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Abstract
Ensuring that AI systems reliably and robustly
avoid harmful or dangerous behaviours is a cru-
cial challenge, especially for AI systems with a
high degree of autonomy and general intelligence.
In this paper, we will introduce and define a fam-
ily of approaches to AI safety, which we will refer
to as guaranteed safe (GS) AI. The core feature of
these approaches is that they aim to produce AI
systems which are equipped with high-assurance
quantitative safety guarantees. We outline a num-
ber of strategies for achieving this goal, describe
the main technical challenges, and suggest a num-
ber of potential solutions. We also argue for the
necessity of this approach to AI safety, and for the
inadequacy of the main alternative approaches.
Overall, despite a number of difficult technical
challenges, GS AI offers a promising path for en-
suring robust AI safety through formal methods.

1. Introduction
We introduce and define a family of approaches to AI safety,
collectively referred to as guaranteed safe (GS) AI. These
approaches aim to provide high-assurance quantitative guar-
antees about the safety of an AI system’s behaviour through
the use of four core components — a formal safety specifi-
cation, a world model, a verifier, and deployment infrastruc-
ture. We will argue that this strategy is both promising and
underexplored, and contrast it with other ongoing efforts in
AI safety. We will also outline several ongoing avenues of
research within the broader GS research agenda, identify
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some of their core difficulties, and discuss approaches for
overcoming these difficulties.

Critical infrastructure and safety-critical systems require
very high safety standards. For example, aircraft, nuclear
power plants, and medical devices are subject to exception-
ally rigorous safety certification. Moreover, it is plausible
that there will soon be AI systems that are at least as safety-
critical as these systems (e.g. as AI systems are increasingly
deployed in safety-critical contexts with ever greater capa-
bilities and autonomy), which means that they should be
required to adhere to standards of safety that are at least as
strict. Above some risk or capability thresholds, the burden
of demonstrating such safety guarantees should be on the
systems’ developers. The provided evidence must be ade-
quate to justify high confidence that the AI system is safe.
We will argue that approaches based only on experimental
tests are insufficient for producing such safety guarantees.
Moreover, we will also argue that GS AI presents research
avenues that could plausibly produce such safety guarantees
in a satisfactory and tractable manner.

In Section 2, we provide the general background and con-
text for this paper, including a brief overview of the AI
safety problem and a way to classify AI systems based on
their potential for dangerous behaviour. In Section 3, we
discuss some avenues for producing stronger quantitative
safety guarantees through the use of probabilistic safety as-
sessments. In Section 4, we introduce and define GS AI,
together with an extensive discussion of the spectrum of ap-
proaches that fall under this agenda, the main challenges to
these approaches, and some potential solutions. In Section 5
we provide a further high-level discussion of our proposals
and their feasibility, in Section 6 we list some related work,
and in Section 7 we conclude the paper.

2. Background
In this section, we provide the background that is required
to understand the rest of this paper and its context. This
includes an overview of the AI safety problem and how to
classify AI systems based on the level of risk they pose.

1



Towards Guaranteed Safe AI

2.1. The AI Safety Problem

A number of prominent AI experts have raised the concern
that AI systems may pose a danger to humans and society.
Some experts have argued that sufficiently advanced AI sys-
tems may threaten the survival of the human species, or lead
to our permanent disempowerment, especially in the case
of AI systems that are more intelligent than humans. Such
concerns have been raised by Bostrom (2014), Tegmark
(2018), Russell (2019; 2024), Pearl (2019), Bengio (2023),
Metz (2023), Amodei (2023), and others. These experts
have provided many different arguments in support of these
concerns, which we will not be able to reproduce here in
full. However, here are a few very brief summaries of some
of their most central arguments:

1. For an AI system to solve a complex problem in an
open-ended domain we must provide it with a formali-
sation of what it means to solve that problem. However,
it appears to be very difficult to create such specifica-
tions. This issue has been observed empirically in
current AI systems (e.g. Krakovna et al., 2020; Pan
et al., 2021; Pang et al., 2023), and studied theoreti-
cally (e.g. Zhuang & Hadfield-Menell, 2020; Skalse
et al., 2022; 2023; Karwowski et al., 2023; Skalse et al.,
2024). This suggests that it is difficult to motivate AI
systems to act in accordance with our intentions.

2. In a conflict of interests, greater intelligence is a sub-
stantial advantage. For example, in a chess game be-
tween a novice and a grandmaster, we should expect
the grandmaster to win. More generally, the reason
why humans are the most powerful species on the
planet is primarily that humans are the most intelligent
species. Technological innovation is also the greatest
driver of economic growth and military capabilities.
Thus, if there are ever AI systems that are substan-
tially more effective at technological innovation than
humans, and which are not aligned with human in-
terests, then we should expect human interests to be
marginalised.

3. Even if the goals of an AI system are specified correctly,
it may still fail to internalise these goals in the intended
way. For example, one way to maximise a reward
signal that is provided by human feedback may not be
to do what the humans wish, but rather to take control
of the reward mechanism (Cohen et al., 2022). Similar
phenomena have been observed empirically in current
AI systems (Shah et al., 2022; Langosco et al., 2023),
and studied theoretically (Hubinger et al., 2021).

4. Existing attempts to solve these problems have so far
not yielded convincing solutions, despite rather exten-
sive investigations (Ji et al., 2024). This suggests that
the problem is fundamentally hard, on a technical level.

For a more complete and in-depth treatment of the argu-
ments for why future AI may pose an existential risk to
humanity, see e.g. Bostrom (2014); Russell (2019).

Other AI experts have also pointed to other, more imme-
diate risks from AI systems. For example, generative AI
may enable the spread of disinformation, by enabling the
creation of convincing deepfakes or by making it cheaper
and easier to produce large volumes of content (Brundage
et al., 2018). AI may also carry out biased decision making
that systematically disadvantages certain groups in unfair
ways, even if this is against the wishes of the creators of
that AI system (e.g., Kleinberg et al., 2016; Kim & Cho,
2022; Das et al., 2023; Wang et al., 2022). Recommender
systems may facilitate invasions of privacy and the spread
of extreme content (Stray, 2021; Carroll et al., 2022; Box-
ell et al., 2020; Settle, 2018; Lelkes et al., 2017). AI may
also enable large-scale surveillance (Feldstein, 2019) or the
centralisation of economic or political power (Brynjolfsson
& Ng, 2023). For an overview of some of these issues, see,
e.g., Memarian & Doleck (2023); Hendrycks et al. (2023);
Brundage et al. (2018).

These two perspectives on the risks from AI are not mutually
exclusive. Moreover, they both point to similar sets of
technical challenges. The AI safety problem is the problem
of ensuring that AI systems reliably and robustly act in
ways that are not harmful or dangerous, including (but not
limited to) cases where those AI systems are more intelligent
than humans. In this paper, we are proposing a family of
strategies for solving this problem.

