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Abstract

Bridging Gaps Between Metrics and Social Outcomes in Multi-Stakeholder Machine Learning

by

Serena Wang

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Michael Jordan, Chair

With the rise of machine learning (ML), society has become increasingly driven by metrics
and algorithms. Unfortunately, even well-intended metrics often do not align with desired
social outcomes. For example, in healthcare, mandated reporting of hospital mortality rate
metrics actually led to worsened health outcomes for severely ill patients. Such misalignments
present a fundamental challenge to understanding and improving the societal impacts of ML,
where a growing literature relies on formulating broad notions such as fairness as metrics for
either evaluation or optimization.

A core challenge driving the misalignments between metrics and social outcomes is the fact
that ML systems are also multi-stakeholder systems. Some of the highest stakes deployments
of ML also have many diverse stakeholders with asymmetric information, power, and values.
For example, in healthcare, stakeholders include doctors, patients, hospitals, insurers, and
many more. In these multi-stakeholder settings, misalignments between metrics and social
outcomes challenge both policymakers seeking to audit ML systems, and engineers and
researchers formulating ML problems.

To bridge the gaps between the technical formulations of ML and its societal impacts, this
thesis addresses two complementary challenges. The first part concerns the implementation
of socially relevant desiderata of fairness, robustness, and interpretability in ML, which
become metrics in the form of objectives or constraints. Specifically, we will consider how to
algorithmically build these notions into modern ML systems under noisy data and evolving
large-scale training protocols. The second part will zoom out from these particular notions
to consider the wider role of metrics in multi-stakeholder systems. This part brings
in ideas from economics to achieve a better understanding of the interdependence between
metrics and the surrounding ecosystem of stakeholders with asymmetric information, power,
and values. In reimagining the ML development process with stakeholder involvement, we
ask, “Who has information on how to improve metrics, and when would they share it?”
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Chapter 1

Introduction

With the rise of machine learning (ML), society has become increasingly driven by metrics
and algorithms. Unfortunately, for many common data-driven metrics used for optimization
or evaluation, improvement in the metric does not always lead to better social outcomes.
Furthermore, it is often the most vulnerable who ultimately bear the cost of this misalignment.
Facebook’s optimization of engagement metrics exacerbated mental health issues in teenage
girls [Wells et al., 2021]. The focus of algorithms in healthcare on predicting costs led
to racially biased predictions of health risk [Obermeyer et al., 2019]. An ML admissions
algorithm dropped personal statements due to failure to improve their accuracy metric, and
the algorithm was discontinued after critique over potentially exacerbating gender and racial
disparities [Burke, 2020].

This mismatch between metrics and social outcomes is not unique to this era of ML –
it has been historically documented across disciplines, notably identified in economic and
monetary policy [Goodhart, 1984, Lucas Jr, 1976], social program evaluation [Campbell, 1979],
and auditing in education [Strathern, 1997]. An adage commonly referred to as “Goodhart’s
Law” describes some of the challenges that arise [Strathern, 1997]:

“When a measure becomes a target, it ceases to be a good measure.”

Phenomena like Goodhart’s Law continue to prevail in modern ML systems, and a gap
remains between this long history of social scientific literature and modern ML research.
Bridging this interdisciplinary gap offers rich avenues for improving our understanding of
the societal impacts of ML in the modern day. Still, the computational power and scale of
modern ML has brought a new gravity to the social consequences of these mismatches, along
with new technical frontiers.

In fact, Goodhart’s Law only scratches the surface of the types of complications that
can arise in modern ML systems. More generally, machine learning systems are also multi-
stakeholder systems: some of the highest stakes deployments of ML often involve many diverse
stakeholders with asymmetric in information, power, and values. For example, in education,
stakeholders include students, teachers, and schools. In content recommender systems,
stakeholders include content creators, users, and advertisers. In healthcare, stakeholders
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include patients, doctors, hospitals, insurers, and many more. Thus, core to understanding the
relationship between metrics and social outcomes is contextualizing the usage and evaluation
of ML in its surrounding ecosystem of stakeholders.

To bridge the gaps between the technical formulations of ML and its societal impacts,
this thesis is divided into two parts that address two complementary challenges. The first
part concerns the implementation of socially relevant desiderata of fairness, robustness,
and interpretability in ML, which are commonly metricized as objectives or constraints.
Specifically, we will consider how to algorithmically build these notions into modern ML
systems under noisy data and evolving large-scale training protocols. The second part
will zoom out from these particular notions to consider the wider role of metrics in
multi-stakeholder systems. To do this, we bring in economic modeling to understand
the interdependence between metrics and the surrounding ecosystem of stakeholders with
asymmetric information, power, and values.

1.1 Overview of Structure
We outline the two major parts of this thesis in more detail below. The content in these
parts is based on previously published work co-authored with P. M. Aronow, Stephen Bates,
Andrew Cotter, Wenshuo Guo, Maya R. Gupta, Sara Hooker, Michael I. Jordan, Katrina
Ligett, Michal Lukasik, Preston McAfee, Aditya Krishna Menon, Harikrishna Narasimhan,
and Yichen Zhou [Wang et al., 2020a, 2023b, Wang and Gupta, 2020, Wang et al., 2023a,
2024].

Part I: Fairness, Robustness, and Interpretability in ML

Growing public concern for the societal impacts of ML [House, 2023] has been matched
with a growing literature on developing ML systems that satisfy socially relevant desiderata
such as fairness, interpretability, robustness, safety, accountability, and many others [see,
e.g., Barocas et al., 2019, Doshi-Velez and Kim, 2017, Arrieta et al., 2020]. These notions
have been turned into metrics in various ways as objectives or constraints in ML problems.
However, implementing these notions in practice in real ML systems continues to be a
challenge as practitioners face issues with data and algorithms that deviate from theoretical
assumptions in the literature. For example, data might be noisy or biased in unanticipated
ways. ML training paradigms themselves are also evolving in the age of larger and larger
models, where training is increasingly done in multiple stages via protocols like knowledge
distillation, self-training, and fine-tuning [Hinton et al., 2015, Xie et al., 2020, Pan and Yang,
2009, De Lange et al., 2021]. Thus, it is no longer clear how a fairness notion encoded as a
single objective should be applied across these multi-stage training pipelines with multiple
optimization sub-problems.

Part I addresses these practical challenges to implementing fairness, robustness, and
interpretability in ML in three chapters. Chapter 2 considers how noisy data can bias
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fairness metrics, and specifically gives algorithms to maintain validity of group-based fairness
constraints when protected group data is noisy [Wang et al., 2020a]. Chapter 3 focuses
on evolving training paradigms, and presents methodology to improve robustness of ML
trained via a two-stage knowledge distillation protocol [Wang et al., 2023b]. Chapter 4
discusses ethical concepts overlooked by statistical group-based fairness metrics, and presents
shape-constraints as a bridge between fairness and interpretability [Wang and Gupta, 2020].

Part II: Metrics in Multi-Stakeholder Systems

Moving beyond specific fairness metrics and ML algorithms, Part II more generally considers
the complications that arise when metrics impact multi-stakeholder systems. Specifically,
this part focuses on the gaps between metrics and social outcomes in environments of diverse
stakeholders with asymmetric information, power, and values.

Stakeholder interactions and asymmetries in information, power, and values can lead
to backfiring of even most well-intended metric designs. For example, after the New York
Health Department mandated that hospitals report mortality rate metrics in 1990, severely
ill patients ended up experiencing dramatically worsened health outcomes, in part due to
providers selectively treating healthier patients [Dranove et al., 2003]. Since then, the Centers
for Medicare and Medicaid Services (CMS) has continued to invest billions of dollars in the
development of quality metrics [Wadhera et al., 2020, Casalino et al., 2016], which have also
become increasingly deeply embedded in patient decision-making at scale via online ranking
platforms like the US News and World Report, the LeapFrog Hospital Safety Score, and Cal
Hospital Compare [Rosenberg, 2013, Health and Agency, 2022]. Concurrently, studies have
continued to question the relationship between these metrics and patient outcomes [see, e.g.,
Glance et al., 2021, Ryan et al., 2009, Gonzalez and Ghaferi, 2014, Hwang et al., 2014, Jha
et al., 2008, Smith et al., 2017]. Designing quality metrics that are better aligned with social
welfare in the face of strategic selection behavior is the subject of Chapter 5 [Wang et al.,
2023a].

A prevailing challenge with quality metrics in healthcare, and metric design more generally,
is that stakeholders often have more information about the shortcomings of metrics than
platforms and institutions with the power to set the metrics. For instance, doctors may
observe more patient characteristics than health departments have on record [Dranove et al.,
2003]. Generalizing beyond the specific structure of treatment policies, Chapter 6 more
broadly models incentives for information sharing between agents in a system. Specifically,
we devise a model motivated by the question,

Who has information on how to improve metrics, and when would they share it?

Our approach brings in ideas from information design and mechanism design [Bergemann
and Morris, 2019] to re-imagine the ML development process. Future work of this kind is a
gateway to answering many open questions surrounding asymmetries in information, power,
and values in multi-stakeholder ML systems.
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Chapter 2

Robust Optimization for Fairness with
Noisy Protected Groups

2.1 Introduction
As machine learning becomes increasingly pervasive in real-world decision making, the
question of ensuring fairness of ML models becomes increasingly important. The definition
of what it means to be “fair” is highly context dependent. Much work has been done on
developing mathematical fairness criteria according to various societal and ethical notions of
fairness, as well as methods for building machine-learning models that satisfy those fairness
criteria [see, e.g., Dwork et al., 2012, Hardt et al., 2016b, Russell et al., 2017, Kusner et al.,
2017, Zafar et al., 2017, Cotter et al., 2019d, Friedler et al., 2019, Wang and Gupta, 2020].

Many of these mathematical fairness criteria are group-based, where a target metric is
equalized or enforced over subpopulations in the data, also known as protected groups. For
example, the equality of opportunity criterion introduced by Hardt et al. [2016b] specifies
that the true positive rates for a binary classifier are equalized across protected groups. The
demographic parity [Dwork et al., 2012] criterion requires that a classifier’s positive prediction
rates are equal for all protected groups.

One important practical question is whether or not these fairness notions can be reliably
measured or enforced if the protected group information is noisy, missing, or unreliable. For
example, survey participants may be incentivized to obfuscate their responses for fear of
disclosure or discrimination, or may be subject to other forms of response bias. Social desir-
ability response bias may affect participants’ answers regarding religion, political affiliation,
or sexual orientation [Krumpal, 2011]. The collected data may also be outdated: census data
collected ten years ago may not an accurate representation for measuring fairness today.

Another source of noise arises from estimating the labels of the protected groups. For
various image recognition tasks (e.g., face detection), one may want to measure fairness across
protected groups such as gender or race. However, many large image corpora do not include
protected group labels, and one might instead use a separately trained classifier to estimate
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group labels, which is likely to be noisy Buolamwini and Gebru [2018]. Similarly, zip codes
can act as a noisy indicator for socioeconomic groups.

In this paper, we focus on the problem of training binary classifiers with fairness constraints
when only noisy labels, Ĝ ∈ {1, ..., m̂}, are available for m true protected groups, G ∈
{1, ...,m}, of interest. We study two aspects: First, if one satisfies fairness constraints for
noisy protected groups Ĝ, what can one say with respect to those fairness constraints for the
true groups G? Second, how can side information about the noise model between Ĝ and G
be leveraged to better enforce fairness with respect to the true groups G?

Contributions

Our contributions can be summarized as follows:

1. We provide a bound on the fairness violations with respect to the true groups G when
the fairness criteria are satisfied for the noisy groups Ĝ.

2. We introduce two new robust-optimization methodologies that satisfy fairness criteria on
the true protected groups G while minimizing a training objective. These methodologies
differ in convergence properties, conservatism, and noise model specification.

3. We show empirically that unlike the naïve approach, our two proposed approaches are
able to satisfy fairness criteria with respect to the true groups G on average.

The first approach we propose (Section 2.5) is based on distributionally robust optimization
(DRO) [Duchi and Namkoong, 2018, Ben-Tal et al., 2013]. Let p denote the full distribution
of the data, X, Y ∼ p. Let pj be the distribution of the data conditioned on the true groups
being j, so X, Y |G = j ∼ pj; and p̂j be the distribution of X, Y conditioned on the noisy
groups, so X, Y |Ĝ = j ∼ p̂j. Given an upper bound on the total variation (TV) distance
γj ≥ TV (pj, p̂j) for each j ∈ {1, ...,m}, we define p̃j such that the conditional distributions
(X, Y |G̃ = j ∼ p̃j) fall within the bound γj with respect to p̂j: γj ≥ TV (p̃j, p̂j). Thus, the
set of all such p̃j is guaranteed to include the unknown true group distribution pj, for all
j. Because it is based on the well-studied DRO setting, this approach has the advantage of
being easy to analyze. However, the results may be overly conservative unless tight bounds
{γj}mj=1 can be given.

Our second robust optimization strategy (Section 2.6) uses a robust re-weighting of the
data from soft protected group assignments, inspired by criteria proposed by Kallus et al.
[2020] for auditing the fairness of ML models given imperfect group information. Extending
their work, we optimize a constrained problem to achieve their robust fairness criteria, and
provide a theoretically ideal algorithm that is guaranteed to converge to an optimal feasible
point, as well as an alternative practical version that is more computationally tractable.
Compared to DRO, this second approach uses a more precise noise model, P (Ĝ = k|G = j),
between Ĝ and G for all pairs of group labels j, k, that can be estimated from a small auxiliary
dataset containing ground-truth labels for both G and Ĝ. An advantage of this more detailed
noise model is that a practitioner can incorporate knowledge of any bias in the relationship
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between G and Ĝ (for instance, survey respondents favoring one socially preferable response
over others), which causes it to be less likely than DRO to result in an overly-conservative
model. Notably, this approach does not require that Ĝ be a direct approximation of G—in
fact, G and Ĝ can represent distinct (but related) groupings, or even groupings of different
sizes, with the noise model tying them together. For example, if G represents “language
spoken at home,” then Ĝ could be a noisy estimate of “country of residence.”

2.2 Related Work
Constrained optimization for group-based fairness metrics. The simplest techniques
for enforcing group-based constraints apply a post-hoc correction of an existing classifier
Hardt et al. [2016b], Woodworth et al. [2017]. For example, one can enforce equality of
opportunity by choosing different decision thresholds for an existing binary classifier for
each protected group [Hardt et al., 2016b]. However, the classifiers resulting from these
post-processing techniques may not necessarily be optimal in terms of accuracy. Thus,
constrained optimization techniques have emerged to train machine-learning models that can
more optimally satisfy the fairness constraints while minimizing a training objective [Goh
et al., 2016, Cotter et al., 2019b,d, Zafar et al., 2017, Agarwal et al., 2018, Donini et al., 2018,
Narasimhan et al., 2019a].

Fairness with noisy protected groups. Group-based fairness notions rely on the knowl-
edge of protected group labels. However, practitioners may only have access to noisy or
unreliable protected group information. One may naïvely try to enforce fairness constraints
with respect to these noisy protected groups using the above constrained optimization tech-
niques, but there is no guarantee that the resulting classifier will satisfy the fairness criteria
with respect to the true protected groups [Gupta et al., 2018].

Under the conservative assumption that a practitioner has no information about the
protected groups, Hashimoto et al. [2018] applied DRO to enforce what Lahoti et al. [2020]
refer to as Rawlsian Max-Min fairness. In contrast, here we assume some knowledge of a
noise model for the noisy protected groups, and are thus able to provide tighter results with
DRO: we provide a practically meaningful maximum total variation distance bound to enforce
in the DRO procedure. We further extend Hashimoto et al. [2018]’s work by applying DRO
to problems equalizing fairness metrics over groups, which may be desired in some practical
applications [Kolodny, 2019].

Concurrently, Lahoti et al. [2020] proposed an adversarial reweighting approach to improve
group fairness by assuming that non-protected features and task labels are correlated with
unobserved groups. Like Hashimoto et al. [2018], Lahoti et al. [2020] also enforce Rawlsian
Max-Min fairness with unknown protected groups, whereas our setup includes constraints for
parity based fairness notions.

Kallus et al. [2020] considered the problem of auditing fairness criteria given noisy groups.
They propose a “robust” fairness criteria using soft group assignments and show that if a
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given model satisfies those fairness criteria with respect to the noisy groups, then the model
will satisfy the fairness criteria with respect to the true groups. Here, we build on that work
by providing an algorithm for training a model that satisfies their robust fairness criteria
while minimizing a training objective.

Lamy et al. [2019] showed that when there are only two protected groups, one need only
tighten the “unfairness tolerance” when enforcing fairness with respect to the noisy groups.
Mozannar et al. [2020] showed that if the predictor is independent of the protected attribute,
then fairness with respect to the noisy groups is the same as fairness with respect to the true
groups. When there are more than two groups, and when the noisy groups are included as
an input to the classifier, other robust optimization approaches may be necessary. When
using post-processing instead of constrained optimization, Awasthi et al. [2020] showed that
under certain conditional independence assumptions, post-processing using the noisy groups
will not be worse in terms of fairness violations than not post-processing at all. In our work,
we consider the problem of training the model subject to fairness constraints, rather than
taking a trained model as given and only allowing post-processing, and we do not rely on
conditional independence assumptions. Indeed, the model may include the noisy protected
attribute as a feature.

Robust optimization. We use a minimax set-up of a two-player game where the uncertainty
is adversarial, and one minimizes a worst-case objective over a feasible set [Ben-Tal et al.,
2009, Bertsimas et al., 2011]; e.g., the noise is contained in a unit-norm ball around the input
data. As one such approach, we apply a recent line of work on DRO which assumes that the
uncertain distributions of the data are constrained to belong to a certain set [Namkoong and
Duchi, 2016, Duchi and Namkoong, 2018, Li et al., 2019].

2.3 Optimization Problem Setup
We begin with the training problem for incorporating group-based fairness criteria in a
learning setting [Goh et al., 2016, Hardt et al., 2016b, Donini et al., 2018, Agarwal et al.,
2018, Cotter et al., 2019d]. Let X ∈ X ⊆ RD be a random variable representing a feature
vector, with a random binary label Y ∈ Y = {0, 1} and random protected group membership
G ∈ G = {1, ...,m}. In addition, let Ĝ ∈ Ĝ = {1, ..., m̂} be a random variable representing
the noisy protected group label for each (X, Y ), which we assume we have access to during
training. For simplicity, assume that Ĝ = G (and m̂ = m). Let ϕ(X; θ) represent a binary
classifier with parameters θ ∈ Θ where ϕ(X; θ) > 0 indicates a positive classification.

Then, training with fairness constraints [Goh et al., 2016, Hardt et al., 2016b, Donini
et al., 2018, Agarwal et al., 2018, Cotter et al., 2019d] is:

min
θ

f(θ) s.t. gj(θ) ≤ 0,∀j ∈ G, (2.1)

The objective function f(θ) = E[l(θ,X, Y )], where l(θ,X, Y ) is any standard binary classifier
training loss. The constraint functions gj(θ) = E[h(θ,X, Y )|G = j] for j ∈ G, where h(θ,X, Y )
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is the target fairness metric, e.g. h(θ,X, Y ) = 1
(
ϕ(X; θ) > 0

)
− E[1

(
ϕ(X; θ) > 0

)
] when

equalizing positive rates for the demographic parity [Dwork et al., 2012] criterion (see Cotter
et al. [2019d] for more examples). Algorithms have been studied for problem (2.1) when the
true protected group labels G are given [see, e.g., Eban et al., 2017, Agarwal et al., 2018,
Cotter et al., 2019d].

2.4 Bounds for the Naïve Approach

When only given the noisy groups Ĝ, one naïve approach to solving problem (2.1) is to simply
re-define the constraints using the noisy groups [Gupta et al., 2018]:

min
θ

f(θ) s.t. ĝj(θ) ≤ 0, ∀j ∈ G, (2.2)

where ĝj(θ) = E[h(θ,X, Y )|Ĝ = j], j ∈ G.
This introduces a practical question: if a model was constrained to satisfy fairness criteria

on the noisy groups, how far would that model be from satisfying the constraints on the true
groups? We show that the fairness violations on the true groups G can at least be bounded
when the fairness criteria are satisfied on the noisy groups Ĝ, provided that Ĝ does not
deviate too much from G.

Bounding fairness constraints using TV distance

Recall that X, Y |G = j ∼ pj and X, Y |Ĝ = j ∼ p̂j. We use the TV distance TV (pj, p̂j) to
measure the distance between the probability distributions pj and p̂j (see Appendix A.1 and
Villani [2009]). Given a bound on TV (pj, p̂j), we obtain a bound on fairness violations for the
true groups when naïvely solving the optimization problem (2.2) using only the noisy groups:

Theorem 1. (proof in Appendix A.1.) Suppose a model with parameters θ satisfies fairness
criteria with respect to the noisy groups Ĝ: ĝj(θ) ≤ 0, ∀j ∈ G. Suppose |h(θ, x1, y1) −
h(θ, x2, y2)| ≤ 1 for any (x1, y1) ̸= (x2, y2). If TV (pj, p̂j) ≤ γj for all j ∈ G, then the fairness
criteria with respect to the true groups G will be satisfied within slacks γj for each group:
gj(θ) ≤ γj, ∀j ∈ G.

Theorem 1 is tight for the family of functions h that satisfy |h(θ, x1, y1)− h(θ, x2, y2)| ≤ 1
for any (x1, y1) ̸= (x2, y2). This condition holds for any fairness metrics based on rates such
as demographic parity, where h is simply some scaled combination of indicator functions.
Cotter et al. [2019d] list many such rate-based fairness metrics. Theorem 1 can be generalized
to functions h whose differences are not bounded by 1 by looking beyond the TV distance to
more general Wasserstein distances between pj and p̂j. We show this in Appendix A.1, but
for all fairness metrics referenced in this work, formulating Theorem 1 with the TV distance
is sufficient.
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Estimating the TV distance bound in practice

Theorem 1 bounds the fairness violations of the naïve approach in terms of the TV distance
between the conditional distributions pj and p̂j, which assumes knowledge of pj and is not
always possible to estimate. Instead, we can estimate an upper bound on TV (pj, p̂j) from
metrics that are easier to obtain in practice. Specifically, the following lemma shows that
shows that if the prior on class j is unaffected by the noise, P (G ̸= Ĝ|G = j) directly
translates into an upper bound on TV (pj, p̂j).

Lemma 1. (proof in Appendix A.1.) Suppose P (G = j) = P (Ĝ = j) for a given j ∈ G.
Then TV (pj, p̂j) ≤ P (G ̸= Ĝ|G = j).

In practice, an estimate of P (G ̸= Ĝ|G = j) may come from a variety of sources. As
assumed by Kallus et al. [2020], a practitioner may have access to an auxiliary dataset
containing G and Ĝ, but not X or Y . Or, practitioners may have some prior estimate of
P (G ≠ Ĝ|G = j): if Ĝ is estimated by mapping zip codes to the most common socioeconomic
group for that zip code, then census data provides a prior for how often Ĝ produces an
incorrect socioeconomic group.

By relating Theorem 1 to realistic noise models, Lemma 1 allows us to bound the fairness
violations of the naïve approach using quantities that can be estimated empirically. In the
next section we show that Lemma 1 can also be used to produce a robust approach that will
actually guarantee full satisfaction of the fairness violations on the true groups G.

2.5 Robust Approach 1: Distributionally Robust
Optimization (DRO)

While Theorem 1 provides an upper bound on the performance of the naïve approach, it fails
to provide a guarantee that the constraints on the true groups are satisfied, i.e. gj(θ) ≤ 0.
Thus, it is important to find other ways to do better than the naïve optimization problem
(2.2) in terms of satisfying the constraints on the true groups. In particular, suppose in
practice we are able to assert that P (G ̸= Ĝ|G = j) ≤ γj for all groups j ∈ G. Then Lemma
1 implies a bound on TV distance between the conditional distributions on the true groups
and the noisy groups: TV (pj, p̂j) ≤ γj. Therefore, any feasible solution to the following
constrained optimization problem is guaranteed to satisfy the fairness constraints on the true
groups:

min
θ∈Θ

f(θ) s.t. max
p̃j :TV (p̃j ,p̂j)≤γj

p̃j≪p

g̃j(θ) ≤ 0, ∀j ∈ G, (2.3)

where g̃j(θ) = EX,Y∼p̃j [h(θ,X, Y )], and p̃j ≪ p denotes absolute continuity.
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General DRO formulation

A DRO problem is a minimax optimization [Duchi and Namkoong, 2018]:

min
θ∈Θ

max
q:D(q,p)≤γ

EX,Y∼q[l(θ,X, Y )], (2.4)

where D is some divergence metric between the distributions p and q, and l : Θ×X ×Y → R.
Much existing work on DRO focuses on how to solve the DRO problem for different divergence
metrics D. Namkoong and Duchi [2016] provide methods for efficiently and optimally solving
the DRO problem for f -divergences, and other work has provided methods for solving the
DRO problem for Wasserstein distances [Li et al., 2019, Esfahani and Kuhn., 2018]. Duchi
and Namkoong [2018] further provide finite-sample convergence rates for the empirical version
of the DRO problem.

Solving the DRO problem

An important and often difficult aspect of using DRO is specifying a divergence D and bound
γ that are meaningful. In this case, Lemma 1 gives us the key to formulating a DRO problem
that is guaranteed to satisfy the fairness criteria with respect to the true groups G.

The optimization problem (2.3) can be written in the form of a DRO problem (2.4)
with TV distance by using the Lagrangian formulation. Adapting a simplified version of
a gradient-based algorithm provided by Namkoong and Duchi [2016], we are able to solve
the empirical formulation of problem (2.4) efficiently. Details of our empirical Lagrangian
formulation and pseudocode are in Appendix A.2.

2.6 Robust Approach 2: Soft Group Assignments
While any feasible solution to the distributionally robust constrained optimization problem
(2.3) is guaranteed to satisfy the constraints on the true groups G, choosing each γj = P (G ̸=
Ĝ|G = j) as an upper bound on TV (pj, p̂j) may be rather conservative. Therefore, as an
alternative to the DRO constraints in (2.3), in this section we show how to optimize using
the robust fairness criteria proposed by Kallus et al. [2020].

Constraints with soft group assignments

Given a trained binary predictor, Ŷ (θ) = 1(ϕ(θ;X) > 0), Kallus et al. [2020] proposed a set
of robust fairness criteria that can be used to audit the fairness of the given trained model
with respect to the true groups G ∈ G using the noisy groups Ĝ ∈ Ĝ, where G = Ĝ is not
required in general. They assume access to a main dataset with the noisy groups Ĝ, true
labels Y , and features X, as well an auxiliary dataset containing both the noisy groups Ĝ and
the true groups G. From the main dataset, one obtains estimates of the joint distributions
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(Ŷ (θ), Y, Ĝ); from the auxiliary dataset, one obtains estimates of the joint distributions (Ĝ, G)
and a noise model P (G = j|Ĝ = k) ∀j ∈ G, k ∈ Ĝ.

These estimates are used to associate each example with a vector of weights, where
each weight is an estimated probability that the example belongs to the true group j.
Specifically, suppose that we have a function w : G × {0, 1} × {0, 1} × Ĝ → [0, 1], where
w(j | ŷ, y, k) estimates P (G = j|Ŷ (θ) = ŷ, Y = y, Ĝ = k). We rewrite the fairness constraint
E[h(θ,X, Y )|G = j] = E[h(θ,X,Y )P (G=j|Ŷ (θ),Y,Ĝ)]

P (G=j)
(derivation in Appendix A.3), and estimate

this using w. We also show how h can be adapted to the equality of opportunity setting in
Appendix A.3.

Given the main dataset and auxiliary dataset, we limit the possible values of the function
w(j | ŷ, y, k) using the law of total probability (as in Kallus et al. [2020]). The set of possible
functions w is given by:

W(θ) =
{
w :

∑
ŷ,y∈{0,1} w(j|ŷ,y,k)P (Ŷ (θ)=ŷ,Y=y|Ĝ=k)=P (G=j|Ĝ=k),∑m
j=1 w(j|ŷ,y,k)=1,w(j|ŷ,y,k)≥0 ∀ŷ,y∈{0,1},j∈G,k∈Ĝ

}
. (2.5)

The robust fairness criteria can now be written in terms of W(θ) as:

max
w∈W(θ)

gj(θ, w) ≤ 0, ∀j ∈ G where gj(θ, w) =
E[h(θ,X, Y )w(j|Ŷ (θ), Y, Ĝ)]

P (G = j)
. (2.6)

Robust optimization with soft group assignments

We extend Kallus et al. [2020]’s work by formulating a robust optimization problem using soft
group assignments. Combining the robust fairness criteria above with the training objective,
we propose:

min
θ∈Θ

f(θ) s.t. max
w∈W(θ)

gj(θ, w) ≤ 0, ∀j ∈ G, (2.7)

where Θ denotes the space of model parameters. Any feasible solution is guaranteed to satisfy
the original fairness criteria with respect to the true groups. Using a Lagrangian, problem
(2.7) can be rewritten as:

min
θ∈Θ

max
λ∈Λ
L(θ, λ) (2.8)

where the Lagrangian L(θ, λ) = f(θ) +
∑m

j=1 λj maxw∈W(θ) gj(θ, w), and Λ ⊆ Rm
+ .

When solving this optimization problem, we use the empirical finite-sample versions of each
expectation. As described in Proposition 9 of Kallus et al. [2020], the inner maximization (2.6)
over w ∈ W(θ) can be solved as a linear program for a given fixed θ. However, the Lagrangian
problem (2.8) is not as straightforward to optimize, since the feasible set W(θ) depends on
θ through Ŷ . While in general the pointwise maximum of convex functions is convex, the
dependence of W(θ) on θ means that even if gj(θ, w) were convex, maxw∈W(θ) gj(θ, w) is not
necessarily convex. We first introduce a theoretically ideal algorithm that we prove converges
to an optimal, feasible solution. This ideal algorithm relies on a minimization oracle, which
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is not always computationally tractable. Therefore, we further provide a practical algorithm
using gradient methods that mimics the ideal algorithm in structure and computationally
tractable, but does not share the same convergence guarantees.

Ideal algorithm

The minimax problem in equation (2.8) can be interpreted as a zero-sum game between
the θ-player and λ-player. In Algorithm 1, we provide an iterative procedure for solving
equation (2.8), where at each step, the θ-player performs a full optimization, i.e., a best
response over θ, and the λ-player responds with a gradient ascent update on λ.

For a fixed θ, the gradient of the Lagrangian L with respect to λ is given by ∂L(θ, λ)/∂λj =
maxw∈W(θ) gj(θ, w), which is a linear program in w. The challenging part, however, is the best
response over θ; that is, finding a solution minθ L(θ, λ) for a given λ, as this involves a max
over constraints W(θ) which depend on θ. To implement this best response, we formulate
a nested minimax problem that decouples this intricate dependence on θ, by introducing
Lagrange multipliers for the constraints in W(θ). We then solve this problem with an oracle
that jointly minimizes over both θ and the newly introduced Lagrange multipliers (details in
Algorithm 4 in Appendix A.4).

The output of the best-response step is a stochastic classifier with a distribution θ̂(t) over
a finite set of θs. Algorithm 1 then returns the average of these distributions, θ = 1

T

∑T
t=1 θ̂

t,
over T iterations. By extending recent results on constrained optimization [Cotter et al.,
2019b], we show in Appendix A.4 that the output θ is near-optimal and near-feasible for the
robust optimization problem in equation (2.7). That is, for a given ε > 0, by picking T to be
large enough, we have that the objective Eθ∼θ [f(θ)] ≤ f(θ∗) + ε, for any θ∗ that is feasible,
and the expected violations in the robust constraints are also no more than ε.

Algorithm 1 Ideal Algorithm

Require: learning rate ηλ > 0, estimates of P (G = j|Ĝ = k) to specify W(θ), ρ, ρ′
1: for t = 1, . . . , T do
2: Best response on θ: run the oracle-based Algorithm 4 to find a distribution θ̂(t) over Θ

s.t. Eθ∼θ̂(t)

[
L(θ, λ(t))

]
≤ minθ∈Θ L(θ, λ(t)) + ρ.

3: Estimate gradient ∇λL(θ̂(t), λ(t)): for each j ∈ G, choose δ(t)j s.t.
δ
(t)
j ≤ Eθ∼θ̂(t)

[
maxw∈W(θ) gj(θ, w)

]
≤ δ

(t)
j + ρ′

4: Ascent step on λ: λ̃(t+1)
j ← λ

(t)
j + ηλ δ

(t)
j , ∀j ∈ G; λ(t+1) ← ΠΛ(λ̃

(t+1))
5: end for
6: return θ = 1

T

∑T
t=1 θ̂

(t)
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Practical algorithm

Algorithm 1 is guaranteed to converge to a near-optimal, near-feasible solution, but may be
computationally intractable and impractical for the following reasons. First, the algorithm
needs a nonconvex minimization oracle to compute a best response over θ. Second, there
are multiple levels of nesting, making it difficult to scale the algorithm with mini-batch or
stochastic updates. Third, the output is a distribution over multiple models, which can be be
difficult to use in practice Narasimhan et al. [2019b].

