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Abstract

Disentangled Visual Generative Models

by

Dave Epstein

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Alexei A. Efros, Chair

Generative modeling promises an elegant solution to learning about high-dimensional data
distributions such as images and videos — but how can we expose and utilize the rich structure
these models discover? Rather than just drawing new samples, how can an agent actually
harness p(x) as a source of knowledge about how our world works? This thesis explores
scalable inductive biases that unlock a generative model’s disentangled understanding of
visual data, enabling much richer interaction and control as a result.

First, I propose a representation of scenes as collections of feature “blobs”, where a generative
adversarial network (GAN) learns – without any labels – to bind each blob to a different object
in the images it creates. This allows GANs to more gracefully model compositional scenes,
in contrast to typical unconditional models which are constrained to highly-aligned single-
object data. The trained model’s representation can easily be modified to counterfactually
manipulate objects in both generated and real images.

Next, I consider methods that do not impose bottlenecks on architectures during training,
facilitating their application to more diverse, uncurated data. I show that the internals of
diffusion models can be used to meaningfully guide generation of new samples, without any
further fine-tuning or supervision. Energy functions derived from a small set of primitive
properties of denoiser activations can be combined to impose arbitrarily complex conditions
on the iterative diffusion sampling procedure. This allows for control over attributes such as
the position, shape, size, and appearance of any concept that can be described in text.

I also demonstrate that the distribution learned by a text-to-image model can be distilled to
generate compositional 3D scenes. Predominant approaches focus on creating 3D objects in
isolation rather than scenes with several entities interacting. I propose an architecture that,
when optimized so its outputs are on-manifold for the image generator, creates 3D scenes
decomposed into the objects they contain. This provides evidence that scale alone suffices for
a model to infer the actual 3D structure latent to a world it observes only through 2D images.
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Finally, I conclude with a perspective on the interplay between emergence, control, inter-
pretability, and scale, and humbly attempt to relate these themes to the pursuit of intelligence.
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To the family that we choose, and that chooses us back.
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1.1 Self-supervision. Given unlabeled data x, self-supervision gives a network some
portion x′ of the input and tasks it with predicting the other. For example, we
may ask a network to predict the missing color channels of a grayscale image (as
shown), or remove certain patches of the image and ask the model to predict them
[29, 47], yielding a reconstruction x̂. The trained network weights θ can then be
used as an initialization for training a second network to solve a task of interest,
e.g. classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Knowledge ⇐⇒ control. Manipulating one and only one aspect of a generated
image provides a simple, intuitive way to show that the model has acquired a
rich understanding of the data distribution. This can be thought of as a sort of
counterfactual proof of knowledge. . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 BlobGAN: In our generator, random noise is mapped by the layout network F
to blob parameters. Blobs output by F are splatted spatially onto corresponding
locations in the feature grid, used both as initial input and as spatially-adaptive
modulation for the convolutional decoderG. Our blob representation automatically
serves as a strong mid-level generative representation for scenes, discovering objects
and their layouts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 BlobGAN architecture: Our elliptical blobs β are parametrized by centroid
x, scale s, aspect ratio a, and angle θ. We composite multiple blobs with alpha
values that smoothly decay from blob centers. The features ϕ or ψ are splatted
on their corresponding blobs and passed to the decoder. . . . . . . . . . . . . . 8

2.3 Blobs allow extensive image manipulation: We apply a sequence of modifica-
tions to the blob map of an image generated by our model and show the resulting
images outputs at each stage of the editing process, demonstrating the strength
of our learned representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Moving blobs to rearrange objects: By modifying coordinates xi of certain
blobs as shown in the middle row, we can perform operations such as rearranging
furniture in bedrooms. Note that since our representation is layered, we can model
occlusions, such as the bed and the dresser in the leftmost and rightmost images. 12
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2.5 Removing blobs: Despite the extreme rarity of bedless bedrooms in the training
data, the ability to remove beds from scenes by removing corresponding blobs
emerges. We can also remove windows, lamps and fans, paintings, dressers, and
nightstands in the same manner. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Removing all sorts of tables: We train BlobGAN on a multi-category dataset
of kitchens, living rooms, and dining rooms. We find that a particular blob
specializes in generating tables across scene types, and feature vectors dictate
whether it becomes a coffee table, kitchen island, or dining table. For many more
editing operations on this dataset and others, please see Appendix. . . . . . . . 14

2.7 Swapping blob styles: Interchanging ψi vectors without modifying layout leads
to localized edits which change the appearance of individual objects in the scene. 14

2.8 Cloning blobs: We clone blobs in scenes, arrange them to form a new layout,
and show corresponding model outputs. Added blobs are marked with a +. . . . 15

2.9 Blob spatial preferences: Our model allocates each blob to a certain region
of the image canvas, revealing patterns in the training distribution of objects.
We visualize each blob’s correlation with classes predicted by a segmentation
model [168] (left) as well as the spatial distribution of blob centroids (right). . . 15

2.10 Generating and populating empty rooms: We show different empty rooms,
each with their own background vector ψ0, as well as furnished rooms given by
latents z optimized to match these background vectors. This simple sampling
procedure yields a diverse range of layouts to fill the scenes. Note that while
empty rooms do not appear in training data, our model is reasonably capable of
generating them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.11 Scene auto-complete: Various conditional generation problems fall under the
umbrella of “scene auto-complete”, i.e. using our layout network F to sample
different scenes satisfying constraints on a subset of blob parameters. We show
layout-conditioned style generation as well as prediction of plausible scenes given
the location and size (but not style) of beds. Rather than using F to plausibly
auto-complete scenes, we can also generate a random scene and simply override
parameters of interest to match desired values. As shown on the right, such
scenes have objects inserted, removed, reoriented, or otherwise disfigured due to
incompatibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.12 Parsing real images via inversion: Our representation can also parse real
images by inverting them into blob space. We can remove and reposition objects
in real images – spot the differences from the original! . . . . . . . . . . . . . . . 20

2.13 Honey, I shrunk the conference room! As in Figure 2.3, we show the effect of
resizing blobs in generated images. Here, we resize blobs corresponding to tables
and chairs, and render identical rooms with shrunken furniture. . . . . . . . . . 21

2.14 Moving desks and chairs (conference room): As in Figure 2.4, we show the
effect of moving blobs in generated images. Here, we move blobs corresponding to
tables and chairs, and render identical rooms with shifted furniture. . . . . . . . 21
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2.15 Removing some or all windows (kitchen, living room, dining room):
As shown in Figure 2.5, we can remove windows from complex scenes, though
they are often hidden behind cluttered configurations of furniture. We can control
which windows to remove by selecting only some of the relevant blobs. . . . . . 22

2.16 Moving tables and chairs (kitchen, living room, dining room): Our
representation can easily move tables and any associated chairs, by changing the
location of blobs 42 (table) and 30 (chairs). Since the two move together, we only
show one arrow to represent the edit. . . . . . . . . . . . . . . . . . . . . . . . . 23

2.17 Parsing real images via inversion: We show the flexibility of our learned
representation by applying edits to real images inverted into blob space. We can
remove and reposition objects in real images – spot the differences from the original! 24

2.18 Parsing real images via inversion: More results on inversion of real images. 25
2.19 Removing screens in conference rooms. As in Figure 2.5, we show the

effect of removing certain blobs from generated images. Here, we remove blobs
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2.20 Style swapping with StyleGAN: We show randomly sampled untruncated
StyleGAN images before and after style swapping at layer 4, attaining an FID of
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KL divergence of the predicted per-pixel logits before and after swapping. . . . . 27

2.21 Style swapping with BlobGAN: We show randomly sampled untruncated
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divergence of the predicted per-pixel logits before and after swapping. . . . . . . 28

2.22 Scene auto-complete: Various conditional generation problems fall under the
umbrella of “scene auto-complete”, i.e. optimizing random noise vectors to match
a set of blob parameters when run through our layout network F . We show
prediction of plausible scenes given the location and size (but not style) of dressers
and nightstands. The model must not only predict the arrangement of the missing
blobs, but also assign all blobs realistic appearance. When sampling target images
randomly, objects are often randomly inserted, removed, reoriented, or otherwise
disfigured due to incompatibility. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.23 Swapping blob styles: Interchanging ψi vectors without modifying layout leads
to localized edits which change the appearance of individual objects in the scene. 29

2.24 We plot the precision-recall curve, by varying truncation values w, on LSUN
bedrooms. Our untruncated model outperforms StyleGAN2 [75] with truncation
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3.1 Self-guidance is a method for controllable image generation that guides sampling
using the attention and activations of a pretrained diffusion model. With self-
guidance, we can move or resize objects, or even replace them with items from
real images, without changing the rest of the scene. We can also borrow the
appearance of other images or rearrange scenes into new layouts. . . . . . . . . 39

3.2 Overview: We leverage representations learned by text-image diffusion models
to steer generation with self-guidance. By constraining intermediate activations
Ψt and attention interactions At, self-guidance can control properties of entities
named in the prompt. For example, we can change the position and shape of the
burger, or copy the appearance of ice cream from a source image. . . . . . . . . 42

3.3 Moving and resizing objects. By only changing the properties of one object (as
in Eqn. 3.9), we can move or resize that object without modifying the rest of the
image. In these examples, we modify “massive sun”, “oil painting of cheese”,
and “raccoon in a barrel”, respectively. . . . . . . . . . . . . . . . . . . . . . 44

3.4 Sampling new appearances. By guiding object shapes (Eqn. 3.7) towards
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a given scene (right). We compare to ControlNet v1.1-Depth [202] and Prompt-
to-Prompt [52], which accomplish a similar objective. . . . . . . . . . . . . . . 46

3.5 Mix-and-match. By guiding samples to take object shapes from one image
and appearance from another (Eqn. 3.11), we can rearrange images into layouts
from other scenes. Input images are along the diagonal. We can also sample new
layouts of a scene by only guiding appearance (right). . . . . . . . . . . . . . . . 47
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3.6 Compositional generation. A new scene (d) can be created by collaging
objects from multiple images (Eqn. 3.12). Alternatively – e.g. if objects cannot
be combined at their original locations due to incompatibilities in these images’
layouts (*as in the bottom row) – we can borrow only their appearance, and
specify layout with a new image (e) to produce a composition (f) (Eqn. 3.19). . 48

3.7 Appearance transfer from real images. By guiding the appearance of a
generated object to match that of one in a real image (outlined) as in Eqn. 3.13, we
can create scenes depicting an object from real life, similar to DreamBooth [147],
but without any fine-tuning and only using one image. . . . . . . . . . . . . . . 49

3.8 Real image editing. Our method enables the spatial manipulation of objects
(shown in Figure 3.3 for generated images) for real images as well. . . . . . . . . 49

3.9 Manipulating non-objects. The properties of any word in the input prompt can
be manipulated, not only nouns. Here, we show examples of relocating adjectives
and verbs. The last example shows a case in which additional self-guidance can
correct improper attribute binding. . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.10 Limitations. Setting high guidance weights for appearance terms tends to
introduce unwanted leakage of object position. Similarly, while heavily guiding the
shape of one word simply matches that object’s layout as expected, high guidance
on the shapes of all tokens results in a leak of appearance information. Finally, in
some cases, objects are entangled in attention space, making it difficult to control
them independently. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.11 Moving objects. Non-cherry-picked results for moving objects in scenes using
Eqn. 3.9. We move onion down and to the right, pineapple to the right, and
owl up and pig down, respectively. All scenes use weights w0 = 1.5, w1 = 0.25,
and w2 = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.12 Resizing objects. Non-cherry-picked results for resizing objects in scenes using
Eqn. 3.9, with T specified to up- or down-sample attention maps. We reduce
the punching bag’s height 0.5× and enlarge chicken 2.5× and boombox 2×. All
scenes use w0 = 2, w1 = 0.25, and w2 = 3. . . . . . . . . . . . . . . . . . . . . . 53

3.13 Creating new appearances for scenes. Non-cherry-picked results sampling
different “styles” of appearances given the same layout, using Eqn. 3.10. We use
w0 = 0.7, 0.3, and 0.3 respectively for each result, to preserve greater structure in
the background of the first picture. . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.14 Creating new layouts for scenes. Non-cherry-picked results sampling new
layouts for the same scenes, using Eqn. 3.18. We use w0 = 0.07, 0.07, and 0.2
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.15 Appearance transfer from real images. Non-cherry picked results sampling
new images with a given object’s appearance specified by a real images, as in
Eqn. 3.13. We use w0 = 0.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
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3.16 Ablating appearance transfer from real images. To verify the efficacy of our
approach, we compare our results from Fig. 3.7 in the paper to random samples
from the same prompt without apperance transfer. We can see that appearance
of objects varies significantly without self-guidance. . . . . . . . . . . . . . . . . 58

3.17 Hyperparameter sweeps. We show results for two edits (moving and resizing
objects) using Eqn. 4 in the Supp. Mat., for different values of weights on the
three edit terms, holding the other terms to the value in the middle column.
Please zoom in to view in more detail. Reasonable values in the middle columns
(within the expected range) lead to overall successful image manipulation. Very
large hyperparameter values cause visual artifacts to appear (by moving sampling
off-manifold) while still tending to perform the edit successfully, while extremely
small values often fail to conduct the edit, inducing artifacts resulting from a
“half-executed” manipulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.18 Self-guidance on Stable Diffusion XL. To highlight the generality of our
approach, we demonstrate preliminary results for controllable generation on
a popular latent-space text-to-image diffusion model, using 100 DDPM steps
(applying self-guidance from step 10 to step 90). We get best results only guiding
attention in the second decoder block of the denoiser model. . . . . . . . . . . . 60

4.1 Layout learning generates disentangled 3D scenes given a text prompt and
a pretrained text-to-image diffusion model. We learn an entire 3D scene (left,
shown from two views along with surface normals and a textureless render) that
is composed of multiple NeRFs (right) representing different objects and arranged
according to a learned layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Method. Layout learning works by optimizing K NeRFs fk and learning N

different layouts Ln for them, each consisting of per-NeRF affine transforms Tk.
Every iteration, a random layout is sampled and used to transform all NeRFs into
a shared coordinate space. The resultant volume is rendered and optimized with
score distillation sampling [130] as well as per-NeRF regularizations to prevent
degenerate decompositions and geometries [7]. This simple structure causes object
disentanglement to emerge in generated 3D scenes. . . . . . . . . . . . . . . . . 64

4.3 Evaluating disentanglement and quality. We optimize a model with K = 3
NeRFs on a list of 30 prompts, each containing three objects. We then automati-
cally pair each NeRF with a description of one of the objects in the prompt and
report average NeRF-object CLIP score (see text for details). We also generate
each of the 30× 3 = 90 objects from the prompt list individually and compute
its score with both the corresponding prompt and a random other one, providing
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some decomposition, but most objects are scattered across 2 or 3 models. Learning
one layout alleviates some of these issues, but only with multiple layouts do we
see strong disentanglement. We show two representative examples of emergent
objects to visualize these differences. . . . . . . . . . . . . . . . . . . . . . . . . 73
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Chapter 1

Introduction

El mundo era tan reciente, que
muchas cosas carećıan de
nombre, y para mencionarlas
hab́ıa que señalarlas con el dedo.

Cien años de soledad
Gabriel Garcia Márquez

Any intelligent agent must have the ability to perceive the world around it. No event in
the history of our planet better demonstrates this fact than the Cambrian explosion [101, 85].
Around half a billion years ago (at time of writing), organisms suddenly developed a primitive
precursor to what we would recognize today as eyes. Equipped with such a powerful tool,
these organisms were fitter than others and thus survived. How can we teach a machine to
see?

1.1 Learning without labels

Progress in deep learning in the past five or ten years has all yielded the same simple message
– the more data your algorithm can process, the better [171]. To process more data, the
number of parameters in the algorithm must grow [71, 59]. It follows that we require a
method that can learn well at scale, as well as a massive amount of data to use as input for
this method. It is infeasible to manually annotate many billions of images and videos with
descriptions of what we’d like an algorithm to learn from each example. Therefore, I restrict
my attention to methods that do not assume access to any labels and only operate on the
data itself.

Much of the modern work in this direction can be categorized into two classes: “self-
supervised” and “generative” approaches. In self-supervision, we withhold some aspect of the
input data and task our model with predicting it (Figure 1.1), hoping that the difficulty of
the prediction leads the model to learn a representation of the world that we can later use to
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Figure 1.1: Self-supervision. Given unlabeled data x, self-supervision gives a network
some portion x′ of the input and tasks it with predicting the other. For example, we may
ask a network to predict the missing color channels of a grayscale image (as shown), or
remove certain patches of the image and ask the model to predict them [29, 47], yielding a
reconstruction x̂. The trained network weights θ can then be used as an initialization for
training a second network to solve a task of interest, e.g. classification.

solve a variety of problems. In generative modeling, we ask a network to learn the underlying
distribution of our dataset, p(x). We do this, for example, by training it to maximize the
likelihood assigned to the samples of data it observes. We can then use our model to draw
new samples from the same distribution as our training data, and hope that the learned
distribution can be employed to solve downstream tasks.

1.2 Demonstrating and accessing knowledge

In either case, once we have devised a recipe for training a neural network on unlabeled data,
we must figure out how to apply this model to a concrete problem of interest – that is, how
our model might demonstrate what it has learned. This step is inevitable, as our model’s
representation must be bound to variables that we are able to interpret.

