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Abstract

In this work, we optimize fuel consumption in a large, calibrated traffic model of a por-
tion of the Ventury Freeway (Interstate 210, near Los Angeles, California) by leveraging a
low proportion of autonomous vehicles controlled by reinforcement learning algorithms. We
specifically target stop-and-go waves, a phenomenon characterized by alternating accelera-
tion and braking, which is widespread on real-world highways and significantly detrimental
to fuel efficiency. In order to simulate these dynamics accurately, we introduce waves into the
network using a string-unstable car-following model, as well as a ghost cell to enable wave
propagation beyond the network boundary. Using multi-agent reinforcement learning, we
develop a decentralized controller that effectively mitigates instabilities and partially damp-
ens these waves, resulting in a significant 25% reduction in fuel consumption with only a
10% penetration rate of autonomous vehicles. We then investigate the designed controller’s
robustness by testing it under various conditions. Our results show that it maintains equi-
librium speeds across a wide range of wave speeds and penetration rates far outside of the
training regime, demonstrating its generalization and robustness.

1



Contents

Abstract 1

Acknowledgment 3

1 Introduction 4

2 Related Work 7

3 Problem Formulation: Smoothing in Multi-Lane Systems 8
3.1 I-210 model with phantom jams . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Human controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Energy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Multi-agent reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . 11

4 Controller design 12
4.1 Optimization criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Dec-POMDP design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Algorithm / Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Results 16
5.1 Evaluation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Controller performance and robustness . . . . . . . . . . . . . . . . . . . . . 16
5.3 Behavior analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Conclusion 24

2



Acknowledgment

I want to express my sincere gratitude to my advisor, Professor Alex Bayen, and my primary
co-author, Eugene Vinitsky, for their unwavering support and mentorship across this and
many other projects. I also deeply appreciate my friends and collaborators in our research
lab, who have made my time at Berkeley truly memorable. Special thanks go to George
Gunter and Akash Velu for their valuable contributions to this work, part of which was
previously published at the IEEE International Conference on Intelligent Transportation
Systems (IEEE ITSC) [1]. I’m grateful to the Savio institutional cluster at UC Berkeley for
providing the computational resources that were essential to this research.

3



Chapter 1

Introduction

Adaptive, hands-free cruise control, in which a partially automated vehicle (AV) keeps a safe
distance from a lead car is increasingly ubiquitous as cheap radars and advanced computer
vision technology combine to make such systems inexpensive and safe to deploy. While not
fully autonomous, these level-two systems (autonomous distance and lane-keeping), have low
reaction times and can be programmed to achieve many of the potential gains associated with
full-autonomy such as vehicle platooning [2] or close-following to minimize air resistance [3].
In particular, recent work has demonstrated that there are significant gains in traffic flow
and energy efficiency to be had even in the low penetration rate regime e.g. 0-10% [4, 5],
a regime often referred to as mixed-autonomy traffic. Given the widespread deployment
of these automated driving systems, there is an opportunity to design and deploy cruise
controllers that improve the energy impact of our transportation systems.

However, designing controllers and analyzing their energy impact is difficult due to the
complexity of traffic: non-linear driving dynamics, lane changes, merges, etc. Hence, con-
trollers are often designed and analyzed in simple settings whose relationship to actual
highway networks is not entirely clear. For example, a significant fraction of recent traffic
smoothing controllers are designed and analyzed with respect to a closed circular ring of
dense traffic, a setting in which energy-consuming waves form spontaneously and persist
throughout the network [6]. While this network is amenable to analysis and can model a
single lane of traffic as it becomes infinitely long, the simplicity of the network makes it
unclear how controllers designed in these settings will perform as complexity increases. Fur-
thermore, these simple systems often have pernicious optimal solutions like slowing to a stop
and gradually accelerating up to the equilibrium speed of the ring.