Therefore, we supplement Algorithm 1 with a practical algorithm, Algorithm 5 (see
Appendix A.5) that is similar in structure, but approximates the inner best response routine
with two simple steps: a maximization over w ∈ W(θ(t)) using a linear program for the
current iterate θ(t), and a gradient step on θ at the maximizer w(t). Algorithm 5 leaves
room for other practical modifications such as using stochastic gradients. We provide further
discussion in Appendix A.5.

2.7 Experiments
We compare the performance of the naïve approach and the two robust optimization ap-
proaches (DRO and soft group assignments) empirically using two datasets from UCI Dua
and Graff [2017] with different constraints. For both datasets, we stress-test the performance
of the different algorithms under different amounts of noise between the true groups G and the
noisy groups Ĝ. We take l to be the hinge loss. The specific constraint violations measured
and additional training details can be found in Appendix A.6. All experiment code is available
on GitHub at https://github.com/wenshuoguo/robust-fairness-code.

Generating noisy protected groups: Given the true protected groups, we synthetically
generate noisy protected groups by selecting a fraction γ of data uniformly at random. For
each selected example, we perturb the group membership to a different group also selected
uniformly at random from the remaining groups. This way, for a given γ, P (Ĝ ̸= G) ≈
P (Ĝ ≠ G|G = j) ≈ γ for all groups j, k ∈ G. We evaluate the performance of the different
algorithms ranging from small to large amounts of noise: γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

Case study 1 (Adult): equality of opportunity

We use the Adult dataset from UCI [Dua and Graff, 2017] collected from 1994 US Census,
which has 48,842 examples and 14 features (details in Appendix A.6). The classification task
is to determine whether an individual makes over $50K per year. For the true groups, we use
m = 3 race groups of “white,” “black,” and “other.” As done by Cotter et al. [2019d], Friedler
et al. [2019], Zafar et al. [2019], we enforce equality of opportunity by equalizing true positive
rates (TPRs). Specifically, we enforce that the TPR conditioned on each group is greater
than or equal to the overall TPR on the full dataset with some slack α, which produces m
true group fairness criteria, {gTPR

j (θ) ≤ 0} ∀j ∈ G (details on the constraint function h in
Appendix A.2 and A.3).

https://github.com/wenshuoguo/robust-fairness-code
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Case study 2 (Credit): equalized odds

We consider another application of group-based fairness constraints to credit default prediction.
Fourcade and Healy [2013] provide an in depth study of the effect of credit scoring techniques
on the credit market, showing that this scoring system can perpetuate inequity. Enforcing
group-based fairness with credit default predictions has been considered in a variety of prior
works [Hardt et al., 2016b, Berk et al., 2017b, Wang and Gupta, 2020, Aghaei et al., 2019,
Bera et al., 2019, Grari et al., 2020, Friedler et al., 2019, Barocas et al., 2019]. Following
Hardt et al. [2016b] and Grari et al. [2020], we enforce equalized odds [Hardt et al., 2016b] by
equalizing both true positive rates (TPRs) and false positive rates (FPRs) across groups.

We use the “default of credit card clients” dataset from UCI Dua and Graff [2017] collected
by a company in Taiwan Yeh and hui Lien [2009], which contains 30,000 examples and
24 features (details in Appendix A.6). The classification task is to determine whether an
individual defaulted on a loan. We use m = 3 groups based on education levels: “graduate
school,” “university,” and “high school/other” (the use of education in credit lending has
previously been studied in the algorithmic fairness and economics literature [Gillis, 2020,
Bera et al., 2019, Lazar and Vijaykumar, 2020]). We constrain the TPR conditioned on each
group to be greater than or equal to the overall TPR on the full dataset with a slack α, and
the FPR conditioned on each group to be less than or equal to the overall FPR on the full
dataset. This produces 2m true group-fairness criteria, {gTPR

j (θ) ≤ 0, gFPR
j (θ) ≤ 0} ∀j ∈ G

(details on constraint functions h in Appendix A.2 and A.3).
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Figure 2.1: Case study 1 (Adult): maximum true group constraint violations on test set for
the Naive, DRO, and soft assignments (SA) approaches for different group noise levels γ on
the Adult dataset (mean and standard error over 10 train/val/test splits). The black solid
line represents the performance of the trivial “all negatives” classifier, which has constraint
violations of 0. A negative violation indicates satisfaction of the fairness constraints on the
true groups.
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Figure 2.2: Case study 2 (Credit): maximum true group constraint violations on test set for
the Naive, DRO, and soft assignments (SA) approaches for different group noise levels γ on
the Credit dataset (mean and standard error over 10 train/val/test splits). This figure shows
the max constraint violation over all TPR and FPR constraints, and Figure A.3 in Appendix
A.6 shows the breakdown of these constraint violations into the max TPR and the max FPR
constraint violations.
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Figure 2.3: Error rates on test set for different group noise levels γ on the Adult dataset
(left) and the Credit dataset (right) (mean and standard error over 10 train/val/test splits).
The black solid line represents the performance of the trivial “all negatives” classifier. The
soft assignments (SA) approach achieves lower error rates than DRO, and as the noise
level increases, the gap in error rate between the naive approach and each robust approach
increases.

Results

In case study 1 (Adult), the unconstrained model achieves an error rate of 0.1447± 0.0012
(mean and standard error over 10 splits) and a maximum constraint violation of 0.0234±0.0164
on test set with respect to the true groups. The model that assumes knowledge of the
true groups achieves an error rate of 0.1459± 0.0012 and a maximum constraint violation
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of −0.0469 ± 0.0068 on test set with respect to the true groups. As a sanity check, this
demonstrates that when given access to the true groups, it is possible to satisfy the constraints
on the test set with a reasonably low error rate.

In case study 2 (Credit), the unconstrained model achieves an error rate of 0.1797±0.0013
(mean and standard error over 10 splits) and a maximum constraint violation of 0.0264±0.0071
on the test set with respect to the true groups. The constrained model that assumes knowledge
of the true groups achieves an error rate of 0.1796±0.0011 and a maximum constraint violation
of −0.0105± 0.0070 on the test set with respect to the true groups. For this dataset, it was
possible to satisfy the constraints with approximately the same error rate on test as the
unconstrained model. Note that the unconstrained model achieved a lower error rate on the
train set than the constrained model (0.1792 ± 0.0015 unconstrained vs. 0.1798 ± 0.0024
constrained).

For both case studies, Figures 2.1 and 2.2 show that the robust approaches DRO (center)
and soft group assignments (SA) (right) satisfy the constraints on average for all noise levels.
As the noise level increases, the naïve approach (left) has increasingly higher true group
constraint violations. The DRO and SA approaches come at a cost of a higher error rate than
the naïve approach (Figure 2.3). The error rate of the naïve approach is close to the model
optimized with constraints on the true groups G, regardless of the noise level γ. However,
as the noise increases, the naïve approach no longer controls the fairness violations on the
true groups G, even though it does satisfy the constraints on the noisy groups Ĝ (Figures
A.1 and A.4 in Appendix A.6). DRO generally suffers from a higher error rate compared to
SA (Figure 2.3), illustrating the conservatism of the DRO approach.

2.8 Conclusions
We explore the practical problem of enforcing group-based fairness for binary classification
given noisy protected group information. In addition to providing new theoretical analysis of
the naïve approach of only enforcing fairness on the noisy groups, we also propose two new
robust approaches that guarantee satisfaction of the fairness criteria on the true groups. For
the DRO approach, Lemma 1 gives a theoretical bound on the TV distance to use in the
optimization problem. For the soft group assignments approach, we provide a theoretically
ideal algorithm and a practical alternative algorithm for satisfying the robust fairness criteria
proposed by Kallus et al. [2020] while minimizing a training objective. We empirically show
that both of these approaches managed to satisfy the constraints with respect to the true
groups, even under difficult noise models.

In follow-up work, Narasimhan et al. [2020] provide a general method for enforcing a
large number of constraints at once, and enforce constraints concurrently on many possible
realizations of noisy protected groups under a given noise model. This can be seen as an
extension of the Soft Group Assignments approach that we propose in Section 2.6, which
Narasimhan et al. [2020] describe in their Appendix.
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One additional avenue of future work is to empirically compare the robust approaches
when the noisy groups have different dimensionality from the true groups (Appendix A.2).
Second, the looseness of the bound in Lemma 1 can lead to over-conservatism of the DRO
approach, suggesting a need to better calibrate the DRO neighborhood. Finally, it would be
valuable to study the impact of distribution mismatch between the main dataset and the
auxiliary dataset.

2.9 Choices and Limitations of Fairness Metrics
As machine learning is increasingly employed in high stakes environments, any potential
application has to be scrutinized to ensure that it will not perpetuate, exacerbate, or create
new injustices. Aiming to make machine learning algorithms themselves intrinsically fairer,
more inclusive, and more equitable plays an important role in achieving that goal. Group-
based fairness [Hardt et al., 2016b, Friedler et al., 2019] is a popular approach that the
machine learning community has used to define and evaluate fair machine learning algorithms.
Until recently, such work has generally assumed access to clean, correct protected group labels
in the data. Our work addresses the technical challenge of enforcing group-based fairness
criteria under noisy, unreliable, or outdated group information. However, we emphasize that
this technical improvement alone does not necessarily lead to an algorithm having positive
societal impact, for reasons that we now delineate.

Choice of fairness criteria

First, our work does not address the choice of the group-based fairness criteria. Many
different algorithmic fairness criteria have been proposed, with varying connections to prior
sociopolitical framing Narayanan [2018], Hutchinson and Mitchell [2019]. From an algorithmic
standpoint, these different choices of fairness criteria have been shown to lead to very different
prediction outcomes and tradeoffs Friedler et al. [2019]. Furthermore, even if a mathematical
criterion may seem reasonable (e.g., equalizing positive prediction rates with demographic
parity), Liu et al. [2018] show that the long-term impacts may not always be desirable, and
the choice of criteria should be heavily influenced by domain experts, along with awareness
of tradeoffs.

Choice of protected groups

In addition to the specification of fairness criteria, our work also assumes that the true
protected group labels have been pre-defined by the practitioner. However, in real applications,
the selection of appropriate true protected group labels is itself a nontrivial issue.

First, the measurement and delineation of these protected groups should not be overlooked,
as “the process of drawing boundaries around distinct social groups for fairness research
is fraught; the construction of categories has a long history of political struggle and legal
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argumentation” Hanna et al. [2020]. Important considerations include the context in which
the group labels were collected, who chose and collected them, and what implicit assumptions
are being made by choosing these group labels. One example is the operationalization of
race in the context of algorithmic fairness. Hanna et al. [2020] critiques “treating race as an
attribute, rather than a structural, institutional, and relational phenomenon.” The choice of
categories surrounding gender identity and sexual orientation have strong implications and
consequences as well Group [2014], with entire fields dedicated to critiquing these constructs.
Jacobs and Wallach [2019] provide a general framework for understanding measurement issues
for these sensitive attributes in the machine-learning setting, building on foundational work
from the social sciences Bandalos [2017].

Another key consideration when defining protected groups is problems of intersectionality
Crenshaw [1990], Hooks [1992]. Group-based fairness criteria inherently do not consider
within-group inequality Kasy and Abebe [2020]. Even if we are able to enforce fairness criteria
robustly for a given set of groups, the intersections of groups may still suffer Buolamwini and
Gebru [2018].

Domain specific considerations

Finally, we emphasize that group-based fairness criteria simply may not be sufficient to
mitigate problems of significant background injustice in certain domains. Abebe et al. [2020]
argue that computational methods have mixed roles in addressing social problems, where
they can serve as diagnostics, formalizers, and rebuttals, and also that “computing acts as
synecdoche when it makes long-standing social problems newly salient in the public eye.”
Moreover, the use of the algorithm itself may perpetuate inequity, and in the case of credit
scoring, create stratifying effects of economic classifications that shape life-chances Fourcade
and Healy [2013]. We emphasize the importance of domain specific considerations ahead of
time before applying any algorithmic solutions (even “fair” ones) in sensitive and impactful
settings.
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Chapter 3

Robust Distillation for Worst-class
Performance

3.1 Introduction
Knowledge distillation, wherein one trains a teacher model and uses its predictions to
train a student model of similar or smaller capacity, has proven to be a powerful tool that
improves efficiency while achieving state-of-the-art classification accuracies [Hinton et al.,
2015, Radosavovic et al., 2018, Anil et al., 2018, Pham et al., 2021]. Remarkably, the student
accuracy under distillation is capable of even surpassing that of the teacher (e.g. Xie et al.
[2020]).

However, recent work has shown that the gains in average accuracy may not be uniform
across subgroups, and can hurt performance on subgroups that are rarer or more difficult to
classify. This is particularly true of long-tailed classification settings, where the improved
average accuracy often comes at the cost of poorer accuracies on the tail classes [Lukasik
et al., 2022, Du et al., 2021], and model compression can further amplify these performance
disparities [Hooker et al., 2020, Xu et al., 2021].

To mitigate the disparity between average and subgroup accuracy, a common remedy is
to train a model to achieve low worst-group test error. Suitably modified robust optimization
techniques have successfully achieved state-of-the-art worst-class performance with manageable
computational overhead [Sagawa et al., 2020a, Sohoni et al., 2020]. However, the evaluation
of these techniques has thus far primarily focused on the standard training setting involving
a single model. In the increasingly popular distillation setting, which involves both a teacher
and student model, there is limited understanding of how these approaches can be applied to
achieve the best trade-offs between average and worst-class performance. In particular, it is
unknown if the best results come from using a robust objective for the teacher, the student
or both.

This work studies the interplay between robust training objectives for the teacher and
student. We focus on a multi-class classification setting where we define worst-class accuracy
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as the lowest per-class recall. Empirically, we show that jointly modifying both the teacher
and student objectives with robust objectives not only improves the worst-class accuracy
of the student, but can provide Pareto improvements in the trade-off between average and
worst-class performance. Theoretically, we analyze what makes a good teacher when training
a robust student, and give to our knowledge the first concrete characterization of this by
showing that the student’s robustness depends on how well-calibrated the teacher’s scores are
for the individual classes.

Contributions

Our contributions proceed as follows:
1. We begin with the problem setup (Section 3.3), and adapt existing robust optimization

objectives to a distillation setting, allowing for different combinations of modifications
to both the teacher and student objectives (Section 3.4). We provide adapted algorithms
to address practical training issues that arise when applying robust objectives to both
the teacher and student (such as margin-based surrogate losses and shared validation set
usage).

2. We demonstrate empirically on benchmark image datasets that the different combinations
of student and teacher objectives not only improve the student’s worst-class accuracy,
but yield better trade-offs between average and worst-class performance than baselines
(Section 3.6). Perhaps surprisingly, we find that the teacher’s worst-class accuracy is not
always predictive of the teacher’s ability to yield robust students.

3. We show theoretically that the worst-class robustness of the student depends on the
per-class calibration of the teacher, and additionally derive robustness guarantees for the
student in terms of the teacher’s errors (Section3.7).

3.2 Related Work
Worst-group robustness. The goal of achieving good worst-case performance across
subgroups can be framed as a (group) distributionally robust optimization (DRO) problem,
and can be solved by iteratively updating costs on the individual groups and minimizing
the resulting cost-weighted loss [Chen et al., 2017]. Recent variants of this approach have
sought to avoid over-fitting through group-specific regularization [Sagawa et al., 2020a,b]
or margin-based losses [Narasimhan and Menon, 2021, Kini et al., 2021], and to handle
unknown subgroups [Sohoni et al., 2020]. In the context of distillation, Lukasik et al. [2022]
propose simple modifications to robustify the student’s objective by controlling the strength
of the teacher’s labels for different groups. In contrast, we propose a more direct and
theoretically-grounded procedure that seeks to explicitly optimize for the student’s worst-case
error.
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Relationship to Narasimhan and Menon [2021]. This paper builds on the margin-
based DRO framework of Narasimhan and Menon [2021], who also include preliminary
distillation experiments on training the teacher with standard ERM and the student with a
robust objective. However, this and other prior work [Lukasik et al., 2022] have only explored
modifications to the student loss, while training the teacher using a standard procedure. Our
robust distillation proposals build on this method, but carry out a more extensive analysis,
exploring different combinations of teacher-student objectives and different trade-offs between
average and worst-class performance. Additionally, we provide robustness guarantees for
the student, equip the DRO algorithms to achieve different trade-offs between overall and
worst-case error, and provide a rigorous analysis of different design choices, such as the use of
teacher labels for the multiplier updates.

Long-tail learning. There has been much work on training classifiers from long-tail data,
ranging from modifications to loss modifications [Cao et al., 2019a, Menon et al., 2021b, Cui
et al., 2021] to architectural changes [Wang et al., 2020b, Cui et al., 2022]. All these methods
focus on the standard single model training setup, and seek to maximize the balanced (and
not the worst-class) accuracy. Recent attempts have sought to modify standard distillation
for long-tail learning, by either re-balancing the student loss [Zhang et al., 2021], temperature-
scaling the teacher predictions [He et al., 2021], employing multiple teachers [Xiang et al.,
2020], and leveraging the teacher’s intermediate embeddings [Iscen et al., 2021]. The common
goal in most of these papers is to modify the student’s objective to incorporate different
forms of supervision from the teacher. In contrast, we seek to explore modifications to the
teacher’s training objective to improve the student’s robustness.

Role of the teacher’s objective. Few previous works have studied how the objective of
the teacher affects the student performance. For example, multiple works have studied the
effect label smoothing objectives of the teacher model, some finding it to harm the student
performance [Müller et al., 2019], improve the student [Shen et al., 2021] or show varying
impact depending on the temperature value [Chandrasegaran et al., 2022]. In another work,
Lukasik et al. [2020] showed how applying noise correction objectives to the teacher often
yield better result than only applying noise correction objectives in the student. We are
not aware of a previous work studying the interplay between the student and the teacher
objectives on the robustness of the student.

3.3 Problem Setup
We consider a multi-class classification problem with instance space X and output space
[m] = {1, . . . ,m}. Let D denote the underlying data distribution over X×[m], and DX denote
the marginal distribution over X . Let ∆m denote the (m−1)-dimensional probability simplex
over m classes. We define the conditional-class probability as ηy(x) = P(Y = y|X = x) and
the class priors πy = P(Y = y). Note that πy = EX∼DX [ηy(X)].
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Learning objectives. Our goal is to learn a multiclass classifier h : X → [m] that maps
an instance x ∈ X to one of m classes. We will do so by first learning a scoring function
f : X → Rm that assigns scores [f1(x), . . . , fm(x)] ∈ Rm to a given instance x, and construct
the classifier by predicting the class with the highest score: h(x) = argmax j ∈ [m] fj(x).
We will denote a softmax transformation of f by softmaxy(f(x)) =

exp(fy(x))∑
j exp(fj(x))

, and use the
notation softmaxy(f(x)) ∝ zy to indicate that softmaxy(f(x)) =

zy∑m
j=1 zj

.
We measure the efficacy of the scoring function f using a loss function ℓ : [m]×Rm → R+

that assigns a penalty ℓ(y, z) for predicting score vector z ∈ Rm for true label y. Examples
of loss functions include the 0-1 loss: ℓ0-1(y, z) = 1 (z ̸= argmax j fj(x)), and the softmax
cross-entropy loss: ℓxent(y, z) = −fy(x) + log

(∑
j∈[m] exp (fj(x))

)
.

Standard objective: A standard machine learning goal entails minimizing the overall
expected risk:

Lstd(f) = E [ℓ(Y, f(X))] . (3.1)

Balanced objective: In applications where the classes are severely imbalanced, i.e., the class
priors πy are non-uniform and significantly skewed, one may wish to instead optimize a
balanced version of the above objective, where we average over the conditional loss for each
class. Notice that the conditional loss for class y is weighted by the inverse of its prior:

Lbal(f) =
1

m

∑
y∈[m]

E [ℓ(y, f(X)) |Y = y]

=
1

m

∑
y∈[m]

1

πy
EX [ηy(X) ℓ(y, f(X))] . (3.2)

Robust objective: A more stringent objective would be to focus on the worst-performing
class, and minimize a robust version of equation (3.1) that computes the worst among the m
conditional losses:

Lrob(f) = max
y∈[m]

1

πy
E [ηy(X) ℓ(y, f(X))] . (3.3)

In practice, focusing solely on either the average or the worst-case performance may not be
an acceptable solution, and therefore, in this paper, we will additionally seek to characterize
the trade-off between the balanced and robust objectives. One way to achieve this trade-off is
to minimize the robust objective, while constraining the balanced objective to be within an
acceptable range. This constrained optimization can be equivalently formulated as optimizing
a convex combination of the balanced and robust objectives, for trade-off α ∈ [0, 1]:

Ltdf(f) = (1− α)Lbal(f) + αLrob(f). (3.4)

A similar trade-off can also be specified between the standard and robust objectives. To
better understand the differences between the standard, balanced and robust objectives
in equation (3.1)–equation (3.4), we look at the optimal scoring function for each given a
cross-entropy loss:
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Theorem 2 (Bayes-optimal scorers). When ℓ is the cross-entropy loss ℓxent, the minimizers
of equation (3.1)–equation (3.3) over all measurable functions f : X → Rm are given by:

(i) Lstd(f): softmaxy(f
∗(x)) = ηy(x)

(ii) Lbal(f): softmaxy(f
∗(x)) ∝ 1

πy
ηy(x)

(iii) Lrob(f): softmaxy(f
∗(x)) ∝ λy

πy
ηy(x)

(iv) Ltdf(f): softmaxy(f
∗(x)) ∝ (1−α) 1

m
+αλ′

y

πy
ηy(x),

for class-specific constants λ, λ′ ∈ Rm
+ that depend on distribution D.

All proofs are provided in Appendix B.1. Interestingly, the optimal scorers for all four
objectives involve a simple scaling of the conditional-class probabilities ηy(x).

3.4 Distillation for Worst-Class Performance
We adopt the common practice of training both the teacher and student on the same
dataset. Specifically, given a training sample S = {(x1, y1), . . . , (xn, yn)} drawn from D, we
first train a teacher model pt : X → ∆m, and use it to generate a student dataset S ′ =
{(x1, pt(x1)), . . . , (xn, pt(xn))} by replacing the original labels with the teacher’s predictions.
We then train a student scorer f s : X → [m] using the re-labeled dataset, and use it to
construct the final classifier.

Teacher and student objectives

In a typical setting, both the teacher and student are trained to optimize a version of the
standard objective in equation (3.1), i.e., the teacher is trained to minimize the average loss
against the original training labels, and the student is trained to minimize an average loss
against the teacher’s predictions:

Teacher: L̂std(f t) =
1

n

n∑
i=1

ℓ
(
yi, f

t(xi)
)
; (3.5)

Student: L̂std-d(f s) =
1

n

n∑
i=1

m∑
y=1

pty(xi) ℓ (y, f(xi)) ,

where pt(x) = softmax(f t(x)). It is also common to have the student use a mixture of the
teacher and one-hot labels. For concreteness, we consider a simpler distillation setup without
this mixture, though extensions with this mixture would be straightforward to add. This
work takes a wider view and explores what combinations of student and teacher objectives
facilitate better worst-group performance for the student. Our experiments evaluate all nine
combinations of standard, balanced, and robust teacher objectives, paired with standard,
balanced, and robust student objectives.



CHAPTER 3. ROBUST DISTILLATION FOR WORST-CLASS PERFORMANCE 25

Given the choice of teacher objective, the student will either optimize a distilled version
of the balanced objective in equation (3.2):

L̂bal-d(f s) =
1

m

∑
y∈[m]

1

π̂t
y

1

n

n∑
i=1

pty(xi) ℓ (y, f
s(xi)) , (3.6)

or a distilled version of the robust objective in equation (3.3):

L̂rob-d(f s) = max
y∈[m]

1

π̂t
y

1

n

n∑
i=1

pty(xi) ℓ (y, f
s(xi)) . (3.7)

In practice, the teacher’s predictions may have a different marginal distribution from the
underlying class priors, particularly when temperature scaling is applied to the teacher’s
logits to soften the predicted probabilities [Narasimhan and Menon, 2021]. To address this, in
both equation (3.6) and equation (3.7) we have replaced the class priors πy with the marginal
distribution π̂t

y =
1
n

∑n
i=1 p

t
y(xi) from the teacher’s predictions.

In addition to exploring the combination of objectives that facilitates better worst-group
performance for the student, we evaluate a more flexible approach – have both the teachers
and the students trade-off between the balanced and robust objectives:

Teacher: L̂tdf(f t) = (1− αt)L̂bal(f t) + αtL̂rob(f t) (3.8)

Student: L̂tdf-d(f s) = (1− αs)L̂bal-d(f s) + αsL̂rob-d(f s),

where L̂bal(f t) and L̂rob(f t) are the respective empirical estimates of equation (3.2) and
equation (3.3) from the training sample, and αt, αs ∈ [0, 1] are the respective tradeoff
parameters for the teacher and student. We are thus able to evaluate the Pareto-frontier of
balanced and worst-case accuracies, obtained from different combinations of the teachers and
students, and trained with different trade-off parameters.

3.5 Robust Distillation Algorithms
The different objectives we consider – standard, balanced and robust – entail different loss
objectives to ensure efficient optimization during training. For example, while training the
standard teacher and student in equation (3.5), we take ℓ to be the softmax cross-entropy
loss, and optimize it using SGD. For the balanced and robust models, we employ the margin-
based surrogates that we detail below, which have shown to be more effective in training
over-parameterized networks [Cao et al., 2019b, Menon et al., 2021b, Kini et al., 2021]. Across
all objectives, at evaluation we take the loss ℓ in the student and teacher objectives to be the
0-1 loss.
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Algorithm 2 Distilled Margin-based DRO

Inputs: Teacher pt, Student hypothesis class F , Training set S, Validation set Sval, Step-
size γ ∈ R+, Number of iterations K, Loss ℓ, Initial student f 0 ∈ F , Initial multipliers
λ0 ∈ ∆m

Compute π̂t
j =

1
n

∑
(x,y)∈S p

t
j(x), ∀j ∈ [m]

Compute π̂t,val
j = 1

nval

∑
(x,y)∈Sval ptj(x), ∀j ∈ [m]

For k = 0 to K − 1
λ̃k+1
j = λkj exp

(
γR̂j

)
, ∀j ∈ [m] where R̂j =

1
nval

1

π̂t,val
j

∑
(x,y)∈Sval

ptj(x) ℓ(j, f
k(x))

λk+1
y =

λ̃k+1
y∑m

j=1 λ̃
k+1
j

,∀y

fk+1 ∈ argmin
f∈F

1
n

∑n
i=1 Lmar

(
pt(xi), f(xi);

λk+1

π̂t

)
// Replaced with a few steps of

SGD
End For
Output: f

s
: x 7→ 1

K

∑K
k=1 f

k(x)

Margin-based surrogate for balanced objective

When the teacher or student model being trained is over-parameterized, i.e., has sufficient
capacity to correctly classify all examples in the training set, the use of an outer weighting
term in the objective (such as the inverse class marginals in equation (3.6)) can be ineffective.
In other words, a model that yields zero training objective would do so irrespective of what
outer weights we choose. To remedy this problem, we make use of the margin-based surrogate
of Menon et al. [2021b], and incorporate the outer weights as margin terms within the loss.
For the balanced student objective in equation (3.6), this would look like:

L̃bal-d(f s) =
1

n

n∑
i=1

Lmar (pt(xi), f s(xi);1/π̂
t
)
, (3.9)

where Lmar (p, f ; c) =
1

m

∑
y∈[m]

py log

(
1 +

∑
j ̸=y

exp (log(cy/cj) − (fy − fj))
)
,

for teacher probabilities p ∈ ∆m, student scores f ∈ Rm, and per-class costs c ∈ Rm
+ . For the

balanced teacher, the margin-based objective would take a similar form, but with one-hot
labels.

We include a proof in Appendix B.1 showing that a scoring function that minimizes the
surrogate objective in equation (3.9) also minimizes the the balanced objective in equation (3.6)
(when ℓ is the cross-entropy loss, and the student is chosen from a sufficiently flexible function
class). In practice, the margin term log(cy/cj) encourages a larger margin of separation for
classes y for which the cost cy is relatively higher.
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Margin-based DRO for robust objective

Minimizing the robust objective with plain SGD can be difficult due to the presence of the
outer “max” over m classes. The key difficulty is in computing reliable stochastic gradients
for the max objective, especially given a small batch size. The standard approach is to
instead use a (group) distributionally-robust optimization (DRO) procedure, which comes in
multiple flavors Chen et al. [2017], Sagawa et al. [2020a], Kini et al. [2021]. We employ the
margin-based variant of group DRO [Narasimhan and Menon, 2021] as it naturally extends
the margin-based objective used in the balanced setting.

We illustrate below how this applies to the robust student objective in equation (3.7).
The procedure for the robust teacher is similar, but involves one-hot labels. For a student
hypothesis class F , we first re-write the minimization in equation (3.7) over f ∈ F into an
equivalent min-max optimization using per-class multipliers λ ∈ ∆m:

min
f∈F

max
λ∈∆m

∑
y∈[m]

λy
π̂t
y

1

n

n∑
i=1

pty(xi) ℓ (y, f(xi)) ,

and then maximize over λ for fixed f , and minimize over f for fixed λ:

λk+1
y ∝ λky exp

(
γ

1

nπ̂t
y

n∑
i=1

pty(xi) ℓ
(
y, fk(xi)

))
,∀y

fk+1 ∈ argmin
f∈F

∑
y∈[m]

λk+1
y

nπ̂t
y

n∑
i=1

pty(xi) ℓ (y, f(xi)) ,

where γ > 0 is a step-size parameter. The updates on λ implement exponentiated gradient
(EG) ascent to maximize over the simplex [Shalev-Shwartz et al., 2011].

Following Narasimhan and Menon [2021], we make two modifications to the above
updates when used to train over-parameterized networks that can fit the training set per-
fectly. First, we perform the updates on λ using a small held-out validation set Sval =
{(x1, y1), . . . , (xnval , ynval)}, instead of the training set, so that the λs reflect how well the
model generalizes out-of-sample. Second, in keeping with the balanced objective, we modify
the weighted objective in the f -minimization step to include a margin-based surrogate. Algo-
rithm 2 provides a summary of these steps and returns a scorer that averages over the K
iterates: f s

(x) = 1
K

∑K
k=1 f

k(x). While the averaging is needed for our theoretical analysis, in
practice, we find it sufficient to return the last scorer fK . In Appendix B.4, we describe how
Algorithm 7 can be easily modified to trade-off between the balanced and robust objectives,
as shown in equation (3.8).

3.6 Experiments
To empirically understand the interplay of teacher and student objectives, we explore the
following questions: what combination of teacher and student objectives yield the highest worst-
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class accuracy? Can some combinations improve worst-class accuracy without sacrificing
average accuracy?

Datasets

We evaluate the proposed distillation protocols on benchmark image datasets: (i) CIFAR-10,
(ii) CIFAR-100 [Krizhevsky, 2009], (iii) TinyImageNet (a subset of ImageNet with 200 classes)
[Le and Yang, 2015], and (iv) ImageNet [Russakovsky et al., 2015]. We also include long-tailed
versions of the first three datasets created by downsampling tail classes [Cui et al., 2019]. For
both the original and long-tailed versions of the datasets, there are often biases in worst-class
performance, possibly due to some classes being easier to learn [Lukasik et al., 2022, Hooker
et al., 2020]. For all datasets, as done in prior work [Menon et al., 2021b, Narasimhan and
Menon, 2021], we randomly split the original default test set in half to create a validation set
and test set, and use the same validation and test sets for the long-tailed training sets as for
the original versions.

Architectures

We evaluate our distillation protocols in both a self-distillation and compression setting. On
all CIFAR datasets, all teachers were trained with the ResNet-56 architecture and students
were trained with either ResNet-56 or ResNet-32. On TinyImageNet and ImageNet, teachers
and students were trained with ResNet-18. More details on these architectures can be found
in Lukasik et al. [2022] and He et al. [2016] (see, e.g., Table 7 in Lukasik et al. [2022]).
Self-distillation results are reported in the main paper (teacher/student share the same
architecture), and we include results with compressed students in Appendix B.6.