Note that the problem of ensuring that AI is not harmful to
humans comprises both a technical problem and a societal
problem; solving the technical problems is not sufficient if
the solutions are not globally implemented. In this paper,
we will primarily focus on the technical aspect of the AI
safety problem. For an overview of some of the political
and sociological challenges, see e.g. Bostrom (2014); Alaga
& Schuett (2023); Koessler & Schuett (2023); Sastry et al.
(2024); Schuett et al. (2023).

2.2. AI Safety Levels

The levels of precaution that are appropriate for a given AI
system depend on the capabilities of that system. To classify
the relevant levels of capability, Anthropic has introduced
a framework that they call AI Safety Levels (ASL)1 as part
of their voluntary safety commitments (Anthropic, 2023).
This framework classifies AI systems into the following
high-level categories:

1. ASL-1 refers to systems which pose no meaningful

1This is loosely modelled after the US government’s biosafety
level (BSL).
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catastrophic risk.

2. ASL-2 refers to systems that show early signs of dan-
gerous capabilities, such as the ability to give instruc-
tions on how to build bioweapons, but where the infor-
mation is not yet useful due to insufficient reliability
or to not providing information that a search engine
could not. Many current language models appear to be
ASL-2.

3. ASL-3 refers to systems that substantially increase
the risk of catastrophic misuse compared to non-AI
baselines (e.g. search engines or textbooks) OR that
show low-level autonomous capabilities.

4. ASL-4 and higher (ASL-5+) are not yet defined in as
much detail, but generally refer to human level and
superhuman levels of intelligence, and thus qualitative
escalations in the potential for catastrophic misuse and
autonomy.

We refer to this classification scheme throughout the pa-
per. Note that a similar classification scheme also has been
defined by the Future of Life Institute (FLI, 2023).

3. Probabilistic Safety Assessment
Current approaches to validating frontier AI models prior to
deployment lean on independent testing and red-teaming (as
e.g. Ziegler et al., 2022; Perez et al., 2022). Such methods
can find concrete examples of unsafe behaviour, which can
then be rectified by the developer or lead to the decision to
halt training and deployment until mitigating or alternative
solutions are put in place. However, these testing regimes
do not provide a rigorous, quantifiable safety guarantee: red-
teamers could fail to find serious failures, while a model
still harbours such failure modes. In the extreme case, a
model could have been backdoored in a way that is cryp-
tographically hard to detect without knowing the trigger
(Guo et al., 2021). Even in the absence of such malfeasance,
weaknesses in AI systems can remain undetected even after
extensive testing and real-world usage. For example, Chat-
GPT was evaluated in great detail over a period of several
months (OpenAI et al., 2024), and yet users found ways to
circumnavigate its safety precautions within just a single
day of it going public (Burgess, 2023). This issue is likely
to be even more pertinent for more capable systems tasked
with solving more difficult problems. Moreover, it is also
important to note that AI systems often will be deployed
in adversarial settings, where human actors (or other AI
systems) actively try to break their safety measures. In such
settings, empirical evaluations are likely to be inadequate —
there is always a risk that an adversary will be more compe-
tent at finding dangerous inputs, unless you have a strong
guarantee to the contrary.

We argue that to obtain a high degree of confidence in a
system we need a positive safety case providing quantifiable
guarantees, using either empirical or theoretical arguments.
This is not unique to AI. About 25% of bridges built in
the 1870s collapsed within the decade (McCullough, 2001),
before a deeper theoretical understanding of civil engineer-
ing reduced it to less than 0.4% per decade (Cook, 2014).
When probabilistic safety assessments are required from
developers, this makes it possible for society to mandate
a clear level of safety, in terms of, e.g., the frequency per
year of adverse events of certain magnitudes (this is called
a societal risk curve). At its simplest, this could consist of
extensive testing: if an autonomous vehicle drives a million
miles safely without intervention of a test driver, then we
can conclude that the failure rate probably is less than one
in a million miles when deployed in the same operating
domain. However, note that such guarantees may only be
valid within the bounds of unreasonable assumptions. For
example, if human drivers start driving more aggressively
around autonomous vehicles after they are more used to
them, then this safety bound might cease to hold.

Empirical bounds may be obtained with weaker assumptions
through methods such as adversarial testing, and/or testing
in simulations with domain randomization. Even stronger
bounds may be obtained through a more mechanistic un-
derstanding of the system. Fault trees (Nieuwhof, 1975)
are a common safety engineering technique that allows for
quantitative analysis, namely they can be interpreted as de-
duction in probabilistic logic. For example, if two redundant
components can be shown to have a failure rate of ≤ n−1

and the failure rates are independent, the combined failure
rate would be ≤ n−2. This could occur for example in an
autonomous driving case when performing object detection
on different sensors (e.g. LIDAR, vision, radar), or in a
generative model case when using an ensemble of different
models to detect malicious inputs. A similar approach might
be applicable even in the case of a single monolithic model
by leveraging approaches like mechanistic interpretability
that seek to understand internal representations of the model
(Zhang et al., 2021; Gao & Guan, 2023; Bricken et al., 2023;
Michaud et al., 2024).

An alternative approach to obtaining stronger bounds relies
on theoretical understanding of the system. For example, a
rigorous theory for how deep networks generalise (as built
towards by e.g. Kearns & Vazirani, 1994; Watanabe, 2009;
2018; Mingard et al., 2021; 2020) might enable principled
extrapolation from empirical testing on a limited valida-
tion domain to a broader test domain. Combined, these
approaches could enable carefully conducted empirical eval-
uations to provide substantially stronger safety bounds than
exist for contemporary frontier models.

However, any empirical evaluation must ultimately rely on
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some relatively strong assumptions, such as the distribu-
tion of inputs used to validate the models being sufficiently
similar to those they are deployed on. This makes it chal-
lenging for an empirical approach to rule out instances of
deceptive alignment, where a system is acting to subvert
the evaluation procedure (Hubinger et al., 2021). It also
makes it challenging to give long-horizon safety guarantees,
where the distribution of inputs is likely to naturally shift
over time.2 To achieve stronger safety guarantees, which
will likely be needed for ASL-3 and beyond, we therefore
expect it to be necessary to use a model-based approach.
We discuss this approach in the following section.

4. Guaranteed Safe AI
In this section, we will introduce and characterise a family
of approaches to the AI safety problem, which we refer to
as guaranteed safe (GS) AI. We will first provide a defi-
nition of GS AI, together with a high-level overview. We
will then discuss each of the core components of GS AI,
namely a world model, a safety specification, a verifier, and
deployment infrastructure. For each of the core compo-
nents, we discuss its role in the overall architecture towards
providing high-assurance safety guarantees, highlight key
challenges in trying to implement these components, and
discuss current approaches to overcoming those challenges.