In this work, we focus on developing robust, traffic smoothing controllers for a system
containing both traffic waves as well as lane changes. We build a multi-lane model (shown
in Fig. 1.1) of a section of the Ventura Freeway in Los Angeles containing both on-ramps
and lane drops. This system contains approximately one thousand vehicles and stretches
about one mile, allowing us to see any possible long-range interactions between AVs, waves,
and lane changing behavior. Using on-policy multi-agent reinforcement learning, we design
traffic smoothing controllers that create a sharp increase in the energy efficiency of the traffic
flow; these controllers also outperform a variety of available baseline controllers. The state
input to our controller is easily implementable using radar or cameras, making it an easy
add on to existing cruise controllers.
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Figure 1.1: The I-210 network simulated within SUMO. Yellow areas represent the uncon-
trolled ghost cells, while the blue rectangle shows where control is applied and where metrics
are computed.

Since it is highly likely that our simulator is not accurate in a variety of ways (imperfect
model of human driving dynamics, vehicle dynamics, etc.), we demonstrate that our con-
troller is a good candidate for deployment by performing a set of robustness tests. We sweep
over a wide variety of the parameters that define driving behavior and system dynamics in
our simulator and show that our controller maintains good performance under these changes.
As we demonstrate, our controller appears robust to all these axes of variation.

The contributions we include in this work are as follows:

• We build and release a new, large-scale traffic network for investigating the effect and
potential of traffic-smoothing autonomous vehicles.

• We use multi-agent reinforcement learning to construct controllers that sharply improve
the energy efficiency of highway traffic. We demonstrate that our controllers generalize
outside their training distribution and act like controllers that know the equilibrium
speed of the system.

• We perform a variety of robustness checks and demonstrate that our controller is robust
to a wide range of potential driving conditions.
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Figure 1.2: Time-space diagram of one lane of the I-210, showing the average velocity of the
network as a function of time and position. The shaded areas correspond to the warm-up
period and the ghost cells, and represent times and positions that are not considered in
control or evaluation. Waves are visible as the downwards-sloping black lines.
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Chapter 2

Related Work

In the seminal work of [6] it was experimentally shown for the first time that traffic streams
can exhibit what are known as ’phantom-jams’ in which a moving traffic jam can form
without any outside prompts, such as lane-reductions or accidents. Following work in [5]
empirically showed that under the same setup the phantom-jams that form could be effec-
tively dissipated using a single automated vehicle running a control algorithm. In addition
to increasing the average speed, and reducing the speed variance of the system, a significant
increase in fuel efficiency for the vehicles was also found [7, 8]. These result established
the potential of mixed-autonomy control to improve throughput and energy efficiency in
relatively simplified settings.

Extensive work has been done to find new mechanisms by which mixed-autonomy can be
used to improve transportation systems. [9, 10], consider the use of platoons of autonomous
vehicles operating as moving bottlenecks to both dampen stop-and-go waves and minimize
the effects of capacity drop. Other works consider the potential of vehicle-to-infrastructure
coordination as a tool for eco-driving, a concept in which a controlled vehicle modifies its
speed and acceleration profile to realize energy gains. [11] demonstrates the deployment from
simulation to the roadway of coordination between a vehicle and a signalized intersection
and shows marked improvements in energy efficiency albeit at the cost of travel time. [12]
demonstrates in a physical experiment with ghost cars that a CAV using prediction of the
lead vehicle trajectory or communicating with AVs further ahead in the string can sharply
improve the energy efficacy of a drive.

Recently, many controllers for mixed autonomy settings have been generated using tech-
niques from Reinforcement Learning. Reinforcement learning has been used in [4] to demon-
strate that a vehicle equipped with memory could equilibrate the system for a wide range
of ring densities. Other works have focused on the potential of reinforcement learning to
improve traffic at scale. In [13, 14, 15, 16], multi-agent RL was used to optimize merges in a
fully decentralized fashion. Both [17] and [18] concurrently used decentralized multi-agent
RL for optimizing a scaled model of the San Francisco-Oakland Bay Bridge. Reinforcement
learning has also seen significant use in traffic light pattern optimization [19, 20] as well as to
develop traffic light controllers that could quickly adapt to new settings using Meta-RL [21].
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Chapter 3

