use some of the sampling algorithms introduce
in Chapter 2 to find the high probability states from the distribution of interest.

4.2 MaxCUT problems

An example of the sampling algorithm on a 150 Node MAX-CUT instance is shown in Fig-
ure 4.1 D). The raw samples produced stochastically fluctuate through the high probability
states, with a higher probability of transitioning into and staying in the highest probabil-
ity/lowest energy state. The samples can be analyzed to find the solution in one of two ways;
either the samples can be collected and the mode of the sampled distribution is taken as an
estimate for the highest probability state, or the unnormalized probability can be calculated
for each sample and the highest probability state seen thus far can be taken as an estimate
of the highest probability state for the underlying distribution. The first method is related
to the “mixing time” of the Markov Chain and the second is related to the “hitting time”
of the Markov Chain [29, 48]. The mixing time method requires less computation but more
post-processing, while also allowing for analysis of the full distribution to find other poten-
tial high probability states as solutions to the problem. The hitting time method produces
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only one output solution and converges to the solution faster than the mixing time method,
but it requires an extra computation for every sample. In Figure 4.1E) we show that the
hitting time method performs better for the same number of samples, with a cut distribution
closer to the maximum. Further, Figure 4.1F) shows that the hitting time method has a
constant factor of improvement in probability of reaching the ground state over the mixing
time method. This result is expected from the theory of Markov chain samplers [49, 50].

4.3 Effect of Sampler Parameters on Algorithm

Performance

The choice of parameters has a strong effect on algorithm performance and should be charac-
terized to select optimal parameters for new problem instances. These parameters are found
for each problem and set empirically based on trends seen in the data. The parameters for
this sampler are the coupling (C), the temperature (β), and the number of samples taken
(Ns). We first optimize over the temperature parameter, as the other parameters have a
strong dependence on the temperature chosen. The temperature parameter (β) refers to a
scaling constant in the probability model, where p(v, h) = 1

Z
e−βE(v,h), and is equal to the

inverse temperature seen in the physical Boltzmann distribution. As β →∞ the distribution
becomes more sharply peaked with a larger probability difference between the ground state
and first excited state. Conversely, as β → 0, the distribution closer to uniform making it
easier to sample from and converge to a solution. The results of the temperature analysis are
shown in Figure 4.2 A), where β ≈ 0.25 yields the best results. We note that we only tested
in increments of 0.125, as the fixed precision available on our FPGA accelerator only allowed
for increments of 2−2. More precision is possible, but deemed unnecessary in comparison to
the hardware costs.

The coupling coefficient, C is a soft constraint that forces the two copies of the logical node
to be the same on the physical RBM implementation. For small values of this constraint, the
two copies of the logical node are free from constraint, and an incorrect state will generally be
chosen as the ground state. In the case of MAX-CUT, this generally leads to a state of 0 cut,
where all nodes are the same value. In the case of the SK Problem, the ground state becomes
a random state depending on the problem instance values. The coupling coefficient has a
much stronger effect on the performance in the MAX-CUT problem than the SK problem,
demonstrated by examining the performance for various values of C. In Figure 4.2 B) we
see the probability of finding the ground state solution strongly peaks around the optimal
C ≈ 12 for Ns = 70000, β = 0.25 for the MAX-CUT problem. For the SK problem, we see
less of a sharp peak, with a more gentle decline in performance (shown in Supplementary
Figure 4.3 A)). In addition, the large values of C in the MAX-CUT problem cause a slower
mixing time leading to worse performance on the MAX-CUT problem compared to the SK
problem [32]. If we instead use the median cut outputted by the sampler as our metric, we
see a slightly different picture where the performance is very poor below a certain threshold,
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.   .   .   .

A) B)

C)

D)

E) F)

Figure 4.1: Demonstration of RBM structure and sampling algorithm
(A) Structure of the input graph for an Ising Model type algorithm. The graph is fully
connected, with no restrictions on the size or magnitude of the weight matrix. (B) The
Ising Model is mapped to an RBM by making two copies of each graph node and edge and
arranging them into a bipartite graph. One copy is in the “visible” layer neurons and one
in the “hidden” layer neurons, with no intra-layer edges. Each physical copy of the neuron
is connected by a “coupling” parameter (C) which constrains the two copies to be the same
value. (C) Due to the lack of intra-layer connections, the layers can be sampled in parallel.
Each of the neurons in a layer is sampled in parallel and used to calculate the values of the
opposite layer, creating a two-step sampling procedure. This sampling procedure proceeds
until the output of the algorithm has reached the ground state, or until the algorithm output
is of sufficient quality. (D) A demonstrative sampling run showing two different methods
for interpreting the output samples from the RBM. (E) A histogram showing the output
cuts after 1000 independent sampler iterations with C = 12, Ns = 70000, β = 0.25 on a 150
Node Max-CUT problem, comparing the performance of the two sampling methods. (F)
Analysis of the scaling of both of these sampler types. We see that both the sampled mode
and best sample procedure perform well with the best sample method performing a constant
factor above the sampled mode method.
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Figure 4.2: Optimization of Algorithm Hyperparameters on the MAX-CUT prob-
lem
(A) The parameter β scales the weights and biases by a constant factor to change the speed
of convergence of the sampler. We settle on β = 0.25 as the optimal parameter, which is
used for all experiments in this paper. (B) We show the performance on varying problem
sizes for varying coupling parameters at a fixed β = 0.25 and Ns = 70000. This shows that
for the MAX-CUT problem the C is generally optimal at C ≈ 12 for most problem sizes. (C)
Although the probability of reaching the ground state is sensitive to the coupling parameter,
the median cut outputted from the algorithm tends to be very close to the optimal value
for a large range of coupling values. Below a certain value, the median value is very low,
but it undergoes a sharp transition to its peak cut value, before slowly degrading. (D) The
number of samples taken also increased the optimal coupling value for a given value. This
is a consequence of the mixing time of the underlying distribution, where smaller coupling
values mix faster but output statistics that are further from the ideal distribution for the
problem. (E) With fewer samples taken, the probability of outputting the ground state de-
creases significantly. For a given number of samples, the probability of reaching the ground
state decreases as O(e−bN) with different coefficients b in the exponent. (F) For a given
number of samples taken, we can calculate the time to solution by evaluating Equation 4.1
along with the data from (E). The floor of this graph for each problem size is the optimal
time to solution for the MAX-CUT problem using the hardware accelerated RBM. .
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Figure 4.3: . Hyperparameter analysis on the Sherrington-Kirkpatrick (SK) Prob-
lem
(A) The coupling parameter for the SK problem is optimized at much lower values than the
Max-Cut problem (closer to a coupling of 1 vs. a coupling of 12-13 on MAX-CUT). The
SK problem has an inherent symmetry, as it has both +1 and -1 connections, causing the
optimal coupling parameter to be lower for this type of problem. (B) The optimal coupling
value for maximizing the median cut follows the optimal coupling to find the ground state.
Similar to the MaxCut problem, the median cut remains high and is not as sensitive to
the coupling parameter as the probability of reaching the ground state. (C) As above, in
the MAX-CUT problem, the probability of reaching the ground state improves smoothly as
more samples are taken. However, more samples takes more time, and we can optimize for
the number of samples to take. The performance is significantly better on the SK problem,
compared to the MAX-CUT problem when performed on the RBM. (D) Using the time
to solution framework outlined in the Results section above we can use the sampling per-
formance in part (C) and find the time to solution for a given sample number. Here, we
see fewer than 2000 samples should be taken across all problem sizes, much lower than the
MAX-CUT problem. The minimum across all sample numbers is taken to find the global
time to solution for the RBM.
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peaks at the optimal C, and then slowly degrades with higher value, which is shown in Figure
4.2 C).

Additionally, the optimal C tends to change with the number of samples taken, demon-
strated in Figure 4.2 D). This is because small values of the C allow for the system to approach
the model distribution faster via a smaller mixing time and hitting time [13, 29] but this
comes at the cost of having the highest probability state be a state of zero cut (See Figure
4.4 and accompanying discussion for further details). The result is that for small problem
sizes, where enough samples are taken such that the sampled distribution is very close to
the model distribution, we see a linear relation between the problem size and the optimal
C. This also corresponds to the region where the probability of reaching the ground state,
pgnd ≈ 1 as shown by comparing Figure 4.2 D) and E). When problem sizes go past this
point and the problem’s sampled distribution is sufficiently far from the model distribution
so it does not correctly identify the mode in all cases, the optimal coupling parameter is
mostly flat.

As the number of samples taken increases, the sampled distribution approaches the model
distribution, and the ground state can be correctly identified. This generally causes a smooth
and monotonic increase in probability of reaching the ground state as shown in Figure 4.2
E). The stochastic hill climbing of the Gibbs sampling algorithm causes the mode to be
correctly identified and found well before the full distribution is mapped. Additionally, as
each trial is independent, many trials can be performed and a higher success probability can
be reached by probability amplification [51]. We combine these properties with the Time to
Solution framework used in other works [52, 6, 53, 54], and adapted for the RBM in equation
4.1, as the standard for evaluating probabilistic accelerators. This corresponds to the 99%
quantile for reaching the ground state of a given problem.

Tsoln =
Ns

fclk

log(0.01)

log(1− pgnd)
(4.1)

In this equation Ns is the number of samples taken, fclk the clock frequency (70Mhz for
our FPGA implementation), and pgnd the probability of reaching the ground state for that
particular problem. We use this equation along with the data from Figure 4.2 E) to create
Figure 4.2 F) which shows the time to solution for various Ns. We note that if multiple
FPGAs are available we can parallelize this scheme and further reduce the Tsoln. Here
we use a sequential Time to Solution framework for fair algorithmic comparison to other
accelerators. From the graph in Figure 4.2 E) we see that the optimal number of samples
taken (in this framework) is generally lower than the number of samples needed to reach
very high accuracy on an individual problem. We can take the lower bound on the data
in Figure 4.2 F) and create a Pareto-optimal boundary for performance on these problems.
The same parameter optimizations presented in Figure 4.2 for MAX-CUT are performed for
the SK problem and shown in Figure 4.3.
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4.4 Scaling and Connectivity

One of the biggest challenges in implementing Ising Machines is creating all-to-all connec-
tivity between nodes. When mapping arbitrary graphs onto the Ising Machine, this is a
necessary requirement to build a usable machine. The CIM supports this kind of all-to-all
connectivity, while the DWave 2000Q, with its limited connectivity, uses ≈ N2/κ where κ is
the level of connectivity in the physical graph [52], leading to a large overhead in computa-
tion. A consequence of this is that the DWave annealer has scaling performance of O(e−N2

))
in probability of reaching the ground state, while both the CIM and the RBM based meth-
ods exhibit O(e−N) [52, 55]. The RBM based methodology, although mapping N logical
nodes to 2N physical nodes, does not suffer from the same scaling problems as the DWave
Machine. We believe this is because the RBM increases the number of physical nodes by a
constant factor, rather than a factor that depends on the size of the input graph.

We expect similar asymptotic performance for both the SK problem and MAX-CUT as
they both are NP-Hard problems, based on the Ising Model glassy spin system configuration,
using the same embedding and underlying sampling algorithm. This is confirmed based on
our experiments with both problems having an underlying O(e−N) for probability of reaching
the ground state for a fixed number of samples (see Figures 4.2 E), and Figure 4.3 C)).
Based on the same scaling behavior for the ground state probability metric, we see a scaling
of O(e

√
N) for both the MAX-CUT and SK problems and fit curves to both problems (see

Figures 4.2 F) and 4.3 D))). We note that as the SK problem requires such few samples
for computation, the optimal sample point does not transition very much between different
sample values. This causes the behavior to appear linear in the exponential at first glance,
but we expect it to follow the O(e

√
N) behavior for larger problem sizes.

Although we empirically see a probability scaling of O(e−N) and a time to solution scaling

ofO(e
√
N) in the RBM annealing algorithm, we acknowledge that without a theoretical result,

this scaling is not proven. More work is necessary to understand the sampling algorithm in
greater detail. It should be noted, however, that the scaling principles seen in the CIM and
DWave are also empirical [52, 56], thus only experimental data can be reasonably compared
and care should be taken when extrapolations are taken of the data.

4.5 Effect of C and graph embedding on algorithm

performance

The purpose of the coupling constraint (C) is to enforce the two physical copies of the
logical node to be the same value. When the constraint is violated, the two physical copies
have different values and the state energy is no longer proportional to the Ising Energy of
the problem Hamiltonian being solved. This would imply large values of C would improve
performance, but that is not what is observed. When the value of C is too large, the Markov
Chain does not mix quickly and settles in local minima [13, 32, 29].
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Figure 4.4: . Effect of Coupling Coefficient on Sampled Performance vs. Limiting
Performance
This shows how the relative probability of the zero state (right axis) compares to the proba-
bility of reaching the ground state after 10000 iterations (left axis) for Ns = 70000, β = 0.25
on various problem sizes. (A) For N = 50, we can tell that the Ns is large enough such that
the sampler has fully mixed, as the sampler performance peaks when psoln > pzero and the
probability of correct ≈ 1. (B) For N = 100, we see that the sampler is further from conver-
gence as the peak performance no longer approaches 1, and the optimal coupling parameter
is for a state where psoln < pzero. (C) As the problem size increases to N = 150 we see that
the sampler is even further from convergence as psoln ≪ pzero at the optimal coupling value.

As shown by comparing Figures 4.2 and 4.3, we can see that the there is a significant
difference in performance between the MAX-CUT and SK problems, even when comparing
the performance difference to the other annealers. This is partially caused by the difference
in optimal C required for the problems. While the SK problem uses C ≈ 1 for all problems,
the MAX-CUT problem has an optimal value of C ≈ 12 for the same Ns = 70000, β = 0.25.
In addition, the graph embedding we use leads the MAX-CUT problem to have a high
probability for a state with a cut of 0, a state which is suppressed for high values of the
coupling parameter. We would expect that remapping the MAX-CUT problem to the RBM
via a different method that requires smaller C could result in a increase in performance due
to lower mixing times.

