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Abstract
Autonomous navigation in robotics has traditionally relied on predefined waypoints and
structured maps, limiting scalability in dynamic, real-world environments. The lack of
well-annotated language-action datasets further complicates the development of language-
driven navigation models. Inspired by recent advances in large-scale Vision-Language
Models (VLMs), image generation models, and vision-based robotic control, we propose
Exploration with VLM-guided Image Subgoal Synthesis (ElVISS) a framework to enhance
exploration for robot navigation tasks with user instructions. This framework leverages the
semantic reasoning of VLMs to decompose complex tasks into simpler ones and execute
them by generating task-relevant image subgoals which are executed by a low-level policy.
We also incorporate a VLM-based subgoal validation loop to minimize executing inaccu-
rately generated subgoals. Experimental results show that our validation loop significantly
improves the alignment of executed actions with our instructions, and our resulting system
is capable of executing generalized search-based instructions.

1. Introduction

The field of robotics is progressively advancing towards creating autonomous systems ca-
pable of navigating and exploring environments given very generalized user instructions.
Traditional navigation strategies are often limited by reliance on predefined waypoints or
structured environmental maps and struggle to scale well to real-world scenarios filled with
novel obstacles and tasks. Furthermore, due to the lack of well annotated language-action
datasets for navigation, developing performant language-action models for navigation tasks
is di�cult.

Our approach is inspired by advancements in semantic reasoning capabilities of large-
scale VLMs, image generation models, and vision-based robotic control. Recent works
have shown that image editing models are capable of generating detailed image-based sub-
goals for robotic manipulation tasks by editing scenes [2, 11]. These subgoals are uniquely
represented as images created in response to real-time prompts, depicting intermediary
objectives or desired target states within the environment. Navigation problems can of-
ten be simplified into basic actions such as moving forward and turning left or right. We
can e↵ectively produce actionable subgoals by applying simple labeling strategies to widely
available navigation data and finetuning generation models. We can then execute more
complex instructions by chaining together these simpler tasks.

Our primary contribution is Exploration with VLM guided Image Subgoal Synthesis
(ElVISS), which enhances exploration for navigation tasks with user-provided instructions.
We utilize VLMs to decompose complex tasks into simpler ones, generate navigational
subgoals, and validate the subgoal’s alignment with our task. We show that by running
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this process as a feedback loop, VLMs can provide meaningful guidance to the subgoal
generation process and we can execute more general instructions e↵ectively in a search-
based context. Such a system can be very useful for collecting descriptive language-action
datasets for navigation, as well as investigating more broadly how to best use the capabilities
of VLMs to execute navigation tasks in dynamic environments.

2. Related Work

2.1 Vision and Language Navigation (VLN)

Many VLN methods rely on some form of a↵ordance/semantic knowledge maps to ground
language instructions to the environment being traversed [6, 5]. Such methods are very
powerful and can execute instruction-based missions well, however, they require a detailed
representation of the environments, which in many cases may not be available or easy
to collect. Hence ElVISS is an exploration-based method where natural language guidance
enhances the exploration process to achieve a specific goal. There have been similar frontier-
based navigation projects [8] that rely on using LLMs to score potential subgoals to execute
a specific instruction, but again, such methods require a map of potential subgoals in the
environment stored in memory to be collected during the exploration process. We explore
the usage of subgoal generation instead of building a map of the environment, allowing the
robot’s memory usage to be O(1) and resulting in a more scalable method.

2.2 LLM/VLM based planning and control for robotics

LLMs and VLMs have the ability to enhance robotics planning due to their strong contex-
tual understanding of environments, and generation capabilities, enabling robots to interpret
and interact in complex environments. The capabilities of Vision-Language-Action Models
trained on internet scale data have led to performant end-to-end robot control [3]. However
such methods require large amounts of well-annotated language-action datasets, that have
primarily been available for manipulation tasks, not navigation. Our method relies on a
simple labeling scheme for presently available navigation data and provides a framework for
skill building enabling us to iteratively build better language annotated navigation data.
Recent works in using language-conditioned visual goal generations to guide lower-level
robot controllers have been very e↵ective for manipulation tasks [2, 11]. However, these
tasks require changes in consistently observed scenes, while navigation tasks require genera-
tions that shift a scene perspective to simulate movement, which is a more di�cult problem
we try to tackle with a subgoal validation step.

3. Method

We use image-based subgoals as our proposed goal representation for several key reasons.
Firstly, image editing models have demonstrated robust capabilities in generating image-
based subgoals for robotics tasks [2]. Secondly, incorporating an image-based subgoal facil-
itates the inclusion of a VLM-based validation step, as such models have shown proficiency
in discerning semantic information from images. Lastly, there is substantial work done sup-
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porting the development of navigation models that e↵ectively follow image-based subgoals
[7, 9, 10].