Problem Formulation: Smoothing in
Multi-Lane Systems

Our goal is to study traffic smoothing in a setting with large numbers of vehicles, ubiquitous
lane changes and multiple possible sources of onset mechanisms for wave formation. We
choose a segment of the Ventura Freeway, or Interstate 210 (I-210), in California. This
segment is approximately one mile long and can hold up to 2000 vehicles. It varies between
five and six lanes over its length and has an on-ramp that can serve as a possible source of
congestion formation; however, this on-ramp is disabled in this work since we use a different
mechanism to generate congestion, as explained in Sec. 3.1. Due to the combination of the
multi-lane nature and its high capacity, this network serves as an effective testbed for the
complexity of realistic wave smoothing.

The challenge in this network is to improve the energy efficiency by eliminating traffic
shockwaves that occur along this system, which we will refer to as phantom jams. These
shockwaves are known to appear in real systems [22] and decrease the energy efficiency of
travel by leading to patterns of braking and acceleration. By eliminating the phantom jams,
we improve the energy efficiency of the system. As we will demonstrate, an interesting
feature of these phantom jams is that they can be removed with minimal effect on the traffic
flow: decreasing the fuel consumption of the roadway is something that can be achieved
without any trade-offs on the system throughput.

3.1 I-210 model with phantom jams

The I-210 network has been imported from Open Street Maps into the microscopic traffic
simulator SUMO [23]. The network is shown in Fig. 1.1. Traditionally, traffic congestion is
hypothesized to be caused by ’bottlenecks’ in which a road network cannot support as much
flow through a downstream section as is being sent from the upstream. This discrepancy in
capacity to receive compared to amount sent subsequently creates traffic congestion in which
vehicles are forced to drive closer together and at a lower speed than they would otherwise.

One of the benefits of the ring-road as a well-posed traffic simulation environment is
that congested regimes can be set directly by choosing a number of vehicles for a given ring
length (i.e. the density is set directly). However, the ring lacks crucial components of realistic
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traffic such as lane-changing and routing choice. In order to allow for such traffic maneuvers
the multi-lane, multi-edge, network present in the I-210 network is used. In addition, a
subsequent downstream flow condition is imposed directly in the form of a decreased speed
limit along a small portion of the end of the network. We refer to this speed limit as the
downstream speed. By doing so, the congested regime for the traffic can be set in a very
similar manner to the ring road. This downstream condition can then be varied to allow
more or less flow through the end of the network, which allows for testing the proposed
control framework across a number of traffic regimes.

3.2 Human controllers

An important component of micro-simulation is the car-following and lane-changing logic
that individual vehicles in the simulation adhere to. Car-following refers to how vehicles
manage their longitudinal motion within a lane as opposed to their lateral, lane-changing
behavior.

For the lane-changing logic, we use the default model provided in SUMO [23], the traffic
micro-simulator that we use. The dominant cause of lane-changing in this model mostly
consists of a vehicle lane-changing for speed gain, i.e. it will lane-change if it can drive faster
in the other lane.

As for the car-following logic, it is generally modeled as ordinary differential equations
that dictate an ego vehicle’s motion based on the state of the vehicle ahead of it. In this
work a first-order discretization of the Intelligent Driver Model (IDM) [24] is used, which
dictates a vehicle’s longitudinal acceleration, and is of the form:

vt+1 = vt +∆t× a

[
1−

(
vt
v0

)δ

−
(
s∗ (vt,∆vt)

st

)2
]

+
√
∆tN (0, σ)

(3.1)

with

s∗ (vt,∆vt) = s0 + vtT +
max{0, vt∆vt}

2
√
ab

st+1 = st +∆t∆vt

(3.2)

where vt is the ego vehicle speed at time t, ∆vt is the difference between the leading vehi-
cle’s speed and the ego vehicle’s speed, st is the distance to the lead vehicle, and a, b, s0, T, v0
and δ are all parameters of the model. t indexes the time-step and ∆t refers to the size of
the simulation step. N (0, σ) is zero-mean Gaussian noise used to perturb the accelerations
at each time-step and is intended to represent both aleatoric and epistemic noise.