In the case of self-supervision, the representation can either be used to induce a similarity
metric [170, 36] — expressing its knowledge through ranking and retrieval — or further
trained in some way with a smaller set of labeled data [32, 31].1 Both paradigms are severely

1Please note that I refer to my own previous projects here not to inflate my citation count, but to avoid
criticizing the reasonable work of other researchers.
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Figure 1.2: Knowledge ⇐⇒ control. Manipulating one and only one aspect of a
generated image provides a simple, intuitive way to show that the model has acquired a rich
understanding of the data distribution. This can be thought of as a sort of counterfactual
proof of knowledge.

limited. Fine-tuning requires the collection of ground truth for every task we wish to solve;
this not only makes evaluating the representation itself more complicated, but obfuscates the
value of obtaining a generic pretrained representation in the first place. Retrieval necessitates
the maintenance of a large bank of potential answers, limiting expressivity (both interpolation
and extrapolation are impossible by construction) and introducing complications such as
approximate nearest-neighbor algorithms.

Generative modeling, however, presents a unique opportunity for “proof of knowledge”. The
fundamental distinction between this class of models and self-supervised ones is that samples
from a generative model are themselves interpretable, so we can perturb the model’s internals
and inspect how the output changes. This enables a form of counterfactual interventions,
wherein we can claim a model has discovered structure if it is able to, e.g., alter an image only
along a certain axis (Figure 1.2), leaving all else untouched. This highlights a deep duality
between a model’s knowledge and its ability to control its outputs. In theory, this direction
requires no additional labels or supervision in order to make use of our trained model, though
in practice, many approaches do use auxiliary classifiers to help detect meaningful directions
in the learned latent space [21, 67]. Of course, it is exactly this sort of reliance on labels that
we seek to eschew in the first place.
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1.3 Contributions

In this thesis, I explore different approaches to accessing the knowledge learned by generative
models. In addition to scaling elegantly, these approaches provide novel forms of control
over the outputs of generative models trained on visual data. In Chapter 2, I propose a
disentangled representation of scenes as collections of feature “blobs”, where a generative
adversarial network learns – without any labels – to bind each blob to a different object in the
images it creates. Next, I investigate methods that do not impose bottlenecks on architectures
during training. In Chapter 3, I show that the internals of diffusion models can be used to
meaningfully guide sampling of new data at inference. In Chapter 4, I demonstrate that the
distribution learned by these models can be distilled to generate compositional 3D scenes.

Chapter 2 is adapted from BlobGAN: Spatially Disentangled Scene Representations at ECCV 2022, joint
work with Taesung Park, Richard Zhang, Eli Shechtman, and Alexei A. Efros. [33]

Chapter 3 is adapted from Diffusion Self-Guidance for Controllable Image Generation at NeurIPS 2023,
joint work with Allan Jabri, Ben Poole, Alexei A. Efros, and Aleksander Holynski. [34]

Chapter 4 is adapted from Disentangled 3D Scene Generation with Layout Learning at ICML 2024, joint
work with Ben Poole, Ben Mildenhall, Alexei A. Efros, and Aleksander Holynski. [35]
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Chapter 2

A Representation for Generative
Object Discovery

We begin by proposing an unsupervised, mid-level representation for a generative model of
scenes. The representation is mid-level in that it is neither per-pixel nor per-image; rather,
scenes are modeled as a collection of spatial, depth-ordered “blobs” of features. Blobs are
differentiably placed onto a feature grid that is decoded into an image by a generative
adversarial network. Due to the spatial uniformity of blobs and the locality inherent to
convolution, our network learns to associate different blobs with different entities in a scene
and to arrange these blobs to capture scene layout. We demonstrate this emergent behavior
by showing that, despite training without any supervision, our method enables applications
such as easy manipulation of objects within a scene (e.g. moving, removing, and restyling
furniture), creation of feasible scenes given constraints (e.g. plausible rooms with drawers at a
particular location), and parsing of real-world images into constituent parts. On a challenging
multi-category dataset of indoor scenes, BlobGAN outperforms StyleGAN2 in image quality
as measured by FID.

2.1 Introduction

The visual world is incredibly rich. It is so much more than the typical ImageNet-style
photos of solitary, centered objects (cars, cats, birds, faces, etc.), which are the mainstays
of most current paper result sections. Indeed, it was long clear, both in human vision [14,
57] and in computer vision [189, 119, 121, 60, 43], that understanding and modeling objects
within the context of a scene is of the utmost importance. Visual artists have understood
this for centuries, first by discovering and following the rules of scene formation during the
Renaissance, and then by expertly breaking such rules in the 20th century (cf. the surrealists
including Magritte, Ernst, and Daĺı).

However, in the current deep learning era, scene modeling for both analysis and synthesis
tasks has largely taken a back seat. Images of scenes are either represented in a top-down
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z ∼ N (0, I)

G

Figure 2.1: BlobGAN: In our generator, random noise is mapped by the layout network F
to blob parameters. Blobs output by F are splatted spatially onto corresponding locations
in the feature grid, used both as initial input and as spatially-adaptive modulation for the
convolutional decoder G. Our blob representation automatically serves as a strong mid-level
generative representation for scenes, discovering objects and their layouts.

fashion, no different from objects – i.e. for GANs or image classifiers, scene classes such as
“bedrooms” or “kitchens” are represented the same way as object classes, such as “beds” or
“chairs”. Or, scenes are modeled in a bottom-up way by semantic labeling of each image pixel,
e.g., semantic segmentation, pix2pix [63], SPADE [123], etc. Both paths seem unsatisfactory
because neither can provide easy ways of reasoning about parts of the scene as entities. The
scene parts are either baked into a single entangled latent vector (top-down), or need to be
grouped together from individual pixel labels (bottom-up).

In this paper, we propose an unsupervised mid-level representation for a generative model
of scenes. The representation is mid-level in that it is neither per-pixel nor per-image;
rather, scenes are modeled as a collection of spatial, depth-ordered Gaussian “blobs”. This
collection of blobs provides a bottleneck in the generative architecture, as shown in Figure 2.1,
forcing each blob to correspond to a specific object in the scene and thus causing a spatially
disentangled representation to emerge. This representation allows us to perform a number
of scene editing tasks (see Figure 2.3) previously only achievable with extensive semantic
supervision, if at all.

2.2 Related work

Mid-level scene representations. Work on mid-level scene representations can be traced
back to the 1970s, to the seminal papers of Yakimovsky and Feldman [189] and Ohta et
al [119], which already contained many key ideas including joint bottom-up segmentation and
top-down reasoning. Other important developments were the line of work on normalized-cuts
segmentation [158, 198, 45] and qualitative 3D scene interpretation [60, 49, 161, 43] in the
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early 2000s. But most relevant to the present manuscript is the classic Blobworld work of
Carson et al. [20], a region-based image retrieval system, with each image represented by
a mixture-of-Gaussian blobs. Our model could be considered a generative version of this
representation, except we also encode the depth ordering of the blobs.
Scene analysis by synthesis. The idea of modeling a complex visual scene by trying to
generate it has been attempted a number of times in the past. Early methods, such as [176,
169, 174], introduced key ideas but were limited by the generative models of the time. To
address this, several approaches tried non-parametric generation [100, 148, 62], with Scene
Collaging [62] the most valiant attempt, showing layered scene representations despite very
heavy computational burden. With the advancement of deep generative models, parametric
analysis-by-synthesis techniques are having a renaissance, with some top-down [192, 120, 195]
as well as bottom-up [126, 47] techniques.
Conditional image generation. Conditional GANs [208, 61, 181], such as image-to-image
translation setups [63], predict an image from a predefined representation, e.g. semantic
segmentation maps [123, 91], object-attribute graphs [69, 12], text [201, 138, 113, 135, 142,
137], pose [87, 154, 3], and keypoints [18]. Other setups include using perceptual losses [24],
implicit likelihood estimation [89], and more recently, diffusion models [105, 150]. [160, 103,
102, 159, 180, 48] explore related intermediate representations to help generation (mostly
of humans or objects) but none provide the ability to generate and manipulate high-quality
scene images of our method.
Unconditional generation and disentanglement. Rather than use explicit conditioning,
it is possible to learn an image “manifold” with a generative model such as a VAE [80, 54] or
GAN [41] and explore emergent capabilities. GANs have improved in image quality [133, 28,
200, 17, 76, 72, 74, 73] and are our focus. Directions of variation naturally emerge in the
latent space and can be discovered when guided by geometry/color changes [67], language or
attributes [67, 125, 133, 157, 2, 186], cognitive signals [40], or in an unsupervised manner [46,
156, 127]. Discovering disentangled representations remains a challenging open problem [97,
46, 156, 127]. To date, most successful applications have been on data of objects, e.g. faces
and cars, or changing textures for scenes [124, 97, 46, 156, 127]. Similar to us, an active line of
work explores adding 3D inductive biases [115, 110, 111, 124, 97, 46, 156, 127], but individual
object manipulation has largely focused on simple diagnostic scenes [70]. Alternatively, the
internal units of a pretrained GAN offer finer spatial control, with certain units naturally
correlating with object classes [9, 10, 190]. The internal compositionality of GANs can be
leveraged to harmonize images [26, 21] or perform a limited set of edits on objects in a
scene [9, 199, 206]. Crucially, while these works require semantic supervision to identify units
and regions, our work uses a representation where these factors naturally emerge.

2.3 Method

Our method aims to learn a representation of scenes as spatial maps of blobs through the
generative process. As shown in Figure 2.1, a layout network maps from random noise to a
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Figure 2.2: BlobGAN architecture: Our elliptical blobs β are parametrized by centroid
x, scale s, aspect ratio a, and angle θ. We composite multiple blobs with alpha values that
smoothly decay from blob centers. The features ϕ or ψ are splatted on their corresponding
blobs and passed to the decoder.

set of blob parameters. Then, blobs are differentiably splatted onto a spatial grid – a “blob
map” – which a StyleGAN2-like decoder [75] converts into an image. Finally, the blob map
is used to modulate the decoder We train our model in an adversarial framework with an
unmodified discriminator [74]. Interestingly, even without explicit labels, our model learns to
decompose scenes into entities and their layouts.

Our generator model is largely divided into two parts. First, we apply an 8-layer MLP
F to map random noise z ∈ R

dnoise ∼ N (0, Id) to a collection of blobs parameterized by
β = {βi}

k
i=1 which are splatted onto a spatial H ×W × d feature grid in a differentiable

manner. This process is visualized in Figure 2.2. The feature grid is then passed to a
convolutional decoder G to produce final output images. In the remainder of this section, we
describe the design of our representation as well as its implementation in detail.

2.3.1 From noise to blobs as layout

We map from random Gaussian noise to distributions of blobs with an MLP F with dimension
dhidden. The last layer of F is decoded into a sequence of blob properties β. We opt for a
simple yet effective parametrization of blobs, representing them as ellipses by their center
coordinates x ∈ [0, 1]2, scale s ∈ R, aspect ratio a ∈ R, and rotation angle θ ∈ [−π, π].
Each blob is also associated with a structure feature ϕ ∈ R

din and a style feature ψ ∈ R
dstyle .

Altogether, our blob representation is:

β ∈ R
2+1+1+1+din+dstyle ≜ (x, s, a, θ, ϕ, ψ)

Next, we transform the blob parameters to a 2D feature grid by populating the ellipse
specified by β with the feature vectors ϕ and ψ. We do this differentiably by assigning an
opacity and spatial falloff to each blob. Specifically, we calculate a grid α ∈ [0, 1]H×W ×k

which indicates each blob’s opacity value at each location. We then use these opacity maps to
splat the features ϕ, ψ at various resolutions, using a single broadcasted matrix multiplication
operation.
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In more detail, we begin by computing per-blob opacity maps o ∈ [0, 1]H×W . For each

grid location xgrid ∈
{(

w
W
, h

H

)}W,H

w=1,h=1
we find the squared Mahalanobis distance to the blob

center x:
d(xgrid, x) = (xgrid − x)T (RΣRT )−1(xgrid − x), (2.1)

where Σ = c

[

a 0
0 1

a

]

, R is a 2D rotation matrix by angle θ, and c = 0.02 controls blob edge

sharpness. The opacity of a blob at a given grid location is then:

o(xgrid) = σ (s− d(xgrid, x)) , (2.2)

where s acts as a control of blob size by shifting inputs to the sigmoid. Intuitively, this can
be thought of as taking a soft thresholding operation on a Gaussian to define an in-region
and an out-region. For example, our model can output a large negative s < 0 to effectively
“turn off” a blob. Rather than taking the softmax to normalize values at each location, we
use the alpha-compositing operation [131], which allows us to model occlusions and object
relationships more naturally by imposing a 2.1-D z-ordering [117]:

αi(xgrid) = oi(xgrid)
k∏

j=i+1

(1− oj(xgrid)). (2.3)

Lastly, our blob mapping network also outputs background vectors ϕ0, ψ0, with a fixed opacity
o0 = 1. Final features at each grid location are the convex combination of blob feature
vectors, given by the (k+1) αi scores.

2.3.2 From blob layouts to scene images

We now describe a function G that converts the representation of scenes as blobs β described
in Section 2.3.1 into realistic, harmonized images. To do so, we build on the architecture
of StyleGAN2 [74]. We modify it to take in a spatially-varying input tensor based on blob
structure features rather than a single, global vector, and perform spatially-varying style
modulation.

As opposed to standard StyleGAN, where the single style vector w must capture infor-
mation about all aspects of the scene, our representation separates layout (blob locations
and sizes) and appearance (per-blob feature vectors) by construction, naturally providing a
foundation for a disentangled representation.

Concretely, we compute a feature grid Φ at 16× 16 resolution using blob structure vectors
ϕi and use Φ as input to G, removing the first two convolutional blocks of the base architecture
to accommodate the increased resolution. We also apply spatial style-based modulation [123]
at each convolution using feature grids Ψl×l for l ∈ {16, 32, . . . , 256} computed from blob
style vectors ψi.
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2.3.3 Encouraging disentanglement

Intuitively, all activations within a blob are governed by the same feature vector, encouraging
blobs to yield image regions of self-similar properties, i.e. entities in a scene. Further, due to
the locality of convolution, the layout of blobs in the input must strongly inform the final
arrangement of image regions. Finally, our latent space separates layout (blob location, shape,
and size) from appearance (blob features) by construction. All the above help our model
learn to bind individual blobs to different objects and arrange these blobs into a coherent
layout, disentangling scenes spatially into their component parts.

To further nudge our network in this direction, we stochastically perturb blob repre-
sentations β before inputting them to G, enforcing our model to be robust under these
perturbations. We implement this by corrupting blob parameters with uniform noise δx, δs,
and δθ. This requires that blobs be independent of each other, promoting object discovery
and discouraging degenerate solutions which rely on precise blob placement or shape.

We also experiment with style mixing, where with probability 0.2 we uniformly sample
between 0 and k blobs to swap, and permute style vectors for these blobs among different
batch samples. We find that this intervention harms our training process since it requires
that all styles match all layouts, an assumption we show does not hold in Section 2.4.3. We
also try randomly removing blobs from the forward process with some probability, but found
this hurts training, since certain objects must always be present in certain kinds of scenes
(e.g. kitchens are unlikely to have no refrigerator). This constraint led to a more distributed,
and therefore less controllable, representation of scene entities.

2.4 Experiments

We evaluate our learned representation quantitatively and qualitatively and demonstrate
that a spatially disentangled representation of scenes emerges. We begin by showing that our
model learns to associate individual blobs with objects in scenes, and then show that our
representation captures the distribution of scene layouts. We highlight some applications of
our model in Figure 2.3. Finally, we use our model to parse the layouts of real scene images
via inversion. For more results, including on additional datasets and ablations, please see
Section 2.6.

2.4.1 Training and implementation

We largely follow the training procedure set forth in StyleGAN2 [74], with nonsaturating
loss [41], R1 regularization every 16 steps with γ = 100 but no path length regularization,
and exponential moving average of model weights [76]. We use the Adam optimizer [79]
with learning rate 0.002 and implement equalized learning rate for stability purposes as
recommended by [74, 76].

We set dnoise = 512. Our layout generator F is an 8-layer MLP with dhidden = 1024 and
leaky ReLU activations. We L2-normalize ϕ and ψ vectors output by the layout generator
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Figure 2.3: Blobs allow extensive image manipulation: We apply a sequence of
modifications to the blob map of an image generated by our model and show the resulting
images outputs at each stage of the editing process, demonstrating the strength of our learned
representation.

before splatting. Altogether, the dimension of the last layer is dout = k(din + dstyle + 5) + din +
dstyle. To compensate for the removal of the first two convolutional blocks in the generator G,
we increase channel widths at all remaining layers by 50%. We set din and dstyle depending on
the number of blobs k, and values range between 256 and 768. We experiment with k ∈ [5, 50]
depending on the data considered. We set the blob sigmoid temperature c = 0.02 by visual
inspection of blob edge hardness. Model performance is relatively insensitive to jittering
parameters. We perturb blob parameters with uniform noise as δx ∈ [−0.04, 0.04] (around
10px at 256px resolution), δθ ∈ [−0.1, 0.1] rad (around 6), andδs ∈ [−0.5, 0.5] (varying radii
of blobs by around 5px).

We train our model on categories from the LSUN scenes dataset [194]. In particular, we
train models on bedrooms; conference rooms; and the union of kitchens, living rooms, and
dining rooms. In the following section, we show results of models trained on bedroom data
with k = 10 blobs. Please see Appendix for results on more data (2.6.1), further details on
our blob parametrization and its implementation (2.6.4), and ablations (2.6.7).

2.4.2 Discovering entities with blobs

The ideal representation is able to disentangle complex images of scenes into the objects
that comprise them. Here, we demonstrate through various image manipulation applications
that this ability emerges in our model. Our unsupervised representation allows effortless
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Figure 2.4: Moving blobs to rearrange objects: By modifying coordinates xi of certain
blobs as shown in the middle row, we can perform operations such as rearranging furniture
in bedrooms. Note that since our representation is layered, we can model occlusions, such as
the bed and the dresser in the leftmost and rightmost images.

rearrangement, removal, cloning, and restyling of objects in scenes. We also measure
correlation between blob presence and semantic categories as predicted by an off-the-shelf
network and thus empirically verify the associations discovered by our model.

