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Abstract

Enhancing QUIC: Quality-of-Service LLM Serving and MASQUE Proxy Scheduling

by

Rithvik Chuppala

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Sylvia Ratnasamy, Chair

This thesis explores the QUIC network protocol, a transport-layer protocol positioned as
TCP’s successor in modern network architectures. Focusing on QUIC’s key design aspect
of stream scheduling, this research investigates two contemporary networking applications:
Large Language Model Serving and Network Proxying. The first chapter presents various
stream scheduling algorithms tailored to the unique demands of LLM serving, providing
novel approaches to optimize data transmission and model service in resource-constrained
environments. In the second chapter, this thesis demonstrates the role of stream scheduling
in the context of MASQUE proxies, exploring ways to improve the performance and scal-
ability of QUIC-based tunneling protocols. As new applications demand custom-tailored
network functionalities, stream scheduling emerges as a fundamental primitive for delivering
application-specific optimizations, blurring the lines between the end-host and the network
infrastructure. At its core, QUIC itself departs from traditional conventions, relying on the
plain datagram abstraction and assuming the responsibilities of reliable delivery, security,
and application-level semantics, integrating Layers 4 through 7 in the OSI model. This
paradigm shift emphasizes the importance of co-designing protocols and algorithms for ap-
plication semantics. This work aims to enhance the efficacy of stream scheduling in QUIC,
addressing the evolving demands of modern networking applications.
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Chapter 1

Quality-of-Service Aware LLM
Serving

In this first chapter, we introduce the QUIC network protocol and the notion of application-
level stream scheduling in QUIC. We design, implement, and integrate stream scheduling
semantics in a reference QUIC implementation and benchmark our schedulers. Asserting
that the future of Large Language Models - still a nascent space - will necessitate catering to
various classes of requests, we apply our scheduling semantics to deliver Quality-of-Service
for serving LLMs. To this end, we introduce and evaluate novel scheduling algorithms at the
network-level in conjunction with a best-effort serving system that employs deep Q-learning
to adjust model quality based on task distribution and system load. Our end-to-end model-
serving system effectively caters to QoS differentiation between requests and outperforms
current model-serving standards in per-token latency and response quality metrics.



Quality-of-Service Aware LLM Serving

Abstract
Many applications must provide low-latency large
language model (LLM) service to users or risk
unacceptable user experience. However, over-
provisioning resources to serve models is often
prohibitively expensive. In this work, we iden-
tify various classes of LLM requests, each with
different quality-of-service requirements. To best
meet the requirements of all traffic classes, we de-
sign and implement scheduling algorithms for the
QUIC network protocol. Moreover, we present a
best-effort serving system that employs deep Q-
learning to adjust service quality based on task dis-
tribution and system load. We train the Q-learning
agent to optimize latency and model serving qual-
ity of higher priority classes while achieving fair-
ness and best-effort response quality for lower
priority requests. Our network schedulers show
better request latency and completion rate per-
formance compared to the standard QUIC proto-
col, as well as TLS/TCP. Overall, our end-to-end
model-serving system effectively caters to QoS
differentiation between requests and outperforms
current model-serving standards in per-token la-
tency and response quality metrics.

1. Introduction
Applications in the last decade have evolved from using
machine learning in background functions such as data ana-
lytics and monitoring to being at the forefront of user experi-
ence. Over the past couple of years, many applications have
adopted large language models (LLMs) to provide users
with both custom and interactive experiences. The need for
latency guarantees is critical for such applications as ser-
vices cannot simply hang and become unavailable to users.
LLM systems are faced with the challenge of serving a wide
range of user demands, such as varying context lengths
and request arrival rates, while simultaneously meeting ap-
plication QoS requirements. This necessitates an architec-
tural tradeoff as the simple solution of over-provisioning
resources to serve dynamic application needs is prohibitively
expensive for small businesses and independent developers.

The status quo for applications is to serve queries using a
model of fixed quality. For example, within the OPT model

family (Zhang et al., 2022), there are models of various sizes,
with larger models providing higher-quality responses. An
application may choose OPT-6.7B to serve all queries, with
this model replicated and/or partitioned across a set of GPUs.
We explore a new paradigm of best-effort serving in which
models of different quality and latency exist simultaneously
in the serving system with a router that sends client requests
to each model. For example, suppose an application would
like to support OPT-6.7B quality when possible. However,
during periods of higher-than-expected request rates, the
system will choose to serve at OPT-1.3B’s quality in order
to maintain responsiveness. During even more contested pe-
riods, the system may serve queries at OPT-125M’s quality
in order to stay available. Serving these smaller models in
conjunction with the large model is possible since smaller
models consume less device memory than the large model,
in the same way speculative inference (Leviathan et al.,
2023) has become an option for low-latency model serving.

In this best-effort setting, the serving system must serve at
the highest possible quality while maintaining availability.
Simply serving at the smallest model’s quality all the time
will be undesirable for a user, even though availability would
be high. In this work, we show that routing queries to
models is dependent on the set of tasks, the distribution of
those tasks, and the load on the system. In order to learn a
router that efficiently routes client requests to LLMs while
meeting latency guarantees, we utilize deep reinforcement
learning (RL) techniques with minimal hyper-parameter
tuning.

State-of-the-art model serving systems utilize REST
API/gRPC endpoints over base HTTP/2 (TCP/TLS) net-
work protocols (Agarwal et al., 2023) (vLLM Team, 2023)
(RayTeam, 2023). However, model-serving architectures
are agnostic to application-specific network patterns and do
not cater to QoS differentiation between requests. While
most active research explores major bottlenecks in the speed
of model inference, we find that effective network schedul-
ing not only allows us to cater to different traffic classes
but also meet per-token latency deadlines during periods of
high request load and network resource contention. For ex-
ample, one area of ongoing exploration is the use of LLMs
in synthesizing large text corpora, such as collections of
legal documents (Bornstein & Radovanovic, 2023). Com-
mon uses of the widely popular LLM platform, ChatGPT,
involve providing the LLM with contextual information fol-
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lowed by a short question prompt (Raf, 2023). The former
potentially requires higher model qualities to accurately
synthesize domain-specific technical language, whereas the
latter needs low latency of response to provide a fluid and
interactive user experience.

To meet request SLOs, we leverage one of the key design
components of the QUIC network protocol - multiplexed
connection streams. This allows us to send different classes
of data in separate streams, reducing multi-connection over-
heads. To efficiently manage these streams and meet the
variety of application requirements detailed above, we pro-
pose the implementation of a scheduling abstraction in open-
source QUIC. By considering LLM traffic at both the net-
work level and model-serving level, we are able to schedule
and serve requests at low latencies even in the presence of
wide fluctuations in client behavior.

In summary, we make the following contributions in this
work:

1. We implement QUIC stream schedulers for client re-
quests and responses to meet the QoS requirements of
various traffic classes

2. We train and employ an RL router agent to send client
queries to appropriate models in order to maximize
response quality while meeting user-defined latency
guarantees

3. We design and implement an end-to-end model-serving
framework utilizing both network stream scheduling
as well as dynamic model selection

4. We evaluate our system, analyzing LLM application
requirements, and running request loads to benchmark
against existing model-serving techniques.

2. Background and Related Work
2.1. Large Language Models

LLMs have emerged as a powerful service for modern ap-
plications. There is a wide spectrum of LLMs which forms
a trade-off of quality and latency. Larger models with more
parameters can serve client requests at a higher quality but
incur higher latency. There is also a wide spectrum of tasks
that can be served using LLMs. Such tasks include sum-
marization (Hermann et al., 2015; Narayan et al., 2018),
translation (Cettolo et al., 2017), question answering (Ra-
jpurkar et al., 2016), etc. Certain tasks are easier than other
tasks in that the quality loss of serving that task with a
smaller model as opposed to a larger model is small. As a
result of this observation, speculative decoding (Leviathan
et al., 2023) has emerged as a popular solution that uses a
smaller draft model to speculatively generate tokens that
later are verified in parallel by a large model. However,

serving speculative inference in real deployments with con-
tinuous batching techniques (Yu et al., 2022) is still an open
problem and common speculative inference implementa-
tions still use a batch size of one (Leviathan et al., 2023)
(Kim et al., 2023).

2.2. LLM Serving

Prior work on LLM serving (Li et al., 2023; Zhang et al.,
2023; Gujarati et al., 2020) assumes that client requests
are bound to a specific model. Our best-effort approach
relaxes this, allowing for increased scalability. Big Little
Decoder is a lossy speculative inference technique (Kim
et al., 2023) that allows clients to adjust quality and la-
tency by changing hyper-parameters. However, this requires
a hyper-parameter search for every task, does not adjust
under load, and struggles from the practical issues of spec-
ulative decoding as mentioned prior. Autoscalers such as
Ray (Moritz et al., 2018) dynamically increase GPU in-
stances under load. However, acquiring on-demand GPU
instances is expensive and not instantaneous.