4.1. Definition of GS AI

The core feature of the GS approach to AI safety is to pro-
duce systems consisting of an AI agent and other physi-
cal, hardware, and software components which together are
equipped with a high-assurance quantitative safety guaran-
tee, taking into account bounded computational resources.
This can be contrasted against approaches to AI safety which
primarily rely on empirical evaluations, or loose arguments
based on qualitative or pre-theoretic intuitions.

A high-assurance quantitative safety guarantee may take the
form of a formal proof that the system always will adhere
to some safety specification3 (or distribution over safety
specifications) for all inputs, relative to a model (or a dis-
tribution over models) of world dynamics. Alternatively, it
may be a reliable and sound upper bound on the probabil-
ity of violating a safety specification. However, especially
when we cannot find a proof certificate or formally define
the desirable or undesirable behaviour, it may also take the
form of an estimate of an upper bound on the probability

2Note that the usage of powerful AI is likely to itself create
situations that are novel and unprecedented, which makes this
a point of particular importance. Stated differently, we should
assume that “distributional shift” will occur.

3In this paper, we use the term “safety” not in the strict sense
used in formal methods (Alpern & Schneider, 1987) but in the
broader sense used in AI for specifications of significance.

of harm, with the estimate asymptotically converging with
computational resources in order to guarantee a constraint
on desirable behaviour.

Definition 4.1. A Guaranteed Safe AI system is one that
is equipped with a quantitative safety guarantee that is
produced by a (single, set of, or distribution of) world-
model(s), a (single, set of, or distribution of) safety spec-
ification(s), a verifier, and deployment infrastructure,
satisfying the following additional criteria:

1. The probabilistic specification encodes societal risk cri-
teria, which should ideally be determined by collective
deliberation;

2. The verifier provides a quantitative guarantee (in the
form of a proof certificate, probabilistic bound, asymp-
totic guarantee, or other comparable assurance) that
the AI system satisfies the specification with respect to
the world model;

3. When deployed, multilaterally auditable and redun-
dant verifiers and runtime monitors check for obser-
vations that invalidate the world-model, and control
high-assurance failover to a verified backup system;
and

4. All potential future effects of the AI system that could
be relevant to the safety specification should be conser-
vatively over-approximated by the world-model.

There is much to unpack in this definition. Before moving
on, we will therefore provide a brief explanatory example
of what each of the four core components of Definition 4.1
could look like, together with a motivation for their neces-
sity. Later in this section, we will provide a more in-depth
discussion of what each of these components may look like,
what challenges they come with, and how those challenges
may be overcome. An overview is also provided in Figure 1.
But first, let us provide some intuition.

A safety specification corresponds to a property that we
wish an AI system to satisfy. For example, we may wish
that an AI system never takes any actions that may plausibly
cause a human to be harmed. If we have a formal definition
of harm, as well as a formal definition of causation, then this
safety property could be turned into a well-defined formal
specification. Of course, neither of these terms are easy
to formalise, but proposals do exist (e.g. Beckers et al.,
2022b;a; Halpern, 2016; Pearl, 2009). Other safety specifi-
cations may also be desirable. For example, we may wish
to require that an AI system is “truthful”, or that it can offer
“explanations” for its actions, etc. In Section 4.3, we will
provide a more detailed overview of some possible methods
for obtaining safety specifications, as well as their advan-
tages and challenges. Note that because of the difficulties
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Figure 1. The GS AI approach builds on four components, namely a world model that describes the environment of the AI system, a safety
specification that describes desirable safety properties and is expressed in terms of the world model, a verifier that provides a quantitative
guarantee of the extent to which an AI system satisfies the safety specification, and deployment infrastructure which responds to runtime
observations which invalidate world model predictions. Each of these components can in turn be created in a wide variety of ways, which
gives rise to a spectrum of approaches within the GS AI agenda.

with formulating adequate safety specifications, it may be
desirable to use multiple safety specifications, or to use dis-
tributions of safety specifications, obtained through some
learning process (or otherwise).

Next, many desirable safety specifications necessarily re-
quire a world model (or distribution over world models)
that describes the dynamics of the AI system’s environment.
For example, suppose we want to ensure that an AI system
never takes any actions that leads a human to be harmed,
according to some (possibly ambiguous) definition(s) of
“harm”. In order to do this, we need a model that describes
if a given action is likely to lead a human to be harmed (in
some context). More generally, without a world model we
can only verify specifications defined over input-output rela-
tions, but it is often desirable to instead verify specifications
over input-outcome relations. We may also want to define
predicates such as “harm” in terms of not only directly ob-
servable quantities (like a human-provided label), but also in
terms of unobserved or even counterfactual variables (such
as how a group of wise humans would hypothetically judge
an outcome). Of course, we must also be able to trust the
correctness of this world model, which means that it ide-
ally should be interpretable and understandable. For more
discussion of how to create such a world model (or distribu-
tion of world models), see Section 4.2. Note that the world

model need not be a “complete” model of the world — the
level of detail and abstraction that is adequate depends on
the safety specification and the AI system’s context of use.

Given a safety specification and a world model, we also
need a way to produce quantitative assurances for a given
AI system. In the most straightforward form, this could
take the shape of a formal proof that the AI system (or its
output) satisfies the safety specification relative to the world
model. This is akin to traditional formal verification (see
e.g. Baier & Katoen, 2008; Leino, 2023; Seligman et al.,
2023). Of course, such formal verification is often hard
to produce, even for relatively simple computer programs.
However, further progress in automated reasoning and the-
orem proving due to integration with data-driven learning
(see e.g. Lample et al., 2022; Seshia, 2015; Trinh et al.,
2024) could make this substantially easier, and might also
scale with further progress in AI more generally. Moreover,
if a direct formal proof cannot be obtained, there are weaker
alternatives that would still produce a quantitative guarantee.
For example, it may take the form of a proof that bounds the
probability of failing to satisfy the safety specification, or a
proof that the AI system will converge towards satisfying
the safety specification (with increasing amounts of data
or computational resources, for example). Indeed, many
model-based AI algorithms have been designed to satisfy
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exactly these sorts of guarantees (McMahan et al., 2005;
Junges et al., 2016; Mathews & Schmidler, 2022; Hasanbeig
et al., 2023). For a more detailed discussion of these issues,
see Section 4.4.

Finally, it is desirable to monitor the AI system at run-
time, and check for signs that the world model is inaccurate.
If such signs are detected, the AI system should not be
allowed to continue execution. However, note that for a
safety-critical system, it may not be possible (or desirable)
to simply shut it down. For example, it would not be safe to
disable the controller of a self-driving car while the car is in
use. A GS AI system should therefore have a trustworthy
backup system, appropriate for its domain of use, that can
safely transition the system to a safe state if the main AI con-
troller is disabled. These (and related) issues are discussed
in Section 4.5.

