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Abstract

Magnetic Susceptibility of Alzheimer’s Disease Brain Altered by Neurodegeneration

by

Maruf Ahmed

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Chunlei Liu, Chair

A sensitive and accurate imaging technique capable of tracking the disease progression of
Alzheimer’s Disease (AD) driven amnestic dementia would be beneficial. A currently avail-
able method for pathology detection in AD with high accuracy is Positron Emission Tomog-
raphy (PET) imaging, despite certain limitations such as low spatial resolution, off-target
error, and radiation exposure. Non-invasive Magnetic Resonance Imaging (MRI) scanning
with quantitative magnetic susceptibility measurements can be used as a complementary
tool. The human brain can be magnetized by the strong magnetic field of an MRI scanner.
The corresponding magnetic susceptibility can be computed from MRI signals and is found
to be in the order of 10−8. In AD, the accumulation of amyloid plaques, tau neurofibril-
lary tangles, and iron are crucial signatures of the underlying neurodegenerative process.
Amyloid and tau proteins are diamagnetic while biological iron is paramagnetic. The oppos-
ing magnetic susceptibility of these sources complicates the quantification of susceptibility
changes in the brain. To date, quantitative susceptibility mapping (QSM) has widely been
used in tracking deep gray matter iron accumulation in AD. The present work proposes that
by compartmentalizing quantitative susceptibility into paramagnetic and diamagnetic com-
ponents, more holistic information about AD pathogenesis can be acquired. Computational
susceptibility-source separation techniques such as DECOMPOSE-QSM can be used to com-
partmentalize paramagnetic and diamagnetic susceptibilities on a voxel level. In this work,
we demonstrated significant voxel-wise differences between AD patients and healthy con-
trols using paramagnetic and diamagnetic susceptibility derived from DECOMPOSE-QSM.
Particularly, diamagnetic component susceptibility (DCS) have shown promise in tracking
protein accumulation in the grey matter (GM), demyelination in the white matter (WM),
and relevant changes in the cerebrospinal fluid (CSF). Through regions of interest (ROI)
based analysis, we observed meaningful associations between pathological measures vs para-
magnetic and diamagnetic susceptibility in several GM regions typically affected by tau
deposition in AD. Finally, we explored the relationship of susceptibility distribution param-
eters with clinical, pathological, and genetic markers of AD. It has been found that the
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separated paramagnetic and diamagnetic susceptibility can be used to track pathological
neurodegeneration in different tissue types and regions of the brain. With the initial evi-
dence, we believe the usage of compartmentalized susceptibility demonstrates substantive
potential as an MRI-based technique for tracking AD-driven neurodegeneration.
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Chapter 1

Introduction

Researchers have been trying to understand Alzheimer’s disease-driven neurodegenerative
pathology for a long time. Neurodegenerative diseases affect a big portion of the elderly
population in the world. The following table presents the number of people affected by
neurodegenerative pathologies each year. It is important to note AD is one of the most
impactful neurodegenerative diseases.

Disease Global population (in millions)
Alzheimer’s disease (AD) and other dementia 55

Parkinson’s disease (PD) 10
Multiple sclerosis (MS) 2.8

Amyotrophic lateral sclerosis (ALS) 0.45

Table 1.1: Global population affected by neurodegenerative diseases

Over the years, people have used different techniques to diagnose and detect the progres-
sion of neurodegenerative diseases. Clinical markers have been predominantly used to detect
disease and remain the primary mode of diagnosis. However, it has been suggested that
a combination of different markers can be of best use when tracking a neurodegenerative
disease is concerned. These markers may be clinical, biochemical, genetic, and imaging [1].

After clinical biomarkers, CSF biochemical markers are the most discriminative for AD
diagnosis [2]. Decreased CSF β-amyloid-42/β-amyloid-40 ratio has been reported to identify
AD patients distinctively [3] and the increase of CSF phosphorylated-τ/β-amyloid-42 ratio
is shown to be an accurate biomarker for detecting AD dementia [4]. As a genetic marker,
ApoE4 has been associated with progressing from MCI to AD [5]. Among the imaging
markers, positron emission tomography (PET) has been used to confirm the presence of AD.
Increased amyloid and tau PET signals in the brain and reduced FDG PET in different
regions are typical of AD patients [6]. Additionally, structural MRI can detect atrophy at
the late stages of AD [7].
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Clinical markers are more useful at the late stages of the disease. Biochemical markers,
particularly CSF markers are invasive. PET comes with radiation exposure and smaller
resolution. Nonetheless, all of these markers are quite important in terms of understanding
the disease. However, multimodal investigation and fruition of less or non-invasive markers
are essential for the early detection and study of gradual pathology progression in AD.

Non-invasive techniques like magnetic resonance imaging (MRI) can be very useful in
terms of overcoming the limitation of the current gold standard of PET imaging. Together
with PET imaging MRI modalities can come in handy in reducing the number of scans or
even reducing radiation dose [8]. Among the candidates of MRI in this regard, diffusion
tensor imaging (DTI), magnetization transfer imaging (MTI), and quantitative susceptibil-
ity mapping (QSM) are worth mentioning. For a while now, diffusion metrics like fractional
anisotropy (FA) and mean diffusivity (MD) have been used for tracking WM, myelin in
particular, in health and disease. However, recently Neurite Orientation Dispersion and
Density Imaging (NODDI), a successor of DTI has shown promise in tracking WM [9] alter-
ation which can theoretically be extended to GM. However, QSM is more specific in studying
myelin concentration compared to diffusion imaging [10] and diffusion MRI is more time-
consuming resulting in potential discomfort for patients. Macromolecular Proton Fraction
(MPF) measured using MTI is also useful in studying WM myelination but it suffers from
SAR limitation [11]. Neither NODDI nor MPF can track changes related to Fe accumu-
lation in GM. Quantitative Susceptibility Mapping (QSM) can make up for a few of these
limitations like reduced scan time, safe SAR limit, and tracking both Fe, myelin, and other
potential changes.

In AD neurodegeneration amyloid plaque and tau tangles may accumulate in the cortical
gray matter (GM). Age-related Fe accumulation is also a well-known phenomenon in the
human brain. QSM is a well-established technique to assess iron accumulation in the brain
caused by aging or AD. On top of that plaques and tangles may have their diamagnetic
susceptibility. Brain white matter contains myelin demonstrating diamagnetic susceptibility
too. So, in healthy and AD brain iron and other para- and dia-magnetic species have been
and can be tracked using QSM. In particular, substantia nigra is very distinctive in terms
of iron accumulation in PD and the iron concentration is a discriminatory factor between
healthy and PD brain [12]. Using QSM MS lesions has also been made visible and different
kind of lesions have been identified [13].

So, far, however, QSM has been used in a limited capacity to mostly track iron-related
neurodegeneration in AD. In a voxel, different sources of susceptibility can be present. QSM
is an estimate of the overall average susceptibility of a voxel, hence, lacks the information
about composition of the sub-voxel level susceptibility. As a result, at a voxel level, the
susceptibility estimation lacks accuracy. On top of that if any kind of image registration or
warping technique is used or region of interest (ROI) analysis is performed nearby voxels
intermix with each other causing further loss of information. Additionally, at an ROI level,
the distribution of susceptibility sources is as much important as the magnitude of the
sources. Hence, the spread of susceptibility distribution, and other properties can be very
useful in tracking susceptibility signature of neurodegeneration.
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Recently many techniques have been proposed to separate susceptibility sources on a sub-
voxel level [14, 15, 16]. In particular, DECOMPOSE-QSM [14] has been proposed which
only uses MEGRE data and no additional scan to compartmentalize susceptibility sources.
In the current work, we used this susceptibility separation technique to better understand
the relationship between AD pathology and susceptibility.

In Chapter 2 the fundamental concepts related to QSM and DECOPMOSE-QSM are
discussed. The data analysis approach and data details are also presented.

In Chapter 3 paramagnetic compartment susceptibility (PCS) I used to understand iron-
related degeneration in cortical and sub-cortical GM. AD patients were compared with
healthy controls to find areas of differences caused by iron accumulation. Amyloid and tau
PET were also correlated with PCS to assess how much iron-related information is shared
between these different modalities on an ROI level. A similar analysis with a different cohort
is repeated to assess the reproducibility of our results.

In Chapter 4 diamagnetic component susceptibility (DCS) is used to find areas of dif-
ferences between healthy controls and AD patients. Areas in GM are observed to see if to
assess protein accumulation. Areas of differences in WM are analyzed to observe myelin
degeneration. Even in CSF differences may exist between AD patients and controls because
of structural or compositional differences.

In Chapter 5 the effect of susceptibility distribution parameters is analyzed to explain
the difference between patients and controls as well as pathology progression. Susceptibil-
ity metrics combined with genetic information and other biomarkers may pave the way to
understanding AD pathogenesis better.

In Chapter 6 the overall conclusion of current work and future directions to be explored
is introduced.
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Chapter 2

Background and Methodology

In this chapter, the tools and techniques employed in current research will be introduced.
Quantitative susceptibility mapping (QSM) is a tool to recover information from MRI phase
images. Previously only magnitude images were used for imaging the brain and other organs
in health and disease and the phase images were discarded. Also, susceptibility variation
was interpreted as an artifact rather than actual information [17]. However, over the last
few decades phase images are being investigated to retrieve further information and QSM is
one of those approaches. 100s of algorithms have been proposed and are being proposed for
QSM reconstruction. In current work, STAR-QSM [18] has been employed to study tissue
susceptibility maps.

QSM is the basic way of tracking susceptibility variation in bio-tissue. However, it is
limited in terms of separating effects from different polarities of susceptibility. Recently
several approaches have been used to extract further information from QSM. One of the
ways is to retrieve multi-frequency compartments [19, 20] from localized signals. Another
approach is to compartmentalize susceptibility [14, 16]. In the current work, a susceptibility
separation technique has been chosen for further investigation of its performance to study
disease pathology progression. The approach selected here is DECOMPOSE-QSM. In this
chapter, DECOMPOSE-QSM [14] and relevant processing steps will be introduced as a
starting point for the discussions and analyses to follow in the next chapters.

Voxel-wise and ROI analysis have been used to study the difference between healthy
control (HC) participants and patients. As will be discussed in later chapters Alzheimer’s
disease (AD) has been chosen as the disease of study for the current work. Differences in
QSM between AD patients and HC participants will be introduced in terms of voxel-wise
and ROI analysis.

2.1 STAR-QSM

The basic principle behind QSM is the relationship between phase signal, ϕ and magnetic
field intensity variation, ∆Bz as shown in Eqn. 2.1 [21] and Eqn. 2.2 [22]. Here, ϕ(r⃗,TE) is



CHAPTER 2. BACKGROUND AND METHODOLOGY 5

the phase of the signal at any point r⃗ at echo time TE, ϕ0(r⃗,TE) is a coil sensitivity dependent
phase offset, γ is the gyromagnetic ratio, k is the k-space vector and kz its z-component,
B0 is the applied magnetic field, taken to be in the z-direction, and χ(k) is the Fourier
transform of the magnetic susceptibility distribution. QSM computation is performed by
inverting Eqn. 2.2.

ϕ(r⃗,TE) = ϕ0(r⃗,TE) + γ ·∆Bz(r⃗) · TE, (2.1)

∆Bz(k) = B0(1/3− k2
z/|k|2)χ(k). (2.2)

For the acquisition of QSM, the phase of the signal has to relate to the local magnetic
field. In gradient-echo-based echo-planar imaging or gradient recalled echo (GRE) sequence
the phase is a function of the local magnetic field making these good candidates for QSM
reconstruction [21, 23]. The sequence used in the current study is multi-echo gradient recalled
echo (MEGRE) where the phase information at multiple TE is available. The raw magnitude
and phase images of a particular slice for a subject in the current study are presented in Fig.
2.1(A) and Fig. 2.1(B) containing images of all collected TE.