Hyperparameters

We apply temperature scaling to the teacher scores, i.e., compute pt(x) = softmax(f t(x)/γ),
and vary the temperature parameter γ over a range of {1, 3, 5}. A higher temperature
produces a softer probability distribution over classes [Hinton et al., 2015]. Unless otherwise
specified, the temperature hyperparameters were chosen to achieve the highest worst-class
accuracy on the validation set. We closely mimic the learning rate and regularization settings
from prior work [Menon et al., 2021b, Narasimhan and Menon, 2021] (see Appendix B.5 for
details).

Which objective combinations are most robust?

We begin by exploring the effect of the interaction between student and teacher objectives on
worst-class accuracy. In Table 3.1, we search over combinations of the standard, balanced,
and robust objectives for the teacher (Lstd, Lbal, Lrob) and the student (Lstd-d, Lbal-d, Lrob-d)
(note that on the original datasets, Lstd is equivalent to Lbal). For each combination, following
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prior conventions in long-tailed learning [Menon et al., 2021b, Lukasik et al., 2022], we report
the average accuracy over all classes, and the worst-class accuracy, or minimum per-class
recall over all classes (see equation (3.3)). For datasets with a long tail or high number of
classes, we also report the worst-k accuracy, which is the average of the the worst k per-class
recalls.

The first surprising finding in Table 3.1 is that applying the robust objective twice isn’t
always best. For all but one dataset, the Lrob/Lrob-d teacher/student combination was
outperformed by some other combination of either Lstd/Lrob-d, Lrob/Lstd-d, or Lbal/Lrob-d.
Still, in the winning combination, at least one of the objectives was robust. This suggests
that while the robust objective is effective for controlling worst-class accuracy, there may be
some information loss in applying it twice to both the teacher and student.

To understand this information loss on the teacher’s side, we highlight a second surprising
finding that the teacher with the best worst-class accuracy alone did not always produce the
student with the best worst-class accuracy. The robust teacher had the highest worst-class
accuracy across all datasets, but for CIFAR-10 and all three long-tailed datasets, it was
actually the Lstd or Lbal teacher that produced the best robust student. This shows that
there is more to a good teacher than just having good worst-class performance – in fact, we
show theoretically in Section 3.7 that the property of the teacher that is most important for
robust student performance is a form of calibration of per-class scores.

Trading off accuracy and robustness

Table 3.1 focuses on worst-class accuracy, but practitioners often must consider the trade-
off between average accuracy and worst-class accuracy when deploying any model. To
address this, we introduced the Ltdf/Ltdf-d objectives for the teacher/student with trade-off
parameters αt, αs. Figure 3.1 plots average and worst-class accuracies for a full spread of
αt, αs parameters. First, we note that lower αs usually leads to higher average accuracy (this
is not always the case for αt, which we show in more detail in Appendix B.6). Figure 3.1 also
shows that combinations of αt, αs yield a roughly concave Pareto frontier of solutions with
different average and worst-class accuracies to choose from. Selecting the best combination
of trade-off parameters αt, αs in practice depends on domain-specific decisions regarding the
importance of worst-class vs. average accuracy. Any selection criteria based on some trade-off
of worst-class vs. average accuracy can be applied over the validation set to select αt, αs as
hyperparameters. We demonstrate one such set of selection criteria here: in Tables 3.2 and
3.3, we select αt, αs to maximize worst-class accuracy on validation, subject to having at least
as high average accuracy as standard distillation (within error margin) on the validation set.
Other candidate criteria include weighted sums of worst-class accuracy and average accuracy,
or constrained optimization criteria from Cotter et al. [2019d].
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Table 3.1: Worst-class accuracy comparisons for different combinations of teacher/student
objectives. Worst-1 test accuracy is reported (worst-10 for TinyImageNet-LT) (best in bold),
and average test accuracy is shown in parentheses. Mean accuracies are reported over repeat
trainings (see extended table in Appendix for standard errors). Note that on the original
datasets, Lstd and Lstd-d are equivalent to Lbal and Lbal-d.

CIFAR-10 Teacher Obj. CIFAR-100 Teacher Obj.

St
ud

en
t

O
bj

.

Lstd Lrob Lstd Lrob

None 86.48 (93.74) 90.09 (92.67) 42.22 (72.42) 43.42 (68.81)

Lstd-d 87.66 (94.34) 90.12 (94.07) 43.81 (74.61) 45.33 (73.67)

Lrob-d 90.94 (92.54) 85.14 (89.58) 42.96 (68.71) 27.59 (54.79)

TinyImageNet Teacher Obj.

St
ud

en
t

O
bj

.

Lstd Lrob

None 8.42 (56.79) 11.87 (48.40)

Lstd-d 6.32 (57.83) 10.53 (55.36)

Lrob-d 9.98 (49.84) 16.58 (46.11)

CIFAR-10-LT Teacher Obj. CIFAR-100-LT Teacher Obj.

St
ud

en
t

O
bj

. Lstd Lbal Lrob Lstd Lbal Lrob

None 57.26 (76.27) 68.52 (79.85) 74.80 (80.29) 0.00 (43.33) 3.75 (47.55) 10.33 (44.27)

Lstd-d 36.67 (69.50) 66.96 (79.25) 71.15 (80.95) 0.00 (43.86) 2.39 (48.95) 7.32 (47.93)

Lbal-d 71.23 (80.50) 70.52 (81.12) 72.96 (80.71) 4.39 (50.40) 7.08 (50.10) 7.19 (47.51)

Lrob-d 63.85 (76.81) 75.56 (80.81) 69.21 (76.72) 9.05 (33.75) 12.52 (34.05) 10.32 (36.83)

CIFAR-10-LT Teacher Obj.

St
ud

en
t

O
bj

. Lstd Lbal Lrob

None 0.00 (33.15) 2.11 (35.96) 4.92 (27.23)

Lstd-d 0.00 (26.05) 0.00 (27.21) 1.87 (25.34)

Lbal-d 0.20 (30.43) 2.82 (39.41) 4.77 (38.41)

Lrob-d 0.00 (22.66) 4.93 (35.43) 3.32 (25.11)

Comparison to baselines

Finally, we contextualize the performance of the proposed Ltdf/Ltdf-d objectives and the
training protocol in Algorithm 2 by comparing to several state-of-the-art methods. In
addition to standard distillation (training the teacher with Lstd and the student with Lstd-d),
we compare the proposed objective combinations with two recent works focusing on robust
distillation [Lukasik et al., 2022, Narasimhan and Menon, 2021], both of which use a standard
objective for the teacher and modify only the student objective for worst-class performance.
From Narasimhan and Menon [2021], we consider the following two methods: (i) Post-shifting:
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Figure 3.1: All αt, αs combinations for CIFAR-10 on test. The black line traces out the Pareto
frontier. Average accuracy is roughly determined by αs. The labeled point corresponds to the
“best” combination selected in Table 3.2 based on validation criteria, but other domain-specific
tradeoff criteria could yield any of these other points.

this non-distillation approach directly constructs a new scoring model by making post-hoc
adjustments to the teacher, so as to maximize the robust accuracy on the validation sample.
(ii) Robust student: this approach trains a student using Lrob-d from a standard teacher. From
Lukasik et al. [2022], we compare to their two proposed AdaMargin and AdaAlpha methods.
Both methods are motivated by the observation that the margin defined for each class y
by γavg(y, p

t(x)) = pt
y(x) − 1

m−1

∑
y′ ̸=y p

t
y′(x) correlates with whether distillation improves

over one-hot training [Lukasik et al., 2022]. AdaMargin uses that quantity as a margin in
the distillation loss, whereas AdaAlpha uses it to adaptively mix between the one-hot and
distillation losses. Additionally, for long-tailed datasets, we include a comparison to Menon
et al. [2021b] which we refer to as balanced student, where the student is distilled with a
balanced objective Lbal-d from a standard teacher. Finally, we also include a comparison to
the Group DRO method for subgroup robustness without distillation (Algorithm 1 in Sagawa
et al. [2020a]). This method differs from our DRO procedure in that they do not apply a
margin-based loss.

Tables 3.2 and 3.3 shows the average and worst-class accuracies on test for these baselines
compared to the combination of αt, αs selected using the selection criteria previously described.
The selection criteria for αt, αs are applied over the validation set, and thus do not directly
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Table 3.2: Comparison to baselines on balanced datasets for the selected αt, αs combination
on test data.

CIFAR-10 CIFAR-100
Method Average acc. Worst-1 acc. Average acc. Worst-1 acc.

Selected αt, αs combo 94.28± 0.06 90.11± 0.23 73.22± 0.26 48.40± 1.47
Standard distillation 94.34± 0.07 87.66± 0.40 74.61± 0.15 43.81± 0.58
Post shift [NM’21] 92.16± 0.18 88.60± 0.35 61.22± 0.36 38.19± 0.40
Robust student [NM’21] 92.72± 0.05 89.90± 0.21 68.45± 0.13 43.62± 1.27
AdaMargin [LBMK’22] 93.69± 0.06 88.42± 0.36 73.58± 0.11 43.91± 1.11
AdaAlpha [LBMK’22] 94.31± 0.01 88.33± 0.14 74.15± 0.08 45.46± 0.67
Group DRO [SKHL’20] 92.34± 0.07 89.32± 0.21 65.18± 0.08 43.89± 1.12

TinyImageNet
Method Average acc. Worst-1 acc.

Selected αt, αs combo 58.09± 0.13 9.47± 1.76
Standard distillation 57.83± 0.13 6.32± 2.31
Post shift [NM’21] 43.02± 0.79 14.39± 1.13
Robust student [NM’21] 48.06± 0.24 16.27± 0.43
AdaMargin [LBMK’22] 52.45± 0.08 15.41± 0.71
AdaAlpha [LBMK’22] 57.22± 0.08 7.62± 2.17
Group DRO [SKHL’20] 48.78± 0.21 11.38± 1.79

translate to test performance: the selected αt, αs combination sometimes has lower average
test accuracy than standard distillation. Still, overall, the selected αt, αs combination is
Pareto efficient compared to all other baselines (dominant in at least one of average accuracy
or worst-k accuracy). Among the rest of the different αt, αs candidates (as in Figure 3.1),
there actually exist combinations that Pareto dominate all baselines in test performance
(additional plots in Appendix B.6). While we only show results from our simple example
selection criteria in Tables 3.2 and 3.3, this suggests that there is room for alternative selection
criteria to yield even better results. The challenge, as with all hyperparameter selection, is
that selection on the validation set comes with a generalization gap between validation and
test.

3.7 Theoretical Analysis
Complementing our empirical findings, our theoretical analysis explores what constitutes a
good teacher and how it aids a student in achieving robustness. To simplify our exposition,
we present our theoretical analysis for a student trained using Algorithm 2 to yield good
worst-class performance. Our results easily extend to the case where the student seeks to
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Table 3.3: Comparison to baselines on long-tailed datasets for the selected αt, αs combination
on test data.

CIFAR-10-LT CIFAR-100-LT
Method Average acc. Worst-1 acc. Average acc. Worst-1 acc.

Selected αt, αs combo 79.02± 0.08 75.43± 0.39 43.94± 0.16 14.52± 0.68
Standard distillation 77.39± 0.10 60.12± 0.56 46.01± 0.16 0.00± 0.00
Post shift [NM’21] 78.28± 0.05 74.33± 0.09 29.88± 0.61 10.01± 0.72
Robust student [NM’21] 80.05± 0.13 74.91± 0.24 30.79± 0.18 12.28± 0.46
Bal. student [MJRJVK’21] 81.36± 0.14 71.60± 0.38 50.40± 0.12 4.39± 0.66
AdaMargin [LBMK’22] 72.69± 0.24 47.52± 0.95 31.26± 0.21 0.00± 0.00
AdaAlpha [LBMK’22] 70.83± 0.28 43.64± 1.09 42.52± 0.08 0.00± 0.00
Group DRO [SKHL’20] 74.39± 0.17 59.93± 0.59 40.47± 0.17 0.19± 0.17

TinyImageNet-LT
Method Average acc. Worst-10 acc.

Selected αt, αs combo 26.91± 0.16 6.04± 0.25
Standard distillation 26.05± 0.18 0.00± 0.00
Post shift [NM’21] 21.32± 0.49 2.58± 0.42
Robust student [NM’21] 21.59± 0.19 1.55± 0.37
Bal. student [MJRJVK’21] 30.43± 0.06 0.20± 0.18
AdaMargin [LBMK’22] 4.41± 0.09 0.00± 0.00
AdaAlpha [LBMK’22] 27.95± 0.14 0.00± 0.00
Group DRO [SKHL’20] 27.78± 0.13 0.00± 0.00

trade-off between average and worst-case performance.

What constitutes a good teacher?

We first characterize the properties of a good teacher when the student’s goal is to minimize
the robust population objective Lrob(f s) in equation (3.3). In particular, does the student’s
ability to perform well on this worst-case objective depend on the teacher also performing
well on the same objective? Given scores from a teacher pt, the student minimizes the robust
distillation objective L̂rob-d(f s) in equation (3.7), and uses this as a proxy for the actual
objective Lrob(f s) we care about. Intuitively, an ideal teacher would then be one that provides
a good proxy for the student, and ensures that the difference |L̂rob-d(f s) − Lrob(f s)| is as
small as possible. Below, we provide a simple bound on this difference:

Theorem 3. Suppose ℓ(y, z) ≤ B, ∀x ∈ X for some B > 0. Let πt
y = Ex

[
pty(x)

]
, and

let the following denote the per-class expected and empirical student losses respectively:
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ϕy(f
s) = 1

πt
y
Ex

[
pty(x) ℓ (y, f

s(x))
]
;

ϕ̂y(f
s) = 1

π̂t
y

1
n

∑n
i=1 p

t
y(xi) ℓ (y, f

s(xi)).
Then for teacher pt and student f s:

|L̂rob-d(f s)− Lrob(f s)| ≤ Bmax
y∈[m]

Ex

[∣∣∣∣pty(x)πt
y

− ηy(x)

πy

∣∣∣∣]︸ ︷︷ ︸
Calibration error

+max
y∈[m]

∣∣ϕy(f
s)− ϕ̂y(f

s)
∣∣︸ ︷︷ ︸

Estimation error

.

The calibration error captures how well the teacher’s predictions mimic the conditional-
class distribution η(x) ∈ ∆m, up to per-class normalizations π. This suggests that even if pt
does not achieve good worst-class performance, as long as it is well-calibrated within each
class (as measured by the calibration error), it will serve as a good teacher.

The estimation error captures how well the teacher aids in the student’s out-of-sample
generalization. The prior work by Menon et al. [2021a] study this question in detail for the
standard student objective, and provide a bound that depends on the variance induced by
the teacher’s predictions on the student’s objective: the lower the variance, the better the
student’s generalization. In Appendix B.2, we carry out a similar analysis with the estimation
error in the theorem.

Calibration and worst-case error

We illustrate how, perhaps counterintuitively, a teacher with low worst-class accuracy might
still have scores pt that are well calibrated to match the true conditional-class distributions η.
For this, we use a hypothetical “image classification” task with labels y ∈ {cat, panda, other},
and a single one-dimensional feature x ∈ [0, 1] representing the fraction of black pixels in
the image, uniformly distributed over the interval. Suppose the solid lines in Figure 3.2
below give the conditional-class distributions ηy(x) for the cat and panda classes (pandas
are rarer than cats in the dataset, with πcat =

1
2

and πpanda =
1
4
). Suppose the dashed lines

in Figure 3.2 also give hypothetical teacher model scores pty(x), where ptcat(x) = 2ηcat(x),
and ptpanda(x) =

1
2
ηpanda(x) (these arbitrary teacher scores do not necessarily correspond to

softmax outputs from a neural network). This teacher model always outputs a higher score for
the cat label than the panda label. However, the model still satisfies the necessary calibration
property: pty(x)

Ex[pty(x)]
= ηy(x)

πy
for y ∈ {cat, panda}, despite the fact that the argmax predictions

from this model has zero recall for the panda class. This illustrates that the important
property of the teacher’s scores is how well they mimic the shape of the conditional-class
distributions, and not necessarily their worst-class predictive accuracy.

Relation to Bayes-optimal scorers

When the teacher outputs the conditional-class probabilities, i.e. pt(x) = η(x), the calibration
error is trivially zero (recall that the normalization term πt

y = πy in this case). Theorem
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Figure 3.2: Hypothetical conditional-class distributions ηy(x) and trained model scores pty(x)
for y ∈ {cat, panda}.

2 shows that the Bayes-optimal scorer for the standard cross-entropy loss achieves this;
however, in practice with finite data and model class limitations, a teacher trained with the
cross-entropy loss is often far from approximating η(x) exactly. In practice, it remains an
open question what methodology might produce a teacher that most closely mimics these
conditional-class distribution shapes for all classes in finite samples. For example, while the
standard cross-entropy objective might lead to well calibrated model scores for a majority
class, the scores may not match for rare classes. Our experiments explored training with
different losses from Section 3.3 that encourage the teacher to approximate scaled versions of
η(x); however, future exploration of other practical training possibilities would be interesting
to compare.

Robustness guarantee for the student

We next provide robustness guarantees for the student output by Algorithm 2 in terms of
the calibration and estimation errors described above. We do so for a fixed teacher pt, and
a self-distillation setup where the student is chosen from the same function class F as the
teacher, and can thus exactly mimic the teacher’s predictions.

Proposition 1. Suppose pt ∈ F and F is closed under linear transformations. Let λy =

(
∏K

k=1 λ
k
y/π

t
y)

1/K ,∀y. Then the scoring function f s
(x) = 1

K

∑K
k=1 f

k(x) output by Alg. 2 is of
the form: softmaxj(f

s
(x)) ∝ λjp

t
j(x), ∀j ∈ [m], ∀(x, y) ∈ S.
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Theorem 4. Suppose pt ∈ F and F is closed under linear transformations. Suppose ℓ is the
cross-entropy loss ℓxent, ℓ(y, z) ≤ B and maxy∈[m]

1
πt
y
≤ Z, for some B,Z > 0. Furthermore,

suppose for any δ ∈ (0, 1), the following bound holds on the estimation error in Theorem 3: with
probability at least 1− δ (over draw of S ∼ Dn), ∀f ∈ F , maxy∈[m]

∣∣ϕy(f)− ϕ̂y(f)
∣∣ ≤ ∆(n, δ),

for some ∆(n, δ) ∈ R+ that is increasing in 1/δ, and goes to 0 as n→∞. Then when the

step size γ = 1
2BZ

√
log(m)

K
and nval ≥ 8Z log(2m/δ), we have that with probability at least

1− δ (over draw of S ∼ Dn and Sval ∼ Dnval),

Lrob(f
s
) ≤ min

f∈F
Lrob(f) + 2∆(nval, δ/2) + 2∆(n, δ/2)︸ ︷︷ ︸

Estimation error

+ 2Bmax
y∈[m]

Ex

[∣∣∣∣pty(x)πt
y

− ηy(x)

πy

∣∣∣∣]︸ ︷︷ ︸
Calibration error

+ 4BZ

√
log(m)

K︸ ︷︷ ︸
EG convergence

.

Proposition 1 shows the student not only learns to mimic the teacher on the training
set, but improves upon it by making per-class adjustments to its predictions. Theorem 4
shows that these adjustments are chosen to close-in on the gap to the optimal robust scorer
in F . However, the student’s convergence to the optimal scorer in F would still be limited
by the teacher’s calibration error: even when the sample sizes and number of iterations
n, nval, K →∞, the student’s optimality gap may still be non-zero when the teacher is poorly
calibrated.

3.8 Conclusions
We have demonstrated the value of applying different combinations of teacher/student
objectives, not only for improving worst-class accuracy, but also to achieve efficient trade-offs
between average and worst-class accuracy. Surprisingly, the teacher and students’ objective
functions can interact with each other in nontrivial ways: for example, applying a robust
objective to both the teacher and the student does not always achieve the best worst-class
accuracy (Table 1). Further exploring the trade-off between worst-class and average accuracy,
we provided simple modifications to the teacher and student objectives that boosted worst-
class accuracy with less degradation in average accuracy than prior methods that focus on
worst-class accuracy. This confirms the key takeaway that the teacher’s objective plays a
crucial role in the student’s robustness.

In a broader sense, our theory provides better understanding of the interplay between
teacher and student objectives, and thus serves as a starting point for further development of
methods to modify both the teacher and students’ objectives jointly. An interesting future
avenue for exploration would be to extend our distillation setup to incorporate other forms of
teacher supervision such as intermediate embeddings or ensembled scores (e.g., Iscen et al.
[2021]).
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Training efficiency is another avenue for improvement, and future work in reducing the
hyperparameter search space would be practically valuable. For settings where teacher
retraining is particularly expensive, one could modify a given fixed teacher with some form of
post-hoc logit adjustment [Narasimhan and Menon, 2021], or only fine-tune a subset of the
teacher parameters with different values of αt. These reductions in computational cost would
improve the practicality of joint exploration of teacher and student objectives.
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Chapter 4

Fairness Meets Interpretability with
Monotonicity Shape Constraints

4.1 Introduction
As the use of machine-learned (ML) models broadens, strategies are sought to ensure machine-
learned systems behave responsibly, and are ethical and fair. There may be many different
reasonable and conflicting ethical stances for a given problem [Haidt, 2013, Singer, 2016, Gray
and Graham, 2018, Corbett-Davies and Goel, 2018, Binns, 2018]. Thus, no single strategy
for making machine learning fairer is likely to be sufficient.

In this paper, we show that nonlinear machine learning can easily produce trained models
that violate social norms or ethics that can be described as: certain inputs should not have a
negative effect on an outcome. For example, the toy example in Fig. 4.1 shows a nonlinear
1-d model trained to predict how highly a resume will be scored based on the candidate’s
years of experience. The best fit model (purple dashed line) sometimes penalizes candidates
for having more job experience. For candidates with many years of experience, the dashed
model picked up the age discrimination in the biased training samples. In addition, the
dashed model also penalizes job experience in the lower-end of years of experience simply due
to overfitting. Such unfair responses are very much a danger in sparse regions of a feature
space with modern over-parameterized nonlinear models.

Fig. 4.1 also illustrates our proposed solution (blue solid line): train the model with
monotonicity shape constraints to guarantee that the model can only use job experience
as positive evidence. This is a deontological solution, and thus differs from many existing
mathematical expressions of fairness that are consequentialist and statistical [Friedler et al.,
2019, Hardt et al., 2016b, Binns, 2018, Sandvig et al., 2016]. Both types of goals may be of
interest to a practitioner [Sandvig et al., 2016], and we explore how they relate theoretically
and experimentally.
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Contributions

The main contributions of this paper are: (i) identifying that violations of monotonicity in
ML models may pose significant ethical issues and risk of societal harm, (ii) demonstrating
experimentally that these violations can easily occur in practice with nonlinear machine
learned models, (iii) showing that existing shape constrained ML can be used effectively to
ameliorate such problems, and (iv) theoretically and empirically analyzing how the proposed
monotonicity constraints relate to statistical fairness notions.

Model type # shape Train Test
constraints Acc. Acc.

GAM 0 94.93% 94.89%
GAM 2 94.90% 94.97%
DNN 0 94.97% 94.89%
GBT 0 95.04% 94.80%

Table 4.1: Law School Admissions Experiment Results. Two monotonicity constraints ensure
that individuals aren’t penalized for higher GPA or LSAT score.

4.2 Illustrating Unfair Penalization
To further illustrate the potential for machine-learning to produce objectionable models,
consider the Law School Admissions dataset [Wightman, 1998]. Suppose this data is used
to predict whether a person would pass the bar exam based on their LSAT score and
undergraduate GPA, and that the classifier’s score was used to guide law school admissions or
scholarships. We trained a standard two-layer deep neural network (DNN) (more experimental
details in Sec. 4.7) and show the model’s output for each possible input in Fig. 4.2. The
DNN sometimes penalizes people for having a higher GPA: for example, with an LSAT score

Figure 4.1: Toy example showing how a monotonicity constraint can protect against unfair
penalization.
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of 15, the DNN rewards students with a lower 2.7 GPA over students who earned a higher
3.5 GPA. Similarly, if a student has a GPA of 2.5, the DNN gives that student a higher score
for scoring 10 on the LSAT than if they had scored 15. Thus this model violates merit-based
social norms and the “best-qualified” ethical principle [Hunter and Schmidt, 1976] (we also
acknowledge that the very use of standardized test scores or GPA for allocating goods may
raise other ethical issues [Hunter and Schmidt, 1976]). Training with gradient boosted trees
has the same problem: the model penalizes some people for raising their GPA or LSAT score.

Each of the two-dimensional models shown in Fig. 4.2 were trained on 19,064 training
examples, which may sound like plenty of data to learn a model on two inputs, but the
non-uniform distribution of the training data means that some regions of the feature space
were sparse and the model may have overfit (for a density plot, see Fig. C.4 in the Appendix).
These monotonicity violations can also occur from legitimate, clean data. To see this, note
that how hard it is to get a good GPA can vary greatly between schools, and imagine as an
extreme example that there was a large university that simply gave every student a 2.7 GPA,
which could cause some of the problems seen in this model.

Our proposal is to train the model with monotonicity constraints. An example monotonic
model is shown in (c) of Fig. 4.2. It is a generalized additive model (GAM) trained with
the constraints that it never penalizes higher GPA’s for any LSAT score, and that it never
penalizes higher LSAT scores for any GPA. Training the same GAM without monotonicity
constraints is shown in the lower right, and also produces an objectionable model. The test
accuracies of these four models are given in Table 4.1 are similar (more experimental details
in Sec. 4.7).

4.3 Monotonicity Fairness Constraints
The motivating examples in Figures 1 and 2 focused on the concern of unfair penalization –
that there may be inputs that a responsible model may reward but should never penalize. A
second ethical pattern we consider is to favor the less fortunate – there may be inputs that
help us identify the less fortunate and favor them if there are no other relevant differences.
Policies favoring the less fortunate have been well studied in economics [Coate and Loury,
1993]. As shown in Figures 1 and 2, we propose addressing these two principles by constraining
the ML model to only respond positively to relevant inputs if all other inputs are fixed.

Throughout, we focus on ML models that produce a score that is used to determine some
benefit, such as a better credit rating or a scholarship. Specifically, consider a learned model
f(x, z) where x ∈ RD is a D-dimensional feature vector, and z ∈ R is another input that is of
ethical interest (such as age or income). The model f(x, z) satisfies a positive monotonicity
shape constraint [Groeneboom and Jongbloed, 2014] with respect to z if for any δ > 0 and any
choice of x and z, f(x, z+ δ) ≥ f(x, z). If f is differentiable with respect to z, this constraint
is equivalent to non-negative slope ∂(f(x,z))

∂z
≥ 0 for any x, z. Strict monotonicity replaces the

≥ sign above with >. Reverse definitions produce negative monotonicity constraints. To
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(a) Neural Network (b) Grad. Boosted Trees
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(c) Monotonic GAM (d) GAM
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Figure 4.2: Real data example predicting if a student will bass the bar. Predictions by a
neural network (a) and gradient boosted trees (b) penalize some students if they increase
their GPA or LSAT score. We trained a generalized additive model (GAM) with constraints
to be monotonically increasing in both GPA and LSAT score (c). The same GAM model
trained without monotonicity constraints also violates monotonicity in GPA (d).

apply a monotonicity shape constraint to a categorical feature, one can express each category
as a Boolean feature indicating membership in the category.

As defined above, and as is standard in the shape constraints literature [Groeneboom and
Jongbloed, 2014], our proposed monotonicity shape restrictions are ceterus paribus : that is,
f(x) should behave monotonically with respect to increases in each protected feature z, but
only when all other features x are held fixed. Here we take the input features x as given, but
of course it is also important to have the best possible set of features x.
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4.4 More Example Scenarios
We further illustrate the critical importance and breadth of situations in which we need ML
models to behave consistently with a society’s norms or ethical policies. Then in Section 4.7,
we show experimentally on two more problems that nonlinear ML models do not naturally
pick up such norms and policies, and that training with monotonicity constraints can be used
to incorporate desired policies.

Crimes and misdemeanors. An ML system trained to determine fines for misdemeanors
would likely be considered fairer if the fines were monotonically increasing with respect to the
magnitude of the illegality, e.g. a larger fine for illegally parking one’s car for longer, or for
exceeding the speed limit by more [Allen et al., 2015]. Also, in many societies it is expected
that a juvenile will not be penalized more heavily than an adult for the same crime, all else
equal [Allen et al., 2015]. Many societies prefer not to give harsher penalties to first-time
offenders than to repeat offenders [Allen et al., 2015].

Pay. People generally feel it is unfair to get paid less for doing more of the same work
[Fehr and Schmidt, 1999]. Suppose a model is trained to advise parents on how much to pay
their babysitter. It may be desirable to workers if the recommended pay were constrained
to be a monotonically increasing function of the number of hours worked, all else equal.
Similarly, consider an app that uses an ML model to advise people on how much to tip their
waiter in America. Such a model would be better aligned with American societal norms
if it recommended larger tips for more expensive meals, and if it recommended higher tip
percentages for more upscale establishments, all else equal [Azar, 2004].

Medical triage. In some medical contexts, it is considered more ethical or more responsible
to prioritize patients based on their risk or neediness [Iserson and Moksop, 2007]. For example,
the United States Transplant Board has a policy of giving a sicker person a higher score to
receive a transplant for ethical reasons [L. Bernstein, 2017]. Similarly an emergency room
scoring patients for prioritization may require that patients that have waited longer are
treated first, if all other relevant characteristics are equal [Iserson and Moksop, 2007]. More
generally, first-come first-served is a common principle underpinning civil society [Beauchamp
and Childress, 2001, Sugden, 1989].

4.5 Related Work
We outline two main categories of related work. First, we discuss literature in the intersection
of ethics and ML. Then, we give context on training ML models with monotonicity shape
constraints.
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Ethics and ML

This work fits into the broader literature on machine ethics [Anderson and Anderson, 2007,
Moor, 2006]. Ethics itself is a broad field of philosophy that encompasses many questions, and
there may be many different reasonable ethical stances and criteria for a given problem [Binns,
2018, Thiroux and Krasemann, 2017, Haidt, 2013, Gray and Graham, 2018, Corbett-Davies
and Goel, 2018, Singer, 2016, Gruetzemacher, 2018, Allen et al., 2015, Rawls, 1971].

Deontological ethics. Most recent work in machine learning fairness has been, in a
broad sense, consequentialist : focusing on ensuring that machine-learned models deliver
statistically-similar performance for different groups [Binns, 2018, Zafar et al., 2015, Goh
et al., 2016, Hardt et al., 2016b, Zafar et al., 2017, Donini et al., 2018, Agarwal et al., 2018,
Goel et al., 2018, Cotter et al., 2019a,c]. Those efforts solve a different important problem
than the one we target here, and are complementary to this proposal. This proposal is instead
deontological, in that it enables designers to impose rules on how the model can respond to
inputs, producing an implicit ethical agent in the terminology of Moor [2006]. Sandvig et al.
[2016] recently called for more research into deontological algorithms, noting that, “Applied
ethics in real-world settings typically incorporates both rule-based and consequences-based
reasoning.”

Monotonicity and fairness. Concurrently, Cole and Williamson [2019] also recognized
the importance of monotonicity in a fairness context. That work differs in framing: they use
monotonicity to reduce unfair resentment. Our work further differs in its theoretical results
and comparisons.

Individual fairness. Another fairness principle is that similar individuals should receive
similar treatment [Dwork et al., 2012]. Individual fairness aims for equal outcomes for two
examples, whereas this proposal allows for an asymmetric treatment whereby any unequal
treatment is unequal in the appropriate direction, such as favoring the less fortunate.

Counterfactual fairness. Counterfactual fairness [Kusner et al., 2017, Pearl et al., 2016]
says that changing a protected attribute A while holding things not causally dependent on A
constant will not change the distribution of the model output. This is similar to the definition
of monotonicity in section 4.3, but is focused on treating certain cases the same rather than
prefering one case to another.

Continuous sensitive features. The proposed monotonicity constraints handles real-
valued attributes natively. Other recent efforts have also been devised to handle continuous
protected attributes, like age, for consequentialist fairness goals [Raff et al., 2018, Kearns
et al., 2018, Komiyama et al., 2018].
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Fair ranking and fair regression. Monotonicity constraints can be applied to ranking
and regression models. Other notions of ethics have also been considered for ranking models
[Berk et al., 2017a, Zehlike et al., 2017, Celis et al., 2018, Beutel et al., 2019, Singh and
Joachims, 2018] and regression [Komiyama et al., 2018, Pérez-Suay et al., 2017, Berk et al.,
2017a, Agarwal et al., 2019].