For the MAX-CUT problem there is an intuitive explanation for the role of the cou-
pling parameter. When C = 0, the two physical copies of a node in the original graph are
completely disconnected resulting in the two states not having any direct effect on each
other. The maximum cut in this degenerate graph is the one which separates the hidden
from the visible nodes and passes through all of the edges and where v = {0}N , h = {1}N or
v = {1}N , h = {0}N . We refer to this state as the “zero cut state” as it corresponds to a state
that has zero cut in the original Ising Model graph. As C increases, the relative probability
of this state decreases compared to the actual MAX-CUT state for the original Ising Model
graph. However, large C causes slower mixing rates, which means that the performance of
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the sampler tends to peak significantly before the solution state has a higher probability than
the zero cut state. This also serves as a good proxy for how close the sampler is to the model
distribution, as the probability of reaching the ground state should peak when the MAX-
CUT state has higher probability than the zero cut state if the sampled distribution is close
to the model distribution. In Figure 4.4 we show this phenomenon, where for Ns = 70000
we can see the regions of operation. For N = 50 we can see the sampled distribution is very
close to the model distribution, as the probability of reaching the ground state peaks when
the ground state probability is larger than the zero cut probability and we are able to reach
the ground state in almost all instances. For the N = 100 and N = 150 instances we can see
the sampler is further away from the the model distribution as the probability of reaching
the ground state decreases and the sampler performance peaks for smaller coupling values
where psoln ≪ pzero.
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Chapter 5

FPGA based RBM accelerators

5.1 Introduction

The massive parallelism present in the RBM algorithm makes it especially efficient on the
FPGA. The RBM algorithm also doesn’t contain any branches or explicit memory accesses
while sampling, removing expensive branch misprediction cycles and DRAM fetch cycles.
Furthermore, unlike other deep neural network accelerators, this algorithm is not memory
bandwidth limited for mucho f its operation [57] as can be seen by the FPGA utilization,
Table 5.1, further increasing the algorithmic performance on hardware. The bipartite nature
means that many neurons can be sampled in parallel on the FPGA, allowing us to perform
each neuron activation probability in parallel. There has been much work on accelerating
RBM training through FPGA implementations [58, 59, 60], but by focusing on inference only,
we reduce the necessary hardware requirements to the essential components, fully unlocking
the inherent parallelism in the network architecture.

5.2 RBM Inference Accelerator for Inverse Logic

In the context of accelerating the solution for the Inverse Logic problems presented in Chapter
3, we need to design an accelerator that is designed to perform the block gibbs sampling
algorithm effectively. This relies on running fast and parallel MCMC to take advantage of
the FPGAs resources.

The computation speedup of the FPGA vs. the CPU/GPU we have accomplished is due
to a series of hardware friendly modifications and model choices that we have made. The
first is to develop a series of model quantization techniques specific to the RBM architec-
ture and Contrastive Divergence algorithm, using inspiration from traditional quantization
in deep neural networks [61, 62, 63]. The next technique is to utilize the binary activations
to transform the matrix multiplication update in the RBM to a mask and accumulate opera-
tion. This removes the costliest portion of the update (the multiplication) greatly improving
utilization on the FPGA and clock speed [64]. To further remove all multiplications in the
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neuron update, we replace the sigmoid operation with a Look up Table (LUT) based approx-
imation. This allows fast evaluation of the activation function without expensive hardware
resources. The last major hardware based improvement that was possible is usage of the
fast LFSR based pseudo random number generator. By using a 32 bit LFSR, we are able to
achieve similar performance to the baseline PyTorch random number generation while using
a significantly simpler algorithm.

Model Quantization

In addition to taking advantage of the inherent parallelism, to fit larger models on the FPGA
we have performed model quantization to be able to lower precision during the inference.
There has been much work on model quantization for deep neural networks, however most
of them focus on Convolutional Neural Networks and Multi-Layer Perceptrons [61, 62, 63]
specifically using algorithms which rely on the backpropagation algorithm for training. As
the RBM uses Contrastive Divergence through MCMC sampling many of these methods
are not directly useful, however we can use these methods for inspiration to quantize our
models. Additionally, our goal of targeting an FPGA architecture requires the final weight
values to fall into the regularly spaced quantization bins of the fixed point representation
that we choose. For these reasons, we adopt a 2 step training procedure for quantization.
The first is adding a constraint to the maximum value of the weight and retraining with
this constraint. This makes sure that the weight magnitude cannot overflow the fixed point
representation that we are using. As demonstrated in Figure 5.1 A), this does not change the
overall accuracy of the model, as the retraining causes more weights of smaller magnitude
to compensate for a single weight of large magnitude. The second retraining step adds an
extra quantization loss term to the training step (see Eqn. 5.1 ). In Figure 5.1 B) we
show that we can quantize from 32 bit floating point to 6 bit fixed point without large loss
in error. Figure 5.1 D) shows the final weights distribution after these two quantization
training steps, demonstrating how the retraining preferentially pushes weights towards their
post-quantization values. The exact training steps are detailed below. In Figure 5.1 H) we
see how this quantization effects the performance of a factorization task. This increase in
error is accompanied by massive increases in speed and power efficiency.

Retraining for Quantization

To train for quantization, the loss function that is optimized for (L(W,d)) is modified so
that in addition to having the regular Contrastive Divergence loss between the weights W
and the data d denoted by CD(W, d), we have a loss term that pushes weights to be closer
to their quantized value. The hyperparameter λ is slowly increased during training to force
the weights progressively closer to their quantized value. This method allows the contrastive
divergence term to fix the errors created by quantizing the weights slowly while training.
Although taking the exact gradient of this loss term is not possible (as Q(W ) is not a
smooth function of W , see Eqn. 5.2), we find that by assuming the quantization gradient
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Figure 5.1: (A) Showing the effect of retraining with a maximum weight constraint. Here
we see no performance degradation due to retraining the module by adding this extra con-
straint. (B) Retraining the network with added L1 quantization loss. By retraining for
6 bit quantization, we see a large increase in performance compared to naive quantization.
(C) A histogram of the weights before quantization retraining proceeds (D) A histogram
of the RBM weights before and after retraining for quantization. We see the network is
strongly clustered around the 6 bit values.

∂Q(W )
∂W

≈ 0, we obtain a sufficiently good performance.

L(W,d) = ϵCD(W,d)− λ||W −Q(W )||1 (5.1)

∂L(W,d)

∂W
= ϵ

∂CD(W,d)

∂W
− λsign(W −Q(W ))(1− ∂Q(W )

∂W
) (5.2)
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Matrix Multiplication with Mask

The RBMs binary activations and fixed point weights allow for a very efficient matrix mul-
tiplication module. The binary activations convert multiplications into a binary mask, or a
2-to-1 mux using the activation value as the switch. This results in multiplications reducing
to atomic operations on the FPGA, greatly reducing their area, power and latency. The us-
age of fixed point weights, instead of 32 bit floating point, is estimated to decrease the area
of the accumulator circuits by 8x [64]. The usage of fixed point calculations also creates an
incredibly large decrease in power consumption. A 32 bit floating point multiplication costs
187x the cost of an 8 bit addition, suggesting that by removing the multiplication steps, we
have drastically reduced the power an energy consumption of the system as a whole. [57].
The smaller area of each component allows us to use a larger adder tree with less delay for
accumulation as compared to 32 bit floating point operations, resulting in more computation
which can be completed in one cycle.

Sigmoid Approximation

Exact calculation of the sigmoidal activation function σ(x) = 1
1+e−x is computationally ex-

pensive. To accomplish direct calculation, at least 3 extra hardware instructions are needed,
exponentiation, addition, and division, which all incur a large hardware cost both in terms
of latency and area. Instead, binary sigmoid values are precomputed and enumerated in a
look up table (LUT) for use in the FPGA. This implementation allows for fast evaluation of
the activation function without expensive hardware resources. After matrix multiplication
and bias addition, the computed value is passed through the LUT based activation function
to approximate the sigmoid.The Look Up Table values are hard-coded at synthesis time and
thus do not use any LUT resources. Finally, the sigmoids are synthesized as 9 7-input Mul-
tiplexers (F7 MUX) within 6 Combinational Logic Blocks (CLBs) amounting to 1% of the
total available F7 MUXs, and < 1% of the total available CLBs. This is a common technique
used in many FPGA and ASIC based neural network accelerators, which is further adapted
for our particular FPGA implementation. [65, 66, 67, 68] .

Pseudo-Random Number Generation

To generate high quality samples, uncorrelated random numbers need to be produced every
cycle. To accomplish this we use a 32 bit length Linear Feedback Shift Register (LFSR)
pseudo random number generator. The 32-bit LFSR size creates 232 − 1 random bits, or
229 ≈ 5 × 108 random 8 bit numbers. To determine the best LFSR size, we characterized
performance for the sampling algorithm by varying the LFSR length and determining per-
formance on the factorization problem. These results are presented in Figure 5.2. As, the
total cost of these LFSR based random number generators amounts to just 5% of the design
flip flop usage, and 2% of the lookup table usage we chose a longer than necessary LFSR
chain to minimize accuracy and performance problems from this element of the design. Each
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RBM Size
(Vis x Hid)

LUT Usage
(Absolute)

LUT Usage
(%)

FF Usage
(Absolute)

FF Usage (%) Power (W)

8x32 14811 1.25 15437 0.65 5.2
16x64 33564 2.84 23717 1.00 5.2
32x128 117931 9.98 52582 2.22 5.5
64x256 418694 35.42 159428 6.74 5.6
64x512 736800 62.32 270182 11.43 5.9
80x600 990417 83.77 431544 18.25 6.2

Table 5.1: FPGA Utilization: Utilization numbers for FPGA and various RBM
sizes All usage numbers reported are for 8 bit weights and biases . The usage shows that
the FPGA is not memory limited for the problem sizes we are interested in, but compute
limited, as the LUT usage goes up much faster than the FF usage as the problem size grows.
All weights and biases fit in on chip SRAM, allowing for fast access and data reuse.

Total Power
(W)

Total Power
(%)

Dynamic
Power (W)

Dynamic
Power (%)

Hard IP 0.134 2 Clocks 0.606 17
Dynamic 3.462 56 Signals 0.386 11
Static 2.580 42 Logic 0.318 9

BRAM 0.164 5
I/O 0.011 1
GTY 1.976 57

Table 5.2: Breakdown of Power usage for 80 × 600 RBM on FPGA Power usage
numbers reported for post implementation design by Xilinx Vivado Design Suite 2019. Num-
bers show that dynamic power is largest power draw, with the communication links (Gigabit
Transceivers - GTY) being the highest power consumption within that component. This
shows that the logic design is fundamentally low power and can be implemented very effi-
ciently if done on a dedicated board.

neuron has its own LFSR and is seeded with a different value to minimize the possibility of
correlation. Other PRNG algorithms can produce higher quality random numbers [69, 70],
but they require greater hardware resources and are generally more complex. Based on our
experiments, we found the LFSR random number generator to be the simplest, as well as
most performative pseudo-random number generator available on the FPGA.
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Figure 5.2: (Supplementary) Effect of LFSR length on overall performance For an 8
bit (top left panel) 10 bit (top right panel), 12 bit (bottom left panel) and 16 bit (bottom
right panel) factorization problem, we analyze the performance by varying the length of the
Linear Feedback Shift Register (LFSR). For the largest 16 bit factorization problems, we see
that a 20-bit length LFSR is the minimum required to reach the same level as the PyTorch
baseline level of accuracy. As hardware costs for longer LFSR are low, we chose to have a
32 bit LFSR for experiments as this ensured sufficient buffer for long sampling runs, and
optimal performance for large factorization problems.
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5.3 Performance Analysis

We have demonstrated scaling of the factorization algorithm up to 16 bit numbers. Markov
Chain Monte Carlo based sampling methods for optimization problems fall into the class of
”Stochastic Local Search” and are expected to have exponential scaling with problem size
[71]. This exponential scaling dependence is shown in Figures 5.4 C) and D). Although this
is the case, we see a 104 constant factor speed increase when the algorithm is implemented
on the FPGA in Figure 5.4 B) in 16 bit factorization and Figure 5.4 E) across all problem
instances. This massive speed increase across the whole spectrum of bit sizes has real world
consequences, as it implies that other algorithms mapped onto this general framework can
become very efficient in finding ground state solutions which would otherwise be difficult to
obtain.

The FPGA implementation of our sampling algorithm has shown a 104 speed increase
compared to a dual CPU system, and a 103 speed increase compared to a GPU. This comes
with a 30x power decrease compared to the CPU (2 × 95W CPUs vs 6W FPGA) and 7x
power decrease compared to the GPU (44W GPU vs 6W FPGA). This is compared to a dual
CPU machine running the highly optimized industry standard PyTorch machine learning
framework, and a hand optimized GPU algorithm using the CUDA and cuBLAS libraries.
We note that the performance improvement of the GPU algorithm compared to the CPU is
minimal due to the thread synchronization, limited cache sizes, and relatively small RBM
size presented here. The GPU additionally cannot take advantage of the binary activations
for efficient multiplications, or approximate sigmoid calculation. We hypothesize that these
problems for the GPU would extend to other accelerators that were not purpose-built for
the type of computation that our RBM based accelerator uses. Our specific GPU and CPU
acceleration algorithms are further cited in the Methods section. [72, 73] Although our
implementation takes up much of the resources of the FPGA, there are many possible areas
where our design could be modified to scale for performance. For example, accelerator-level
parallelization and better scaling become possible through the use of multi-FPGA designs
and communication [74, 60, 58], time division multiplexing [75] more efficient pipeline stages
[76] and utilization of different hardware paradigms such as stochastic computing primitives
[77, 78]. With focused effort on the improvement of the hardware architecture [77, 79, 74]
the speed and performance improvement is expected to get much larger. Our goal was not
to create the most optimized hardware design, but to demonstrate that parallel hardware
running our very hardware friendly algorithm had the potential for drastic improvement.

Although we demonstrate sampling speed increase for inference, using the same FPGA
accelerated sampling algorithm can also work for decreasing training time. The major bot-
tleneck in the training step is creating a series of uncorrelated samples, which takes a large
number of samples for a highly correlated sampler. Using FPGA acceleration of the sampling
algorithm could give a lower variance estimate of model probabilities in a much faster and
energy efficient manner, than those provided by a CPU or GPU.