Figure 2.4 shows the result of intervening to manipulate the center coordinates xi of
blobs output by our model, and thus rearranging furniture configurations. We are
able to arbitrarily alter the position of objects in the scene by shifting their corresponding
blobs without affecting their appearance. This interaction is related to traditional “image
reshuffling” where rearrangement of image content is done in pixel space [162, 6, 145]. Our
model’s notion of depth ordering also allows us to easily de-occlude objects – e.g. curtains,
dressers, or nightstands – that were hidden in the original images, while also enabling the
introduction of new occlusions by moving one blob behind another.

In Figure 2.5, we show the effect of removing entirely certain blobs from the
representation. Specifically, we remove all blobs but the one responsible for beds, and show
that our model is able to clear out the room accordingly. We also remove the bed blob but
leave the rest of the room intact, showing a remarkable ability to create bedless bedrooms,
despite training on a dataset of rooms with beds. Figure 2.3 shows the effect of resizing blobs
to change window size; see 2.6.1 for further results on changing blob size and shape. In Fig.
2.6, we remove a blob that our model – trained on a challenging multi-category union of
scene datasets – has learned to associate with tables across scene categories.
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Figure 2.5: Removing blobs: Despite the extreme rarity of bedless bedrooms in the training
data, the ability to remove beds from scenes by removing corresponding blobs emerges. We
can also remove windows, lamps and fans, paintings, dressers, and nightstands in the same
manner.

Our edits are not constrained to the set of blobs present in a layout generated by our
model; we can also introduce new blobs. Figure 2.8 demonstrates the impact of copying
and pasting the same blob in a new location. Our model is able to faithfully duplicate
objects in scenes even when the duplication yields an image that is out of distribution, such
as a room with two ceiling fans.

Our representation also allows performing edits across images. Figure 2.7 shows the
highly granular redecorating enabled by swapping blob style vectors; we are able to copy
objects such as bedsheets, windows, and artwork from one room to another without otherwise
affecting the rendered scene.

Quantitative blob analysis. Next, we quantitatively study the strong associations
between blobs and semantic object classes. We do so by randomly setting the size parameter
s of a blob to a large negative number to effectively remove it. We then use an off-the-shelf
segmentation model to measure which semantic class has disappeared. We visualize the
correlation between classes and blobs in Figure 2.9 (left); the sparsity of this matrix shows
that blobs learn to specialize into distinct scene entities. We also visualize the distribution of
blob centroids in Figure 2.9 (right), computed by sampling many different random vectors
z. The resultant heatmaps provide a glimpse into the distribution of objects in training
data – our model learns to locate blobs at specific image regions and control the objects they
represent by varying feature vectors.
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Figure 2.6: Removing all sorts of tables: We train BlobGAN on a multi-category dataset
of kitchens, living rooms, and dining rooms. We find that a particular blob specializes in
generating tables across scene types, and feature vectors dictate whether it becomes a coffee
table, kitchen island, or dining table. For many more editing operations on this dataset and
others, please see Appendix.
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Swap beds Swap paintings Swap windows

Figure 2.7: Swapping blob styles: Interchanging ψi vectors without modifying layout leads
to localized edits which change the appearance of individual objects in the scene.

2.4.3 Composing blobs into layouts

The ideal representation of scenes must go beyond simply disentangling images into their
component parts, and capture the rich contextual relationships between these parts that
dictate the process of scene formation [14, 57]. In contrast to previous work in generative
modeling of realistic images, our representation explicitly discovers the layout (i.e., the joint
distribution) of objects in scenes.
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Clone paintings Clone ceiling fans Clone beds

Figure 2.8: Cloning blobs: We clone blobs in scenes, arrange them to form a new layout,
and show corresponding model outputs. Added blobs are marked with a +.

Figure 2.9: Blob spatial preferences: Our model allocates each blob to a certain region
of the image canvas, revealing patterns in the training distribution of objects. We visualize
each blob’s correlation with classes predicted by a segmentation model [168] (left) as well as
the spatial distribution of blob centroids (right).

By solving a simple constrained optimization problem at test-time, we are able to sample
realistic images that satisfy constraints about the underlying scene, a functionality we call
“scene auto-complete”. This auto-complete allows applications such as filling empty rooms
with items, plausibly populating rooms given a bed or window at a certain location, and
finding layouts that are compatible with certain sets of furniture.
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Empty room Furnished rooms

Figure 2.10: Generating and populating empty rooms: We show different empty rooms,
each with their own background vector ψ0, as well as furnished rooms given by latents z
optimized to match these background vectors. This simple sampling procedure yields a
diverse range of layouts to fill the scenes. Note that while empty rooms do not appear in
training data, our model is reasonably capable of generating them.

We ground this ability quantitatively by demonstrating that “not everything goes with
everything” [18] in real-world scenes – for example, not every room’s style can be combined
with any room’s layout. We show that our scene auto-complete yields images that are
significantly more photorealistic than näıvely combining scene properties at random, and
outperforms regular StyleGAN in image quality, diversity as well as in fidelity of edits.
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Figure 2.11: Scene auto-complete: Various conditional generation problems fall under
the umbrella of “scene auto-complete”, i.e. using our layout network F to sample different
scenes satisfying constraints on a subset of blob parameters. We show layout-conditioned
style generation as well as prediction of plausible scenes given the location and size (but not
style) of beds. Rather than using F to plausibly auto-complete scenes, we can also generate a
random scene and simply override parameters of interest to match desired values. As shown
on the right, such scenes have objects inserted, removed, reoriented, or otherwise disfigured
due to incompatibility.

Conditionally sampling scenes: We can construct an ad-hoc conditional distribution
by optimizing random inputs to match a set of constraints in the form of properties c of a
source image’s blob map β:

c ⊂
k⋃

i=0

{xsrc
i , ssrc

i , asrc
i , θsrc

i , ϕsrc
i , ψsrc

i } (2.4)

For example, c = {ϕsrc
0 , ψsrc

0 } constrains the background of an output image to match that of
a source image, and c = {xsrc

i , ssrc
i , asrc

i } constrains the shape (but not the appearance) of the
i-th blob to match the source.

We obtain conditional samples by drawing initial noise vectors zinit ∼ N (0, Id) and
optimizing F (zinit) to match the constraint set c with an L2 loss, leaving other parameters
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Layout → Styles Window → Room Bed → Room Painting → Room
FID ↓ PD ↑ GD ↑ C ↑ FID PD GD C FID PD GD C FID PD GD C

S
ty

le
G

A
N 2 coarse 4.23 0.75 0.77 46.5 - - - - - - - - - - - -

3 coarse 5.04 0.73 0.76 55.3 - - - - - - - - - - - -
4 coarse 5.58 0.71 0.76 62.9 - - - - - - - - - - - -

B
lo

b
G

A
N Random 8.10 0.72 0.74 47.9 6.41 0.72 0.73 17.4 10.88 0.67 0.73 52.6 6.31 0.72 0.73 7.7

Conditional 4.59 0.70 0.74 55.2 4.75 0.67 0.72 27.2 7.12 0.64 0.72 60.0 4.58 0.69 0.73 13.0
+ source Φ 5.06 0.68 0.74 63.6 - - - - - - - - - - - -

Table 2.1: Not everything goes with everything: We edit images by overriding properties
in target images either generated at random or conditionally sampled using our model. By
varying the network depth at which we begin to swap styles in StyleGAN, we tune a
knob between image quality and edit consistency. To further preserve global layout and
improve consistency, our model can also use structure grids Φ from the source image. PD =
paired distance, GD = global diversity, C = consistency. In all cases, scene auto-complete
outperforms baselines. Metrics are defined in the main text.

free. We use the Adam optimizer with learning rate 0.01 and find that between 50 and 300
iterations, which complete in around a second on an NVIDIA RTX 3090, give zoptim vectors
that sufficiently match constraints. We then set the final layout to be c ∪ {βoptim \ c},
i.e. the initial constraints combined with the free parameters given by the optimized noise
vectors, and decode layouts into images as described in Section 2.3.2. In effect, this process
finds new scenes known by our model to be compatible with the specified constraints, as
opposed to randomly drawn from an unconditional distribution.

We examine applications of our scene auto-complete and compare it to scenes generated
by baseline approaches in Figures 2.10 and 2.11. Scene auto-complete yields images that are
both more realistic and more faithful to the desired image operations. We quantitatively
demonstrate this in Table 2.1, where we show that using auto-complete to find target images
whose properties to apply for conducting edits significantly outperforms the use of randomly
sampled targets and/or models such as StyleGAN not trained with compositionality in mind.

FID ↓ Precision ↑ Recall ↑

StyleGAN2 3.85 0.5932 0.4492
BlobGAN 3.43 0.5974 0.4463

Table 2.2: Evaluating BlobGAN: BlobGAN
achieves visual quality competitive with Style-
GAN2 [75] on LSUN Bedrooms. Our samples
are more realistic but capture less of the data
distribution [84], perhaps by rejecting uncon-
ventional or malformed scenes in the training
data.

To evaluate image photorealism after an
edit, we calculate FID [53] on automatically
edited images. We must also ensure that im-
age quality does not come at the expense of
sample diversity; to this end, we measure the
average LPIPS [204] distance between images
before and after the edit and refer to this as
Paired Distance (PD). We also measure the
expected distance between pairs of edited im-
ages to gauge whether edits cause perceptual
mode collapse, and call this Global Diversity
(GD). Finally, we confirm that our editing
operations stay faithful to the conditioning
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provided. For predicting style from layout,
we simply report the fraction of image pixels
whose predicted class label as output by a segmentation network [168] remains the same.
For localized object edits, we report the intersection-over-union of the set of pixels whose
prediction was the target class before and after edit. We refer to this metric as Consistency
(C).

Our results verify the intuition that, e.g., not every configuration of furniture can fit a
bed at a given location. Please see 2.6.6 for more results.

2.4.4 Evaluating visual quality and diversity

Our model achieves perceptual realism competitive with previous work. In Table 2.2, we
report FID [53] as well as improved precision and recall [84], which capture realism and
diversity of samples. Bedroom images generated by our model appear more realistic than
StyleGAN’s [72], but less diverse. We hypothesize this is due to the design of our representation,
which rejects strange scene configurations that cannot be modeled by blobs. When trained
on the challenging union of multiple LSUN indoor scene categories, BlobGAN outperforms
StyleGAN2, indicating an ability to scale to harder data. See 2.6.1 for details.

2.4.5 Parsing images into regions

Though our representation is learned on generated (i.e. fake) images, in Figure 2.12 we show
that it can represent real images via inversion. We follow best practices [207, 1, 139, 175,
11] for inversion: We train an encoder to predict blob parameters, reconstructing both real
and fake images, and then optimize encoder predictions to better reconstruct specific inputs.
While this method leads to uneditable, off-manifold latents in previous work [141], we find
our blob representation to be more robust in this sense and amenable to näıve optimization.
Importantly, we find that the same manipulations described above can be readily applied to
real images after inversion. See 2.6.2 for more information.

2.5 Discussion

We present BlobGAN, a mid-level representation for generative modeling and parsing of
scenes. Taking random noise as input, our model first outputs a set of spatial, depth-ordered
blobs, and then splats these blobs onto a feature grid. This feature grid is used as input to
a convolutional decoder which outputs images. While conceptually simple, this approach
leads to the emergence of a disentangled representation that discovers entities in scenes and
their layout. We demonstrate a set of edits enabled by our approach, including rearranging
layouts by moving blobs and editing styles of individual objects. By removing or cloning
blobs, we are even able to generate empty or densely populated rooms, though none exist
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Real image Inverted image Blobs Move objects Remove bed Remove other

Figure 2.12: Parsing real images via inversion: Our representation can also parse real
images by inverting them into blob space. We can remove and reposition objects in real
images – spot the differences from the original!

in the training set. Our model can also parse and manipulate the layout of real images via
inversion.

2.6 Appendix

2.6.1 BlobGAN on other datasets

In the main text, we primarily showed results on LSUN bedrooms [194]. Below, we show
that our model can be applied to other datasets and room types. We provide qualitative
and quantitative results on our models trained on the challenging LSUN conference room
dataset, as well as a joint dataset combining LSUN kitchens, dining rooms, and living rooms
[194]. As with bedrooms, our model’s images are competitive with previous work in terms of
photorealism, and in addition allow extensive manipulation of images. Please see Table 2.3
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Figure 2.13: Honey, I shrunk the conference room! As in Figure 2.3, we show the effect
of resizing blobs in generated images. Here, we resize blobs corresponding to tables and
chairs, and render identical rooms with shrunken furniture.
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Figure 2.14: Moving desks and chairs (conference room): As in Figure 2.4, we show
the effect of moving blobs in generated images. Here, we move blobs corresponding to tables
and chairs, and render identical rooms with shifted furniture.

for quantitative evaluation. We show image samples and edits on them in Figures 2.19, 2.13,
2.14, 2.15, 2.23, 2.22, and 2.16.

2.6.2 Modeling real images with BlobGAN

We show additional results on inversion and editing of real images in Figures 2.17 and 2.18.
Images are drawn from the LSUN bedrooms validation set, which our model does not see
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Figure 2.15: Removing some or all windows (kitchen, living room, dining room):
As shown in Figure 2.5, we can remove windows from complex scenes, though they are often
hidden behind cluttered configurations of furniture. We can control which windows to remove
by selecting only some of the relevant blobs.

LSUN Conference LSUN Kitchen+Living+Dining

FID ↓ Precision ↑ Recall ↑ FID ↓ Precision ↑ Recall ↑

StyleGAN2 [75] 6.21 0.5475 0.4554 4.63 0.6005 0.4397
BlobGAN 6.94 0.5297 0.4485 4.41 0.5818 0.4661

Table 2.3: BlobGAN on diverse data: On challenging collections of conference rooms and
various types of indoor rooms in homes, our model is highly competitive with a StyleGAN2
baseline, while enabling all the applications of the BlobGAN representation. Our model
outperforms StyleGAN2 given an equal number of gradient steps (1.5M) on the difficult union
of various LSUN indoor scene categories, as measured by FID.

during the training process.

2.6.3 Implementation details

In Section 2.4.5 and Figure 2.12, we demonstrate that real images can be inverted and
manipulated with our model. Here, we provide additional details regarding the encoder
training procedure. We take an encoder architecture E in the same form as the StyleGAN2
[75] discriminator, without mini-batch statistic discrimination. We use E for inverting images
by having the last layer output a long flat vector, which we segment into blob parameters. In
addition to reconstructing both real and synthetically generated images with LPIPS [204]
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Figure 2.16: Moving tables and chairs (kitchen, living room, dining room): Our
representation can easily move tables and any associated chairs, by changing the location of
blobs 42 (table) and 30 (chairs). Since the two move together, we only show one arrow to
represent the edit.

and L2 penalties, we require the parameters β̂ to match the ground truth parameters β in
the case of inverting generated images. Our overall loss is:

Linversion = LLPIPS (xreal, G(E(xreal))) + LLPIPS(xfake, G(E(xfake))) (2.5)

+ L2(xreal, G(E(xreal))) + L2(xfake, G(E(xfake)))

+ λL2(βfake, E(xfake)),

with λ = 10 controlling the strength of the blob reconstruction loss. Taking the L2 loss on blob
parameters as a flattened vector would heavily emphasize reconstructing the high-dimensional
features, over the important, low-dimensional, scalar quantities of blob locations and sizes.
Instead, we compute L2 separately over each blob attribute and take the mean.

We then further optimize the blob parameters to reconstruct the target image, with
LPIPS and L2 losses and the Adam optimizer [79] with learning rate 0.01 for 200 steps.
While better fitting the input image, this method potentially deviates from the manifold of
latents that yield realistic images [1, 141], thus severely impeding editing abilities. Previously
proposed solutions offer regularizations to keep the latents on this “manifold” [187, 205, 188].
However, we find our blob representation to be more robust in this sense, and latents yielded
by this näıve optimization still amenable to editing.

2.6.4 Blob parametrization

We represent the blob aspect ratio a as two scalar outputs a0, a1, sigmoided and then
normalized to have a fixed product a0a1; we find this to train more stably than one aspect
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Real image Inverted image Blobs Move objects Remove bed Remove other

Figure 2.17: Parsing real images via inversion: We show the flexibility of our learned
representation by applying edits to real images inverted into blob space. We can remove and
reposition objects in real images – spot the differences from the original!

ratio. We represent the blob angle θ with two scalars e0, e1, from which we construct a
unit-normalized axis of rotation e. We find this representation to train far more stably than
others, such as regressing to a scalar θ or other parametrizations of Σ like log-Cholesky [102,
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Real image Inverted image Blobs Move objects Remove bed Remove other

Figure 2.18: Parsing real images via inversion: More results on inversion of real images.

155].
We also experimented with alternate representations, such as closed-form ellipses and

rectangles as well as Gaussian mixture models. However, we found gradient flow to blob
parameters ill-behaved with rectangles and other explicitly defined shapes, even with tricks
like gradual opacity falloff, and these models failed to train. With GMMs, depth ordering
and occlusions are lost, and blob size and shape depend on other blobs, harming performance.
Our model is robust w.r.t. c, and 0.005 ≤ c ≤ 0.05 all train well.
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Figure 2.19: Removing screens in conference rooms. As in Figure 2.5, we show the
effect of removing certain blobs from generated images. Here, we remove blobs corresponding
to screens from images of conference rooms.