For this model, we select values of a, b such that the resultant dynamics are string-
unstable. When a car-following model is string-unstable [25], small disturbances can grow
in magnitude into large disturbances that propagate along a string of vehicles, allowing the
phantom jam to propagate rather than dissipate. In this work, the criteria by which a and
b are set is drawn from [26] due to their simplicity of the polynomial condition therein for
determining string instability. All other parameters as chosen as being the default IDM
values specified in [24].
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Figure 3.1: Polynomial fit of power consumption as a function of velocity and instantaenous
acceleration from a Midsize Sedan model provided by Toyota. This model was made for a
vehicle of mass 1743kg, and we assume a constant road grade of 0. We use the conversion 1
gallon/hour = 33430 watt.

Finally, since discretized car-following models can lead to collisions, we clip the output
acceleration values such that collisions are not possible. The condition we use for safety is
maximally conservative: an acceleration is unsafe if the lead car, braking at its maximum
deceleration, will unavoidably collide with the ego vehicle. The exact implementation of this
condition can be found in [23]. On top of that safe velocity failsafe, we also clip the output
acceleration to respect the road speed limit and the acceleration bounds of the vehicle.

3.3 Energy model

As our calibrated energy model, we use a polynomial fit to a black box model of a Midsize
Sedan model provided by Toyota. The calibrated model is shown in Fig. 3.1, and is a
function of the instantaneous speed and acceleration. This model assumes a constant vehicle
mass of 1743 kg.

The model shown here is fitted with a third-order polynomial, effectively smoothing out
the effects of gear shifting that might otherwise be present. We do not attempt to fit this
as it would require excessively large polynomial coefficients and the particular positions of
the jumps due to gear shifting will vary sharply from vehicle to vehicle. For the derivation,
coefficients of the polynomials, and full model details see [27].

However, it is not obvious that optimizing the energy model we use will translate the
heterogeneous traffic. We argue that minimizing the energy model is equivalent to regulating
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around an optimal speed. While that optimal speed will vary from engine model to engine
model, as long as that optimal speed is greater than the downstream speed, the optimal
behavior is irrespective of engine type. For the Midsize Sedan model, the optimal operating
speed is around 16.7m/s, which is well above any congestion speeds that might occur. A
survey of the energy models available in Autonomie [28] suggests that the optimal speed for
most engines is above this value. Since the downstream speed sets a system speed limit, the
optimal solution for most engines will consequently be elimination of the waves and so we
expect our results to hold generally across different energy models.

3.4 Multi-agent reinforcement learning

In this section, we discuss the notation and describe in brief the key ideas used in rein-
forcement learning. The system described in this article solves tasks which conform to the
standard structure of a finite-horizon, discounted, decentralized multi-agent POMDP (Dec-
POMDP) [29], an abstraction in which groups of agents with partial access to the true
world state seek to optimize a discounted reward function across time. The Dec-POMDP is
defined by the tuple (S0,A0,O0, r0, ρ0, γ0, T0) × · · · × (Sn,An,On, rn, ρn, γn, Tn) × ×P × Z,
where n is the number of agents, Si is a (possibly infinite) set of states for agent i, Ai

is a set of actions for agent i, Z : (S0 × A0) × · · · × (Sn × An) → (O0, . . . ,On) is a
function describing how the world state is mapped into the observations of the POMDP,
P : (S0 ×A0 × S0)× · · · × (Sn ×An × Sn) → R≥0 is the transition probability distribution
for moving from one set of agent states s to the next set of states s′ given the set of ac-
tions (a0, . . . , an), ri : (S0 × A0) × · · · × (Sn × An) → R is the reward function for agent i,
ρi : Si → R≥0 is the initial state distribution for agent i, γi ∈ (0, 1] is the discount factor for
agent i, and Ti is the horizon for agent i.