Importantly, these results show the factorization of the largest number (16 bit) that has
been experimentally demonstrated on a hardware accelerator using an Ising Model based
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Figure 5.3: FPGA Architecture (A) Memory and compute hierarchy. The RBM consists
of memory to hold the weight, bias, and clamp values, registers to hold the node values, and
circuitry to perform the node updates, which take up the bulk of the resources. The output is
buffered to the IO controller that communicates results to the PCIe bus. A C backend reads
in the data stream from PCIe, and can program the weights and biases from the memory
controller. (B) Example of a node update connection. Given M hidden nodes, the figure
depicts the circuitry to update the nth visible node. The hidden nodes binary mask the nth

row of the weight matrix. The results are accumulated in the adder module and added to
the nth visible bias. It is then passed through a sigmoid LUT and compared to the output
of a PRNG to update the value of the visible node.

topology [7, 42, 80]. This is a direct result of our algorithm which lends itself well to
scaling by breaking down a problem and building up via sub-parts via re-training. As Ising
Model based systems are considered exciting candidates for next generation computing, this
represents an important improvement on the state of the art. These results are tabulated
in Table 5.3, where we show that the RBM and FPGA based algorithm shown here is able
to perform better than similar Ising Model based accelerator and algorithms. All three of
the accelerators perform algorithms which are optimized and designed for the hardware that
they are running on, demonstrating how far each accelerator is able to solve their given
algorithm. Not only is the RBM able to solve larger factorization tasks, it does it with lower
power than the DWave computer, and less connectivity than the P-bit algorithm. Although
the P-bit based algorithm is more efficient from a per-spin factorization basis, it does so
with a non-scalable all to all connectivity pattern. Additionally the P-bit algorithm uses
discrete components, operating at a much slower intrinsic frequency. Time to solution is not
compared as the other accelerators do not report this figure of merit.
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Figure 5.4: Performance of the FPGA implementation vs the CPU and GPU
implementations on factorization
The sampling algorithm scales approximately exponentially with the bit size (and approx-
imately linearly with the phase space). We see a 104 speed improvement across all model
sizes compared to the CPU algorithm and 103 speed improvement compared to the GPU
algorithm. (A) The sample efficiency of the FPGA implementation is similar to the CPU
implementation, even after quantizing to 8 bit weights and biases and using the various ap-
proximation schemes detailed. (B) When the time taken to reach a solution is scaled for
the FPGA vs. the CPU and GPU, the FPGA outperforms both by orders of magnitude.,
(C) The scaling of the algorithm when measured at various accuracy levels on the CPU.
The RBM for each bit number is run until it hits the given accuracy on a set of random
factorization problems. (D) Scaling of the sampling algorithm when run on the FPGA. The
difference in sample number from part (C) is due to approximations necessary to efficiently
port the model onto the FPGA. (E) Time scaling of the factorization problem measured
at the 70% accuracy level. We see that the FPGA performs 4 orders of magnitude faster
compared to the CPU and 3 orders of magnitude compared to the GPU across all bit counts
for the outlined sampling algorithm.
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5.4 RBM Accelerator for MaxCut and General

Problems

The above architecture serves as a first step to demonstrate performance of the inference
based algorithm. We further use the above described accelerator to map general Ising Model
problems via the direct mapping approach described in Chapter 4. The accelerator supports
9 bit precision fixed-point weights and biases, which allows for solving Ising Hamiltonians
for various problems other than the one included in here. We note that while the problems
benchmarked in this work only use weights in {−1, 0, 1}, we wanted to maintain the generality
of our accelerator to solve a variety of other problems within the RBM framework, such as
machine learning inference [13], and other instances of NP-Hard Combinatorial Optimization
problems [3, 48]. We note that if we were to restrict the weights our RBM implementation
was able to support further we would expect the accelerator as designed to support larger
problem instances.

As outlined previously, the two methods for finding the best solution to the optimization
problem involves either using the mixing time method or the hitting time method. As the
hitting time method has a theoretical advantage for solution quality, we prefer using this.
Calculating the probability of each sample on the CPU is computationally expensive, so we
implement a “hitting time engine” on the FPGA which calculates an approximate, unnormal-
ized log-probability for each sample and keeps track of the state with the highest probability.
By using partial computations already available when computing node activations, the hit-
ting time engine has negligible hardware costs and is able to decrease the amount of FPGA
to CPU communication to a minimum, freeing the CPU for other computational tasks.

Hitting Time Engine

The hitting time engine calculates the approximate log probability for each sample that
the stochastic sampling algorithm outputs and keeps track of the highest probability state
seen so far. This method works to offload the computation of calculating probabilities or
aggregating results from the CPU to the FPGA. The FPGA can operate in raw sample
output or hitting time engine output, where it either pushes the raw samples to the CPU or
the highest probability state seen. The hitting time engine uses partial computations from
each cycle to reduce computational overhead for the FPGA. To do this, we first look at the
log probability for a given visible node state.
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The log(Z) term is a normalizing constant and can be ignored if we are only comparing
probabilities between samples. Additionally, the log(1 + ex) term is simplified as follows.

log(1 + ex) =

{
x, if x ≥ 0

0, if x < 0

This simplification is valid for x ≫ 0 and x ≪ 0, but introduces errors when x ≈ 0.
These errors are not significant in the probability calculation, as the largest contributions to
the probability mass are for x ≫ 0. The

∑n
i=1 aj + wijvi is calculated each cycle to update

the hidden units and is thus recycled for calculation of the overall log probability of the given
state. This means the only calculation the hitting time engine has left to do is accumulation
of the visible biases and accumulation of the thresholded sums that have been pre-calculated
by the hidden neurons. The hardware overhead for the hitting time engine is very small due
to the efficient usage of these pre-calculated sums. The hardware usage translates to < 1%
of additional FPGA LUT utilization and < 1% of additional FPGA flip flop usage (see Table
5.1).

The hitting time engine is split into two modules, each calculates the log probability
for every other cycle. Each module is composed of an accumulator which takes the partial
sums from the hidden nodes and accumulates half of them each cycle along with the visible
biases. By splitting the calculation over two clock cycles we are able to meet the 70Mhz
timing requirements set by the rest of the design. The hardware cost of these accumulators
is approximately the same as an additional visible node.

Performance Analysis

In Figures 5.5 and 5.6 we show results of benchmarking performance on the MAX-CUT and
SK problems. In Figure 5.5 A) we show how the probability of reaching the ground state
scales for a fixed annealing schedule. We fix Ns = 70000 for the RBM, corresponding to
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1000µs of time at 70Mhz and see that the performance outperforms the other annealers at all
problem sizes when given less time to solution. Using the Time to Solution framework shown
in Equation 4.1 we convert the optimal sampling solution from Figure 4.2 F) to compare the
time to solution against the DWave 2000Q in Figure 5.5 B) and the Coherent Ising Machine
instances in Figure 5.5 C). We see a particularly stark difference in scaling performance
when comparing to the DWave 2000Q, where the performance on problem instances drops
quickly to 0 after 50 Nodes in the MAX-CUT problem, while the RBM is still able to solve
larger instances. When looking at time to solution, this accounts for a 106x difference in
performance at 50 nodes. When comparing to the the Coherent Ising Machine, we see very
similar scaling performance for time to solution. While the Stanford CIM and the NTT CIM
perform very similarly, the RBM performs at a constant ≈ 150x advantage over all problem
sizes. When comparing to the simulated curve, this constant advantage becomes even more
apparent.

This difference in performance for a given problem size is more pronounced when exam-
ining the SK problem. First, we note that with much less computation time (10us compared
to ≈ 1000us) the RBM is able to outperform both the DWave and CIM for the given prob-
lem instances shown in Figure 5.6 A). This difference becomes more apparent when looking
at the Time to Solution metric, where we see a 105x improvement at 60 nodes compared
to DWave in Figure 5.6 B) and a constant 103x improvement against the Coherent Ising
Machines in Figure 5.6 C). As with the MAX-CUT problem, there appears to be a scaling
difference between the RBM and the DWave 2000Q, while the difference between the RBM
and Coherent Ising Machine seems to be a constant factor improvement. Final performance
comparisons are summarized in Table 5.3 where we can see that the RBM outperforms all
other accelerators in time to solution, while also maintaining a lower power budget and
running on commodity hardware.

Performance against CPU benchmarks

Simulated Annealing is performed on a Xeon E5-2620 processor using the code from [81],
while the Parallel Tempering results are copied from [52] using the NASA/TAMU Unified
Framework for Optimization, running on a Xeon E5-1650 v2 processor. We benchmarked
against a single algorithm run (no algorithm level parallelization) to fairly isolate algorithm
performance differences from device level parallelization. The RBM performs better than
both algorithms for small problem instances on the MAX-CUT problem (closer to 5x im-
provement), but converges for the larger instances presented in the dataset. Although parallel
tempering narrowly outperforms the RBM on large MAX-CUT instances, the empirically
seen O(e

√
N) scaling of the RBM is asymptotically favorable to the O(eN) scaling of the

parallel tempering algorithm. The RBM is able to outperform both these algorithms on
the SK problem across all problem instances, demonstrating a performance advantage for
problems with full connectivity. The RBM performs competitively with these state of the
art algorithms, but more work needs to be done to increase the performance relative to
these baselines. Many of the optimizations used in the simulated annealing (pre-computing
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Performance Comparison on Max-Cut Problem

Figure 5.5: . Benchmarking and Comparisons on the Dense MAX-CUT Problem
(A) A comparison of performance using the probability of reaching the ground state in
various physical annealers as compared to the FPGA accelerated RBM. We see that for
similar annealing times, the RBM achieves a best in class probability of reaching the ground
state while maintaining a faster annealing time. (B) Using the time to solution framework
described by 4.1 and above we compare the performance of Dwave 2000Q to the FPGA
accelerated RBM. We see a 7 order of magnitude difference in time to solution for the largest
problem instances that the DWave can fit. In addition, we show that the RBM has better
scaling properties, with performance differences increasing dramatically with problem size.
(C) Comparing the RBM to the Coherent Ising Machine created by NTT [5] and Stanford
[6, 52] we see a constant factor performance improvement of ≈ 150x across all problem
instances. The RBM shows similar asymptotic scaling to the CIM with both algorithms
scaling as O(e

√
N).
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Performance Comparison on Sherrington Kirkpatrick (SK) Problem

Figure 5.6: . Benchmarking and Comparisons on the Sherrington-Kirkpatrick
(SK) Problem
(A) Similar to Figure 5.5 A), we compare the performance for a fixed Anneal Time on
the Sherrington Kirkpatrick. Compared to the MAX-CUT problem, the RBM performs
considerably better on this problem instance, only requiring 10 µs to get to the ground state
with very high probability. This is compared to DWave and the CIM requiring 100x the
anneal time to get close to this performance. (B) Compared to the DWave 2000Q, we see a
performance increase of 105 on large problem instances with better asymptotic performance
on the RBM in these problem instances. The lack of connectivity for the DWave annealer
contributes to the drop in performance on these instances as many logical copies need to be
made to accommodate the fully connected SK graph. (C) The RBM also compares very
favorable to the two instance of the Coherent Ising Machine [5, 6], with a 1000x time to
solution difference on the largest problem instances. The scaling performance of these two
problems also suggests that the RBM will continue its constant factor performance increase
for much larger instances of the SK problem.
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Berkeley
RBM

NTT CIM
[5]

DWave
2000Q [18]

CPU [81] GPU [54]

Clock Frequency 70 Mhz - - 2.1 Ghz 1.2 Ghz
Power 5.8W - 25kW ≈ 20W ≈ 50W
Time to Solution
(N = 150, SK)

0.2 ms 215 ms 262 ms
(N=50)

12 ms 445 ms

Time to Solution
(N = 150, Max-
Cut)

7 ms 855 ms 106 ms
(N=50)

13 ms 590 ms

Scaling of Success
Probability

e−N e−N e−N2
e−N e−N

Table 5.3: Single Threaded Performance Comparison Across Accelerators While
using less power and operating at a lower clock frequency, the RBM outperforms the other
traditional accelerators, while also showing better performance than the novel accelerators.
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Figure 5.7: . Benchmarking against CPU algorithms
(A) The RBM performs competitively with two state of the art CPU algorithms for Ising
Model problems, simulated annealing [81, 2] and Parallel Tempering [52, 82, 83]. (B)
Comparison of the SK Problem against optimized CPU algorithms also yields constant factor
speed improvement on the accelerated RBM. Across all problem instances we see a 10-20x
speed improvement due to the hardware acceleration.
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Figure 5.8: . Benchmarking against GPU algorithms
(A) Our FPGA accelerated RBM performs well against a GPU accelerated Noisy Mean
Field Algorithm [54]. For larger problem sizes, we see a 10-20x speed increase, with a large
decrease in variability. (B) The SK problem shows further speedup on these problems,
with ¿100x improvement through all problem sizes.

energies, using weight sparsity, efficient random number generation) can be implemented
with the RBM as well to increase its performance. Parallel tempering can also be added to
the RBM sampling algorithm to yield improved sampling, which we expect to improve the
overall algorithm scaling and performance. [36, 84]

Performance against GPU benchmarks

The noisy mean field annealing algorithm from [54] is run on a Nvidia Titan V GPU to bench-
mark against another parallel accelerator based algorithm. We use the same methodology
presented in Ref [54], with identical simulation parameters and temperatures. We bench-
marked against a single algorithm run (no algorithm level parallelization) to fairly compare
algorithm performance differences. The GPU algorithm utilizes parallel neuron level updates
to divide computation up amongst different threads. The fine grained updates of the RBM
algorithm on our accelerator were able to outperform the calculations in the comparatively
faster GPU. This can be explained by our usage of fixed point accumulates rather than
explicit multiplications, fine grained clock level synchronization, and a distributed memory
system. This shows that our RBM implementation performs favorably with state of the art
algorithms across many accelerator types for these problems.
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Node Count Clock Freq LUT % FF% URAM% DSP%

4096 150 Mhz 40.49 17.3 53.33 14.97
5120 100 Mhz 60.99 24.96 66.67 18.71

Table 5.4: Scaled FPGA utilization table, all synthesis and implementation done for Xilinx
VCU118 development board

5.5 Scaled RBM on FPGA Accelerator

While the accelerator shown in the last two sections has demonstrated state of the art
performance on small problems, it does not have the scale to solve real life problems, which
may use 1000s if not 10,000+ nodes. The solver architecture shown in Figure 5.3, which
uses in-place transpose operations, and exclusively registers to store all of the weights and
biases, cannot scale passed a few hundred nodes due to limits of memory in the FPGA. In
this section, we will explore an alternate architecture which is able to efficiently use a weight
streaming architecture to solve larger scale problems (up to 1000s of nodes).

The architecture features 3 main parts; a memory management engine, a stochastic
sampling engine, and a probability estimator. The memory management engine streams rows
of the weights matrix to the sampling engine utilizing as many RAM blocks as is available
on the FPGA system. It also interfaces with the host system to receive the problem to be
solved. The sampling engine performs parallelized updates of the visible/hidden states using
the Gibbs Sampling update. The probability estimator takes the visible/hidden states being
updated and keeps track of the best state seen so far and streams this back to the host to
indicate problem completion. An image of this weight streaming architecture is provided
below (Figure 5.9).

Our work relies on a few new innovations in the architecture over our previous published
works. To avoid storing both the matrix and its transpose, we utilize a dual architecture
for hidden updates and visible updates, allowing for simultaneous update of both visible
and hidden nodes while maintaining the same weight streaming architecture. Additionally,
the binary activations allow for multiplier-free system for RBM implementations, yielding
further hardware efficiency. Based on our studies we believe that this will present state of
the art performance on large problem sizes.

Weight Streaming and Memory Architecture

To effectively use the memory blocks available on the Ultrascale+ architecture, we chose to
use the UltraRAM (URAM) blocks available. These are 72 bit x 4096 line blocks which can
operate at close to 500-600 Mhz. The memory hierarchy is set up so that each URAM block
holds 72 columns of the weight matrix, with each row of the weight matrix corresponding to
a row of memory. This allows for each row of the weight matrix to be split across multiple
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Figure 5.9: A description of the weight streaming architecture which solves the transpose
problem of the RBM by having a dual architecture by updating both the visible portions
(right) and the hidden portions (left) simultaneously. Rows of the weight matrix are streamed
through time

URAM blocks and is thus fetched every cycle. Each cycle the URAM row is then fed into
the visible or hidden update engine that is described below.