Training models with monotonicity constraints

Monotonicity shape constraints have long been used to capture prior knowledge and regularize
estimation problems to improve a model’s generalization to new test examples [Barlow et al.,
1972, Chetverikov et al., 2018, Ben-David, 1992, Archer and Wang, 1993, Sill and Abu-
Mostafa, 1997, Kotlowski and Slowinski, 2009, Groeneboom and Jongbloed, 2014, Gupta
et al., 2016, Canini et al., 2016, You et al., 2017, Bonakdarpour et al., 2018]. In this paper,
we point out that monotonicity shape constraints can and should also be used to ensure that
machine-learned models behave consistently with societal norms and prima facie duties [Ross,
2002] that can be expressed as monotonic relationships.

Unlike its use for regularization, applying monotonicity constraints to impose ethical
principles may actually hurt test accuracy if the training and test data is biased (as in the toy
example of Fig. 1). However, in all three of our real-data experiments the test accuracy was
little changed by adding these constraints (see Section 4.7 and Fig. 2 and Appendix C.4).

Constraining multi-dimensional models to obey monotonic shape constraints has been
shown to work for a variety of function classes, including neural networks [Archer and Wang,
1993, Sill and Abu-Mostafa, 1997] and trees [Ben-David, 1992, Kotlowski and Slowinski, 2009,
Bonakdarpour et al., 2018].

Our experiments use the open-source TensorFlow Lattice 2.0 package [Google AI Blog,
2020], which enables training GAMs and lattice models with monotonicity constraints [Gupta
et al., 2016, Canini et al., 2016, You et al., 2017].

4.6 Relationship to Statistical Fairness
In this section we analyze how the proposed deontological monotonicity constraints interact
with consequentialist statistical fairness goals that are based on aggregate outcomes. For
example, suppose a national funding agency enforces that poorer schools are funded more
often as richer schools on average (we will call this one-sided statistical parity). By only
considering the national average funding rates, richer schools may still get funded more often
than poorer schools in some states. In contrast, if the state were the only input X, then a
deonotological monotonicity constraint would guarantee that for each state, poorer schools
would get a higher funding rate than richer schools.

Hardt et al. [2016b] showed that any oblivious statistical fairness measure that doesn’t
depend on X or the function form f(X,Z) can fail to identify forms of discrimination.
Popular statistical notions like statistical parity [Dwork et al., 2012] and equal opportunity
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[Hardt et al., 2016b] are oblivious, whereas monotonicity is not. In the next section we
show specifically that satisfying one-sided statistical parity does not imply monotonicity, but
that satisfying monotonicity can impact and bound one-sided statistical parity and equal
opportunity (proofs in Appendix).

Bounds on one-sided statistical parity

Statistical parity is a well known measure of fairness for ML models [Dwork et al., 2012, Zafar
et al., 2015, Cotter et al., 2019c]. Consider a model f(X,Z) that takes as input a random
feature vector X ∈ RD and a random protected attribute Z, which may be categorical or
real-valued. Suppose the model f outputs a real-valued score (we treat the special case of
classifiers next). Then statistical parity requires E[f(X,Z)|Z = j] = E[f(X,Z)|Z = k] for
any j, k. Because we focus on asymmetric goals like favoring the less fortunate, we consider
one-sided statistical parity: E[f(X,Z)|Z = j] ≤ E[f(X,Z)|Z = k] for any j ≤ k.

We show in Appendix C.2 that due to Simpson’s paradox [Bickel et al., 1975], that a
monotonicity constraint on Z is not sufficient to guarantee one-sided statistical parity with
respect to Z. However, monotonicity does imply a bound on the one-sided statistical parity
violation: in Lemma 2, we show that if f is monotonic with respect to Z, then the one-sided
statistical parity violation between Z = j and Z = k will be bounded by the maximum
density ratio between the two groups.

Figure 4.3: Illustration of Lemma 1. The dotted line shows the X value achieving the max
density ratio C.

Lemma 2. Let (Ω,F) be a measurable space with a regular conditional probability property,
and let X : Ω→ RD, Z : Ω→ R be F -measurable random variables. Suppose Pj and Pk are
σ-finite probability measures on (Ω,F), where Pj denotes the conditional probability measure
of X given that Z = j, and Pk denote the same for Z = k, and Pj is absolutely continuous
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with respect to Pk. Let f : RD × R→ R be defined as in Section 4.3, and f(x, z) ≥ 0 for all
x ∈ RD, z ∈ R. If the function f satisfies monotonicity in the second argument such that for
j ≤ k, f(x, j) ≤ f(x, k) for all x ∈ RD, and if the Radon-Nikodym derivative dPj

dPk
is bounded

almost everywhere with respect to Pk by a finite constant C > 0, then

E[f(X,Z)|Z = j] ≤ CE[f(X,Z)|Z = k]. (4.1)

If the conditional probability distribution of X given Z = j has density pX|Z=j(x), and
X given Z = k has density pX|Z=k(x), then Lemma 2 says that if the likelihood ratio
pX|Z=j(x)

pX|Z=k(x)
≤ C almost everywhere with respect to Pk for finite C > 0, then the one-sided

statistical parity bound (4.1) holds.
Fig. 4.3 illustrates Lemma 2 with an example: suppose Z is categorical and denotes

either a poorer or richer high school, and suppose D = 1 with X ∈ [0, 20] being the number
of hours of extracurricular activities a student does each week. Let f(X,Z) be a score used
to determine a student’s admission to some college. Then if f is monotonic in Z such that f
never gives a lower admissions score to a poorer student if their X value is the same as a
richer student, then Lemma 1 says that the average score for richer students will be no more
than C times the average score for poorer students, where C is given by the maximum ratio
of the two distributions over X.

While Lemma 1 shows that monotonicity implies a bound on the one-sided statistical
parity violations, the converse does not hold: a model satisfying statistical parity can have
arbitrarily high monotonicity violations (proof in Appendix C.2). This can be ethically
problematic if overlooked by practitioners.

While Lemma 2 provides a worst case bound on the statistical parity violations of
monotonic functions, we next ask, can imposing monotonicity ever make statistical parity
violations worse? Lemma 3 shows that for any model f , the monotonic projection of f cannot
have worse statistical parity violations on average.

Lemma 3. Let f : X × Z → R, where X ⊆ RD, Z ⊆ R. Assume that X ,Z are both finite,
with X ∈ X , Z ∈ Z. Let f̃ be the projection of f onto the set of functions over X × Z that
are monotonic with respect to Z such that for j ≤ k, f(x, j) ≤ f(x, k). For z(i) ∈ Z, let
z(1) ≤ z(2) ≤ ... ≤ z(|Z|). Define the average statistical parity violation:

Rf
△
=

|Z|∑
i=1

E[f(X,Z)|Z = z(i)]− E[f(X,Z)|Z = z(i+1)]

|Z|

Then Rf̃ ≤ Rf .

When |Z| = 2, Lemma 3 also bounds the worst case violation of f̃ . However, for |Z| > 2,
there is no such worst case guarantee, and there may be pairs j, k where f̃ has a worse
one-sided statistical parity violation than f (proof in Appendix C.2).
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Bounds for binary classifiers

In binary classification, an example has an associated true label Y ∈ {0, 1}, and the model
outputs a binary decision Ŷ ∈ {0, 1}. By definition, a monotonicity shape constraint on
Z implies a one-sided bound on the conditional probabilities: for any j ≤ k and for all x,
P (Ŷ = 1|X = x, Z = j) ≤ P (Ŷ = 1|X = x, Z = k).

Because the label Y can be modeled as a Bernoulli random variable, the goal of statistical
parity is equivalent to marginal independence, that is, for any j, k, P (Ŷ = 1|Z = j) = P (Ŷ =
1|Z = k). Correspondingly, the bound (4.1) on the statistical parity violation becomes a
bound on the marginal probabilities: P (Ŷ = 1|Z = j) ≤ CP (Ŷ = 1|Z = k).

For binary classifiers, we can give a more explicit bound:

Lemma 4. Suppose X is a continuous (or with a straightforward extension, discrete) random
variable, and let S be a nonempty set such that for all x ∈ S, the joint probability density
values pX,Ŷ |Z=z(x, 1) > 0 for z = j, k. Suppose we have monotonicity where f(x, j) ≤ f(x, k)

for j ≤ k for all x ∈ S. For a binary classifier this implies P (Ŷ = 1|X = x, Z = j) ≤ P (Ŷ =
1|X = x, Z = k). Then we can bound one-sided statistical parity as follows:

P (Ŷ = 1|Z = j)

P (Ŷ = 1|Z = k)
≤ inf

x∈S

pX|Z=j(x)pX|Ŷ=1,Z=k(x)

pX|Z=k(x)pX|Ŷ=1,Z=j(x)

The bound in Lemma (4) contains two likelihood ratios: pX|Z=j(x)

pX|Z=k(x)
and

pX|Ŷ =1,Z=k(x)

pX|Ŷ =1,Z=j(x)
. The

first is the same as in Lemma 2. The second is the inverse of that likelihood ratio, conditioned
on Ŷ = 1. When the first likelihood ratio is low, the second inverse likelihood ratio may be
high, producing a trade-off between these two ratios. We describe an example in Appendix
C.3.

Similarly, for equal opportunity [Hardt et al., 2016b], we have Lemma 5:

Lemma 5. Let Y ∈ {0, 1} be a random variable representing the target. Let S be a nonempty
set such that for all x ∈ S, the following joint probability density values are non-zero for
z = j, k: pX,Y,Ŷ |Z=z(x, 1, 1) > 0 and pX,Y |Ŷ=1,Z=z(x, 1) > 0. Then,

P (Ŷ = 1|Y = 1, Z = j)

P (Ŷ = 1|Y = 1, Z = k)
≤ inf

x∈S

cj(x)

ck(x)

where cz(x) =
pX|Z=z(x)P (Y = 1|Ŷ = 1, Z = z)

pX|Ŷ=1,Z=z(x)P (Y = 1|Z = z)

We supplement these bounds with empirical results.

4.7 Experiments
We demonstrate experimentally with three public datasets that (i) nonlinear ML can violate
common ethical policies or norms, (ii) training with monotonicity constraints can be used
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to impose such policies to the extent that the choice of model inputs x enables, (iii) test
accuracy may not be hurt, (iii) statistical fairness violations may be reduced.

Model training details

Code for these experiments and further tutorials for using the open-source TensorFlow
Lattice 2.0 library [Google AI Blog, 2020] are available at https://github.com/tensorflow/
lattice/blob/master/docs/tutorials/. All experiments used a nonlinear generalized
additive model (GAM) [Hastie and Tibshirani, 1990], also called a calibrated linear model
in the TensorFlow Lattice, of the form f(x) =

∑D
d=1 cd(x[d]; βd), where each cd(·) is an

one-dimensional piecewise-linear function parameterized by K interpolated (key, value) pairs
where the keys are set to match the K quantiles of the training data and their corresponding
values βd ∈ RK are trained [Gupta et al., 2016]. We used a fixed K = 20 parameters
for each of the D one-dimensional transforms, for all experiments. All DK parameters
were jointly trained using projected stochastic gradient descent. For each input d, one can
choose to constrain f(x) to be monotonically increasing with respect to d by constraining its
one-dimensional curve cd(x[d]) to be monotonic [Gupta et al., 2016]. The TensorFlow Lattice
package enables fitting more flexible monotonic models, but we felt it was most compelling to
show that these monotonicity violations occur even with simple nonlinear models like GAMs,
which are popular in the statistics literature. We randomly uniformly split each dataset
into 70% training, 10% validation, and 20% test examples. We validated the learning rates
using grid search by powers of 10 ensuring that the optimal learning rates did not fall on the
extremes, and trained for 1000 epochs (more than sufficient for convergence).

Law School experiments

In Section 1 we partially described an experiment using the Law School Admissions dataset
[Wightman, 1998]. The dataset has 27,234 total law students, and we use only two features in
all models: GPA and LSAT scores. We plot the densities of these conditioned on whether the
student passed the bar or not in Fig. C.4 in Appendix C.4. Models were trained as described
above, where for the constrained model we constrained both LSAT score and undergraduate
GPA to only be positive evidence, ceterus paribus. The two-layer neural network and gradient
boosted trees models were trained with a similar number of model parameters to the GAMs
and no monotonicity constraints. Resulting models were shown in Fig. 4.2, and train/test
accuracies in Table 4.1.

Credit Default experiments

Next, we consider the Default of Credit Card Clients benchmark dataset from the UCI
repository [Lichman, 2013, Yeh and hui Lien, 2009]. The data was collected from 30,000
Taiwanese credit card users and contains a binary label of whether or not a user defaulted on a
payment in a time window. Features include marital status, gender, education, and how long

https://github.com/tensorflow/lattice/blob/master/docs/tutorials/
https://github.com/tensorflow/lattice/blob/master/docs/tutorials/
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a user is behind on payment of their existing bills, for each of the months of April-September
2005.

Repayment status is the integer number of months it has been since the user has repaid,
and negative values mean the user has already repaid. Here we illustrate using monotonicity
constraints to avoid unfair penalization: if the model were to be used to determine a user’s
credit score, it could feel unfair to many if they were penalized for paying their bills sooner,
all else equal. Thus, we apply a monotonicity constraint that keeps the model from penalizing
early payments.

Figure 4.4 (top) shows the average and standard deviation of the default rate of the
training examples as a function of the months since the bills were paid. The data is very
noisy for 3+ months overdue payment (there are only 122 such training examples), and these
noisy averages do not follow the reasonable principle of predicting a higher default rate if
your bills are more over-due.

For ease of visualization, our first experiment uses only D = 2 features: marital status
and April repayment status, with a monotonicity shape constraint on the repayment status
to ensure that paying your bills on time doesn’t hurt you. Our second experiment uses all
D = 24 features, and we impose monotonicity shape constraints on all 6 repayment features
to guarantee that the person is not penalized for paying early/on-time during any of the 6
months.

Fig. 4.5 (top) shows the predicted default rate for the unconstrained GAM. It mimics
the average training labels, and thus unfairly rewards people who are 5-6 months overdue
on their bills with a lower defaulting score than people who are only 2-3 months overdue.
However, Figure 4.5 (bottom) shows the GAM trained with a monotonicity shape constraint:
as requested, it does not penalize people for paying their bills early.

Table 4.2 shows that adding the monotoniciy constraints for the Credit Default problem
had only a tiny effect on the train and test accuracy for the D = 2 experiments. For the
D = 24 experiment, the test accuracy is slightly worse, but since the train accuracy was not
hurt, we believe the lower test accuracy is simply due to the randomness of the sample.

Funding Proposals experiments

Next we demonstrate the use of monotonicity constraints to favor the less fortunate. We use
the dataset from the KDD Cup 2014: Predicting Excitement at DonorsChoose.org [KDD
Cup, 2014]. DonorsChoose.org is a platform through which teachers in K-12 schools can
request funding and materials for proposed projects. Donors can search for and donate to
projects. The dataset contains 619,327 examples of projects proposed by teachers. The label
is a binary label that represents the outcome of the project, where the positive class means
the project was deemed “exciting”, a definition determined by DonorsChoose.org that includes
whether the project was fully funded. Only 5.91% of examples are labeled “exciting”. Figure
4.4 (bottom) shows the mean and std. dev. of the training examples for 2 of the 28 features:
poverty level and number of students impacted. A machine learning model trained on this
dataset could be used to rank projects to display to potential donors. Standard machine
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learning trained on just these two features would not favor schools at higher poverty levels,
or projects with greater impact. We compare to training with monotonicity constraints for
those two principles, both on just the shown two features, and on all 28 features (but only
these two features constrained).

The results in Table 4.3 for the AUC metric (the same metric used in the KDD Cup 2014
competition) show that adding monotonicity constraints to prefer poorer schools and greater
student impact did not hurt the test AUC. Figures comparing the standard and constrained
D = 2 models are in Appendix C.5.

# features # shape Train Test
constraints Acc. Acc.

2 0 82.07% 81.55%
2 1 82.06% 81.60%
24 0 82.44% 82.02%
24 6 82.35% 80.86%

Table 4.2: Credit Default experiment results, where the monotonicity shape constraints
ensure the model does not penalize people for paying their bills earlier.

# features # shape Train Test
constraints AUC AUC

2 0 0.520 0.517
2 2 0.514 0.518
28 0 0.752 0.746
28 2 0.751 0.746

Table 4.3: Funding Proposals experiment results, where the monotonicity shape constraints
ensure that the model gives higher scores to projects for higher poverty schools or impacting
more students, all else equal.

Comparison to statistical fairness

In Section 6 we gave theoretical results on how monotonicity constraints can bound and affect
one-sided statistical parity and one-sided equal opportunity fairness violations. In Table 4.4 we
show empirically what happens to the one-sided (1-s) statistical parity and equal opportunity
violations (defined below) for the Funding Proposals experiment, where the protected groups
j, k ∈ {0, 1, 2, 3} are four different poverty levels, which we treat as four different ordinal
protected groups for calculating these one-sided statistical metrics.
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Credit Default: Training Examples

−2 0 2 4 6 8
Repayment Status (April)

0.0

0.2

0.4

0.6

0.8

1.0

O
b

se
rv

e
d

 d
e
fa

u
lt

 r
a
te Single

Married

Funding Proposals: Training Examples

0 1 2 3
Poverty Level

0.04

0.05

0.06

0.07

0.08

0.09

0.10

O
b
se

rv
e
d
 e
xc

it
in
g
 r
a
te <20 Students Reached

20-30 Students Reached

30-100 Students Reached

>100 Students Reached

Figure 4.4: Mean and standard error of the label as a function of the inputs over the training
dataset.

Max One-sided Statistical Parity Violation:

max
j<k

(0, P (Ŷ = 1|Z = j)− P (Ŷ = 1|Z = k)) (4.2)

Max One-sided Equal Opportunity Violation:

max
j<k

(0, P (Ŷ = 1|Z = j, Y = 1)− P (Ŷ = 1|Z = k, Y = 1)) (4.3)

Table 4.4 shows that the monotonically constrained models do lower violations of both
fairness goals. The improvement is smaller when the model has D = 28 features than D = 2
features, which we believe is due to a weakening of the maximum likelihood ratios as described
by Lemmas 4 and 5.
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Credit Default: Unconstrained Model Predictions
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Credit Default: Monotonic Model Predictions
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Figure 4.5: Credit Default: unconstrained model predictions (top) and constrained model
predictions (bottom).

D # shape Max 1-s Stat. Max 1-s Eq.
constraints Par. Viol. (4.2) Opp. Viol. (4.3)

2 0 0.00704 0.00707
2 2 0.00017 0.00037
28 0 0.00751 0.00397
28 2 0.00261 0.00331

Table 4.4: Statistical Fairness Violations for Funding Proposals Experiment.
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4.8 Conclusions
We have demonstrated that nonlinear machine learned models can easily overfit noise or learn
bias in a way that violates social norms or ethics about whether certain inputs should be
allowed to negatively affect a score or decision. We have also shown that this problem can be
ameliorated by training with monotonicity constraints to reflect the desired principle.

An advantage of monotonicity constraints is that their effect does not depend on the
data distribution, so there are no questions of generalization to test data as there are
with statistical fairness measures. While enforcing such constraints addresses deontological
rather than consequentialist ethics, we have also shown theoretically and experimentally that
monotonicity constraints can can improve or bound (consequentialist) one-sided statistical
fairness violations.

Monotonicity constraints are fairly easy to explain and reason about for laypeople, as
illustrated in the examples in this paper. The examples also illustrate the broad applicability of
constraints to situations where the model should avoid unfair penalization of good attributes,
and favor the less fortunate.

We conclude that monotonicity constraints are a necessary and useful tool for creating
responsible AI, but certainly not sufficient or applicable to all situations. For this method
to be completely effective, all relevant features must be identified and constrained. Non-
sensitive information can be highly correlated with sensitive information, causing indirect
discrimination [Hajian and Domino-Ferrer, 2013], which is also a problem for statistical
fairness measures [Hardt et al., 2016b]. This method is also not directly applicable to
unordered inputs like addresses, photos, or voice signals. Thus, this will be one of many tools
and strategies needed to achieve responsible AI.
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Appendix A

Deferred Proofs and Discussion for
Chapter 2

A.1 Proofs for Section 2.4
This section provides proofs and definitions details for the theorems and lemmas presented in
Section 2.4.

Proofs for TV distance

Definition 1. (TV distance) Let c(x, y) = 1(x ̸= y) be a metric, and let π be a coupling
between probability distributions p and q. Define the total variation (TV) distance between
two distributions p, q as

TV (p, q) = inf
π
EX,Y∼π[c(X, Y )]

s.t.
∫
π(x, y)dy = p(x),

∫
π(x, y)dx = q(y).

Theorem 1. Suppose a model with parameters θ satisfies fairness criteria with respect to the
noisy groups Ĝ:

ĝj(θ) ≤ 0 ∀j ∈ G.

Suppose |h(θ, x1, y1)− h(θ, x2, y2)| ≤ 1 for any (x1, y1) ̸= (x2, y2). If TV (pj, p̂j) ≤ γj for all
j ∈ G, then the fairness criteria with respect to the true groups G will be satisfied within
slacks γj for each group:

gj(θ) ≤ γj ∀j ∈ G.

Proof. For any group label j,

gj(θ) = gj(θ)− ĝj(θ) + ĝj(θ) ≤ |gj(θ)− ĝj(θ)|+ ĝj(θ).
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By Kantorovich-Rubenstein theorem (provided here as Theorem 5), we also have

|ĝj(θ)− gj(θ)| = |EX,Y∼p̂j [h(θ,X, Y )]− EX,Y∼pj [h(θ,X, Y )]| ≤ TV (pj, p̂j).

By assumption that θ satisifes fairness constraints with respect to the noisy groups Ĝ,
ĝj(θ) ≤ 0. Thus, we have the desired result that gj(θ) ≤ TV (pj, p̂j) ≤ γj.

Note that if pj and p̂j are discrete, then the TV distance TV (pj, p̂j) could be very large.
In that case, the bound would still hold, but would be loose.

Theorem 5. (Kantorovich-Rubinstein).1 Call a function f Lipschitz in c if |f(x)− f(y)| ≤
c(x, y) for all x, y, and let L(c) denote the space of such functions. If c is a metric, then we
have

Wc(p, q) = sup
f∈L(c)

EX∼p[f(X)]− EX∼q[f(X)].

As a special case, take c(x, y) = I(x ̸= y) (corresponding to TV distance). Then f ∈ L(c)
if and only if |f(x)− f(y)| ≤ 1 for all x ̸= y. By translating f , we can equivalently take the
supremum over all f mapping to [0, 1]. This says that

TV (p, q) = sup
f :X→[0,1]

EX∼p[f(X)]− EX∼q[f(X)]

Lemma 1. Suppose P (G = i) = P (Ĝ = i) for a given i ∈ {1, 2, ...,m}. Then TV (pi, p̂i) ≤
P (G ̸= Ĝ|G = i).

Proof. For probability measures pi and p̂i, the TV distance is given by

TV (pi, p̂i) = sup{|pi(A)− p̂i(A)| : A is a measurable event}.

Fix A to be any measurable event for both pi and p̂i. This means that A is also a measurable
event for p, the distribution of the random variables X, Y . By definition of pi, pi(A) =
P (A|G = i). Then

|pi(A)− p̂i(A)| = |P (A|G = i)− P (A|Ĝ = i)|
= |P (A|G = i, Ĝ = i)P (Ĝ = i|G = i)

+ P (A|G = i, Ĝ ̸= i)P (Ĝ ̸= i|G = i)

− P (A|Ĝ = i, G = i)P (G = i|Ĝ = i)

− P (A|Ĝ = i, G ̸= i)P (G ̸= i|Ĝ = i)|

= |P (A|G = i, Ĝ = i)
(
P (Ĝ = i|G = i)− P (G = i|Ĝ = i)

)
− P (Ĝ ̸= G|G = i)

(
P (A|G = i, Ĝ ̸= i)− P (A|Ĝ = i, G ̸= i)

)
|

1Edwards, D.A. On the Kantorovich–Rubinstein theorem. Expositiones Mathematicae, 20(4):387-398,
2011.
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= |0− P (Ĝ ̸= G|G = i)
(
P (A|G = i, Ĝ ̸= i)− P (A|Ĝ = i, G ̸= i)

)
|

≤ P (Ĝ ̸= G|G = i)

The second equality follows from the law of total probability. The third and the fourth
equalities follow from the assumption that P (G = i) = P (Ĝ = i), which implies that
P (Ĝ = G|G = i) = P (G = Ĝ|Ĝ = i) since

P (G = Ĝ|G = i) =
P (G = Ĝ, G = i)

P (G = i)
=
P (G = Ĝ, Ĝ = i)

P (Ĝ = i)
= P (G = Ĝ|Ĝ = i).

This further implies that P (Ĝ ̸= i|G = i) = P (G ̸= i|Ĝ = i).
Since |pi(A)− p̂i(A)| ≤ P (Ĝ ≠ G|G = i) for any measurable event A, the supremum over

all events A is also bounded by P (Ĝ ̸= G|G = i). This gives the desired bound on the TV
distance.

Generalization to Wasserstein distances

Theorem 1 can be directly extended to loss functions that are Lipschitz in other metrics. To
do so, we first provide a more general definition of Wasserstein distances:

Definition 2. (Wasserstein distance) Let c(x, y) be a metric, and let π be a coupling between
p and q. Define the Wasserstein distance between two distributions p, q as

Wc(p, q) = inf
π

EX,Y∼π[c(X, Y )]

s.t.
∫
π(x, y)dy = p(x),

∫
π(x, y)dx = q(y).

As a familiar example, if c(x, y) = ||x−y||2, then Wc is the earth-mover distance, and L(c)
is the class of 1-Lipschitz functions. Using the Wasserstein distance Wc under different metrics
c, we can bound the fairness violations for constraint functions h beyond those specified for
the TV distance in Theorem 1.

Theorem 6. Suppose a model with parameters θ satisfies fairness criteria with respect to the
noisy groups Ĝ:

ĝj(θ) ≤ 0 ∀j ∈ G.

Suppose the function h satisfies |h(θ, x1, y1) − h(θ, x2, y2)| ≤ c((x1, y1), (x2, y2)) for any
(x1, y1) ̸= (x2, y2) w.r.t a metric c. If Wc(pj, p̂j) ≤ γj for all j ∈ G, then the fairness criteria
with respect to the true groups G will be satisfied within slacks γj for each group:

gj(θ) ≤ γj ∀j ∈ G.
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Proof. By the triangle inequality, for any group label j,

|gj(θ)− g(θ)| ≤ |gj(θ)− ĝj(θ)|+ ĝj(θ)

By Kantorovich-Rubenstein theorem (provided here as Theorem 5), we also have

|ĝj(θ)− gj(θ)| = |EX,Y∼p̂j [h(θ,X, Y )]− EX,Y∼pj [h(θ,X, Y )]|
≤ Wc(pj, p̂j).

By the assumption that θ satisifes fairness constraints with respect to the noisy groups
Ĝ, ĝj(θ) ≤ 0. Therefore, combining these with the triangle inequality, we get the desired
result.

A.2 Additional details on DRO formulation for TV
distance

Here we describe the details on solving the DRO problem (2.3) with TV distance using the
empirical Lagrangian formulation. We also provide the pseudocode we used for the projected
gradient-based algorithm to solve it.

Empirical Lagrangian Formulation

We rewrite the constrained optimization problem (2.3) as a minimax problem using the
Lagrangian formulation. We also convert all expectations into expectations over empirical
distributions given a dataset of n samples (X1, Y1, G1), ..., (Xn, Yn, Gn).

Let nj denote the number of samples that belong to a true group G = j. Let the empirical
distribution p̂j ∈ Rn be a vector with i-th entry p̂ij =

1
nj

if the i-th example has a noisy group
membership Ĝi = j, and 0 otherwise. Replacing all expectations with expectations over the
appropriate empirical distributions, the empirical form of (2.3) can be written as:

min
θ

1

n

n∑
i=1

l(θ,Xi, Yi)

s.t. max
p̃j∈Bγj (p̂j)

n∑
i=1

p̃ijh(θ,Xi, Yi) ≤ 0 ∀j ∈ G
(A.1)

where Bγj(p̂j) = {p̃j ∈ Rn : 1
2

∑n
i=1 |p̃ij − p̂ij| ≤ γj,

∑n
i=1 p̃

i
j = 1, p̃ij ≥ 0 ∀i = 1, ..., n}.

For ease of notation, for j ∈ {1, 2, ...,m}, let

f(θ) =
1

n

n∑
i=1

l(θ,Xi, Yi)
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fj(θ, p̃j) =
n∑

i=1

p̃ijh(θ,Xi, Yi).

Then the Lagrangian of the empirical formulation (A.1) is

L(θ, λ) = f(θ) +
m∑
j=1

λj max
p̃j∈Bγ(p̂j)

fj(θ, p̃j)

and problem (A.1) can be rewritten as

min
θ

max
λ≥0

f(θ) +
m∑
j=1

λj max
p̃j∈Bγ(p̂j)

fj(θ, p̃j)

Moving the inner max out of the sum and rewriting the constraints as ℓ1-norm constraints:

min
θ

max
λ≥0

max
p̃j∈Rn,p̃j≥0,
j=1,...,m

f(θ) +
m∑
j=1

λjfj(θ, p̃j)

s.t. ||p̃j − p̂j||1 ≤ 2γj, ||p̃j||1 = 1 ∀j ∈ {1, ...,m}

(A.2)

Since projections onto the ℓ1-ball can be done efficiently [Duchi et al., 2008], we can solve
problem (A.2) using a projected gradient descent ascent (GDA) algorithm. This is a simplified
version of the algorithm introduced by Namkoong and Duchi [2016] for solving general classes
of DRO problems. We provide pseudocode in Algorithm 3, as well as an actual implementation
in the attached code.

Projected GDA Algorithm for DRO

Algorithm 3 Project GDA Algorithm

Require: learning rates ηθ > 0, ηλ > 0, ηp > 0, estimates of P (G ̸= Ĝ|Ĝ = j) to specify γj.
1: for t = 1, . . . , T do
2: Descent step on θ:

θ(t+1) ← θ(t) − ηθ∇θf(θ
(t))− ηθ

∑m
j=1 λ

(t)
j ∇θfj(θ

(t), p̃
(t)
j )

3: Ascent step on λ:
λ
(t+1)
j ← λ

(t)
j + ηλfj(θ, p̃

(t)
j )

4: for j = 1, ...,m do
5: Ascent step on p̃j: p̃

(t+1)
j ← p̃

(t)
j + ηpλ

(t)
j ∇p̃jfj(θ

(t), p̃
(t)
j )

6: Project p̃(t+1)
j onto ℓ1-norm constraints : ||p̃(t+1)

j − p̂j||1 ≤ 2γj, ||p̃(t+1)
j ||1 = 1

7: end for
8: end for
9: return θ(t

∗) where t∗ denotes the best iterate that satisfies the constraints in (2.3) with
the lowest objective.
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Equalizing TPRs and FPRs using DRO

In the two case studies in Section 2.7, we enforce equality of opportunity and equalized odds
Hardt et al. [2016b] by equalizing true positive rates (TPRs) and/or false positive rates
(FPRs) within some slack α. In this section, we describe in detail the implementation of the
constraints for equalizing TPRs and FPRs under the DRO approach.

To equalize TPRs with slack α under the DRO approach, we set

g̃TPR
j (θ) =

EX,Y∼p[1(Y = 1)1(Ŷ = 1)]

EX,Y∼p[1(Y = 1)]
−

EX,Y∼p̃j [1(Y = 1)1(Ŷ = 1)]

EX,Y∼p̃j [1(Y = 1)]
− α. (A.3)

The first term corresponds to the TPR for the full population. The second term estimates
the TPR for group j. Setting α = 0 exactly equalizes true positive rates.

To equalize FPRs with slack α under the DRO approach, we set

g̃FPR
j (θ) =

EX,Y∼p̃j [1(Y = 0)1(Ŷ = 1)]

EX,Y∼p̃j [1(Y = 0)]
− EX,Y∼p[1(Y = 0)1(Ŷ = 1)]

EX,Y∼p[1(Y = 0)]
− α. (A.4)

The first term estimates the FPR for group j. The second term corresponds to the FPR for
the full population. Setting α = 0 exactly equalizes false positive rates.

To equalize TPRs for Case Study 1, we apply m constraints,{
maxp̃j :TV (p̃j ,p̂j)≤γj ,p̃j≪p g̃

TPR
j (θ) ≤ 0

}
∀j ∈ G.

To equalize both TPRs and FPRs simultaneously for Case Study 2, we apply 2m con-
straints,

{
maxp̃j :TV (p̃j ,p̂j)≤γj ,p̃j≪p g̃

TPR
j (θ) ≤ 0,maxp̃j :TV (p̃j ,p̂j)≤γj ,p̃j≪p g̃

FPR
j (θ) ≤ 0

}
∀j ∈ G.

h(θ,X, Y ) for equalizing TPRs and FPRs

Since the notation in Section 2.5 and in the rest of the paper uses generic functions h to
express the group-specific constraints, we show in Lemma 6 that the constraint using g̃TPR

j (θ)
in Equation (A.3) can also be written as an equivalent constraint in the form of Equation
(2.3), as

g̃TPR
j (θ) = EX,Y∼p̃j [h

TPR(θ,X, Y )]

for some function hTPR : Θ×X × Y → R.