The goal for a given agent i is to find a controller πi that optimizes

Jπi = Eρ0, p(st+1|st,at)

[
T∑
t=0

γtrt | π(at|st)

]
(3.3)

where rit is the reward of agent i at time t and the expectation is over the start state
distribution, the probabilistic dynamics, and the probabilistic controller π.
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Chapter 4

Controller design

4.1 Optimization criterion

Our goal is to reduce the average energy consumption of the system. However, the energy
minimizing solution is for all vehicles to come to a full stop. To avoid this degenerate
solution, we will impose the constraint that all vehicles exit the system. In this section, we
describe how this constraint is converted into a reward function so that our desired optimized
quantity can be used in a standard reinforcement learning procedure.

Let L be the length of the controlled portion of the network and E(vt, at) the instan-
taneous energy consumption at time-step t, vt and at being the velocity and acceleration
respectively. For notation simplicity, we will only consider the trajectory of one AV, as
the reward for each AV is computed independently of the others, and we assume that the
trajectory starts at time t = 0 and ends at time t = H.

Ideally, we would like to maximize the cumulative miles per gallon value for each AV

L∑H
t=0E (vt, at)

(4.1)

Unfortunately, that quantity cannot be computed until the end of a trajectory, making the
reward sparse. Sparse rewards are generally difficult to optimize so we propose a simple
heuristic that approximates this quantity.

We attempt to turn the sparse cumulative miles per gallon reward into a per-step reward
by noticing that since L, is a constant, maximizing Eq. 4.1 is equivalent to maximizing∑H

t=0 −E(vt, at) as long as energy consumption is positive. We can thus give the agent a
reward r(st, at) = −E(vt, at) at time-step t.

However, the issue that the optimum consists in coming to a full stop will still persist
here. Amongst options considered, we observed that giving the agent a semi-sparse reward
for making forwards progress achieved the largest improvement in fuel efficiency.

r(st, at) =

{
−E(vt, at) if ct < M

−E(vt, at) +B if ct ≥ M
(4.2)

Here ct is a counter of the total distance that we have travelled since receiving the last
bonus and B is a bonus for completing M meters. ct is reset back to zero every M meters.

12
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Essentially, every time the vehicle completes M meters, it receives a bonus for doing so. We
can think of this as approximately distributing a penalty for failing to exit the network across
the spatial extent of the network but we note that the exact equivalence to the cumulative
miles per gallon objective (Eq. 4.1) is now lost.

Finally, since the goal is still to optimize the energy consumption for the whole system, we
also add the energy consumption of the N vehicles following the AV to its reward function,
which are the vehicles that it has the most impact on.

r(st, at) = −E(v0t , a
0
t )−

N∑
i=1

E(vit, a
i
t) +Bt (4.3)

with

Bt =

{
0 if ct < M

B if ct >= M

where we index the velocities and accelerations of the vehicles, 0 being the AV, 1 the
vehicle following it, and N its nth follower. Although this requires non-local information at
training time, the reward is not part of the controller state and thus the controller will still
only rely on local information.

4.2 Dec-POMDP design

We focused on picking controller inputs that could tractably and easily be placed onto a
vehicle equipped with standard level-2 technology such as forwards facing radar, cameras,
and GPS. The careful design of the state space is essential as the state space choice will
have strong consequences for the generalization capabilities of the agents. As an example,
consider an agent that has GPS coordinates as part of its input. This agent now has two
potential generalization failure modes: 1) it may use the GPS position to block the network
entrance and artificially reduce the inflow 2) it will adjust its behavior to perfectly optimize
the particular network architecture that the agent is trained in and may be less likely work
for different road network architectures.

Based on the criteria of maximizing likely generalization, we adopt the following Dec-
POMDP:

• State space / Observation function: [v, h, vlead, c] where v is the ego speed, h is the
distance to the leader, vlead is the speed of the vehicle directly in front of the AV, and c
is the distance travelled which is reset every m meters. This state space can be used in
arbitrary networks and allows us to easily transfer learnt controllers between different
network architectures. It is also easily implemented with radar and cameras.