Sampling Engine

The sampling engine is composed of two parts, the visible update mechanism and the hidden
update mechanism. Both of these update mechanisms take each row from the weight matrix
and consumes it within one cycle of latency with a 3 stage pipeline structure to line up
completion of computation. The visible and hidden updates have alternate architectures
which allows the system to compute on the matrix and its transpose at the same time,
circumventing complex memory structures. [59] One full sample update is produced every n
cycles, where n is the number of rows in the weights matrix.

Visible Update Mechanism

The visible updates functions on an input stationary format. This is where the hidden
activations (which mask the weights streaming into the array) are held constant while the
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LUT % FF% URAM% DSP%

Total 40.49 17.3 53.33 14.97

Memory Man-
agement

12.04 1.01 53.33 0

Hitting Time
Engine

6.20 1.53 0 0

Visible Update 1.83 1.88 0 0
Hidden Update 18.48 4.18 0 14.97

Table 5.5: Breakdown of FPGA utilization in Scaled system by specific sub-component
usage. This shows that the vast majority of logic resources is consumed by the hidden
update module.

rows of weights from the URAM stream across and are accumulated to form the output [85].
Each row of the visible update is passed into a pipelined adder tree which passes the value
into the sigmoid look up table, and finally compares to a random number generator from
the LFSR described in previous sections. Every cycle, this new visible activation updated
and stored inside a register array until computation is complete after n cycles.

Hidden Update Mechanism

The hidden update, unlike the visible updates, functions on an output stationary format.
Each hidden node must accumulate the value of a column of the weight matrix, which is
updated cycle by cycle. For this reason, an accumulator is instantiated for each hidden
neuron (for a total of n accumulators instantiated for the system). At the end of n cycles,
the accumulators pass their values to the sigmoid look up table, and then compare against
a LFSR generated random number to get the final node activation value.

To efficiently use FPGA resources, the mask and accumulate operation is done entirely
within the DSP blocks. Each of the DSP48 blocks in the Ultrascale+ architecture can
perform 4 SIMD accumulate operations, greatly saving on fabric resources. However, even
with this additional optimization, the hidden update mechanism takes the majority of the
utilization as it requires us to instantiate n different accumulators and sigmoid look up tables
to achieve a reasonable latency of computation.

Performance and Analysis

The RBM accelerator on FPGA demonstrated here is shown to be the largest node count
for a single FPGA design of a fully connected Ising Model system. The results are shown in
Table 5.5 as compared to other systems. We can attribute the ability to tackle such large
problems to the efficient usage of compute resources via the multiplier-free architecture,
with the usage of pipelining and time based multiplexing in this design. Additionally, the
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mapping onto even larger problems was stopped by on-chip memory size limitations (rather
than computation resources) which suggests that by using off-chip DRAM we can compute
even larger problems.

Performance for the scaled RBM accelerator has been validated on a series of MaxCUT
problems. Here we are showing the performance of the FPGA accelerator on problem sizes of
800-2000 nodes, with mixed results. The problems explored here are from the Gset problem
instances, and the K2000 problems both standard problems solved in literature by other
accelerators [86, 87]. The accelerator is able to find approximate solutions to the problem
quickly, but struggles to reach the exact ground state of these benchmark problems. We
can attribute this to the standard Gibbs Sampling algorithm struggling in high dimensional
spaces, and the need to traverse through large areas of the state space with low probability
to find other areas of high probability. This has led us to look for further algorithmic
improvements in future iterations of the FPGA architecture, such as Parallel Tempering and
Annealed Sampling. The prototypes of these algorithmic changes are discussed further in
the following chapter.

In Figure 5.10 we demonstrate that the sampling based FPGA system can reach the
ground state of the 800 node G6 problem. The figure demonstrates analysis with respect
to a fixed coupling parameter. The G6 Problem is a fully connected problem with random
{+1,−1} weights. Although we are able to solve the problem after ¿500 trials, the 0.53
seconds taken to solve the problem once this case is much slower than the state of the art
for solvers such as the Simulated Bifurcation Machine developed by Toshiba on a similar
FPGA, which is able to find the ground state of the problem in 0.012 seconds. This means
that we could expect this FPGA solution to be 50-100x slower than the state of the art,
suggesting that the scaled RBM on FPGA solver should be redesigned for higher speeds, or
a more sophisticated solution method.

Additionally, we investigate other Gset problems of size 800, like the G6 to G13 shown in
Figure 5.11. The G6, G7, G8, G9 and G10 problems are all random {1,−1} weights, which
is why we see that their performance is similar to eachother. However, the G11, G12, and
G13 are random toroidal graphs perform worse than the other problems, suggesting that
they may need a more advanced mapping to the RBM accelerator. Toroidal graphs have
a more direct mapping to the RBM architecture, as they are bipartite by nature, but this
property was not exploited when mapping to the FPGA accelerator in this instance.

Finally, we examine the performance of the K2000 problem as shown in Figure 5.12,
which is a problem analyzed by many accelerators in this space. Similar to the G6 problem
shown above, we find that the performance on this problem was not as high as expected. We
can attribute this to the vanilla Gibbs sampling algorithm struggling at even higher node
counts, as the state space increases. We also note that with this architecture, to run the
K2000 problem for 100,000 sample steps (as tested here) would take 1.33 seconds to solve the
problem a single time. This is much slower than the state of the art, where the Simulated
Bifurcation Machine has shown the ability to reach the exact best known state within 1.3
seconds. Further discussion of algorithmic improvements using parallel tempering is done in
the following chapter.
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G6 Coupling Analysis, Temperature:0.25, Samples:100000, Trials:1000

Figure 5.10: Coupling and distributional analysis of the G6 problem Top: Violin
plot of problem distribution showing that for these problems the optimal coupling value is
between 7 and 9. We note that although the larger coupling values tend to get to the ground
state more often, smaller coupling values have a higher average cut. Bottom: Box plot of
the same distribution showing the median cut is higher for lower coupling values, but the
higher coupling values are able to reach the ground state.
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Name Operating
Principle

Year Pub-
lished

Spins Hardware
Platform

Connectivity Precision

Toshiba
SBM

Simulated
Oscillator
Bifurca-
tion

2019, 2021, 4096
(Gen1)
2048
(Gen2)

FPGA All-to-all 2 bit
(Gen1)
16bit
(Gen2)

Coherent
Ising Ma-
chine

Optical
Parametric
Oscillator

2016 2048 Optical
Fiber + 2
FPGA

All-to-all 2 bit

Coherent
Ising Ma-
chine

Optical
Parametric
Oscillator

2022 100,000 Optical
Fiber + 56
FPGA

All-to-all 2 bit

Fujitsu
Digital
Annealer

Parallel
Tempering

2019
(Gen1)
2020
(Gen2)

1024
(Gen1)
8192
(Gen2)

ASIC All-toall 16 bit
(Gen1) 64
bit (Gen2)

RBM on
FPGA
(Gen 1)

Stochastic
Sampling

2020 200 FPGA All-to-all 8 bit +

RBM on
FPGA
(Gen 2)

Stochastic
Sampling

- 5020+ FPGA All-to-all 8 bit +

Table 5.6: Comparison of various physical annealers which have all-to-all connections, in
single chip format. We are not including in this list software systems which create all-to-all
connections using a CPU/GPU algorithm

5.6 Conclusion

In this chapter we have outlined two generations of FPGA based RBM accelerator. The first
generation of RBM based FPGA accelerator continues to show state of the art improvements
on small problem sizes (up to 200 nodes), as benchmarked by other researchers [88]. This
accelerator was used first to demonstrate speed improvement on integer factorization and
then extended for general combinatorial optimization tasks where it showed state of the art
performance on small (< 200 node) problems. Finally, we scaled up this accelerator to a
5000+ node system, but encountered algorithmic and hardware challenges of scaling up to
large size. To counter these scaling issues, we suggest using Parallel Tempering (as outlined
in Section 2.4), which we explore in the context of GPU systems in the next chapter.
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Figure 5.11: Distributional analysis of 800 node Gset problems with 50,000 sam-
ples Left:We see that the fully connected random instances (G6, G7, G8, G9) get clos-
est to the ground state energy, with most of them performing similarly. The Toroidal In-
stances (G11, G12, G13) perform worse due to an inefficient mapping to the RBM structure.
Right:When normalizing to the optimal MaxCUT value, we see that the random instances
perform well, while the toroidal instances perform very poorly.
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Figure 5.12: Analysis of performance of the K2000 MaxCUT problem. We analyze perfor-
mance based on temperature and coupling parameter to find the optimal parameter set for
our instance. For these problems, a β = 0.0625 mixed with a coupling of 9 seems to perform
best. However, even after 100,000 samples we are not able to reach the ground state of the
system, suggesting we need more advanced sampling techniques.
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Chapter 6

TPU and GPU based RBM
Accelerators

6.1 Introduction and Motivation

While the FPGA based systems presented in the previous chapter exhibit fine-grained paral-
lelism and the ability to exploit various hardware and algorithm specific efficiencies, FPGA
systems also have their downsides. In this chapter we will explore the use case of general-
purpose parallel hardware to accelerate optimization problems with in the RBM framework,
using the MAX-CUT problem as a problem of interest.

Comparison of FPGA to traditional parallel Compute Platforms

While FPGA systems have the ability to emulate a large variety of systems, they aren’t
specifically designed for any particular type of computation, meaning that the FPGA will
not be nearly as efficient in compute usage as a dedicated ASIC designed for that particular
application. The downsides of using an FPGA are listed below. Consequently FPGAs excel
when there are complicated kernels which have a short latency budget, and which regular
CPUs do not perform well at.

Unlike the CPU (Central Processing Unit), which is designed for general-purpose com-
puting and sequential processing, a Graphics Processing Unit (GPU) excels at parallel pro-
cessing tasks. It consists of thousands of smaller cores, grouped together into streaming
multiprocessors (SMs) or compute units, which work together to execute tasks in parallel.
This architecture enables GPUs to process a large number of data elements simultaneously,
making them exceptionally efficient for tasks that can be divided into smaller, independent
computations, such as graphics rendering, machine learning, scientific simulations, and more.

Using a GPU for large-scale linear algebra operations offers significant advantages due to
the GPU’s parallel processing power and efficient handling of matrix computations. In linear
algebra, many operations involve performing numerous matrix multiplications, additions,
and other transformations, which can be highly parallelizable. GPUs excel in handling these
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tasks by leveraging their thousands of cores to process data simultaneously. As a result,
complex calculations and computations involving large matrices can be performed at high
speeds, significantly reducing the overall processing time.

A Tensor Processing Unit (TPU) [57] is a specialized application-specific integrated cir-
cuit (ASIC) developed by Google specifically for accelerating machine learning workloads,
particularly those involving neural networks and tensor operations. TPUs are designed to
provide high-performance, energy-efficient processing of tensor data, which is a fundamental
mathematical construct used in deep learning algorithms.

The architecture of a TPU is optimized for matrix multiplications, which are prevalent
in neural network computations. It consists of a large number of processing units, includ-
ing multipliers and accumulators, capable of performing tensor operations in parallel. This
massively parallel design allows TPUs to process vast amounts of data simultaneously, sig-
nificantly speeding up the execution of machine learning models and reducing the training
time.

Below we discuss the tradeoffs between these three architectures, and why using TPUs
and GPUs at larger scales may be beneficial as compared to FPGA based systems.

• Off-chip memory bandwidth Many FPGA systems and boards will have lower off-
chip memory bandwidth than a similar CPU or GPU type system. This means that
solving memory bound systems will be stuck in memory bottlenecks. For example, an
Nvidia A100 chip has bandwidth up to 2TB/sec, the TPUv4 has 1.2 TB/ssec, while
the Xilinx Ultrascale+ HBM chip only has 460 GB/s (a 4x difference) in bandwidth

• Off-chip memory sizes FPGA systems are not generally optimized for large amounts
of high bandwidth memory, the largest size FPGA off-chip HBM memory is 16GB (for
Xilinx chips), while Nvidia offers up to 80GB of HBM memory and the TPUv4 offers
32GB of memory

• Ease of programmability Algorithm change and experimentation is extremely slow
on the FPGA systems, meaning that the speed and efficacy of new algorithms can’t
be readily explored

• Hardened Linear Algebra Kernels New generations of GPU systems are being
specifically designed for large scale linear algebra operations, with hardened kernels
that are able to do Multiply Accumulate (MAC) operations in a few clock cycles.
Additionally, the prevalence of tensor specific hardware in GPUs means that they can
solve large matrix multiplication operations very efficiently.

• Large Parallel Streaming Processors With the hardened linear algebra kernels,
the new generations of TPU and GPU processors are designed with large linear algebra
in mind. This means that their performance benefits start to become apparent in large
problem size and large batch size applications (many parallel chains).
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Figure 6.1: Understanding parallelism in the GPU Left: For a 2000 node problem,
we see that as we add many parallel chains to the system, the time to take a single sample
is constant, until we reach the point where the GPU is no longer memory limited, but
compute limited. We can take more parallel Monte Carlo steps ”for free” on the GPU.
Right: For various problems, we see that the point of memory bandwidth limitation starts
earlier with higher batch sizes. Again, the time per sample is constant until the point of
memory bandwidth limitation. Experiments conducted on an Nvidia Titan V system.

• Clock Speed As the GPU is a specialized ASIC for linear algebra operations, it reaches
clock speeds of 1.4Ghz, the TPUv4 reaching 1Ghz while our FPGA implementations
went at a maximum of 200-300Mhz.

With these tradeoffs in mind, it becomes clear that for larger systems where we can
design our model to use the GPUs parallel architecture. To motivate the usage of the GPU
system, we first examine the use of many parallel MCMC samplers and the benefits it can
provide.

6.2 Parallelized MCMC

The GPU and TPU systems are most efficient with high levels of parallelization and data
reuse. For the GPU, the shared memory cache that is near each streaming mulitprocessor
(SM) is usually very small compared to the L1 cache in a CPU or compared to the on-chip
memory in an FPGA. The biggest piece of memory that is transferred from DRAM to the
GPU/TPU is the weights matrix, so this memory must be maximally reused.

To accomplish reuse of the weights matrix, we choose to perform parallelized MCMC
methods. This means we initialize multiple random MCMC runs (what we call ”chains”)
which progress independently. This changes the matrix-vector multiplication of Wv to a
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matrix-matrix multiplication, effectively reusing elements of the W matrix k times for k
chains. We can then take the maximum value achieved from the ensemble of chains as our
”answer” with a hitting time engine for each chain.