2.3. Deep Reinforcement Learning

Deep RL is a promising technique for learning to control
systems and has been successfully applied in a variety of ar-
eas such as continuous controls (Brockman et al., 2016) and
games (Mnih et al., 2013) . There are three core components
in any RL problem: states, actions, and rewards. Given the
state, the RL policy chooses an action, which gives it a
reward for that action and transitions the environment to
the next state. The goal of RL algorithms is to maximize
the total rewards seen by the policy as it takes actions and
transitions to different states. Deep Q-learning methods
learn a Q-function, represented as a neural network, that
map state-action pairs to the expected return of taking the
action in the state and then following the policy. After fitting
the Q-function of the optimal policy, the Q-function may
be used to select actions with the highest expected reward.
Popular algorithms in this area include DQN (Mnih et al.,
2013), Double Q-learning (Van Hasselt et al., 2016), and
PER (Schaul et al., 2015).

2.4. QUIC

The QUIC network protocol (standardized in IETF RFC
9000, 9001, 9002) is a transport-level protocol built on UDP
and offers endpoint-to-endpoint uni- or bi-directional con-
nections, reliability semantics, congestion control mecha-
nisms, encryption/security via TLS, low-latency connection
establishment, and notably, stream multiplexing (Iyengar
& Thomson, 2021) (Thomson & Turner, 2021) (Iyengar &
Swett, 2021). Since its release by Google in 2013, QUIC
has gained wide adoption across web browsers and today
accounts for all of Google’s frontend server traffic as well
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as 10% of global internet traffic (Langley et al., 2017). The
new HTTP/3 standard integrates QUIC into the HTTP stack,
substituting TLS/TCP in HTTP/2 (Bishop, 2022). Real-time
applications currently leverage UDP to avoid delays from
retransmissions for applications such as video calls and
DNS. QUIC, which builds on UDP, also offers the base data-
gram network abstraction for such applications (Pauly et al.,
2022). QUIC has found its primary niche in the HTTP/3
stack for web applications as a replacement for TCP/TLS in
HTTP/2 (Bishop, 2022). However, its properties make it a
compelling network protocol in several other use cases.

2.5. QUIC Streams

One of the key design components of the QUIC protocol
is the use of time-multiplexed streams in a single point-
to-point connection. While HTTP/2 (built over TLS/TCP)
attempts intra-connection multiplexing, it suffers from head-
of-line blocking, where all streams are blocked if just a
single stream experiences packet loss (Langley et al., 2017).

Figure 1. Stream multiplexing in TCP (which suffers from head-
of-line blocking) vs QUIC. Credits to (Chiariotti et al., 2021).

QUIC resolves this through flow multiplexing and retrans-
mission semantics at a stream-level granularity. In TCP,
retransmission and flow control semantics are maintained at
the connection level, whereas in QUIC, these are provided
at the stream level. As such, packets in a stream do not
block or wait on packets of another stream in the context of
loss recovery.

Priority for stream multiplexing was first introduced to
HTTP/2 in RFC 7540 (Belshe et al., 2015). However, it
was subsequently removed in HTTP/3 (Bishop, 2022) and
the revised HTTP/2 (Thomson & Benfield, 2022) due to
high complexity and low feature utilization. As an artifact
of the old HTTP/2 priority scheme, the QUIC RFC rec-
ommends that implementations offer ways to indicate the
relative priority of streams (Iyengar & Thomson, 2021);
however, a wide number of open-source implementations
do not provide this feature.

2.6. Stream Scheduling

Despite a stream multiplexed design, the QUIC RFC does
not define or suggest stream scheduling behaviors. Conse-
quently, the vast majority of open-source QUIC implemen-
tations use either a default First-Come-First-Serve (FCFS)
or Round Robin (RR) scheduler (Kutter & Jaeger, 2022).
These implementations do not provide rich scheduling ab-
stractions beyond the default. Literature exploring stream
scheduling in QUIC is also quite limited. One work pro-
posed an abstraction to allow applications to effectively map
information flows to QUIC streams, focusing on the abil-
ity to define correlated data flows (Chiariotti et al., 2021).
Another work implements the MPEG-DASH protocol over
QUIC, involving scheduling only within the context of the
DASH protocol (Cui et al., 2022). Fernandez et al. explore
modifications of the QUIC stream scheduler to provide QoS
and latency guarantees to UAV video and control flows
(Fernández et al., 2023). They focus on priority schedul-
ing, which some open-source implementations already pro-
vide upon RFC recommendation. To the best of our knowl-
edge, there are no existing implementations of non-priority-
based scheduling algorithms, nor intricate QoS/multi-level
scheduling paradigms in open-source QUIC.

3. Design and Architecture

Model-Serving 
Front-End Server 

(can be at the 
edge)

batched requests

QUIC protocol 
- stream scheduling
- streams per 

request/class

Model-Serving 
Back-End Server 

(in cloud)

GPUs w/ trained LLM Models/Model classes

model inference responses

Cloud
any network 

protocol

Figure 2. Architecture Diagram of the system. Front-end servers
receive client requests, initiate QUIC streams with the model-
serving back-end, and schedule request-response flows. The back-
end model serving environment is detailed in Figure 3.

Interactive applications should aim to query as large of an
LLM as possible while still meeting an acceptable deadline
requirement for their user. However, just using one model
type (e.g. OPT-175B) will lead to unacceptably high la-
tencies and impossible-to-meet deadlines during periods of
high request load to the inference system. In order to cope
with the increasing demands, LLM serving systems need a
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GPU 1

OPT-6.7B

OPT-1.3B

GPU 2 GPU 3 GPU 4

OPT-125M

Router

Client 1 Client N

OpenBookQA

PIQA

COPA

HellaSwag

Figure 3. The model serving environment consists of OPT-6.7B,
OPT-1.3B, and OPT-125M replicated across 4 GPUs. The system
serves HellaSwag, COPA, PIQA, and OpenBookQA.

methodology to schedule all requests by deadline, priority,
and various other application-specific constraints, as well
as an option to provide smaller models at a small cost of
output fidelity.

We use smaller model sizes (e.g. OPT-125M and OPT-6.7B)
along with effective request stream scheduling during peri-
ods of high request load so users can achieve their desired
application latency requirements while receiving acceptable
quality from the LLM service. While the QUIC network pro-
tocol does not inherently support stream scheduling, the pro-
tocol packet framer can be modified to fit various scheduling
paradigms. First, we choose an appropriate network stream
scheduling algorithm, given user application requirements.
Then, we leverage DQN, a deep Q-learning algorithm, to
train a policy that determines what model to route a query to,
given the task and system load. During periods of low arrival
rates, we expect that a computationally efficient scheduling
algorithm, such as RR or FCFS, will be able to adequately
serve our requirements and we predict that our policy will
route to the largest LLM with no quality degradation. As
this is the expected environment most of the time, our sys-
tem should rarely degrade quality. We optimize for tail
request loads by scheduling streams to meet application re-
quirements (using Earliest Deadline First (EDF), Absolute
Priority (ABS), and novel application-specific MultiLevel
(ML) scheduling procedures) and routing queries to small
models.

Overall, the system architecture can be modeled in Figure 2.
Client LLM queries reach a group of front-end servers over
any network protocol or medium. The front-end servers,
which can either be at the edge or in a cloud-like environ-
ment, batch requests and initiate request-response streams
to the model-serving back-end server. A detailed view of the
model-serving environment is shown in Figure 3. In LLM

model inference, increased batch sizes result in increased
model throughput, providing benefits to batch several inde-
pendent requests together (Kwon et al., 2023). The batching
process smooths out requests and provides consistent be-
havior on top of which scheduling can be introduced. The
front-end servers utilize an active QUIC connection to the
back-end, initiating a bi-directional QUIC stream for each
request/class of requests. The request and response traffic
are assigned to a stream, each which is scheduled according
to its application traffic class. Each request is consumed
by the model serving environment, which uses the DQN
agent to select a model along with a GPU to generate an
output. The RL agent analyzes the query and the load at
each of the models and GPUs and determines the best model
to route the query in order to maximize quality and meet
latency deadlines. The model response is sent back to the
corresponding front-end via the same QUIC stream, sched-
uled with the same semantics. Finally, these responses are
delivered back to the initiating clients, completing the flow.

We do not evaluate the setting where there are multiple
model-serving environments, since our work focuses on opti-
mizing network utility within a single endpoint-to-endpoint
connection and GPU utility within a single machine; how-
ever, the proposed architecture will scale accordingly. In the
above scenario, the front-end servers can each select among
a group of back-end servers, employing a load-balancing
framework to evenly spread the request load among the
group. Since QUIC streams are bi-directional, the model-
serving environment simply utilizes the same incoming
stream to send a response back to the appropriate front-end
server.