2.6.5 Limitations

Though our blob representation allows for powerful unsupervised, disentangled scene repre-
sentations, our model still suffers from various shortcomings. For example, trained networks
struggle to disentangle smaller objects (e.g. lamps on desks), perspective from object shape,
and, occasionally, foreground appearance from background. Further, as shown in the main
paper, blobs display a predilection toward certain canvas regions, though whether this is an
artifact of dataset bias or model design remains unclear.

2.6.6 Comparison to previous work

In Figures 2.20 and 2.21, we show random samples of untruncated images before and after
style swapping. At a given level of photorealism as measured by FID, our model is able
to produce layouts far more consistent with the original image thanks to its disentangled,
compositional representation.

Lastly, we visualize the trade-off between the precision and recall metric [84] as we change
the truncation value in Figure 2.24. Our model generates more perceptually realistic images
than StyleGAN at all truncation values 0.0 ≤ w ≤ 1.0, although the maximal recall at
w = 1.0 is lower. In particular, our untruncated model performs better at both precision
and recall than all StyleGAN-generated images with w < 0.7. These results provide evidence
for the suggestion that our model’s FID is higher because it cannot properly model outlier
bedroom scenes using the blob representation.
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Original image Swapped image Original segments Swapped segments Difference map

StyleGAN style swapping: FID 5.04, Consistency 55.3%

Figure 2.20: Style swapping with StyleGAN: We show randomly sampled untruncated
StyleGAN images before and after style swapping at layer 4, attaining an FID of 5.04 and
layout consistency of 55.3%. The difference map shows the normalized KL divergence of the
predicted per-pixel logits before and after swapping.

2.6.7 Model implementation

Hyperparameters and training

For the bedroom model trained in the paper, we use din = 768 and dstyle = 512. Our generator
with k = 10 blobs has 57.2 million parameters: 21.3 million in F and the remaining 35.9
million in G.
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Original image Swapped image Original segments Swapped segments Difference map

BlobGAN style swapping: FID 5.06, Consistency 63.6%

Figure 2.21: Style swapping with BlobGAN: We show randomly sampled untruncated
BlobGAN images before and after style swapping, attaining an FID of 5.06 and layout
consistency of 63.6%. The difference map shows the normalized KL divergence of the
predicted per-pixel logits before and after swapping.

The model trained on LSUN conference rooms uses k = 20 and has 34.5M parameters in
F ; all other hyperparameters are as in the bedroom model.

The model trained on the union of LSUN kitchens, living rooms, and dining rooms uses
k = 45 due to the increased complexity of the combined dataset, and thus reduces din = 256
and dstyle = 256. This model has 61.3 million parameters in the generator: 31.3M in F and
30.0M in G.
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Figure 2.22: Scene auto-complete: Various conditional generation problems fall under the
umbrella of “scene auto-complete”, i.e. optimizing random noise vectors to match a set of
blob parameters when run through our layout network F . We show prediction of plausible
scenes given the location and size (but not style) of dressers and nightstands. The model
must not only predict the arrangement of the missing blobs, but also assign all blobs realistic
appearance. When sampling target images randomly, objects are often randomly inserted,
removed, reoriented, or otherwise disfigured due to incompatibility.
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Figure 2.23: Swapping blob styles: Interchanging ψi vectors without modifying layout
leads to localized edits which change the appearance of individual objects in the scene.

We train all models for 1.5 million gradient steps with batch size 24 per-GPU across 8
NVIDIA A100 GPUs, except the bedrooms models (both BlobGAN and StyleGAN2), which
are trained for 2.8 million steps. On the bedrooms model, we experiment with k = 20 blobs
as well as k = 10 blobs with no jitter. We find that results are less interpretable with 20
blobs and disentanglement is lower, perhaps since the model can “approximate” slightly
higher-frequency data by using more blobs. This model also has a worse FID of 3.73. We
also train a model with k = 10 blobs and no jitter, which attains comparable FID to the
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Figure 2.24: We plot the precision-recall curve, by varying truncation values w, on LSUN
bedrooms. Our untruncated model outperforms StyleGAN2 [75] with truncation values
w < 0.7 in both precision and recall of generated images. While still outperforming StyleGAN2
on FID (Table 2.2), our model operates at a different point on this curve than StyleGAN2 –
higher precision and lower recall – supporting the hypothesis that BlobGAN’s FID suffers
due to its inability to model long-tail, oddly-formed scenes.

model with jitter, but with slightly reduced editing capabilities. Across all experiments, we
find that changing k minorly impacts FID. Extra blobs mostly go unused, but too few blobs
mean objects cannot be properly separated.

Image sampling

We sample all images shown in the paper and Supplementary Material with truncation. We
truncate latents at the penultimate layer of F , since truncating in blob parameters space
leads to undesirable behavior (e.g. biasing blob coordinates toward the center of the image).
Then, truncation of random noise vector z’s output of blob parameters β with a weight of w
gives:

βtrunc = FL

(

(1− w) E
z′∼N (0,I)

[F0:−1(z′)] + wF0:L−1(z)

)

(2.6)

Where Fl:m represents layers l through m, inclusive, of the network which has L layers total.
In practice, we approximate the expectation by sampling 100,000 random noise vectors. We
use w = 0.6 or w = 0.7 for all bedroom images. w = 0.5 for images of conference rooms,
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and w = 0.4 for other indoor scenes, except when indicated otherwise (w = 1 means no
truncation).

Object style swapping

When swapping styles between objects, rather than splatting the target (new) object’s style
ψi,tgt directly onto the source (original) image’s background style ψbg, src, we interpolate first
between ψi,tgt and then ψbg,tgt (i.e., the target image’s background) at the border of the blob,
and then splat this onto the background ψbg, src.

We find this necessary since the model learns to treat features on the border of a blob,
which are typically a convex combination of the blob feature and the background feature, as
belonging to the blob; when an unanticipated background feature becomes part of the feature
along the border, the model is more prone to producing artifacts. This simple procedure
mitigates this undesirable behavior and is trivially fully automated.

Spatial modulation

In StyleGAN2, convolution weights at layer l, θl ∈ R
dl×dl−1×k×k, are multiplied by an affine-

transformed style vector w ∈ R
d
l and then unit-normalized to perform modulation. Since our

modulation varies spatially, we instead multiply input feature maps xl−1 ∈ R
dl−1×h×w by a

unit-normalized style grid Ψl ∈ R
dstyle×h×w with a per-pixel affine transform, before convolving

with unit-normalized weights θl to output new feature maps xl. Affine transforms f map
from dstyle to dl. More specifically, in StyleGAN2, modulated convolution is implemented as:

xl = xl−1 ∗
f(wl)⊙ θl

∥f(wl)⊙ θl∥2

(2.7)

Since our styles are spatially varying, we cannot multiply convolution weights by the same
broadcasted tensor throughout, and must modify our modulation:

xl =

(

xl−1 ⊙
f(Ψl)

∥f(Ψl)∥2

)

∗
θl

∥θl∥2

(2.8)

We find this normalization scheme, also used in [123, 124], to work well in practice despite
not having the same statistical guarantees as the original derivation.

Uncurated samples

In Figures 2.25 and 2.26, we show randomly sampled images from our model and StyleGAN2
trained on LSUN Bedrooms. We show the same on LSUN kitchens, living rooms, dining
rooms, and conference rooms in Figures 2.27, 2.28, 2.29, and 2.30.
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BlobGAN, truncation=1 (no truncation)

BlobGAN, truncation=0.8

BlobGAN, truncation=0.6

Figure 2.25: Random samples: We show uncurated random image samples from BlobGAN
on LSUN bedrooms at various truncation levels. Please view zoomed in and in color for best
results.
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StyleGAN2, truncation=1 (no truncation)

StyleGAN2, truncation=0.8

StyleGAN2, truncation=0.6

Figure 2.26: Random samples: We show uncurated random image samples from StyleGAN2
on LSUN bedrooms at various truncation levels. Please view zoomed in and in color for best
results.
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BlobGAN, truncation=1 (no truncation)

BlobGAN, truncation=0.8

BlobGAN, truncation=0.6

Figure 2.27: Random samples: We show uncurated random image samples from BlobGAN
on LSUN kitchens, living rooms, and dining rooms at various truncation levels. Please view
zoomed in and in color for best results.
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StyleGAN2, truncation=1 (no truncation)

StyleGAN2, truncation=0.8

StyleGAN2, truncation=0.6

Figure 2.28: Random samples: We show uncurated random image samples from StyleGAN2
on LSUN kitchens, living rooms, and dining rooms at various truncation levels. Please view
zoomed in and in color for best results.
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BlobGAN, truncation=1 (no truncation)

BlobGAN, truncation=0.8

BlobGAN, truncation=0.6

Figure 2.29: Random samples: We show uncurated random image samples from BlobGAN
on LSUN conference rooms at various truncation levels. Please view zoomed in and in color
for best results.
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StyleGAN2, truncation=1 (no truncation)

StyleGAN2, truncation=0.8

StyleGAN2, truncation=0.6

Figure 2.30: Random samples: We show uncurated random image samples from StyleGAN2
on LSUN conference rooms at various truncation levels. Please view zoomed in and in color
for best results.
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Chapter 3

An Objective for Controllable Image
Sampling

In contrast to models with strong representation bottlenecks such as those described in
the previous chapter, large-scale generative models are capable of producing high-quality
images from detailed text descriptions. However, many aspects of an image are difficult
or impossible to convey through text. We introduce self-guidance, a method that provides
greater control over generated images by guiding the internal representations of diffusion
models. We demonstrate that properties such as the shape, location, and appearance of
objects can be extracted from these representations and used to steer the sampling process.
Self-guidance operates similarly to standard classifier guidance, but uses signals present in
the pretrained model itself, requiring no additional models or training. We show how a
simple set of properties can be composed to perform challenging image manipulations, such
as modifying the position or size of specific objects, merging the appearance of objects in
one image with the layout of another, composing objects from multiple images into one, and
more. We also show that self-guidance can be used for editing real images.

3.1 Introduction

Generative image models have improved rapidly in recent years with the adoption of large
text-image datasets and scalable architectures [196, 151, 137, 30, 143, 165, 55, 42]. These
models are able to create realistic images given a text prompt describing just about anything.
However, despite the incredible abilities of these systems, discovering the right prompt to
generate the exact image a user has in mind can be surprisingly challenging. A key issue is
that all desired aspects of an image must be communicated through text, even those that are
difficult or even impossible to convey precisely.

To address this limitation, previous work has introduced methods [38, 147, 77, 96] that
tune pretrained models to better control details that a user has in mind. These details are
often supplied in the form of reference images along with a new textual prompt [19, 5] or other
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“a photo of a giant macaron and a croissant splashing in the Seine with the Eiffel Tower in the background”

Original Swap objects Enlarge macaron Replace macaron Copy appearance Copy layout

“a DSLR photo of a meatball and a donut falling from the clouds onto a neighborhood”

Original Move donut Shrink donut Replace donut Copy appearance Copy layout

Figure 3.1: Self-guidance is a method for controllable image generation that guides sampling
using the attention and activations of a pretrained diffusion model. With self-guidance, we can
move or resize objects, or even replace them with items from real images, without changing
the rest of the scene. We can also borrow the appearance of other images or rearrange scenes
into new layouts.

forms of conditioning [202, 4, 150]. However, these approaches all either rely on fine-tuning
with expensive paired data (thus limiting the scope of possible edits) or must undergo a costly
optimization process to perform the few manipulations they are designed for. While some
methods [52, 177, 104, 107] can perform zero-shot editing of an input image using a target
caption describing the output, these methods only allow for limited control, often restricted
to structure-preserving appearance manipulation or uncontrolled image-to-image translation.

By consequence, many simple edits still remain out of reach. For example, how can we
move or resize one object in a scene without changing anything else? How can we take the
appearance of an object in one image and copy it over to another, or combine the layout of
one scene with the appearance of a second one? How can we generate images with certain
items having precise shapes at specific positions on the canvas? This degree of control has
been explored in the past in smaller scale settings [33, 21, 206, 97, 124, 195], but has not
been convincingly demonstrated with modern large-scale diffusion models [151, 196, 135].

We propose self-guidance, a zero-shot approach which allows for direct control of the shape,
position, and appearance of objects in generated images. Self-guidance leverages the rich
representations learned by pretrained text-to-image diffusion models – namely, intermediate
activations and attention – to steer attributes of entities and interactions between them. These
constraints can be user-specified or transferred from other images, and rely only on knowledge
internal to the diffusion model. Through a variety of challenging image manipulations,
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we demonstrate that self-guidance using only a few simple properties allows for granular,
disentangled manipulation of the contents of generated images (Figure 3.1). Further, we show
that self-guidance can also be used to reconstruct and edit real images.

Our key contributions are as follows:

• We introduce self-guidance, which takes advantage of the internal representations of
pretrained text-to-image diffusion models to provide disentangled, zero-shot control
over the generative process without requiring auxiliary models or supervision.

• We find that properties such as the size, location, shape, and appearance of objects can
be extracted from these representations and used to meaningfully guide sampling in a
zero-shot manner.

• We demonstrate that this small set of properties, when composed, allows for a wide
variety of surprisingly complex image manipulations, including control of relationships
between objects and the way modifiers bind to them.

• Finally, by reconstructing captioned images using their layout and appearance as
computed by self-guidance, we show that we can extend our method to editing real
images.

3.2 Background

3.2.1 Diffusion generative models

Diffusion models learn to transform random noise into high-resolution images through a
sequential sampling process [164, 55, 166]. This sampling process aims to reverse a fixed time-
dependent destructive process that corrupts data by adding noise. The learned component
of a diffusion model is a neural network ϵθ that tries to estimate the denoised image, or
equivalently the noise ϵt that was added to create the noisy image zt = αtx + σtϵt. This
network is trained with loss:

L(θ) = Et∼U(1,T ),ϵt∼N (0,I)

[

w(t)||ϵt − ϵθ(zt; t, y)||2
]

, (3.1)

where y is an additional conditioning signal like text, and w(t) is a function weighing the
contributions of denoising tasks to the training objective, commonly set to 1 [55, 81]. A
common choice for ϵθ is a U-Net architecture with self- and cross-attention at multiple
resolutions to attend to conditioning text in y [144, 151, 143]. Diffusion models are score-
based models, where ϵθ can be seen as an estimate of the score function for the noisy marginal
distributions: ϵθ(zt) ≈ −σt∇zt

log p(zt) [166].
Given a trained model, we can generate samples given conditioning y by starting from

noise zT ∼ N (0, I), and then alternating between estimating the noise component and
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updating the noisy image:

ϵ̂t = ϵθ(zt; t, y), zt−1 = update(zt, ϵ̂t, t, t− 1, ϵt−1), (3.2)

where the update could be based on DDPM [55], DDIM [165], or another sampling method
(see Appendix for details). Unfortunately, näıvely sampling from conditional diffusion models
does not produce high-quality images that correspond well to the conditioning y. Instead,
additional techniques are utilized to modify the sampling process by altering the update
direction ϵ̂t.

3.2.2 Guidance

A key capability of diffusion models is the ability to adapt outputs after training by guiding the
sampling process. From the score-based perspective, we can think of guidance as composing
score functions to sample from richer distributions or to introduce conditioning on auxiliary
information [30, 94, 166]. In practice, using guidance involves altering the update direction ϵ̂t

at each iteration.
Classifier guidance can generate conditional samples from an unconditional model by

combining the unconditional score function for p(zt) with a classifier p(y|zt) to generate
samples from p(zt|y) ∝ p(y|zt)p(zt) [30, 166]. To use classifier guidance, one needs access to a
labeled dataset and has to learn a noise-dependent classifier p(y|zt) that can be differentiated
with respect to the noisy image zt. While sampling, we can incorporate classifier guidance by
modifying ϵ̂t:

ϵ̂t = ϵθ(zt; t, y)− sσt∇zt
log p(y|zt), (3.3)

where s is an additional parameter controlling the guidance strength. Classifier guidance
moves the sampling process towards images that are more likely according to the classifier
[30], achieving a similar effect to truncation in GANs [16], and can also be applied with
pretrained classifiers by first denoising the intermediate noisy image (though this requires
additional approximations [4]).

In general, we can use any energy function g(zt; t, y) to guide the diffusion sampling
process, not just the probabilities from a classifier. g could be the approximate energy from
another model [94], a similarity score from a CLIP model [112], an arbitrary time-independent
energy as in universal guidance [4], bounding box penalties on attention [23], or any attributes
of the noisy images. We can incorporate this additional guidance alongside classifier-free
guidance [56] to obtain high-quality text-to-image samples that also have low energy according
to g:

ϵ̂t = (1 + s)ϵθ(zt; t, y)− sϵθ(zt; t, ∅) + vσt∇zt
g(zt; t, y), (3.4)

where s is the classifier-free guidance strength and v is an additional guidance weight for g.
As with classifier guidance, we scale by σt to convert the score function to a prediction of
ϵt. The main contribution of our work is to identify energy functions g useful for controlling
properties of objects and interactions between them.
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Pre-trained Diffusion Model

“a photo of a burger and an ice cream cone floating in the ocean”
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Figure 3.2: Overview: We leverage representations learned by text-image diffusion models to
steer generation with self-guidance. By constraining intermediate activations Ψt and attention
interactions At, self-guidance can control properties of entities named in the prompt. For
example, we can change the position and shape of the burger, or copy the appearance of ice
cream from a source image.