Note that the GS AI approach remains agnostic about both
how the “core” AI system was trained or produced, and
about what containment or boxing methods (Armstrong
et al., 2012) are used. If the verifier and the world model
together can establish that it satisfies the safety specification,
a quantitative safety guarantee is obtained (even if the core
AI system remains uninterpretable, etc).

4.2. The World Model

In this section we will discuss the world model, including
both a more detailed discussion of what counts as a world
model, as well as some possible strategies for constructing
such a world model (including their challenges and benefits).

The world model needs to answer queries about what would
happen in the world as a result of a given output from the
AI. It must also describe the state of the world at a level
of granularity that is sufficient for expressing the safety
specifications we are interested in.4 World models also
serve to elucidate the AI system designers’ assumptions,
and we must be mindful that those assumptions may hold
only part of the time. Hence, the domain of applicability
or epistemic uncertainty regarding different pieces of the
world model must be represented and taken into account.
For these reasons, the world model, or relevant aspects of it,
should be auditable or monitorable at run time.

There are many possible strategies for creating world mod-
els. These strategies can roughly be placed on a spectrum,
depending on how much safety they would grant if success-
fully implemented:

4Note that a world model with a more abstract state-space
may make it easier to express certain safety specifications, or
make verification more tractable, but that this may come at the
cost of making the predictions less accurate. Also note that the
world model need not make predictions about arbitrary properties
of the world, and even about properties on which they do make
predictions, these predictions need not necessarily be precise.

• Level 0: You have no world model, and, instead, as-
sumptions about the world are implicit in training data
and in aspects of the implementation of the AI system.

• Level 1: You use a trained black-box world simulator
as your world model.

• Level 2: You use a machine-learnt generative model
of probabilistic causal models, which you can test by
checking whether it assigns sufficient credence to spe-
cific human-made models (such as e.g. models pro-
posed in the scientific literature).

• Level 3: You use (a distribution over) world model(s)
that are generated compositionally, potentially with the
help of machine learning, from pieces that have been
completely reviewed by humans.

• Level 4: You use (a distribution over) probabilistic
causal model(s), potentially generated with the help
of machine learning, that are fully audited by human
domain experts.

• Level 5: You use world models about real world phe-
nomena that are formally verified as sound abstractions
of quantum field theory.

• Level 6: You have no world model, and instead use
safety specifications defined over the entire set of all
possible worlds.

To get a better intuition for what these levels may look
like, let us discuss a number of potential approaches to
constructing world models. First of all, in some cases, it
may be feasible for engineers to manually create an adequate
world model. This has been done in settings where the
operating environment is known or controllable, for e.g.
controllers in airplanes (Garion et al., 2022; Fremont et al.,
2020a) and self-driving cars (Ivanov et al., 2020; Fremont
et al., 2020b). Such models are also commonly used in
scientific research, including epidemic simulators (Broeck
et al., 2011) and particle physics simulators (Baydin et al.,
2019b). For AI systems, probabilistic programs (e.g., (Milch
et al., 2007; Fremont et al., 2022)) have been shown to be a
promising formalism for world modeling. In principle, this
manual approach is likely to provide the best understanding
of the assumptions underlying the world model, as well as
the delineation of its domain of applicability. This approach
would produce a world model on Level 4 or 5. However, for
AI systems that directly interface with very complex systems
(such as e.g. human users, the world economy, or sensitive
ecosystems), it may not be possible to create sufficiently
accurate world models in a fully manual way.

In such cases, the world model must instead be machine
learned (or automatically generated by some other means).
One possible approach to creating an interpretable world
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model with AI is to use large language models (or similar
systems) to write probabilistic programs that correspond to
the system(s) being modelled (as e.g. Wong et al., 2023;
Elmaaroufi et al., 2024). This method has the potential
to be scalable, since most of the work is offloaded to AI
systems. Moreover, this method may also produce world
models that are interpretable by default, if the language mod-
els are trained on (or at least prompted with) code written
by human programmers, or if the language used to generate
pieces of the world model is forced or encouraged to be
interpretable (through probabilistic translation to and from
natural language). If successful, this approach could pro-
duce a world model on Level 2, 3, 4, or possibly 5 in the
classification above (depending on the extent to which the
resulting model is audited). One of the main challenges
with this approach would likely be to ensure that the world
model has a high predictive accuracy.

Another approach is to learn a world model from data. How-
ever, this approach comes with a number of challenges. In
particular, many machine learning methods are prone to
being confidently incorrect in novel situations. On a theoret-
ical level, this problem can be solved by Bayesian induction.
Unfortunately, Bayesian induction is typically not compu-
tationally tractable (Hutter, 2003). However, it may be
possible to use deep learning to tractably estimate Bayesian
conditional probabilities, as e.g. Deleu et al. (2022); Ke
et al. (2022); Deleu et al. (2023); Hollmann et al. (2023);
Hu et al. (2023). If we consider an explanatory theory t
as a latent variable corresponding to a world model, the
plan is to train a large neural network to implicitly estimate
and sample from the Bayesian posterior P (t | D), where
D is the training data. Such a network provides a world
model, which can be used to verify the safety of other AI
systems (by estimating the probability of harm conditional
on running that system, or by estimating the probability of
harm conditional on executing each output by that system,
for example). Moreover, as we make those networks larger
and train them for longer, we are in principle guaranteed
that they will converge toward the Bayesian optimal an-
swers. This means that we can continue training at run-time,
or at least estimate the error made by the neural network
through a sampling process. We can also decrease the risks
associated with an insufficiently trained neural network by
encouraging the AI-generated hypotheses to be somewhat
human-readable, for example by regularising the AI to gen-
erate hypotheses that can be converted to natural language
and back with as little error as possible. Note that this would
allow human inspection of the generated theories, even if
the neural net activations are not themselves interpretable.
If successful, this approach would produce a world model
on Level 2 (or 5, if the model passes additional checks).
See Bengio (2024) for a more complete discussion of this
approach. Other approaches to scalable Bayesian inference

are also explored in works such as Gothoskar et al. (2023);
Saad et al. (2023); Baydin et al. (2019a).

A very ambitious approach would be to use world models
that are formally verified as being sound abstractions of the
basic laws of physics. Note that while physics is not a com-
pleted field, there is good reason to believe that our current
best theories are completely accurate in certain domains
(see e.g. Carroll, 2021). We can therefore be confident that
a system truly satisfies a specification if that specification
is verified for that system relative to our best theories of
physics, and that specification also includes the requirement
that the system is not moved beyond the domains where our
theories are known to be accurate. If successful, this would
produce a world model on Level 5. One of the main chal-
lenges for this approach will be the immense computational
complexity of producing and verifying such models. For
more details, see Tegmark & Omohundro (2023).