3.1 Subgoal generation

To e↵ectively generate subgoals for an exploration task, we would require a model that
observes the current robot view and takes in a description of what we want the robot to
do. A generated subgoal would ideally modify the robot’s current POV perspective to be
aligned with our given instruction. Instructions can be open-ended, such as giving the robot
a direction, or they can be object-oriented, such as ”Go towards the door”. To generate
subgoals, we utilize an instruction-based image editing model, in this case, InstructPix2Pix.

Image editing models such as InstructPix2Pix [4] primarily deal with editing certain
aspects of a given image within a given scene. Our task of changing perspectives involves
being able to predict what our environment would look like given a perspective change of
the camera, hence this generation model would require some task-relevant fine-tuning.

3.1.1 Data labeling strategy

Due to the lack of well-labeled navigation data with natural language annotations, we imple-
ment a data labeling scheme on image-based navigation data. Formally given a trajectory
of the form ⌧ = {(I0, x0,↵0), ..., (In, xn,↵n)}, we construct our language-labeled robot data
Dl,a = {(⌧0, l0), ..., (⌧N , l

N )}. Here ⌧ i = {Ii, Ii+1, Ii+k�1} is the contiguous sub-trajectory of
⌧ and l

i is selected by thresholding �↵ = ↵i+k�1�↵i on a user-defined ↵thresh appropriately
labeling the change in angle as one of ”Go Forward”, ”Turn Left”, ”Turn Right”. For this
project, we set k = 2 so our sub-trajectories are of size 2.

3.1.2 Model finetuning

To fine-tune our model given our language labeled dataset Dl,a, we finetune our Instruct-
Pix2Pix model with the training objective

max
✓

E(⌧n,ln)⇠Dl,a; Ii⇠⌧n [log p✓ (Ii+1|Ii, ln)] (1)

Given the above objective, our model p✓(sedited|sorig, l) predicts the next step subgoal
given the robot’s current step and a language prompt (given our sub-trajectories are only
of size 2 for this project report).

3.2 VLM-guided subgoal validation

Subgoal generation for navigational problems mainly focuses on changing the perspective of
the current robot view. As generations could potentially not align with the given prompt, we
incorporate a validation step to check if our generated subgoal is relatively undistorted and
aligns with our prompt. We use OpenAI’s GPT4 turbo model with the following prompt
structure to validate our subgoals.

{

"role": "user",

"content ": [{
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"text": "Let this first image be the current POV view of a

robot."

},

{

"image_url ": {"url": "Image of the first POV image "}

},

{

"text": "This next image was taken after the robot made an

action following the prompt \"{ prompt }\" as a movement

guideline. By observing the second image and the prompt ,

can you say that the movement was made in the appropriate

direction and that the second image is undistorted when

compared to the first? The image must also be relatively

similar to the initial image as the movement is small. a)

True b) False."

},

{

"image_url ": {"url": "Image of the second POV image "}

}]

}

3.3 System Integration

To e↵ectively utilize the subgoal generator and VLM validator, we incorporate them as
part of a larger execution loop. To execute our proposed subgoals, we utilize image-goal
conditioned navigation models such as ViNT and NoMaD [9, 10] which predict the robot’s
angular and linear velocity given an image goal and the robot’s current view. These models
have been proven to work very e↵ectively in following image-based trajectories, and as our
subgoal generator is fine-tuned to predict subgoals one step ahead, such a navigation model
can be used directly without modification.

We also want to follow the paradigm of decomposing a user-defined instruction into a
series of learned primitives from an instruction bank; containing a list of language instruc-
tions the subgoal generation model has been trained with. In our case, we initialize our
prompt bank with the instructions [”Go Forward”, ”Turn Left”, ”Turn Right”]. Adopting
this skill-building paradigm would be beneficial in further developing this method to exe-
cute more complex tasks by iteratively building on skills with increasing complexities while
retraining the subgoal generator (further works).

To decompose our user-defined instruction, we incorporate a ”Prompt Filter” which
takes in the robot’s current view and the provided user instruction and outputs a primitive
from the defined instruction bank. To implement our prompt filter, we use the GPT4 Turbo
model with the following prompt structure.

{

"role": "user",

"content ": [{

"text": "Let this image be the current POV view of a robot ."

},

{

"image_url ": {"url": "Image of the first POV image "}
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},

{

"text": "Given the robot ’s current view and the given user

instruction \"{ prompt }\" suggest the most appropriate

action from the current instruction bank \"{ instruction

bank }\". Only provide exactly one result from the

instruction bank as your response ."

}]

}

Figure 1: Subgoal generation-execution loop

4. Experimental Evaluation

The objective of our study is to assess the e�cacy of our proposed method in performing
navigation-based tasks prompted by a single instruction. We mainly evaluate the e↵ective-
ness of VLM validation for instruction-action alignment and the ability of the system to
execute general search-based instructions.

4.1 Experimental Environment

Our experiments are primarily conducted within the RoboTHOR simulation environment
[1], designed to simulate apartment-like settings. We selected a distinct apartment from the
series of available apartment designs, from which we collected our base navigation data to
fine-tune our subgoal generator with a random action policy.