4. Implementation
4.1. QUIC Schedulers

The open-source QUIC implementation we decided to use is
quic-go. quic-go (Clemente & Seemann, 2023) is one
of the original canonical implementations that is up-to-date
with all current QUIC and HTTP/3 RFCs. It is actively
maintained, has shown to be one of the best-performing
open source implementations (Crochet et al., 2021), and is
the most well-implemented (Seemann, 2023).

The default scheduling procedure in quic-go is Round
Robin (RR). It cycles through each active stream (”active”
is defined as a stream with pending data to be sent), filling
up a fixed-size packet with the current stream’s data before
moving to the next stream and doing the same.

We extend the default RR scheduler with the following four
scheduling algorithms:

1. First-Come-First-Serve (FCFS): Streams are processed
in order of their arrival, with all of the data of the
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first stream sent before processing the data of the next
stream. We use this as a benchmark, similar to RR.

2. Earliest Deadline First (EDF): Streams are each as-
signed a deadline by the application and are processed
in chronological order of their deadline. If a stream’s
deadline has passed before it has finished sending all
its data, it is discarded and removed from the active
stream queue.

3. Absolute Priority (ABS): Streams are each assigned a
priority level by the application and are processed in
order of priority (highest to lowest), with streams of
the same priority served FCFS.

4. MultiLevel (ML): Streams are bifurcated into a lower
and higher priority level. The higher priority streams
are always served before the lower priority ones. The
high priority streams are each assigned a deadline by
the application and are served on an EDF basis whereas
the lower level streams are served in a fair round robin
manner.

In addition, we have built a scheduling abstraction layer
that provides applications the functionality to select which
of the stream schedulers to utilize, along with an easy way
to pass in necessary information for each stream (priority
for ABS, deadline for EDF and ML, etc) at stream-creation
time. In our experimentation, we have enforced the same
scheduler at both the client and server ends (front-end server
and back-end server, respectively) but this is not necessary -
connection endpoints may inter-operate between different
scheduling schemes without any problem.

Stream management in quic-go is implemented by the
framer interface. The interface contains a streamQueue,
which keeps track of a list of active streams. The framer
interacts with scheduling in two main ways: first when
an active stream is created and added to the streamQueue,
and second when the active stream queue is processed to
send packets. In default RR, a stream gets added to the
streamQueue at the end of the queue. While there are active
streams in the streamQueue, the framer pops a stream
from the front of the queue and fills up-to a packet of data
from the popped stream. If the stream still has data to send,
the stream is appended to the back of the queue; if not, it is
removed.

First, we modified the behavior when a stream is initially
added to the streamQueue. In ABS, the stream is added to
the streamQueue in descending priority order (i.e. streams
with the highest priority values are added to the front of
the queue). Similarly, in EDF, the stream is added to the
streamQueue in ascending deadline order (i.e. streams with
the earliest deadlines are added to the front of the queue).
In EDF, an additional check is performed to verify that the

stream has not already missed its deadline (this check can
be omitted for soft-deadline use cases). In MultiLevel (ML),
we created an additional levelTwoStreamQueue, creating
a lower priority level. Higher priority streams are added
to the main streamQueue in ascending deadline order (as
in EDF), and lower priority streams are appended to the
levelTwoStreamQueue (as in RR). For FCFS, we append to
the end of the streamQueue.

Next, we modify the behavior when the active streamQueue
is being processed by the framer to create packets. In
FCFS, EDF, and ABS, the stream we are currently pro-
cessing is either the one that ”came first”, has the ”earliest
deadline”, or has the ”highest priority”, respectively. Con-
sequently, it remains at the front of the queue if it still has
data to be sent. If the stream has no more data to send,
it is removed from the queue. EDF does an additional
check that discards the stream if its deadline has passed (as
mentioned before, this can be omitted). The MultiLevel
(ML) processes the primary streamQueue while it has active
streams, utilizing the EDF approach above. If the primary
streamQueue has no more active streams, the secondary
levelTwoStreamQueue gets processed, utilizing the same
behavior as RR.

4.2. RL Router Agent

We train our router’s policy, represented by a 2-layer MLP
with hidden size 256, using the DQN algorithm. To prevent
over-estimation of Q-values we employ Double Q-learning
and use a target network that gets updated every 500 iter-
ations. We use a discount rate of 0.99 and a learning rate
of 0.0001. For exploration, we use an epsilon-greedy strat-
egy. We performed minimal hyper-parameter tuning and
use this for all trained policies. All models are served us-
ing vLLM (Kwon et al., 2023), which is a state-of-the-art
inference serving system. The state that the agent sees is
the batch size at each model in the system, the request’s
task, and an estimate of the request rate. The action is the
selected model, and the reward is the model’s accuracy if
the latency requirement is met and zero otherwise.

4.3. System Implementation

For the frontend and backend servers, we provisioned two
GCP VM instances running Ubuntu 22.04 with 8 vCPUs. In
order to simulate 3G network conditions (mimicking edge
placement of the frontend server), we utilized the tc Linux
kernel command, which allows a user to adjust packet drop
rate, packet latency, and connection bandwidth on any spec-
ified network interface. We utilize socket IPC to forward
requests to-and-from the QUIC and the model-serving run-
ner. Apart from modifying network interface characteristics
through tc, the network topology between the front-end and
back-end servers was hidden, as is commonly the case in
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cloud environments.

5. Evaluation
5.1. RL Microbenchmarks

Prior work on model serving (Li et al., 2023; Zhang et al.,
2023; Gujarati et al., 2020) uses Microsoft’s Azure Function
(MAF) traces (Shahrad et al., 2020; Zhang et al., 2021) to
model behavior of clients in a serving system. The MAF1
trace (Shahrad et al., 2020) consists of stable request periods
at a fixed arrival rate before the arrival rate changes. On
the other hand, the MAF2 trace (Zhang et al., 2021) has
much more unpredictable client behavior and the arrival
rates rapidly change. Based on these observations, we eval-
uate our system on three types of synthetic workloads that
capture a wide range of client behavior. The first represents
a stable workload in which client requests arrive in the sys-
tem as a Poisson Process with a fixed rate for a set period
of time. The second workload represents one in which the
arrival rate of requests rapidly switches due to an underly-
ing stochastic process that controls the arrival rate and its
duration.

5.1.1. ENVIRONMENT

To evaluate our routing policy, we consider a serving system
with 4 GPUs. Each GPU contains an instance of OPT-125M,
OPT-1.3B, and OPT-6.7B, as depicted in Figure 3. When
the router chooses a model size for the request, we automati-
cally load balance by sending to the replica with the smallest
batch size for the model. We set the latency guarantee to
be 40 milliseconds/token. Additionally we use zero-shot
HellaSwag (Zellers et al., 2019), COPA (Roemmele et al.,
2011), PIQA (Bisk et al., 2020), and OpenBookQA (Mi-
haylov et al., 2018) as the four tasks in the system. We use
each model’s average accuracy on each task as a measure of
its quality. For each task we normalize the accuracy of each
model to OPT-6.7B’s accuracy to get the rewards shown
in Table 1. We pick tasks uniformly at random. We train
the policy for 1.2 million iterations using hard deadlines, a
uniform task distribution, and randomly chosen arrival rates.

Table 1. Rewards for tasks served in the system.

TASK OPT-125M OPT-1.3B OPT-6.7B

HELLASWAG 0.45 0.78 1.00
COPA 0.80 0.95 1.00
PIQA 0.82 0.96 1.00
OPENBOOKQA 0.70 0.94 1.00

5.1.2. STABLE WORKLOAD

For the stable workload, we vary the arrival rate of the
Poisson Process from 0.25 to 48 requests per second and

server for 40 seconds at each arrival rate before resetting
and going to the next arrival rate. We show the results with
hard deadlines in Figure 4. In the hard deadline setting, a
client request’s reward is zero if the policy does not pick an
action that returns a response to the client within the latency
requirements. As baselines, we show the performance when
only serving to OPT-6.7B, only serving to OPT-1.3B, only
serving to OPT-125M.
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Figure 4. The left figure shows the performance on the environ-
ment with hard deadlines. The right figure shows the distribution
of model selection from the policy.
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Figure 5. Model selection frequency for each individual task with
hard deadlines.

As Figure 4 shows, in typical systems that serve all requests
to OPT-6.7B, the performance is near the peak possible per-
formance at low arrival rates. However, once the arrival rate
increases past a threshold (2 requests per second), many
latency deadlines are missed and client utility sharply de-
clines. While OPT-1.3B can serve requests at much higher
arrival rates, it’s quality cannot match OPT-6.7B even when
the arrival rate is low. Additionally, there is also a point at
which OPT-1.3B cannot keep up with client requests. Serv-
ing only with OPT-125M leads to significant performance
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degradation at all but extremely high arrival rates.