Note that in many cases, it will likely be necessary for the
world model to model the behaviour of humans. Moreover,
humans are very complex, and it seems dubious to presup-
pose that it is possible to create a model of human behaviour
that is both interpretable and highly accurate (especially
noting that such a model itself would constitute an AGI sys-
tem). This may introduce a fundamental trade-off between
interpretability and predictive accuracy. However, note that
interpretability can be maintained if human behaviour is
modelled using nondeterminism (where “nondeterminism”
here should be understood in the same sense as “nondeter-
ministic automata” and “nondeterministic Turing machines”,
rather than as a synonym for “probabilistic”). The same ap-
plies to other highly complex systems. Also note that the
levels in the classification above can be mixed within a sin-
gle GS AI system. For example, a system can use stronger
models of its engineering systems and weaker models of
its interactions with the social domain. You may wish for
the world model to be as rigorous as possible, which may
vary depending on different domains (e.g., you may want to
model your sensors with Level 5, but you will not be able to
use that rigour for e.g. social phenomena).

A potential argument against the GS research agenda is that
the world may be so complex that it is infeasible even in
principle to create a sufficiently accurate world model (be-
cause of chaotic dynamics, etc). We have several responses
to this point. First of all, a world model can (and should)
of course include model uncertainty, and this uncertainty
can be taken into account when the safety specifications are
verified.5 In this way, the strength of the resulting formal

5As a very simple example, suppose that the safety specification
is given relative to a finite time horizon of n steps, and that we have
reason to believe that the world model is wrong with probability
at most ϵ per step over the first n steps. Then if a policy can be
proven to satisfy this specification relative to the world model, we
should believe that it will satisfy the specification with probability
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guarantees will be appropriately sensitive to the reliability
of the world model. Moreover, many of the most concern-
ing loss-of-control scenarios with advanced AGI systems
involve cases where the AGI is assumed to be able to gener-
ate and execute complicated plans with high reliability. In
other words, it is reasonable to assume that if AI systems
can be powerful enough to pose a serious danger to human-
ity, then it is possible to create sufficiently accurate world
models. Finally, we would like to note that this argument
essentially is fully general. Any strategy for creating safe AI
systems must rely on some beliefs or assumptions about the
real world, and these assumptions could be wrong. Stated
differently, if it is impossible to create world models that
are sufficiently accurate to ensure that a given AI system
adheres to some safety specification, then it is presumably
in general impossible to ensure that this safety specification
is satisfied by that system.

4.3. The Safety Specification

In this section we will discuss the safety specification(s),
the difficulties with creating such specifications, and some
potential strategies for overcoming these difficulties.

Note that a safety specification in general is different from a
reward function (though they include bounded reward func-
tions as a special case). In particular, a safety specification
may include properties defined by probabilistic temporal
logics, causal counterfactual queries, or even hyperproper-
ties, which reward functions cannot typically express (Se-
shia et al., 2018; Subramani et al., 2024). However, safety
specifications cannot include unbounded evaluations of the
world-state. For example, safety specifications could be
expressed in terms of PCTL (Hansson & Jonsson, 1994), or
in terms of conjunction of linear inequalities of reachability
probabilities, for example. Also note that a specification
logic can invoke neural components as predicates.

There are many possible strategies for creating safety spec-
ifications. These strategies can roughly be placed on a
spectrum, depending on how much safety it would grant if
successfully implemented. One way to do this is as follows:

• Level 0: No safety specification is used.

• Level 1: The safety of the system is evaluated by a
pool of human judges.

• Level 2: The system uses a safety specification that
is expressed in natural language but interpreted by a
black-box AI system.

• Level 3: The system uses hand-written safety specifi-
cations for limited safety properties that are relatively
tractable to express in a formal language.

at least (1− ϵ)n in the real world.

• Level 4: The system uses a specification that is written
in (probabilistic) logic at the top level, but which makes
use of (uninterpreted) neural components to represent
learned bindings of certain human concepts to real
physical states.

• Level 5: The system uses compositional specifications
that are made up of parts that are all human audited,
but synthesised by AI.

• Level 6: The system uses hand-written safety specifica-
tions for comprehensive safety properties that require
substantial effort to express formally.

• Level 7: The safety specification completely encodes
all things that humans might want, in all contexts.

It is often very difficult to create useful formal safety specifi-
cations in many of the domains in which AI systems operate.
Suppose, for example, that we want to ensure that a chat-
bot never gives advice that is “harmful”. How should this
specification be formalised? A robust formalisation of this
specification would require a very detailed world model,
since whether or not a given piece of advice will turn out to
be harmful may depend on diverse facts about the real world
in complicated ways. Alternatively, we could instead require
the AI to never give advice that it “believes” to be harmful.
However, verifying this specification requires a reliable way
of extracting “beliefs” from an AI system, which may be
just as difficult. Moreover, “harm” is a vague predicate, in
the sense that there are edge-cases where it is controversial
whether a given person is harmed or not. Similar issues
occur if we want to ensure that an AI system never lies, or
that it always follows instructions from humans, etc.

Moreover, if a specification is formalised in the wrong way,
then it can often be satisfied by some perverse and unin-
tended behaviours. The field of moral philosophy has pro-
duced several formal frameworks that are meant to capture
good conduct in humans. However, all of these frameworks
recommend counterintuitive and seemingly perverse actions
in at least some situations, and none of them are endorsed by
a majority of all moral philosophers (Bourget & Chalmers,
2023). We should therefore expect this problem to be hard.

In many cases, it is possible to find proxies for complex pred-
icates (such as “harm”) which are easier to define and mea-
sure. However, while such a proxy may robustly correlate
with our intuitive judgements of harm in normal situations,
they may still reliably come apart if those proxies are used
as an optimisation target. This phenomenon is known as
Goodhart’s law, which is an informal principle sometimes
stated as “when a measure becomes a target, it ceases to be
a good measure”. Goodhart’s law was first introduced by
Goodhart (1975), and has since been studied more formally
in works such as Manheim & Garrabrant (2019); Hennessy
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& Goodhart (2023); Zhuang & Hadfield-Menell (2020);
Skalse et al. (2022); Karwowski et al. (2023). This means
that a safety specification may need to be highly accurate in
order to remain robustly reliable, especially when applied
to a powerful AI system.

One strategy is to attempt to learn safety specifications from
data. This is explored by the field of reward learning, where
the specification is assumed to have the form of a reward
function. If we assume that a human’s preferences can be
captured by a reward function, and if we can learn a rep-
resentation of this reward function from some data source,
then we may be able to prove that a given AI system will
respect the preferences which are embodied by that reward
function. However, reward learning also faces serious diffi-
culties. In particular, most data sources are insufficient for
identifying the underlying reward function uniquely, even
in the limit of infinite data, and this irreducible ambiguity
may be problematic (Ng & Russell, 2000; Dvijotham &
Todorov, 2010; Cao et al., 2021; Kim et al., 2021; Skalse
et al., 2023; Schlaginhaufen & Kamgarpour, 2023). More-
over, many reward learning algorithms are highly sensitive
to the modelling assumptions they make about their data
source (Armstrong & Mindermann, 2018; Freedman et al.,
2020; Viano et al., 2021; Skalse & Abate, 2023; 2024).
Finally, the learnt reward model is itself typically not inter-
pretable, which is a serious issue (see e.g. Michaud et al.,
2020; Jenner & Gleave, 2022). This means that much work
is required before reward learning can be a reliable source
of specifications. For an overview, see Casper et al. (2023).
Also note that there are approaches to learning safety spec-
ifications which do not fall under the umbrella of reward
learning, see e.g. Bengio (2024).