In Fig. 2.1(B) the discontinuity in the phase image occurs from phase wrapping happen-
ing during acquisition. Laplacian phase unwrapping is used which is fast and robust because
of taking advantage of fast Fourier transform (FFT) [24]. In Fig. 2.1(C) Laplacian phase
unwrapped images at all TE are presented. Using the Spherical Mean Value (SMV) property
of harmonic functions a Variable-kernel Sophisticated Harmonic Artifact Reduction of the
Phase data (VSHARP) [25, 26] method has been used to remove the background field using
SMV size of 12 pixels. Images after VSHARP processing is presented in Fig. 2.1(D).

After VSHARP as shown in Fig. 2.1(D), the local tissue phase is obtained. Using Eqn.
2.1 and 2.2 now susceptibility could be reconstructed. However, Eqn. 2.2 is ill-posed on a
conical surface in k-space (k2 − 3k2

z = 0) resulting in streaking artifacts in the computed
QSM [18]. One solution would be to sample k-space in multiple orientations with a technique
named COSMOS [27], but that is too time-consuming and hence, inapplicable for clinical
setup. Therefore, we resort to Streaking artifact reduction for quantitative susceptibility
mapping (STAR-QSM) [18] approach which showed improved accuracy in reconstruction for
sources with large dynamic range. The images after reconstruction using STI Suite [28] for
all the echoes are presented in Fig. 2.1(E). Averaging multiple TE images a mean QSM
image can also be generated as shown in Fig. 2.2.
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Figure 2.1: Sample images at different steps of QSM processing from an 89-year-old subject.
(A) Raw magnitude images, (B) raw phase images, (C) unwrapped phase images using
laplacian phase unwrapping, (D) background field removed images using VSHARP, and (E)
final QSM images for all 5 echoes in the acquired data.

2.2 DECOMPOSE-QSM

First introduced by Chen et al [14] DiamagnEtic COMponent and Paramagnetic cOmpo-
nent SEparation or DECOMPOSE-QSM has been shown to separate paramagnetic compo-
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nent susceptibility (PCS) and diamagnetic component susceptibility (DCS) using the same
MEGRE data used in QSM reconstruction without the need of any additional scan. The
principle is based on Eqn. 2.3.

S(t;Cp, Cn, χp, χn, R
∗
2,0) = Cpe

−(aχp+R∗
2,0+i2/3χpγB0)t + Cne

−(−aχn+R∗
2,0+i2/3χnγB0)t + C0e

−R∗
2,0t,
(2.3)

where, S is the localized signal generated from each voxel, χ(p) represents the volume
susceptibility of the paramagnetic compartment, χ(n) represents the volume susceptibility
of the diamagnetic compartment, R∗

2,0 is the transverse relaxation rate of the reference sus-
ceptibility medium, a = 323.5 Hz/ppm at 3T, Cp, Cn, C0 indicate the concentrations of the
corresponding components.

Figure 2.2: Different outputs from DECOMPOSE-QSM model from an 89-year-old subject.

First QSM is computed and signal S is generated using localized QSM value at each
voxel, a signal model is initialized, and different parameters are solved using a non-linear
solver. Later PCS and DCS are defined accounting for complex tissue environment as if
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either only paramagnetic or diamagnetic species is present in the voxel along with neutral
component as discussed in [14]. Different outputs of the DECOMPOSE-QSM algorithm for
a chosen subject are plotted in Fig. 2.2.

In Fig. 2.2 Cp and PCS delineated the presence of paramagnetic species primarily iron in
cortical and subcortical areas. Cn and DCS demonstrated brightened signals in myelinated
white matter (WM) regions. Representing the reference susceptibility C0 shows a uniform
pattern everywhere except deep gray matter (GM). QSM in this figure is computed by
taking the temporal average of all the TE-dependent QSM in Fig. 2.2 χp and χn did not
show too much structural delineation because they represent only the volume susceptibility
of each species in each voxel. Here, R∗

2 is an intermediate parameter depicting the transverse
relaxation time of the reference tissue.

2.3 Data details and method

2.3.1 Data information

Demographic details of the data used in the analysis is presented in Table 2.1. MRI, PET,
imaging data, and demographic data were collected at the Mayo Clinic Alzheimer’s Disease
Research Center (MCADRC). Data from 71 β-amyloid and tau negative cognitively unim-
paired (CU) Healthy control (HC) participants and 49 β-amyloid and tau positive [29] AD
patients were used in the current analysis. HC and AD groups were compared using the χ2

test for sex. No significant difference was found between the AD and the HC group (χ2 =
0.64, p > 0.4). Hence, sex was not considered a confounding variable for any of the analyses
performed in this article. The study was approved by the Mayo Clinic institutional review
board. All participants provided informed written consent; a legally authorized representa-
tive provided consent for cognitively impaired participants, as necessary. MRI, PET, and
other data from the MCADRC are available to qualified academic and industry researchers by
request to the MCADRC Executive Committee (https://www.mayo.edu/research/centers-
programs/alzheimers-disease-research-center/research-activities/mayo-clinic-study-aging/for-
researchers/data-sharing-resources).

Variable AD patients (n=49) CU HC participants (n=71)
Male/female 24/24 (50%/50%) 42/29 (59%/41%)

Age 67 (60, 76) 65 (52, 71)
STMS 22 (18, 28) 37 (36, 38)

Education 16 (13.75, 16) 16 (14, 16.5)

Table 2.1: Demographic details of selected participant data. Values are displayed as median
(1st quartile, 3rd quartile). STMS: Short Test of Mental State
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2.3.2 MRI scan

T1-weighted structural scans were performed on a 3T MRI scanner (Siemens MAGNETOM
Prisma, software version: VE11C) using a 3D Magnetization Prepared Rapid Acquisition
Gradient Recalled Echo (MPRAGE [30]) pulse sequence. The scan parameters were; TE/TR
of 3/2300 ms, TI of 900 ms, and 0.8×0.8×0.8 mm3 imaging resolution. The MPRAGE image
for each participant was segmented using FreeSurfer 5.3 (https://surfer.nmr.mgh.harvard.edu/)
[31, 32] for defining GM ROIs to be used later for correlation analysis.

3D Multi-echo GRE data (MEGRE) with 5 echoes were collected in the same exam with
the following acquisition parameters: TE1/∆TE/TE5 = 6.71/3.91/22.35 ms, matrix size =
384× 269× 88, spatial resolution = 0.52× 0.52× 1.8 mm3, with GRAPPA 2x acceleration;
the total acquisition time per participant was 6 min 37 sec. More details on the acquisition
can be found in Cogswell et al [33]. The MEGRE complex images were down sampled in-
plane by a factor of two to reduce anisotropy of the spatial resolution, hence, improving the
accuracy of the dipole kernel inversion for QSM and reducing computation time during the
processing of DECOMPOSE-QSM.

2.3.3 PET scan

Late uptake PiB PET images for detecting β-amyloid plaques were acquired on PET-CT
scanners for 40–60 minutes and Flortaucipir (FTP or tau) for 80-100 minutes after injection.
Each had four, five-minute frames. Low-dose CT scanning was performed for attenuation
correction. Reconstructions were performed on-scanner with iterative ordered subset expec-
tation maximization (OSEM) algorithms. A 5 mm Gaussian post-reconstruction filter was
applied, along with standard corrections for attenuation, scatter, random coincidences, and
decay. Four-frame dynamic PET images were co-registered with a group-wise rigid registra-
tion to correct for cross-frame motion and averaged to produce a single static (summed) PET
image. These images were co-registered with T1-weighted structural images using SPM12
[34]. Voxel-wise PET SUVr values were computed by normalizing with cerebellar crus GM
[35]. More details on PET imaging can be found in [33].

2.3.4 Image registration and other tools

Structural images were warped to standard (Montreal Neurological Institute) MNI [36] space
using (ANTs) [37]. First, brain masks from the MPRAGE images were extracted using FSL
[38] Brain Extraction Tool (BET). Then the first echo of the MEGRE magnitude images was
co-registered to BET extracted MPRAGE image using rigid transformation with ANTs. For
each participant, a composite transform was generated combining the transforms from QSM
to MPRAGE T1 structural space and the one from native T1 structural space to MNI T1

space. This composite transform was used to warp an individual’s QSM map to MNI space,
and this process was repeated for all participants. All QSM maps warped to MNI space were
concatenated and sent as input to the FSL tool named randomise [39] for group comparison.
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The disease status and age of the patients were used to generate the design matrix. Then
FSL randomise was used for group comparison using the default 5000 permutations [40,
41]. The Threshold-Free Cluster Enhancement (TFCE) [42] statistics with family-wise error
(FWER) correction were reported. The randomise analysis was performed for the full brain
tissue volume without spatial smoothing. MNI space was segmented using FSL FMRIB’s
Automated Segmentation Tool (FAST) [43]. Region-specific results were drawn by applying
tissue segmentation masks to the randomise outputs. For voxel-wise analysis, corrected
p < 0.05 was considered. BrainSlicer [44] was used to plot brain images.

2.4 Sample QSM voxel-wise analysis

A sample voxel-wise group difference between AD patients and HC participants will be
presented here. Fig. 2.3 presents different steps involved and important image registration
and warping examples.

Fig. 2.4 presents voxel-wise group differences between AD patients and HC participants.
Increased QSM is observed in cortical and subcortical GM areas in AD patients. The com-
parison in WM is a little complicated because of negative values of susceptibility. The areas
with larger QSM will be regions with decreased susceptibility because decreased magnitude
represents increased negative value. This problem is avoided if negative and positive QSM
are analyzed separately. In our analysis of Chapter 4 |DCS| is already separated from its
positive counterpart so in that case lower |DCS| will represent areas of lower diamagnetic
susceptibility.

Finally, Fig. 2.5 depicts a representative axial slice of different imaging contrasts of the
averaged images across subjects in the MNI space utilized in the current work. Structural
MPRAGE images were used for segmentation and normalization. The averaged structural
image in the AD group shows more ventricular space compared to HC participants in the
chosen slice. PiB and FTP PET were used as pathological markers of dementia. The aver-
aged PiB image of AD patients showed widespread elevated SUVr in cortical GM compared
to HC participants. The average FTP SUVR in AD group was higher in temporal cortex
compared to HC participants. QSM values show the bulk magnetic susceptibility relative to
the reference (the mean susceptibility of the whole brain volume). A positive value (bright)
means paramagnetic susceptibility and a negative value (dark) means diamagnetic suscepti-
bility. QSM and MEGRE magnitude images were used as inputs to the DECOMPOSE-QSM
algorithm. Average QSM and PCS images showed a stronger signal in basal ganglia in the
AD group compared to HC participants in the slice shown. The average |DCS| value was
weaker in the AD group compared to HC participants in the internal capsule region. Also,
the brighter |DCS| regions had more well-defined and sharper boundaries in HC participants
compared to AD patients.
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Figure 2.3: (A) Pipeline, (B) first echo MEGRE skull stripped (using fsl bet) magnitude,
(C) skull-stripped MPRAGE, (D) MEGRE first echo magnitude warped to MPRAGE, (E)
MPRAGE warped to MNI space, (F) MNI template, and (G) QSM warped to MNI template
from the same subject presented in Fig. 2.1.

2.5 Conclusion

Susceptibility measurements in terms of QSM and DECOMPOSE-QSM have been reviewed
in this chapter. In later chapters, these susceptibility metrics will be analyzed thoroughly in
studying AD-driven neurodegeneration.
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Figure 2.4: QSM voxelwise group difference between AD patients and HC participants. In
red clusters QSMAD > QSMHC and in blue clusters QSMAD < QSMHC.