In contrast, the policy dynamically adjusts which model to
send requests to. When the arrival rate is low, the policy
primarily sends to OPT-6.7B and achieves similar perfor-
mance. However, as the arrival rate increases, the policy
correctly returns to route more requests to OPT-1.3B and
eventually even OPT-125M at the extreme end. Therefore
the policy allows the system to remain available for over
10x faster arrival rates than just using OPT-6.7B while still
providing equal quality to OPT-6.7B at low arrival rates.
Furthermore we notice that there are regions where the pol-
icy even performs better than just taking the maximum of
each of the baseline’s curves in Figure 4 as it is able to
multiplex between models at a given arrival rate.

We now examine how the routing varies for different tasks,
as shown in Figure 5. We see that the policy sends Hel-
laSwag tasks to OPT-6.7B much more often than the other
three tasks. Taking a look at Table 1, we see that OPT-125M
and OPT-1.3B have a significant quality gap compared to
OPT-6.7B for HellaSwag. This quality gap is much larger
than the gap between models on COPA, PIQA, and Open-
BookQA. Therefore the policy appropriately learns to prior-
itize sending HellaSwag to the large model. Furthermore,
when the arrival rate is very high, HellaSwag is sent to OPT-
1.3B more often than the other three tasks, for the same
reason as above. Thus the router learns a complex relation-
ship not only depending on the task’s quality across models
in isolation, but with respect to the quality of other tasks in
the system and their distribution.

5.1.3. UNPREDICTABLE WORKLOAD

We evaluate on an unpredictable workload with large bursts,
as mentioned in subsection 5.1. The first unpredictable
workload, we randomly vary the arrival rate and the number
of requests served at that arrival rate before switching to the
next arrival rate.

Figure 6 shows the performance of the routing policy as
well as the baselines, in addition to the changing arrival rate.
We show both the running average of performance across all
served requests and the running average of the performance
across the last 20 requests. The serving system that only uses
OPT-6.7B fails to meet latency deadlines during many of the
bursts and thus its utility to the user is highly variable. Even
though OPT-6.7B’s windowed average has many averages
near 1, the policy is in fact able to achieve more of these
peaks. We quantify this in Table 2.

As shown in Table 2, OPT-6.7B is able to achieve more
windowed averages with the top average of 1 compared
to the policy. However, when analyzing the number of
windows which meet high utility thresholds such as 0.99,
0.98, 0.96, and 0.94, the policy achieves more such windows
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Figure 6. Running total and windowed average over the last 20
requests of performance on the unpredictable workload. The arrival
rate at each step is also shown.

Table 2. Number of request windows of size 20 that meet average
quality thresholds on the first unpredictable workload.

THRESHOLD POLICY OPT-6.7B OPT-1.3B

= 1.00 142 307 0
≥ 0.99 470 307 0
≥ 0.98 713 307 0
≥ 0.96 1264 307 0
≥ 0.94 1723 625 154

than OPT-6.7B and OPT-1.3B. For example, it achieves
1.53× more windows at 99% quality, 2.32× more windows
at 98% quality, and 4.11× more windows at 96% quality
compared to OPT-6.7B. Additionally, it achieves 94% of
peak quality 2.75× more often than OPT-6.7B and 11.18×
more often than OPT-1.3B. This shows that the policy is
able to correctly balance between OPT-6.7B, OPT-1.3B, and
OPT-125M in the same window, even while faced with an
unpredictable workload.

5.2. QUIC Scheduler Microbenchmarks

5.2.1. EXPERIMENTAL SETUP

To evaluate our implemented schedulers, we set up a net-
work test between the frontend and backend VM instances.
As mentioned previously, we utilized the tc Linux ker-
nel command to emulate various 3G network character-
istics. We ran QUIC and TLS/TCP clients on the fron-
tend VM, which initiated streams/connections to the QUIC
and TLS/TCP servers on the backend instance. The server
echoes all the bytes it receives back to the client leveraging
the bidirectional streams of QUIC or the bidirectional con-
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nections in TLS/TCP. We timed the round-trip total, starting
when the client first establishes a connection/stream and
ending when the client receives the final echoed byte from
the server. We also evaluate the completion rates of each
scheduler, based on the final round trip latency measure-
ments.

We benchmark the newly implemented EDF, ML, and ABS
schedulers against the baseline RR QUIC scheduling im-
plementation; we also utilize the new FCFS scheduler as a
baseline representing other implementations’ default sched-
uler. Moreover, we compare our modified schedulers against
TLS/TCP, since the HTTP-2/TLS/TCP stack is the industry
standard protocol used in open-source model-serving ap-
plications. For TLS/TCP, we imitated stream multiplexing
behavior by opening the same number of TCP connections
between the client and server as we did streams in the QUIC
tests. However, since we also wanted to take into account
the overhead of opening many TCP connections and provide
a standard of comparison against QUIC’s singular connec-
tion, we also tested a 1-connection TLS/TCP setup. We
test against TLS in conjunction with TCP since QUIC em-
beds the TLS protocol by default to provide secure transport
(Iyengar & Thomson, 2021), and we wanted to provide
an equal standard of comparison considering the increased
computational overhead.

For our tests, we established 3 classes of traffic, represent-
ing specific LLM usage patterns. The first class of traffic
is what we label ”Real-Time Short” traffic, consisting of
8 KB long streams with a 1-second deadline. This traffic
represents common LLM usage patterns, to be served with
strict latency requirements optimizing interactive user ex-
periences. Despite each LLM utilizing its own tokenizing
methodology, a commonly quoted amount for the number of
characters in a token is somewhere between 4-5 (Raf, 2023)
(Kadous, 2023). 2000 tokens is well within the context
window sizes of most small-sized models (OpenAI, 2023)
and represents the common usage pattern of supplying a
model with background contextual information followed
by a question based on the context. Since most system
character encodings represent each character with a byte
of data, 2000 tokens is approximately 8 KB; as such, we
have selected it as the size for Short Traffic. In EDF this
traffic class is assigned a 1-second deadline, in ABS it is
assigned the highest priority level, and in ML it is assigned
the higher priority queue. We made it our primary objective
to schedule streams to achieve as low of a latency and as
high of a completion rate as possible for this traffic class.

The second class of traffic is what we label ”Free-Tier Short”
traffic, consisting of the same 8 KB request streams as the
above Real-Time Short, but representing traffic with more
lenient deadlines and QoS requirements - perhaps ”free-
tier” traffic for LLM providers. In EDF this traffic class

is assigned a 2-second deadline, in ABS it is assigned the
lower priority level, and in ML it is assigned the lower
priority queue.

Finally, we label the third class of traffic as ”Long Output”
traffic. This traffic class consists of 102.4 KB long streams
with a 7-second deadline, representing long-input, long-
output corpora synthesizing tasks. 25,000 tokens is on the
higher end of context window sizes but is attainable by
today’s state-of-the-art advanced LLMs (OpenAI, 2023)
(Anthropic, 2023). In EDF this traffic class is assigned a
7-second deadline, in ABS it is assigned the lower priority
level, and in ML it is assigned the lower priority queue.

We simulate the 3G network via tc, dialing in 5 Mbps of
bandwidth, 0.5% packet loss, and 50 ms of added packet
latency (Chan & Ramjee, 2002). The client sends 90 re-
quests to the server, randomly selecting a traffic class (with
uniform probability), and recording the time from when the
stream/connection is first established, to when last byte of
the request is echo-ed back from the server. The latency of
each request is recorded, and a completion rate is calculated
based on the request class deadline.

5.2.2. DISCUSSION

Figure 7. Network completion rates of the 3 traffic classes using
various scheduling algorithms and network protocols. Short, Real-
Time tasks with 1-second deadline; Short, Lower-Priority tasks
with 2-second deadline; Long Context Window, Lower-Priority
tasks with 7-second deadline.

From the box plot of latency distributions, we see that QUIC-
RR and TLS/TCP (n-connections) performed similarly. In-
triguingly, the performances of the two protocols are quite
evenly matched despite the on-paper advantages that QUIC
has. We hypothesize several possible reasons - increased
overhead of a large number of streams multiplexing a sin-
gle QUIC connection, TCP integration and optimization
for Golang (TCP is part of the standard language library
whereas quic-go is independent), UDP kernel buffer size
restrictions, and QUIC’s strict maximum packet size limits -
however, we leave investigation out of scope for this work.
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Figure 8. Network request latencies of the 3 traffic classes using
various scheduling algorithms and network protocols.