Due to the computational demands of the subgoal generation model, we utilize Google
Cloud Platform’s Tensor Processing Units for its execution. Concurrently, the VLM valida-
tor operates on the same platform, leveraging the capabilities of the OpenAI GPT4-Turbo
model via its API. The simulation and robot control tasks are managed locally on a desk-
top equipped with an NVIDIA 4090 GPU. Integration and communication between the
disparate system components are achieved through a Flask server API hosted with the
simulation environment.
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4.2 E�cacy of Image-Subgoal generation/validation

To determine the e↵ectiveness of VLM validation for our subgoal generation and action-
instruction alignment, we randomly position our robot within our simulation and issue
one of our primitive actions to our subgoal generator. We then execute the subgoal with
the VLM validation loop and without. We run this experiment for 1000 di↵erent random
positions for each of our primitive instructions [”Go Forward”, ”Turn Left”, ”Turn Right”]
and record the average forward movement and turning radius in table 2. It is evident that
with the VLM validator, resulting robot actions are more aligned with our instructions.

Table 1: E↵ect of VLM validation of primitive actions

Primitive Command Go Forward Turn Left Turn Right
Without VLM Validation

Mean Turn Radius (degrees) 2.3 10.5 -15.3
Average forward movement (m) 0.17 0.1 0.1

With VLM Validation
Mean Turn Radius (degrees) 5.3 7.4 -3.2
Average forward movement (m) 0.15 0.12 0.15

Figure 2 shows example generated subgoals for our primitive instructions. Qualitatively,
the main situations in which the VLM validation rejects a generation is when the generation
is significantly distorted or represents a scene inconsistent with the robot’s current view.
An interesting observation can be made for the accepted ”Turn Left” generation, where
even though the generated left turn hallway does not represent the same hallway the robot
is in, the shift in perspective viewing the hallway walls represents an accurate left turn in
a hallway.

4.3 Complex exploration tasks

To evaluate if our method can handle more complex exploration tasks, we tested it with
more challenging instructions that go beyond direct navigation cues. The ability to chain
our primitive actions to achieve long-term goals is critical for showing that our method can
adapt and perform e↵ectively in dynamic and complex environments.

To evaluate if our method can handle more complex exploration tasks we test its ability
to decompose a general search-based exploration instruction. Within our environment, we
identify 2 distinct landmark objects and instruct our method to navigate towards each by
issuing the command ”Go to the object descriptor”. The selected landmarks are a black
chair and a bedside plant which are indicated in Figure 3 along with the staring position
of the robot. The agent is consistently initialized at the fixed starting point within the
apartment to ensure uniform testing conditions and run ElVISS with our command until
the robot collides with an obstacle or reaches a 2-meter radius of the objective.
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Figure 2: This figure illustrates the subgoal generation - validation loop running for 4
iterations until a VLM accepted subgoal is generated. The subgoal generation is executed
with a fine-tuned image editing model and the VLM validation is done by GPT 4 Turbo

Figure 3: The map of our simulation environment with the start position and two goals
marked

Table 2: E↵ect of VLM validation of primitive actions

Policy Success %
Black Chair Goal

Random Policy 3.2%
ElVISS 76%

Plant Goal
Random Policy 1.2%
ElVISS 32%
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Clearly, ELVISS performs quite well when the relevant object referenced in its instruction
is within line of sight, as in the case of the black chair. But even for the plant that requires
a distinct turn to come into view, ElVISS works much better than a randomized exploration
policy. A full example rollout of an ElVISS trajectory for the black chair can be seen in
figure 4.

Figure 4: This figure expands an entire rollout of an ElVISS run with the prompt ”Go to
the black chair”. The frames on the leftmost column show the actual robot POV view

after executing the validated subgoal generation (in green) from the previous row. The red
frames represent the rejected Subgoal generations for that row generation-validation loop.

5. Discussion and Future work

We presented Exploration with VLM guided Image Subgoal Synthesis (ElVISS), a system
which takes advantage of the generation and semantic reasoning capabilities of VLMs to en-
hance robot exploration in environments with user-provided instructions. We demonstrated
the e↵ectiveness of our validation loop in generating e↵ective subgoals for navigation tasks,
as well as the e↵ectiveness of executing more general instructions with our method.

In this project report, we mainly run experiments and data collection within a simulation
environment, which is an easier task setting when compared to real-world environments,
especially for vision-based tasks. For the next steps, we will aim to replicate our exper-
imental performance in the real world using datasets such as GNM [7]. This will likely
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require modifications in our generation models to account for the increased complexity of
real-world data.

We also only experimented with search-based instructions for our complex tasks and
investigated skill decomposition just one level deep. A good next step would be to retrain our
subgoal generator with new tasks as we execute them and iteratively build our instruction
skill bank. This could allow us to execute a wide number of tasks by recursively decomposing
tasks into simpler ones the robot has already learned.
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