Figure 2.5: Representative slice of average MNI space images of different contrasts for HC
and AD group. Ventricles appear bigger in structural images of AD subjects compared to
HC participants as seen in the structural MPRAGE (top left) panel. Strong PiB PET (top
middle) signal spread over the whole cortical GM was present for the AD patients dissimilar
to a healthy brain which was marked by non-specific PET SUVr in the WM. FTP PET SUVr
(top right) was high in the temporal cortex, which is typical of an AD patient but absent
in HC. QSM (bottom left) showed stronger contrast in the deep GM AD patients compared
to HC participants. PCS (bottom middle) demonstrated brighter contrast in deep GM for
AD patients compared to HC participants. |DCS| (bottom right) showed an overall brighter
contrast in HC participants compared to AD patients. In cortical WM |DCS| map in the
AD group showed reduced contrast compared to the HC group. Note that the DCS map is
shown in absolute value for simplicity. The higher the |DCS| value the more diamagnetic
content is. a.u.: arbitrary unit. SUVr: standardized uptake value ratio. ppb: parts per
billion, 10−9.
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Chapter 3

Study of Iron Mediated AD
Neurodegeneration Using
Paramagnetic Susceptibility in QSM

Iron plays a vital role in brain function, particularly in neurotransmitter metabolism, myelin
formation, and mitochondrial function [45]. Although iron is essential for human cognitive
behavior the accumulation of excess iron can induce degenerative processes in brain tissue.
Several processes have been hypothesized for an increase in brain iron, particularly with aging
brain iron accumulation is a very well-known phenomenon [46]. In Alzheimer’s disease (AD)
iron is hypothesized to accumulate with amyloid plaques [47]and tau tangles [48]. However,
whether iron accumulation is only associated with protein accumulation or is responsible for
further downstream degeneration yet to be studied. Irrespective of the origin, iron accumu-
lation is known to happen in the brain with AD and other neurodegenerative diseases [49].
Increased iron further affects homeostasis and catalyzes the fenton reaction generating reac-
tive oxygenation species (ROS) and participating in damaging the DNA structure, resulting
in lipid peroxidation, affecting mitochondrial function, and ultimately neuronal cell death
known as ferroptosis [50].

QSM has been frequently used to track iron accumulation in AD. Acosta-Cabronero et al
[51] showed a voxel-wise difference between AD patients and controls attributing the QSM-
measured susceptibility difference to iron accumulation with a very small number of subjects
(19 in total). Du et al [49] showed a difference between AD patients and control in deep gray
matter using QSM. Kim et al also showed a difference between AD and controls in mostly
deep gray matter using QSM, number of patients in that study was 57 in total. So far most of
the studies conducted used QSM as a measure of iron. If the paramagnetic susceptibility of
iron is measured more accurately without the competing effect of diamagnetic susceptibility
using source-separation algorithms, it is anticipated to improve the accuracy to track iron-
related changes associated with neurodegeneration. In the current work using a relatively
larger cohort, 49 AD patients and 71 controls, and using PCS as a measure of paramagnetic
susceptibility we obtain voxel-wise group difference between patients and controls. On top



CHAPTER 3. STUDY OF IRON MEDIATED AD NEURODEGENERATION USING
PARAMAGNETIC SUSCEPTIBILITY IN QSM 14

of that, using ROI based correlation of the AD patients, we associate tau PET with PCS as
a proxy of iron accumulation in AD neurodegeneration. This kind of study is necessary to
assess the usefulness of susceptibility source-separation techniques such as DECOMPOSE-
QSM and find new ways of using source-separated susceptibility to probe more detailed
information about iron-mediated neurodegeneration in AD.

3.1 Voxel-wise group analysis

A metric defined by the ratio of the number of voxels with a greater PCS in AD patients
relative to the HC participants and the number of voxels with a smaller PCS for the same
combination was computed. The ratio is denoted by m and subscripted by the corresponding
susceptibility metric is as follows:

mPCS =
number of voxels with PCSAD > PCSHC

number of voxels with PCSAD < PCSHC

. (3.1)

3.1.1 AD patients differ from healthy controls at GM in
voxel-wise analysis of PCS

In Fig. 3.1 regions with increased iron have been shown in red after a voxel-wise group
analysis between amyloid and tau-positive healthy controls and amyloid and tau-negative
AD patients. The clusters with increased iron predominantly reside in precentral cortex,
frontal cortex, temporal cortex, parahippocampal cortex, and subcortical regions such as
pallidum and putamen. In frontal cortex and hippocampus iron accumulation was colocalized
with amyloid and p-tau (hyperphosphorylated-tau) as reported previously [52]. Elevated iron
levels were also seen in Inferior temporal cortex, hippocampus, putamen, and globus pallidus
revealed by MRI [52]. An increase of iron in frontal and temporal cortex has been shown
to be associated with reduced performance in language tasks [53, 54]. Increased ferritin
iron accumulation in hippocampus has been shown to damage its structural integrity [55].
Hippocampal iron increase has been associated with reduced episodic memory [53].

The voxel-wise analysis in the current work not only conforms to the regions of iron accu-
mulation but establishes the viability of PCS as a measure for iron accumulation observation.
The pattern emerging from the voxel-wise analysis can be considered for further probing the
origin of this iron-related dyshomeostasis in AD [56]. Also, the pattern of iron accumula-
tion seems asymmetric in that iron more prominently accumulates in the left hemisphere.
In fact, this left hemispheric asymmetric degeneration faster than its right counterpart has
been reported before [57]; in our analysis, we see the confirmation of this occurrence through
iron accumulation represented by PCS.

In Fig. 3.1 regions with lower PCS in AD patients compared to HC participants are
marked in blue. Clusters are primarily located in a very small portion of the frontal cor-
tex, part of thalamus, and caudate nucleus. While an increase in iron is well-established
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Figure 3.1: Result of voxel-wise group analysis of PCS between patients and controls. Pre-
dominant clusters with higher PCS in AD (red) are present in precentral cortex, frontal cor-
tex, temporal cortex, precuneus, parahippocampal cortex, and subcortical deep gray matter
(putamen and pallidum). Predominant clusters with lower PCS in AD (blue) are primarily
located in the frontal cortex, thalamus, and caudate nucleus.

phenomenon in AD this reduction of iron in AD seems interesting. It is not surprising that
some of the clusters will have lower iron in AD patients as iron is dysregulated in the AD
brain. Further confirmation is needed through histology that some regions may show a re-
duction of iron in AD. It should also be stressed the number of voxels with higher PCS in
AD patients (compared to HC participants) far outweigh the number of lower PCS; to be
precise the metric defined in Eqn. 3.1 mPCS is 4.4 for GM. So, overall a higher iron load is
confirmed for AD patients compared to HC participants. The pattern established by PCS is
in well-agreement by current literature and yet another way to confirm the presence of iron
in potentially a more accurate manner because PCS is not contaminated by diamagnetic
sources even at the voxel level.
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3.1.2 AD patients differ from healthy controls at WM in
voxel-wise analysis of PCS

Oligodendrocytes, microglia, and astrocytes contain much more iron compared to neurons
[52]. Hence, the increase of iron in these cells may become visible in iron-related contrasts
such as PCS. Previously because susceptibility separation techniques were not being used,
QSM in the WM primarily represented myelin. However, with DECOMPOSE-QSM tech-
nique PCS in WM has also been assessed.

Figure 3.2: Clusters with higher PCS (red) in the WM of AD patients compared to HC
participants and lower PCS (blue) in AD patients compared to HC participants. The number
of voxels with higher PCS is much larger compared to lower PCS in the AD group. Clusters
with higher PCS in AD patients are located in frontal white matter, superior fronto-occipital
fasciculus, superior corona radiata, genu, and splenium of corpus callosum, and cerebral
peduncle to name a few with a very widespread pattern. On the other hand, lower PCS is
found only in a few clusters located in the cingulum bundle, and some part of the thalamic
white matter.

In WM regions with higher PCS in AD are prominently located in frontal white matter,
superior fronto-occipital fasciculus, superior corona radiata, genu, and splenium of corpus
callosum, cerebral peduncle whereas regions with lower PCS in AD are much less prevalent
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in the WM. As we already know iron homeostasis is negatively affected in AD pathology
it is not unexpected that even in WM regions the concentration of iron would be high
compared to HC participants. Increased iron in hippocampal microglia, middle temporal
gyrus adjacent WM, and along myelinated fibers have been reported previously [52, 58,
59, 60, 61]. The increase of iron in cortical III-V layers and microglia is hypothesized to
provide high iron concentration for myelinization and oligodendrocyte differentiation [62].
Hippocampal fimbria has been shown to have higher iron levels (measured via QSM) in
AD patients [63]. The ratio of voxels with higher PCS in AD patients (compared to HC
participants) to that of voxels with lower PCS in AD patients, mPCS in WM was computed
as 6.5; i.e. majority of the voxels in AD patients showed higher PCS indicating an increase
of iron in WM. So, in AD throughout the whole brain, the overall iron load is increased not
just in the cortex or gray matter.

3.1.3 AD patients differ from healthy controls at CSF in
voxel-wise analysis of PCS

As shown in Fig. 3.3 in CSF too, the number of voxels with higher PCS in AD patients
is much larger compared to that of HC participants. The mPCS value for CSF was 4.78.
An increase in ferritin, an iron storage protein, has been reported in AD [54]. CSF ferritin
level has been shown to be associated with cognitive decline [53]. The concentration of
other proteins such as melanotransferrin and hepcidin also changes in CSF indicating again
dysregulation of iron homeostasis in the brain. Our findings support an increase of iron level
in the AD brain through PCS but this too needs to be further verified through more studies
and phantom experiments.

3.2 ROI analysis in select gray matter region

Tau accumulation is a key factor in Alzheimer’s Disease progression [64, 65]. Therefore,
we evaluated PCS values of regions primarily affected by tau pathology and altered most
during the progression of the disease. ROIs were chosen based on how frequently or severely
they are affected by tau pathology based on a review of relevant articles [66, 33, 7, 67, 68,
69]. ROIs included for the analysis were the entorhinal cortex, parahippocampal cortex,
amygdala, fusiform gyrus, inferior temporal cortex, middle temporal cortex, superior tem-
poral cortex, posterior cingulate cortex, precuneus, and lingual cortex. Additionally, deep
grey matter regions of the caudate nucleus, putamen, and globus pallidus were also included
because of their apparent importance found in other QSM literature [51, 49, 70]. Correlation
analysis for the ROIs shown in Fig. 3.4 was performed for 48 β-amyloid and tau-positive AD
patients only, one β-amyloid and tau-positive AD patient was not included due to FreeSurfer
segmentation error. Rstudio [71] (Rstudio, Inc, Boston, MA) 2022.07.2 Build 576 for Ma-
cOS and R 4.2.1 were used for all ROI-based statistical analyses including the computation
of linear regression and Pearson’s correlation coefficient. The p-value was corrected with
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Figure 3.3: Regions of statistically significant (p < 0.05) higher (red) and lower (blue)
magnitude PCS in the CSF of AD patients compared to the HC participants in MNI space.
There are more clusters in higher PCS images for AD group compared to the lower PCS
image.

considerations of multiple comparisons with 5000 permutations [72, 73]. For ROI analysis,
corrected p < 0.05(∗), p < 0.01(∗∗), p < 0.001(∗ ∗ ∗) were considered.

3.2.1 PCS correlated with tau PET measures and age in ROI
analysis in the Mayo clinic cohort

In the ROIs chosen, cortical ROIs showed a positive association between PCS and tau PET
as shown in Table 3.1 and Fig. 3.5. Even though only a few ROIs survived the significance
test based on corrections for multiple comparisons the association is positive for tau PET.
This strengthens the hypothesis that tau PET colocalizes with iron. Previously, a positive
association between QSM and tau PET was observed in inferior temporal cortex [48]. PCS
instead of QSM is used in the current analysis. Arguably, PCS can represent a more accurate
measure of iron compared to QSM as PCS does not contain any contribution from any
diamagnetic source in voxel level and ROI level. The association between amyloid and PCS
is very small for most of the ROIs. It makes sense because these ROIs are known for tau
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Figure 3.4: Regions included in the correlation analysis. The slice locations are shown des-
ignating the midpoint as the origin (0,0,0) of a 65-year-old male amnestic dementia patient’s
FreeSurfer processed structural image space with a matrix size of 256 × 256 × 256. Here,
(1) Inferior temporal cortex, (2) entorhinal cortex, (3) fusiform cortex, (4) middle temporal
cortex, (5) superior temporal cortex, (6) amygdala, (7) precuneus, (8) parahippocampal cor-
tex, (9) posterior cingulate cortex, (10) lingual cortex, (11) caudate nucleus, (12) putamen,
and (13) globus pallidus.

accumulation, not amyloid.