3.2.3 Where can we find signal for controlling diffusion?

While guidance is a flexible way of controlling the sampling process, energy functions typically
used [202, 4] require auxiliary models (adapted to be noise-dependent) as well as data
annotated with properties we would like to control. Can we circumvent these costs? Recent
work [52, 177] has shown that the intermediate outputs of the diffusion U-Net encode valuable
information [83, 132] about the structure and content of the generated images. In particular,

the self and cross-attention maps
{

Ai,t ∈ R
Hi×Wi×K

}

often encode structural information [52]

about object position and shape, while the network activations
{

Ψi,t ∈ R
Hi×Wi×Di

}

allow for

maintaining coarse appearance [177] when extracted from appropriate layers. While these
editing approaches typically share attention and activations naively between subsequent
sampling passes, drastically limiting the scope of possible manipulations, we ask: what if we
tried to harness model internals in a more nuanced way?

3.3 Self-guidance

Inspired by the rich representations learned by diffusion models, we propose self-guidance,
which places constraints on intermediate activations and attention maps to steer the sampling
process and control entities named in text prompts (see Fig. 3.2). These constraints can be
user-specified or copied from existing images, and rely only on knowledge internal to the
diffusion model.

We identify a number of properties useful for meaningfully controlling generated images,
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derived from the set of softmax-normalized attention matrices
{

Ai,t ∈ R
Hi×Wi×K

}

and activa-

tions
{

Ψi,t ∈ R
Hi×Wi×Di

}

extracted from the standard denoising forward pass ϵθ(zt; t, y). To
control an object mentioned in the text conditioning y at token indices k, we can manipulate
the corresponding attention channel(s) Ai,t,·,·,k ∈ R

Hi×Wi×|k| and activations Ψi,t (extracted
at timestep t from a noisy image zt given text conditioning y) by adding guidance terms to
Eqn. 3.4.

Object position. To represent the position of an object (omitting attention layer index
and timestep for conciseness), we find the center of mass of each relevant attention channel:

centroid (k) =
1

∑

h,wAh,w,k

[∑

h,w w · Ah,w,k
∑

h,w h · Ah,w,k

]

(3.5)

We can use this property to guide an object to an absolute target position on the image. For
example, to move “burger” to position (0.3, 0.5), we can minimize ∥(0.3, 0.5)−centroid (k) ∥1.
We can also perform a relative transformation, e.g., move “burger” to the right by (0.1, 0.0)
by minimizing ∥centroidorig (k) + (0.1, 0.0)− centroid (k) ∥1.

Object size. To compute an object’s size, we spatially sum its corresponding attention
channel:

size (k) =
1

HW

∑

h,w

Ah,w,k (3.6)

In practice, we find it beneficial to differentiably threshold the attention map Athresh before
computing its size, to eliminate the effect of background noise. We do this by taking a soft
threshold at the midpoint of the per-channel minimum and maximum values (see Appendix
for details). As with position, one can guide to an absolute size (e.g. half the canvas) or a
relative one (e.g. 10% larger).

Object shape. For even more granular control than position and size, we can represent
the object’s exact shape directly through the thresholded attention map itself:

shape(k) = Athresh
k (3.7)

This shape can then be guided to match a specified binary mask (either provided by a
user or extracted from the attention from another image) with ∥target shape− shape (k) ∥1.
Note that we can apply any arbitrary transformation (scale, rotation, translation) to this
shape before using it as a guidance target, which allows us to manipulate objects while
maintaining their silhouette.
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‘‘distant shot of the tokyo tower with a massive sun in the sky’’

‘‘a photo of a fluffy cat sitting on a museum bench looking at an oil painting of cheese’’

‘‘a photo of a raccoon in a barrel going down a waterfall’’

Original Move up Move down Move left Move right Shrink Enlarge

Figure 3.3: Moving and resizing objects. By only changing the properties of one
object (as in Eqn. 3.9), we can move or resize that object without modifying the rest of
the image. In these examples, we modify “massive sun”, “oil painting of cheese”, and
“raccoon in a barrel”, respectively.

Object appearance. Considering thresholded attention a rough proxy for object extent,
and spatial activation maps as representing local appearance (since they ultimately must be
decoded into an unnoised RGB image), we can reach a notion of object-level appearance by
combining the two:

appearance(k) =

∑

h,w shape(k)⊙Ψ
∑

h,w shape(k)
(3.8)

3.4 Composing self-guidance properties

The small set of properties introduced in Section 3.3 can be composed to perform a wide
range of image manipulations, including many that are intractable through text. We showcase
this collection of manipulations and, when possible, compare to prior work that accomplishes
similar effects. All experiments were performed on Imagen [151], producing 1024 × 1024
samples. For more samples and details on the implementation of self-guidance, please see the
Appendix.
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Adjusting specific properties. By guiding one property to change and all others to keep
their original values, we can modify single objects in isolation (Fig. 3.3b-3.3e). For a caption
C = y with words at indices {ci}, in which O = {oj} ⊆ C are objects, we can move an object
ok at time t with:

g = w0

Fix all other object shapes
︷ ︸︸ ︷

1

|O| − 1

∑

o̸=ok∈O

1

|A|

|A|
∑

i=0

∥shapei,t,orig(o)− shapei,t(o)∥1

+ w1

Fix all appearances
︷ ︸︸ ︷

1

|O|

∑

o∈O

∥appearancet,orig(o)− appearancet(o)∥1

+ w2

Guide ok’s shape to translated original shape
︷ ︸︸ ︷

1

|A|

|A|
∑

i=0

∥T
(

shapei,t,orig(ok)
)

− shapei,t(ok)∥1

(3.9)

Where shapeorig and shape are extracted from the generation of the initial and edited image,
respectively. Critically, T lets us define whatever transformation of the Hi ×Wi spatial
attention map we want. To move an object, T translates the attention mask the desired
amount. We can also resize objects (Fig. 3.3f-3.3g) with Eqn. 3.9 by changing T to up- or
down-sample shape matrices.

Constraining per-object layout but not appearance finds new “styles” for the same scene
(Fig. 3.4):

g = w0

Fix all object shapes
︷ ︸︸ ︷

1

|O|

∑

o∈O

1

|A|

|A|
∑

i=0

∥shapei,t,orig(o)− shapei,t(o)∥1

(3.10)

We can alternatively choose to guide all words, not just nouns or objects, changing summands
to
∑

c ̸=ok∈C instead of
∑

c ̸=ok∈O. See Appendix for further discussion.

Composition between images. We can compose properties across multiple images into a
cohesive sample, e.g. the layout of an image A with the appearance of objects in another
image B (Fig. 3.5):

g = w0

Copy object shapes from A
︷ ︸︸ ︷

1

|O|

∑

o∈O

1

|A|

|A|
∑

i=0

∥shapei,t,A(o)− shapei,t(o)∥1

+ w1

Copy object appearance from B
︷ ︸︸ ︷

1

|O|

∑

o∈O

∥appearancet,B(o)− appearancet(o)∥1

(3.11)
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‘‘a photo of a parrot riding a horse down a city street’’

‘‘a photo of a bear wearing a suit eating his birthday cake out of the fridge in a dark kitchen’’

Original New appearances ControlNet [202] PtP [52]

Figure 3.4: Sampling new appearances. By guiding object shapes (Eqn. 3.7) towards
reconstruction of a given image’s layout (left), we can sample new appearances for a given
scene (right). We compare to ControlNet v1.1-Depth [202] and Prompt-to-Prompt [52], which
accomplish a similar objective.

We can also borrow only appearances, dropping the first term to sample new arrangements
for the same objects, as in the last two columns of Figure 3.5.

Highlighting the compositionality of self-guidance terms, we can further inherit the
appearance and/or shape of objects from several images and combine them into one (Fig. 3.6).
Say we have J images, where we are interested in keeping a single object okj

from each one.
We can collage these objects “in-place” – i.e. maintaining their shape, size, position, and
appearance – straightforwardly:

g = w0

Copy each object’s shape, position, and size
︷ ︸︸ ︷

1

J

∑

j

1

|A|

|A|
∑

i=0

∥shapei,t,j(okj
)− shapei,t(ok)∥1

+ w1

Copy each object’s appearance
︷ ︸︸ ︷

1

J

∑

j

∥appearancet,j(okj
)− appearancet(ok)∥1

(3.12)

We can also take only the appearances of the objects from these images and copy the layout
from another image, useful if object positions in the J images are not mutually compatible
(Fig. 3.6f).

Editing with real images. Our approach is not limited to only images generated by a
model, whose internals we have access to by definition. By running T noised versions of a
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← Layout →

←
A

p
p

ea
ra

n
ce
→

“a photo of a suitcase, a bowling ball, and a phone washed up on a beach after a shipwreck”

No layout conditioning

Figure 3.5: Mix-and-match. By guiding samples to take object shapes from one image
and appearance from another (Eqn. 3.11), we can rearrange images into layouts from other
scenes. Input images are along the diagonal. We can also sample new layouts of a scene by
only guiding appearance (right).

(captioned) existing image through a denoiser – one for each forward process timestep – we
extract a set of intermediates that can be treated as if it came from a reverse sampling process
(see Appendix for more details). In Fig. 3.8, we show that, by guiding shape and appearance
for all tokens, we generate faithful reconstructions of real images. More importantly, we
can manipulate these real images just as we can generated ones, successfully controlling
properties such as appearance, position, or size. We can also transfer the appearance of an
object of interest into new contexts (Fig. 3.7), from only one source image, and without any
fine-tuning:

g = w0

Copy object appearance
︷ ︸︸ ︷

∥appearancet,orig(okorig
)− appearancet (ok) ∥1 (3.13)

Attributes and interactions. So far we have focused only on the manipulation of objects,
but we can apply our method to any concept in the image, as long as it appears in the
caption. We demonstrate manipulation of verbs and adjectives in Fig. 3.9, and show an
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“a photo of a picnic blanket, a fruit tree, and a car by the lake”

(a) Take blanket (b) Take tree (c) Take car (d) Result (e) + Tgt layout (f) Final
“a top-down photo of a tea kettle, a bowl of fruit, and a cup of matcha”

(a) Take matcha (b) Take kettle (c) Take fruit (d) Result (e) + Tgt layout (f) Final
“a photo of a dog wearing a knit sweater and a baseball cap drinking a cocktail”

(a) sweater (b) cocktail (c) Take cap (d) Result* (e) + Tgt layout (f) Final

Figure 3.6: Compositional generation. A new scene (d) can be created by collaging
objects from multiple images (Eqn. 3.12). Alternatively – e.g. if objects cannot be combined
at their original locations due to incompatibilities in these images’ layouts (*as in the bottom
row) – we can borrow only their appearance, and specify layout with a new image (e) to
produce a composition (f) (Eqn. 3.19).

example where certain self-guidance constraints can help in enforcing attribute binding in
the generation process.

3.5 Discussion

We introduce a method for guiding the diffusion sampling process to satisfy properties derived
from the attention maps and activations within the denoising model itself. While we propose
a number of such properties, many more certainly exist, as do alternative formulations of
those presented in this paper. Among the proposed collection of properties, a few limitations
stand out.

The reliance on cross-attention maps imposes restrictions by construction, precluding
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Figure 3.7: Appearance transfer from real images. By guiding the appearance of a
generated object to match that of one in a real image (outlined) as in Eqn. 3.13, we can
create scenes depicting an object from real life, similar to DreamBooth [147], but without
any fine-tuning and only using one image.

‘‘a photo of a hot dog, fries, and a soda on a solid background’’

Real image Reconstruct Swap w. fries Width ↓ Width ↓, height ↑ Restyle

‘‘a photo of an eclair and a shot of espresso’’

Real image Reconstruct Move Width ↓ Width, height ↑ Restyle

Figure 3.8: Real image editing. Our method enables the spatial manipulation of objects
(shown in Figure 3.3 for generated images) for real images as well.
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Move laughing to the right

“a cat and a monkey laughing on a road”

Original Modified

Change messy location

“a photo of a messy room”

At ⟨0.3, 0.6⟩ At ⟨0.8, 0.8⟩

red→jacket, yellow→shoes

“green hat, blue book,
yellow shoes, red jacket”

Original Fixed

Figure 3.9: Manipulating non-objects. The properties of any word in the input prompt
can be manipulated, not only nouns. Here, we show examples of relocating adjectives and
verbs. The last example shows a case in which additional self-guidance can correct improper
attribute binding.

Appearance features leak layout

“a photo of a squirrel trying
to catch a lime mid-air”

Unguided “lime” guided

Multi-token layout leaks appearance

“a picture of a cake”

Real image Layout guided

Interacting objects entangled

“a potato on a couch with popcorn
watching football on TV”

Original Move potato →

Figure 3.10: Limitations. Setting high guidance weights for appearance terms tends to
introduce unwanted leakage of object position. Similarly, while heavily guiding the shape
of one word simply matches that object’s layout as expected, high guidance on the shapes
of all tokens results in a leak of appearance information. Finally, in some cases, objects are
entangled in attention space, making it difficult to control them independently.
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control over any object that is not described in the conditioning text prompt and hinder-
ing fully disentangled control between interacting objects due to correlations in attention
maps (Fig. 3.10e-3.10f). Selectively applying attention guidance at certain layers or timesteps
may result in more effective disentanglement.

Our experiments also show that appearance features often contain undesirable information
about spatial layout (Fig. 3.10a-3.10b), perhaps since the model has access to positional
information in its architecture. The reverse is also sometimes true: guiding the shape of
multiple tokens occasionally betrays the appearance of an object (Fig. 3.10c-3.10d), implying
that hidden high-frequency patterns arising from interaction between attention channels
may be used to encode appearance. These findings suggest that our method could serve
as a window into the inner workings of diffusion models and provide valuable experimental
evidence to inform future research.

3.6 Appendix

3.6.1 Implementation details

We apply our self-guidance term following best practices for classifier-free guidance on Imagen
[151]. Specifically, where N is the number of DDPM steps, we take the first 3N

16
steps with

self-guidance and the last N
32

without. The remaining 25N
32

steps are alternated between using

“a photo of a carrot and an onion in a hot tub outdoors”

“a photo of an oak tree and a pineapple outside an arctic igloo”

“a photo of an owl and a pig running at the racetrack”

Original (b) Edited

Figure 3.11: Moving objects. Non-cherry-picked results for moving objects in scenes using
Eqn. 3.9. We move onion down and to the right, pineapple to the right, and owl up and
pig down, respectively. All scenes use weights w0 = 1.5, w1 = 0.25, and w2 = 2.
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self-guidance and not using it. We use N = 1024 steps. Our method works with 256 and 512
steps as well, though self-guidance weights occasionally require adjustment. We set v = 7500
in Eqn. 3.4 as an overall scale for gradients of the functions g defined below — we find that
the magnitude of per-pixel gradients is quite small (often in the range of 10−7 to 10−6, so
such a high weight is needed to induce changes.

We apply centroid, size, and shape terms on all cross-attention interactions in the
model we use. In total, there are 36 of these, across the encoder, bottleneck, and decoder, at
8× 8, 16× 16, and 32× 32 resolutions. We apply the appearance term using the activations
of the penultimate layer in the decoder (two layers before the prediction readout) and the
final cross-attention operation.We experimented with features from other parts of the U-Net
denoiser, namely early in the encoder before positional information can propagate through
the image (to prevent appearance-layout entanglement), but found these to work significantly
worse. To avoid degenerate solutions, we apply a stop-gradient to the attention in the
appearance term so only information about activations is back-propagated. We take the
mean spatially of all shape terms and across activation dimensions for all appearance terms,
which we omit in all equations for conciseness.

Attention mask binarization. In practice, it is beneficial to differentiably binarize the
attention map (with sharpness controlled by s) before computing its size or utilizing its shape,
to eliminate the effect of background noise (this is empirically less important when guiding
centroids, so we do not binarize in that case). We do this by taking a soft threshold at the
midpoint of the per-channel minimum and maximum values. More specifically, we apply a
shifted sigmoid on the attention normalized to have minimum 0 and maximum 1, followed by
another such normalization to ensure the high value is 1 and the low 0 after applying the
sigmoid. We use s = 10 and redefine Eqn. 3.6.

normalize(X) =
X−minh,w (X)

maxh,w (X)−minh,w (X)
(3.14)

Athresh = normalize (sigmoid (s · (normalize(A)− 0.5))) (3.15)

size (k) =
1

HW

∑

h,w

Athresh
h,w,k (3.16)

3.6.2 Using self-guidance

Maximizing consistency. In general, we find that sharing the same sequence of noise in
the DDPM process between an image and its edited version is not necessary to maintain high
levels of consistency, but can help if extreme precision is desired. We find that maintaining
object silhouettes under transformations such as resizing and repositioning is more effective if
applying a transformation T to the original shape, rather than expressing the same change
through centroid and size.
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“a photo of a kangaroo and a punching bag at the gym”

“a photo of a chicken walking across the street with an Italian sports car waiting for it”

“a photo of a boombox on a camel near a pond”

Original (b) Edited

Figure 3.12: Resizing objects. Non-cherry-picked results for resizing objects in scenes
using Eqn. 3.9, with T specified to up- or down-sample attention maps. We reduce the
punching bag’s height 0.5× and enlarge chicken 2.5× and boombox 2×. All scenes use
w0 = 2, w1 = 0.25, and w2 = 3.

Guiding “background” words. To keep all objects of the scene fixed but one (Fig. 3.3),
one can either guide all other tokens in the prompt (including “a photo of” and other abstract
terms) to keep their shape, or only select the other salient objects and hold those fixed. In
general, since abstract words are often used for message passing and have attention patterns
that are correlated with the layout of the scene, we prefer not to guide their layouts to
maximize compositionality.

Mitigating appearance-layout entanglement. When words or concepts span multiple
tokens, we can mean-pooling attention maps across these tokens before processing them,
though do not find this to improve results. We also find that corrupting target shapes with
Gaussian noise helps mitigate this effect, providing some evidence for this hypothesis.