For a small number of chains, the computation in the GPU is memory-bandwidth bound,
and the maximum time is spent retreiving elements of the weight matrix for each computation
in the SMs. This effect is seen in Figure 6.1 where we see the time to process a sample for a
2000 node problem is constant for a small number of chains, until about 100 chains. After
this we see the expected linear growth in processing time for each individual chain added.
Similarly, the time per sample is constant for problem sizes up to 1000× 1000 matrices, and
then begins to increase for larger problems. This can be attributed to fixed launch time for
the GPU kernels, and the overhead of the GPU scheduler and cores.

Parallel Tempering

To effectively take advantage of the parallel architecture of the GPU and the use of multiple
chains, we adopted the parallel tempering algorithm, as described in Section 2.4 [36, 84]. The
parallel tempering algorithm builds upon the usage of the parallel chains described in the
previous chapter and is able to provide improved performance compared to simply running
multiple chains and taking the best value taken amongst the chains.

As each parallel tempering swap step involves swapping the activations between adjacent
temperatures, it is a memory intensive operation which can become a bottleneck. To combat
this, swap steps are performed every 10 MCMC steps which also has the added benefit of
allowing each chain to equillibriate with the swapped sample. The approximate probability
is taken from the hitting time calculation described in Section 5.4, and used to calculate the
swap probabilities from Section 2.4. This method allows for maximal reuse of calculations
from the visible and hidden activations and introduces minimal overhead.

6.3 Programming Paradigms

When programming the GPU and TPU, we followed the paradigm of using the simplest
methods that would provide reasonable performance. When doing this, we had the option
of using more high-level interpreted languages with accelerated packages (like Python using
Pytorch) vs. using more low-level languages that might provide better performance (such as
C/C++ with CUDA). As our goal was to show proof of concept results, and not the most
performant systems, we chose to use high level interpreted languages for most computation.

JAX and JIT compiled languages

When our goal was to increase performance as compared to the base PyTorch implemen-
tation, we chose to use the JAX framework for acceleration. This provided a few benefits.
Firstly, it allowed our code to be portable between the TPU and GPU systems. The same
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working code on the TPU could then be transferred to many GPUs with little modification.
We could even expect the XLA compiler to take care of different GPU systems (such as using
the Nvidia Titan V from 2017, and the Nvidia A100 from 2022), while remaining performant
for both. The next main benefit for using JAX is the ability to Just-In-Time (JIT) compile
functions, which means that we have the benefits of a high level language (JAX uses Python
as the base language), while getting most of the speed benefits of a lower level language.

In our experience when transferring code between PyTorch and JAX, we were able to
achieve a speed up of 2-4x without much additional tuning. This can be attributed to JAX
being able to compile linear algebra kernels together to save on memory requirements while
merging compute kernels to achieve better performance.

6.4 Results and Discussion

Using parallelized GPU based algorithms along with Parallel Tempering allows the system
to find ground states of larger problems than the previous vanilla Gibbs Sampling method.
This can be seen in Figure 6.2, where the ”nominal” Gibbs Sampling algorithm is unable
to find the ground state of the system after 40,000 samples. Indeed, even when sampling
proceeds for many more samples the nominal Gibbs Sampler is unable to find the ground
state of the system. However, by adding Parallel Tempering to the algorithm we see that
the time per sample is slower but the system is able to find the ground state solution of the
system.

These results can be compared to the FPGA based system as described in the previous
chapter, where after many sample steps the FPGA could not reach the solution for the K2000
problem or to many of the Gset problems. In the below Table 6.1, after 40,000 samples of
parallel tempering with 1000 temperatures, the system is able to find the ground state for
problems up to 2000 nodes, while being within 1% of the ground state of problems up to
7000 nodes. As noted in the previous chapter, the RBM based sampler performs worse on
toroidal graph problems than fully connected graph problems due to the poor mapping of
the toroidal graph onto the RBM.

Similarly when analyzing the performance of the K2000 problem in Figure 6.2, we find
that the RBM sampler reaches the ground state solution, within 20,000 samples. From these
experiments, and rough performance benchmarks, we can estimate the Time to Solution
(TTS) for the K2000 problem as ≈ 120seconds. This comes from using 40,000 samples,
500 temperatures and a 90% probability of reaching the ground state. We note that this is
running un-optimized JAX code on a GPU, and only 1 batch system. By optimizing the
code and moving to an FPGA we would expect to get within at least 10x of the best known
ground state solution of the Toshiba Simulated Bifurcation Machine on an FPGA [86]. There
have also been suggestions that other sampling techniques may be able to improve up on
the performance of the Parallel Tempering and sampling systems we have shown here, such
as Adaptive Parallel Tempering, Adaptive Monte Carlo, and others.
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Problem Connectivity Nodes Edges BKS RBM PT Diff

G17 random 800 19176 2006 2006 0
G18 random 800 19176 2005 2005 0
G19 random 800 19176 2054 2054 0
G10 random 800 19176 2000 2000 0
G11 toroidal 800 1600 564 564 0
G12 toroidal 800 1600 556 552 -4
G13 toroidal 800 1600 582 579 -4
G27 random 2000 19990 3341 3341 0
G28 random 2000 19990 3298 3298 0
G29 random 2000 19990 3405 3405 0
G30 random 2000 19990 3413 3414 0
G31 random 2000 19990 3310 3310 0
G56 random 5000 12498 4017 3983 -34
G57 toroidal 5000 12498 3494 3419 -75
G61 random 7000 17148 5796 5754 -42
G67 toroidal 10000 20000 6906 6761 -145

Table 6.1: Performance of Gset problems with RBM + Parallel Tempering algorithm. All
experiments done with 40,000 samples and 1000 temperatures spaced geometrically between
1 and 100.

Solver Hardware Problem Time to
Solution
(TTS)

Toshiba SBM FPGA K2000 1.3s
RBM + PT GPU K2000 120s

Table 6.2: Performance comparison for Time to Solution on the K2000 problem. The RBM
system is running JAX code on the Nvidia A100 GPU, with 500 temperatures and 40,0000
samples. Time to solution is estimated from Equation 4.1.
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Figure 6.2: Comparing Parallel Tempering to Sampling on K2000 problem Left:
Comparing sample for sample, we see that Parallel Tempering is able to outperform nominal
parallelized sampling. Performance on the GPU and TPU is the same, as they are running
the same algorithm. Right: When looking at time taken to reach a solution, we note that
Parallel Tempering takes longer (per sample) but is able to reach the best known solution
to the problem, while the regular sampling solution is unable to do so. Between these two
systems, we see that the GPU is slightly faster per sample than the TPU. We can attibute
this to the usage of the TPUv2 (released in 2017) vs. the Nvidia A100 (released in 2020)
which are from different process nodes.

Scaling to 100,000 nodes

With the scaled RBM sampler, we have made strides in scaling to large and ultra-large
problem instances. The largest all-to-all connected Max-CUT problems solved on existing
hardware has been 100,000 node problems, demonstrated in 2021 on a cluster of 16 GPUs
[86]. In an effort to compare performance we have mapped the RBM sampler onto problems
of this size, demonstrated in Figure 6.3.

At problems of this size, we start to have non-intuitive results from the previous prob-
lems we have solved. To start, we see that as the number of parallel copies increases, the
performance starts to degrade significantly (see left side of Figure 6.3). We can attribute
this to the extra computation involved in the extra copies, and the GPU becoming severely
compute limited. Additionally, when we look at the right panel of Figure 6.3 we find that
vanilla sampling starts to outperform Parallel Tempering at the large problem scales, due to
the significantly larger overhead of doing sample swaps.

Due to the difficulty in implementing these large problems (problem generation alone
for the M100000 problem took hours on its own), substantial hyper parameter tuning be-
came difficult. As such, the problem instances demonstrated here don’t represent optimal
hyperparameter tuning or problem tuning. Additionally, we note that the SB (Simulated
Bifurcation) and SA (Simulated Annealing) both used a cluster of 16 GPUs and 16 CPUs



CHAPTER 6. TPU AND GPU BASED RBM ACCELERATORS 71

Figure 6.3: RBM + Parallel Tempering Performance on Ultra-Large Problems
Left: Performance Analysis of RBM sampler vs. number of Parallel Tempering copies.
Right: Performance Analysis of RBM sampler on GPU vs. TPU, and comparing sampling
vs. parallel tempering. The SB (Simualted Bifurcation) and SA (Simulated Annealing) [86]
are shown on a cluster of 16 GPUs and 16 CPUs respectively, while the RBM + Parallel
Tempering is run on a single Nvidia A100 GPU.

respectively, while the RBM + Parallel Tempering implementation demonstrated here only
used a single GPU or a single 8-core TPU board. With this in mind we believe there is
substantial improvement possible with these implementations.

6.5 Conclusion

In this chapter we have demonstrated using the GPU and TPU systems to integrate a more
complex sampling algorithm (the Parallel Tempering algorithm) along with the RBM system.
By augmenting the traditional Gibbs Sampling method with this parallel swap method, we
find the system is able to find ground states to very large problems. By integrating the GPU
into the system, we also demonstrate that this is only the second system to demonstrate the
ability to have a Time to Solution (TTS) for the K2000 problem that is under 5 minutes.
We also demonstrate possible solutions to 100,000 node MAX-CUT problems, which are the
largest problems that have been solved by any machines. This is a major step forward in
solutions to difficult combinatorial optimization problems, and shows how the RBM sampling
algorithms can be implemented on traditional parallel hardware.
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Chapter 7

PASS: The Parallel Asynchronous
Stochastic Sampler

7.1 Introduction and Problem Statement

We demonstrate usage of the Parallel Asynchronous Stochastic Sampler (PASS) as a stochas-
tic neural network capable of solving NP-Hard Combinatorial Optimization and Machine
Learning problems in a time and energy efficient manner. The PASS accelerator takes ad-
vantage of the intrinsic fine-grained, neuron-level parallelism present in the Ising Model and
utilizes a multiplier-free, clock-free, probabilistic architecture. This work presents the first
fully on-chip, CMOS demonstration of an Asynchronous Stochastic Sampling system, pre-
senting a ∼ 106 speed increase at similar power levels compared to previous MTJ based
approaches. Additionally, scaling studies show that our system can solve the MAX-CUT
problem 2x faster than any previously demonstrated architecture.

As the demand for big data increases and the speed of traditional CPUs cannot keep
pace, a new processing paradigm is needed to tackle computing’s most difficult problems. In
particular, NP-Hard optimization problems are ones that both scale exponentially and have
relevant practical applications in a variety of fields, including vehicle routing, place and route
in circuits, scheduling, and many others. In the past, these problems have been solved by
complex heuristics, using standard hardware. More recently, accelerators based on the Ising
Model have arisen as a method to tackle some of these challenges, but few take advantage of
its unique structure. We unlock the intrinsic fine-grained, neuron-level parallelism present in
the Ising Model with a novel neural accelerator, the Parallel Asynchronous Stochastic Sam-
pler (PASS), that has the potential for orders of magnitude speed increase over traditional
methods for solving optimization problems.

The proposed accelerator offers a novel computational approach based on a clock-free
asynchronous architecture. It is based on the Boltzmann Machine binary neural network,
which mimics how the brain computes in a massively parallel, distributed, and asynchronous
manner. Our previous digital realizations, while demonstrating significant improvements
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over quantum computers, traditional digital computers and other accelerators [89], were lim-
ited by mappings to traditional computational architectures. PASS follows a sampling-based
approach in which each neuron updates asynchronously based on its neighbors following a
Poisson clock generated by inherent shot-noise present in advanced CMOS nodes. This
method of computing offers a theoretical scaling advantage over traditional digital comput-
ing, where neurons are updated synchronously and in order, while also freeing the design to
map more arbitrary graphical models.

Our main innovations in development of the PASSO accelerator are: (i) development
of a new high-speed stochastic neuron based on shot noise (ii) combining many neurons
through a weight-stationary digital fabric to create a fully asynchronous neural network (iii)
programming and integrating this system with traditional computers to solve useful NP-
hard optimization problems. This work will revolutionize future neural network accelerator
architectures through asynchronous and stochastic techniques to meet the demands of a
data-driven industry.

7.2 Relation to State of the Art

In recent years, Ising Model based computing has become an exciting architecture for the next
generation of computing. A variety of accelerators are being developed utilizing hardware
platforms such as specialized ASICs [86, 4], Quantum Annealing [18], Optical Pumping
[22], and many others. Our work is distinct from these accelerators for 3 reasons; (i) the
majority of accelerators rely on an annealing mechanism, while we support a sampling-based
architecture (ii) other accelerators rely on an ad-hoc integration of noise into their system,
where noise is a fundamental part of our algorithm and (iii) our work is limited by local
interaction speeds rather than set by a global clock as with these other systems, unlocking
a fully parallel update scheme.

These 3 points combine to give our system a strong promise for success. Firstly, the use of
a sampling-based architecture allows for an efficient hardware design, along with a theoretical
advantage. PASSO uses a low precision, fixed point, weight-stationary architecture, causing
all calculations to be extremely hardware efficient, reducing the area, power and time to
solution. From a theoretical perspective, a sampling-based system is guaranteed to converge
to the correct answer, which is not the case for annealing systems. Recent work has also
begun theoretically to show that sampling-based algorithms can outperform annealing-based
algorithms on certain optimization tasks [90].

Secondly, a fundamental part of the PASSO sampler is the integration of noise to escape
local minima. The ad-hoc integration of noise which many accelerators rely on limits how
closely the hardware resembles the algorithm which they calculate on. For example, [4]
uses noise created by faulty SRAM cells, [22] uses equipment based noise in coherent spin
systems. By using noise as a fundamental part of our hardware, we are able to control and
characterize it, allowing our hardware to closely follow the algorithm for which it is based
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on. This guarantees that our algorithm will find the best possible answer to the optimization
problem presented, even for very large problem instances.

Lastly, PASSO relies on a fundamentally localized form of interaction, creating a system
which is fully parallel in its computation, with each neuron updating simultaneously. This is
accomplished by using asynchronous updates, where each neuron probabilistically updates
its state whenever the value of its neighbors changes. This scheme yields theoretically faster
convergence (a factor of n times higher, where n is the number of neurons) compared to a
deterministic, clock-driven scheme. For instance, when comparing a synchronous accelerator
operating at the same effective clock speed as PASSO, we see in simulation that there is
a 200x time to solution increase by using a PASS-like scheme as demonstrated in Figure
7.14. This type of update scheme mimics the way our brain computes, and demonstrates a
neuromorphic approach to computing within the Ising Model.

7.3 Design of the PASS Accelerator

Neuron Circuit Design

Introduction

We use the inherent shot noise present in advanced CMOS nodes to create a binary, stochastic
neuron circuit, which we couple with adjacent neurons through a connection circuit com-
prising of a digital fabric in an analog-mixed signal architecture, shown in detail in Figure
7.1. The neuron is composed of two pieces, a synapse and a stochastic neuron circuit. The
synapse design which is composed of a binary dot product engine, which takes the activa-
tions of adjacent neurons to mask and accumulate them, and a Digital to Analog Converter
(DAC) which passes the accumulated values into the neuron. The neuron circuit has three
major components; a noise source and noise amplifier which generates a stochastic signal
for every neuron, a sigmoidal activation function which combines the stochastic signal from
the neuron with the output of the synapse circuit, and the output buffer which digitizes the
output and drives the signal to other parts of the chip.