Figure 3.5: (A) Limbic, (B) neocortical, and (C) subcortical regional association between
mean PCS and tau PET for selected ROIs. The number in the parenthesis represents Pear-
son’s correlation coefficient. Here, *p < 0.05, **p < 0.01, ***p < 0.001, after correction for
multiple comparisons using permutation tests. Also, am = amygdala, ph = parahippocam-
pal cortex, fusi = fusiform gyrus, ling = lingual cortex, precun = precuneus, put = putamen,
cn = caudate nucleus.
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ROI Pearson’s r for PCS Pearson’s r for PCS
and tau PET and amyloid PET

Entorhinal cortex −0.05 0.02
Parahippocampal cortex 0.33 0.1
Inferior temporal cortex 0.21 0.07
Middle temporal cortex 0.15 0.05
Superior temporal cortex 0.21 0.11

Fusiform gyrus 0.29 0.07
Lingual cortex 0.48** 0.12
Precuneus 0.37 −0.01

Posterior cingulate cortex 0.11 0.05
Amygdala −0.13 −0.01
Putamen 0.49** 0.17

Caudate nucleus 0.43* 0.05
Globus pallidus 0.27 0.08

Table 3.1: Pearson’s correlation between amyloid and tau PET and PCS for AD patients for
the Mayo clinic cohort.

ROI Pearson’s r for PCS and Pearson’s r for PCS and
age for AD patients age for HC participants

Entorhinal cortex 0.12 0.27
Parahippocampal cortex −0.07 0.1
Inferior temporal cortex −0.23 0.07
Middle temporal cortex −0.13 0.06
Superior temporal cortex −0.17 −0.11

Fusiform gyrus −0.23 −0.09
Lingual cortex −0.29 −0.26
Precuneus −0.27 −0.54***

Posterior cingulate cortex −0.17 −0.42**
Amygdala 0.39 0.17
Putamen 0.21 0.61***

Caudate nucleus 0.06 −0.02
Globus pallidus 0.25 0.07

Table 3.2: Pearson’s correlation between PCS and age for AD patients and HC participants
for the Mayo clinic cohort.
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Figure 3.6: Regression line and correlation coefficient between PCS and age for AD patients
(aDem) and HC (CU) participants in putamen.

The association between age and PCS is another important measure. In cortical ROIs,
the association is mostly negative whereas for AD patients the association strength is very
small but positive for HC participants as shown in Table 3.2. In subcortical ROIs, this
association strength is positive for both groups however, for the AD group the association
strength is much weaker, particularly in Putamen. This putaminal association between age
and tau PET is particularly noticeable for AD patients. The iron accumulation is more
prominent in HC participants compared to the healthy controls in AD patients for putamen
as shown in Fig. 3.6; these two correlation coefficients are significantly different tested using
Fisher Z-transform. So, the iron accumulation process in putamen with age is different
between healthy control and AD patients. Previously Tiepolt et al [70] showed β-amyloid
PET shows a strong negative correlation with average QSM in Putamen, pointing out the
importance of putamen in AD pathological progression. In the current analysis importance
of putamen is established in terms of the association between age and PCS. These results
encourage further study of putamen for understanding AD pathological progression.
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The apparent insignificant association between PCS and age is baffling for most other
ROIs, particularly in HC participants. However, it should be mentioned that the current
study is a cross-sectional one. In a longitudinal study iron accumulation with age may be
more prominent, particularly in cortical regions. Also, the iron load in cortical regions is
much smaller compared to subcortical regions. Additionally, the number of echo and recon-
struction parameters may play a role in determining PCS values. Effects of atrophy and
image registration error, and error accumulation during data processing all effects must be
considered while explaining these associations. Prospective studies with optimized acquisi-
tion parameters are necessary to gain the advantage of this novel separation technique.

3.2.2 ROI analysis in select gray matter region in UCSF cohort

For the sake of reproducibility correlation analysis was performed for a smaller number of
scans collected at UCSF MAC (Memory and aging center). The demographic information
of the UCSF AD patients is the following; age: 63.3 ± 9.6 (Average ± standard deviation),
MMSE 18:20:23 (1st: 2nd: 3rd quartile), and M/F: 9/6. Multi-echo GRE with 8 echoes
data was collected on a SIEMENS Prisma 3T scanner with TE1/∆TE/TE8 of 4/5/39 ms
and a native resolution = 0.86× 0.86× 2 mm3. T1 weighted structural image was acquired
using an MPRAGE sequence with TE/TR of 2.9/2300 ms and a resolution of 1×1×1 mm3.
The MPRAGE image for each subject was segmented using FreeSurfer 5.3 for normalizing
the tau PET images and defining the ROIs for analysis. After intravenous injection of
Flortaucipir (FTP, tau PET tracer) and PIB (β-amyloid tracer), CT and tau PET scans
were collected and processed using the standard procedure on a Siemens Biograph PET/CT
scanner. Details of PET analysis can be found elsewhere [64].

The association between PCS and tau PET is still positive in cortical areas as shown in
Table 3.3, however with a much stronger correlation coefficient. It can be noted the sample
size is pretty small here so, it is difficult to draw a conclusion. On top of that, the number
of echoes is 8 instead of 5 as in Mayo Clinic data, which may affect reconstruction accuracy
in DECOMPOSE-QSM. With more echo reconstruction accuracy improves. Basically, more
standard sequence design and data collection is needed for future reproducibility studies.

The association between age and PCS seems very small. Given the cohort includes only
AD patients, the relationship between age and iron accumulation is complicated. Also, in
putamen for both the Mayo Clinic and the UCSF cohorts the small positive association
between PCS and age is noticeable.

3.3 Conclusion

The role of iron in AD neurodegeneration is an active field of research. New techniques and
more accurate measures are needed to understand iron dyshomeostasis in AD. Through voxel-
wise comparison of controls and AD patients and the correlation between PET measures and
PCS we have established the usefulness of PCS as a meaningful measure of tracking iron-
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ROI Pearson’s r for
PCS and age

Pearson’s r for
PCS and tau
PET

Pearson’s r for
PCS and amyloid
PET

Entorhinal cortex 0.09 0.29 0.3
Parahippocampal cortex 0.27 −0.04 −0.08
Inferior temporal cortex 0.18 0.56 0.15
Middle temporal cortex 0.14 0.52 −0.34
Superior temporal cortex 0.09 0.61 0.05
Fusiform gyrus −0.06 0.58 0.22
Lingual cortex 0.57 −0.29 −0.37
Precuneus −0.41 0.50 0.30
Posterior cingulate cor-
tex

0.23 0.29 −0.23

Amygdala 0.60 −0.1 −0.41
Putamen 0.36 0.77 0.44
Caudate nucleus −0.02 0.65 0.40
Globus pallidus −0.45 0.26 0.17

Table 3.3: Pearson’s correlation between amyloid PET, tau PET, and age vs PCS for cog-
nitively impaired patients for the UCSF cohort.

related neurodegeneration. Multi-center and longitudinal studies and other benchmarking
techniques should be applied to establish the feasibility and understanding of this novel
marker.
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Chapter 4

Diamagnetic Susceptibility in
Neurodegenerative Brain

One of the familiar pathological changes in AD is the accumulation of two proteins in the
brain gray matter (GM), namely, β-amyloid in the form of plaques [74, 75] and tau in the
form of tangles [76]. Often these plaques and tangles colocalize with iron, e.g., because of
undergoing neuroinflammation [77, 48]. In addition to these changes, alteration in the white
matter (WM), which may include neurite damage, glial damage, cell death, and eventual
atrophy, is known to happen in many neurodegenerative diseases such as AD [63, 78, 79],
multiple sclerosis (MS) [80], small vessel disease (SVD) [81] and so on. Recently, many
studies [4, 3] have reported β-amyloid content alterations in the cerebrospinal fluid (CSF) in
the course of neurodegeneration. Specifically, a decreased level of β-amyloid-42 in CSF has
been reported to potentially be a prominent AD bio-marker. Positron emission tomography
(PET) imaging is the gold standard to detect β-amyloid in the brain GM clinically using
Pittsburg compound (PiB), and tau-protein using Flortaucipir (FTP) [67]; however, PET
imaging suffers from low spatial resolution, radiation exposure, and off-target binding [33].

The DECOMPOSE-QSM [14] postprocessing method has been developed to resolve the
sub-voxel level susceptibility mixture by calculating the paramagnetic component suscepti-
bility (PCS) and the diamagnetic component susceptibility (DCS) using a signal model with
summation of exponentials. PCS is dominantly affected by iron, and DCS can inform patho-
logical changes caused by myelin degeneration, protein aggregation, and other species with
diamagnetic susceptibility. While paramagnetic iron accumulation in the brain is one of the
widely studied phenomena in healthy aging and neurodegenerative process, it is important
to study its counterpart, namely the diamagnetic susceptibility or DCS alteration in AD
more extensively.

In the current chapter, we investigate the DCS of the whole-brain volume for cohorts of
amnestic dementia (AD) patients and healthy controls (HC). By using voxel-wise group com-
parison, we show that whole brain differences exist between AD patients and HC participants
for all GM, WM, and CSF regions. With β-amyloid and tau PET scans, we hypothesize
that the higher voxel-wise |DCS| (the absolute value of DCS) values for AD participants,
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relative to controls, in GM, may result from protein aggregations; the observed lower |DCS|
value in WM may be caused by demyelination and in CSF may indicate β-amyloid protein
ratio change. ROI-based correlation analysis suggests demyelination may also happen in the
GM because of tau-protein aggregation.

4.1 Voxel-wise group analysis

Demographic and data acquisition information for this analysis has been presented in Chap-
ter 2. The metric m|DCS| is defined as follows:

mPCS =
number of voxels with |DCS|AD > |DCS|HC

number of voxels with |DCS|AD < |DCS|HC

, (4.1)

which estimates the number of voxels with lower |DCS| in AD patient group compared
to the HC participant group in the probability maps after computing group comparisons.
This metric has been computed for all segments of the brain namely GM, WM, and CSF
and reported with corresponding analysis.

4.1.1 AD patients differ from healthy controls at GM in
voxel-wise analysis of |DCS|

Whole brain group comparison maps in GM revealed alterations in different regions as shown
in Fig. 4.1 |DCS|maps of β-amyloid and tau-positive AD patients were statistically compared
to β-amyloid and tau-negative HC participants. A higher |DCS| value means a larger amount
of diamagnetic content and vice versa.

The voxel-wise |DCS| value in several grey matter clusters was higher for AD patients
relative to the HC participants as shown in Fig. 4.1. One explanation, for the elevated
|DCS| value, may be the accumulation of the diamagnetic species. Most proteins contain
a high level of paired electrons, hence are diamagnetic. Many efforts have been made to
confirm that disease-related aggregations of the β-amyloid plaques and tau tangles cause
tissue susceptibility changes and can be non-invasively revealed by QSM.