Moving objects. We use w0 ∈ [0.5, 2], w1 ∈ [0.03, 0.3], w2 ∈ [0.5, 5] in Eqn. 3.9. Alterna-
tively, we can express ok’s new location through its centroid, adding a term to keep size
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fixed:

g = w0

Fix all other object shapes
︷ ︸︸ ︷

1

|O| − 1

∑

o̸=ok

1

|A|

|A|
∑

i=0

∥shapei,t,orig(o)− shapei,t(o)∥1

+ w1

Fix all object appearances
︷ ︸︸ ︷

1

|O|

∑

o∈O

∥appearancet,orig(o)− appearancet(o)∥1

+ w2

Fix ok’s size
︷ ︸︸ ︷

1

|A|

|A|
∑

i=0

∥sizei,t,orig(ok)− sizei,t(ok)∥1

+ w3
1

|A|

|A|
∑

i=0

∥target centroid− centroidi,t(ok)∥1

︸ ︷︷ ︸

Change ok’s position

(3.17)

Where target centroid can be computed as a shfited version of the timestep-and-attention-
specific centroidorig if desired, or selected to be an absolute value on the canvas (repeated
across all timesteps). We generally use weights w0 ∈ [0.5, 2], w1 ∈ [0.03, 0.3], w2 ∈ [0.5, 2], w3 ∈
[1, 3].

Resizing objects. We can follow Eqn. 3.9 to resize objects as well, by setting T to upsample
or downsample the original mask. We can similarly use Eqn. 3.17, omitting the final term
and setting the target size to a desired value, either computed as a function of sizeorig(ok)
or provided as an absolute proportion of pixels on the canvas that the object should cover.
We use the same weight range for all weights except we set w2 ∈ [1, 3], w3 = 0 for Eqn. 3.17.

Sampling new appearances. We set w0 ∈ [0.1, 1] in Eqn. 3.10. Generally, higher values
lead to extremely precise layout preservation at the expense of diversity in appearance.

Sampling new layouts. Just as we can find new appearances for a scene of a given layout,
we can perform the opposite operation, finding new layouts for scenes where objects have a
given appearance:

g = w0

Fix all appearances
︷ ︸︸ ︷

1

|O|

∑

o∈O

∥appearancet,orig(o)− appearancet(o)∥1
(3.18)

We almost always use w0 ∈ [0.05, 0.25].
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“a photo of a koala picking flowers next to a mansion”

“a photo of a capybara wearing a robe sitting by the fireplace”

“a photo of a bird drinking coffee at a 1950s style diner”

Original (b) Edited

Figure 3.13: Creating new appearances for scenes. Non-cherry-picked results sampling
different “styles” of appearances given the same layout, using Eqn. 3.10. We use w0 = 0.7,
0.3, and 0.3 respectively for each result, to preserve greater structure in the background of
the first picture.

Collaging objects in-place. Eqn. 3.12 can be easily generalized to more than one object
per image (adding another sum across all objects) or to the case where prompts vary
between images (mapping from kj to the corresponding indices in the new image). We set
w0 ∈ [0.5, 1], w1 ∈ [0.05, 0.3].

Collaging objects with a new layout. As shown in Fig. 3.6f, we can also collage objects
into a new layout specified by a target image J + 1, in addition to the J images specifying
object appearance:

g = w0

Copy all object shapes
︷ ︸︸ ︷

1

|A|

|A|
∑

i=0

∥shapei,t,J+1(okJ+1
)− shapei,t(ok)∥1

+ w1

Copy each object’s appearance
︷ ︸︸ ︷

1

J

∑

j

∥appearancet,j(okj
)− appearancet(ok)∥1

(3.19)

As in Eqn. 3.12, we set w0 ∈ [0.5, 1], w1 ∈ [0.05, 0.3].

Transferring object appearances to new layouts. Nothing requires the indices (or in
fact, the objects those indices refer to) to be the same in the image being generated and the
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“a photo of a rabbit with a birthday balloon and a party hat”

“a photo of cleats, a bright soccer ball, and a cone”

“a calculator, a toy car, and a pillow on a rug”

Original (b) Edited

Figure 3.14: Creating new layouts for scenes. Non-cherry-picked results sampling new
layouts for the same scenes, using Eqn. 3.18. We use w0 = 0.07, 0.07, and 0.2 respectively.

original image being used as a source, as long as there is a mapping specified between the
indices in the old and new images which should correspond. Call this mapping m. We can
then take the appearance of an object ok in a source image and transfer it to an image with
any new prompt as follows, as specified in Eqn. 3.13 (with typical weights w0 ∈ [0.01, 0.1]):

g = w0

Copy object appearance
︷ ︸︸ ︷

∥appearancet,orig(ok)− appearancet (m(ok)) ∥1 (3.20)

Merging layout and appearance. We use w0 ∈ [1, 2] and w1 ∈ [0.1, 0.3] in Eqn. 3.11.

Editing with real images. Importantly, our method is not limited to editing generated
images to whose internals it has access by definition. We find that we can also meaningfully
guide generation using the attention and activations extracted from a set of forward-process
denoisings of a real image (given a caption) to “approximate” the reverse process, despite any
mismatch in distributions one might imagine. Concretely, we generate T corrupted versions
of a real image x, {αtx + σtϵt}

T
1 , where ϵt ∼ N (0, 1). We then extract the attention At

and activations Ψt from the denoising network at each of these timesteps in parallel and
concatenate them into a length-T sequence. We treat this sequence identically to a sequence
of T internals given by subsequent sampling steps, and can thus transfer the appearance of
objects from real images, output images that look like real images with moved or resized
objects, and so on.

In Fig. 3.7, the prompts we use to transfer appearance are “A photo of a Chow Chow...”
and “A DSLR photo of a teapot...”. While our method works on less specific descriptions as
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“a DSLR photo of a backpack at the grand canyon”

“a DSLR photo of a backpack wet in the water”

“a photo of a pair of sunglasses being worn by a bear”

“a photo of a pair of sunglasses on a pile of snow”

Original (b) Object in new contexts

Figure 3.15: Appearance transfer from real images. Non-cherry picked results sampling
new images with a given object’s appearance specified by a real images, as in Eqn. 3.13. We
use w0 = 0.15.

well, it is not as reliable when object appearance is more out-of-distribution. For context,
we show unguided samples under the prompts from Fig. 3.7 in Fig. 3.16, which still deviate
significantly from the desired appearance, showing the efficacy of our approach. A weakness
of our simple approach is that it has no constraints on the shape of the generated objects,
which we leave to future work.

Weight selection heuristics. We find weights that work well to remain more or less
consistent across different images given an edit, but ideal weights do vary somewhat (within
predictable ranges) between different combinations of terms. Our heuristics for weight
selection per term are: the more weights there are, the higher per-term weights can be
without causing artifacts (and indeed, need to be, to provide ample contribution to the final
result); appearance terms should have weights 1 or 2 orders of magnitude lower than layout
terms; layout summary statistics (centroid and size) should have slightly lower weights
than terms on the per-pixel shape; total weight of terms should not add up to more than
∼ 5 to avoid artifacts.
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“a photo of a chow chow wearing a superman outfit”

“a dslr photo of a teapot floating in the sea”

Original Ours (b) Random samples without self-guidance

Figure 3.16: Ablating appearance transfer from real images. To verify the efficacy of
our approach, we compare our results from Fig. 3.7 in the paper to random samples from
the same prompt without apperance transfer. We can see that appearance of objects varies
significantly without self-guidance.

3.6.3 Additional results

We show further non-cherry-picked results for the edits we show in the main paper. Our
general protocol consists of selecting an interesting prompt manually, verifying that our model
creates compelling samples aligning with this prompt without self-guidance, beginning with
the typical weights we use for an edit, and trying around 3-5 other weight configurations to
find the one that works best for the prompt – in most cases, this is the starting set of weights.
Then, we use the first 8 images we generate, without further filtering. We generate all results
with different seeds to showcase the strength of guidance even without shared DDPM noise.
We show more results for moving (Fig. 3.11) and resizing (Fig. 3.12) objects, sampling new
appearances for given layouts (Fig. 3.13) as well as new layouts for a given set of objects
(Fig. 3.14), and transferring the appearance of real objects into new contexts (Fig. 3.15). We
also include an ablation on hyperparameter values (Fig. 3.17) as well as preliminary results
of an implementation of self-guidance on an open-source diffusion model in Fig. 3.18.
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Original: “a photo of a giant macaron and a croissant in the seine with the eiffel tower visible”

Edit: enlarge macaron
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Original: “a photo of a meatball and a donut falling from the clouds onto a neighborhood”

Edit: move meatball
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Figure 3.17: Hyperparameter sweeps. We show results for two edits (moving and resizing
objects) using Eqn. 4 in the Supp. Mat., for different values of weights on the three edit
terms, holding the other terms to the value in the middle column. Please zoom in to view
in more detail. Reasonable values in the middle columns (within the expected range) lead
to overall successful image manipulation. Very large hyperparameter values cause visual
artifacts to appear (by moving sampling off-manifold) while still tending to perform the edit
successfully, while extremely small values often fail to conduct the edit, inducing artifacts
resulting from a “half-executed” manipulation.
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“a watermelon and a pitcher of beer on a picnic table”

watermelon centroid (0.3, 0.7) watermelon centroid (0.7, 0.7) volleyball centroid (0.85, 0.15) volleyball centroid (0.2, 0.15)

“a sea otter playing volleyball at the beach”

“a tropical frog wearing a suit walking across the street in san francisco”

frog centroid (0.3, 0.5) frog centroid (0.65, 0.5)

“a fancy fountain pen, a globe, and whiskey on a desk”

globe centroid (0.35, 0.35) globe centroid (0.9, 0.9)

“a hot air balloon and a flock of geese flying through the sky on top of new york”

balloon size 0.05 balloon size 0.2

“a horse chasing a tortoiseshell cat in seoul”

cat size 0.03 cat size 0.25

Figure 3.18: Self-guidance on Stable Diffusion XL. To highlight the generality of our
approach, we demonstrate preliminary results for controllable generation on a popular latent-
space text-to-image diffusion model, using 100 DDPM steps (applying self-guidance from
step 10 to step 90). We get best results only guiding attention in the second decoder block of
the denoiser model.
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Chapter 4

An Architecture for Disentangled 3D
Scenes

Inspired by the richness of the distribution captured by large text-to-image models (made
apparent in the previous chapter), we ask whether these models also capture information
about our world in three dimensions. We introduce a method to generate 3D scenes that are
disentangled into their component objects. This disentanglement is unsupervised, relying
only on the knowledge of the pretrained model. Our key insight is that objects can be
discovered by finding parts of a 3D scene that, when rearranged spatially, still produce
valid configurations of the same scene. Concretely, our method jointly optimizes multiple
NeRFs from scratch—each representing its own object—along with a set of layouts that
composite these objects into scenes. We then encourage these composited scenes to be
in-distribution according to the image generator. We show that despite its simplicity, our
approach successfully generates 3D scenes decomposed into individual objects, enabling new
capabilities in text-to-3D content creation.

4.1 Introduction

A remarkable ability of many seeing organisms is object individuation [128], the ability to
discern separate objects from light projected onto the retina [183]. Indeed, from a very young
age, humans and other creatures are able to organize the physical world they perceive into
the three-dimensional entities that comprise it [167, 184, 58]. The analogous task of object
discovery has captured the attention of the artificial intelligence community from its very
inception [140, 118], since agents that can autonomously parse 3D scenes into their component
objects are better able to navigate and interact with their surroundings.

Fifty years later, generative models of images are advancing at a frenzied pace [114, 136,
152, 197, 22]. While these models can generate high-quality samples, their internal workings
are hard to interpret, and they do not explicitly represent the distinct 3D entities that make
up the images they create. Nevertheless, the priors learned by these models have proven
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incredibly useful across various tasks involving 3D reasoning [50, 78, 95, 99, 185], suggesting
that they may indeed be capable of decomposing generated content into the underlying 3D
objects depicted.

One particularly exciting application of these text-to-image networks is 3D generation,
leveraging the rich distribution learned by a diffusion model to optimize a 3D representation,
e.g. a neural radiance field (NeRF, Mildenhall et al., 2020), such that rendered views resemble
samples from the prior. This technique allows for text-to-3D generation without any 3D
supervision [130, 179], but most results focus on simple prompts depicting just one or two
isolated objects [93, 182].

Our method builds on this work to generate complex scenes that are automatically
disentangled into the objects they contain. To do so, we instantiate and render multiple
NeRFs for a given scene instead of just one, encouraging the model to use each NeRF to
represent a separate 3D entity. At the crux of our approach is an intuitive definition of
objects as parts of a scene that can be manipulated independently of others while keeping
the scene “well-formed” [14]. We implement this by learning a set of different layouts—3D
affine transformations of every NeRF—which must yield composited scenes that render into
in-distribution 2D images given a text prompt [130].

We find that this lightweight inductive bias, which we term layout learning, results in
surprisingly effective object disentanglement in generated 3D scenes (Figure 4.1), enabling
object-level scene manipulation in the text-to-3D pipeline. We demonstrate the utility
of layout learning on several tasks, such as building a scene around a 3D asset of interest,
sampling different plausible arrangements for a given set of assets, and even parsing a provided
NeRF into the objects it contains, all without any supervision beyond just a text prompt.
We further quantitatively verify that, despite requiring no auxiliary models or per-example
human annotation, the object-level decomposition that emerges through layout learning is
meaningful and outperforms baselines.
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(a) Generated scene

“a chicken hunting for easter eggs”

“a chef rat standing on a tiny stool and cooking a stew”

“a pigeon having some coffee and a bagel, reading the newspaper”

“two dogs in matching outfits paddling a kayak”

“a sloth sitting on a beanbag with popcorn and a remote control”

“a bald eagle having a burger and a drink at the park”

“a bear wearing a flannel camping and reading a book by the fire”

(b) Disentangled objects

Figure 4.1: Layout learning generates disentangled 3D scenes given a text prompt and
a pretrained text-to-image diffusion model. We learn an entire 3D scene (left, shown from
two views along with surface normals and a textureless render) that is composed of multiple
NeRFs (right) representing different objects and arranged according to a learned layout.
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Figure 4.2: Method. Layout learning works by optimizing K NeRFs fk and learning
N different layouts Ln for them, each consisting of per-NeRF affine transforms Tk. Every
iteration, a random layout is sampled and used to transform all NeRFs into a shared coordinate
space. The resultant volume is rendered and optimized with score distillation sampling [130]
as well as per-NeRF regularizations to prevent degenerate decompositions and geometries [7].
This simple structure causes object disentanglement to emerge in generated 3D scenes.

Our key contributions are as follows:

• We introduce a simple, tractable definition of objects as portions of a scene that can be
manipulated independently of each other and still produce valid scenes.

• We incorporate this notion into the architecture of a neural network, enabling the
compositional generation of 3D scenes by optimizing a set of NeRFs as well as a set of
layouts for these NeRFs.

• We apply layout learning to a range of novel 3D scene generation and editing tasks,
demonstrating its ability to disentangle complex data despite requiring no object
labels, bounding boxes, fine-tuning, external models, or any other form of additional
supervision.

4.2 Background

4.2.1 Neural 3D representations

To output three-dimensional scenes, we must use an architecture capable of modeling 3D
data, such as a neural radiance field (NeRF, Mildenhall et al., 2020). We build on MLP-based
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NeRFs [8], that represent a volume using an MLP f that maps from a point in 3D space µ

to a density τ and albedo ρ:
(τ,ρ) = f(µ; θ).

We can differentiably render this volume by casting a ray r into the scene, and then alpha-
compositing the densities and colors at sampled points along the ray to produce a color
and accumulated alpha value. For 3D reconstruction, we would optimize the colors for the
rendered rays to match a known pixel value at an observed image and camera pose, but for
3D generation we sample a random camera pose, render the corresponding rays, and score
the resulting image using a generative model.

4.2.2 Text-to-3D using 2D diffusion models

Our work builds on text-to-3D generation using 2D diffusion priors [130]. These methods
turn a diffusion model into a loss function that can be used to optimize the parameters of
a 3D representation. Given an initially random set of parameters θ, at each iteration we
randomly sample a camera c and render the 3D model to get an image x = g(θ, c). We can
then score the quality of this rendered image given some conditioning text y by evaluating the
score function of a noised version of the image zt = αtx+ σtϵ using the pretrained diffusion
model ϵ̂(zt; y, t). We update the parameters of the 3D representation using score distillation:

∇θLSDS(θ) = Et,ϵ,c

[

w(t)(ϵ̂(zt; y, t)− ϵ)
∂x

∂θ

]

(4.1)

where w(t) is a noise-level dependent weighting.
SDS and related methods enable the use of rich 2D priors obtained from large text-image

datasets to inform the structure of 3D representations. However, they often require careful
tuning of initialization and hyperparameters to yield high quality 3D models, and past work
has optimized these towards object generation. The NeRF is initialized with a Gaussian
blob of density at the origin, biasing the optimization process to favor an object at the
center instead of placing density in a skybox-like environment in the periphery of the 3D
representation. Additionally, bounding spheres are used to prevent creation of density in the
background. The resulting 3D models can produce high-quality individual objects, but often
fail to generate interesting scenes, and the resulting 3D models are a single representation
that cannot be easily split apart into constituent entities.

4.3 Method

To bridge the gap from monolithic 3D representations to scenes with multiple objects, we
introduce a more expressive 3D representation. Here, we learn multiple NeRFs along with a
set of layouts, i.e. valid ways to arrange these NeRFs in 3D space. We transform the NeRFs
according to these layouts and composite them, training them to form high-quality scenes as
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evaluated by the SDS loss with a text-to-image prior. This structure causes each individual
NeRF to represent a different object while ensuring that the composite NeRF represents a
high-quality scene. See Figure 4.2 for an overview of our approach.