• Action space: accelerations bounded between [−2.6, 4.5]. We do not allow the AVs to
lane change.

• The reward function is described in Sec. 4.1.
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4.3 Algorithm / Controller

As our training algorithm, we use Independent Proximal Policy Optimization [30], a ubiqui-
tous policy gradient algorithm. All agents are homogeneous, that is, there is one controller
that is duplicated across all agents although actions are still computed locally. The con-
troller is a two layer fully connected neural network with 64 hidden units at each layer and
a hyperbolic tangent non-linearity.

We make one small modification to the standard PPO algorithm and provide the total
distance traveled by the agent at time t as an input to the value function. The value function
is used exclusively during training for variance reduction (see [30] for details) and so non-
local information can be used. The value V π function estimates the reward-to-go from a
given state st

V π(st) = E

[
T∑
j=t

γir(sj, aj)|sj

]
(4.4)

and since the reward-to-go strongly depends on the total distance remaining to the exit, it
is difficult to estimate without this information.

4.4 Experimental setup

We ran the reinforcement learning training using the PPO implementation provided in RLlib
[31]1 version 2.0.0.dev0, a distributed deep RL library. We use a learning rate of 3 · 10−4, a
training batch size and SGD minibatch size both equal to 500000, a number of SGD iterations
of 5 and run the simulations for 220 iterations, each with 19 workers running in parallel with
a horizon of 500 environment steps. Importantly, we set multiagent/count steps by to
agent steps so that steps are counted by agent step and not environment step. We also
set batch mode to complete episodes, gamma to 0.995, lambda to 0.97 and kl target to
0.02. The other RLlib and PPO parameters are left to their default value. Training for 220
iterations took about 2 days, running on a machine with 20 Intel Xeon E5-2670 v2 CPUs.
The evolution of the reward function during training can be seen in Fig. 4.1.

Both the controller (policy network) and the value function network are feedforward neu-
ral networks (MLP) with two fully-connected hidden layers of size 64, and tanh activations.
For our reward function, we used parameters M = 50m, N = 5 vehicles and B = 2.5.

We use the traffic micro-simulator SUMO [23] for running our simulations. To populate
the simulation fully with vehicles, we allow a warmup period of 720 seconds during which the
experiment runs uncontrolled after which 10% of the vehicles are turned into AVs. We keep
a fixed inflow of 2050 vehicles per hour over the whole horizon. 90% of these vehicles are
humans with an IDM controller, and the remaining 10% are AVs. The downstream speed
limit is fixed to 5m/s. The IDM controller is used with parameters a = 1.3, b = 2, v0 = 30,
T = 1, δ = 4 and s0 = 2. Finally, taking note that the standard benchmark for ATARI
games repeats each action four times [32], agent actions are actually sampled once for every 3
time-steps and the same action is applied for all 3 time-steps. We use an individual time step

1https://github.com/ray-project/ray/python/ray/rllib
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Figure 4.1: Evolution of the reward for an agent over two days of training; the reward
depicted here is averaged across all the agents. The policy is close to converged approximately
25% of the way into training. Note that this represents the average sum of all rewards received
by an agent, and not the discounted return.

size of 0.4s. This means that a horizon of 500 environment steps will run for 10 simulated
minutes.
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Chapter 5

Results

5.1 Evaluation procedure

In this section we evaluate the performance of our trained controller and perform sweeps
around its training distribution in order to assess its generalization capabilities. For each
sweep value, we run from 30 to 60 simulations using that sweep value and compute the mean
and standard deviation of the results obtained during each rollout, both of which are shown
in the plots below. Metrics are computed from averaging data collected over all vehicles (or
AVs) post warm-up time, except those located in the ghost cells (see Fig. 1.1).