When analyzing completion rates, we see that both QUIC-
RR and TLS/TCP struggle to achieve high completion rates
for high-priority traffic, which is our most important met-
ric. TLS/TCP 1-connection latency results underscore the
head-of-line blocking issues present in the protocol with ex-
ceptionally high tail latencies for all 3 traffic classes. We see
a similar issue in QUIC-FCFS, where long-output streams
block progress for both high-priority and low-priority short
streams.

Given the primary metric used in LLM model-serving tasks
is per-token latency and deadline SLOs, we decided to first
build an EDF scheduler. From the boxplots, we can see that
it outperforms QUIC-RR in latency for all traffic classes.
Furthermore, QUIC-EDF achieves high completion rates
across all 3 traffic classes, reaching 100% for short/low-
priority. However, since short/low-priority stream deadlines
can occur before short/high-priority stream deadlines (due
to random selection and order of stream creation), high-
priority traffic can be preempted and thus miss its deadline.
As a result, we see sub-100% completion rates for high-
priority traffic prompting us to build two other schedulers
aimed to prevent the preemption of high-priority traffic.

Next, we implemented an absolute priority scheduler and
evaluated its performance. Since streams would be served
on a strict priority basis, preemption of high-priority traf-
fic would be avoided. As a result, we observe a 100%
completion rate and near-optimal latency of high-priority
traffic, accomplishing our primary scheduling metric. How-
ever, we note a huge drop-off in the performance of the
low-priority/short traffic class, with especially degraded tail
latencies. Since the priority scheduler serves each prior-
ity class on a first-come-first-serve basis, we see that low-
priority/short traffic gets blocked behind low-priority/long
traffic. This could be solved by assigning long-output traffic
a lower priority; however, we reasoned that this would not
match the intended semantics of the traffic classes.

In response, we created a novel multi-level scheduling
scheme, to address both preemption and head-of-line block-
ing issues seen in previous schedulers. The multi-level
scheduler addressed the high-priority preemption issues by
placing high-priority traffic in its own EDF higher-level
scheduling queue while also addressing low-priority/short
traffic blocking issues by utilizing a round-robin approach
for the lower-priority queue. Overall, we deem the ML
scheduler to perform best since it meets the primary criteria
achieving 100% completion rate and optimal latencies for
high-priority traffic while also serving both classes of low-
priority traffic with strong guarantees. We also observe the
most consistent behavior with the ML scheduler, evidenced
by the significantly lower latency variance in the boxplot.

5.3. Macrobenchmark

We now evaluate the performance of our network scheduling
in combination with the learned router agent. Network
scheduling and dynamic model selection can be applied in
a variety of settings. However, for our evaluation, we focus
on LLM applications that serve three classes of requests:

1. High priority traffic with small input sizes

2. Low priority traffic with small input sizes

3. Low priority traffic with large input sizes

As described in the above microbenchmark sections, an
application may need to serve small input sizes if it is an-
swering questions such as ”How to seal wood?” The appli-
cation may need to serve queries with large input sizes to
answer questions such as ”Summarize the following docu-
ment about sealing wood: ...”. We evaluate various network
schedulers and serving mechanisms on this workload, using
both stable and unpredictable arrival patterns.

The following are our metrics of success to test during
evaluation:

• Meet user-defined latency deadlines and QoS require-
ments, achieving high request completion rates.

• Serve highest possible model quality given resource
contention

• Handle both stable and unpredictable client requests
patterns across a wide range of client request rates.

We show the average performance on both the stable and
first unpredictable workload from subsection 5.1 in Table 3
and Table 4. Our performance score combines both model
quality and latency. If request’s latency deadline is met, the
performance score for the request is the selected model’s
accuracy. Otherwise, if the latency deadline is not met,
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the performance is zero. Similarly, we serve HellaSwag,
COPA, PIQA, and OpenBookQA. We denote OpenBookQA
to be high priority traffic. The policy recognizes this by
up-weighting the reward for serving OpenBookQA at high
quality. We train the policy for 1.1 million iterations using
OPT-2.7B as the larger model and OPT-1.3B as the smaller
model. We see that the policy outperforms static serving
baselines on the stable workload, but only outperforms OPT-
2.7B on the unpredictable workload. We see that OPT-1.3B
outperforms the policy in the unpredictable workload. We
believe this is because the policy does not take into account
the network latency when making its decision, although it
takes into account the priority of the task. We leave this as
future work.

Table 3. Performance on the stable workload.

SCHEDULER OPT-2.7B OPT-1.3B POLICY

QUIC-RR 0.20 0.25 0.42
QUIC-FCFS 0.19 0.24 0.36
QUIC-EDF 0.21 0.37 0.52
QUIC-ABS 0.20 0.35 0.49
QUIC-ML 0.21 0.29 0.45
TLS/TCP 0.20 0.24 0.41
TLS/TCP (1 CONN) 0.18 0.22 0.31

Table 4. Performance on the unpredictable workload.

SCHEDULER OPT-2.7B OPT-1.3B POLICY

QUIC-RR 0.19 0.54 0.42
QUIC-FCFS 0.17 0.53 0.36
QUIC-EDF 0.19 0.64 0.48
QUIC-ABS 0.18 0.62 0.46
QUIC-ML 0.19 0.57 0.44
TLS/TCP 0.18 0.54 0.41
TLS/TCP (1 CONN) 0.16 0.51 0.35
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Figure 9. Model selection frequency for each individual task with
OpenBookQA prioritized.

We also investigate the quality of OpenBookQA, which is
the prioritized task in our system. As shown in Figure 9,
OpenBookQA and HellaSwag are sent to OPT-6.7B signif-
icantly more often than COPA and PIQA. This is because
HellaSwag is a hard task whose quality benefits significantly
from OPT-6.7B, and OpenBookQA is a prioritized task in
the system. Additionally, at high arrival rates, the system
favors sending OpenBookQA to OPT-1.3B while it sends
the other tasks to the smaller OPT-125M.

6. Future Work
There are a number of future directions to be explored to im-
prove the router agent. When running multiple models on a
GPU, there are scheduling decisions on the systems side that
need to be made to determine how models share compute re-
sources to further help meet latency deadlines. Additionally,
it will be interesting to see extensions to the work that use
embeddings or other ways to expand the state in order to
capture further information about a client’s request and the
state of the system. On the network scheduling end, further
exploration into the throughput tradeoffs between QUIC and
TLS/TCP is necessary, as our initial benchmarks showed
similar results between the two baselines. We also believe
that the overall system performance can be improved by hav-
ing the router agent take into account the network latency
for a request, rather than just its priority. In addition, we
can also assess the performance of multiple model-serving
environments. We envision an environment where front-end
servers can each select among a group of back-end servers,
employing a load-balancing framework to evenly spread the
request load among the group.

7. Conclusion
In this work, we have presented an end-to-end quality-of-
service aware model serving system. We utilized a Q-
learning-based routing agent to dynamically choose between
models of different latency and quality during periods of
high request load, maintaining availability and serving at
the highest possible quality. We have also designed and
implemented a series of stream scheduling algorithms for
the QUIC network protocol. Wee identified the SLO re-
quirements of various classes of LLM requests and utilized
both network scheduling as well as dynamic model selection
to meet application requirements. We have trained the Q-
learning agent to optimize latency and model serving qual-
ity of higher priority classes while achieving fairness and
best-effort response quality for lower priority requests. We
have benchmarked the QUIC network schedulers and have
shown that the EDF and Multilevel schedulers perform best,
achieving the highest completion rates and lowest network
latencies for high-priority traffic while maintaining high
completion rates for lower-priority traffic as well. Overall,
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the network schedulers have shown increased performance
over the baseline QUIC protocol, as well as TLS/TCP. We
benchmark our end-to-end system against today’s model-
serving standard and demonstrate the ability to not only cater
to QoS differentiation between requests but also outperform
current standards in per-token latency and model-output
quality.

References
Agarwal, M., Qureshi, A., Sardana, N., and Li, L.

Llm inference performance engineering: Best prac-
tices. https://www.databricks.com/blog/llm-inference-
performance-engineering-best-practices, 2023. Accessed:
12/14/2023.

Anthropic. Introducing 100k context windows, 2023.
URL https://www.anthropic.com/index/
100k-context-windows. Accessed: 12/14/2023.

Belshe, M., Peon, R., and Thomson, M. Hypertext Transfer
Protocol Version 2 (HTTP/2). RFC 7540, May 2015.

Bishop, M. HTTP/3. RFC 9114, June 2022.

Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi, Y.
Piqa: Reasoning about physical commonsense in natural
language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Bornstein, M. and Radovanovic, R. Emerging architec-
tures for llm applications. https://a16z.com/emerging-
architectures-for-llm-applications/, 2023. Accessed:
12/14/2023.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Cettolo, M., Federico, M., Bentivogli, L., Jan, N., Sebastian,
S., Katsuitho, S., Koichiro, Y., and Christian, F. Overview
of the iwslt 2017 evaluation campaign. In Proceedings
of the 14th International Workshop on Spoken Language
Translation, pp. 2–14, 2017.

Chan, M. and Ramjee, R. Tcp/ip performance over 3g
wireless links with rate and delay variation. volume 11,
pp. 71–82, 09 2002. doi: 10.1007/s11276-004-4748-7.

Chiariotti, F., Deshpande, A. A., Giordani, M., Anton-
akoglou, K., Mahmoodi, T., and Zanella, A. Quic-
est: A quic-enabled scheduling and transmission scheme
to maximize voi with correlated data flows. IEEE
Communications Magazine, 59(4):30–36, 2021. doi:
10.1109/MCOM.001.2000876.

Clemente, L. and Seemann, M. quic-go: A quic implementa-
tion in pure go, 2023. URL https://github.com/
quic-go/quic-go. Accessed: 12/14/2023.

Crochet, C., Rousseaux, T., Piraux, M., Sambon, J.-F.,
and Legay, A. Verifying quic implementations using
ivy. In Proceedings of the 2021 Workshop on Evolu-
tion, Performance and Interoperability of QUIC, EPIQ
’21, pp. 35–41, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450391351. doi:
10.1145/3488660.3493803.

Cui, C., Lu, Y., Li, S., Li, J., and Ruan, Z. Dash+: Download
multiple video segments with stream multiplexing of quic.
In 2022 Tenth International Conference on Advanced
Cloud and Big Data (CBD), pp. 66–72, 2022. doi: 10.
1109/CBD58033.2022.00021.

Fernández, F., Zverev, M., Diez, L., Juárez, J. R., Brun-
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Chapter 2

Scheduling in MASQUE Proxies

In this second chapter, we investigate another application of stream scheduling in QUIC:
proxying. Multiplexed Application Substrate over QUIC Encryption (MASQUE) is a new
framework that enables QUIC-based tunneling to a proxy. Proxies are widely deployed in
the internet today; however, providing security and privacy guarantees to user traffic while
maintaining application performance at scale continues to be a challenge. We utilize stream
scheduling to solve performance degradations seen in MASQUE proxies when delivering
data with reliable streams. Moreover, we implement the PIFO data structure in MASQUE
to enhance stream scheduling performance at scale. Our results demonstrate that stream
scheduling behavior has significant performance implications in MASQUE tunneling - naive
schedulers not only deteriorate proxy performance by inducing packet losses and spurious
retransmits but also fail to capture the priority and QoS semantics of end-to-end connections.
Additionally, we show that the PIFO-based priority scheduler improves stream management
overhead and latency of end-to-end priority-based MASQUE connections at scale.
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2.1 Introduction

Proxies are widely used in today’s internet infrastructure, assuming various forms such as
VPNs, firewalls, CDNs, load-balancers, performance enhancers, and tunnels. It is estimated
that a significant fraction of all end-user HTTP traffic passes through web proxies [20]. Stud-
ies have detected middleboxes in approximately 80% of observed networks [19] and have even
observed an equal number of middleboxes and routers in some enterprise networks [15]. Many
such reverse proxies are transparent to the end-user, and can only be detected with specific
inspection techniques. Conversely, some users may wish to explicitly use forward proxies for
accessing restricted web content, protecting user identity, and securing user traffic.

TCP/UDP forwarding is a rudimentary form of proxying, where the middlebox forwards
the payload of received packets to a target destination using static host/port forwarding
rules. Not only is this approach limiting, but it is also insecure as the proxy has full access
to the unencrypted payload. SOCKS proxies provide greater flexibility than static host/port
forwarding but continue to lack encryption and privacy guarantees. VPN protocols, such
as IPSec and Wireguard, are secure and privacy-enabling alternatives; however, they often
require administrator privilege in the network and, as such, may not always be viable. More-
over, Wireguard uses non-standard protocols which are regularly blocked by firewalls and
network boundaries. HTTP Proxies use TLS to provide a secure tunneling interface and
use first-class network protocols such as TCP and UDP to avoid being blocked by networks.
Early HTTP/1 and HTTP/2 proxies rely on TCP, which lacks connection multiplexing and
suffers from Head-of-Line blocking, as we discussed previously. Moreover, Perino et al. have
shown that TLS Interception continues to be an issue in these proxies [11].

MASQUE is a network framework being standardized by an IETF working group of the same
name. It enables the use of HTTP/3 and QUIC as a tunneling protocol, thereby inheriting
all its benefits (fast connection establishment, no HoL blocking, flexible congestion control,
built-in TLS encryption, stream abstractions, etc). MASQUE utilizes the CONNECT-UDP
HTTP method (standardized in RFC 9298) to establish a connection to a proxy server and
request tunneling to a target (remote) server [13]. The client sends a CONNECT-UDP
HTTP/3 request to a proxy which subsequently opens a UDP socket to the target server.
The client extracts the underlying QUIC transport from the HTTP/3 connection which it
uses to send encapsulated QUIC datagrams. The proxy decapsulates the datagrams and
forwards them to the remote server. The proxy re-encapsulates packets returning from the
server before delivering them back to the client. MASQUE supports secure UDP tunneling,
is implemented at the application level, and looks like normal HTTP traffic to firewalls, thus
addressing the limitations of previous proxying techniques.

MASQUE is actively used by internet-scale companies such as Apple [9], Akamai [12], and
Cloudflare [8] to provide privacy, CDN, and VPN services to users. Most notably, Apple’s
iCloud Private Relay [5] leverages MASQUE to protect user privacy on all Apple devices,
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leaving no single party with knowledge of both the client’s IP identity and its browsing activ-
ity. All outgoing network traffic is encrypted and reaches a series of two ”relay” (MASQUE
proxy) servers. The first hop server tunnels traffic from the user through to the second hop.
It knows the user’s IP address but cannot access its encrypted DNS request. The second
hop is able to decrypt the DNS request and resolve a destination IP address but has no
information about the user’s original IP address since it sees the data as coming from the
first hop server. The final target destination receives tunneled application payload from the
second hop, with no knowledge of the original client’s identity.

Figure 2.1: Apple’s Dual-Hop Relay Architecture

Despite the widespread adoption of MASQUE in end-user applications, open challenges
regarding stream scheduling and scalability of stream multiplexing exist. Section 2.2 pro-
vides details on our MASQUE proxying architecture, the role of stream multiplexing in
MASQUE, and the performance and scalability challenges in MASQUE scheduling; Section
2.3 describes our MASQUE implementation, tunneled stream scheduling semantics, and
PIFO data structure implementation; Section 2.4 presents our evaluation setup and results;
Section 2.5 provides an outlook for future work and Section 2.6 concludes.
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2.2 Background

QUIC Streams vs QUIC Datagrams

The MASQUE Working Group has released two RFCs for the MASQUE framework: RFC
9297 [14] which introduces the concept of HTTP Datagrams, and RFC 9298 [13] which de-
tails the CONNECT-UDP mechanism to proxy QUIC. HTTP Datagrams, which employ
QUIC datagrams for transport instead of QUIC streams, are transmitted unreliably [10].
Consequently, packet loss does not hamper the congestion control send window. On the
other hand, RFC 9297 also defines the notion of CAPSULEs, which transmit HTTP Data-
grams inside a reliable stream protocol, such as standard QUIC. MASQUE suggests HTTP
Datagrams over CAPSULEs, citing performance drawbacks from layered loss recovery and
congestion control. When a reliable transport tunnels inside another reliable transport, like
QUIC-over-QUIC, nested congestion control tends to amplify its response to congestion and
packet loss, deteriorating throughput. However, Kuhlewind et al. have demonstrated that
HTTP/3 CAPSULEs, utilizing QUIC streams, demonstrate better end-to-end connection
latencies in lossy networks than HTTP datagrams [6]. The authors explain that the outer
tunnel in stream mode repairs losses before the end-to-end connection detects it, prevent-
ing a significant reduction in congestion control throughput. The paper also points out
that stream mode outperforms datagram mode as the number of simultaneous connections
increases.

MASQUE Connection Architecture

While RFC 9298 provides the semantics of CONNECT-UDP requests and responses, the
released MASQUE documents don’t specify the actual tunneling procedures. Consequently,
a proliferation of techniques using different transport modes, tunneling mechanisms, packet
encapsulations, tunneling layers, end-to-end layers, and proxy abstractions have been im-
plemented [5] [6] [8] [17] [18]. In the subsequent section, we detail a mixed architecture
combining elements that best suit our chosen open-source QUIC implementation and most
align with our requirements and objectives.