Lemma 6. Denote Ŷ as 1(ϕ(X; θ) > 0). Let hTPR(θ,X, Y ) be given by

hTPR(θ,X, Y ) =
1

2

(
−1(Ŷ = 1, Y = 1)− 1(Y = 1)

(
α− EX,Y∼p[1(Y = 1, Ŷ = 1)]

EX,Y∼p[1(Y = 1)]

))
.

Then

EX,Y∼p[1(Y = 1)1(Ŷ = 1)]

EX,Y∼p[1(Y = 1)]
−

EX,Y∼p̃j [1(Y = 1)1(Ŷ = 1)]

EX,Y∼p̃j [1(Y = 1)]
− α ≤ 0

⇐⇒ EX,Y∼p̃j [h
TPR(θ,X, Y )] ≤ 0.
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Proof. Substituting the given function hTPR(θ,X, Y ), and using the fact that
EX,Y∼p̃j [1(Y = 1)] ≥ 0:

EX,Y∼p̃j [h
TPR(θ,X, Y )] ≤ 0

⇐⇒ EX,Y∼p̃j

[
1

2

(
−1(Ŷ = 1, Y = 1)− 1(Y = 1)

(
α− EX,Y∼p[1(Y = 1, Ŷ = 1)]

EX,Y∼p[1(Y = 1)]

))]
≤ 0

⇐⇒ −EX,Y∼p̃j [1(Ŷ = 1, Y = 1)]− EX,Y∼p̃j

[
1(Y = 1)

(
α− EX,Y∼p[1(Y = 1, Ŷ = 1)]

EX,Y∼p[1(Y = 1)]

)]
≤ 0

⇐⇒ −EX,Y∼p̃j [1(Ŷ = 1, Y = 1)]− αEX,Y∼p̃j [1(Y = 1)]

+
EX,Y∼p[1(Y = 1, Ŷ = 1)]

EX,Y∼p[1(Y = 1)]
EX,Y∼p̃j [1(Y = 1)] ≤ 0

⇐⇒ EX,Y∼p[1(Y = 1, Ŷ = 1)]

EX,Y∼p[1(Y = 1)]
−

EX,Y∼p̃j [1(Ŷ = 1, Y = 1)]

EX,Y∼p̃j [1(Y = 1)]
− α ≤ 0

By similar proof, we also show in Lemma 7 that the constraint using g̃FPR
j (θ) in Equation

(A.4) can also be written as an equivalent constraint in the form of Equation (2.3), as

g̃FPR
j (θ) = EX,Y∼p̃j [h

FPR(θ,X, Y )]

for some function hFPR : Θ×X × Y → R.

Lemma 7. Denote Ŷ as 1(ϕ(X; θ) > 0). Let hFPR(θ,X, Y ) be given by

hFPR(θ,X, Y ) =
1

2

(
1(Ŷ = 1, Y = 0)− 1(Y = 0)

(
α +

EX,Y∼p[1(Y = 0, Ŷ = 1)]

EX,Y∼p[1(Y = 0)]

))
.

Then

EX,Y∼p̃j [1(Y = 0)1(Ŷ = 1)]

EX,Y∼p̃j [1(Y = 0)]
− EX,Y∼p[1(Y = 0)1(Ŷ = 1)]

EX,Y∼p[1(Y = 0)]
− α ≤ 0

⇐⇒ EX,Y∼p̃j [h
FPR(θ,X, Y )] ≤ 0.

Proof. Substituting the given function hFPR(θ,X, Y ), and using the fact that
EX,Y∼p̃j [1(Y = 0)] ≥ 0:

EX,Y∼p̃j [h
FPR(θ,X, Y )] ≤ 0

⇐⇒ EX,Y∼p̃j

[
1

2

(
1(Ŷ = 1, Y = 0)− 1(Y = 0)

(
α +

EX,Y∼p[1(Y = 0, Ŷ = 1)]

EX,Y∼p[1(Y = 0)]

))]
≤ 0
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⇐⇒ EX,Y∼p̃j [1(Ŷ = 1, Y = 0)]− EX,Y∼p̃j

[
1(Y = 0)

(
α +

EX,Y∼p[1(Y = 0, Ŷ = 1)]

EX,Y∼p[1(Y = 0)]

)]
≤ 0

⇐⇒ EX,Y∼p̃j [1(Ŷ = 1, Y = 0)]− αEX,Y∼p̃j [1(Y = 0)]

− EX,Y∼p[1(Y = 0, Ŷ = 1)]

EX,Y∼p[1(Y = 0)]
EX,Y∼p̃j [1(Y = 0)] ≤ 0

⇐⇒
EX,Y∼p̃j [1(Ŷ = 1, Y = 0)]

EX,Y∼p̃j [1(Y = 0)]
− EX,Y∼p[1(Y = 0, Ŷ = 1)]

EX,Y∼p[1(Y = 0)]
− α ≤ 0

DRO when Ĝ and G have different dimensionalities

The soft assignments approach is naturally formulated to be able to handle G ∈ G = {1, ...,m}
and Ĝ ∈ Ĝ = {1, ..., m̂} when m̂ ≠ m. The DRO approach can be extended to handle this
case by generalizing Lemma 1 to TV (pj, p̂i) ≤ P (Ĝ ≠ i|G = j), j ∈ G, i ∈ Ĝ, and generalizing
the DRO formulation to have the true group distribution pj bounded in a TV distance ball
centered at p̂i. Empirically comparing this generalized DRO approach to the soft group
assignments approach when m̂ ̸= m is an interesting avenue of future work.

A.3 Additional details for soft group assignments
approach

Here we provide additional technical details regarding the soft group assignments approach
introduced in Section 2.7.

Derivation for E[h(θ,X, Y )|G = j]

Here we show E[h(θ,X, Y )|G = j] = E[h(θ,X,Y )P (G=j|Ŷ ,Y,Ĝ)]
P (G=j)

, assuming that h(θ,X, Y ) depends
on X through Ŷ , i.e. Ŷ = 1(ϕ(θ,X) > 0). Using the tower property and the definition of
conditional expectation:

E[h(θ,X, Y )|G = j] =
E[h(θ,X, Y )1(G = j)]

P (G = j)

=
E[E[h(θ,X, Y )1(G = j)|Ŷ , Y, Ĝ]]

P (G = j)

=
E[h(θ,X, Y )E[1(G = j)|Ŷ , Y, Ĝ]]

P (G = j)

=
E[h(θ,X, Y )P (G = j|Ŷ , Y, Ĝ)]

P (G = j)

(A.5)
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Equalizing TPRs and FPRs using soft group assignments

In the two case studies in Section 2.7, we enforce equality of opportunity and equalized odds
Hardt et al. [2016b] by equalizing true positive rates (TPRs) and/or false positive rates
(FPRs) within some slack α. In this section, we describe in detail the implementation of the
constraints for equalizing TPRs and FPRs under the soft group assignments approach.

To equalize TPRs with slack α under the soft group assignments approach, we set

gTPR
j (θ, w) =

E[1(Y = 1)1(Ŷ = 1)]

E[1(Y = 1)]
− E[1(Y = 1)1(Ŷ = 1)w(j|Ŷ , Y, Ĝ)]

E[1(Y = 1)w(j|Ŷ , Y, Ĝ)]
− α. (A.6)

The first term corresponds to the TPR for the full population. The second term estimates the
TPR for group j as done by Kallus et al. [2020] in Equation (5) and Proposition 8. Setting
α = 0 exactly equalizes true positive rates.

To equalize FPRs with slack α under the soft group assignments approach, we set

gFPR
j (θ, w) =

E[1(Y = 0)1(Ŷ = 1)w(j|Ŷ , Y, Ĝ)]
E[1(Y = 0)w(j|Ŷ , Y, Ĝ)]

− E[1(Y = 0)1(Ŷ = 1)]

E[1(Y = 0)]
− α. (A.7)

The first term estimates the FPR for group j as done previously for the TPR. The second
term corresponds to the FPR for the full population. Setting α = 0 exactly equalizes false
positive rates.

To equalize TPRs for Case Study 1, we applym constraints,
{
maxw∈W(θ) g

TPR
j (θ, w) ≤ 0

}
∀j ∈

G. To equalize both TPRs and FPRs simultaneously for Case Study 2, we apply 2m con-
straints,

{
maxw∈W(θ) g

TPR
j (θ, w) ≤ 0,maxw∈W(θ) g

FPR
j (θ, w) ≤ 0

}
∀j ∈ G.

h(θ,X, Y ) for equalizing TPRs and FPRs

Since the notation in Section 2.6 and in the rest of the paper uses generic functions h
to express the group-specific constraints, we show in Lemma 8 that the constraint using
gTPR
j (θ, w) in Equation (A.6) can also be written as an equivalent constraint in the form of

Equation (2.6), as

gTPR
j (θ, w) =

E[hTPR(θ,X, Y )w(j|Ŷ , Y, Ĝ)]
P (G = j)

for some function hTPR : Θ×X × Y → R.

Lemma 8. Denote Ŷ as 1(ϕ(X; θ) > 0). Let hTPR(θ,X, Y ) be given by

hTPR(θ,X, Y ) =
1

2

(
−1(Ŷ = 1, Y = 1)− 1(Y = 1)

(
α− E[1(Y = 1, Ŷ = 1)]

E[1(Y = 1)]

))
.

Then

E[1(Y = 1)1(Ŷ = 1)]

E[1(Y = 1)]
− E[1(Y = 1)1(Ŷ = 1)w(j|Ŷ , Y, Ĝ)]

E[1(Y = 1)w(j|Ŷ , Y, Ĝ)]
− α ≤ 0
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⇐⇒ E[hTPR(θ,X, Y )w(j|Ŷ , Y, Ĝ)]
P (G = j)

≤ 0.

for all j ∈ G, P (G = j) > 0.

Proof. Substituting the given function hTPR(θ,X, Y ), and using the fact that P (G = j) > 0
and E[1(Y = 1)w(j|Ŷ , Y, Ĝ)] ≥ 0:

E[hTPR(θ,X, Y )w(j|Ŷ , Y, Ĝ)]
P (G = j)

≤ 0

⇐⇒ E[hTPR(θ,X, Y )w(j|Ŷ , Y, Ĝ)] ≤ 0

⇐⇒ E

[
1

2

(
−1(Ŷ = 1, Y = 1)− 1(Y = 1)

(
α− E[1(Y = 1, Ŷ = 1)]

E[1(Y = 1)]

))
w(j|Ŷ , Y, Ĝ)

]
≤ 0

⇐⇒ −E[1(Ŷ = 1, Y = 1)w(j|Ŷ , Y, Ĝ)]

− E

[
1(Y = 1)

(
α− E[1(Y = 1, Ŷ = 1)]

E[1(Y = 1)]

)
w(j|Ŷ , Y, Ĝ)

]
≤ 0

⇐⇒ −E[1(Ŷ = 1, Y = 1)w(j|Ŷ , Y, Ĝ)]− αE[1(Y = 1)w(j|Ŷ , Y, Ĝ)]

+
E[1(Y = 1, Ŷ = 1)]

E[1(Y = 1)]
E[1(Y = 1)w(j|Ŷ , Y, Ĝ)] ≤ 0

⇐⇒ E[1(Y = 1, Ŷ = 1)]

E[1(Y = 1)]
− E[1(Ŷ = 1, Y = 1)w(j|Ŷ , Y, Ĝ)]

E[1(Y = 1)w(j|Ŷ , Y, Ĝ)]
− α ≤ 0

By similar proof, we also show in Lemma 9 that the constraint using gFPR
j (θ, w) in

Equation (A.7) can also be written as an equivalent constraint in the form of Equation (2.6),
as

gFPR
j (θ, w) =

E[hFPR(θ,X, Y )w(j|Ŷ , Y, Ĝ)]
P (G = j)

for some function hFPR : Θ×X × Y → R.

Lemma 9. Denote Ŷ as 1(ϕ(X; θ) > 0). Let hFPR(θ,X, Y ) be given by

hFPR(θ,X, Y ) =
1

2

(
1(Ŷ = 1, Y = 0)− 1(Y = 0)

(
α +

E[1(Y = 0, Ŷ = 1)]

E[1(Y = 0)]

))
.

Then

E[1(Y = 0)1(Ŷ = 1)w(j|Ŷ , Y, Ĝ)]
E[1(Y = 0)w(j|Ŷ , Y, Ĝ)]

− E[1(Y = 0)1(Ŷ = 1)]

E[1(Y = 0)]
− α ≤ 0
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⇐⇒ E[hFPR(θ,X, Y )w(j|Ŷ , Y, Ĝ)]
P (G = j)

≤ 0.

for all j ∈ G, P (G = j) > 0.

Proof. Substituting the given function hFPR(θ,X, Y ), and using the fact that P (G = j) > 0
and E[1(Y = 0)w(j|Ŷ , Y, Ĝ)] ≥ 0:

E[hFPR(θ,X, Y )w(j|Ŷ , Y, Ĝ)]
P (G = j)

≤ 0

⇐⇒ E[hFPR(θ,X, Y )w(j|Ŷ , Y, Ĝ)] ≤ 0

⇐⇒ E

[
1

2

(
1(Ŷ = 1, Y = 0)− 1(Y = 0)

(
α +

E[1(Y = 0, Ŷ = 1)]

E[1(Y = 0)]

))
w(j|Ŷ , Y, Ĝ)

]
≤ 0

⇐⇒ E[1(Ŷ = 1, Y = 0)w(j|Ŷ , Y, Ĝ)]

− E

[
1(Y = 0)

(
α +

E[1(Y = 0, Ŷ = 1)]

E[1(Y = 0)]

)
w(j|Ŷ , Y, Ĝ)

]
≤ 0

⇐⇒ E[1(Ŷ = 1, Y = 0)w(j|Ŷ , Y, Ĝ)]− αE[1(Y = 0)w(j|Ŷ , Y, Ĝ)]

− E[1(Y = 0, Ŷ = 1)]

E[1(Y = 0)]
E[1(Y = 0)w(j|Ŷ , Y, Ĝ)] ≤ 0

⇐⇒ E[1(Ŷ = 1, Y = 0)w(j|Ŷ , Y, Ĝ)]
E[1(Y = 0)w(j|Ŷ , Y, Ĝ)]

− E[1(Y = 0, Ŷ = 1)]

E[1(Y = 0)]
− α ≤ 0

A.4 Optimality and feasibility for the Ideal algorithm
We provide optimality and feasibility guarantees for Algorithm 1 and optimality guarantees
for Algorithm 4.

Theorem 7 (Optimality and Feasibility for Algorithm 1). Let θ∗ ∈ Θ be such that
it satisfies the constraints max

w∈W(θ)
gj(θ

∗, w) ≤ 0, ∀j ∈ G and f0(θ
∗) ≤ f(θ) for every θ ∈

Θ that satisfies the same constraints. Let 0 ≤ f0(θ) ≤ B, ∀θ ∈ Θ. Let the space of
Lagrange multipliers be defined as Λ = {λ ∈ Rm

+ | ∥λ∥1 ≤ R}, for R > 0. Let Bλ ≥
maxt ∥∇λL(θ(t), λ(t))∥2. Let θ be the stochastic classifier returned by Algorithm 1 when run
for T iterations, with the radius of the Lagrange multipliers R = T 1/4 and learning rate
ηλ = R

Bλ

√
T

Then:

Eθ∼θ [f(θ)] ≤ f(θ∗) + O
(

1

T 1/4

)
+ ρ
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and
Eθ∼θ

[
max

w∈W(θ)
gj(θ, w)

]
≤ O

(
1

T 1/4

)
+ ρ′

Thus for any given ε > 0, by solving Steps 2 and 4 of Algorithm 1 to sufficiently small
errors ρ, ρ′, and by running the algorithm for a sufficiently large number of steps T , we can
guarantee that the returned stochastic model is ε-optimal and ε-feasible.

Proof. Let λ = 1
T

∑T
t=1 λ

(t). We will interpret the minimax problem in equation (2.8) as a
zero-sum between the θ-player who optimizes L over θ, and the λ-player who optimizes L
over λ. We first bound the average regret incurred by the players over T steps. The best
response computation in Step 2 of Algorithm 1 gives us:

1

T

T∑
t=1

Eθ∼θ̂(t)

[
L(θ, λ(t))

]
≤ 1

T

T∑
t=1

min
θ∈Θ
L(θ, λ(t)) + ε

≤ min
θ∈Θ

1

T

T∑
t=1

L(θ, λ(t)) + ρ

= min
θ∈Θ
L(θ, λ) + ρ

≤ min
θ∈Θ

max
λ∈Λ
L(θ, λ) + ρ

≤ f(θ∗) + ρ. (A.8)

We then apply standard gradient ascent analysis for the projected gradient updates to λ in
Step 4 of the algorithm, and get:

max
λ∈Λ

1

T

T∑
t=1

m∑
j=1

λjδ
(t)
j ≥

1

T

T∑
t=1

m∑
j=1

λ
(t)
j δ

(t)
j − O

(
R√
T

)
.

We then plug the upper and lower bounds for the gradient estimates δ(t)j ’s from Step 3 of the
Algorithm 1 into the above inequality:

max
λ∈Λ

1

T

T∑
t=1

m∑
j=1

λj

(
Eθ∼θ̂(t)

[
max

w∈W(θ)
gj(θ, w)

]
+ ρ′

)

≥ 1

T

T∑
t=1

m∑
j=1

λ
(t)
j Eθ∼θ̂(t)

[
max

w∈W(θ)
gj(θ, w)

]
− O

(
R√
T

)
.

which further gives us:

max
λ∈Λ

{
m∑
j=1

λjEθ∼θ̂(t)

[
max

w∈W(θ)
gj(θ, w)

]
+ ∥λ∥1ρ′

}
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≥
m∑
j=1

λ
(t)
j Eθ∼θ̂(t)

[
max

w∈W(θ)
gj(θ, w)

]
− O

(
R√
T

)
.

Adding 1
T

∑T
t=1 Eθ∼θ̂(t) [f(θ)] to both sides of the above inequality, we finally get:

1

T

T∑
t=1

Eθ∼θ̂(t)

[
L(θ, λ(t))

]
≥ max

λ∈Λ

{
1

T

T∑
t=1

Eθ∼θ̂(t) [L(θ, λ)] + ∥λ∥1ρ
′

}
− O

(
R√
T

)
. (A.9)

Optimality. Now, substituting λ = 0 in equation (A.9) and combining with equation (A.8)
completes the proof of the optimality guarantee:

Eθ∼θ [f(θ)] ≤ f0(θ
∗) + O

(
R√
T

)
+ ρ

Feasibility. To show feasibility, we fix a constraint index j ∈ G. Now substituting λj = R
and λj′ = 0,∀j′ ̸= j in equation (A.9) and combining with equation (A.8) gives us:

1

T

T∑
t=1

Eθ∼θ̂(t)

[
f(θ) +R max

w∈W(θ)
gj(θ, w)

]
≤ f(θ∗) + O

(
R√
T

)
+ ρ + Rρ′.

which can be re-written as:

Eθ∼θ

[
max

w∈W(θ)
gj(θ, w)

]
≤ f(θ∗) − Eθ∼θ [f(θ)]

R
+ O

(
1√
T

)
+

ρ

R
+ ρ′.

≤ B

R
+ O

(
1√
T

)
+

ρ

R
+ ρ′,

which is our feasibility guarantee. Setting R = O(T 1/4) then completes the proof.

Best Response over θ

We next describe our procedure for computing a best response over θ in Step 2 of Algorithm
1. We will consider a slightly relaxed version of the best response problem where the equality
constraints in W(θ) are replaced with closely-approximating inequality constraints.

Recall that the constraint set W(θ) contains two sets of constraints equation (2.5), the
total probability constraints that depend on θ, and the simplex constraints that do not depend
on θ. So to decouple these constraint sets from θ, we introduce Lagrange multipliers µ for
the total probability constraints to make them a part of the objective, and obtain a nested
minimax problem over θ, µ, and w, where w is constrained to satisfy the simplex constraints
alone. We then jointly minimize the inner Lagrangian over θ and µ, and perform gradient
ascent updates on w with projections onto the simplex constraints. The joint-minimization
over θ and µ is not necessarily convex and is solved using a minimization oracle.
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Algorithm 4 Best response on θ of Algorithm 1

Require: λ′, learning rate ηw > 0, estimates of P (G = j|Ĝ = k) to specify constraints rg,ĝ’s,
κ

1: for q = 1, . . . , Q do
2: Best response on (θ, µ): use an oracle to find find θ(q) ∈ Θ and µ(q) ∈Mm such that:

ℓ(θ(q),µ(q),w(q);λ′) ≤ min
θ∈Θ,µ∈Mm

ℓ(θ,µ,w(q);λ′) + κ,

for a small slack κ > 0.
3: Ascent step on w:

w
(q+1)
j ← ΠW∆

(
w

(q)
j + ηw∇wj

ℓ(θ(q),µ(q),w(q);λ′)
)
,

where ∇wj
ℓ(·) is a sub-gradient of ℓ w.r.t. wj.

4: end for
5: return A uniform distribution θ̂ over θ(1), . . . , θ(Q)

We begin by writing out the best-response problem over θ for a fixed λ′:

min
θ∈Θ
L(θ, λ′) = min

θ∈Θ
f(θ) +

m∑
j=1

λ′j max
wj∈W(θ)

gj(θ, wj), (A.10)

where we use wj to denote the maximizer over W(θ) for constraint gj explicitly. We separate
out the the simplex constraints in W(θ) equation (2.5) and denote them by:

W∆ =

{
w ∈ RG×{0,1}2×Ĝ

+

∣∣∣∣ m∑
j=1

w(j | ŷ, y, k) = 1, ∀k ∈ Ĝ, y, ŷ ∈ {0, 1}
}
,

where we represent each w as a vector of values w(i|ŷ, y, k) for each j ∈ G, ŷ ∈ {0, 1}, y ∈
{0, 1}, and k ∈ Ĝ. We then relax the total probability constraints in W(θ) into a set of
inequality constraints:

P (G = j|Ĝ = k) −
∑

ŷ,y∈{0,1}

w(j | ŷ, y, k)P (Ŷ (θ) = ŷ, Y = y|Ĝ = k) − τ ≤ 0

∑
ŷ,y∈{0,1}

w(j | ŷ, y, k)P (Ŷ (θ) = ŷ, Y = y|Ĝ = k) − P (G = j|Ĝ = k) − τ ≤ 0

for some small τ > 0. We have a total of U = 2×m× m̂ relaxed inequality constraints, and
will denote each of them as ru(θ, w) ≤ 0, with index u running from 1 to U . Note that each
ru(θ, w) is linear in w.
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Introducing Lagrange multipliers µ for the relaxed total probability constraints, the
optimization problem in equation (A.10) can be re-written equivalently as:

min
θ∈Θ

f(θ) +
m∑
j=1

λ′j max
wj∈W∆

min
µj∈M

{
gj(θ, wj)−

U∑
u=1

µj,u ru(θ, wj)

}
,

where note that each wj is maximized over only the simplex constraints W∆ which are
independent of θ, andM = {µj ∈ Rm×m̂

+ | ∥µj∥1 ≤ R′}, for some constant R′ > 0. Because
each wj and µj appears only in the j-th term in the summation, we can pull out the max
and min, and equivalently rewrite the above problem as:

min
θ∈Θ

max
w∈Wm

∆

min
µ∈Mm

f(θ) +
m∑
j=1

λ′j

(
gj(θ, wj)−

U∑
u=1

µj,u ru(θ, wj)︸ ︷︷ ︸
ω(θ,µj ,wj)

)

︸ ︷︷ ︸
ℓ(θ,µ,w;λ′)

, (A.11)

where w = (w1, . . . , wm) and µ = (µ1, . . . , µm). We then solve this nested minimax problem
in Algorithm 4 by using an minimization oracle to perform a full optimization of ℓ over (θ,
µ), and carrying out gradient ascent updates on ℓ over wj.

We now proceed to show an optimality guarantee for Algorithm 4.

Theorem 8 (Optimality Guarantee for Algorithm 4). Suppose for every θ ∈ Θ, there
exists a w̃j ∈ W∆ such that ru(θ, w̃j) ≤ −γ, ∀u ∈ [U ], for some γ > 0. Let 0 ≤ gj(θ, wj) ≤
B′, ∀θ ∈ Θ, wj ∈ W∆. Let Bw ≥ maxq ∥∇w ℓ(θ

(q),µ(q),w(q);λ′))∥2. Let θ̂ be the stochastic
classifier returned by Algorithm 4 when run for a given λ′ for Q iterations, with the radius of
the Lagrange multipliers R′ = B′/γ and learning rate ηw = R′

Bw

√
T
. Then:

Eθ∼θ̂ [L(θ, λ
′)] ≤ min

θ∈Θ
L(θ, λ′) + O

(
1√
Q

)
+ κ.

Before proving Theorem 8, we will find it useful to state the following lemma.

Lemma 10 (Boundedness of Inner Lagrange Multipliers in equation (A.11)).
Suppose for every θ ∈ Θ, there exists a w̃j ∈ W such that ru(θ, w̃j) ≤ −γ, ∀u ∈ [U ], for some
γ > 0. Let 0 ≤ gj(θ, wj) ≤ B′, ∀θ ∈ Θ, wj ∈ W∆. LetM = {µj ∈ RK

+ | ∥µj∥1 ≤ R′} with the
radius of the Lagrange multipliers R′ = B′/γ. Then we have for all j ∈ G:

max
wj∈W∆

min
µj∈M

ω
(
θ, µj, wj

)
= max

wj∈W∆: ru(θ,wj)≤0, ∀u
gj(θ, wj).
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Proof. For a given j ∈ G, let w∗
j ∈ argmax

wj∈W∆: ru(θ,wj)≤0, ∀u
gj(θ, wj). Then:

gj(θ, w
∗
j ) = max

wj∈W∆

min
µj∈RK

+

ω
(
θ, µj, wj

)
, (A.12)

where note that µj is minimized over all non-negative values. Since the ω is linear in both µj

and wj, we can interchange the min and max:

gj(θ, w
∗
j ) = min

µj∈RK
+

max
wj∈W∆

ω
(
θ, µj, wj

)
.

We show below that the minimizer µ∗ in the above problem is in fact bounded and present in
M.

gj(θ, w
∗
j ) = max

wj∈W
ω
(
θ, µ∗

j , wj

)
= max

wj∈W

{
gj(θ, wj) −

K∑
k=1

µ∗
j,k rk(θ, wj)

}
≥ gj(θ, w̃j) − ∥µ∗

j∥1 max
k∈[K]

rk(θ, w̃j)

≥ gj(θ, wj) + ∥µ∗
j∥1γ ≥ ∥µ∗

j∥1γ.

We further have:
∥µ∗

j∥1 ≤ gj(θ, wj)/γ ≤ B′/γ. (A.13)

Thus the minimizer µ∗
j ∈M. So the minimization in equation (A.12) can be performed over

onlyM, which completes the proof of the lemma.

Equipped with the above result, we are now ready to prove Theorem 8.

Proof of Theorem 8. Let wj =
1
Q

∑Q
q=1w

(q)
j . The best response on θ and µ gives us:

1

Q

Q∑
q=1

(
f(θ(q)) +

m∑
j=1

λ′j ω
(
θ(q), µ

(q)
j , w

(q)
j

))

≤ 1

Q

Q∑
q=1

min
θ∈Θ,µ∈Mm

(
f(θ) +

m∑
j=1

λ′j ω
(
θ, µj, w

(q)
j

))
+ κ

=
1

Q

Q∑
q=1

(
min
θ∈Θ

f(θ) +
m∑
j=1

λ′j min
µj∈M

ω
(
θ, µj, w

(q)
j

))
+ κ

(j-th summation term depends on µj alone)

≤ min
θ∈Θ

1

Q

Q∑
q=1

(
f(θ) +

m∑
j=1

λ′j min
µj∈M

ω
(
θ, µj, w

(q)
j

))
+ κ
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≤ min
θ∈Θ

{
f(θ) +

m∑
j=1

λ′j min
µj∈M

1

Q

Q∑
q=1

ω
(
θ, µj, w

(q)
j

)}
+ κ

= min
θ∈Θ

{
f(θ) +

m∑
j=1

λ′j min
µj∈M

ω
(
θ, µj, wj

)}
+ κ

≤ min
θ∈Θ

{
f(θ) +

m∑
j=1

λ′j max
wj∈W

min
µj∈M

ω
(
θ, µj, wj

)}
+ κ

(by linearity of ω in wj)

= min
θ∈Θ

{
f(θ) +

m∑
j=1

λ′j max
wj : ru(θ,wj)≤0, ∀u

gj(θ, wj)
}

+ κ

(from Lemma 10)
= min

θ∈Θ
L(θ, λ′) + κ. (A.14)

Applying standard gradient ascent analysis to the gradient ascent steps on w (using the fact
that ω is linear in w)

1

Q

Q∑
q=1

(
f(θ(q)) +

m∑
j=1

λ′j ω
(
θ(q), µ

(q)
j , w

(q)
j

))

≥ max
w∈Wm

∆

1

Q

Q∑
q=1

(
f(θ(q)) +

m∑
j=1

λ′j ω
(
θ(q), µ

(q)
j , wj

))
− O

(
1√
Q

)

=
1

Q

Q∑
q=1

(
f(θ(q)) +

m∑
j=1

λ′j max
wj∈W∆

ω
(
θ(q), µ

(q)
j , wj

))
−O

(
1√
Q

)
(j-th summation term depends on wj alone)

≥ 1

Q

Q∑
q=1

(
f(θ(q)) +

m∑
j=1

λ′j max
wj∈W∆

min
µj∈M

ω
(
θ(q), µj, wj

))
− O

(
1√
Q

)
(by linearity of ω in wj and µj)

= Eθ∼θ̂

[
f(θ) +

m∑
j=1

λ′j max
wj∈W∆

min
µj∈M

ω
(
θ, µj, wj

)]
− O

(
1√
Q

)

= Eθ∼θ̂

[
f(θ(q)) +

m∑
j=1

λ′j max
wj∈W∆: ru(θ,wj)≤0, ∀u

gj(θ, wj)

]
− O

(
1√
Q

)
(from Lemma 10)

= Eθ∼θ̂ [L(θ, λ
′)] − O

(
1√
Q

)
. (A.15)

Combining equation (A.14) and equation (A.15) completes the proof.
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Algorithm 5 Practical Algorithm
Require: learning rates ηθ > 0, ηλ > 0, estimates of

P (G = j|Ĝ = k) to specify W(θ)
1: for t = 1, . . . , T do
2: Solve for w given θ using linear programming or a gradient method:

w(t) ← maxw∈W(θ(t))

∑m
j=1 λ

(t)
j gj(θ

(t), w)

3: Descent step on θ:
θ(t+1) ← θ(t) − ηθδ(t)θ , where
δ
(t)
θ = ∇θ

(
f0(θ

(t)) +
∑m

j=1 λ
(t)
j gj

(
θ(t), w(t+1)

))
4: Ascent step on λ:

λ̃
(t+1)
j ← λ

(t)
j + ηλgj

(
θ(t+1), w(t+1)

)
∀j ∈ G

λ(t+1) ← ΠΛ(λ̃
(t+1)),

5: end for
6: return θ(t

∗) where t∗ denotes the best iterate that satisfies the constraints in (2.7) with
the lowest objective.

A.5 Discussion of the Practical algorithm
Here we provide the details of the practical Algorithm 5 to solve problem (2.8). We also further
discuss how we arrive at Algorithm 5. Recall that in the minimax problem in equation (2.8),
restated below, each of the m constraints contain a max over w:

min
θ∈Θ

max
λ∈Λ

f(θ) +
m∑
j=1

λj max
w∈W(θ)

gj(θ, w).

We show below that this is equivalent to a minimax problem where the sum over j and max
over w are swapped:

Lemma 11. The minimax problem in equation (2.8) is equivalent to:

min
θ∈Θ

max
λ∈Λ

max
w∈W(θ)

f(θ) +
m∑
j=1

λjgj(θ, w). (A.16)

Proof. Recall that the space of Lagrange multipliers Λ = {λ ∈ Rm
+ | ∥λ∥1 ≤ R}, for R > 0.