Previously, van Bergen et al. [47] demonstrated that β-amyloid PET SUVr was positively
associated with mean QSM in each different cortical region for every subject and Spotorno
et al. [48] showed tau PET SUVr also was positively associated with regional QSM. The
positive association between PET SUVr and QSM was explained by the colocalization of iron
with the plaques and tangles. However, the missing piece was that the susceptibility sources
were not separated, as a result, the diamagnetic component was likely overwhelmed by the
paramagnetic susceptibility of iron. Gong et al. [82] showed that β-amyloid and tau protein
are diamagnetic and visible through QSM using phantom experiments. Additionally, in the
same study, it is shown that for a human brain specimen with AD, the diamagnetic pattern in
QSM aligns with the histological staining for β-amyloid plaques and tau tangles. Zhao et al.
[83] showed that in AD-diagnosed human hippocampal slices, the aggregations of β-amyloid
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Figure 4.1: Regions of statistically significant (p < 0.05) higher |DCS| value (red) in the
GM of AD patients vs CU HC overlaid on top of the average β-amyloid PET (A, top two
rows) and average tau PET (B, bottom two rows) in MNI space. The clusters of significant
differences are primarily located at superior and medial frontal gyri and paracentral gyri.
Numbers in the figure denote the slice locations.

and tau cause diamagnetic changes in QSM. In the current work, |DCS| value of β-amyloid
and tau-positive AD patients being higher in several regions than that of their β-amyloid
and tau-negative HC counterparts may allude to the existence of voxels with accumulated
plaques and tangles not just iron.

Further investigation reveals that some of the clusters with higher absolute |DCS| values
in AD patients compared to HC participants were either situated in the boundaries of the
GM and WM or seemed to appear to have much smaller dimensions compared to the spread
of the PET signal intensity as shown in Fig. 4.1 or both. This mismatch of dimension can
be attributed partly to the resolution mismatch between PET and DECOMPOSE-QSM.

Fig. 4.2 reveals regions with lower |DCS| in AD patients compared to HC participants.
The value of m|DCS| in GM is 0.64; meaning, more voxels show lower than higher |DCS|
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Figure 4.2: Regions of statistically significant (p < 0.05) lower |DCS| (blue) in the WM of the
AD patients vs CU HC overlaid on top of the average β-amyloid PET (A, top two rows) and
average tau PET (B, bottom two rows) in MNI space. A few of the clusters overlap with the
highest intensity PET signal, which may correspond to the demyelinated region discussed
in section 4.2.1. Some of the clusters reside in tissue segmentation boundaries, particularly
in the subcortical and thalamic regions may not be directly associated with the PET signal.
However, these differences still can be ascribed to pathological differences between AD and
HC groups.

in the GM of AD patients compared to HC participants. It is worth mentioning that the
susceptibility is not a direct measurement of the existent β-amyloid or tau protein aggrega-
tions, other species such as myelin also contribute to the DCS contrast. Demyelination may
result in lower |DCS|. So, in a region depending on the severity and the order of the arrival
of either pathological alteration, such as protein accumulation or demyelination |DCS| may
show higher or lower values. Similar results and the corresponding discussion are presented
in the ROI correlation section.
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4.1.2 AD patients differ from healthy controls at WM in
voxel-wise analysis of |DCS|

In Fig. 4.3, the area (number of voxels) of the WM with a lower |DCS| value was larger
than the area of the WM with a higher |DCS| value in AD patients compared to the HC
participants. A lower |DCS| value in AD patients relative to HC participants was observed
primarily in the periventricular WM; a higher |DCS| value in the AD group was observed
in the frontal WM, corpus callosum (CC), and internal capsule (IC). The value of m|DCS| in
GM is 0.34; meaning, more voxels show lower than higher |DCS| in the WM of AD patients
compared to HC participants.

Figure 4.3: Regions of statistically significant (p < 0.05) higher (red) and lower (blue) |DCS|
value in the WM of AD patients relative to the HC participants in MNI space. Clusters of
higher |DCS| values in the AD group are primarily located in the frontal WM, posterior part
of CC, and IC. Clusters of lower |DCS| values are predominantly periventricular, and also
located in corona radiata and posterior part of CC. Numbers in the figure denote the slice
locations.

Shown in Fig. 4.3, regions of both higher and lower |DCS| values are observed for the AD
patients relative to the HC participants. A lower trend of |DCS| value indicates a decreased
amount of diamagnetic species. Previously, Acosta-Cabronero et al. [51] reported that not
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many clusters with lower susceptibility in AD compared to controls were found comparing
corresponding QSM. It can be argued, that because non-compartmentalized QSM was used
in that work and the number of subjects was very small (19 in total), it was difficult to find
significant clusters with lower absolute susceptibility in AD patients. Studying a relatively
small number (10) of AD patients Au et al [63] showed an increase of QSM in a very small
structure known as hippocampal fimbria ascribing the increase to iron accumulation. In
current work some clusters are also seen with higher |DCS| in AD patients in Fig. 4.3,
however, the majority (in the number of voxels) of the clusters show lower |DCS| compared
to that of HC participants. On top of that, Gong et al [84] showed that lower myelin content
is associated with rapid cognitive decline.

Previously in a study by Liu et al., [85] a dramatic reduction of susceptibility in WM
was observed in shiverer mice as an indication of the loss of myelination. Meanwhile, diffu-
sion measurements showed intact fiber pathways. Similarly, a decreased diamagnetism (an
increase in signed QSM value) in WM was observed by Lee et al. [86] and Wang et al [87]
independently through the Cuprizone diet-induced demyelinated mouse model. While the
fractional anisotropy (FA) map from diffusion tensor imaging showed the preservation of
the axonal structure in the CC, the QSM measured susceptibility was significantly increased
(less negative) in CC for the demyelinated mouse model. The QSM value in CC returned to
negative during the remyelination process. A study by O’Callaghan et al [10] showed that
the WM/GM contrast was reduced for the mouse with tau pathology compared to the wild
type. Further, the histology staining revealed the white matter atrophy in CC, and the white
matter structure thickness is significantly decreased for tau pathology-affected mice. All the
evidence suggests that myelin is the major diamagnetic contribution in QSM contrast in the
WM. Previously in various studies [88, 89, 90, 91], as an indication of abnormal myelina-
tion, white matter hyperintensities from FLAIR MRI scans were observed for AD patients
in various cases [88, 89, 90, 91]. The β-amyloid aggregation in cortical GM is hypothesized
to participate in a cascade process and cause WM abnormalities in AD patients [92, 79].
The multi-layered myelin sheath is crucial for the axon to perform proper functions in the
nervous system. The loss of myelination would cause axonal damage and eventually affect
the behavior [93]. The β-amyloid aggregation in cortical GM is believed to participate in a
cascade process and cause WM abnormalities in AD patients [92, 79]. Although the aggre-
gations of β-amyloid and tau proteins happen in the WM as well [94, 10], the PET imaging
results suggest that the plaques mostly exist in the GM rather than the WM as shown in Fig.
4.1. The size of plaques is very small relative to the clinical imaging resolution. Therefore, in
WM, the dominant cause of WM susceptibility change is the alteration of myelination. With
all these considerations, the observed lower |DCS| value in AD patients was likely caused by
the loss of myelination during AD progression.
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4.1.3 AD patients differ from healthy controls at CSF in
voxel-wise analysis of |DCS|

In Fig. 4.4, AD patients showed a lower |DCS| value in most of the CSF region relative to the
HCs, clusters residing predominantly in the lateral ventricles and sylvian fissures, but not in
the 4th ventricle or basal cisterns. The value of m|DCS| in CSF is 0.19; meaning, more voxels
show lower than higher |DCS| in the CSF of AD patients compared to HC participants.

Figure 4.4: Regions of statistically significant (p < 0.05) higher (red) and lower (blue) |DCS|
value in the CSF of AD patients compared to the HC participants in MNI space. Lower
|DCS| value in the AD group relative to controls primarily was observed in lateral ventricles
and sylvian fissures. A similar effect was not observed in the 4th ventricle or basal cisterns.
Numbers in the figure denote the slice locations.

A lower |DCS| value in the CSF regions was observed for the AD patients relative to the
HC participants. CSF serves as the support fluid of the whole brain volume. Through the
blood-brain barrier, CSF carries biomolecules such as proteins and peptides that can directly
indicate the active inflammation and disease pathologies of the brain. There are many studies
focusing on tau and β-amyloid in the CSF as biomarkers for AD [95, 96, 97]. β-amyloid-42
is the dominant component of the plaques seen in AD [98], the decreased CSF β-amyloid-42
or the decrease of CSF β-amyloid-42/β-amyloid-40 ratio has been reported to be superior
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in identifying patients with AD [3]. Thal et al showed [99] that the β-amyloid-40 stays
unchanged for AD cases. Additionally, the increase of CSF phosphorylated- tau/β-amyloid-
42 ratio is shown to be an accurate biomarker for detecting AD dementia [4]. Therefore,
the decrease of β-amyloid-42 in CSF may be one of the important contributing factors
behind the reduction of the β-amyloid-42/β-amyloid-40 ratio. Although |DCS| maps from
DECOMPOSE-QSM cannot give the susceptibility species composition, a decreased trend
of the |DCS| value would suggest a reduced total protein content and seems to agree with
the report of the decreased level of β-amyloid-42 or the decreased ratio of β-amyloid-42/
β-amyloid-40. However, this finding needs to be verified ideally with CSF samples.

Alternatively, a previous AD study by Choi et al. [100] looked into the choroid plexus
(CP), a structure that produces cerebrospinal fluid. It shows that the volume of CP is higher
for the AD group compared to the cognitively impaired group while the susceptibility of CP
did not show significant change. The changes in the volume of CP could contribute to the
observation of |DCS| changes as well, however, the effect is unclear. It is also worth mention-
ing that the clusters with lower |DCS| values in AD patients compared to HC participants
appear to align with the periphery of the ventricles. Impaired barriers caused by ependymal
cells and vessels may also play a role in the change of DCS in the CSF region [101]. The
bulk magnetic susceptibility in CSF is supposed to be close to zero and its long T∗

2 makes
susceptibility estimation less reliable. Moreover, partial volume effects, artifacts, and CSF
widening can confound the susceptibility metrics. Particularly, enlarged ventricles may be
mixed with periventricular tissue that has more diamagnetic susceptibility than CSF during
registration with standard brain templates. This partial volume effect would result in CSF
voxels in AD patients having higher |DCS|, which, however, was the opposite of what was
observed in the CSF analysis in the current work. Therefore, CSF enlargement does not
seem to explain the findings. Nonetheless, direct comparison using CSF samples would be
necessary to verify and explain our findings.

4.2 ROI correlation analysis

ROI choice details and method has been discussed in section 3.2.

4.2.1 DCS correlated with tau PET measures and age in ROI
analysis for the Mayo clinic cohort

In Table 4.1 and Fig. 4.5, in several limbic and cortical ROIs, mean tau PET was associ-
ated with mean |DCS| value moderately (Pearson’s correlation coefficient > 0.3) or strongly
(Pearson’s correlation coefficient > 0.5). This relationship may seem contrary to what was
observed in Fig. 4.1, where a higher |DCS| value was seen in several GM voxel clusters.
However, it should be noted that Fig. 4.1 is showing the voxel-wise comparison between
AD patients and controls. On the other hand, Fig. 4.5 and Table 4.1 is showing the ROI
correlation for dementia patients between the ROI mean measures. It is possible that in
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the ROI level after averaging, only the strongest of the several competing effects dominate
mean |DCS|. The competing effects may be protein accumulations [82], cell death [102],
atrophy [79], and demyelination [92]. Protein accumulation may increase |DCS| values and
demyelination may reduce the |DCS| values. Cell death and atrophy may affect |DCS| values
in a complicated fashion that is yet to be explored. The negative direction of association
suggests that the demyelination is potentially the leading factor contributing to smaller ab-
solute diamagnetic susceptibility with a larger tau PET signal. Previously, Irimia et al [103]
reported a reduction in the T1-w/T2-w ratio (a marker of myelin content) in some frontal
and central regions while Pelkmans et al [104] reported an increase of the same in some ROIs
including cingulate gyrus, and precuneus. So, conflicting reports have been made on whether
demyelination in GM happens measurably using MRI-derived contrast; DCS should be in-
cluded among one of those contrasts for further investigation. Association between amyloid
PET and |DCS|, is very small in most of the selected regions as these regions are primarily
affected by tau pathology in the earlier stages of the disease and the cohort contains patients
at different stages.