To first establish a MASQUE tunnel, a client must send an HTTP/3 CONNECT-UDP
request to a MASQUE-aware proxy server. CONNECT-UDP is a standard HTTP request
method, similar to GET or POST. Inside the request, the client specifies the destination
server in the Path header field and the proxy server in the Authority header field. The proxy
server accepts the request and responds to the client with a 2XX indicating success.

The proxy simultaneously opens a UDP socket to the remote server specified in the client’s
MASQUE request, performing DNS resolution if necessary. Since UDP is not a connection-
based protocol, the proxy does not need to wait for connection establishment to respond
successfully to the client, reducing RTTs and proxy startup time.
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CONNECT HTTP/3

Method: CONNECT

Protocol: connect-udp

Scheme: https

Path: /target.destination.com/443/

Authority: proxy.server.com

Figure 2.2: Example HTTP/3 CONNECT-UDP Request

Upon receiving the proxy’s response, the client can begin to tunnel UDP packets to the
destination server. The client first extracts the HTTP/3 session’s underlying QUIC connec-
tion and opens a new stream in the extracted connection. The client encapsulates handshake
packets within the extracted QUIC stream. Figure 2.3 illustrates tunnel encapsulation for
QUIC packets.

Figure 2.3: Tunnel Packet Encapsulation and Decapsulation

We refer to the connection between the client and the proxy as the ”outer” QUIC con-
nection or the ”tunnel” and the connection between the client and the target as the ”inner”
QUIC connection or the ”end-to-end” connection. It is important to note that the outer
connection is encrypted using keys that the client and proxy share prior to the exchange of
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HTTP messages. Therefore, the proxy must decrypt the received packets during decapsula-
tion. However, the inner QUIC packets are secured with keys that the client and destination
server share during connection establishment. As a result, the proxy is unable to read inner
connection data. It treats the ciphertext as UDP payload and prepends the packets with a
UDP header as they depart the proxy’s socket to the target server. Packets from the des-
tination server are re-encapsulated by removing the UDP header, encrypting the data with
the outer connection keys, and prefixing the outer UDP and QUIC headers.

Upon a successful handshake with the destination server, the client is able to send data
and manage streams in the inner connection. An illustration of the end-to-end tunnel con-
nection architecture is shown in Figure 2.4.

Figure 2.4: Tunnel Connection Architecture

A subtle but important note is that the target server sees the inner QUIC connection as
an exchange between itself and the proxy server, based on the IP and UDP headers it re-
ceives. It is unaware of the client’s existence. However, the proxy knows both the client’s
IP and the target server’s identity; Apple’s iCloud Relay introduces an extra proxy server
to split this information between two parties.

This architecture provides the opportunity to re-use a single proxy connection to tunnel
to several different target servers. Figure 2.5 depicts an architecture with one client, one
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proxy, and several target servers. In order to establish a connection to a new target server, the
client simply opens a new stream in the existing outer connection and tunnels a handshake
to the new target. This greatly reduces connection setup time and facilitates scalability.

Figure 2.5: Tunnel Connection Architecture for Single Client, Single Proxy, and Multiple
Targets

In a network with multiple proxies, the client has a choice on which proxy to utilize. In
the event that the current proxy is congested or unavailable, or if the client moves closer to
another proxy (as in the case of cellular networks), the client would benefit from switching
proxies. Since QUIC connections are identified by their Connection ID and not a 5-tuple,
migrating the inner connections is a simple, low-latency operation. The client opens an outer
connection to the new proxy, which takes a single RTT (using QUIC’s 1-RTT handshake).
All inner connections are seamlessly tunneled through the new proxy, experiencing minor
delays. The proxy only needs to allocate a new UDP socket to the target. To the best of our
knowledge, few works have explored QUIC connection migration in the context of MASQUE
proxies and we believe that this presents an exciting avenue for future work and exploration.
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Stream Scheduling in MASQUE

Stream management plays a crucial role in the MASQUE architecture described above. In
order for a client to simultaneously connect to multiple destinations, it must open and man-
age several streams between itself and the proxy. Without the required stream scheduling
primitives, the system cannot capture the priority semantics between end-to-end connec-
tions. Additionally, MASQUE architectures may allow a client to request quality-of-service
for certain flows; this requires the proxy to schedule the outer streams appropriately to meet
service requirements [6]. Moreover, each end-to-end connection can itself contain many in-
dependent streams, creating a structure of nested streams - scheduling and priority must
be respected between interleaving layers of streams. In this model, both inner and outer
streams are visible to the client, outer streams are visible to the proxy, and inner streams
are visible to the destination; consequently, the client is responsible for managing scheduling
semantics in both the end-to-end and tunnel flows.

Kuhlewind et al. have observed performance deterioration in MASQUE proxies using stream
mode with default stream scheduling behaviors. As the number of simultaneous end-to-end
QUIC connections through the proxy increased, they noted a rise in packet loss. They at-
tributed the increased packet loss to the default stream scheduling behavior in their selected
QUIC implementation, aioquic [7]. Aioquic utilizes FCFS stream scheduling where only the
first stream makes progress while all the other streams block. As the number of simultaneous
end-to-end connections increased, each connection had to be buffered at the proxy for longer.
Consequently, blocked connections experienced timeouts, leading to a significant decrease in
connection throughput caused by congestion control interpreting timeouts as packet loss.
Timeouts also prompted spurious retransmits, further increasing network congestion. We
expect a basic scheduling substitute, like Round Robin, to address this issue.

Scaling Stream Management

As the deployment of MASQUE continues, the importance of scalability becomes increasingly
apparent and demands greater attention. Pauly notes that Apple has witnessed thousands
of concurrent streams in its iCloud Relay proxies, with active connection durations surpass-
ing those previously tested [9]. Without scalable stream management, scheduling becomes
a performance bottleneck. In our stream scheduling implementation outlined in the pre-
ceding chapter, the stream management overhead accounts for approximately 30% of the
non-network-related task overhead. Furthermore, we observe that this overhead increases as
the number of simultaneous streams also increases. Although unavoidable, improved schedul-
ing implementations that utilize better stream management data structures can mitigate this
problem.
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2.3 Implementation

MASQUE

We opted to implement MASQUE into quic-go [4], having already used it for our stream
scheduling implementation. Since MASQUE is a relatively recent protocol, the majority of
open-source QUIC implementations, including quic-go, have yet to adopt it.

The first step in adding support for MASQUE is implementing the CONNECT-UDP HTTP
method. quic-go already supports HTTP/3 so it was just a matter of specifying the Method
field in the request. The proxy server checks for CONNECT-UDP in the Method field of the
received request header and responds with a 200. The crux of the implementation is con-
verting the HTTP/3 request-response flow into a QUIC stream and tunneling QUIC packets
inside the stream. We added support for ”connection hijacking” which allows us to extract
the HTTP/3 connection from the request-response exchange and cast it to a QUIC connec-
tion. We can now open a stream within this connection to start tunneling our packets. In
quic-go, it’s necessary to specify the underlying transport to dial the connection (referred
to as net.Conn). By wrapping the QUIC stream and implementing a few methods, we can
fulfill the requirements of the net.Conn interface, thereby enabling us to tunnel the inner
connection through the outer stream.

On the proxy side, we repeat the steps to extract the QUIC stream from the HTTP/3
flow and wrap it in a struct that implements net.Conn. We create a UDP socket to the des-
tination server and plug in the wrapped stream. Data received by the outer QUIC stream is
automatically decrypted, packetized, and forwarded to the destination server. The remote
server interprets the received packets as a regular handshake coming from the client.

PIFO

To tackle the scalability challenges related to stream management, we have integrated a
PIFO-based data structure into our stream multiplexer. PIFO, which stands for Push-In-
First-Out, was introduced by Sivaraman et al. for scheduling packets in programmable
switches [16]. It defines an abstraction enabling users to insert packets into the structure
at any position (based on their relative priorities), but exclusively retrieve packets from
the queue’s head. Despite challenges in implementing this data structure in programmable
switch hardware [1] [2], this data structure is easily realizable in software as a heap-based
priority queue. We store the stream’s priority along with a pointer to the stream’s data in
the priority queue. Since we’re not operating at line rate in software, we are able to provide
a pointer to the data rather than the packets themselves in the queue.
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2.4 Evaluation

Setup

We repeat the implementation setup from the previous chapter, this time provisioning three
GCP VM instances (for the client, proxy, and target) running Ubuntu 22.04 with 8 vCPUs.
We simulated 3G network conditions using the tc Linux kernel command, allowing us to
adjust packet drop rate, packet latency, and connection bandwidth. As is usually the case
in cloud environments, the network topology between the three VMs was hidden.