We benchmark our RL controller against the FollowerStopper (FS) [5], a control algorithm
that achieved wave smoothing in a physical experiment. FS aims to drive at exactly a desired
velocity vdes whenever safe (i.e., as in a standard cruise controller), but will command a
suitable lower velocity vcmd < vdes whenever safety requires. Importantly, it attempts to
smoothly transition between those objectives. We keep the desired speed constant over each
simulation, and use the same hyperparameters for other portions of the controller as in [5].

We compare the results obtained by our RL controller to the uncontrolled human baseline
where all vehicles are IDM, to the FS controller (with different desired speeds vdes), and to
a variant of the FS that has vdes set to the downstream speed. We refer to the latter as
cheating FS as the downstream speed is non-local information that would not be available
using on-board sensors; external infrastructure would be needed to observe the downstream
speed.

5.2 Controller performance and robustness

Figure 5.1 shows the effect of the introduction of the RL controller on the time-space
diagram of the system. Without control, at speeds of both 3 and 5 m/s, waves are visible
as dark lines slopping from top-left to bottom-right. When RL control is introduced, the
waves become markedly lessin number and occasionally completely dissipate. Gaps formed
by the RL agents can be seen as white lines sloping from bottom-left to top-right. These
gaps terminate near the boundaries of waves as they dissipate the wave and are consumed
in the process of doing so.

Figure 5.2 examines the effects of the wave reduction on the average fuel efficiency (in
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Figure 5.1: Left: time-space diagram of the I-210 simulation with no control applied, for
a downstream speed of 3m/s (top) and 5m/s (bottom). Right: time-space diagram of the
I-210 simulation when 10% of vehicles are AVs using our RL controller, for a downstream
speed of 3m/s (top) and 5m/s (bottom). Time-space diagrams show the (average) vehicles
velocities as a function of their position on the highway and simulation time. Ghost edges
and warm-up time are not shown in these graphs.
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Figure 5.2: Average fuel efficiency of the RL controller on its training downstream speed
of 5m/s (highlighted in yellow), and generalization to speeds outside that range. Miles per
gallon fuel consumption is also shown for the FS controller with desired speed ranging from
1m/s to 8m/s and for the uncontrolled human baseline, as a function of the downstream
speed. All plots are computed using a fixed penetration rate of 10% and using the energy
model presented in Sec. 3.3.

Miles per Gallon i.e. mpg) of the system. For a fair comparison, we sweep the desired velocity
of the FS controller over all possible values of the downstream speed. As can be observed,
the RL controller improves markedly on the fuel efficiency of the system and achieves the
best performance of each of the FS controllers up until 7 m/s. Essentially, up until 7 m/s, the
RL controller acts almost as effectively as a controller that knows what the downstream speed
is. Figure 5.2 shows these same results as a percentage improvement over the uncontrolled
baseline. Here the cheating FS is added as an additional baseline, showing the close match
in performance between the RL and the non-local controller.

Finally, we investigate potential robustness issues with our controller. Figure 5.4 provides
a sanity check that the improvement in fuel consumption does not come at the cost of
reduced outflow up until 7 m/s. As this reduction in outflow is potentially undesirable,
the controller could be switched off around this boundary. Additionally, in Figure 5.5,
we investigate the effects of changing penetration rate on the controller. Our controller is
trained at a fixed penetration of 10%, shown as the yellow line in the Figure. Since at any
time, randomness could cause the penetration rate to vary from this value, it is important
that controller performance be preserved away from the training regime. The RL controller
performance, shown in th red, indicates that performance improvements are maintained
outside of the training distribution, with values close to 10% performing almost identically.
Additionally, there is generalization outside of this value and energy improvements are seen
at all penetrations.
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Figure 5.3: Fuel efficiency improvement of the RL controller on its training downstream speed
of 5m/s (highlighted in yellow) over the uncontrolled human baseline, and generalization to
speeds outside that range. Fuel improvement is also shown for the FS controller with a
desired speed of 3m/s, 5m/s and 8m/s as well as for the cheating FS. All plots are computed
using a fixed penetration rate of 10% and using the energy model presented in Sec. 3.3.