4.3.1 Compositing multiple volumes

We begin by considering perhaps the most näıve approach to generating 3D scenes disentangled
into separate entities. We simply declare K NeRFs {fk}—each one intended to house its
own object—and jointly accumulate densities from all NeRFs along a ray, proceeding with
training as normal by rendering the composite volume. This can be seen as an analogy to
set-latent representations [98, 65, 66, 64], which have been widely explored in other contexts.
In this case, rather than arriving at the final albedo ρ and density τ of a point µ by querying
one 3D representation, we query K such representations, obtaining a set {ρk, τk}

K
k=1. The

final density at µ is then τ ′ =
∑
τk and the final albedo is the density-weighted average

ρ′ =
∑ τk

τ ′
ρk.

This formulation provides several potential benefits. First, it may be easier to optimize
this representation to generate a larger set of objects, since there are K distinct 3D Gaussian
density spheres to deform at initialization, not just one. Second, many representations
implicitly contain a local smoothness bias [172] which is helpful for generating objects but not
spatially discontinuous scenes. Thus, our representation might be inclined toward allocating
each representation toward a spatially smooth entity, i.e. an object.

However, just as unregularized sets of latents are often highly uninterpretable, simply
spawning K instances of a NeRF does not produce meaningful decompositions. In practice,
we find each NeRF often represents a random point-cloud-like subset of 3D space (Fig. 4.3).

To produce scenes with disentangled objects, we need a method to encourage each 3D
instance to represent a coherent object, not just a different part of 3D space.

4.3.2 Layout learning

We are inspired by other unsupervised definitions of objects that operate by imposing a simple
inductive bias or regularization in the structure of a model’s latent space, e.g. query-axis
softmax attention [98], spatial ellipsoid feature maps [33], and diagonal Hessian matrices
[127]. In particular, [116] learn a 3D-aware GAN that composites multiple NeRF volumes in
the forward pass, where the latent code contains a random affine transform for each NeRF’s
output. Through this structure, each NeRF learns to associate itself with a different object,
facilitating the kind of disentanglement we are after. However, their approach relies on
pre-specified independent distributions of each object’s location, pose, and size, preventing
scaling beyond narrow datasets of images with one or two objects and minimal variation in
layout.

In our setting, not only does the desired output comprise numerous open-vocabulary,
arbitrary objects, but these objects must be arranged in a particular way for the resultant
scene to be valid or “well-formed” [15]. Why not simply learn this arrangement?
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To do this, we equip each individual NeRF fk with its own learnable affine transform Tk,
and denote the set of transforms across all volumes a layout L ≡ {Tk}

K
k=1. Each Tk has a

rotation Rk ∈ R
3×3 (in practice expressed via a quaternion q ∈ R

4 for ease of optimization),
translation tk ∈ R

3, and scale sk ∈ R. We apply this affine transform to the camera-to-world
rays r before sampling the points used to query fk. This implementation is simple, makes
no assumptions about the underlying form of f , and updates parameters with standard
backpropagation, as sampling and embedding points along the ray is fully differentiable [92].
Concretely, a ray r with origin o and direction d is transformed into an instance-specific ray
rk via the following transformations:

ok = sk (Rko− tk) (4.2)

dk = skRkd (4.3)

rk(t) = ok + tdk (4.4)

Though we input a different H ×W grid of rays to each fk, we composite their outputs
as if they all sit in the same coordinate space—for example, the final density at µ = r(t) is
the sum of densities output by every fk at µk = rk(t).

Compared to the näıve formulation that instantiates K models with identical initial
densities, learning the size, orientation, and position of each model makes it easier to place
density in different parts of 3D space. In addition, the inherent stochasticity of optimization
may further dissuade degenerate solutions.

While introducing layout learning significantly increases the quality of object disentangle-
ment (Tbl. 4.3b), the model is still able to adjoin and utilize individual NeRFs in undesirable
ways. For example, it can still place object parts next to each other in the same way as K
NeRFs without layout learning.

Learning multiple layouts. We return to our statement that objects must be “arranged
in a particular way” to form scenes that render to in-distribution images. While we already
enable this with layout learning in its current form, we are not taking advantage of one
key fact: there are many “particular ways” to arrange a set of objects, each of which gives
an equally valid composition. Rather than only learning one layout, we instead learn a
distribution over layouts P (L) or a set of N randomly initialized layouts {Ln}

N
n=1. We opt

for the latter, and sample one of the N layouts from the set at each training step to yield
transformed rays rk.

With this in place, we have arrived at our final definition of objectness (Figure 4.2):
objects are parts of a scene that can be arranged in different ways to form valid
compositions. We have “parts” by incorporating multiple volumes, and “arranging in
different ways” through multiple-layout learning. This simple approach is easy to implement
(Fig. 4.9), adds very few parameters (8NK to be exact), requires no fine-tuning or manual
annotation, and is agnostic to choices of text-to-image and 3D model. In Section 4.4, we
verify that layout learning enables the generation and disentanglement of complex 3D scenes.

Regularization. We build on Mip-NeRF 360 [7] as our 3D backbone, inheriting their
orientation, distortion, and accumulation losses to improve visual quality of renderings and
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minimize artifacts. However, rather than computing these losses on the final composited
scene, we apply them on a per-NeRF basis. Importantly, we add a loss penalizing degenerate
empty NeRFs by regularizing the soft-binarized version of each NeRF’s accumulated density,
αbin, to occupy at least 10% of the canvas:

Lempty = max (0.1− ᾱbin, 0) (4.5)

We initialize parameters s ∼ N (1, 0.3), t(i) ∼ N (0, 0.3), and q(i) ∼ N (µi, 0.1) where µi is 1
for the last element and 0 for all others. We use a 10× higher learning rate to train layout
parameters. See Appendix 4.7.1 for more details.

4.4 Experiments

We examine the ability of layout learning to generate and disentangle 3D scenes across a
wide range of text prompts. We first verify our method’s effectiveness through an ablation
study and comparison to baselines, and then demonstrate various applications enabled by
layout learning.

4.4.1 Qualitative evaluation

In Figure 4.1, we demonstrate several examples of our full system with layout learning. In each
scene, we find that the composited 3D generation is high-quality and matches the text prompt,
while the individual NeRFs learn to correspond to objects within the scene. Interestingly,
since our approach does not directly rely on the input prompt, we can disentangle entities
not mentioned in the text, such as a basket filled with easter eggs, a chef’s hat, and a picnic
table.

4.4.2 Quantitative evaluation

Measuring the quality of text-to-3D generation remains an open problem due to a lack of
ground truth data—there is no “true” scene corresponding to a given prompt. Similarly,
there is no true disentanglement for a certain text description. Following [122, 68, 130], we
attempt to capture both of these aspects using scores from a pretrained CLIP model [134, 88].
Specifically, we create a diverse list of 30 prompts, each containing 3 objects, and optimize
a model with K = 3 NeRFs on each prompt. We compute the 3×3 matrix of CLIP scores
(100× cosine similarity) for each NeRF with descriptions “a DSLR photo of [object 1/2/3]”,
finding the optimal NeRF-to-object matching and reporting the average score across all 3
objects.

We also run SDS on the 30× 3 = 90 per-object prompts individually and compute scores,
representing a maximum attainable CLIP score under perfect disentanglement (we equalize
parameter counts across all models for fairness). As a low-water mark, we compute scores
between per-object NeRFs and a random other prompt from the pool of 90.
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The results in Table 4.3b show these CLIP scores, computed both on textured (“Color”)
and textureless, geometry-only (“Geo”) renders. The final variant of layout learning achieves
competitive performance, only 0.1 points away from supervised per-object rendering when
using the largest CLIP model as an oracle, indicating high quality of both object disentangle-
ment and appearance. Please see Appendix 4.7.3 for a complete list of prompts and more
details.

Ablation. We justify the sequence of design decisions presented in Section 4.3 by
evaluating different variants of layout learning, starting from a simple collection of K NeRFs
and building up to our final architecture. The simple setting leads to some non-trivial
separation (Figure 4.3a) but parts of objects are randomly distributed across NeRFs—CLIP
scores are significantly above random, but far below the upper bound. Adding regularization
losses improve scores somewhat, but the biggest gains come from introducing layout learning
and then co-learning N different arrangements, validating our approach.

4.4.3 Applications of layout learning

To highlight the utility of the disentanglement given by layout learning beyond generation, we
apply it to various 3D editing tasks. First, we show further results on object disentanglement
in Figure 4.4, but in a scenario where one NeRF is frozen to contain an object of interest,
and the rest of the scene must be constructed around it. This object’s layout parameters
can also be frozen, for example, if a specific position or size is desired. We examine the
more challenging setting where layout parameters must also be learned, and show results
incorporating a grumpy cat and green motorbike into different contexts. Our model learns
plausible transformations to incorporate provided assets into scenes, while still discovering
the other objects necessary to complete the prompt.

In Figure 4.5, we visualize the different layouts learned in a single training run. The
variation in discovered layouts is significant, indicating that our formulation can find various
meaningful arrangements of objects in a scene. This allows users of our method to explore
different permutations of the same content in the scenes they generate.

Inspired by this, and to test gradient flow into layout parameters, we also examine whether
our method can be used to arrange off-the-shelf, frozen 3D assets into semantically valid
configurations (Figure 4.6). Starting from random positions, sizes, and orientations, layouts
are updated using signal backpropagated from the image model. This learns reasonable
transformations, such as a rubber duck shrinking and moving inside a tub, and a shower
head moving upwards and pointing so its stream is going into the tub.

Finally, we use layout learning to disentangle a pre-existing NeRF containing multiple
entities, without any per-object supervision (Fig. 4.8). We do this by randomly initializing
a new model and training it with a caption describing the target NeRF. We require the
first layout L1 to create a scene that faithfully reconstructs the target NeRF in RGB space,
allowing all other layouts to vary freely. We find that layout learning arrives at reasonable
decompositions of the scenes it is tasked with reconstructing.
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4.5 Related work

Object recognition and discovery. The predominant way to identify the objects present
in a scene is to segment two-dimensional images using extensive manual annotation [82,
90, 178], but relying on human supervision introduces challenges and scales poorly to 3D
data. As an alternative, an extensive line of work on unsupervised object discovery [149, 146,
120, 51, 163, 193, 108] proposes different inductive biases [97] that encourage awareness of
objects in a scene. However, these approaches are largely restricted to either 2D images or
constrained 3D data [195, 153], limiting their applicability to complex 3D scenes. At the same
time, large text-to-image models have been shown to implicitly encode an understanding of
entities in their internals [34], motivating their use for the difficult problem of explicit object
disentanglement.

Compositional 3D generation. There are many benefits to generating 3D scenes
separated into objects beyond just better control. For example, generating objects one
at a time and compositing them manually provides no guarantees about compatibility in
appearance or pose, such as “dogs in matching outfits” in Figure 4.1 or a lion holding the
handlebars of a motorcycle in Figure 4.4. Previous and concurrent work explores this area,
but either requires users to painstakingly annotate 3D bounding boxes and per-object labels
[25, 129] or uses external supervision such as LLMs to propose objects and layouts [191, 203],
significantly slowing down the generation process and hindering quality. We show that this
entire process can be solved without any additional models or labels, simply using the signal
provided by a pretrained image generator.

4.6 Discussion

We present layout learning, a simple method for generating disentangled 3D scenes given
a text prompt. By optimizing multiple NeRFs to form valid scenes across multiple layouts,
we encourage each NeRF to contain its own object. This approach requires no additional
supervision or auxiliary models, yet performs quite well. By generating scenes that are
decomposed into objects, we provide users of text-to-3D systems with more granular, local
control over the complex creations output by a black-box neural network.

Though layout learning is surprisingly effective on a wide variety of text prompts, the
problem of object disentanglement in 3D is inherently ill-posed, and our definition of objects
is simple. As a result, many undesirable solutions exist that satisfy the constraints we pose.

Despite our best efforts, the compositional scenes output by our model do occasionally
suffer from failures (Fig. 4.7) such as over- or under-segmentation and the “Janus problem”
(where objects are depicted so that salient features appear from all views, e.g. an animal
with a face on the back of its head) as well as other undesirable geometries. Further, though
layouts are initialized with high standard deviation and trained with an increased learning
rate, they occasionally converge to near-identical values, minimizing the effectivness of our
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method. In general, we find that failures to disentangle are accompanied by an overall
decrease in visual quality.

4.7 Appendix

4.7.1 Implementation details

We use Mip-NeRF 360 as the 3D backbone [7] and Imagen [152], a 128px pixel-space diffusion
model, for most experiments, rendering at 512px. To composite multiple representations, we
merge the output albedos and densities at each point, taking the final albedo as a weighted
average given by per-NeRF density. We apply this operation to the outputs of the proposal
MLPs as well as the final RGB-outputting NeRFs. We use λdist = 0.001, λacc = 0.01, λori = 0.01
as well as λempty = 0.05. The empty loss examines the mean of the per-pixel accumulated
density along rays in a rendered view, α, for each NeRF. It penalizes these mean ᾱ values if
they are under a certain fraction of the image canvas (we use 10%). For more robustness to
noise, we pass α through a scaled sigmoid to binarize it (Fig. 4.10), yielding the ᾱbin used in
Eq. 4.5. We sample camera azimuth in [0◦, 360◦] and elevation in [−90◦, 0◦] except in rare
cases where we sample azimuth in a 90-degree range to minimize Janus-problem artifacts or
generate indoor scenes with a diorama-like effect.

We use a classifier-free guidance strength of 200 and textureless shading probability of 0.1
for SDS [130], disabling view-dependent prompting as it does not aid in the generation of
compositional scenes (Table 4.3b). We otherwise inherit all other details, such as covariance
annealing and random background rendering, from SDS. We optimize our model with Shampoo
[44] with a batch size of 1 for 15000 steps with an annealed learning rate, starting from 10−9,
peaking at 10−4 after 3000 steps, and decaying to 10−6.

Optimizing NGPs. To verify the robustness of our approach to different underlying 3D
representations, we also experiment with a re-implementation of Instant NGPs [109], and
find that our method generalizes to that setting. Importantly, we implement an aggressive
coarse-to-fine training regime in the form of slowly unlocking grid settings at resolution higher
than 64 × 64 only after 2000 steps. Without this constraint on the initial smoothness of
geometry, the representation “optimizes too fast” and is prone to placing all density in one
NGP.

4.7.2 Pseudo-code for layout learning

In Figs. 4.9 and 4.10, we provide NumPy-like pseudocode snippets of the core logic necessary
to implement layout learning, from transforming camera rays to compositing multiple 3D
volumes to regularizing them.

4.7.3 CLIP evaluation
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To evaluate our approach, we use similarity scores output by a pretrained contrastive
text-image model [134], which have been shown to correlate with human judgments on the
quality of compositional generation [122]. However, rather than compute a retrieval-based
metric such as precision or recall, we report the raw (100× upscaled, as is common practice)
cosine similarities. In addition to being a more granular metric, this avoids the dependency of
retrieval on the size and difficulty of the test set (typically only a few hundred text prompts).

We devise a list of 30 prompts (Fig. 4.11), each of which lists three objects, spanning a
wide range of data, from animals to food to sports equipment to musical instruments. As
described in Section 4.4, we then train models with K = 3 NeRFs and layout learning and
test whether each NeRF contains a different object mentioned in the prompt. We compute
CLIP scores for each NeRF with a query prompt “a DSLR photo of [A/B/C]”, yielding a
3× 3 score matrix.