Another approach is to attempt to create “conservative”
safety predicates which aim to be sufficient (but not nec-
essary) for safety. For example, we may require that the AI
has no incentive to influence any part of the external world,
or to find out any information about the external world (e.g.
Armstrong et al., 2012; Armstrong & O’Rorke, 2018; Arm-
strong & O’Rourke, 2018; Everitt et al., 2021; van Merwijk
et al., 2022). Alternatively, we may attempt to create safety
predicates which make an AI system more safe, even if they
do not ensure safe behaviour (as e.g. Soares et al., 2015;
Orseau & Armstrong, 2016; Hadfield-Menell et al., 2017,
etc). These approaches come with their own challenges, see
e.g. Bostrom (2014) and the above cited works. Moreover,
while certainly challenging, it may still be feasible to simply
specify the safety predicates manually. This is (partially)
attempted in works such as e.g. Beckers et al. (2022a;b).

It is also important to note that the task of formalising spec-
ifications can be easier with a system-level approach. As
advocated by Seshia et al. (2022), even when individual AI
components perform tasks that are hard to formalise, it can

still be the case that the relevant notion of safety can be
formalised at the full system level. For example, one can
formalise system-level safety for autonomous vehicles even
when it is not possible to formalise correctness for object
detection and classification components in the autonomy
stack (Dreossi et al., 2019). In some cases, this can make it
feasible to define specifications directly.

Another approach to creating strong safety specifications is
described by Tegmark & Omohundro (2023). The authors
propose that the actions of potentially dangerous systems
should be mediated through “provable gatekeepers” which
enforce safety rules. The core component of these gatekeep-
ers is a device they call a “provable contract”. Each provable
contract is responsible for a piece of critical infrastructure,
and is equipped with a number of formal safety constraints.
It takes as input a control program for its infrastructure, to-
gether with a proof that the control program obeys its safety
constraints. It then only runs the control program if the
proof is valid. Unlike traditional design-time application of
formal methods, this approach may involve the generation
and checking of mathematical proofs as part of the operation
of the system. This enables a vastly richer means of control
and trust between parties. In general, untrusted AIs may
still be used to solve problems, create safe software and
hardware designs, and safe contracts and interactions. In
this way powerful but untrusted AIs can be used to reliably
create a safe and trusted infrastructure.

Another strategy for creating safety specifications is pro-
vided by Cooperative Inverse Reinforcement Learning
(CIRL), as described by Hadfield-Menell et al. (2024). CIRL
formulates the interaction between an AI and a human as
a two-player Markov game (with one player being the AI,
and one player being the human). Both players have the
same reward function, but only the human knows what the
reward function is. This means that the two players must
cooperate to obtain a high reward, and that the AI system
must listen to feedback from the human. Optimal solutions
to the CIRL game produce behaviours such as active teach-
ing, active learning, and communicative actions. The idea
is that this problem formulation will encourage the AI to be
corrigible (in the sense of Soares et al., 2015), instead of
following some goal dogmatically. An AI could be verified
to adhere to various safety specifications within the CIRL
game. These specifications could take several forms, but a
natural choice would be to require that the AI is provably
beneficial to the human (or some variation thereof). Note
that such specifications may require the world model to also
make modelling assumptions about the behaviour of the
human (and in particular about how the behaviour of the
human relates to its preferences). Also note that many of
the challenges to reward learning also apply to CIRL.

While these challenges are serious, it is important to note
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that most approaches to AI safety require formal safety spec-
ifications (or at least formalisations of what an AI system
should be optimised for). These difficulties are thus not
unique to the GS research agenda. It is also important to
note that further development in AI capabilities will tend
to make it easier to create good safety specifications. For
example, AI systems could be used to suggest new specifi-
cations, to critique proposed specifications, or to generate
examples of cases where two candidate specifications differ.
Progress in AI could thus also accelerate the creation of
good safety specifications.

4.4. The Verifier

In this section we will discuss the verifier, the difficulties
with creating such a verifier, and some potential strategies
for overcoming these difficulties.

The verifier may produce different kinds of formal guaran-
tees, depending on what is feasible in a given context. We
can thus place different kinds of verifiers on a spectrum,
based on the strength of their corresponding guarantees:

• Level 0: No quantitative guarantee is produced.

• Level 1: A heuristic assurance is given by ad-hoc em-
pirical testing of the AI system.

• Level 2: A standardised set of tests is used, which
thus provides safety assurances that are auditable and
comparable across systems.

• Level 3: You use a property-based test which includes
domain randomisation and current state-of-the-art au-
tomated evaluations. In other words, you have some
template for what the test looks like, but randomly
populate the template to get more coverage.

• Level 4: You use black-box fuzzing, wherein an au-
tomated tool gives test vectors as input to the system
and, depending on the response, generates different
test vectors to fool the system. In other words, you use
a form of automated red-teaming.

• Level 5: You use white-box fuzzing, which is akin
to Level 4, except that your tool not only looks at
the input-output behaviour of the AI system, but also
considers its internal states and tries to make certain
internal structures flip to get more coverage.

• Level 6: You use probabilistic inference with asymp-
totic convergence. This is akin to Level 5, but with
the additional guarantee that if the evaluation system
would run forever, then it would eventually literally
cover every possible input to the system.

• Level 7: You combine asymptotic coverage with white-
box fuzzing. This might include adversarial gradient

optimisation, whereby you first cover areas where you
most expect safety concerns to spring up, and where
the system in the limit of infinite time would cover
every possible system input.

• Level 8: Akin to Level 7, but with the additional re-
quirement that you have some non-asymptotic conver-
gence bounds, thanks to some formula for how much
of the total state space your system covers at a given
time. You can thus run it for a finite amount of time,
and know how much is left that you have not covered

• Level 9: You have a sound bound on the probability of
failure, meaning that the true probability of something
happening is less than or equal to the value established
by your verifier. This includes the case where the
verifier is able to establish that the probability of failure
is 0 (relative to the world model).

• Level 10: Akin to level 9, but with the additional re-
quirement that the proof is concise enough that humans
can read, understand, and check it.