Each individual neuron amplifies shot noise to create a stochastic clock based on a Pois-
son process. This update scheme creates an asynchronous neuron that continuously and
stochastically computes on the synapse output voltage. As there is no inherent clock for
computation, the neuron speed is characterized by the autocorrelation of the Poisson process
that governs it; the faster the autocorrelation decays to 0, the faster the neuron computes.
The 150Mhz autocorrelation for the neuron is demonstrated in Figure 7.11 g), where we
see the autocorrelation and the exponential fit. Ultimately, this speed is determined by the
bandwidth of the amplifiers and size of the noise signal, both of which improve with smaller
features, process nodes, and improved design. For this reason, we expect this type of circuit
to improve rapidly as technology nodes scale. The Neuron Circuit and Connection Circuit
design is described in detail below.
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Figure 7.1: CMOS implementation of a PASS neuron. The neuron produces a random bit
stream biased by the input voltage. Connections between neurons are implemented digitally

Noise Source

The noise source had to have the following characteristics:

• Independence between neurons (uncorrelated noise sources)

• Output Common Mode 500mV < Vcm < 700mV, allowing for efficient NMOS input
stage

• Output Peak to Peak >5mV

• White noise spectrum

• Easy layout given process constraints

The independent neuron constraint was accomplished by having a self biased configu-
ration, where a current mirror load was given to a tie down diode which created the noise
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Parameter Value

Output Common Mode Vout 643 mV
Peak to Peak Vout 8.9 mV

RMS Vout 1.32 mV

Table 7.1: Performance Parameters for self-biased noise source

source. To maximize the noise output, the noise diode sees a high impedance load through
the drain of the PMOS transistor. The combination of small devices and high impedances
(low overall current) meant that this system produces sufficient noise to be amplified by the
amplification scheme.

The small size (minimal area diode) allowed for a large noise generation and minimal
filtering capacitance. The one issue with this configuration was that the reverse biased diode
did not provide exactly a white noise spectrum, which changes the autocorrelation of the
final system. This can be attributed to the presence of both a transistor and diode, while
the diode may provide a shot noise spectrum, the transistors noise spectrum is a pink noise
source.

Ultimately the biggest constraint on the noise generator design was anxiety over latchup
and ease of layout. We were worried about having a p-sub that was floating, which meant
we reverse biased the tie down diode, so that the substrate was universally grounded. The
transistors were 2 fingered instead of 1 so that I could lay them out in a rational way, even
though a 1 finger transistor would have had higher noise.

One of the major things that increased the noise in simulation was grounding the n-well for
the PMOS transistors. This forward biases a lot of the junctions in the PMOS transistors,
which may cause substrate leakage problems. Based on my analysis, We wouldn’t have
latchup issues as long as the substrate voltage is stable.

Original iterations of the design had a differential noise source (two copied versions of
the above circuit), however, the variation from these was so high that they would saturate a
high gain amplifier due to common mode differences between them.

Final characteristics for the noise source are in Table 7.1

Buffer Stage

The buffer is meant to provide a low input capacitance stage (to prevent filtering of the input
noise) while also supplying the necessary low output impedance to drive the gain stage. The
biggest issue with the buffer stage was meeting a low enough output impedance, while not
reducing the gain to the point of being ineffective. The low output impedance would allow
the buffer to not load the subsequent gain stage which relied on resistive feedback to create
signal gain. To accomplish the specification of low output impedance, we chose to use a
“super source follower” configuration shown below in Figure 7.2.
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Figure 7.2: PMOS input Super Source Follower configuration copied from [91]

Parameter Value

Input Capacitance 2.9 fF
Common Mode Vout 478 mV

RMS Vout 2.00 mV
Low Frequency Rout 155 Ω
Low Frequency Gain -0.16 dB

Table 7.2: Performance Parameters for Super Source Follower Buffer Stage

Noise Amplifier

The noise amplifier is a 2 stage, single-ended amplifier with internal feedback whose goal is to
provide a reasonable gain with low enough variation, such that the array of 256 neurons has
switching behavior in all devices. We also needed a relatively high speed to demonstrate fast
switching. The intended gain should be approximately 200, meaning the open loop amplifier
gain should be ¿500 to reduce variation due to amplifier gain.

Due to the intricacies of the finfet process, the minimum channel length transistors have
poor analog performance (specifically poor gm and rout compared to current consumption),
so we were unable to achieve the gain specifications we were after. As we need to minimize
variation in our noise amplifier as well, we chose to go with a slightly longer channel length
transistor. The final performance characteristics of the amplifier are listed in Table 7.3 and
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Figure 7.3: PMOS Input Operational Transconductance Amplifier (OTA) used for noise
amplification after the buffer stage

Parameter Value

Low Frequency Gain 251 (48 dB)
Corner Frequency 77 Mhz

Output Common Mode 416 mV

Table 7.3: Performance Parameters for OTA Noise Amplifier

the design is shown in Figure 7.3.
The main gain comes from the second stage due to bias conditions being difficult for the

first stage. Specifically, it was hard to bias both the first stage gain transistors and the first
stage bias transistors into deep saturation such that they had a large gain (first stage gain
maxed out at 50). Similarly, to save on the power budget, the second stage transistors are
(slightly) larger to achieve better gain performance. Overall the small size of the transistors
meant that secondary techniques were necessary to get the amplifier process variation to 3
sigma performance levels and to have a high enough yield to be usable in an array format.
These techniques are described below in Section 7.3.

Sigmoid Generation and Output digitization

After the amplified noise signal is generated by the OTA stage, the signal is sent into the
sigmoid comparator. The sigmoid comparator is responsible for comparing the input noise
signal to the signal coming from the synapses and DAC. It can be understood as doing the
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Figure 7.4: Diagram of the sigmoid design, divided into 3 parts, a modified gilbert cell, a
differential to single ended current current source and a current comparator.

probabilistic activation function which can be seen as σ(x) > R where R is the random
signal coming from the synapse. The sigmoid circuit is divided into 3 parts shown in Figure
7.4.

The first part is a modified gilbert cell which formulates the activation function shape
[91]. We note that a gilbert cells usually would either use BJT input transistors or have
the input MOSFET transistors biased in subthreshold. In our case, our process flow did
not offer BJT transistors with enough current per area to be area efficient, and biasing in
sub-threshold meant that we would sacrifice too much speed for the sigmoid. We sacrificed a
perfect sigmoid shape to have the speed needed for operation. In the end, with proper tuning,
we found that the activation shape was sufficiently close to sigmoidal for our applications.

The second and third part of the circuit take the differential current output from the
gilbert cell and convert it to a single binary output voltage. We use a current comparator
composed of a bistable inverter first presented in [92], which gives a sufficiently fast output
circuit. The final voltage output is passed through an inverter to ensure proper drive strength
and to force the output to be purely binary.

Synapse Design

The neuron synapse is a multiply-accumulate operation, which is simplified by the use of
binary activations with a MUX to perform multiplication. The neuron weights are stored in
a distributed memory system addressed by a shift register running through the core. This
allows the architecture to overcome problems arising from the von-Neumann bottleneck, as
weights are stationary throughout computation. The synapse is digitally synthesized to mux
and accumulate signals from adjacent neurons and pass the 7-bit answer into the DAC for
conversion to an analog value. The synapse is a fully combinational logic cell, to ensure all
computation is done in a clock-free manner.
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Figure 7.5: Diagram of the 7-bit C-2C DAC used in digital to analog voltage output

Digital to Analog Converter (DAC)

The Digital to Analog Converter (DAC) takes the digital accumulation from the synapse
cell and converts it to an analog voltage which can then be used by the analog neuron cell
and the sigmoid comparator. The DAC uses a C-2C topology which allows for area efficient
conversion of digital to analog output values. The only problem with these C-2C topologies
is charge leakage off of the output node as time goes on. We find that this means that there
is a time window for computation to occur before it is invalid.

An additional problem with C-2C topologies is that parasitics induced by layout can
cause the output to be non-monotonic when switching from LSB to MSB (i.e. 0111 to 1000
codes) configuration. To combat this, we were forced to increase the base capacitor size, and
many of the area gains for the C-2C topology was washed out by this size increase.

The C-2C topology, and other capacitor based DAC topologies, have the added benefit
of being very power efficient, with no leakage current, and power only used to charge the
capacitors during switching. Along with this, the speed of the DAC is governed by the
inverters driving the bit lines of the DAC, with switching speeds under < 10ps.

Controlling Process Variation

As with most analog designs, process variation is a major challenge when implementing an
array of a large number of neurons. Even if each neuron has a 99% chance of working, with
an array of 256 neurons the chance that all of the neurons are working is ≈ 7%. With an
experimental design such as this even a 99% chance of working would be considered a stretch
goal. Indeed, we would expect to just have a subset of the neurons working for any given chip
run. Process Variation is more pronounced with analog sub-systems as we expect the output
to be a precise value rather than a binary output. To combat design variation, we employed
5 major methods at different levels of the design hierarchy: Over-sized amplifiers for reduced
transistor variation, Auto-Zeroing for offset cancellation, digital trimming of amplifier and
neuron current, post-fabrication offset correction during programming, and modification of
the supply voltage.

As is generally understood in analog systems, larger transistors have less pronounced
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Figure 7.6: Autozeroing circuitry for the Noise Amplifier Circuit. Left: the full neuron
circuitry, including switches which are flipped open or closed on reset. Middle: When the
amplifier is reset, it is put into unity-gain to cancel out the effect of the input offset voltage.
Right: On normal operation, the reset circuitry does not effect regular operation, and it is
able to operate in regular negative feedback configuration.

transistor to transistor variation (and less variation across multiple dies) [91]. Defects present
in larger transistors are less likely to destroy the entirety of the transistor performance
and can be better managed. In the analog components whose variation needs to be well
controlled, and is not controlled by other methods (such as the Noise Buffer and sigmoid),
we have made efforts to make the system as large as possible to reduce neuron to neuron
variation.

The performance parameters of the Noise Amplifier have the greatest effect on the overall
neuron performance. The speed of the noise amplifier sets the speed of the overall neuron
(along with the spectrum of the noise source), the amplitude of the noise amplifier sets the
width and shape of the activation function, and the common mode output voltage of the
amplifier sets the center of the sigmoidal activation. For this we have gone through great
lengths to decrease the variation of this system. To offset any input offset voltage, we have
implemented an Auto-Zeroing circuit [91, 93]. Before computation is conducted, a reset
signal is broadcast to every neuron, which cancels any drift in the amplifier. The possible
length of computation is partially set by the leakage off of the internal capacitor node of the
auto-zeroing circuit, which causes some drift in the common mode output of the amplifier
over the course of ≈ 1ms. The topology of this circuit is shown below in Figure 7.6.

To further reduce the effect of the Noise Amplifier variation, we have introduced a digital
trimming circuit for both the noise amplifier and the the sigmoidal activation function. The
digital trimming circuit is part of the configuration chain and modifies the input current to
groups of 16 neurons together. The effect of the digital trim of current on the noise amplifier
is to change the amplifier gain (which is itself controlled by the feedback resistors of the
amplifier), and to control the speed of the amplifier. If variation of the amplifier causes its
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gain to become too low, or the neuron to switch too slowly or too quickly, we are able to
trim it using this method.

To reduce variation after fabrication we are able to extract activation data from each
individual neuron and do a correction step before programming the neuron array with the
problem of interest. This is done by a linear correction term, described in Equation 7.1 below.
The sigmoid is individually characterized by incrementing the bias input code from -127 to
+127 (the smallest and largest codes for the neuron). After this, a sigmoid with two linear
correction parameters is applied to each individual neuron, which allows each neuron to have
a different linear offset and slope of activation. The effect of implementing this correction is
demonstrated in Figure 7.7, where we see that the average sigmoid variation is drastically
decreased. Note that even with the correction, we see some neurons still behaving incorrectly
(seen as the neurons which do not saturate to a probability of +1 on largest input). These
neurons are “dead” and we should avoid programming them.

σ(x) =
1

1 + e−(a(x−b))
(7.1)

The last method of reducing variation in the chip is to modify the supply voltage of the
analog core. This is somewhat of a non-intuitive result, but proves to be an important way
of forcing the neurons to behave in a predictable way. When we decrease the supply voltage
of the neuron, the noise amplifier is effected most by the change in behavior, this means that
the gain and speed parameters of the amplifier start to degrade. When the gain degrades,
the output sigmoid will become “narrower” due to it becoming easier for the output of the
DAC to be larger than the output of the noise amplifier. In the case of this PASS system,
the noise amplifier produces more noise than originally specified at nominal supply voltage
of 0.8V,causing many of the neurons to never fully saturate to the +1 state. Thus, although
the system is slower at 0.6V, all experiments for complex problems are conducted at this
reduced supply voltage to maintain accuracy and predictability. These results are visually
shown in Figure 7.8.

Sampler and I/O Design

The network is laid out in a regular grid with nearest-neighbor connections. To derive net-
work statistics, we sample each neuron’s binary output at a fixed clock frequency and stream
out data off chip. We use a flip-flop synchronizer to ensure low probability of metastable
states as we move from the asynchronous domain to the sampling clock domain.

The sampler and I/O is designed to be as simple and robust as possible to focus on design
of the analog neuron core and to ensure the greatest chance of success of the system. The
design of the system is composed of 3 components, as described below:

• Neuron State Sampler: This circuit samples the neuron’s binary output at a rate of
> 100Mhz and shifts the output down the sample column to hold for eventual readout.
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Figure 7.7: Correction of the Sigmoidal activation post-fabrication by fitting sigmoids to
each neuron individually. Top Left: A plot of all neuron activations across a chip plotted on
top of eachother. There is a lot of variation in activation between neurons. Top Right: The
extracted average activation function across the chip. This activation is close to sigmoidal,
but still requires fitting. Bottom Left: After doing a linear fit of each neuron activation, we
see that the neurons have much less variation across the chip, and generally have a closer
to ideal activation. Bottom Right: When averaged across the chip, the average activation
function becomes almost exactly the ideal sigmoidal activation, which is plotted on top of it
for additional information.
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Figure 7.8: Analyzing neuron behavior as a function of supply voltage. Looking at the
same neurons going from 0.6V to 0.7V to 0.8V we can see that as voltage increases, the
variation amongst neurons increases as well. We can attribute this to the amplifier circuitry
overpowering the sigmoid generation circuitry causing the neuron to never fully saturate to
the +1 state.

• Chip Configuration: The configuration chain is responsible for setting the weights,
biases, digital trims, and sampler settings for the full chip. It is implemented as a long
shift chain.