To compute NeRF-prompt CLIP scores, we average text-image similarity across 12
uniformly sampled views, each 30 degrees apart, at −30◦ elevation. We then select the best
NeRF-prompt assignment (using brute force, as there are only 3! = 6 possible choices), and
run this process across 3 different seeds, choosing the one with the highest mean NeRF-prompt
score.
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“a backpack, water bottle, and

bag of chips”

“a slice of cake, vase of roses, and

bottle of wine”

Method
Average Score ↑

CLIP B/16 CLIP L/14
Color Geo Color Geo

Random objects 23.4 22.4 17.2 18.3
Per-object SDS 32.3 30.5 27.2 25.9

K NeRFs 26.7 25.4 21.0 21.2
+ Per-NeRF losses 27.3 26.1 21.6 22.6
+ Empty NeRF loss 27.7 26.2 22.8 23.2
+ Learn layout 29.9 28.8 24.9 23.5
+ Learn N layouts 31.3 29.9 27.1 24.8

Relative layouts 30.4 29.2 25.7 24.0
View dep. prompt 31.0 29.1 25.6 23.6

Figure 4.3: Evaluating disentanglement and quality. We optimize a model with K = 3
NeRFs on a list of 30 prompts, each containing three objects. We then automatically pair each
NeRF with a description of one of the objects in the prompt and report average NeRF-object
CLIP score (see text for details). We also generate each of the 30× 3 = 90 objects from the
prompt list individually and compute its score with both the corresponding prompt and a
random other one, providing upper and lower bounds for performance on this task. Training
K NeRFs provides some decomposition, but most objects are scattered across 2 or 3 models.
Learning one layout alleviates some of these issues, but only with multiple layouts do we
see strong disentanglement. We show two representative examples of emergent objects to
visualize these differences.
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(a) Frozen
object (b) Disentangled objects (c) Generated scene

“a cat wearing a hawaiian shirt and sunglasses, having a drink on a beach towel”

“a cat wearing a santa costume holding a present next to a miniature christmas tree”

“a lion in a leather jacket riding a motorcycle between two differently colored cones”

“a modern nightstand with a lamp and a miniature motorcycle model on it, on top

of a small rug”

Figure 4.4: Conditional optimization. We can take advantage of our structured repre-
sentation to learn a scene given a 3D asset in addition to a text prompt, such as a specific
cat or motorcycle (a). By freezing the NeRF weights but not the layout weights, the model
learns to arrange the provided asset in the context of the other objects it discovers (b). We
show the entire composite scenes the model creates in (c) from two views, along with surface
normals and a textureless render.
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“two cats in fancy suits playing snooker”

“a robe, a pair of slippers, and a candle”

“two flamingos sipping on cocktails in a desert oasis”

Figure 4.5: Layout diversity. Our method discovers different plausible arrangements
for objects. Here, we optimize each example over N = 4 layouts and show differences in
composited scenes, e.g. flamingos wading inside vs. beside the pond, and cats in different
poses around the snooker table.
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(a) Input objects (b) Learned layout

“a bowl of pasta, a table, and a chair”

“a monitor, keyboard, and mouse”

“a rubber duck, a bathtub, and a shower head”

Figure 4.6: Optimizing layout. Allowing gradients to flow only into layout parameters
while freezing a set of provided 3D assets results in reasonable object configurations, such as
a chair tucked into a table with spaghetti on it, despite no such guidance being provided in
the text conditioning.
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Disentangled objects Entire scene

(a) Bad geometry: “a moose staring down a snowman by a cabin”

(b) Undersegmentation: “two astronauts riding a horse together”

(c) Clutter (K = 5): “two fancy llamas enjoying a tea party”

Learned layouts

(d) Overly similar layouts: “a monkey having a whiskey and a cigar, using a typewriter”

Figure 4.7: Limitations. Layout learning inherits failure modes from SDS, such as bad
geometry of a cabin with oddly intersecting exterior walls (a). It also may undesirably group
objects that always move together (b) such as a horse and its rider, and (c) for certain
prompts that generate many small objects, choosing K correctly is challenging, hurting
disentanglement. In some cases (d), despite different initial values, layouts converge to very
similar final configurations.
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(a) Input
NeRF (b) Discovered objects (c) Reconstruction

“two cute cats wearing baseball uniforms playing catch”

“a giant husk of corn grilling hot dogs by a pool with an inner tube”

“a bird having some sushi and sake”

Figure 4.8: Decomposing NeRFs of scenes. Given a NeRF representing a scene (a) and
a caption, layout learning is able to parse the scene into the objects it contains without
any per-object supervision (b). We accomplish this by requiring renders of one of the N
learned layouts to match the same view rendered from the target NeRF (c), using a simple
L2 reconstruction loss with λ = 0.05.



CHAPTER 4. AN ARCHITECTURE FOR DISENTANGLED 3D SCENES 79

# Initialize variables

quat = normal((N, K, 4), mean=[0,0,0,1.], std=0.1)

trans = normal((N, K, 3), mean=0., std=0.3)

scale = normal((N, K, 1), mean=1., std=0.3)

nerfs = [init_nerf() for i in range(K)]

# Transform rays for NeRF k using layout n

def transform(rays, k, n):

rot = quaternion_to_matrix(quat)

rays['orig'] = rot[n,k] @ rays['orig'] - trans[n,k]

rays['orig'] *= scale[n,k]

rays['dir'] = scale[n,k] * rot[n,k] @ rays['dir']

return rays

# Composite K NeRFs into one volume

def composite_nerfs(per_nerf_rays):

per_nerf_out = [nerf(rays) for nerf, rays

in zip(nerfs, per_nerf_rays]

densities = [out['density'] for out in per_nerf_out]

out = {'density': sum(densities)}

wts = [d/sum(densities) for d in densities]

rgbs = [out['rgb'] for out in per_nerf_out]

out['rgb'] = sum(w*rgb for w,rgb in zip(wts, rgbs))

return out, per_nerf_out

# Train

optim = shampoo(params=[nerfs, quat, trans, scale])

for step in range(num_steps):

rays = sample_camera_rays()

n = random.uniform(N)

per_nerf_rays = [

transform(rays, k, n) for k in range(K)

]

vol, per_nerf_vols = composite_nerfs(per_nerf_rays)

image = render(vol, rays)

loss = SDS(image, prompt, diffusion_model)

loss += regularize(per_nerf_vols)

loss.backward()

optim.step_and_zero_grad()

Figure 4.9: Pseudocode for layout learning, with segments inherited from previous work
abstracted into functions.
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def soft_bin(x, t=0.01, eps=1e-7):

# x has shape (..., H, W)

bin = sigmoid((x - 0.5)/t)

min = bin.min(axis=(-1, -2), keepdims=True)

max = bin.max(axis=(-1, -2), keepdims=True)

return (bin - min) / (max - min + eps)

soft_bin_acc = soft_bin(acc).mean((-1,-2))

empty_loss = empty_loss_margin - soft_bin_acc

empty_loss = max(empty_loss, 0.)

Figure 4.10: Pseudocode for empty NeRF regularization, where soft bin acc computes
ᾱbin in Equation 4.5.
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'a cup of coffee, a croissant, and a closed book',

'a pair of slippers, a robe, and a candle',

'a basket of berries, a carton of whipped cream, and an orange',

'a guitar, a drum set, and an amp',

'a campfire, a bag of marshmallows, and a warm blanket',

'a pencil, an eraser, and a protractor',

'a fork, a knife, and a spoon',

'a baseball, a baseball bat, and a baseball glove',

'a paintbrush, an empty easel, and a palette',

'a teapot, a teacup, and a cucumber sandwich',

'a wallet, keys, and a smartphone',

'a backpack, a water bottle, and a bag of chips',

'a diamond, a ruby, and an emerald',

'a pool table, a dartboard, and a stool',

'a tennis racket, a tennis ball, and a net',

'sunglasses, sunscreen, and a beach towel',

'a ball of yarn, a pillow, and a fluffy cat',

'an old-fashioned typewriter, a cigar, and a glass of whiskey',

'a shovel, a pail, and a sandcastle',

'a microscope, a flask, and a laptop',

'a sunny side up egg, a piece of toast, and some strips of bacon',

'a vase of roses, a slice of chocolate cake, and a bottle of red wine',

'three playing cards, a stack of poker chips, and a flute of champagne',

'a tomato, a stalk of celery, and an onion',

'a coffee machine, a jar of milk, and a pile of coffee beans',

'a bag of flour, a bowl of eggs, and a stick of butter',

'a hot dog, a bottle of soda, and a picnic table',

'a pothos houseplant, an armchair, and a floor lamp',

'an alarm clock, a banana, and a calendar',

'a wrench, a hammer, and a measuring tape',

'a backpack, a bicycle helmet, and a watermelon'

Figure 4.11: Prompts used for CLIP evaluation. Each prompt is injected into the
template “a DSLR photo of {prompt}, plain solid color background”. To generate individual
objects, the three objects in each prompt are separated into three new prompts and optimized
independently.
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Chapter 5

Looking Ahead

It is difficult to make
predictions, especially about the
future.

Niels Bohr, or an old Danish

proverb

At some point around halfway through my time in Berkeley, the scale and quality of
visual generative models took a huge, seemingly discontinuous leap forward. The dirty secret
to this phenomenon is that these models are not really that unsupervised anymore (and
perhaps they never were). I refer not only to the importance of data curation in shaping the
distribution we ask our model to fit, but also to the reliance on text conditioning, which is
abundantly available, compositional, and highly effective at reducing the difficulty of the task
at hand. At the asymptote, what does it even mean to draw a sample from p(x) over the
entire universe? We bypass this by modeling p(x|y) instead, arguably a significantly more
supervised setting.

Throughout the course of my graduate school career, I have thus come to shed any
attachment to distinctions about “true” [37] unsupervised learning, especially as it relates to
language. Of course, I do believe that scalable approaches will continue to rely minimally on
manual annotation, but the opposition to annotations is pragmatic rather than ideological.
On a higher level, intelligent agents should eventually operate on all modalities simultaneously,
and language is a crucial interface for us humans to interact with the models we train.

Still, language is undoubtedly an incomplete and inadequate interface on its own. Turning
briefly to biology, many crucial forms of communication among humans and other species
are non-verbal [39, 27, 86]. As for machine learning, the astute reader will have noticed that
all the forms of control (and thus, demonstrations of knowledge) presented in this thesis are
much more effectively conveyed through a non-textual interface.
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→

→

Figure 5.1: An output versus the output. Top: An image generated by DALL-E
2 [135] given the prompt teddy bears mixing sparkling chemicals as mad scientists in

the style of a 1990s Saturday morning cartoon. Bottom: A frame from a video generated
by Sora [173], given the prompt fly through tour of a museum with many paintings and

sculptures and beautiful works of art in all styles. The models we are sampling from
(left) are powerful, but because their interface is so limited, we are unable to do things like
move, delete, resize, or restyle specific elements of their outputs (right).

5.1 Beyond text

As the complexity of visual data we are able to model increases, more and more becomes
challenging to express through text (Figure 5.1). If image and video generators are indeed
to serve as drop-in world models, usable in creative contexts as well as (more tantalizingly)
for agents to plan their actions from observations of their surroundings, they must be able
to perform the sort of counterfactual manipulation and disentanglement explored in this
document. It does not suffice to create an aesthetically pleasing output aligned with a text
prompt. Though techniques such as recaptioning [13] expand the scope of what we can
address through text alone, they are still doomed to fall short due to the limitations of
language itself. Perhaps we require a novel form of conditioning that is non-linguistic, yet
still a meta-interface over different forms of desired control.

The approaches discussed in this thesis are post-hoc, discovering new ways to use an
off-the-shelf text-to-image model. Though this constraint was partially imposed by logistical
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issues preventing a random graduate student from training multi-billion parameter models
at a mega-corporation, this order of operations seems natural in deep learning given the
black-box nature of our toolkit. First design a model, then gather data for it, then train it,
then uncover and leverage the structure that it learns. One cannot help but wonder: Will the
loop ever close? Will our valiant attempts to understand and extract the knowledge these
models acquire inform subsequent generations of model design?

I leave these questions to future work.
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[170] Dı́dac Suŕıs, Dave Epstein, and Carl Vondrick. “Globetrotter: Connecting languages
by connecting images”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2022, pp. 16474–16484.

[171] Richard Sutton. “The bitter lesson”. In: Incomplete Ideas (blog) 13.1 (2019), p. 38.

https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2010.02502


BIBLIOGRAPHY 96

[172] Matthew Tancik et al. “Fourier Features Let Networks Learn High Frequency Functions
in Low Dimensional Domains”. In: Neural Information Processing Systems. 2020.

[173] OpenAI Team. 2024. url: https://openai.com/research/video-generation-

models-as-world-simulators.

[174] Antonio Torralba et al. “Describing visual scenes using transformed dirichlet processes”.
In: Advances in neural information processing systems 18 (2005).

[175] Omer Tov et al. “Designing an encoder for stylegan image manipulation”. In: ACM
Transactions on Graphics (TOG) 40.4 (2021), pp. 1–14.

[176] Zhuowen Tu et al. “Image parsing: Unifying segmentation, detection, and recognition”.
In: International Journal of computer vision 63.2 (2005), pp. 113–140.

[177] Narek Tumanyan et al. “Plug-and-Play Diffusion Features for Text-Driven Image-to-
Image Translation”. In: arXiv preprint arXiv:2211.12572 (2022).

[178] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. “YOLOv7: Train-
able bag-of-freebies sets new state-of-the-art for real-time object detectors”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2023, pp. 7464–7475.

[179] Haochen Wang et al. “Score jacobian chaining: Lifting pretrained 2d diffusion models
for 3d generation”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2023, pp. 12619–12629.

[180] Jianyuan Wang et al. “Improving GAN Equilibrium by Raising Spatial Awareness”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2022, pp. 11285–11293.

[181] Ting-Chun Wang et al. “High-resolution image synthesis and semantic manipulation
with conditional gans”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2018, pp. 8798–8807.

[182] Zhengyi Wang et al. “ProlificDreamer: High-Fidelity and Diverse Text-to-3D Gen-
eration with Variational Score Distillation”. In: arXiv preprint arXiv:2305.16213
(2023).

[183] Max Wertheimer. “Laws of organization in perceptual forms.” In: (1938).

[184] Teresa Wilcox. “Object individuation: Infants’ use of shape, size, pattern, and color”.
In: Cognition 72.2 (1999), pp. 125–166.

[185] Rundi Wu et al. “ReconFusion: 3D Reconstruction with Diffusion Priors”. In: arXiv
preprint arXiv:2312.02981 (2023).

[186] Zongze Wu, Dani Lischinski, and Eli Shechtman. “Stylespace analysis: Disentangled
controls for stylegan image generation”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2021, pp. 12863–12872.

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators


BIBLIOGRAPHY 97

[187] Jonas Wulff and Antonio Torralba. “Improving inversion and generation diversity
in stylegan using a gaussianized latent space”. In: arXiv preprint arXiv:2009.06529
(2020).

[188] Weihao Xia et al. “GAN inversion: A survey”. In: arXiv preprint arXiv:2101.05278
(2021).

[189] Yoram Yakimovsky and Jerome A. Feldman. “A Semantics-Based Decision Theory
Region Analyser”. In: IJCAI. William Kaufmann, 1973, pp. 580–588.

[190] Ceyuan Yang, Yujun Shen, and Bolei Zhou. “Semantic hierarchy emerges in deep
generative representations for scene synthesis”. In: International Journal of Computer
Vision 129.5 (2021), pp. 1451–1466.

[191] Yue Yang et al. “Holodeck: Language Guided Generation of 3D Embodied AI Envi-
ronments”. In: arXiv preprint arXiv:2312.09067 (2023).

[192] Shunyu Yao et al. “3d-aware scene manipulation via inverse graphics”. In: Advances
in neural information processing systems 31 (2018).

[193] Vickie Ye et al. “Deformable sprites for unsupervised video decomposition”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2022, pp. 2657–2666.

[194] Fisher Yu et al. “Lsun: Construction of a large-scale image dataset using deep learning
with humans in the loop”. In: arXiv preprint arXiv:1506.03365 (2015).

[195] Hong-Xing Yu, Leonidas J Guibas, and Jiajun Wu. “Unsupervised discovery of object
radiance fields”. In: arXiv preprint arXiv:2107.07905 (2021).

[196] Jiahui Yu et al. “Scaling Autoregressive Models for Content-Rich Text-to-Image
Generation”. In: arXiv:2206.10789 (2022).

[197] Jiahui Yu et al. “Scaling autoregressive models for content-rich text-to-image genera-
tion”. In: arXiv preprint arXiv:2206.10789 2.3 (2022), p. 5.

[198] Stella X Yu, Ralph Gross, and Jianbo Shi. “Concurrent object recognition and segmen-
tation by graph partitioning”. In: Advances in neural information processing systems
15 (2002).

[199] Chen Zhang, Yinghao Xu, and Yujun Shen. “Decorating your own bedroom: Locally
controlling image generation with generative adversarial networks”. In: arXiv preprint
arXiv:2105.08222 (2021).

[200] Han Zhang et al. “Self-attention generative adversarial networks”. In: International
conference on machine learning. PMLR. 2019, pp. 7354–7363.

[201] Han Zhang et al. “Stackgan: Text to photo-realistic image synthesis with stacked
generative adversarial networks”. In: Proceedings of the IEEE international conference
on computer vision. 2017, pp. 5907–5915.



BIBLIOGRAPHY 98

[202] Lvmin Zhang and Maneesh Agrawala. “Adding conditional control to text-to-image
diffusion models”. In: arXiv preprint arXiv:2302.05543 (2023).

[203] Qihang Zhang et al. “SceneWiz3D: Towards Text-guided 3D Scene Composition”. In:
arXiv preprint arXiv:2312.08885 (2023).

[204] Richard Zhang et al. “The unreasonable effectiveness of deep features as a perceptual
metric”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2018, pp. 586–595.

[205] Jiapeng Zhu et al. “In-domain gan inversion for real image editing”. In: European
conference on computer vision. Springer. 2020, pp. 592–608.

[206] Jiapeng Zhu et al. “Region-Based Semantic Factorization in GANs”. In: arXiv preprint
arXiv:2202.09649 (2022).

[207] Jun-Yan Zhu et al. “Generative visual manipulation on the natural image manifold”.
In: European conference on computer vision. Springer. 2016, pp. 597–613.

[208] Jun-Yan Zhu et al. “Toward multimodal image-to-image translation”. In: Advances in
neural information processing systems 30 (2017).


	Contents
	List of Figures
	List of Tables
	Introduction
	Learning without labels
	Demonstrating and accessing knowledge
	Contributions

	A Representation for Generative Object Discovery
	Introduction
	Related work
	Method
	From noise to blobs as layout
	From blob layouts to scene images
	Encouraging disentanglement

	Experiments
	Training and implementation
	Discovering entities with blobs
	Composing blobs into layouts
	Evaluating visual quality and diversity
	Parsing images into regions

	Discussion
	Appendix
	BlobGAN on other datasets
	Modeling real images with BlobGAN
	Implementation details
	Blob parametrization
	Limitations
	Comparison to previous work
	Model implementation


	An Objective for Controllable Image Sampling
	Introduction
	Background
	Diffusion generative models
	Guidance
	Where can we find signal for controlling diffusion?

	Self-guidance
	Composing self-guidance properties
	Discussion
	Appendix
	Implementation details
	Using self-guidance
	Additional results


	An Architecture for Disentangled 3D Scenes
	Introduction
	Background
	Neural 3D representations
	Text-to-3D using 2D diffusion models

	Method
	Compositing multiple volumes
	Layout learning

	Experiments
	Qualitative evaluation
	Quantitative evaluation
	Applications of layout learning

	Related work
	Discussion
	Appendix
	Implementation details
	Pseudo-code for layout learning
	CLIP evaluation


	Looking Ahead
	Beyond text

	Bibliography