So the above maximization over Λ can be re-written in terms of a maximization over the
m-dimensional simplex ∆m and a scalar β ∈ [0, R]:

min
θ∈Θ

max
β∈[0,R], ν∈∆m

f(θ) + β

m∑
j=1

νj max
w∈W(θ)

gj(θ, w)
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= min
θ∈Θ

max
β∈[0,R]

f(θ) + β max
ν∈∆m

m∑
j=1

νj max
w∈W(θ)

gj(θ, w)

= min
θ∈Θ

max
β∈[0,R]

f(θ) + βmax
j∈G

max
w∈W(θ)

gj(θ, w)

= min
θ∈Θ

max
β∈[0,R]

f(θ) + β max
w∈W(θ)

max
j∈G

gj(θ, w)

= min
θ∈Θ

max
β∈[0,R]

f(θ) + β max
w∈W(θ)

max
ν∈∆m

m∑
j=1

νjgj(θ, w)

= min
θ∈Θ

f(θ) + max
β∈[0,R], ν∈∆m

max
w∈W(θ)

m∑
j=1

βνjgj(θ, w)

= min
θ∈Θ

f(θ) + max
λ∈Λ

max
w∈W(θ)

m∑
j=1

λjgj(θ, w),

which completes the proof.

The practical algorithm outlined in Algorithm 5 seeks to solve the re-written minimax
problem in equation (A.16), and is similar in structure to the ideal algorithm in Algorithm 1,
in that it has two high-level steps: an approximate best response over θ and gradient ascent
updates on λ. However, the algorithm works with deterministic classifiers θ(t), and uses a
simple heuristic to approximate the best response step. Specifically, for the best response
step, the algorithm finds the maximizer of the Lagrangian over w for a fixed θ(t) by e.g. using
linear programming:

w(t) ← max
w∈W(θ(t))

m∑
j=1

λ
(t)
j gj(θ

(t), w),

uses the maximizer w(t) to approximate the gradient of the Lagrangian at θ(t):

δ
(t)
θ = ∇θ

(
f0(θ

(t)) +
m∑
j=1

λ
(t)
j fj

(
θ(t), w(t+1)

) )
and performs a single gradient update on θ:

θ(t+1) ← θ(t) − ηθδ(t)θ .

The gradient ascent step on λ is the same as the ideal algorithm, except that it is simpler to
implement as the iterates θ(t) are deterministic:

λ̃
(t+1)
j ← λ

(t)
j + ηλfj

(
θ(t+1), w(t+1)

)
∀j ∈ G;

λ(t+1) ← ΠΛ(λ̃
(t+1)).
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A.6 Additional experiment details and results
We provide more details on the experimental setup as well as further results.

Additional experimental setup details

This section contains further details on the experimental setup, including the datasets used
and hyperparameters tuned. All categorical features in each dataset were binarized into
one-hot vectors. All numerical features were bucketized into 4 quantiles, and further binarized
into one-hot vectors. All code that we used for pre-processing the datasets from their
publicly-downloadable versions can be found at https://github.com/wenshuoguo/robust-
fairness-code.

For the naïve approach, we solve the constrained optimization problem (2.2) with respect
to the noisy groups Ĝ. For comparison, we also report the results of the unconstrained
optimization problem and the constrained optimization problem (2.1) when the true groups
G are known. For the DRO problem (2.3), we estimate the bound γj = P (Ĝ ≠ G|G = j)
in each case study. For the soft group assignments approach, we implement the practical
algorithm (Algorithm 5).

In the experiments, we replace all expectations in the objective and constraints with
finite-sample empirical versions. So that the constraints will be convex and differentiable, we
replace all indicator functions with hinge upper bounds, as in Davenport et al. [2010] and
Eban et al. [2017]. We use a linear model: ϕ(X; θ) = θTX. The noisy protected groups Ĝ
are included as a feature in the model, demonstrating that conditional independence between
Ĝ and the model ϕ(X; θ) is not required here, unlike some prior work [Awasthi et al., 2020].
Aside from being used to estimate the noise model P (G = k|Ĝ = j) for the soft group
assignments approach2, the true groups G are never used in the training or validation process.

Each dataset was split into train/validation/test sets with proportions 0.6/0.2/0.2. For
each algorithm, we chose the best iterate θ(t∗) out of T iterates on the train set, where we define
best as the iterate that achieves the lowest objective value while satisfying all constraints. We
select the hyperparameters that achieve the best performance on the validation set (details
in Appendix A.6). We repeat this procedure for ten random train/validation/test splits and
record the mean and standard errors for all metrics3.

Adult dataset

For the first case study, we used the Adult dataset from UCI [Dua and Graff, 2017], which
includes 48,842 examples. The features used were age, workclass, fnlwgt, education, educa-

2If P (G = k|Ĝ = j) is estimated from an auxiliary dataset with a different distribution than test, this
could lead to generalization issues for satisfying the true group constraints on test. In our experiments, we
lump those generalization issues in with any distributional differences between train and test.

3When we report the “maximum” constraint violation, we use the mean and standard error of the
constraint violation for the group j with the maximum mean constraint violation.

https://github.com/wenshuoguo/robust-fairness-code
https://github.com/wenshuoguo/robust-fairness-code
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tion_num, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss,
hours_per_week, and native_country. Detailed descriptions of what these features represent
are provided by UCI [Dua and Graff, 2017]. The label was whether or not income_bracket was
above $50,000. The true protected groups were given by the race feature, and we combined
all examples with race other than “white” or “black” into a group of race “other.” When
training with the noisy group labels, we did not include the true race as a feature in the
model, but included the noisy race labels as a feature in the model instead. We set α = 0.05
as the constraint slack.

The constraint violation that we report in Figure 2.1 is taken over a test dataset with n
examples (X1, Y1, G1), ..., (Xn, Yn, Gn), and is given by:

max
j∈G

∑n
i=1 1(Ŷ (θ)i = 1, Yi = 1)∑n

i=1 1(Yi = 1)
−
∑n

i=1 1(Ŷ (θ)i = 1, Yi = 1, Gi = j)∑n
i=1 1(Yi = 1, Gi = j)

− α,

where Ŷ (θ)i = 1(ϕ(θ;Xi) > 0).
Section A.3 shows how we specifically enforce equality of opportunity using the soft

assignments approach, and Section A.2 shows how we enforce equality of opportunity using
DRO.

Credit dataset

For the second case study, we used default of credit card clients dataset from UCI Dua and
Graff [2017] collected by a company in Taiwan Yeh and hui Lien [2009], which contains 30000
examples and 24 features. The features used were amount_of_the_given_credit, gender, edu-
cation, education, marital_status, age, history_of_past_payment, amount_of_bill_statement,
amount_of_previous_payment. Detailed descriptions of what these features represent are
provided by UCI [Dua and Graff, 2017]. The label was whether or not default was true. The
true protected groups were given by the education feature, and we combined all examples
with education level other than “graduate school” or “university” into a group of education
level “high school and others”. When training with the noisy group labels, we did not include
the true education as a feature in the model, but included the noisy education level labels as
a feature in the model instead. We set α = 0.03 as the constraint slack.

The constraint violation that we report in Figure 2.1 is taken over a test dataset with n
examples (X1, Y1, G1), ..., (Xn, Yn, Gn), and is given by:

max
j∈G

max(∆TPR
j ,∆FPR

j )

where

∆TPR
j =

∑n
i=1 1(Ŷ (θ)i = 1, Yi = 1)∑n

i=1 1(Yi = 1)
−
∑n

i=1 1(Ŷ (θ)i = 1, Yi = 1, Gi = j)∑n
i=1 1(Yi = 1, Gi = j)

− α

and

∆FPR
j =

∑n
i=1 1(Ŷ (θ)i = 1, Yi = 0, Gi = j)∑n

i=1 1(Yi = 0, Gi = j)
−
∑n

i=1 1(Ŷ (θ)i = 1, Yi = 0)∑n
i=1 1(Yi = 0)

− α



APPENDIX A. DEFERRED PROOFS AND DISCUSSION FOR CHAPTER 2 75

and Ŷ (θ)i = 1(ϕ(θ;Xi) > 0).
Section A.3 shows how we specifically enforce equalized odds using the soft assignments

approach, and Section A.2 shows how we enforce equalized odds using DRO.

Optimization code

For all case studies, we performed experiments comparing the naïve approach, the DRO
approach (Section 2.5) and the soft group assignments approach (Section 2.6). We also
compared these to the baselines of optimizing without constraints and optimizing with
constraints with respect to the true groups. All optimization code was written in Python
and TensorFlow 4. All gradient steps were implemented using TensorFlow’s Adam optimizer
5, though all experiments can also be reproduced using simple gradient descent without
momentum. We computed full gradients over all datasets, but minibatching can also be used
for very large datasets. Implementations for all approaches are included in the attached code.
Training time was less than 10 minutes per model.

Table A.1: Hyperparameters tuned for each approach

Hparam Values tried Relevant approaches Description

ηθ {0.001,0.01,0.1} all approaches learning rate for θ
ηλ {0.25,0.5,1.0,2.0} all except unconstrained learning rate for λ
ηp̃j {0.001, 0.01, 0.1} DRO learning rate for p̃j
ηw {0.001, 0.01, 0.1} soft assignments learning rate using

gradient methods for w

Hyperparameters

The hyperparameters for each approach were chosen to achieve the best performance on
the validation set on average over 10 random train/validation/test splits, where “best” is
defined as the set of hyperparameters that achieved the lowest error rate while satisfying
all constraints relevant to the approach. The final hyperparameter values selected for each
method were neither the largest nor smallest of all values tried. A list of all hyperparameters
tuned and the values tried is given in Table A.1.

For the naïve approach, the constraints used when selecting the hyperparameter values on
the validation set were the constraints with respect to the noisy group labels given in Equation
(2.2). For the DRO approach and the soft group assignments approach, the respective robust

4Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. tensor-
flow.org.

5https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/AdamOptimizer

https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/AdamOptimizer
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constraints were used when selecting hyperparameter values on the validation set. Specifically,
for the DRO approach, the constraints used were those defined in Equation (2.3), and for
the soft group assignments approach, the constraints used were those defined in Equation
(2.7). For the unconstrained baseline, no constraints were taken into account when selecting
the best hyperparameter values. For the baseline constrained with access to the true group
labels, the true group constraints were used when selecting the best hyperparameter values.

Hinge relaxations of all constraints were used during training to achieve convexity. Since
the hinge relaxation is an upper bound on the real constraints, the hinge-relaxed constraints
may require some additional slack to maintain feasibility. This positive slack β was added to
the original slack α when training with the hinge-relaxed constraints, and the amount of slack
β was chosen so that the relevant hinge-relaxed constraints were satisfied on the training set.

All approaches ran for 750 iterations over the full dataset.

Additional experiment results

This section provides additional experiment results. All results reported here and in the main
paper are on the test set (averaged over 10 random train/validation/test splits).

Case study 1 (Adult)

This section provides additional experiment results for case study 1 on the Adult dataset.
Figure A.1 shows that the naïve approach, DRO approach, and soft assignments approaches

all satisfied the fairness constraints for the noisy groups on the test set.
Figure A.2 confirms that the DRO approach and the soft assignments approaches both

managed to satisfy their respective robust constraints on the test set on average. For the
DRO approach, the constraints measured in Figure A.2 come from Equation (2.3), and for
the soft assignments approach, the constraints measured in Figure A.2 come from Equation
(2.7). We provide the exact error rate values and maximum violations on the true groups for
the Adult dataset in Table A.2.

Case study 2 (Credit)

This section provides additional experiment results for case study 2 on the Credit dataset.
Figure A.3 shows the constraint violations with respect to the true groups on test separated

into TPR violations and FPR violations. For all noise levels, there were higher TPR violations
than FPR violations. However, this does not mean that the FPR constraint was meaningless –
the FPR constraint still ensured that the TPR constraints weren’t satisfied by simply adding
false positives.

Figure A.4 confirms that the naïve approach, DRO approach, and soft assignments
approaches all satisfied the fairness constraints for the noisy groups on the test set.

Figure A.5 confirms that the DRO approach and the soft assignments approaches both
managed to satisfy their respective robust constraints on the test set on average. For the
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Figure A.1: Maximum fairness constraint violations with respect to the noisy groups Ĝ on
the test set for different group noise levels γ on the Adult dataset. For each noise level,
we plot the mean and standard error over 10 random train/val/test splits. The black solid
line illustrates a maximum constraint violation of 0. While the naïve approach (left) has
increasingly higher fairness constraints with respect to the true groups as the noise increases,
it always manages to satisfy the constraints with respect to the noisy groups Ĝ
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Figure A.2: Maximum robust constraint violations on the test set for different group noise
levels P (Ĝ ̸= G) on the Adult dataset. For each noise level, we plot the mean and standard
error over 10 random train/val/test splits. The black dotted line illustrates a maximum
constraint violation of 0. Both the DRO approach (left) and the soft group assignments
approach (right) managed to satisfy their respective robust constraints on the test set on
average for all noise levels.

DRO approach, the constraints measured in Figure A.5 come from Equation (2.3), and for
the soft assignments approach, the constraints measured in Figure A.5 come from Equation
(2.7).

We provide the exact error rate values and maximum violations on the true groups for
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Table A.2: Error rate and fairness constraint violations on the true groups for the Adult
dataset (mean and standard error over 10 train/test/splits).

DRO Soft Assignments
Noise Error rate Max G Viol. Error rate Max G Viol.

0.1 0.152 ± 0.001 0.002 ± 0.019 0.148 ± 0.001 -0.048 ± 0.002
0.2 0.200 ± 0.002 -0.045 ± 0.003 0.157 ± 0.003 -0.048 ± 0.002
0.3 0.216 ± 0.010 -0.044 ± 0.004 0.158 ± 0.005 0.002 ± 0.030
0.4 0.209 ± 0.006 -0.019 ± 0.031 0.188 ± 0.003 -0.016 ± 0.016
0.5 0.219 ± 0.012 -0.030 ± 0.032 0.218 ± 0.002 0.004 ± 0.006

the Credit dataset in Table A.3.
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Figure A.3: Case study 2 (Credit): Maximum true group TPR (top) and FPR (bottom)
constraint violations for the Naive, DRO, and soft assignments (SA) approaches on test
set for different group noise levels γ on the Credit dataset (mean and standard error over
10 train/val/test splits). The black solid line represents the performance of the trivial “all
negatives” classifier, which has constraint violations of 0. A negative violation indicates
satisfaction of the fairness constraints on the true groups.
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Figure A.4: Maximum fairness constraint violations with respect to the noisy groups Ĝ on
the test set for different group noise levels γ on the Credit dataset. For each noise level,
we plot the mean and standard error over 10 random train/val/test splits. The black solid
line illustrates a maximum constraint violation of 0. While the naïve approach (left) has
increasingly higher fairness constraints with respect to the true groups as the noise increases,
it always manages to satisfy the constraints with respect to the noisy groups Ĝ
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Figure A.5: Maximum robust constraint violations on the test set for different group noise
levels P (Ĝ ̸= G) on the Credit dataset. For each noise level, we plot the mean and standard
error over 10 random train/val/test splits. The black dotted line illustrates a maximum
constraint violation of 0. Both the DRO approach (left) and the soft group assignments
approach (right) managed to satisfy their respective robust constraints on the test set on
average for all noise levels.
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Table A.3: Error rate and fairness constraint violations on the true groups for the Credit
dataset (mean and standard error over 10 train/test/splits).

DRO Soft Assignments
Noise Error rate Max G Viol. Error rate Max G Viol.

0.1 0.206 ± 0.003 -0.006 ± 0.006 0.182 ± 0.002 0.000 ± 0.005
0.2 0.209 ± 0.002 -0.008 ± 0.008 0.182 ± 0.001 0.004 ± 0.005
0.3 0.212 ± 0.002 -0.006 ± 0.006 0.198 ± 0.001 -0.025 ± 0.007
0.4 0.210 ± 0.002 -0.017 ± 0.008 0.213 ± 0.001 -0.028 ± 0.005
0.5 0.211 ± 0.003 -0.015 ± 0.006 0.211 ± 0.001 -0.014 ± 0.004
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Appendix B

Deferred Proofs and Discussion for
Chapter 3

B.1 Proofs

Proof of Theorem 2

(i) The first result follows from the fact that the cross-entropy loss is a proper composite loss
[Williamson et al., 2016] with the softmax function as the associated (inverse) link function.

(ii) For a proof of the second result, please see Menon et al. [2021b].
(iii) Below, we provide a proof for the third result.
The minimization of the robust objective in equation (3.3) over f can be re-written as a

min-max optimization problem:

min
f :X→Rm

Lrob(f) = min
f :X→Rm

max
λ∈∆m

m∑
y=1

λy
πy

E [ηy(X) ℓ(y, f(X))]︸ ︷︷ ︸
ω(λ,f)

. (B.1)

The min-max objective ω(λ, f) is clearly linear in λ (for fixed f) and with ℓ chosen
to be the cross-entropy loss, is convex in f (for fixed λ), i.e., ω(λ, κf1 + (1 − κ)f2) ≤
κω(λ, f1) + (1 − κ)ω(λ, f2), ∀f1, f2 : X → Rm, κ ∈ [0, 1]. Furthermore, ∆m is a convex
compact set, while the domain of f is convex. It follows from Sion’s minimax theorem [Sion,
1958] that:

min
f :X→Rm

max
λ∈∆m

ω(λ, f) = max
λ∈∆m

min
f :X→Rm

ω(λ, f). (B.2)

Let (λ∗, f ∗) be such that:

λ∗ ∈ argmax
λ∈∆m

min
f :X→Rm

ω(λ, f); f ∗ ∈ argmin
f :X→Rm

max
λ∈∆m

ω(λ, f),
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Such a λ∗ exists for the following reason: for any fixed λ ∈ ∆m, owing to the use of the
cross-entropy loss, a minimizer over always exists for ω(λ, f), and is given by fy(x) =

log
(

λy

πy
ηy(x)

)
+ C, for some C ∈ R; therefore minf :X→Rm ω(λ, f) is bounded above for any

λ, and ∆m being compact set gives us there exits a maximizer λ∗ over this set. Similarly,
such an f ∗ exists for the following reason: the objective maxλ∈∆m ω(λ, f) takes a bounded
value when f = η, and any minimizer of maxλ∈∆m ω(λ, f) yields a value below that; because
ω(λ, f) ≥ 0 and is convex in f , the minimizer f ∗ exits.

We then have from equation (B.2):

ω(λ∗, f ∗) ≤ max
λ∈∆m

ω(λ, f ∗)

= min
f :X→Rm

max
λ∈∆m

ω(λ, f) = max
λ∈∆m

min
f :X→Rm

ω(λ, f)

= min
f :X→Rm

ω(λ∗, f) ≤ ω(λ∗, f ∗),

which tells us that there exists (λ∗, f ∗) is a saddle-point for equation (B.1), i.e.,

ω(λ∗, f ∗) = max
λ∈∆m

ω(λ, f ∗) = min
f :X→Rm

ω(λ∗, f).

Consequently, we have:

Lrob(f ∗) = max
λ∈∆m

ω(λ, f ∗) = min
f :X→Rm

max
λ∈∆m

ω(λ, f) = min
f :X→Rm

Lrob(f).

We thus have that f ∗ is a minimizer of Lrob(f). Furthermore, because f ∗ is also a minimizer
of ω(λ∗, f) over f , i.e.,

f ∗ ∈ argmin
f :X→Rm

m∑
y=1

λ∗y
πy

E [ηy(X) ℓ(y, f(X))] ,

it follows that:
softmaxy(f

∗(x)) ∝
λ∗y
πy
ηy(x).

(iv) For the fourth result, we expand the traded-off objective, and re-write it as:

Ltdf(f) = (1− α)Lbal(f) + αLrob(f)

= (1− α) 1
m

m∑
y=1

1

πy
E [ηy(X) ℓ(y, f(X))] + α max

λ∈∆m

m∑
y=1

λy
πy

E [ηy(X) ℓ(y, f(X))]

= max
λ∈∆m

m∑
y=1

(
(1− α) 1

m
+ αλy

)
1

πy
E [ηy(X) ℓ(y, f(X))]︸ ︷︷ ︸

ω(λ,f)

.
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For a fixed λ, ω(λ, f) is convex in f (as the loss ℓ is the cross-entropy loss), and for a fixed f ,
ω(λ, f) is linear in λ. Following the same steps as the proof of (iii), we have that there exists
(λ∗, f ∗) such that

Ltdf(f ∗) = max
λ∈∆m

ω(λ, f ∗) = min
f :X→Rm

Ltdf(f),

and

f ∗ ∈ argmin
f :X→Rm

m∑
y=1

(
(1− α) 1

m
+ αλ∗y

)
1

πy
E [ηy(X) ℓ(y, f(X))] ,

which, owing to the properties of the cross-entropy loss, then gives us the desired form for f ∗.

Proof of Theorem 3

Proof. Expanding the left-hand side, we have:

|L̂rob-d(f)− Lrob(f)| ≤ |L̂rob-d(f)− Lrob-d(f) + Lrob-d(f)− Lrob(f)|
≤ |L̂rob-d(f)− Lrob-d(f)|+ |Lrob-d(f)− Lrob(f)|

= |L̂rob-d(f)− Lrob-d(f)|+

∣∣∣∣∣max
y∈[m]

Ex

[
pty(x) ℓ(y, f(x))

]
Ex

[
pty(x)

] −max
y∈[m]

Ex [ηy(x) ℓ(y, f(x))]

πy

∣∣∣∣∣
≤ |L̂rob-d(f)− Lrob-d(f)|+ max

y∈[m]

∣∣∣∣∣Ex

[
pty(x) ℓ(y, f(x))

]
Ex

[
pty(x)

] − Ex [ηy(x) ℓ(y, f(x))]

πy

∣∣∣∣∣
≤ |L̂rob-d(f)− Lrob-d(f)|+Bmax

y∈[m]
Ex

[∣∣∣∣∣ pty(x)

Ex

[
pty(x)

] − ηy(x)

πy

∣∣∣∣∣ ℓ(y, f(x))
]

≤ |L̂rob-d(f)− Lrob-d(f)|+Bmax
y∈[m]

Ex

[∣∣∣∣∣ pty(x)

Ex

[
pty(x)

] − ηy(x)

πy

∣∣∣∣∣
]
,

where the second-last step uses Jensen’s inequality and the fact that ℓ(y, f(x)) ≥ 0, and the
last step uses the fact that ℓ(y, f(x)) ≤ B.

Further expanding the first term,

|L̂rob-d(f)− Lrob(f)| ≤
∣∣∣∣max
y∈[m]

ϕy(f) − max
y∈[m]

ϕ̂y(f)

∣∣∣∣+Bmax
y∈[m]

Ex

[∣∣∣∣∣ pty(x)

Ex

[
pty(x)

] − ηy(x)

πy

∣∣∣∣∣
]

≤ max
y∈[m]

∣∣∣ϕy(f) − ϕ̂y(f)
∣∣∣+Bmax

y∈[m]
Ex

[∣∣∣∣∣ pty(x)

Ex

[
pty(x)

] − ηy(x)

πy

∣∣∣∣∣
]
,

as desired.
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Calibration of Margin-based Loss Lmar

To show that minimizer of the margin-based objective in equation (3.9) also minimizes the
balanced objective in equation (3.6), we state the following general result:

Lemma 12. Suppose pt ∈ F and F is closed under linear transformations. Let

f̂ ∈ argmin
f∈F

1

n

n∑
i=1

Lmar (pt(xi), f(xi); c) (B.3)

for some cost vector c ∈ Rm
+ . Then:

f̂y(xi) = log
(
cyp

t
y(xi)

)
+ Ci, ∀i ∈ [n],

for some example-specific constant constants Ci ∈ R,∀i ∈ [n]. Furthermore, for any assign-
ment of example weights of w ∈ Rn

+, f̂ is also the minimizer of the weighted objective:

f̂ ∈ argmin
f∈F

1

n

n∑
i=1

wi

m∑
y=1

cy p
t
y(xi) ℓ (y, f(xi)) . (B.4)

Proof. Following Menon et al. [2021b] (e.g. proof of Theorem 1), we have that for class
probabilities p ∈ ∆m and costs c ∈ Rm

+ , the margin-based loss in equation (3.9)

Lmar (p, f ; c) =
1

m

∑
y∈[m]

py log

(
1 +

∑
j ̸=y

exp (log(cy/cj) − (fy − fj))
)
.

is minimized by:
f ∗
y = log (cypy) + C,

for any C > 0. To see why this is true, note that the above loss can be equivalently written
as:

Lmar (p, f ; c) = − 1

m

∑
y∈[m]

py log

(
exp (fy − log(cy))∑m
j=1 exp (fj − log(cj))

)
.

This the same as the softmax cross-entropy loss with adjustments made to the logits, the
minimizer for which is of the form:

f ∗
y − log(cy) = log (py) + C or f ∗

y = log (cypy) + C.

It follows that any minimizer f̂ of the average margin-based loss in equation (B.3) over
sample S, would do so point-wise, and therefore

f̂y(xi) = log
(
cyp

t
y(xi)

)
+ Ci, ∀i ∈ [n],
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for some example-specific constant constants Ci ∈ R,∀i ∈ [n].
To prove the second part, we note that for the minimizer f̂ to also minimize the weighted

objective:
1

n

n∑
i=1

wi

m∑
y=1

cy p
t
y(xi) ℓ (y, f(xi)) ,

it would also have to do so point-wise for each i ∈ [m], and so as long the weights wi are
non-negative, it suffices that

f̂(xi) ∈ argmin
f∈Rm

m∑
y=1

cy p
t
y(xi) ℓ (y, f(xi)) .

This is indeed the case when ℓ is the softmax cross-entropy loss, where the point-wise
minimizer for each i ∈ [m] would be of the form softmaxy(f(x)) = cyp

t
y(x), which is satisfied

by f̂ .

A similar result also holds in the population limit, when equation (B.3) and equation (B.4)
are computed in expectation, and the per-example weighting in equation (B.4) is replaced
by an arbitrary weighting function w(x) ∈ R+. Any scorer of the following form would then
minimize both objectives:

f̂y(x) = log
(
cyp

t
y(x)

)
+ C(x), ∀x ∈ X ,

where C(x) is some example-specific constant.

Proof of Proposition 1

Proposition 1. Suppose pt ∈ F and F is closed under linear transformations. Then the
final scoring function f

s
(x) = 1

K

∑K
k=1 f

k(x) output by Algorithm 2 is of the form:

softmaxj(f
s
(x)) ∝ λjp

t
j(x), ∀j ∈ [m], ∀(x, y) ∈ S,

where λy =
(∏K

k=1 λ
k
y/π

t
y

)1/K
.

Proof. The proof follows from Lemma 12 with the costs c set to λk/πt for each iteration k.
The lemma tells us that each fk is of the form:

fk(x′) = log

(
λky
πt
y

pty(x
′)

)
+ C(x′), ∀(x′, y′) ∈ S,

for some example-specific constant C(x′) ∈ R. Consequently, we have that:

f
s

y(x
′) = log(λyp

t
y(x

′)) + C(x′), ∀(x′, y′) ∈ S,

where λy =
(∏K

k=1 λ
k
y/π

t
y

)1/K
and C(x′) ∈ R. Applying a softmax to f s results in the desired

form.
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Proof of Theorem 4

Theorem 4. Suppose pt ∈ F and F is closed under linear transformations. Suppose ℓ is
the softmax cross-entropy loss ℓxent, ℓ(y, z) ≤ B and maxy∈[m]

1
πt
y
≤ Z, for some B,Z > 0.

Furthermore, suppose for any δ ∈ (0, 1), the following bound holds on the estimation error in
Theorem 3: with probability at least 1− δ (over draw of S ∼ Dn), for all f ∈ F ,

max
y∈[m]

∣∣ϕy(f)− ϕ̂y(f)
∣∣ ≤ ∆(n, δ),

for some ∆(n, δ) ∈ R+ that is increasing in 1/δ, and goes to 0 as n → ∞. Fix δ ∈ (0, 1).

Then when the step size γ = 1
2BZ

√
log(m)

K
and nval ≥ 8Z log(2m/δ), with probability at least

1− δ (over draw of S ∼ Dn and Sval ∼ Dnval)

Lrob(f
s
) ≤ min

f∈F
Lrob(f) + 2Bmax

y∈[m]
Ex

[∣∣∣∣pty(x)πt
y

− ηy(x)

πy

∣∣∣∣]︸ ︷︷ ︸
Approximation error

+ 2∆(nval, δ/2) + 2∆(n, δ/2)︸ ︷︷ ︸
Estimation error

+ 4BZ

√
log(m)

K︸ ︷︷ ︸
EG convergence

.

Before proceeding to the proof, we will find it useful to define:

ϕ̂val
y (f s) =

1

π̂t,val
y

1

nval

∑
(x′,y′)∈Sval

pty(x
′) ℓ (y, f s(x′)) .

We then state a useful lemma.

Lemma 13. Suppose the conditions in Theorem 4 hold. Then with probability ≤ 1− δ (over
draw of S ∼ Dn and Sval ∼ Dnval), at each iteration k,

m∑
y=1

λk+1
y ϕy(f

k+1) − min
f∈F

m∑
y=1

λk+1
y ϕy(f) ≤ 2∆(n, δ);

and for any λ ∈ ∆m:∣∣∣∣∣
m∑
y=1

λyϕ̂
val
y (fk+1) −

m∑
y=1

λyϕy(f
k+1)

∣∣∣∣∣ ≤ ∆(nval, δ).

Proof. We first note that by applying Lemma 12 with wi = 1,∀i, we have that fk+1 is the
minimizer of

∑m
y=1 λ

k+1
y ϕ̂y(f) over all f ∈ F , and therefore:

m∑
y=1

λk+1
y ϕ̂y(f

k+1) ≤
m∑
y=1

λk+1
y ϕ̂y(f), ∀f ∈ F . (B.5)
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Further, for a fixed iteration k, let us denote f̃ ∈ argmin
f∈F

∑m
y=1 λ

k+1
y ϕy(f). Then for the

first part, we have:
m∑
y=1

λk+1
y ϕy(f

k+1) −
m∑
y=1

λk+1
y ϕy(f̃)

≤
m∑
y=1

λk+1
y ϕy(f

k+1) −
m∑
y=1

λk+1
y ϕ̂y(f

k+1) +
m∑
y=1

λk+1
y ϕ̂y(f

k+1) −
m∑
y=1

λk+1
y ϕy(f̃)

≤
m∑
y=1

λk+1
y ϕy(f

k+1) −
m∑
y=1

λk+1
y ϕ̂y(f

k+1) +
m∑
y=1

λk+1
y ϕ̂y(f̃) −

m∑
y=1

λk+1
y ϕy(f̃)

≤ 2 sup
f∈F

∣∣∣∣∣
m∑
y=1

λk+1
y ϕ̂y(f) −

m∑
y=1

λk+1
y ϕy(f)

∣∣∣∣∣
≤ 2 sup

f∈F
max
λ∈∆m

∣∣∣∣∣
m∑
y=1

λyϕ̂y(f) −
m∑
y=1

λyϕy(f)

∣∣∣∣∣
≤ 2 sup

f∈F
max
λ∈∆m

m∑
y=1

λy

∣∣∣ϕ̂y(f) − ϕy(f)
∣∣∣

= 2 sup
f∈F

max
y∈[m]

∣∣ϕ̂y(f)− ϕy(f)
∣∣.

where for the second inequality, we use equation (B.5). Applying the generalization bound
assumed in Theorem 4, we have with probability ≤ 1 − δ (over draw of S ∼ Dn), for all
iterations k ∈ [K],

m∑
y=1

λk+1
y ϕy(f

k+1) −
m∑
y=1

λk+1
y ϕy(f̃) ≤ 2∆(n, δ),

For the second part, note that for any λ ∈ ∆m,∣∣∣∣∣
m∑
y=1

λyϕ̂
val
y (fk+1) −

m∑
y=1

λyϕy(f
k+1)

∣∣∣∣∣ ≤
m∑
y=1

λy

∣∣∣ϕ̂val
y (fk+1) − ϕy(f

k+1)
∣∣∣

≤ max
y∈[m]

∣∣∣ϕ̂val
y (fk+1) − ϕy(f

k+1)
∣∣∣

≤ sup
f∈F

max
y∈[m]

∣∣∣ϕ̂val
y (f) − ϕy(f)

∣∣∣ .
An application of the generalization bound assumed in Theorem 4 to empirical estimates
from the validation sample completes the proof.