• Data Readout: The readout circuitry takes the neuron states that are held in an SRAM
buffer and sends them out at an I/O friendly speed of ≈ 10Mhz.

Neuron State Sampler

As the neuron states are binary output, no complex ADC circuitry is necessary to sample
the output state of the system. Instead, a 3 register flip-flip synchronizer is used to ensure
the circuitry does not enter a metastable state and to move from the asynchronous domain
to the sampled clock domain. A 300Mhz clock is sent to each neuron, with the neuron state
being sampled once every k cycles, where k is the number of rows we wish to sample at a
given time. This means that each neuron would be sampled at a rate of 300

k
Mhz, allowing

us to sample a few rows at a very fast rate to get more accurate statistics, or to sample
the full chip to get less granular statistics but over a larger chip area. This design decision
helped relax timing requirements for movement of the sampled chip data off the chip. This
k parameter is set in the configuration chain at set up time. Once the sample is taken, it is
shifted along the sample column and finally held in the SRAM buffer.

The SRAM buffer for the Neuron State sampler is a 136kBit SRAM cell with 17 bit
lines, which is able to hold 8192 row samples at a given time. The extra bit per row is
meant to hold a “fingerprint” bit which allows us to synchronize the origin of each sample
after samples are streamed to the computer for analysis. If we are sampling the full internal



CHAPTER 7. PASS: THE PARALLEL ASYNCHRONOUS STOCHASTIC SAMPLER85

Figure 7.9: Layout of the chip in a 16 × 16 grid with sample and configuration columns in
between each column of Neurons. Each Neuron is connected to its nearest neighbors and
diagonals in a ”King’s Move” pattern

cluster, this means we are getting 512 samples from each individual neuron, or ≈ 440 us of
data sampling the full cluster with a 300 Mhz clock.

Configuration Chain

The configuration chain holds all of the weights and biases, as well as sampling and trim
information for the neuron core. Each neuron has 74 configuration bits, with 8 bit weights
for each of the 8 neighboring neurons, 8 bits for the bias, and 2 bits to clamp the output to
either 1 or to 0. Along with this, the configuration chain holds the 7 bit configurations for 16
current trimming circuits for the amplifiers, and 16 current trimming circuits for sigmoidal
activation circuitry. The last piece of the configuration chain is a 3 bit sampling configuration
register, which corresponds to how many rows of the chip core we wish to sample at a given
time (the settings are 1 row, 2 rows, 4 rows, 8 rows, or 16 rows to sample at a given time).

The configuration chain is updated on a much slower 1 Mhz clock. The configuration
chain is intentionally designed with a slower clock as the configuration data must snack
across the entirety of the chip. This also allows for sufficient timing slack to optimize for
other pieces of the system design.
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Data Readout

Data from the SRAM buffer is read out at a slower I/O clock rate (20 Mhz) and shifted out
in a Parallel-In-Serial-Out (PISO) fashion through a single General Purpose I/O (GPIO)
pin. This design decision was done to minimize use of I/O pins when necessary, as it was
deemed that I/O speed was not necessary for this proof of concept system. Additionally
fewer I/O pins mean that more chip outputs can be dedicated to power, ground, and test
outputs.

System integration

The system is finally integrated in a mixed-signal fashion to produce the final 16× 16 array
of neurons. An image of the post-layout chip is shown in Figure 7.10 where the integrated
system is shown at a neuron level, a small scale integration level, and at the full chip level.
We further are interested in the power, performance and area of the full chip system.

The 256 neuron core takes up a 1mm× 1mm in the center of the core, with the majority
of the rest of the chip being fill area, and a small area devoted to I/O and the sampling
circuitry. When analyzing the area of the chip, we find that the DAC has the highest area
contribution within the cluster, while the binary dot product engine and analog neuron
are smaller components. This is due to the necessity for large capacitors to combat layout
parasitics.

When analyzing the power of the full system, the analog neuron takes the majority of
the power, specifically the Noise Amplifier and Noise Buffer, both of which take ≈ 30uA of
current when the full neuron taking a total of ≈ 80uA of current. We find that the digital
accumulation of the system takes a much lower average current amount, as it does not run
continuously, unlike the analog sub-systems.

As discussed previously, the speed of switching in the system is largely governed by the
performance of the analog Noise Amplifier and noise generation system. To achieve faster
performance, a higher bandwidth and higher gain amplifier would have to be designed, which
in turn would cause a larger power draw. If we are willing to compromise on power of the
system, we can decrease the bandwidth of the noise amplifier (by operating it in sub-threshold
regime, for example) for next generations of design.

7.4 Results and Applications

The PASS chip is capable of solving a variety of problems that are in the NP-Hard and
NP-Complete space. While many other Ising accelerators have demonstrated problem solu-
tions in the optimization space, we choose to highlight the unique attributes of the PASS
accelerator to solve problems in a larger variety of spaces than previously demonstrated
accelerators. As discussed above, the PASS accelerator follows a sampling approach which
gives full distributional information about the underlying distribution which allows us to un-
derstand the problem given at a deeper level. Below we highlight applications, results, and
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Figure 7.10: Post Layout images of PASS system. Left: Single Neuron showing the binary
dot product, C2C DAC and analog neuron pieces. Middle: Image of four neurons connected
together showing tiling of neurons. Right: Full chip micrograph showing core seperated from
I/O and Sampling.

future work from four different areas, Combinatorial Optimization, Quantum Simulation,
Neural Modeling, and Machine Learning.

Single Neuron and Small Cluster

Analysis of the system at small scale lets us understand the inner workings of the chip. In
Figure 7.11 we demonstrate single neuron performance. In Figure 7.11 c) we can see that
the activation function when averaged across many samples matches closely to that of a
sigmoidal activation function. When looking at the time series data from this, we can see
exactly how this works. When biased at low voltages (Figure 7.11 f) is at 0.1V) we can see
that the neuron is uniformly at a low voltage. At middle voltages, shown at 0.45V in Fig
7.11 e), we can see the neuron oscillates stochastically between the 0 and 1 state, with an
average activation of 0.4. Finally when biased at the upper end of the rail, at 0.55V in Figure
7.11 d), the system has a high average voltage, but we still get oscillations between the 1
and 0 state sporadically. When we analyze the switching behavior of the isolated neuron and
fit an exponential decay function, we find that the autocorrelation of the isolated neuron at
Vdd=0.8V can reach speeds of 150Mhz while pulling about 98µW of power. When compared
to other stochastic architectures, we see that this system is the first with both high speeds
and the ability to incorporate fully on-chip connections as shown in Table 7.4.

To understand performance in small clusters, we have implemented a 4 neuron test clus-
ter which has visibility into the analog voltage outputs of the system (bypassing the digital
sampling architecture). This allows us to see the raw voltage waveforms of switching per-
formance and coupling between neurons. An illustrative example of running a Max-CUT
problem on the four neuron cluster is shown in Figure 7.12. In Figure 7.12 a) we see the
sampled probability distribution of the cluster favors the two maximum cut states, finding
the solution to the underlying problem. When we analyze the time domain performance of
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PASS [94] [7]
Clock Period 6.6 ns 0.5 s 10 ms
Technology 14 nm CMOS sMTJ sMTJ
Connection
Type

On Chip Off Chip Off Chip

Neuron Power 94 µW ≈ 25 µW ≈ 20µW

Table 7.4: Comparison of PASS chip with other stochastic neuron architectures.

0.1V

0.45

0.55V

a)

b)

c) d)

e)

f)

g)

Figure 7.11: a) Ising Model Hamiltonians Energy function over binary variables. b) Prob-
abilistic Sampling of PASS system c) Sigmoidal activation function from hardware neuron
follows theoretical value. d), e), f) Time series for Vin=0.55V, Vin=0.45V, and Vin=0.1V,
g) Autocorrelation demonstrating intrinsic clock of 150Mhz

the system in Figure 7.12 b), c), d) and e) we see that the system immediately identifies the
two possible maximum cut states and stochastically oscillates between these two solutions
on the order of us. This demonstrates how we expect the system to perform at a larger scale
as well.

Combinatorial Optimization

Ising solvers have found many applications in the combinatorial optimization space, and it
has remained an active area of research. In previous chapters we have shown how our FPGA,
GPU, and TPU accelerators have the ability to solve Combinatorial Optimization problems,
here we demonstrate that the PASS accelerator and its variants have the same ability to
solve hard problems with potential for additional acceleration in time to solution and power
consumption.

A demonstrative example of a difficult problem is shown in Figure 7.13 where we solve a
MaxCUT problem, with the ground state solution spelling out the word CAL. This MaxCUT
problem is constructed by having ferromagnetic (positive) coupling between regions of the
same color and having opposing coupling in the transition regions between the letter and the
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Figure 7.13: Demonstration of the PASS chip solving a Max-CUT problem whose ground
state is to spell out the letters C, A, and L. This demonstrates the ability for the full 16×16
array to be connected together and to be programmed to solve such hard problems.

background. This demonstrates the ability of the full neuron core to act together to solve a
problem, and exhibits how local couplings between neurons can interact together to create
a global solution to a difficult problem at hand.

To understand how the PASS architecture compares to other state of the art architectures
for optimization on these Ising Model architectures, we use a simulation model to project
how the system would work on larger problem sets. We first extract activations and fit
exponential decay curves to the autocorrelation curves from the hardware and then fit them
to the Continuous Time Poisson Process model [26]. This models the neurons as each
having an individual poisson clock, which updates at random times that are modulated
by the activation probabilities. This is a similar system model to the Gaussian Machines
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introduced in [95].
With the simulation model, we compare a discrete time process with the same effective

clock frequency (the same average update time) to the stochastic time process presented with
the PASS architecture. When we analyze this system, we see a scaling advantage emerge
on the MaxCUT problem as demonstrated in 7.14, where a 200× improvement emerges at
sizes of up to 150 nodes. We also see that the gap increases with larger problem sizes.
From a theoretical perspective, [26] has proven Equation 7.2 below demonstrating a linear
speed increase of mixing time with problem size when comparing discrete time mixing τmix

with continuous time mixing τCmix. From an intuitive perspective this can be understood as
the spins being able to update completely independently in parallel, increasing the average
update rate by a factor of n where n is the number of neurons.

τmix ≥
nτCmix

6
(7.2)

The connectivity of the current generation of the PASS chip is not sufficient to put these
large fully connected problems onto the chip, forcing us to resort to these simulation frame-
works. When we compare the simulated MaxCut performance to existing solutions to the
MaxCUT problem we find that a stochastic solver with the same performance parameters
as the PASS system outperforms all known solvers. Our solution would be able to solve the
100 node MaxCUT problem within 16us which is approximately 2× as fast as the existing
solutions to solve the problem, such as the RBM on FPGA sampling solution presented in
Chapter 5. This motivates further study into these stochastic systems to increase connec-
tivity as well as to increase the speed of computation to realize these simulated performance
gains.

Primitive Decision Making in Animal Brains

The Ising model and Hopfield Network have been tools in neurobiology for many years to
model the behavior of firing neurons within the brain [96]. More recently an Ising type model
was used to model animal decision making in primitive animal brains [97]. In this system,
flies and other primitive animals were placed in a virtual reality environment, and given a
set of targets. It was found that the animals would move to the average of the targets, and
then spontaneously bifurcate and make a “decision” about the target they would proceed
to.

The Ising model demonstrated ring attractor behavior that resembled the behavior of
these animals when they were placed in virtual reality environments. With its underpinnings
in neurobiology with relation to the Hopfield neural network [96, 12] the Ising Model was a
good candidate for a potential system to model these decisions. The spin system represents
neural activity within the brain, with the spin flips roughly representing firing of individual
neurons. The spin model is repeated below in Equation 7.3
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Figure 7.14: a) Scaling simulations of PASS system vs. Synchronous System showing 200x
improvement, b) Performance Comparison of simulated PASS system (data taken from [[86],
[89]])

H(s) =
−k
N

∑
i ̸=j

Jijsisj (7.3)

Here k is the number of options each individual has, N is the number of neurons, and Jij
is the interaction strength between neurons. The coupling parameters are set using a cosine
geometry shown below in Equation 7.4.

Jij = cos(π(
|θij|
π

)η) (7.4)

In Equation 7.4, the θij represents the angle between the goal vectors of spin i and spin
j. The η parameter sets the “shape” that the animal uses to encode its space. Finally
the velocity that the animal moves at is shown below in Equation 7.5. In this equation π̂i

represents the goal vector for each individual spin that points from the current position to
that specific neurons target.

V⃗ =
v0
N

∑
p̂isi (7.5)

At each step, the system performs ”neuron updates” which are encoded as sampling
updates within the chip. After a set of samples are taken, and the system settles into a
local minima, the system moves forward with velocity V⃗ updating the goal vectors p̂i, the
angles θij, and the couplings Jij. This update state then serves as the seed for the next set
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of neuron updates. In this way the system can settle into a local attractor as it continuously
samples from the state space after each update until it finally picks a direction to travel in.

The original neural models calls for the state at the end of each “neuron update” to serve
as the seed state for the next update. However the PASS system does not have memory of
previous system states between sampling runs. To combat this, we modify the Hamiltonian
from above to include memory of the previous time step as shown in equation 7.6, where
we add a bias term from the previous time step. Note that the value of st−1

i is a constant
representing the value of that particular state in the previous sampling run, and is not a
variable in this situation.

H(st) =
−k
N

∑
i ̸=j

Jijs
t
is

t
j + α

∑
i

st−1
i sti (7.6)

With these modifications, we find that the PASS system is able to reproduce the geometry
of decision making in fly and locust populations. In Figure 7.15 we demonstrate how the
neural tuning parameter η moves the decision making point for the fly, and effects the
individual geometry for that fly. On the right side of the figure, we overlay the η = 1.0
system on top of a heatmap generated by placing a fly in a virtual reality environment. We
find that we are able to accurately reproduce the bifurcation point in decision making of
actual flies. This demonstrates the ability of the PASS chip to model decision making in
primitive animal populations, with the possibility of expanded connectivity in the chip to be
able to model more complex decisions in animal brains.

Quantum Spin Systems

The basic building block of quantum computing systems is the q-bit, with complex interac-
tions between them allowing for quantum computation to occur. The q-bit works by relying
on complex phase interactions between q-bits which cannot be efficiently represented by
classical systems of bits which only have values of 0 or 1. The probabilistic systems demon-
strated here in the PASS system provide a bridge between the discrete systems of 0 or 1 and
the complex phase space of the q-bit, where the PASS system is able to use probabilistic
activations to represent states between 0 or 1. This suggests that there may be an efficient
mapping for quantum spin systems onto the PASS architecture.

For classes of Hamiltonians which are known as “stoquastic” that are sign problem free,
this has shown to be the case [98]. Specifically, the Suzuki-Trotter decomposition allows
for decomposition of a d dimensional quantum hamiltonian to a d+ 1 dimensional classical
spin hamiltonian. The PASS system generates statistics for the d + 1 dimensional classical
hamiltonian that can emulate the d dimensional hamiltonian.