ROI Pearson’s r for |DCS| Pearson’s r for |DCS|
and tau PET and amyloid PET

Entorhinal cortex −0.25 −0.27
Parahippocampal cortex −0.57*** −0.06
Inferior temporal cortex −0.11 0.12
Middle temporal cortex −0.01 0.07
Superior temporal cortex −0.22 0.04

Fusiform gyrus −0.48** −0.006
Lingual cortex −0.33 −0.14
Precuneus −0.34 0.15

Posterior cingulate cortex −0.08 0.03
Amygdala −0.35 0.07
Putamen 0.08 0.03

Caudate nucleus 0.16 0.27
Globus pallidus 0.28 0.01

Table 4.1: Pearson’s correlation between DCS and tau vs amyloid PET for AD patients in
the Mayo clinic cohort.

Looking particularly at parahippocampal cortex (ph) and fusiform gyrus the association
between |DCS| and tau PET is very strong. AD is marked by drastic changes in laminar
structure and cytoarchitecture in PHC [105]. Pyramidal cells in layers III and V of ph are
markedly affected by NFTs deteriorating the structural integrity of ph [106]. Intracortical
myelin is abundantly present in ph confirmed by T1-w/T2-w ratio [107]. Given the sus-
ceptibility of ph in AD both demyelination and structural deterioration may be cautiously
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Figure 4.5: Regional association between mean |DCS| and tau PET for selected (A) limbic
and (B) neocortical ROIs. The plot has been subdivided into two subplots for the sake
of legibility. The number in the parenthesis represents Pearson’s correlation coefficient.
Here, *p < 0.05, **p < 0.01, ***p < 0.001, after correction for multiple comparisons using
permutation tests. Also, ph = parahippocampal cortex, am = amygdala, fusi = fusiform
gyrus, ling = lingual cortex, precun = precuneus regions.

attributed to a very strong correlation between tau PET and |DCS| in this region. In fusiform
gyrus also, the strong association between |DCS| and tau PET is curious as this region is also
very involved in AD progression. Functionally, this region is associated with face recognition
and AD patients show issues with recognition at advanced AD stages [108].

Association between |DCS| and age in AD group is weaker in general compared to HC
participants as evidenced by Table 4.2. If |DCS| were to capture only the effect of myelin,
the relationship presented in Table 4.2 and Fig. 4.6 would have looked more complicated,
to be precise akin to inverse U-shaped, where the myelin would increase with age, then stay
steady for a particular age group, and then decrease with age [109]. However, intracortical
myelination is more complicated compared to white matter myelination [110]. On top of
that structural integrity loss related to protein accumulation and cell death may contribute
to |DCS| too. Hence, the pseudo-linear association between |DCS| and age is intriguing and
needs further exploration for complete understanding.

The difference in the association between age and |DCS| in a few ROIs particularly, in
the posterior cingulate cortex (pcing) and caudate nucleus (cn) is worth mentioning. These
associations are significantly different between AD patients and HC participants. pcing has
been identified as one of the most vulnerable regions in AD pathological progression [111]
and showed significantly reduced gray matter volume (GMV) in longitudinal studies with
AD patients. QSM showed a significant increase in pcing in previous studies [112]. The
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ROI Pearson’s r for PCS and Pearson’s r for PCS and
age for AD patients age for HC participants

Entorhinal cortex 0.13 0.26
Parahippocampal cortex 0.34 0.29
Inferior temporal cortex 0.17 0.34*
Middle temporal cortex 0.08 0.31
Superior temporal cortex 0.11 0.33*

Fusiform gyrus 0.48** 0.43**
Lingual cortex 0.40 0.26
Precuneus 0.35 0.37**

Posterior cingulate cortex 0.03 0.55***
Amygdala 0.31 0.36*
Putamen 0.52** 0.45**

Caudate nucleus 0.20 0.63***
Globus pallidus 0.36 0.29

Table 4.2: Pearson’s correlation between |DCS| and age for AD patients and HC participants
for the Mayo clinic cohort.

Figure 4.6: Association between |DCS| and age for (A) posterior cingulate cortex (pcing)
and (B) caudate nucleus (cn) for AD (aDem) patients and CU HC participants. It should
be noted that the correlations are significantly different for each subject group.
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fact that |DCS| increases in pcing for HC participants but shows no consistent trend for
AD patients is intriguing. If |DCS| is hypothesized as a measure of structural integrity
and myelination increase of |DCS| with age can represent the health of certain structures
whereas no trend may represent expected change not happening to maintain the health of
the structure. A similar comment can be made about cn, as cognitively unimpaired (CU)
participants showed higher |DCS| with age but AD patients do not. cn showed a marked
increase in QSM previously in AD patients compared to controls [49].

4.2.2 ROI analysis in select gray matter region in the UCSF
cohort

Even though the association coefficients as presented in Table 4.3 in the UCSF cohort did not
match with the Mayo Clinic cohort certain similarities are noticeable, such as high correlation
coefficient between age and |DCS| in fusiform gyrus and all the subcortical ROIs. Also, in
precuneus, the association between |DCS| and tau PET has quite similar magnitudes. Most
of the other association coefficients are dissimilar, however, the mismatch in the size of the
two cohorts and the very small number of subjects in the UCSF cohort should be mentioned.

ROI Pearson’s r for Pearson’s r for Pearson’s r for |DCS|
|DCS| and age |DCS| and tau PET and amyloid PET

Entorhinal cortex 0.16 0.12 −0.05
Parahippocampal cortex 0.35 −0.25 −0.35
Inferior temporal cortex −0.05 0.25 0.02
Middle temporal cortex 0.13 0.46 −0.12
Superior temporal cortex 0.43 0.09 −0.05

Fusiform gyrus 0.63 −0.13 −0.39
Lingual cortex −0.49 0.15 0.24
Precuneus 0.44 −0.37 −0.14

Posterior cingulate cortex −0.03 −0.11 0.15
Amygdala −0.26 0.44 0.21
Putamen 0.41 0.49 0.17

Caudate nucleus 0.61 0.29 −0.17
Globus pallidus 0.75* 0.63 0.09

Table 4.3: Pearson’s correlation between |DCS| and age, tau, and amyloid PET for AD
patients for the UCSF cohort.
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4.3 Conclusion

The diamagnetic compartment DCS from DECOMPOSE-QSM is tested as a marker for the
presence of pathology (β-amyloid and tau). It appears DCS is affected in an opposing manner
by two important pathological changes, such as protein accumulation and demyelination. In
the voxel-wise analysis of the WM, a lower DCS pointed to white matter integrity loss.
Voxel-wise analysis results of the |DCS| value in the CSF region may be an indication of the
decrease of the β-amyloid-42/β-amyloid-40 ratio in AD. In short, diamagnetic susceptibility
may help track several pathological alterations in neurodegeneration.
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Chapter 5

Assessing the Predictive Power of
Source-Separated Susceptibility

In previous chapters, the importance of PCS and DCS has been established in terms of
studying AD pathology. It has been evidenced that PCS and DCS show meaningful physical
relations with AD disease pathology. In this chapter, the further potential of these modalities
will be explored in predicting different indicators or factors related to disease status. So far,
the usefulness of susceptibility in studying mainly tau pathology and iron accumulation has
been discussed. Other clinical and genetic factors may have a simple or complex relationship
with susceptibility metrics. Previously, it has been shown that when considering the suscep-
tibility values of a region not only the mean value is essential but also other statistics related
to the distribution of susceptibility are also important [113]. In previous chapters, voxel-wise
analysis and ROI analysis in terms of mean measures have been explored. One of the limi-
tations of voxel-wise analysis is the alteration of values while warping the images from one
space to another. On the other hand, while using ROI average, pixel magnitude alteration
due to warping is avoided but spatial information is lost. A considerate middle ground would
be using distribution statistics for each ROI preserving some spatial information from images
in ROI analysis.

5.1 Data demography

A subset of current data has already been used in previous chapters to assess the usefulness
of source-separated susceptibility. However, here the full dataset will be used to assess the
relationship between susceptibility markers and other relevant information. The detail of
the whole dataset is given in Table 5.1. Based on the availability of certain information a
subset of this data will be used in different analyses to follow. One AD and one MCI patient
were excluded from analyses because of segmentation errors.
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Variable AD patients MCI patients CU HC participants
(n=56) (n=69) (n=100)

Male/female 27/29 (48%/52%) 39/30 (57%/43%) 58/42 (58%/42%)
Age 68 (60, 77) 77 (72, 89) 68 (59, 77)

STMS 22 (18, 28) 32 (29, 33) 37 (35, 38)
Education 16 (13, 16) 15 (12, 16) 16 (14, 16)

ApoE4 status 37/15/14 20/44/5 27/73/0

Table 5.1: Demographic details of all participant data. Age, STMS, and education are
displayed as median (1st quartile, 3rd quartile). ApoE4 status is displayed as posi-
tive/negative/not available. STMS: Short Test of Mental State, MCI: Mild Cognitive Im-
pairment, CU: Cognitively Unimpaired, HC: Healthy Control.

5.2 Susceptibility metrics and diagnosis

One of the objectives of relating susceptibility to other pathological markers is to use it to
potentially improve diagnosis. With that in mind, here the most known and relatively less
used metrics will be associated with diagnoses.

5.2.1 Mean susceptibility measures differentiates subjects from
patients

Mean ROI susceptibility values can be very useful to compare patient groups. In the following
analysis three different measures of susceptibility namely QSM, PCS, and DCS of each group
of AD patients, patients with MCI, and CU HC participants. Groups were compared based
on average (mean) ROI susceptibility. Benjamini-Hochberg (BH) correction was applied to
assess significance and data analysis was performed in R.

In Fig. 5.1 Significant ROI QSM difference was seen in gp and mte in between AD and
HC subjects; fusi, ite, and precun between AD and MCI subjects; and fusi, mte, pcing, and
precun between MCI and HC subjects. Previously, cn and put showed significant differences
between AD and MCI groups using 30 AD patients and 30 HC participants [49]. In another
study by Kim et al [112] showed a significant difference in QSM between AD and amnestic
MCI (aMCI) subjects in am; between AD patients and cognitively neutral (CN) subjects in
am, precun, and pcing; and between aMCI patients and CN subjects in precun and pcing
using 19 AD patients, 19, aMCI patients, and 19 CN subjects. Differences between previous
studies and the current one can be attributed to the number of patients, reconstruction
approaches, and approaches used to compare different groups. In the current analysis the
number of AD patients used was 55, that of MCI patients was 68, and of HC participants
was 100. So, the current study uses much more participants compared to previous ones.
However, because of the retrospective nature of the study, the groups were not matched in
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Figure 5.1: Group comparison between AD or aDem patients, MCI subjects, and CU HC
participants based on QSM. Here, am = amygdala, cn = caudate nucleus, ent = entorhinal
cortex, fusi = fusiform gyrus, gp = globus pallidus, ite = inferior temporal cortex, ling
= lingual cortex, mte = middle tempral cortex, pcing = posterior cingulate cortex, ph =
parahippocampal cortex, precun = precuneus, put = putamen, ste = superior temporal
cortex. Mean ROI QSM in gp and mte are significantly different in AD patients and CU
participants; in fusi, ite, and precun between AD and MCI patients; and fusi, mte, pcing,
and precun between MCI patients and CU participants.

the case of subject numbers, age, and other relevant covariates. On top of that, variation
interpretation of statistical significance can make explanations of findings more complicated.
Last but not least, QSM was interpreted as a measure of iron in the previous studies, which
may not be entirely accurate because of the contribution from diamagnetic sources. Similar
to previous works, it was encouraging to see differences between the groups picked up using
QSM even though QSM itself may not be the most accurate measure of iron.