To obtain strong guarantees, we would need a verifier on
Level 8, 9, or 10. This, of course, raises the question of
whether such guarantees could feasibly be obtained for AI
systems. Even for relatively simple properties of software,
obtaining such guarantees currently has a very high burden
of highly specialised cognitive labour. However, it may
be possible to train AI systems without ASL-4 capabilities
to automate much of this labour at a near-expert level of
sophistication without raising significant safety concerns.
For example, consider an AI agent that only interacts with
a formal theorem-prover and is only allowed to grow a
library of formal facts. In this case the agent will never be
exposed to any actions that would meaningfully influence
the real world, and it would never learn to communicate with
humans besides formalising and reasoning about existing
statements or developing related theories. Note that the
scope of that training would be very limited, so the AI is
only exposed to natural language mathematics and computer
science. It will therefore not have any significant knowledge
of the outside world, besides these restricted domains. This
restricts the AI’s potential for power-seeking behaviour.

Here we outline a potential system that could acquire human-
expert-level reasoning capabilities by letting it process all
of the mathematical and computer science literature auto-
matically by formalising it (Szegedy, 2020). We first index
all of the existing informal and formal literature with an
ASL-3 system and create a neural retrieval system. Then we
use similarly capable language models to extract statements
and definitions from the text and formalise it. Such models
already exist, but they need further tuning on existing for-
malisation to reach sufficient quality for the initial phase of
a bootstrap loop. The informal to formal translation data for
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this phase can be generated using cycle-consistency train-
ing (Lample et al., 2017), along with the small amount of
human-verified formalization of informal statements, just
like the proof-generation part can be trained on a relatively
large corpus of existing formal theorems. The next phase is a
reinforcement learning loop that trains the translation model
and the neural prover in lockstep; In this step, both models
can be assumed to be retrieval-augmented large language
models, while the translation takes in informal (natural lan-
guage) specifications it outputs formal specification. Then
the prover attempts to prove them, potentially utilising the
natural language proof- sketches. Whenever a statement is
proven to be correct (that is, verified by the formal prover),
and it is useful for proving other statements like its informal
counterpart, it can be considered to be a correct transcription
and used for training the translation model. In addition the
prover can be trained on the successful proof traces. While
there is ongoing research work on the overall feedback loop,
there are multiple existing proof-of-concept solutions for
various components of this reinforcement learning system
(Szegedy, 2020), which makes it likely that a full solution
can be implemented in the coming years.

A more extensive discussion on the challenges for extending
formal methods to handle the unique characteristics of AI
systems is provided by Seshia et al. (2022), who presents
fifteen principles for providing provable guarantees of safety
for AI systems. We summarise some of the key ideas per-
taining to the verifier here, and point the reader to (Seshia
et al., 2022) for details. First of all, one important piece
is devising suitable abstractions of AI components such as
deep neural networks. Seshia et al. (2022) advocates for
designing abstractions of AI components that are easier to
formally analyse and which can be generated algorithmi-
cally. In this context, abstractions that are modular and more
interpretable have also been found to be easier to analyse
by formal verification tools. Another key part is composi-
tional reasoning; the idea is to construct a proof of safety of
the overall AI system by decomposing the top-level proof
obligation into sub-obligations on individual components,
and then apply formal verification to the sub-obligations.
One challenge here is that not all AI components have for-
mal specifications – in other words, we need to do com-
positional verification without compositional specification!
Seshia et al. (2022) tackle this by developing techniques
to automatically infer a decomposition of the system into
components along with interface contracts between them.
Such a decomposition could be spatial and/or temporal,
and has been shown to aid in scalable analysis (Dreossi
et al., 2019; Yalcinkaya et al., 2023). Finally, it is crucial
to integrate formal methods into the design process for AI
components, for example, the training of deep learning com-
ponents, and also to connect design-time formal methods
with run-time assurance. Ideas from verified inductive syn-

thesis of programs can be useful in training AI components
with provable guarantees (e.g. Dreossi et al., 2018; Abate
et al., 2023). Similarly, environment assumptions generated
during world modelling at design time can be synthesised
into efficient runtime monitors to supervise the operation of
the AI at runtime (e.g. Torfah et al., 2022). Such runtime
monitors form gatekeepers ensuring that AIs are only run
in environments where their safety can be guaranteed (and
otherwise transfer control to the backup system).

4.5. The Deployment Infrastructure

In this section we will discuss the deployment infrastructure,
and a few different ways in which such a system may be
constructed.

The deployment infrastructure is the hardware and software
context into which the verified outputs of the AI system are
deployed. The “verified AI outputs” may refer to individual
actions or entire AI systems (that were themselves verified
as safe). The purpose of the deployment infrastructure is
to grant additional safety by enabling a rapid automatic re-
sponse to observations that invalidate the predictions of the
world model (resulting from unknown unknowns or unex-
pected uncertainty). Furthermore, the deployment systems
can shorten the time horizon of outputs that need to be ver-
ified, thereby reducing the complexity of verification and
increasing its tractability. The deployment infrastructure
may contain a backup system which can be used to transi-
tion the overall system into a safe state if an observation is
detected that invalidates the world model. As with the other
components of GS AI, there are different ways to design
the backup system, and these designs may be placed on a
spectrum along the (continuous) time horizon at which the
verified AI output is deployed:

• Level 0: The AI system is deployed to operate au-
tonomously with an infinite time horizon.

• Level 1: The AI system is deployed for a finite time
horizon, and if at the end of that time horizon it is not
redeployed, it shuts down or transitions to a safe mode.

• Level 2: The deployment is limited to a single action
at the time. If no new action is deployed, the system
shuts down or transitions to a safe mode.

• Level 3: The verified AI output is itself a small AI
system which autonomously responds to observations
and takes action (output system with finite time horizon
using some tamper proof clock).

It is worth noting that in cases where a system is safety
critical, it may not be possible to simply turn it off entirely.
In these cases, the system instead requires a safe mode
backup which it can safely transition into. Such backup
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systems may be created in different ways, depending on
the GS AI system’s context of use. Also note that GS AI
systems themselves may be useful for creating bug-free
software and tamper-proof hardware that could be used to
produce safe backup systems.

5. Discussion
We have argued that safety-critical AI systems need to be
equipped with quantitative safety guarantees, and that em-
pirical evaluations alone are insufficient for producing such
guarantees with an adequate level of assurance. We have
also introduced GS AI as a potential avenue for tractably
obtaining such safety guarantees, discussed the main chal-
lenges with this research agenda, and some ways in which
those challenges may be overcome. In this section, we will
provide a further discussion of some potential benefits to
the GS AI research agenda.

An important benefit to GS AI is that it makes democratic
oversight easier, because concrete safety specifications can
be audited and discussed by outside observers and regula-
tors. AI technology will have an immense (and potentially
unprecedented) impact on most, if not all, areas of life. This
makes it crucial to enable as many people as possible to have
a say in how this technology is deployed and used. How-
ever, such democratic input and oversight is not possible if
important AI systems are specified, trained, and evaluated
using procedures that are opaque to (or kept secret from) the
wider public. In other safety-critical industries, probabilistic
safety assessment means that the developer must specify
all the assumptions or premises needed to deduce that their
system meets the required societal risk thresholds. These
assumptions can then be challenged by the regulator (and
society at large) if they are not deemed socially acceptable.
GS AI enables the same kind of oversight for AI systems.