MASQUE Scheduling Microbenchmark

Our first benchmark aimed to recreate the flow buffering and spurious retransmit issues
faced by the MASQUE FCFS scheduler described by Kuhlewind et al. in [6]. We analyze
the FCFS scheduler alongside a basic Round Robin alternative, showcasing the performance
impacts of different stream scheduling behaviors in MASQUE. In our test environment, the
client opens up 100 separate inner connections to the target server, tunneling through 100
corresponding outer streams. This setup emulates the one-client/one-proxy/many-target ar-
chitecture that was detailed above.

Each connection tunnels 10 KB of data to the target server, which echoes the data back
to the client via the tunnel. We timed the round-trip latency, starting when the client first
opens a new tunnel stream and ending when the client receives the final echoed byte from the
server. We also evaluate the completion rates of each scheduler, based on the final round-trip
latency measurements. We dial in 5 Mbps of bandwidth, 1.5% packet loss, and 50 ms of
added packet latency with the tc command.

Comparing the completion rates of the two schedulers in Figure 2.6, we see a marked im-
provement in switching our outer stream scheduler from FCFS (17% completion rate) to RR
(68% completion rate) for a deadline of 8 seconds. The Round Robin scheduler faces far fewer
timeouts and spurious retransmits since flows aren’t buffered at the proxy without progress.

Examining the boxplot of stream round trip latencies in Figure 2.7, we observe a decrease in
median RTT latency when transitioning from FCFS to RR. The first few FCFS connections
finish in under 5000 ms; however, as congestion at the proxy builds, the completion times of
the streams escalate rapidly. The RR scheduler is comparatively much more consistent, with
more than half of all streams completing between 5500 and 7500 ms. We do note a skew in
completion times towards the tail end of RR streams and hypothesize that untimely packet
drops may have cut throughput significantly for later streams.

Additionally, we observe an increase in end-to-end throughput, with all 100 streams com-
pleting in approximately 15 seconds under the RR scheduler, compared to around 24 seconds
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Figure 2.6: Completion Rate of Tunneled Streams using RR vs FCFS Scheduling (8s dead-
line)

under the FCFS scheduler (displayed in Figure 2.8). We postulate that the overall through-
put of the RR scheduler would be higher if not for the tail-end streams experiencing untimely
packet drops.
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Figure 2.7: RTT Latencies of Tunneled Streams using RR vs FCFS Scheduling
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Figure 2.8: Overal Throughput of 100 Tunneled Streams using RR vs FCFS Scheduling
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Priority Scheduling for Nested Streams

The second benchmark evaluates our stream scheduling implementation in capturing nested
stream priority semantics. Since the inner and outer connections in MASQUE can be han-
dled like any other QUIC connection, the stream scheduling mechanisms remain unchanged
from the previous chapter. To indicate nested priorities, we designate the scheduler type dur-
ing connection establishment for both outer and inner connections. Additionally, we assign
the stream’s priority at stream-creation time for both outer and inner streams. This method
provides a hierarchical scheduling approach, as opposed to scheduling directly among all
inner streams. Initially, the outer stream (inner connection) undergoes scheduling, followed
by streams within that connection. This allows us to respect priority semantics at the con-
nection level first, followed by the stream level. Governing the time slice allocation to each
connection is beyond the scope of our work. Since both levels of streams are only visible to
the client, it is responsible for managing nested scheduling semantics. The proxy and target
servers are only responsible for scheduling one layer of streams each.

We open 10 end-to-end connections to the target server and 30 inner streams inside each of
the 10 connections (for a total of 300 inner streams). This creates a nested stream structure
wherein each of the 300 inner streams belongs to the flows of the 10 outer streams. We
assign each of the 10 groups a relative priority value from 1 to 10 (with 10 being the highest,
and 1 being the lowest). We schedule the inner streams using RR and compare between RR,
FCFS, and ABS (absolute priority) for the outer streams. We assess the effectiveness of each
scheduler in capturing the priority semantics among the outer streams, thereby validating
our stream scheduling implementation on nested stream structures. Once again, we dial in
5 Mbps of bandwidth, 0.5% packet loss, and 50 ms of added packet latency with the tc
command. However, we only send 1 KB of data per inner stream.

In Figure 2.9, we plot the mean inner stream round trip latency for each priority group
for all three schedulers. As expected, the absolute priority scheduler effectively captures
the priority semantics of the outer streams. The highest priority groups achieve the lowest
round trip latencies of approximately 4000 ms. Mean round-trip latencies exhibit an al-
most monotonic decrease as priority levels increase. However, exceptions are observed with
groups 9 and 10 - it’s worth noting that round-trip latency is influenced by scheduling and
retransmission events at the target server, which is oblivious to the proxy semantics of the
outer streams. The network latencies for the RR and FCFS schedulers are quite comparable,
with FCFS often performing better for several groups. Due to the reduction of packet loss
rate and payload size transmitted through the network, there is far less congestion at the
proxy compared to the previous benchmark. Consequently, the FCFS scheduler tends to
outperform Round Robin, particularly in terms of mean latency.
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Figure 2.9: RTT Latencies of Nested Streams using ABS, RR, and FCFS Scheduling
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PIFO Scalability Benchmarks

In the third benchmark, we compare our PIFO implementation against the base Absolute
Priority scheduler, evaluating their performance on round-trip latency and scalability of
stream management overhead. In the base version, we utilize a sorted list to order the
streams by priority. To insert a new stream, we would have to compare priorities with a
scan, a costly operation.

To accurately assess the impact of the PIFO scheduler, we restrict our architecture to a
simple client-server model. We open 1000 streams to the server, assigning each a relative
priority value from 1 to 10 (10 being the highest, 1 being the lowest). Each stream sends 10
KB of data to the server, which echoes the data back to the client. In addition to tracking
round trip latency, we also maintain a tally of the total amount of time spent in stream man-
agement tasks, which encompasses the overhead of adding a stream to the queue, extracting
it to packetize data, and subsequently reinserting it back into the queue. We dial in 5 Mbps
of bandwidth, 0.5% packet loss, and 50 ms of added packet latency with the tc command.

The PIFO scheduler generally outperforms the absolute priority scheduler for most priority
groups, based on Figure 2.10. This is especially apparent at the tails, with the max latency
of the PIFO scheduler consistently lower than the max latency of the base scheduler for all
groups. In most groups, the highest latency of the PIFO scheduler is lower than the 75th
percentile latency of the base scheduler, demonstrating increased efficacy for high-latency
bottleneck streams. The streams with the highest latency typically coincide with times of
peak congestion, when the scheduling queue may contain hundreds of streams. Leveraging
the superior asymptotic and runtime performance of the priority queue in PIFO, we effi-
ciently schedule these high-latency streams, significantly reducing the overhead associated
with stream management. Figure 2.11 compares the stream management overhead in terms
of total time spent on stream insertion, extraction, and re-insertion. In the PIFO scheduler,
stream management tasks collectively consume 9.87 ms, compared to 35.2 ms in the base
priority scheduler for identical operations. We anticipate that the difference in overhead
between the PIFO and base schedulers will amplify significantly as the number of streams
further scales.
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Figure 2.10: RTT Latencies of PIFO ABS vs. Base ABS Scheduling
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Figure 2.11: Stream Management Overhead: PIFO ABS vs. Base ABS
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2.5 Future Work

There are many future directions to explore for stream scheduling in MASQUE. We outlined
one such direction earlier, describing how QUIC Connection migration enables seamless and
efficient transitions between proxies, enhancing overall end-to-end connection performance.
Another avenue for future work involves implementing an RTT-based scheduling approach
at the proxy level. In scenarios where target servers are situated at different distances
from the proxy, closer servers may receive a disproportionate share of bandwidth allocation,
especially when using RTT-influenced congestion control algorithms. Integrating RTT con-
siderations into stream scheduling could improve fairness in this situation. Furthermore, we
are currently exploring the feasibility of a hardware-based MASQUE implementation, where
tunneling functionality is provided with programmable switches. As previously mentioned,
tunneling operations involve extensive packet and header processing, tasks that can be effi-
ciently handled at line rate using P4 [3] and programmable switches. This approach promises
substantial improvements in packet latency and throughput.
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2.6 Conclusion

In this paper, we have presented an architecture for MASQUE proxying and its implementa-
tion in quic-go. We have conducted a review of the current MASQUE literature, identifying
and summarizing key unresolved issues, particularly in the context of stream scheduling. We
benchmark the performance of various stream scheduling algorithms, demonstrating notable
performance improvements over naive scheduling approaches. We also verified that our
scheduling implementations effectively capture the hierarchical priority structure inherent in
MASQUE’s nested streams. Moreover, we implement the PIFO data structure, enhancing
stream scheduling performance at scale. We show that the PIFO-based priority scheduler im-
proves the scalability of stream management overhead, especially for bottleneck tail-latency
streams.
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