When mean PCS is used, a few ROIs can separate AD, and MCI patients and HC
participants as shown in Fig. 5.2. AD patients and HC participants showed significantly
different PCS in am and gp; MCI and AD patients showed that in pcing, and precun; and
MCI patients and HC participants showed the same in pcing. Remembering, the analysis
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in chapter 3 in precun and pcing PCS showed an association with age in amyloid and tau-
negative HC participants but none in amyloid and tau-positive AD patients. Considering
these complicated associations between age and diagnoses we have introduced more holistic
models in the next subsection.

Figure 5.2: Group comparison between AD or aDem patients, MCI subjects, and CU HC
participants based on PCS.

In Fig. 5.3 |DCS| is compared between different groups, significant differences were seen
between AD patients and HC participants in cn and mte. Also, HC and MCI participants
showed significant differences in cn, fusi, gp, ite, mte, pcing, put. Finally, MCI and AD
patients showed significant differences in ent, gp, precun, put. Again, age dependence of
|DCS| should be considered before reading into these differences.

In this simple analysis based on ROI mean susceptibility measures difference between
patients and controls was established. This exercise also prompted the asking of the question
of whether these differences can be exploited further and used in accordance with other
covariates to differentiate patients from controls. In the next subsection more, complicated
models are proposed and discussed to utilize these differences based on ROI susceptibility
metrics.
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Figure 5.3: Group comparison between AD or aDem patients, MCI subjects, and CU HC
participants based on DCS.

5.2.2 Data-driven model using susceptibility metrics for
moderately successful diagnosis

The results in the previous section though inspiring, brings into question the usefulness
of these comparisons because not all the available and necessary covariates were included.
More intricate models are needed to compare the groups to include different variables of
interest. Besides only mean values of corresponding susceptibility metrics were used in that
analysis. It may be hypothesized that the inclusion of other distribution parameters will
either increase accuracy or decrease inherent bias resulting from using one covariate. With
this in mind, a few approaches have been used to assess the separability of patient groups
based on different susceptibility metrics. A few things have been tested in the subsequent
analysis.

• Linear discriminant analysis (LDA) was used for classification because of its stability
and superior performance for multiclass classification compared to logistic regression
in the case of a small dataset such as the current one. The objective was not to find
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the best classifier, it was to choose a good enough classifier so that effect of introducing
new parameters can be understood [114]

• In the first model, the separability of subject groups based on mean ROI QSM and
age were computed

• In the second model, the separability of subject groups based on QSM distribution
parameters (mean, variance, skewness, kurtosis, 75th percentile, and 90th percentile)

• In the third model, combined QSM and DECOMPOSE-QSM measures were used to
assess the improvement of classification between subject groups.

• All the analyses were performed in the chosen ROIs discussed in previous sections to
decide which ROIs demonstrate better classification accuracy

As described in previous ROI analysis, mean, variance, skewness, kurtosis, 75th per-
centile, and 90th percentile of QSM, PCS, and DCS values were extracted using in-house
MATLAB code. The extracted ROI features were saved in comma-separated value (csv)
files and the later part of the processing was performed in Jupyter Notebook using Python
3 [115]. In Python data was divided into training and test sets using the default ratio set by
the program and standardized using MinMaxScaler() method. The program was run with a
fixed random seed for reproducibility.

ROI
Area under the curve of the receiver operating characteristics (AUC)

Age & QSM QSM dist. param. All dist. param.
HC MCI AD HC MCI AD HC MCI AD

Ent 0.6 0.70 0.52 0.60 0.65 0.55 0.68 0.67 0.68
Ph 0.65 0.70 0.50 0.57 0.66 0.38 0.48 0.58 0.49
Ite 0.62 0.66 0.63 0.64 0.67 0.54 0.71 0.69 0.63
Mte 0.71 0.71 0.65 0.70 0.66 0.60 0.69 0.63 0.77
Ste 0.65 0.69 0.53 0.70 0.63 0.60 0.74 0.59 0.69
Fusi 0.66 0.69 0.55 0.70 0.68 0.46 0.70 0.68 0.48
Ling 0.65 0.70 0.59 0.61 0.70 0.55 0.63 0.66 0.53
Precun 0.68 0.70 0.67 0.78 0.65 0.71 0.81 0.66 0.73
Pcing 0.66 0.71 0.56 0.62 0.71 0.48 0.64 0.71 0.52
Am 0.69 0.69 0.58 0.76 0.73 0.84 0.79 0.76 0.85
Put 0.65 0.72 0.70 0.71 0.67 0.68 0.73 0.59 0.77
Cn 0.65 0.71 0.61 0.74 0.73 0.72 0.67 0.67 0.60
Gp 0.67 0.67 0.68 0.68 0.71 0.69 0.70 0.68 0.72

Table 5.2: Classification performance between AD, MCI, and HC participants using Linear
Discriminant Analysis (LDA).
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In Fig. 5.4, and Table 5.2 ROC analysis of the chosen ROIs is presented. One disclaimer
is, none of the classifiers showed exceedingly high (> 0.9) AUC value. However, there are
definitely some standouts in terms of ROI and chosen model. In each subpanel, the leftmost
classifiers used only mean ROI QSM and age as features; the middle one used all the QSM
statistics mentioned previously at the beginning of this section, and age; and the rightmost
uses all QSM, DCS, and PCS statistics and age.

Figure 5.4: ROC curve in amygdala and precuneus using LDA for classifying AD, MCI
patients, and HC participants.

In chapters 3 and 4 precuneus showed a moderately strong (> 0.3) association between
both PCS and tau PET and |DCS| and tau PET for AD patients. Precuneus PCS also showed
a very strong association with age for HC participants. On top of that other distribution
parameters have been added to the current model which may have an association with
disease. Hence, acceptable separability is observed between HC and AD groups in precuneus
as shown in Fig. 5.4. Previously, precuneus has been shown to demonstrate a difference in
QSM values between AD patients and HC participants as mentioned already [112] and this
region was chosen for analysis because it is affected by tau pathology. This region is part
of the default mode network and has been shown to be affected by amyloid pathology early
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in the disease [116]. So, affected by amyloid, tau, and iron pathology and related to default
brain function this region deserves further study using susceptibility and other measures. A
longitudinal study of alteration in this region may reveal further information about disease
progression.

Another important observation is that the subcortical ROIs showed quite improved AUC
when only QSM distribution parameters is incorporated in the model, whereas cortical ROIs
shows improved AUC when all the parameters are included. Because subcortical ROIs are
known to accumulate iron, QSM itself in these regions is a more representative measure
of iron, and QSM and PCS values are less different from each other. The effect of DCS
in diagnostic for the subcortical ROIs was much less prominent compared to the cortical
regions.

Am showed group differences in PCS contrast, and it held the difference after introducing
improved models and other variables. Previous works [51, 112, 117] reported pronounced
QSM increase in subcortical ROIs such as am, put, and cn in AD. Particularly [118] am
in AD has shown widespread gliosis, neuronal death, structural change, and atrophy. So,
it is not surprising that by introducing all the susceptibility parameters the performance of
amygdala in separating subject groups improves substantially. As mentioned earlier other
deep gray matter regions such as put and cn performed well with QSM parameters only
because these regions are saturated with iron, particularly in the aged patient group, so
QSM acts as a proxy measure of iron in these regions.

In summary, the classifiers presented in this section is not present very high AUC values,
yet they revealed moderate sensitivity towards better classification which can be used in the
future in combination with other modalities for improved diagnosis.

5.3 Susceptibility metrics fails to associate with

ApoE4 status

ApoE4-carrying individuals show a higher propensity to develop AD [119, 5]. Hence, the
susceptibility metrics could be assessed in terms of their efficacy to be related to ApoE
status. In this subsection, this was investigated using different models.

5.3.1 Simple difference based on mean

Using just mean ROI measures neither QSM, PCS, and DCS could show any difference
between ApoE4 positive vs negative subjects as shown in Fig. 5.5, Fig. 5.6, and Fig. 5.7.
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Figure 5.5: Comparison of ApoE4 status based on QSM.

Figure 5.6: Comparison of ApoE4 status based on PCS.
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Figure 5.7: Comparison of ApoE4 status based on DCS.

5.3.2 Other models fail to associate susceptibility statistics with
ApoE4 status

For the sake of completeness susceptibility statistics were input into three different classifiers
as shown in Table 5.3. Logistic regression was chosen because of its ubiquitous use and flex-
ibility. Gaussian Näıve Bayes (GNB) was chosen because it can work with smaller datasets.
LDA was used because of its capacity to reduce dimensionality without heavily depending on
data collinearity. None of the classifiers or ROIs showed too much of a selectivity to ApoE4
positivity. GNB performed a little better in terms of AUC but it’s the assumption that all
the features are independent may not be true in the current situation [120]. The entorhinal
cortex demonstrated the highest AUC obtained using GNB classifier with very subpar AUC
values.

Previously, ApoE4 carriers 65 years and older showed higher hippocampal and amygdalar
QSM compared to ApoE2 carriers and for less than 65 years old subjects the difference was
only in hippocampus in the UK Biobank study [121]. The current study contains a much
smaller number of participants and subgrouping subjects based on age would reduce the
power of analysis even further. It will be interesting to increase the number of subjects in
future studies and test the reproducibility of said differences reported by Talia et al [121]
. The conclusion from the current study is in the selected ROIs no difference is observed
in terms of ApoE4 status whether using only mean susceptibility or a comprehensive set of
susceptibility statistics.
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ROI

AUC
LDA Logistic regression GNB

QSM
stat.

QSM,
PCS,
and
DCS
stat.

QSM
stat.

QSM,
PCS,
and
DCS
stat.

QSM
stat.

QSM,
PCS,
and
DCS
stat.

Ent 0.53 0.57 0.6 0.63 0.62 0.71
Ph 0.60 0.55 0.58 0.59 0.59 0.58
Ite 0.47 0.44 0.42 0.37 0.51 0.46
Mte 0.38 0.52 0.39 0.43 0.43 0.49
Ste 0.61 0.58 0.51 0.60 0.64 0.68
Fusi 0.47 0.47 0.43 0.47 0.64 0.66
Ling 0.45 0.39 0.44 0.45 0.55 0.50
Precun 0.39 0.56 0.46 0.43 0.52 0.51
Pcing 0.48 0.43 0.53 0.58 0.62 0.69
Am 0.55 0.58 0.50 0.48 0.55 0.48
Put 0.50 0.56 0.43 0.58 0.50 0.58
Cn 0.46 0.57 0.56 0.64 0.65 0.61
Gp 0.40 0.51 0.42 0.42 0.57 0.49

Table 5.3: Classification of ApoE4 status based on QSM, and other parameters.

5.3.3 ApoE4 based voxel-wise group comparisons differentiates
healthy controls in small front white matter cluster

All subjects with known ApoE4 status were compared based on their ApoE4 positivity. Also,
separate comparisons based on diagnosis were also made, for example, ApoE4 positive HC
subjects were compared to ApoE4 negative HC, ApoE4 positive MCI patients were compared
to ApoE4 negative MCI patients, and ApoE4 positive AD patients were compared to ApoE4
negative AD patient. Details of voxel-wise group comparison can be found in chapter 4.
Only ApoE4 positive HC participants showed clusters of significant difference with ApoE4
negative subjects, other comparisons resulted in no significant clusters. Difference clusters
between ApoE4 positive vs negative HC subjects resided mostly on the frontal white matter
as presented in Fig. 5.8. Microstructural deterioration associated with ApoE4 positivity has
been reported before [122]. However, why the difference was not found in other patient groups
and why the only difference was found in small WM clusters needs further investigation.
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Figure 5.8: Significantly different clusters with lower PCS in ApoE4 positive healthy subjects
compared to ApoE4 negative healthy subjects in the frontal white matter.