Figure 5.4: System outflow as a function of the downstream speed, shown for the RL con-
troller, the FS controller with desired speed equal to 5m/s, and the uncontrolled human
baseline. The yellow area highlights the downstream speed which the RL controller was
trained on, outside of which it is acting in complete generalization. All plots are computed
using a fixed penetration rate of 10%.
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Figure 5.5: Fuel efficiency improvement of the RL controller on its training penetration rate
of 10% (highlighted in yellow) over the uncontrolled human baseline, and generalization to
penetration rates outside that range. Fuel improvement is also shown for the FS controller
with a desired speed of 5m/s. Both plots are computed using a fixed downstream speed of
5m/s and using the energy model presented in Sec. 3.3.

5.3 Behavior analysis

In this section, we provide both qualitative and quantitative analysis to explain the energy
improvements induced by the RL controller. In Figure 5.6, we plot the acceleration profile
of the different controllers as a function of the speed of the lead vehicle and the space gap
i.e. distance to the lead car. Since the acceleration profile is 3-dimensional, we show slices
of the acceleration at 3, 5, and 7 m/s for the speed of the controller car. Note that these
acceleration profiles are the output after post-processing of the desired output with the safety
controller discussed in Sec. 3.2. As can be observed in the lower-half of the plots, the RL
controller has a wide region where it accelerates at an almost fixed acceleration rate, and a
vanishingly small region where it brakes. The RL controller is slowly accelerating at a fixed
rate, with the magnitude of positive acceleration decreasing as the AV speed passes from 3 to
7 m/s. Above 7 m/s, the RL controller only brakes, which explains the reduction in outflow
at downstream speeds above 7 m/s observed in Figure 5.4. Essentially, the RL controller is
accelerating most of the time and then relying on the safety controller to brake sharply at
the appropriate moment.

Finally, Figure 5.7, examines the net acceleration of the controllers. As can be seen,
the RL controller has a consistently higher amount of acceleration than the cheating FS but
is able to outperform it in MPG at both 5 and 6 m/s despite the higher accelerations at
those values. This is possible due to an asymmetry in the energy function; braking incurs
zero energy cost while the energy cost increases super-linearly with increasing acceleration.
By maintaining low accelerations and braking sharply at the last possible second, the RL
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Figure 5.6: This figure demonstrates the difference in acceleration profile between our RL
controller (bottom) and the FS controller set with a desired speed of 5m/s (top). The
instantaneous acceleration output of both controllers is plotted as a function of the AV
speed (left: 3m/s; middle: 5m/s; right: 7m/s), the leader speed and the space gap to the
leader.
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Figure 5.7: Average AV acceleration (absolute value of the instantaneous acceleration) using
the RL controller at its training downstream speed of 5m/s (highlighted in yellow) and
generalization to speeds outside that range. It is also plotted for the uncontrolled human
baseline, the FS controller with a desired speed of 5m/s, and the cheating FS controller. All
plots are computed using a fixed penetration rate of 10%.

controller is able to reduce energy expenditure while maintaining reasonable speeds.
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Figure 5.8: Acceleration, velocity and time gap profiles of an AV using the RL controller,
following a leader trajectory that has a sinusoidal velocity centered around 6m/s with an
amplitude of 1m/s and a period of 40s, whose velocity and acceleration profiles are also
plotted.

23



Conclusion

In this work we set forth a challenging new network for phantom jam smoothing and demon-
strate that multi-agent reinforcement learning can be used to design effective controllers
for optimizing energy over the whole network. We find that controllers designed in this
way are remarkably robust and, despite having no memory with which to perform system-
identification, have the same efficacy as controllers that know the system equilibrium across
a wide range of potential wave-inducing conditions. We qualitatively analyze the characteris-
tics of these controllers relative to a standard baseline and additionally demonstrate that our
controller functions effectively across varied penetration rates. Future work will investigate
how well these controllers transfer to new networks as well as their robustness to a larger
range of potential human driving dynamics.
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