Another important benefit of the GS research agenda is
that it may produce AI safety solutions whose costs are
amortised over time. Any potential safety measure (in AI
or elsewhere) faces the issue that if said safety measure is
costly to implement, then there is an incentive to disregard
it. This reduces the value of approaches to AI safety that
impose a high “safety tax”. For example, a comprehensive
suite of rigorous empirical evaluations may be expensive
and time-consuming to carry out, and this cost would (pre-
sumably) have to be paid again for each new AI system that
is created. This would in turn create an incentive to save
resources by cutting corners. By contrast, some approaches
to GS AI may allow for most of these costs to be amortised,
which may substantially reduce the incentive to disregard
the corresponding safety measures. Once satisfactory safety
specifications have been identified and scalable methods for
formal verification have been developed, new AI systems
could likely be verified against these safety predicates at a

much lower marginal cost. Such solutions would also be
more scalable in view of the impressive speed of AI progress
that otherwise threatens to outpace progress in safety.

It is important to note that GS AI may not be the only method
for producing AI systems with verifiable quantitative safety
guarantees. For example, another potential approach is to
extract interpretable policies from black-box algorithms via
automated mechanistic interpretability and directly proving
safety guarantees about these policies. This approach differs
from GS AI in that it does not make use of a world model
that is separate from the policy; instead, it requires that the
policy can itself be made interpretable. This strategy may be
easier if it is intractably difficult to create a sufficiently good
world model or adequate methods for doing formal verifica-
tion relative to that world model. However, it may also be
more difficult, especially because the policy may be more
complex than the world model. For example, the rules of
chess are less complex than a policy which is good at chess,
and it is much easier to specify the axioms of Euclidean
geometry than it is to specify a computer program that is
good at proving theorems about Euclidean geometry. In a
similar way, it may be much easier to create an interpretable
world model than to create a performant interpretable policy.
However, it is ultimately an empirical question whether it is
easier to create interpretable world models or interpretable
policies in a given domain of operation.

We also want to emphasise that there is a spectrum of ap-
proaches for safety assessments, ranging from easy ones
that provide weaker safety assurances (such as evaluations
and red teaming) to more expensive procedures that provide
stronger safety guarantees (such as the approaches within
the GS AI spectrum). Given the uncertainty about when
each of the ASL safety levels will be crossed, we need an
“anytime” portfolio approach of R & D efforts spanning
this spectrum. This will allow us to maximise the expected
effectiveness of the feasible safety techniques at each stage.
This would involve investing in cheaper techniques, such as
empirical evaluations, but also more ambitious approaches,
such as those presented by the GS AI framework. It is also
important to note that quick partial successes in GS AI are
both plausible and useful. For example, provably compli-
ant cybersecurity, geofencing, remote kill-switches, verified
sensors and actuators, etc, may all be feasible even if the
most ambitious proposals within the GS AI agenda are not,
and would still provide notable benefits in their own right.

6. Relevant Existing Work
In this section, we briefly provide an overview on some
existing work that GS AI approaches build on, or which are
otherwise relevant to or related to the GS AI agenda.

First of all, the field of computational learning theory (CLT)
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is concerned with the mathematical analysis of learning al-
gorithms and learning problems. These investigations have
produced various formal guarantees for large classes of
learning algorithms, primarily in the form of generalisation
guarantees and regret bounds. These bounds typically show
that a given learning algorithm under some given circum-
stances is guaranteed to attain a given level of performance
with at least some given probability, and may also show
how these probabilities scale in terms of the amount of train-
ing data, etc (see e.g. Kearns & Vazirani, 1994). Like the
GS approach to AI safety, CLT is also concerned with de-
riving formal guarantees for AI systems. However, CLT
is typically concerned with guarantees concerning narrow
performance metrics, whereas we are concerned with spec-
ifications that would provide strong safety assurances for
advanced systems operating in open-ended environments.

There is also a large literature on formal verification of neu-
ral networks and AI-enabled systems. This literature has
proposed a range of algorithms which can be used to en-
sure that a given neural network (potentially belonging to
some restricted class) satisfies a given specification (typ-
ically specified over its interfaces), or that a system con-
taining one or more neural components satisfies a safety
specification. It would not be possible for us to provide a
comprehensive overview of these algorithms here, but for
an introduction, see e.g. Seshia et al. (2022); Albarghouthi
(2021).

Another area of computer science that is relevant to GS AI is
the literature on correct-by-construction program synthesis.
This is an approach to software development that aims to
produce programs that are guaranteed to be correct with
respect to their specifications from the outset, rather than
relying on traditional testing and debugging methods to
identify and fix errors after the fact. The core idea behind
correct-by-construction synthesis is to use formal methods
to systematically construct programs that satisfy a given set
of formal specifications or correctness properties. This is
typically achieved by encoding the specifications as logical
formulas or constraints, and then using automated solvers
or synthesis algorithms to derive programs that provably
satisfy those constraints. For an overview, see e.g. Gulwani
et al. (2017); Jha & Seshia (2017); Edwards et al. (2023).

More broadly, GS AI is also related to the field of safety
engineering, which is an area of engineering science that
focuses on identifying, evaluating, and mitigating potential
hazards and risks associated with various systems and pro-
cesses. For an overview of the techniques used in this field,
see e.g. Ericson (2015); Leveson (2012); Dhillon (2003).

7. Conclusion
In this paper, we have introduced and defined the concept
of guaranteed safe (GS) AI. GS AI aims to ensure the safety
of AI systems by equipping them with formal, verifiable
safety guarantees. We have argued that the GS approach is
necessary, given the limitations of other methods such as
empirical testing and interpretability.

We have also acknowledged that GS AI faces serious tech-
nical challenges. Creating accurate and interpretable world
models, formulating precise safety specifications, and per-
forming formal verification at scale are all difficult prob-
lems. However, we have suggested potential strategies and
research directions for making progress on these problems.

Overall, we believe the GS agenda is crucial for ensuring
robust and reliable AI safety in advanced AI systems. While
empiricism and transparency are useful tools, they do not
provide the strong safety assurances that formal verification
can. And although formal verification is challenging, the GS
research program offers a promising path toward making it
feasible at scale.

Much work remains to fully develop the GS approach. But
given its importance for avoiding AI risks, we argue that
the GS agenda deserves substantially more attention and re-
sources than it currently receives. With a concerted research
effort on the core technical problems, significant progress
could be made. We hope this paper provides a useful starting
point and motivation for a wider pursuit of the GS program.
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