We are now ready to prove Theorem 4.
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Proof of Theorem 4. Note that because miny∈[m] π
t
y ≥ 1

Z
and nval ≥ 8Z log(2m/δ), we have

by a direct application of Chernoff’s bound (along with a union bound over all m classes)
that with probability at least 1− δ/2:

min
y∈[m]

π̂t,val
y ≥ 1

2Z
,∀y ∈ [m]

and consequently, ϕ̂val
y (f) ≤ 2BZ,∀f ∈ F . The boundedness of ϕ̂val

y will then allow us to
apply standard convergence guarantees for exponentiated gradient ascent [Shalev-Shwartz

et al., 2011]. For γ = 1
2BZ

√
log(m)

K
, the updates on λ will give us with probability at least

1− δ/2:

max
λ∈∆m

1

K

K∑
k=1

m∑
y=1

λyϕ̂
val
y (fk) ≤ 1

K

K∑
k=1

m∑
y=1

λkyϕ̂
val
y (fk) + 4BZ

√
log(m)

K
(B.6)

Applying the second part of Lemma 13 to each iteration k, we have with probability at
least 1− δ:

max
λ∈∆m

1

K

K∑
k=1

m∑
y=1

λyϕy(f
k) ≤ 1

K

K∑
k=1

m∑
y=1

λkyϕy(f
k) + 4BZ

√
log(m)

K
+ 2∆(nval, δ/2),

and applying the first part of Lemma 13 to the RHS, we have with the same probability:

max
λ∈∆m

1

K

K∑
k=1

m∑
y=1

λyϕy(f
k)

≤ 1

K

K∑
k=1

min
f∈F

m∑
y=1

λkyϕy(f) + 4BZ

√
log(m)

K
+ 2∆(nval, δ/2) + 2∆(n, δ/2)

≤ min
f∈F

1

K

K∑
k=1

m∑
y=1

λkyϕy(f) + 4BZ

√
log(m)

K
+ 2∆(nval, δ/2) + 2∆(n, δ/2).

Note that we have taken a union bound over the high probability statement in equation (B.6)
and that in Lemma 13. Using the convexity of ϕ(·) in f(x) and Jensen’s inequality, we have
that

∑m
y=1 λyϕy(f

s
) ≤ 1

K

∑K
k=1

∑m
y=1 λyϕy(f

k). We use this to further lower bound the LHS
in terms of the averaged scoring function f s

(x) = 1
K

∑K
k=1 f

k(x):

max
λ∈∆m

m∑
y=1

λyϕy(f
s
)

≤ min
f∈F

1

K

K∑
k=1

m∑
y=1

λkyϕy(f) + 4BZ

√
log(m)

K
+ 2∆(nval, δ/2) + 2∆(n, δ/2)
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= min
f∈F

m∑
y=1

λ̃yϕy(f) + 4BZ

√
log(m)

K
+ 2∆(nval, δ/2) + 2∆(n, δ/2)

≤ max
λ∈∆m

min
f∈F

m∑
y=1

λyϕy(f) + 4BZ

√
log(m)

K
+ 2∆(nval, δ/2) + 2∆(n, δ/2)

= min
f∈F

max
λ∈∆m

m∑
y=1

λyϕy(f) + 4BZ

√
log(m)

K
+ 2∆(nval, δ/2) + 2∆(n, δ/2)

= min
f∈F

max
y∈[m]

ϕy(f) + 4BZ

√
log(m)

K
+ 2∆(nval, δ/2) + 2∆(n, δ/2), (B.7)

where in the second step λ̃y =
1
K

∑K
k=1 λ

k
y; in the fourth step, we swap the ‘min’ and ‘max’

using Sion’s minimax theorem [Sion, 1958]. We further have from equation (B.7),

max
y∈[m]

ϕy(f
s
) ≤ min

f∈F
max
y∈[m]

ϕy(f) + 4BZ

√
log(m)

K
+ 2∆(nval, δ/2) + 2∆(n, δ/2).

In other words,

Lrob-d(f
s
) ≤ min

f∈F
Lrob-d(f) + 4BZ

√
log(m)

K
+ 2∆(nval, δ/2) + 2∆(n, δ/2).

To complete the proof, we need to turn this into a guarantee on the original robust
objective Lrob in equation (3.3):

Lrob(f
s
) ≤ min

f∈F
Lrob(f) + 2max

f∈F

∣∣Lrob(f)− Lrob-d(f)
∣∣

+ 4BZ

√
log(m)

K
+ 2∆(nval, δ/2) + 2∆(n, δ/2)

≤ min
f∈F

Lrob(f) + 2Bmax
y∈[m]

Ex

[∣∣∣∣pty(x)πt
y

− ηy(x)

πy

∣∣∣∣]
+ 4BZ

√
log(m)

K
+ 2∆(nval, δ/2) + 2∆(n, δ/2),

where we have used the bound on the approximation error in the proof of Theorem 3. This
completes the proof.

B.2 Student Estimation Error
We now provide a bound on the estimation error in Theorem 4 using a generalization bound
from Menon et al. [2021a].
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Lemma 14. Let F ⊆ RX be a given class of scoring functions. Let V ⊆ RX denote the class of
loss functions v(x, y) = ℓ(y, f(x)) induced by scorers f ∈ F . LetMn = N∞( 1

n
,V , 2n) denote

the uniform L∞ covering number for V . Fix δ ∈ (0, 1). Suppose ℓ(y, z) ≤ B, πt
y ≤ 1

Z
,∀y ∈ [m],

and the number of samples n ≥ 8Z log(4m/δ). Then with probability ≥ 1− δ over draw of
S ∼ Dn, for any f ∈ F and y ∈ [m]:

∣∣∣ϕy(f)− ϕ̂y(f)
∣∣∣ ≤ CZ

(√
Vn,y(f)

log(mMn/δ)

n
+

log(mMn/δ)

n
+ B

√
log(m/δ)

n

)
,

where Vn,y(f) denotes the empirical variance of the loss values {pty(xi) · ℓ(y, f(xi))}ni=1 for
class y, and C > 0 is a distribution-independent constant.

Notice the dependence on the variance that the teacher’s predictions induce on the loss.
This suggests that the lower the variance in the teacher’s predictions, the better is the
student’s generalization. Similar to Menon et al. [2021a], one can further show that when the
teacher closely approximates the Bayes-probabilities η(x), the distilled loss pty(xi) · ℓ(y, f(xi))
has a lower empirical variance that the loss ℓ(yi, f(xi)) computed from one-hot labels.

Proof of Lemma 14. We begin by defining the following intermediate term:

ϕ̃y(f) =
1

πt
y

1

n

n∑
i=1

pty(xi) ℓ (y, f(xi)) .

Then for any y ∈ [m],∣∣∣ϕy(f)− ϕ̂y(f)
∣∣∣ ≤ ∣∣∣ϕy(f)− ϕ̃y(f)

∣∣∣+ ∣∣∣ϕ̃y(f)− ϕ̂y(f)
∣∣∣ . (B.8)

We next bound each of the terms in equation (B.8), starting with the first term:

∣∣∣ϕy(f)− ϕ̃y(f)
∣∣∣ = 1

πt
y

∣∣∣∣∣Ex

[
pty(x) ℓ (y, f(x))

]
− 1

n

n∑
i=1

pty(xi) ℓ (y, f(xi))

∣∣∣∣∣
≤ Z

∣∣∣∣∣Ex

[
pty(x) ℓ (y, f(x))

]
− 1

n

n∑
i=1

pty(xi) ℓ (y, f(xi))

∣∣∣∣∣ ,
where we use the fact that πt

y ≤ 1
Z
,∀y. Applying the generalization bound from Menon et al.

[2021a, Proposition 2], along with a union bound over all m classes, we have with probability
at least 1− δ/2 over the draw of S ∼ Dn, for all y ∈ [m]:

∣∣∣ϕy(f)− ϕ̃y(f)
∣∣∣ ≤ C ′Z

(√
Vn,y(f)

log(mMn/δ)

n
+

log(mMn/δ)

n

)
, (B.9)

for a distribution-independent constant C ′ > 0.
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We next bound the second term in equation (B.8):∣∣∣ϕ̃y(f)− ϕ̂y(f)
∣∣∣ = ∣∣∣∣ 1πt

y

− 1

π̂t
y

∣∣∣∣ 1n
n∑

i=1

pty(xi) · ℓ (y, f(xi))

≤ B

∣∣∣∣ 1πt
y

− 1

π̂t
y

∣∣∣∣
=

B

πt
yπ̂

t
y

∣∣πt
y − π̂t

y

∣∣ ,
where in the second step we use the fact that ℓ(y, f(x)) ≤ B and pty(x) ≤ 1.

Further note that because miny∈[m] π
t
y ≥ 1

Z
and n ≥ 8Z log(4m/δ), we have by a direct

application of Chernoff’s bound (and a union bound over m classes) that with probability at
least 1− δ/4:

min
y∈[m]

π̂t
y ≥

1

2Z
,∀y ∈ [m]. (B.10)

Therefore for any y ∈ [m]:∣∣∣ϕ̃y(f)− ϕ̂y(f)
∣∣∣ ≤ 2BZ2

∣∣πt
y − π̂t

y

∣∣ .
Conditioned on the above statement, a simple application of Hoeffding’s inequality and a
union bound over all y ∈ [m] gives us that with probability at least 1− δ/4 over the draw of
S ∼ Dn, for all y ∈ [m]:∣∣∣ϕ̃y(f)− ϕ̂y(f)

∣∣∣ ≤ 2BZ2

(
1

Z

√
log(8m/δ)

2n

)
= 2BZ

√
log(8m/δ)

2n
. (B.11)

A union bound over the high probability statements in (B.9–B.11) completes the proof.
To see this, note that, for any ε > 0 and y ∈ [m],

P
(∣∣∣ϕy(f)− ϕ̂y(f)

∣∣∣ ≥ ε
)

≤ P
((∣∣∣ϕy(f)− ϕ̃y(f)

∣∣∣ ≥ ε
)
∨
(∣∣∣ϕ̃y(f)− ϕ̂y(f)

∣∣∣ ≥ ε
))

≤ P
(∣∣∣ϕy(f)− ϕ̃y(f)

∣∣∣ ≥ ε
)
+ P

(∣∣∣ϕ̃y(f)− ϕ̂y(f)
∣∣∣ ≥ ε

)
≤ P

(∣∣∣ϕy(f)− ϕ̃y(f)
∣∣∣ ≥ ε

)
+ P

(
π̂t
y ≤

1

Z

)
· P
(∣∣∣ϕ̃y(f)− ϕ̂y(f)

∣∣∣ ≥ ε

∣∣∣∣ π̂t
y ≤

1

Z

)
+ P

(
π̂t
y ≥

1

Z

)
· P
(∣∣∣ϕ̃y(f)− ϕ̂y(f)

∣∣∣ ≥ ε

∣∣∣∣ π̂t
y ≥

1

Z

)
≤ P

(∣∣∣ϕy(f)− ϕ̃y(f)
∣∣∣ ≥ ε

)
+ P

(
π̂t
y ≤

1

Z

)
+ P

(∣∣∣ϕ̃y(f)− ϕ̂y(f)
∣∣∣ ≥ ε

∣∣∣∣ π̂t
y ≥

1

Z

)
,

which implies that a union bound over (B.9–B.11) would give us the desired result in Lemma
14.
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Algorithm 6 Distilled Margin-based DRO with One-hot Validation Labels

Inputs: Teacher pt, Student hypothesis class F , Training set S, Validation set Sval,
Step-size γ ∈ R+, Number of iterations K, Loss ℓ
Initialize: Student f 0 ∈ F , Multipliers λ0 ∈ ∆m

For k = 0 to K − 1
λ̃k+1
j = λkj exp

(
γR̂j

)
,∀j ∈ [m]

where R̂j =
1

nval

1

π̂val
j

∑
(x,y)∈Sval

ℓ(y, fk(x)) and π̂val
j =

1

nval

∑
(x,y)∈Sval

1(y = j)

λk+1
y =

λ̃k+1
y∑m

j=1 λ̃
k+1
j

,∀y

fk+1 ∈ argmin
f∈F

1

n

n∑
i=1

Lmar
(
pt(xi), f(xi);

λk+1

π̂t

)
// Replaced with a few steps of SGD

End For
Output: f

s
: x 7→ 1

K

∑K
k=1 f

k(x)

B.3 DRO with One-hot Validation Labels
The updates on λ in Algorithm 2 use a validation set labeled by the teacher. One could

instead perform these updates with a curated validation set containing the original one-hot
labels. Each of these choices presents different merits. The use of a teacher-labeled validation
set is useful in many real world scenarios where labeled data is hard to obtain, while unlabeled
data abounds. In contrast, the use of one-hot validation labels, although more expensive to
obtain, may make the student more immune to errors in the teacher’s predictions, as the
coefficients λs are now based on an unbiased estimate of the student’s performance on each
class.

Algorithm 6 contains a version of the margin-based DRO described in Section 3.5, where
instead of teacher labels the original one-hot labels are used in the validation set.

Before proceeding to providing a convergence guarantee for this algorithm, we will find it
useful to define the following one-hot metrics:

ϕoh
y (f s) =

1

πy
Ex [ηy(x) ℓ (y, f

s(x))]

ϕ̂oh,val
y (f s) =

1

π̂y

1

nval

∑
(x′,y′)∈Sval

1(y′ = y) ℓ (y′, f s(x′)) .

Theorem 9. Suppose pt ∈ F and F is closed under linear transformations. Then the final
scoring function f

s
(x) = 1

K

∑K
k=1 f

k(x) output by Algorithm 6 is of the form:

softmaxy(f
s
(x′)) ∝ λyp

t
y(x

′), ∀(x′, y′) ∈ S,
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where λy =
(∏K

k=1 λ
k
y/π

t
y

)1/K
. Furthermore, suppose ℓ is the softmax cross-entropy loss in

ℓxent, ℓ(y, z) ≤ B, for some B > 0, and maxy∈[m]
1
πy
≤ Z, for some Z > 0. Suppose for any

δ ∈ (0, 1), the following holds: with probability at least 1− δ (over draw of S ∼ Dn), for all
f ∈ F ,

max
y∈[m]

∣∣ϕoh
y (f)− ϕ̂oh

y (f)
∣∣ ≤ ∆oh(n, δ); max

y∈[m]

∣∣ϕy(f)− ϕ̂y(f)
∣∣ ≤ ∆(n, δ),

for some ∆oh(n, δ),∆(n, δ) ∈ R+ that is increasing in 1/δ, and goes to 0 as n → ∞. Fix

δ ∈ (0, 1). Then when the step size γ = 1
2BZ

√
log(m)

K
and nval ≥ 8Z log(2m/δ), with probability

at least 1− δ (over draw of S ∼ Dn and Sval ∼ Dnval), for any τ ∈ R+,

Lrob(f
s
) ≤ min

f∈F
Lrob(f) + 2Bmax

y∈[m]
Ex

[∣∣∣∣τ · pty(x)πt
y

− ηy(x)

πy

∣∣∣∣]︸ ︷︷ ︸
Approximation error

+ 2τ ·∆oh(nval, δ/2) + 2∆(n, δ/2)︸ ︷︷ ︸
Estimation error

+ 4BZ

√
log(m)

K︸ ︷︷ ︸
EG convergence

.

Comparing this to the bound in Theorem 4, we can see that there is an additional scaling
factor τ against the teacher probabilities pty(x) and in the approximation error. When we set
τ = 1, the bound looks very similar to Theorem 4, except that the estimation error term ∆oh

now involves one-hot labels. Therefore the estimation error may incur a slower convergence
with sample size as it no longer benefits from the lower variance that the teacher predictions
may offer (see Appendix B.2 for details).

The τ -scaling in the approximation error also means that the teacher is no longer required
to exactly match the (normalized) class probabilities η(x). In fact, one can set τ to a value
for which the approximation error is the lowest, and in general to a value that minimizes the
upper bound in Theorem 9, potentially providing us with a tighter convergence rate than
Theorem 4.

The proof of Theorem 9 is similar to that of Theorem 4, but requires a modified version
of Lemma 13:

Lemma 15. Suppose the conditions in Theorem 4 hold. With probability ≤ 1 − δ (over
draw of S ∼ Dn and Sval ∼ Dnval), at each iteration k and for any τ ∈ R+,
m∑
y=1

λk+1
y ϕoh

y (fk+1) − min
f∈F

m∑
y=1

λk+1
y ϕoh

y (f) ≤ 2τ ·∆(n, δ) + 2Bmax
y∈[m]

Ex

[∣∣∣∣τ pty(x)πt
y

− ηy(x)

πy

∣∣∣∣] .
Furthermore, with the same probability, for any λ ∈ ∆m:∣∣∣∣∣

m∑
y=1

λyϕ̂
oh,val
y (fk+1) −

m∑
y=1

λyϕ
oh
y (fk+1)

∣∣∣∣∣ ≤ ∆oh(nval, δ).
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Proof. We first note from Lemma 12 that because fk+1 ∈ argmin
f∈F

1

n

n∑
i=1

Lmar
(
pt(xi), f(xi);

λk+1

π̂

)
,

we have for the example-weighting wi = τ, ∀i:

τ
m∑
y=1

λk+1
y ϕ̂y(f

k+1) ≤ τ
m∑
y=1

λk+1
y ϕ̂y(f), ∀f ∈ F . (B.12)

For a fixed iteration k, let us denote f̃ ∈ argmin
f∈F

∑m
y=1 λ

k+1
y ϕy(f). Then for the first part,

we have for any τ ∈ R+:

m∑
y=1

λk+1
y ϕoh

y (fk+1) −
m∑
y=1

λk+1
y ϕoh

y (f̃)

≤ τ

(
m∑
y=1

λk+1
y ϕy(f

k+1) −
m∑
y=1

λk+1
y ϕy(f̃)

)
+

m∑
y=1

λk+1
y

∣∣ϕoh
y (fk+1)− τϕy(f

k+1)
∣∣

+
m∑
y=1

λk+1
y

∣∣∣ϕoh
y (f̃)− τϕy(f̃)

∣∣∣
≤ τ

(
m∑
y=1

λk+1
y ϕy(f

k+1) −
m∑
y=1

λk+1
y ϕy(f̃)

)
+ 2max

f∈F

m∑
y=1

λk+1
y

∣∣ϕoh
y (f)− τϕy(f)

∣∣
≤ τ

(
m∑
y=1

λk+1
y ϕy(f

k+1) −
m∑
y=1

λk+1
y ϕy(f̃)

)
+ 2max

f∈F
max
λ∈∆m

m∑
y=1

λ
∣∣ϕoh

y (f)− τϕy(f)
∣∣

≤ τ

(
m∑
y=1

λk+1
y ϕy(f

k+1) −
m∑
y=1

λk+1
y ϕy(f̃)

)
+ 2max

f∈F
max
y∈[m]

∣∣ϕoh
y (f)− τϕy(f)

∣∣
≤ 2τ sup

f∈F
max
y∈[m]

∣∣ϕ̂y(f)− ϕy(f)
∣∣ + 2max

f∈F
max
y∈[m]

∣∣ϕoh
y (f)− τϕy(f)

∣∣ .
where the last inequality re-traces the steps in Lemma 13. Further applying the generalization
bound assumed in Theorem 4, we have with probability ≤ 1− δ (over draw of S ∼ Dn), for
all iterations k ∈ [K] and any τ ∈ R+,

m∑
y=1

λk+1
y ϕoh

y (fk+1) −
m∑
y=1

λk+1
y ϕoh

y (f̃) ≤ 2τ∆(n, δ) + 2max
f∈F

max
y∈[m]

∣∣ϕoh
y (f)− τϕy(f)

∣∣ . (B.13)

All that remains is to bound the second term in equation (B.13). For any f ∈ F and
y ∈ [m],

∣∣ϕoh
y (f)− τϕy(f)

∣∣ ≤ ∣∣∣∣ 1πyEx [ηy(x) ℓ (y, f(x))] −
τ

πt
y

Ex

[
pty(x) ℓ (y, f(x))

]∣∣∣∣



APPENDIX B. DEFERRED PROOFS AND DISCUSSION FOR CHAPTER 3 95

≤ Ex

[∣∣∣∣ 1πy ηy(x) ℓ (y, f(x)) − τ

πt
y

pty(x) ℓ (y, f(x))

∣∣∣∣]
= Ex

[∣∣∣∣ 1πy ηy(x) − τ

πt
y

pty(x)

∣∣∣∣ ℓ (y, f s(x))

]
≤ BEx

[∣∣∣∣ηy(x)πy
− τ

pty(x)

πt
y

∣∣∣∣] ,
where we use Jensen’s inequality in the second step, the fact that ℓ(y, z) ≤ B is non-negative
in the second step, and the fact that ℓ(y, z) ≤ B in the last step. Substituting this upper
bound back into equation (B.13) completes the proof of the first part.

The second part follows from a direct application of the bound on the per-class estimation
error maxy∈[m]

∣∣ϕoh
y (f)− ϕ̂oh,val

y (f)
∣∣.

Proof of Theorem 9. The proof traces the same steps as Proposition 1 and Theorem 4, except
that it applies Lemma 15 instead of Lemma 13.

Note that because miny∈[m] πy ≥ 1
Z

and nval ≥ 8Z log(2m/δ), we have by a direct
application of Chernoff’s bound (along with a union bound over all m classes) that with
probability at least 1− δ/2:

min
y∈[m]

π̂oh,val
y ≥ 1

2Z
,∀y ∈ [m],

and consequently, ϕ̂oh,val
y (f) ≤ 2BZ,∀f ∈ F . The boundedness of ϕ̂oh,val

y will then allow us to
apply standard convergence guarantees for exponentiated gradient ascent [Shalev-Shwartz

et al., 2011]. For γ = 1
2BZ

√
log(m)

K
, the updates on λ will give us:

max
λ∈∆m

1

K

K∑
k=1

m∑
y=1

λyϕ̂
oh,val
y (fk) ≤ 1

K

K∑
k=1

m∑
y=1

λkyϕ̂
oh,val
y (fk) + 4BZ

√
log(m)

K

Applying the second part of Lemma 13 to each iteration k, we have with probability at
least 1− δ:

max
λ∈∆m

1

K

K∑
k=1

m∑
y=1

λyϕ
oh
y (fk) ≤ 1

K

K∑
k=1

m∑
y=1

λkyϕ
oh
y (fk) + 4BZ

√
log(m)

K
+ 2∆oh(nval, δ/2),

and applying the first part of Lemma 13 to the RHS, we have with the same probability, for
any τ ∈ R+:

max
λ∈∆m

1

K

K∑
k=1

m∑
y=1

λyϕ
oh
y (fk) ≤ 1

K

K∑
k=1

min
f∈F

m∑
y=1

λkyϕ
oh
y (f) + 4BZ

√
log(m)

K
+ 2∆oh(nval, δ/2)

+ 2τ∆(n, δ/2) + 2Bmax
y∈[m]

Ex

[∣∣∣∣τ pty(x)πt
y

− ηy(x)

πy

∣∣∣∣]
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Algorithm 7 Distilled Margin-based DRO for Traded-off Objective

Inputs: Teacher pt, Student hypothesis class F , Training set S, Validation set Sval,
Step-size γ ∈ R+, Number of iterations K, Loss ℓ, Trade-off parameter α
Initialize: Student f 0 ∈ F , Multipliers λ0 ∈ ∆m

For k = 0 to K − 1

λ̃k+1
j = λkj exp

(
γαR̂j

)
,∀j ∈ [m] where R̂j =

1

nval

1

π̂t,val
j

∑
(x,y)∈Sval

ptj(xi) ℓ(j, f
k(x))

λk+1
y =

λ̃k+1
y∑m

j=1 λ̃
k+1
j

,∀y
βk+1
y = (1− α) 1

m
+ αλk+1

y

fk+1 ∈ argmin
f∈F

1

n

n∑
i=1

Lmar
(
pt(xi), f(xi);

βk+1

π̂t

)
// Replaced with a few steps of SGD

End For
Output: f

s
: x 7→ 1

K

∑K
k=1 f

k(x)

≤ min
f∈F

1

K

K∑
k=1

m∑
y=1

λkyϕ
oh
y (f) + 4BZ

√
log(m)

K
+ 2∆oh(nval, δ/2)

+ 2τ∆(n, δ/2) + 2Bmax
y∈[m]

Ex

[∣∣∣∣τ pty(x)πt
y

− ηy(x)

πy

∣∣∣∣] .
Using the convexity of ϕ(·) in f(x) and Jensen’s inequality, we have that

∑m
y=1 λyϕy(f

s
) ≤

1
K

∑K
k=1

∑m
y=1 λyϕy(f

k). We use this to further lower bound the LHS in terms of the averaged
scoring function f s

(x) = 1
K

∑K
k=1 f

k(x), and re-trace the steps in Theorem 4 to get"

max
y∈[m]

ϕoh
y (f

s
) ≤ min

f∈F
max
y∈[m]

ϕoh
y (f) + 4BZ

√
log(m)

K
+ 2∆oh(nval, δ/2)

+ 2τ∆(n, δ/2) + 2Bmax
y∈[m]

Ex

[∣∣∣∣τ pty(x)πt
y

− ηy(x)

πy

∣∣∣∣] .
Noting that Lrob(f) = maxy∈[m] ϕ

oh
y (f) completes the proof.

B.4 DRO for Traded-off Objective
We present a variant of the margin-based DRO algorithm described in Section 3.5 that

seeks to minimize a trade-off between the balanced and robust student objectives:

L̂tdf-d(f s) = (1− α)L̂bal-d(f s) + αL̂rob-d(f s),
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for some α ∈ [0, 1].
Expanding this, we have:

Ltdf-d(f) = (1− α) 1
m

m∑
y=1

1

π̂t
y

1

n

n∑
i=1

pty(xi) ℓ(y, f(xi)) + αmax
y∈[m]

m∑
y=1

1

π̂t
y

1

n

n∑
i=1

pty(xi) ℓ(y, f(xi))

= (1− α) 1
m

m∑
y=1

1

π̂t
y

1

n

n∑
i=1

pty(xi) ℓ(y, f(xi)) + α max
λ∈∆m

m∑
y=1

λy
π̂t
y

1

n

n∑
i=1

pty(xi) ℓ(y, f(xi))

= max
λ∈∆m

m∑
y=1

(
(1− α) 1

m
+ αλy

)
1

π̂t
y

1

n

n∑
i=1

pty(xi) ℓ(y, f(xi)).

The minimization of Ltdf-d(f) over f can then be a cast as a min-max problem:

min
f :X→Rm

Ltdf-d(f) = min
f :X→Rm

max
λ∈∆m

m∑
y=1

(
(1− α) 1

m
+ αλy

)
1

π̂t
y

1

n

n∑
i=1

pty(xi) ℓ(y, f(xi)).

Retracing the steps in the derivation of Algorithm 2 in Section 3.5, we have the following
updates on λ and f to solve the above min-max problem:

λ̃k+1
y = λky exp

(
γα

1

nπ̂t
y

n∑
i=1

pty(xi) ℓ
(
y, fk(xi)

))
,∀y

λk+1
y =

λ̃k+1
y∑m

j=1 λ̃
k+1
j

, ∀y

βk+1
y = (1− α) 1

m
+ αλk+1

y

fk+1 ∈ argmin
f∈F

∑
y∈[m]

βk+1
y

nπ̂t
y

n∑
i=1

pty(xi) ℓ (y, f(xi)) ,

for step-size parameter γ > 0. To better handle training of over-parameterized students, we
will perform the updates on λ using a held-out validation set, and employ a margin-based
surrogate for performing the minimization over f . This procedure is outlined in Algorithm 7.

Connection to post-hoc adjustment

The form of the student in Proposition 1 raises an interesting question. Instead of training an
explicit student model, why not directly construct a new scoring model by making post-hoc
adjustments to the teacher’s predictions? Specifically, one could optimize over functions of
the form f s

y (x) = log(γyp
t
y(x)), where the teacher pt is fixed, and pick the coefficients γ ∈ Rm

so that resulting scoring function yields the best worst-class accuracy on a held-out dataset.
This simple post-hoc adjustment strategy may not be feasible if the goal is to distill to a
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student that is considerably smaller than the teacher. Often, this is the case in settings where
distillation is used as a compression technique. Yet, this post-hoc method serves as good
baseline to compare with.

B.5 Additional experiment details
This section contains further experiment details about the datasets, hyperparameters, and
baselines.

Additional details about datasets

Building long tailed datasets

The long-tailed datasets were created from the original datasets following Cui et al. [2019]
by downsampling examples with an exponential decay in the per-class sizes. As done by
Narasimhan and Menon [2021], we set the imbalance ratio maxi P (y=i)

mini P (y=i)
to 100 for CIFAR-10

and CIFAR-100, and to 83 for TinyImageNet (the slightly smaller ratio is to ensure that the
smallest class is of a reasonable size). We use the long-tail version of ImageNet generated by
Liu et al. [2017].

Dataset splits

The original test samples for CIFAR-10, CIFAR-10-LT, CIFAR-100, CIFAR-100-LT, Tiny-
ImageNet (200 classes), TinyImageNet-LT (200 classes), and ImageNet (1000 classes) are
all balanced. Following Narasimhan and Menon [2021], we randomly split them in half and
use half the samples as a validation set, and the other half as a test set. For the CIFAR and
TineImageNet datasets, this amounts to using a validation set of size 5000. For the ImageNet
dataset, we sample a subset of 5000 examples from the validation set each time we update
the Lagrange multipliers in Algorithm 2.

In keeping with prior work Menon et al. [2021b], Narasimhan and Menon [2021], Lukasik
et al. [2022], we use the same validation and test sets for the long-tailed training sets as we do
for the original versions. For the long tailed training sets, this simulates a scenario where the
training data follows a long tailed distribution due to practical data collection limitations, but
the test distribution of interest still comes from the original data distribution. In plots, the
“balanced accuracy” that we report for the long-tail datasets (e.g., CIFAR-10-LT) is actually
the standard accuracy calculated over the balanced test set, which is shared with the original
balanced dataset (e.g., CIFAR-10).

Both teacher and student were always trained on the same training set.
The CIFAR datasets had images of size 32 × 32, while the TinyImageNet and ImageNet

datasets dataset had images of size 224 × 224.
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These datasets do not contain personally identifiable information or offensive content.
The CIFAR-10 and CIFAR-100 datasets are licensed under the MIT License. The terms of
access for ImageNet are given at https://www.image-net.org/download.php.

Additional details about training and hyperparameters

Training details and hyperparameters

Temperature hyperparameters. We apply temperature scaling to the teacher scores
on both the training set and validation set when training the student, i.e., compute pt(x) =
softmax(f t(x)/γ), and vary the temperature parameter γ over a range of {1, 3, 5}. When
training with teacher labels on the validation set (Algorithm 2), we vary the temperature
parameters independently for the training set and the validation set. That is, we apply
pt(x) = softmax(f t(x)/γtrain) over the training set and pt(x) = softmax(f t(x)/γval) over the
validation set. When teacher labels are applied to the validation set, we additionally include
a temperature of 0.1 on the teacher’s validation set labels to approximate a hard thresholding
of the teacher probabilities. Thus, the final hyperparameter search spaces are γtrain ∈ {1, 3, 5},
and γval ∈ {0.1, 1, 3, 5}.

Unless otherwise specified, in all tables, the temperature hyperparameters were chosen to
achieve the best worst-class accuracy on the validation set. In all scatter plots such as Figure
3.1, for each αt, αs combination, temperature hyperparameters were selected to achieve the
best worst-class accuracy on the validation set.

Learning rate hyperparameters. All models were trained using SGD with momentum
of 0.9 [Lukasik et al., 2022, Narasimhan and Menon, 2021].

The learning rate schedule were chosen to mimic the settings in prior work Narasimhan
and Menon [2021], Lukasik et al. [2022]. For CIFAR-10 and CIFAR-100 datasets, we ran
the optimizer for 450 epochs, linearly warming up the learning rate till the 15th epoch, and
then applied a step-size decay of 0.1 after the 200th, 300th and 400th epochs, as done by
Lukasik et al. [2022]. For the long-tail versions of these datasets, we trained for 256 epochs,
linearly warming up the learning rate till the 15th epoch, and then applied a step-size decay
of 0.1 after the 96th, 192nd and 224th epochs, as done by Narasimhan and Menon [2021].
Similarly, for the TinyImageNet datasets, we train for 200 epochs, linearly warming up the
learning rate till the 5th epoch, and then applying a decay of 0.1 after the 75th and 135th
epochs, as done by Narasimhan and Menon [2021]. For ImageNet, we train for 90 epochs,
linearly warming up the learning rate till the 5th epoch, then applying a decay of 0.1 after
the 30th, 60th and 80th epochs, as done by Lukasik et al. [2022]. We used a batch size of 128
for the CIFAR-10 and the long-tailed TinyImageNet datasets [Narasimhan and Menon, 2021],
a batch size of 512 for the balanced ImageNet dataset, a batch size of 2048 for the balanced
TinyImageNet dataset, and a batch size of 1024 for other datasets Lukasik et al. [2022].

https://www.image-net.org/download.php
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We apply an L2 weight decay of 10−4 in all our SGD updates Lukasik et al. [2022]. This
amounts to applying an L2 regularization on the model parameters, and has the effect of
keeping the model parameters (and as a result the loss function) bounded.

When training with the margin-based robust objective (see Algorithm 2), a separate step
size α was applied for training the main model function f , and for updating the multipliers
λ. We set α to 0.1 in all experiments.