For a proof of concept of these kinds of systems, we map the 1-dimensional Quantum
Transverse Ising Problem onto the PASS system, creating a 2-dimensional Classical Hamilto-
nian which we can efficiently map onto our system. This is diagramatically shown in Figure
7.16 below, where the replicas are created in the second dimension for the 1 dimensional
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Figure 7.15: Neural Decision Making using the PASS system. Left: Showing how the neu-
ral tuning parameter η effects the geometry of the space that the fly operates in. As eta
increases, the fly makes decisions closer to the targets. Targets are placed at {0, 1000} and
{1000, 1000}. Right: When choosing the tuning parameter of η = 1.0 we see that the sam-
pled trajectories from the PASS chip (the colored dotted lines) match closely with actual
trajectories from flies placed into a virtual reality environment. The heatmap shows density
for actual fly trajectories placed into a virtual reality environment with these two targets.

input problem. The Hamiltonian for the quantum system is shown in Equation 7.7 while
the respective classical system is shown in Equation 7.8.

HQ = −(
∑
i

Ji,i+1σ
z
i σ

z
i+1 + Γx

∑
i

σx
i ) (7.7)

HC = −( lim
n→∞

n∑
k=1

M∑
i=1

(J||)i,i+1si,ksi+1,k + J⊥si,ksi,k+1) (7.8)

In the equations shown here (J||)i,i+1 = Ji,j/n, and J⊥ = − 1
2β

log tanh(βΓx/n) with the

states operating as bipolar spins si ∈ {−1, 1} [99]. The parameter n represents how many
replicas are being used to emulate the quantum spin system. One of the major features of
this equation is the necessity for many replicas to accurately reproduce the behavior of the
quantum spin system, with fully accurate representation only occuring for very large values
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Figure 7.16: Suzuki-Trotter decomposition of a quantum spin system into parallel replicas
of a classical spin system

of n. In experimental observations, we have found that for the spin chain shown here, we
can accurately reproduce the magnetization curve with ≈ 10 spin chains.

To demonstrate the usability of the PASS system, we show curves for the 1-d Quantum
Transverse Ising Problem, and reproduce the magnetization as a function of the Γx = hx

parameter. This is shown in the left panel of Figure 7.17. We also demonstrate that the
sampled wavefunction matches the wavefunction for the underlying system in the right panels
of Figure 7.17.

Although the emulated quantum system here are relatively simple, greater connectivity in
future PASS systems would allow for emulation of more complex quantum spin systems, such
as the 2-dimensional lattices which have become a benchmark problem for both classical spin
computers and quantum spin computers [100, 101]. Additionally more intelligent mappings
would also have the ability to use the current PASS system.
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Figure 7.17: Demonstration of the PASS system to emulate the Quantum Transverse Ising
Model. Left: Matching the average magnetization vs. transverse field curve. Right: For
a particular point along the curve we show that we can emulate the exact thermal ground
state with the wavefunction generated by the PASS sampled system.

Multiplier-Free Generative Machine Learning

The final application space for the PASS accelerator we would like to highlight is the usage
for PASS, and PASS-type systems to perform multiplier-free generative machine learning.
The design of the PASS system takes advantage of the binary activations of neurons to
not implement any true multiplication circuitry, as a multiplication by a binary number is
just a MUX or AND gate operation. This means that for running inference and sampling
operations in the PASS systems, there is no usage of multiplication operations.

The basis for the PASS system is the Boltzmann Machine framework, as explored and
explained in previous chapters. The Boltzmann Machine framework is a generative model,
where the full probability distrubition of both input and outputs is used to understand
problems. One of the goals of the PASS system is to accelerate sampling from difficult,
complex, and correlated distributions, which would have a profound impact on the ability
to perform machine learning tasks. By connecting the PASS system to an FPGA which
would be able to calculate efficient gradients from the sampling distributions and the input
weights, we would expect the PASS system to be used as a training accelerator too, using
similar contrastive divergence algorithms explained previously.

An interesting piece of the contrastive divergence algorithm used here is that the con-
trastive divergence algorithm simply relies on averages, additions and subtractions shown
below in Equation 7.9. Specifically, the sisj terms are binary AND gates (as both are binary
activations), and the averaging across the expectation can be accomplished simply by bit-
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Figure 7.18: Probability distribution for an AND gate, created by a) direct setting of weights
b) Setting weights and tuning using an ML algorithm, c) Fully trained distribution using
ML

shifting and adding. The conclusion of this means that it is possible to develop the training
and inference on the PASS system entirely without using any true multiplier blocks.

∆wij = α(< sisj >data − < sisj >model) (7.9)

The benefits of removing multiplications in future generations of Machine Learning algo-
rithms and systems would be great. The majority of compute area and power for many ma-
chine learning systems is devoted to multiplying gradients for complicated back-propagation
through many deep learning layers and for forward inference as well [57, 102]. The energy
cost of performing a multiplication is approximately 10× higher than the cost of doing an
addition (for Int8 precision) suggesting, that removing the multiplication step would have
a large impact on the energy to train and do inference. For edge devices, which are signifi-
cantly area and power constrained, this kind of multiplier-free training and inference could
allow for continuous learning devices on the edge without draining of power resources.

To demonstrate small applications of this multiplifer-free version of this machine learning
algorithm, we do training of an AND gate distribution in Figure 7.18. The left side of the
figure shows setting the AND gate distribution, the middle shows setting the distribution
and then training it to tune the distribution, and the right panel shows fully training the
AND gate distribution without using any multiplication steps. This serves as a small proof
of concept of this structure.

To show a possible application of such systems, we have implemented a factorization
problem using the inverse logic approaches expanded upon in Chapter 3 in SPICE. The
system is able to find factors of 143 in under 10us using SPICE simulations in the slower
and less efficient 90nm process. We hope to expand upon this previous result to the PASS
system to show the ability to do complex machine learning problems within the 14nm PASS
chip.
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Figure 7.19: Factorization of an 8 bit number into two 4 bit factors through SPICE simulation
of a 90nm type PASS system. As the multiplier calculates the joint probability of factors,
the top panel shows the first factor chosen (correctly as 11), and the bottom panel shows the
second factor to match the first factor (correctly chosen as 13). Figure shown after sampling
for 10us

7.5 Conclusion

In this chapter we have demonstrated the theory, implementation, and applications of the
PASS accelerator architecture. The demonstrated chip is the first of stochastic chip with
fully on-chip connections, and the first stochastic chip that is able to scale to a usable number
of nodes. In the implementation and development of this chip, we have innovated a series of
methods to integrate stochastic chips with traditional digital hardware, as well as methods
of characterizing and correcting for errors within the chip. Finally through this work, we
have shown a series of applications that this chip and architecture would be able to provide
value in. These applications are unique to the PASS stochastic architecture, and provide
extra functionality over previous Ising Accelerators.
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Chapter 8

Conclusion and Future Work

8.1 Chapter Summaries and Takeaways

In Chapter 1 we explained the historical context for Ising Model Computing, and what the
current needs are for accelerators in the space of Optimization, Brain-Inspired Computing,
and Machine Learning. Along with this we provided a taxonomy of various accelerators that
have been built for these systems, positioning our probabilistic accelerators in reference to
the current state of the art. We argued that probabilistic accelerators would have the ability
to gain further information about the distributions of interest and use the rich mathematics
of probability theory and statistics to achieve better solutions than previously demonstrated.

In Chapter 2, we introduced the theory of sampling from complex distributions with a
particular application in sampling from the Ising Model distribution. We introduced the
theory of Markov Chain Monte Carlo, as well as a set of MCMC algorithms which we would
expand upon in later chapters. We explored the pros and cons of various MCMC methods,
and explained our choices of using certain methods (such as the Blocked Gibbs Sampling
and Parallel Tempering) over other methods. In this chapter we introduced the Restricted
Boltzmann Machine and explained why we chose to use it as the basis for our accelerator
architectures in the following chapters.

In Chapter 3, we identified the first new method of computation on these parallel MCMC
systems in an inverse logic framework. We combined machine learning with logic design to
show the possibility of factoring numbers and performing SAT problems as a basis for solving
a variety of other Combinatorial Optimization Problems. We also expanded upon the theory
of these methods, proving correctness of the distribution as well as convergence properties
of our merging procedures.

In Chapter 4, the direct mapping approach of Ising Model problems onto the Restricted
Boltzmann Machine architecture was explored. This method allowed general Ising Model
problems to be mapped onto the RBM accelerator. We also explored the effect of various
parameter choices on sampler performance, such as temperature, coupling, and number of
samples taken. This provides a framework for mapping many further Ising Model problems



CHAPTER 8. CONCLUSION AND FUTURE WORK 99

onto these architectures.
Through Chapter 5, we demonstrated our FPGA hardware platform for accelerated so-

lutions of Ising Model problems. We first demonstrated a small FPGA accelerator which
shows state of the art performance on small problem instances and is able to solve inference
problems in the Machine Learning space as well optimization problems from the Ising Model
space. The second generation of the RBM on FPGA accelerator was able to scale up to the
largest problem sizes for a single FPGA accelerator at 5000+ nodes. After further inves-
tigation, we found that the larger RBM on FPGA accelerator requires better algorithmic
performance to reach the ground state for problems of 1000s of nodes.

Building on the hardware in the previous chapter, Chapter 6 demonstrates GPU and TPU
based exploration into parallel hardware. We first explore why GPU and TPU algorithms
are necessary, and how to exploit the parallelism that these platforms provide. We then
implement Parallel Tempering on the GPU and TPU to show that we are able to reach
the ground state of increasingly large and difficult problems on the order of 1000s of nodes.
We then show the true scalability of our algorithms and methods by scaling all the way up
to 100,000 nodes on a single GPU instance, showing both the largest fully connected Ising
Machine built so far, while also using the fewest number of compute resources to accomplish
this.

Finally Chapter 7 demonstrates our Parallel Asynchronous Stochastic Sampler archi-
tecture. This architecture is a next generation computation platform with the ability to
solve problems in a variety of spaces. We tackle problems of designing stochastic neurons,
integrating them into a full system, and interfacing that compute core with the outside
world. This architecture is the first stochastic computing architecture that is able to solve
all of these problems together and create a full system on chip. We demonstrate a series of
new applications on this platform which have not been shown on previous Ising Computing
platforms.

8.2 Future Work

In the previous sections we have described all the work that has gone into building accelerated
systems for the solution of Ising Model problems. However there is a lot of future work to
be done to make these systems usable for real world problems. Here I try to explain what
next steps may be necessary to advance Ising Computing further.

Improved Large Scale FPGA Architecture

The results from our FPGA architecture show that large Ising Model systems can be fea-
sibly mapped onto the RBM based FPGA architecture. However, these systems do not
take advantage of advanced sampling methods, such as the Parallel Tempering approaches
demonstrated in Chapter 5. Because the FPGA was only able to use vanilla Gibbs sampling,
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we found that it was unable to find the ground state to many larger problems (such as those
above 1000 nodes).

To have an FPGA based accelerator that is capable of reaching the ground state of difficult
problems, we propose re-architecting the FPGA accelerator to support an advanced sampling
algorithm such as Parallel Tempering, Adaptive Parallel Tempering, or Non-Equillibrium
Monte Carlo [103, 104]. The basis of this would involve the usage of parallel chains which have
the ability to exchange information and states between different replicas. By including these
advanced sampling techniques we would expect the FPGA system to achieve ground state
solutions, similar to what was shown in the Parallel Tempering implementation demonstrated
in Chapter 6, but with a faster time to solution than has been previously achieved by these
architectures.

Efficient Algorithms to Map Real World Problems

Many of the problems demonstrated in this thesis are purely academic, and do not include
the complex constraints necessary to model real world problems. The Max-CUT problem
has applications in many fields, but needs further constraints to be able to map problems in
other fields. Our understanding is that to go from the academic instance of solving a generic
graph problem to a real world instance is to begin to incorporate real-world constraints into
the system parameters. This is one of the biggest obstacles to bringing Ising Computing to
the real world.

Building off of this, we have found that many of the algorithms developed for Ising
Computing (for example many of those listed in [3]) can map onto the Ising Solver, but
can be inefficient to do so. The Travelling Salesman Problem is a good example of this,
where many heuristic solutions exist that can solve this problem much more efficiently than
the standard Ising formulation is able to do. With this in mind, further work needs to
be done to break down these problems into parts that can be efficiently consumed by an
Ising Solver. This may be through inverse logic approaches to map certain subproblems, or
through direct mapping approaches where we mathematically break the problem down into
efficient sub parts.

Multiplier-Free Machine Learning

Both the RBM architecture and PASS architecture have shown the ability to perform infer-
ence on complex machine learning systems without the usage of multiplication steps. This
greatly reduces the hardware cost of these architectures, especially for edge platforms where
power and area are at a premium. We have demonstrated that these architectures may be
useful for edge intelligence, solving complex routing problems as well as running machine
learning inference.

An extension of these systems is to explore the use of these devices for multiplier-free
training in machine learning algorithms. This would allow edge devices to have an added
degree of intelligence, and the ability to train on new data in a power and area efficient
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manner. A small proof of concept of these ideas was shown in Chapter 7 with the PASS
architecture, but this should be expanded upon to show more complex use cases and the
solution of more difficult problems.

Scaling up of Stochastic Hardware

The first PASS system demonstrated in this thesis serves as a proof of concept system for
probabilistic and stochastic hardware. We have developed a series of methods to reduce the
variability (both from chip to chip as well as across a given chip), which can be extended to
create larger chips with more intricate interactions. The amplifiers and neuron design also
consume a lot of power, while the DAC takes up a large amount of area. These systems
can be optimized to produce a much lower power or a much higher performance second
generation architecture for varying applications. Additionally this study showed us that the
digital fabric is very extendable, suggesting that implementing even more connections per
neuron (to next nearest neighbor, for example) should be possible without much greater
effort.

The PASS system also relies on a fully clock-less computation, which may not be neces-
sary to get good performance on problems of interest. There has been work recently showing
that it can be possible to have a mixture of stochastic system and digital circuitry to achieve
similar performance to the fully stochastic system here without using as much power, per-
formance or area [100, 94]. These next generation designs can take lessons from the proof of
concept systems generated here to create continued increases in performance.

8.3 Final Thoughts

When I started this work in 2017, stochastic hardware and Ising Machines was not nearly
as mature as it is today. Since then, many groups have entered the space and a variety of
hardware methods, algorithms, and knowledge has been created within this field. I believe
that Ising Computing and in general accelerated optimization problems can have a profound
impact in solving some of the hardest problems we have in the Post-Moore world. However,
the next step which has still yet to be done, is to find a real world application where Ising
Computing exhibits best in class performance. This “killer application” would truly be able
to spark interest and development in this field. I hope that next generations of students and
researchers can help expand the field and bring this research to the real world.
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