5.4 Susceptibility metrics explains tau positivity

moderately well

As mentioned earlier tau PET is correlated with cognitive status. The prediction of tau PET
status with susceptibility metrics is important and hence included in this section.

5.4.1 Linear models for tau PET

In Fig. 5.9 the models for all HC participants are compared. Models with all features
have the highest adjusted R-squared (adjR). In terms of the Akaike information criterion
(AIC) the models have variable performance. To explain, adjusted R-squared is a measure
of how well the models perform to fit current data [123]. AIC takes noise in the data into
consideration and gives an estimate of how the model will perform with new data [124]. The
higher the adjR and the lower the AIC the better the model. It is not surprising that with
more features adjR increases for almost all the models, but AIC is not always the lowest for
models with the largest number of variables or features.

One important point is the value of adjR is pretty small for all the models meaning none
of the models are doing extremely well in terms of explaining the variances in tau PET SUVr.
The majority of the participants (139 of 223) included in Fig. 5.9 do not have any specific
tau accumulation in the cortical regions. Hence the small adjR, explains the absence of tau
PET signal and the corresponding non-existent pathology across all the subject groups.

A subset of all subjects was chosen based on tau positivity containing 84 subjects. Tau-
positive subjects were selected based on a tau-PET meta ROI median SUVr threshold of
1.29 [125]. When only the tau-positive subjects are used in multiple regression analysis
adjR values increase substantially as shown in Fig. 5.10. In terms of adjR model using all
susceptibility features shows superior performance in general as expected. In terms of AIC
the base model performs the best for almost all the ROIs even though all the models have
AIC values quite close to each other.

Interestingly, superior temporal cortex (ste) showed the lowest AIC and highest adjR in
the model with all the parameters. Alteration in the connectivity in ste has been associated
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Figure 5.9: Comparison of multiple regression models for tau PET using different subsets of
susceptibility features for all participants. Here, the adjusted R-squared (adjR) and Akaike
information criterion (AIC) of each model for all the ROIs are presented. Also, ‘base’: model
with age and ROI QSM as independent variables, ‘QSM’: model with age and QSM features
as independent variables, and ‘All’: model with age and all QSM, PCS, and DCS features
as independent variables.

Figure 5.10: Comparison of multiple regression models for tau PET using different subsets
of susceptibility features for ‘tau positive’ participants.
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Figure 5.11: Choosing the best model in superior temporal cortex. (A) adjR value of an
exhaustive set of models containing combinations of all independent variables (age, QSM,
PCS, and DCS features) and (B) performance comparison of all the models including the
best model (mdl best) found using the model resulting in the highest adjR value in (A).

with the change of predictive coding in tau-positive subjects in a recent study [126]. Even
though all the selected regions are affected markedly by tau pathology in AD for some reason
in the current cohort susceptibility metrics explain tau accumulation quite well with adjR
value of (0.61) on a model using all relevant susceptibility metrics mentioned in this chapter
as shown in Fig. 5.10 (model denoted by ‘All’). In comparison, the model containing only
age and mean ROI QSM (‘base’) had an adjR value of (0.31) and the one containing age
and QSM statistics (“QSM”) had an adjR of (0.4).

Further analysis on ste multiple regression was warranted to find a more robust set of
parameters to explain tau PET SUVr in this region. For this ‘leaps’ package in Rstudio was
used [127]. In Fig. 5.11(A) the blackened fields in the top column presented the relevant
parameters needed to achieve highest adjR. These parameters are age, mean QSM, variance,
skewness, kurtosis, 75th and 90th percentile of QSM, and |DCS|. The performance evalua-
tion approach [128] shown in Fig. 5.11(B) demonstrated that the best model (“mdl best”)
achieved the highest performance in terms of all relevant performance statistics. In this
figure, all the statistics are weighted in a way so that the model that has spiderweb corners
furthest from the center has the best statistics and hence it is the best model. The best
model had an adjR value of 0.63 highest among all of the models presented.

Overall, the susceptibility metrics showed very good performance in terms of adjR in
explaining tau PET SUVr. Even though the adjR values were not too high (> 0.8) it was
encouraging to see different susceptibility statistics not just the mean QSM has a meaningful
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association with tau accumulation.

5.5 Susceptibility metrics weekly explains amyloid

positivity in chosen ROIs

Using similar linear models amyloid accumulation was not explained too well with suscepti-
bility metrics as presented in the following subsection.

5.5.1 Linear models for amyloid PET

The regions chosen are more affected by tau accumulation compared to amyloid. Hence all
of the regions resulted in small adjR for the whole cohort or the amyloid-positive subjects
as shown in Fig. 5.12 and Fig 5.13.

Figure 5.12: Comparison of multiple regression models for amyloid PET using different
subsets of susceptibility features for all the participants.
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Figure 5.13: Comparison of multiple regression models for amyloid PET using different
subsets of susceptibility features for ‘amyloid-positive’ participants.

5.6 Susceptibility metrics and STMS

STMS score was converted to z-score and models similar to amyloid and tau PET were
analyzed.

5.6.1 Linear models for STMS

STMS is a clinical measure and susceptibility is an MRI-based imaging marker. So, modeling
one with the other may not result in too high of an adjR value. This is confirmed for all the
subjects as shown in Fig. 5.14 and in all of the subject groups as shown in Fig. 5.15, Fig.
5.16, and Fig. 5.17. The range of STMS varies much less for the healthy control group as
shown in Table 5.1, with an Interquartile Range (IQR) of 3 (38-35). The highest adjRs were
observed in the models containing all susceptibility metrics in Fig. 5.15. Since most of the
participants are HC, the analysis containing all the subjects in Fig. 5.17 may be biased by
the observation of HC participants.

Focusing on the more important MCI group in Fig. 5.16 reveals AICs were the lowest
for the base models containing only age and ROI QSM for all the ROIs. The highest
adjR was observed in putamen between all the ROIs. The importance of this subcortical
region has been repeatedly mentioned in previous work and the current one in terms of
iron accumulation and susceptibility alteration with age in between different subject groups
already. Here that is reinforced by the relatively larger adjR of putamen model compared to
other cortical ROIs. Also, the IQR of STMS values for the MCI group was also quite small
(33-29 = 4) as shown in Table 5.1.
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Figure 5.14: Comparison of multiple regression models for STMS z-score using different
subsets of susceptibility features for all participants.

Figure 5.15: Comparison of multiple regression models for STMS z-score using different
subsets of susceptibility features for the HC participants.

In AD patients’ lingual cortex showed the highest adjR followed by gp and cn as shown
in Fig. 5.17. It was interesting to see a cortical region showing higher adjR in the all-feature
model compared to subcortical regions. In terms of AIC, all the ROIs showed superior
performance in the base model containing only age and ROI QSM. IQR of STMS (28-
18=10) was quite high in the AD patient group compared to HC and MCI groups as shown
in Table 5.1.
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Figure 5.16: Comparison of multiple regression models for STMS z-score using different
subsets of susceptibility features for the MCI patients.

Figure 5.17: Comparison of multiple regression models for STMS z-score using different
subsets of susceptibility features for AD patients.

5.7 Conclusion

Among different markers presented in this chapter tau PET SUVR showed a moderately
strong association with susceptibility distribution parameters, particularly in superior tem-
poral cortex. On the other hand, amyloid PET did not show too strong of an association
with susceptibility metrics in the chosen ROIs. Tau PET uptake represents cognitive decline
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better than amyloid PET and hence susceptibility metrics associating more with tau PET
is significant. Perhaps, because of a similar reason susceptibility metrics showed moderate
AUC in separating AD patients from other subjects in amygdala and precuneus. Last but not
least susceptibility metrics associated with STMS score in lingual cortex and other subcorti-
cal ROIs in AD patients is also a very important outcome of the current study. Through the
analysis presented in this chapter, it has been established that using only mean ROI QSM in
associating with other clinical, and pathological markers may underemphasize the usefulness
of MRI-based susceptibility mapping. It is hoped that the current study will inspire future
multi-center multi-scanner studies with optimized sequences to understand the full potential
QSM and compartmentalized susceptibility mapping.
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Chapter 6

Conclusion and Future Work

The paramagnetic (PCS) and diamagnetic (DCS) compartments from DECOMPOSE-QSM
are tested as a marker for the presence of pathology (iron, β-amyloid and tau). Observed
increased PCS in cortical, subcortical, and WM regions confirm increased iron accumulation
in the AD brain. Also, the strong association between tau PET and PCS reinforces the
iron colocalization hypothesis with tau tangles in several ROIs. On the other hand, DCS
is affected in an opposing manner by two important pathological changes, such as protein
accumulation and demyelination. In the voxel-wise analysis of the WM, a lower |DCS|
pointed to white matter integrity loss. Voxel-wise analysis results of the |DCS| value in the
CSF region may be an indication of the decrease of the β-amyloid-42/ β-amyloid-40 ratio in
AD. Introducing susceptibility distribution parameters to assess disease status and pathology
progression resulted in somewhat inspiring observations with moderate effect sizes such as
AUC and adjusted R squared.

The distinctive way of measuring compartmentalized magnetic susceptibility will allow
the investigation of pathological changes happening in all tissue types such as GM, WM,
and CSF of the brain. There are numerous studies on using QSM as a potential biomarker
for neurodegenerative diseases. The purpose of this work was to investigate whether the two
derived contrasts, namely PCS and DCS, from DECOMPOSE-QSM, can provide additional
information. To gain a comprehensive view of how much DECOMPOSE could be beneficial
to understand AD progression, many other contrasts and clinical diagnosis data need to be
applied in parallel. Histological verification was out of scope in the current study, which
would be needed in the future to verify the usefulness of DCS. This verification can en-
sure whether the gray matter susceptibility changes detected in the current work represent
demyelination. Due to the nature of the retrospective analysis, the MEGRE data of the
participants used in the current work only contain five echoes which is the minimum num-
ber of echoes for DECOMPOSE to perform in theory, and more echoes could benefit better
susceptibility compartmentalization. The DECOMPOSE-QSM model does not address the
composition of species within the diamagnetic or paramagnetic regime. We are unable to
differentiate which protein or peptide specifically contributes to the DCS contrast. Longi-
tudinal study rather than cross-sectional analysis may provide more meaningful insight into
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the relationship between pathology progression and susceptibility measures as well.
Statistical tests have been used to assess the relationship between pathological markers

and susceptibility. These tests are limited by the number of participants and the noise level
of data. A conservative family-wise correction was applied for all p-value-based statistics
to increase their reliability. In addition to the p-values, the magnitude of the correlation
coefficient was taken as a convincing measure of association.

the initial promise observed with susceptibility separation future studies need to be de-
signed with comparable age groups and size of the patient group. Also, optimization of
the relevant pulse sequences to acquire MEGRE data in the most reproducible way would
be beneficial. Multi-center and multi-scanner reproducibility are also important in order to
establish the usefulness of the sequence. Test-retest reproducibility is needed to be assessed.
More sequences and modalities need to be studied by combining DECOMPOSE-QSM to
increase the performance of the model introduced in chapter 5. Utilization of separated sus-
ceptibility in the study of other neurodegenerative diseases such as PD, MS, Huntington’s
disease, and so on is worth exploring.

Separating susceptibility compartments to even further precision to compute contribution
from different sources containing similar polarity of susceptibilities such as myelin, plaques,
tangles or even calcification are interesting problems. More intricate signal models con-
sidering structural composition and variability of susceptibility sources can potentially be
explored to attempt this.

Explicit comparison and association between susceptibility-based modalities and other
modalities such as diffusion or MTI-based modalities need to be compared and potentially
combined to extract more information in less amount of acquisition time. Utilization of
these combined modalities to explore intricate pathways of disease progression would be
exciting. Imaging in higher resolution and DECOMPOSING may even result in fine-grained
information not revealed at the current resolution. In short, we have to look at studying
neurodegeneration with MRI as an information extraction maximization problem where the
highest amount of details can be obtained with the amount of time and effort ensuring the
comfort of the patients.
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