Hardware. Model training was done using TPUv2.

Repeats

For all comparative baselines without distillation (Group DRO, Post shift, and all teachers
alone), we provide average results over m retrained models (m = 5 for ImageNet / Tiny-
ImageNet, or m = 10 for CIFAR datasets). For students on all CIFAR* datasets, unless
otherwise specified, we train the teacher once and run the student training 10 times using the
same arbitrarily chosen fixed teacher. We compute the mean and standard error of metrics
over these m = 10 runs. For the resource-heavy TinyImageNet and ImageNet students, we
reduce the number of repeats to m = 5. This methodology captures variation in the student
retrainings while holding the teacher fixed. To capture the end-to-end variation in both
teacher and student training, we include Appendix B.6 and Table B.4 which contains a rerun
of the CIFAR experiments in Tables B.1 and B.2 using a distinct teacher for each student
retraining. The overall best teacher/student objective combinations did not change for most
datasets, with the only exception coming from a difference in the use of validation set labels.

Additional details about algorithms and baselines

Practical improvements to Algorithms 2–7

Algorithms 2–7 currently return a scorer that averages over allK iterates f s
(x) = 1

K

∑K
k=1 f

k(x).
While this averaging was required for our theoretical robustness guarantees to hold, in our
experiments, we find it sufficient to simply return the last model fK . Another practical
improvement that we make to these algorithms following Cotter et al. [2019d], is to employ
the 0-1 loss while performing updates on λ, i.e., set ℓ = ℓ0-1 in the λ-update step. We are
able to do this because the convergence of the exponentiated gradient updates on λ does not
depend on ℓ being differentiable. This modification allows λs to better reflect the model’s
per-class performance on the validation sample.

Discussion on post-shifting baseline

We implement the post-shifting method in Narasimhan and Menon [2021] (Algorithm 3 in
their paper), which provides for an efficient way to construct a scoring function of the form
f s
y (x) = log(γyp

t
y(x)), for a fixed teacher pt, where the coefficients γ ∈ Rm are chosen to

maximize the worst-class accuracy on the validation dataset. Interestingly, in our experiments,
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we find this approach to do exceedingly well on the validation sample, but this does not always
translate to good worst-class test performance. In contrast, some of the teacher-student
combinations that we experiment with were seen to over-fit less to the validation sample, and
as a result were able to generalize better to the test set. This could perhaps indicate that the
teacher labels we use in these combinations benefit the student in a way that it improves its
generalization. The variance reduction effect that Menon et al. [2021a] postulate may be one
possible explanation for why we see this behavior.

B.6 Additional experimental results
This section contains additional experimental results.

Extended tables for objective combinations

We include extended tables comparing worst-class performance for different combinations
of teacher and student objectives. The mean and standard errors are reported over repeat
trainings as described in Appendix B.5.

Tables B.1 and B.2 are an extended version of Table 3.1 that includes standard errors for
both worst-k accuracy and average accuracy.

Table B.3 includes similar comparisons when the student is compressed – that is, the
student’s architecture is smaller than the teacher’s architecture.

Robust distillation with a onehot-labeled validation set

Tables B.1, B.2, and B.3 also include results when the robust student is trained using a
validation set using onehot labels, as described in Appendix B.3. We report the accuracies
for this robust student for different teachers trained with the standard, balanced, and robust
objectives in the last rows of Tables B.1, B.2, and B.3 (Lrob-d (one-hot val)). We compare
these to the robust student trained using teacher labels on the validation set (Lrob-d (teacher
val)), which require less labeled data.

Perhaps surprisingly, it did not always benefit the robust student to utilize the true
one-hot labels in the validation set. Instead, training the robust student with teacher labels
on the validation set was often sufficient to achieve the best or close to the best worst-class
performance. This is promising from a data efficiency standpoint, since it can be expensive
to build up a labeled dataset for validation, especially if the training data is long-tailed.

Additional plots for all αt, αs combinations

Figure B.1 show accuracies for all αt, αs the equivalent of Figure 3.1 but for all datasets.
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Table B.1: Worst-class accuracy comparison of self-distilled teacher/student combos on
test for balanced datasets. The “none” row indicates the performance of the teacher alone.
Worst-class accuracy is shown above, and average is accuracy shown in parentheses below.
The combination with the best worst-class accuracy is in bold. We include results for the
robust student using either a teacher labeled validation set (“teacher val”), or true one-hot
class labels in the validation set (“one-hot val”), as outlined in Appendix B.3. Perhaps
counterintuitively, the teacher with the best worst-class accuracy alone (the “none” row) did
not always produce the student with the highest worst-class accuracy.

CIFAR-10 Teacher Obj. CIFAR-100 Teacher Obj. TinyImageNet Teacher Obj.
Lstd Lrob Lstd Lrob Lstd Lrob

St
ud

en
t

O
bj

.

none 86.48± 0.32 90.09± 0.22 42.22± 0.90 43.42± 1.03 8.42± 1.88 11.87± 1.74
(93.74± 0.05) (92.67± 0.09) 72.42± 0.16 68.81± 0.11 (56.79± 0.33) (48.40± 0.15)

Lstd-d 87.66± 0.40 90.12± 0.23 43.81± 0.58 48.20± 1.15 6.32± 2.31 10.53± 1.49
(94.34± 0.07) (94.07± 0.07) (74.61± 0.15) (73.23± 0.07) (57.83± 0.13) (55.36± 0.16)

Lrob-d 90.94± 0.16 85.14± 0.47 39.18± 1.58 30.42± 1.30 9.98± 1.87 16.58± 1.23
(teacher val) (92.54± 0.05) (89.58± 0.11) (63.49± 0.29) (55.77± 0.39) (49.84± 0.21) (46.11± 0.37)

Lrob-d 89.37± 0.17 87.32± 0.21 44.61± 1.55 42.68± 0.74 16.27± 0.43 17.36± 1.32
(one-hot val) (91.63± 0.06) (91.16± 0.10) (69.02± 0.30) (62.03± 0.24) (48.06± 0.24) (43.92± 0.30)

Comparison to baselines of all Pareto efficient αt, αs

To supplement the comparison to baselines in Tables 3.2 and 3.3, Figures B.2, B.3, B.4, and
B.5 show all Pareto efficient αt and αs combinations on test. Whereas only a single αt, αs

combination was selected on the validation set and reported in Tables 3.2 and 3.3, Figures
B.2, B.3, B.4, and B.5 show that there were many more combinations of αt, αs that could
have Pareto dominated all baselines.

Figures B.2, B.3, B.4, and B.5 also give more insight into which values of αt work best
for different values of αs. Whereas Figure 3.1 shows that αs is highly correlated with average
accuracy, the same is not true for αt. Worst-class accuracy generally increases with αs, but
the teachers that achieve the Pareto efficient points all have αt < 1. This reveals counter-
intuitively that the teacher’s worst-class accuracy is not a direct predictor of the robustness of
a subsequent student. This couples with our theoretical understanding in Section 3.7, which
showed that the ability of a teacher to train robust students is determined by the calibration
of scores within each class.

Trading off average vs. worst-class accuracy. Figures B.2, B.3, B.4, and B.5 show that
when we allow for more nuanced Ltdf objective combinations, the resulting models may have
higher average accuracy and worst-class accuracy than standard distillation. Interestingly, the
models with the most “even” trade-offs between average accuracy and worst-class accuracy
tend to have low αt (around 0.25) and low αs (also around 0.25). Higher values of αt tended
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Table B.2: Worst-class accuracy comparison of self-distilled teacher/student combos on test
for long-tailed datasets. The “none” row indicates the performance of the teacher alone.
Worst-class accuracy is shown above (or worst-10 accuracy for TinyImageNet-LT), and average
is accuracy shown in parentheses below. The combination with the best worst-class accuracy
is in bold. We include results for the robust student using either a teacher labeled validation
set (“teacher val”), or true one-hot class labels in the validation set (“one-hot val”), as outlined
in Appendix B.3. Perhaps counterintuitively, the teacher with the best worst-class accuracy
alone (the “none” row) did not always produce the student with the highest worst-class
accuracy.

CIFAR-10-LT Teacher Obj. CIFAR-100-LT Teacher Obj.
Lstd Lbal Lrob Lstd Lbal Lrob

St
ud

en
t

O
bj

.

None 57.26± 0.55 68.52± 0.52 74.8± 0.30 0.00± 0.00 3.75± 0.62 10.33± 0.82
(76.27± 0.20) (79.85± 0.20) (80.29± 0.12) (43.33± 0.16) (47.55± 0.17) (44.27± 0.13)

Lstd-d 36.67± 0.28 66.96± 0.43 71.15± 0.24 0.00± 0.00 2.39± 0.24 7.32± 0.47
(69.5± 0.13) (79.25± 0.10) (80.95± 0.11) (43.86± 0.14) (48.95± 0.15) (47.93± 0.11)

Lbal-d 71.23± 0.44 70.52± 0.20 72.96± 0.53 4.39± 0.65 7.08± 0.80 7.19± 0.79
(80.5± 0.12) (81.12± 0.08) (80.71± 0.07) (50.4± 0.11) (50.1± 0.09) (47.51± 0.20)

Lrob-d 63.85± 0.21 75.56± 0.19 69.21± 0.45 9.05± 0.71 12.52± 0.98 10.32± 0.76
(teacher val) (76.81± 0.08) (80.81± 0.08) (76.72± 0.19) (33.75± 0.10) (34.05± 0.09) (36.83± 0.15)

Lrob-d 73.59± 0.25 75.43± 0.38 74.7 ±0.19 12.28± 0.46 11.94± 0.80 13.18± 0.61
(one-hot val) (77.92± 0.05) (79.02± 0.07) (77.99± 0.10 (30.79± 0.18) (29.8± 0.20) (31.88± 0.20

TinyImageNet-LT Teacher Obj.
Lstd Lbal Lrob

St
ud

en
t

O
bj

.

None 0.00± 0.00 2.11± 0.37 4.92± 0.66
(33.15± 0.17) (35.96± 0.12) (27.23± 0.15)

Lstd-d 0.00± 0.00 0.00± 0.00 1.87± 0.23
(26.05± 0.18) (27.21± 0.15) (25.34± 0.13)

Lbal-d 0.20± 0.18 2.82± 0.14 4.77± 0.41
(30.43± 0.06) (39.41± 0.15) (38.41± 0.15)

Lrob-d 0.00± 0.00 4.93± 0.38 3.32± 0.43
(teacher val) (22.66± 0.08) (35.43± 0.18) (25.11± 0.17)

Lrob-d 1.55± 0.37 6.11± 0.39 6.19± 0.25
(one-hot val) (21.59± 0.19) (28.24± 0.17) (25.30± 0.18)

to lead to more extreme points on the trade-off curve, either with higher average accuracy
at the expense of worst-class accuracy, or vice versa. Overall, the robust Ltdf combinations
also Pareto dominated most of the baselines that all used the standard teacher. Together,
these results highlight the fact that in robust distillation, the teacher’s training objective is
important and should be tailored to the desired final accuracy/robustness trade-off (perhaps
using a held-out validation sample with some domain-specific criteria in practice). Figure
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Table B.3: Comparison of ResNet-56→ResNet-32 distilled teacher/student combos on test
on CIFAR datasets. Worst-class accuracy shown above, and average accuracy shown in
parentheses below. The combination with the best worst-class accuracy is bolded. Mean
and standard error are reported over 10 repeats. We include results for the robust student
using either a teacher labeled validation set (“teacher val”), or true one-hot class labels in the
validation set (“one-hot val”), as outlined in Section 3.5.

CIFAR-10 Teacher Obj. CIFAR-100 Teacher Obj.
Lstd Lrob Lstd Lrob

St
ud

en
t

O
bj

.
(R

es
N

et
-3

2)

Lstd-d 86.4± 0.27 89.56± 0.20 41.82± 1.12 45.7± 1.13
(93.73± 0.05) (93.38± 0.05) 73.19± 0.10 71.42± 0.22

Lrob-d 89.61± 0.27 83.8± 0.95 38.94± 2.61 19.15± 0.00
(teacher val) (92.20± 0.08) (88.71± 0.24) (62.28± 0.40) (52.9± 0.00)

Lrob-d 87.92± 0.23 86.57± 0.24 33.19± 1.29 41.23± 0.84
(one-hot val) (90.89± 0.12) (90.54± 0.11) (57.43± 0.29) (61.14± 0.24)

CIFAR-10-LT Teacher Obj. CIFAR-100-LT Teacher Obj.
Lstd Lbal Lrob Lstd Lbal Lrob

St
ud

en
t

O
bj

.
(R

es
N

et
-3

2)

Lstd-d 57.23± 0.53 66.80± 0.25 72.36± 0.39 0.00± 0.00 1.38± 0.39 7.99± 0.48
(75.76± 0.12) (78.99± 0.06) (80.74± 0.09) (44.33± 0.11) (47.28± 0.13) (47.34± 0.08)

Lbal-d 71.37± 0.50 71.00± 0.45 72.17± 0.40 3.57± 0.58 4.28± 0.45 5.58± 0.53
(81.13± 0.12) (81.12± 0.15) (79.91± 0.08) (49.21± 0.10) (46.56± 0.13) (48.58± 0.09)

Lrob-d 64.1± 0.36 73.51± 0.33 69.90± 0.42 10.24± 0.71 13.41± 0.72 11.27± 0.61
(teacher val) (76.34± 0.12) (80.10± 0.10) (76.37± 0.14) (33.55± 0.16) (33.37± 0.17) (36.14± 0.19)

Lrob-d 72.65± 0.27 74.39± 0.34 74.45± 0.26 10.93± 0.65 12.2± 0.65 12.93± 0.62
(one-hot val) (77.69± 0.11) (78.68± 0.16) (77.97± 0.10 (29.48± 0.22) (30.27± 0.18) (31.83± 0.17

B.6 confirms that these results also hold up in a compression setting, where the compressed
models can actually even beat their larger teachers.

Different teachers on repeat trainings

Distillation experimental results in the main paper use the same teacher for all repeat trainings
of the student. This captures the variance in the student training process while omitting
the variance in the teacher training process. To capture the variance in the full training
pipeline, we ran an additional set of experiments where students were trained on different
retrained teachers, rather than on the same teacher. We report results on all CIFAR datasets
in Table B.4. The best teacher/student combinations are identical for all datasets except for
CIFAR-10-LT, for which the best teacher/student combinations from Table B.4 and Tables
B.1 and B.2 were both a robust student trained with a balanced teacher, and only differed in
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Figure B.1: All αt, αs combinations for all datasets on test. The black line traces out the
Pareto frontier. Average accuracy is roughly determined by αs. The labeled point corresponds
to the “best” combination selected in Tables 3.2 and 3.3 based on validation criteria, but
other domain-specific tradeoff criteria could yield any of these other points.

whether the validation set contained teacher labels or one-hot labels (Lbal/Lrob-d (one-hot
val) in Table B.4 vs. Lbal/Lrob-d (teacher val) in Tables B.1 and B.2). Note that the first and
second rows of Tables B.1 and B.2 are already averaged over m retrained teachers (m = 5 for
TinyImageNet, or m = 10 for CIFAR datasets), and those same m teachers are used in the
repeat trainings in Table B.4.
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CIFAR-10 ResNet56 → ResNet56
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Pareto efficient robust distillation results (test)
αt αs Average acc. Worst-class acc.
0.75 0.25 93.81± 0.07 90.68± 0.20
0.50 0.25 93.82± 0.09 90.54± 0.22
0.25 0.25 93.87± 0.08 90.50± 0.18
1.00 0.00 94.07± 0.07 90.12± 0.23
0.75 0.00 94.25± 0.05 90.00± 0.17
0.25 0.00 94.34± 0.06 89.10± 0.31

Baseline results (test)
Baseline Average acc. Worst-class acc.
Standard distillation 94.34± 0.07 87.66± 0.40
Post shift [NM’21] 92.16± 0.18 88.60± 0.35
Robust student [NM’21] 92.72± 0.05 89.90± 0.21
AdaMargin [LBMK’21] 93.69± 0.06 88.42± 0.36
AdaAlpha [LBMK’21] 94.31± 0.01 88.33± 0.14
Group DRO [SKHL’20] 92.34± 0.07 89.32± 0.21

CIFAR-100 ResNet56 → ResNet56
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Robust student [NM′21]
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Group DRO [SKHL′20]
 
 

Pareto efficient robust distillation results (test)
αt αs Average acc. Worst-class acc.
1.00 0.25 70.45± 0.16 48.99± 0.72
1.00 0.00 73.23± 0.07 48.20± 1.15
0.25 0.00 74.57± 0.12 46.99± 1.09
0.25 0.00 74.59± 0.09 44.37± 0.58
0.00 0.00 74.61± 0.15 43.81± 0.58

Baseline results (test)
Baseline Average acc. Worst-class acc.
Standard distillation 74.61± 0.15 43.81± 0.58
Post shift [NM’21] 61.22± 0.36 38.19± 0.40
Robust student [NM’21] 68.45± 0.13 43.62± 1.27
AdaMargin [LBMK’21] 73.58± 0.11 43.91± 1.11
AdaAlpha [LBMK’21] 74.15± 0.08 45.46± 0.67
Group DRO [SKHL’20] 65.18± 0.08 43.89± 1.12

Figure B.2: Tradeoffs in worst-class test accuracy vs. average test accuracy for CIFAR-10
and CIFAR-100 distilling from ResNet-56 to ResNet-56. All baseline results that require a
teacher use the “standard teacher” (trained using Lstd), as done in the original papers. For
methods run multiple times with multiple hyperparameters (e.g. temperatures), all Pareto
efficient results are shown in the plot, but the tables show only the baseline results with the
best worst-class accuracy (on the validation set). The highlighted row indicates the model
with the highest worst-class accuracy that also achieves at least as high average accuracy as
standard distillation (within error margins).
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TinyImageNet ResNet18 → ResNet18
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AdaMargin [LBMK′21]
AdaAlpha [LBMK′21]
Group DRO [SKHL′20]
 
 

Pareto efficient robust distillation results (test)
αt αs Average acc. Worst-class acc.
0.50 0.75 51.88± 0.18 19.29± 1.27
0.75 0.50 53.60± 0.31 18.98± 0.86
0.25 0.25 56.99± 0.14 18.83± 0.85
0.00 0.25 57.26± 0.15 14.44± 0.91
0.75 0.00 57.35± 0.17 9.47± 1.76
0.50 0.00 57.74± 0.20 8.22± 1.09

Baseline results (test)
Baseline Average acc. Worst-class acc.
Standard distillation 57.83± 0.13 6.32± 2.31
Post shift [NM’21] 43.02± 0.79 14.39± 1.13
Robust student [NM’21] 48.06± 0.24 16.27± 0.43
AdaMargin [LBMK’21] 52.45± 0.08 15.41± 0.71
AdaAlpha [LBMK’21] 57.22± 0.08 7.62± 2.17
Group DRO [SKHL’20] 48.78± 0.21 11.38± 1.79

Figure B.3: Tradeoffs in worst-class test accuracy vs. average test accuracy for TinyImageNet
distilling from ResNet-18 to ResNet-18. All baseline results that require a teacher use the
“standard teacher” (trained using Lstd), as done in the original papers. For methods run
multiple times with multiple hyperparameters (e.g. temperatures), all Pareto efficient results
are shown in the plot, but the tables show only the baseline results with the best worst-
class accuracy (on the validation set). The highlighted row indicates the model with the
highest worst-class accuracy that also achieves at least as high average accuracy as standard
distillation (within error margins).

AdaAlpha and AdaMargin comparisons with different teachers

We include and discuss additional comparisons to the AdaMargin and AdaAlpha methods
Lukasik et al. [2022], which each define additional ways to modify the student training
algorithm (see Section 3.6). In Tables 3.2 and 3.3, we show results with each of these methods
using the standard teacher, as done in the original paper. However, in this section we extend
these results by also applying AdaMargin and AdaAlpha with different teachers trained
with the robust and balanced objectives. Table B.5 compares the results of AdaMargin and
AdaAlpha for these different teachers under the same self distillation setup as Tables B.1 and
B.2.

Overall, the use of a robust teacher leads to marked improvements for students trained by
AdaMargin and AdaAlpha. For the balanced datasets, AdaMargin was competitive with the
robust and standard students: on CIFAR-100 and TinyImageNet, AdaMargin combined with
the robust teacher and the standard teacher (respectively) achieved worst-class accuracies
that are statistically comparable to the best worst-class accuracies in Tables B.1 and B.2.
However, on the long-tailed datasets, AdaAlpha and AdaMargin did not achieve worst-class
accuracies as high as other teacher/student combinations. This suggests that the AdaMargin
method can work well on balanced datasets in combination with a robust teacher, but other
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CIFAR-10-LT ResNet56 → ResNet56
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Robust teachers
Standard distillation
Standard teacher
Post shift [NM′21]
Robust student [NM′21]
AdaMargin [LBMK′21]
AdaAlpha [LBMK′21]
Group DRO [SKHL′20]
 
 

Pareto efficient robust distillation results (test)
αt αs Average acc. Worst-class acc.
0.75 0.75 80.86± 0.09 75.58± 0.17
0.75 0.50 81.12± 0.11 75.52± 0.22
0.00 0.75 81.40± 0.10 75.15± 0.38
0.00 0.50 81.82± 0.11 75.13± 0.24
0.00 0.25 81.89± 0.08 73.09± 0.32
0.00 0.00 81.94± 0.16 70.61± 0.39

Baseline results (test)
Baseline Average acc. Worst-class acc.
Standard distillation 77.39± 0.10 60.12± 0.56
Post shift [NM’21] 78.28± 0.05 74.33± 0.09
Robust student [NM’21] 80.05± 0.13 74.91± 0.24
AdaMargin [LBMK’21] 72.69± 0.24 47.52± 0.95
AdaAlpha [LBMK’21] 70.83± 0.28 43.64± 1.09
Group DRO [SKHL’20] 74.39± 0.17 59.93± 0.59

CIFAR-100-LT ResNet56 → ResNet56
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Standard distillation
Standard teacher
Post shift [NM′21]
Robust student [NM′21]
AdaMargin [LBMK′21]
AdaAlpha [LBMK′21]
Balanced student [MJRJVK′21]
Group DRO [SKHL′20]
 
 

Pareto efficient robust distillation results (test)
αt αs Average acc. Worst-class acc.
0.75 0.50 41.91± 0.15 16.08± 0.52
0.00 0.50 43.82± 0.14 16.06± 0.89
0.25 0.25 48.01± 0.09 15.52± 0.41
0.25 0.25 48.20± 0.11 15.26± 0.73
0.50 0.00 50.41± 0.11 7.49± 0.72
0.75 0.00 50.57± 0.18 5.55± 0.54

Baseline results (test)
Baseline Average acc. Worst-class acc.
Standard distillation 46.01± 0.16 0.00± 0.00
Post shift [NM’21] 29.88± 0.61 10.01± 0.72
Robust student [NM’21] 30.79± 0.18 12.28± 0.46
AdaMargin [LBMK’21] 31.26± 0.21 0.00± 0.00
AdaAlpha [LBMK’21] 42.52± 0.08 0.00± 0.00
Balanced student [MJRJVK’21] 50.40± 0.12 4.39± 0.66
Group DRO [SKHL’20] 40.47± 0.17 0.19± 0.17

Figure B.4: Tradeoffs in worst-class test accuracy vs. average test accuracy for CIFAR-10-LT
and CIFAR-100-LT under self-distillation. All baseline results that require a teacher use
the “standard teacher” (trained using Lstd), as done in the original papers. For methods run
multiple times with multiple hyperparameters (e.g. temperatures), all Pareto efficient results
are shown in the plot, but the tables show only the baseline results with the best worst-class
accuracy (on the validation set). The highlighted row indicates the model with the highest
worst-class (or worst-10) accuracy that also achieves at least as high average accuracy as
standard distillation (within error margins). Note that Ltdf mixes between Lbal and Lrob.
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TinyImageNet-LT ResNet18 → ResNet18
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Standard teacher
Post shift [NM′21]
Robust student [NM′21]
AdaMargin [LBMK′21]
AdaAlpha [LBMK′21]
Balanced student [MJRJVK′21]
Group DRO [SKHL′20]
 
 

Pareto efficient robust distillation results (test)
αt αs Average acc. Worst-10 acc.
1.00 0.25 36.28± 0.17 7.98± 0.21
0.75 0.25 37.62± 0.15 6.25± 0.12
0.00 0.25 38.44± 0.13 5.90± 0.45
0.50 0.00 39.29± 0.09 4.17± 0.34
0.25 0.00 39.57± 0.06 3.68± 0.30

Baseline results (test)
Baseline Average acc. Worst-10 acc.
Standard distillation 26.05± 0.18 0.00± 0.00
Post shift [NM’21] 21.32± 0.49 2.58± 0.42
Robust student [NM’21] 21.59± 0.19 1.55± 0.37
AdaMargin [LBMK’21] 4.41± 0.09 0.00± 0.00
AdaAlpha [LBMK’21] 27.95± 0.14 0.00± 0.00
Balanced student [MJRJVK’21] 30.43± 0.06 0.20± 0.18
Group DRO [SKHL’20] 27.78± 0.13 0.00± 0.00

Figure B.5: Tradeoffs in worst-class test accuracy vs. average test accuracy for TinyImageNet-
LT under self-distillation. All baseline results that require a teacher use the “standard teacher”
(trained using Lstd), as done in the original papers. For methods run multiple times with
multiple hyperparameters (e.g. temperatures), all Pareto efficient results are shown in the
plot, but the tables show only the baseline results with the best worst-class accuracy (on the
validation set). The highlighted row indicates the model with the highest worst-10 accuracy
that also achieves at least as high average accuracy as standard distillation (within error
margins). Note that Ltdf mixes between Lbal and Lrob.

combinations of standard/balanced/robust objectives are valuable for long-tailed datasets.
Relative to each other, AdaMargin usually achieved higher worst-class accuracy than

AdaAlpha, whereas AdaAlpha often achieved higher average accuracy.

Group DRO comparison

Sagawa et al. [2020a] propose a group DRO algorithm to improve long tail performance without
distillation. In this section we present additional experimental comparisons to Algorithm 1
from Sagawa et al. [2020a]. This differs from our robust optimization methodology in Section
3.5 in two key ways: (i) we apply a margin-based surrogates of Menon et al. [2021b], and
(ii) we use a validation set to update the Lagrange multipliers λ in Algorithm 7. Table B.6
shows results from running group DRO directly as specified in Algorithm 1 in Sagawa et al.
[2020a], as well as a variant where we use the validation set to update Lagrange multipliers
in group DRO (labeled as “with vali” in Table B.6). Table B.6 shows that this latter variant
“with vali” performs better than the original version without a validation set; thus, for the
results in Figures B.2, B.3, B.4, and B.5, we report these better results marked in Table B.6
as “with vali.” Overall, this comparison shows that Lrob is comparable to group DRO, and
that robust distillation protocols can outperform group DRO alone.
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CIFAR-10 ResNet56 → ResNet32
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Pareto efficient robust distillation results (test)
αt αs Average acc. Worst-class acc.
0.00 0.25 93.08± 0.07 89.85± 0.22
1.00 0.00 93.38± 0.05 89.56± 0.20
0.75 0.00 93.58± 0.09 88.91± 0.25
1.00 0.00 93.59± 0.06 88.88± 0.36
0.75 0.00 93.61± 0.05 88.44± 0.33
0.25 0.00 93.74± 0.07 88.41± 0.32

Baseline results (test)
Baseline Average acc. Worst-class acc.
Standard distillation 93.71± 0.05 86.98± 0.36
Robust student [NM’21] 91.57± 0.08 88.57± 0.18
AdaMargin [LBMK’21] 92.09± 0.09 83.57± 0.64
AdaAlpha [LBMK’21] 93.52± 0.11 85.41± 0.45

CIFAR-100 ResNet56 → ResNet32
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Robust ResNet32 alone
AdaMargin [LBMK′21]
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Pareto efficient robust distillation results (test)
αt αs Average acc. Worst-class acc.
0.75 0.25 70.42± 0.14 48.57± 0.55
0.75 0.00 72.84± 0.22 45.74± 1.57
0.75 0.00 72.97± 0.18 43.73± 1.72

Baseline results (test)
Baseline Average acc. Worst-class acc.
Standard distillation 73.19± 0.10 41.82± 1.12
Robust student [NM’21] 65.17± 0.11 40.87± 0.89
AdaMargin [LBMK’21] 71.92± 0.17 42.22± 1.65
AdaAlpha [LBMK’21] 72.93± 0.09 41.50± 1.14

Figure B.6: Tradeoffs in worst-class test accuracy vs. average test accuracy for CIFAR-10
and CIFAR-100 distilling from ResNet-56 to ResNet-32. All baseline results that require a
teacher use the “standard teacher” (trained using Lstd), as done in the original papers. For
methods run multiple times with multiple hyperparameters (e.g. temperatures), all Pareto
efficient results are shown in the plot, but the tables show only the baseline results with the
best worst-class accuracy (on the validation set). The highlighted row indicates the model
with the highest worst-class accuracy that also achieves at least as high average accuracy as
standard distillation (within error margins).
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Table B.4: Comparison using different teachers for student retrainings for self-distilled
teacher/student combos on test. For each student/teacher objective pair, we train m = 10
students total on each of m = 10 distinct retrained teachers. For comparability, the same set
of m teachers is used for each student. This differs from Table 3.1 in that in Table 3.1, the
students are retrained on each repeat using the same teacher (arbitrarily selected). Otherwise,
setups are the same as in Table 3.1.

CIFAR-10 Teacher Obj. CIFAR-100Teacher Obj.
Lstd Lrob Lstd Lrob

St
ud

en
t

O
bj

. Lstd-d 87.09± 0.51 89.68± 0.20 44.21± 0.57 47.79± 0.82
(93.78± 0.22) (93.74± 0.07) 74.6± 0.11 73.48± 0.11

Lrob-d 90.62± 0.19 87.12± 0.38 39.7± 1.32 31.09± 1.21
(teacher val) (92.58± 0.08) (90.46± 0.08) (64.28± 0.41) (55.39± 0.28)

Lrob-d 88.15± 0.66 86.44± 0.52 39.44± 0.94 39.65± 0.59
(one-hot val) (91.03± 0.47) (90.16± 0.42) (61.23± 0.36) (60.89± 0.29)

CIFAR-10-LT Teacher Obj. CIFAR-100-LT Teacher Obj.
Lstd Lbal Lrob Lstd Lbal Lrob

St
ud

en
t

O
bj

. Lstd-d 60.12± 0.56 66.13± 0.47 69.75± 0.52 0.00± 0.00 1.41± 0.41 9.17± 0.74
(77.39± 0.10) (79.16± 0.20) (80.73± 0.08) (45.84± 0.13) (49.67± 0.20) (48.55± 0.14)

Lbal-d 72.41± 0.52 71.49± 0.30 71.70± 0.33 5.83± 0.54 5.94± 0.50 8.37± 0.72
(81.97± 0.11) (81.20± 0.15) (80.29± 0.11) (50.58± 0.15) (50.85± 0.14) (48.16± 0.20)

Lrob-d 62.77± 0.58 73.09± 0.34 68.04± 0.47 10.53± 0.76 12.04± 0.89 9.66± 1.15
(teacher val) (77.18± 0.15) (80.03± 0.22) (75.36± 0.25) (33.69± 0.14) (34.08± 0.12) (37.10± 0.15)

Lrob-d 75.10± 0.36 75.10± 0.50 74.16± 0.34 10.74± 0.44 11.95± 0.69 12.87± 0.81
(one-hot val) (79.27± 0.13) (79.07± 0.20) (78.11± 0.14 (30.36± 0.39) (31.00± 0.16) (31.62± 0.34



APPENDIX B. DEFERRED PROOFS AND DISCUSSION FOR CHAPTER 3 112

Table B.5: Results for AdaAlpha and AdaMargin baselines for different teachers under
self-distillation. For all CIFAR datasets, self-distillation is done from ResNet56 → ResNet56.
For TinyImageNet, self-distillation is done from ResNet18→ ResNet18. Worst-class accuracy
shown above (or worst-10 accuracy for TinyImageNet-LT), and average accuracy is shown
in parentheses below. The temperature hyperparameter was tuned to maximize worst-class
accuracy on the held-out validation set. Mean and standard error are reported over 5 repeats
for all datasets.

CIFAR-10 Teacher Obj. CIFAR-100 Teacher Obj. TinyImageNet Teacher Obj.
Lstd Lrob Lstd Lrob Lstd Lrob

Ada 88.33± 0.14 89.96± 0.44 43.50± 0.62 45.59± 0.82 11.11± 1.29 16.58± 1.67
Alpha (94.31± 0.01) (93.97± 0.07) 73.96± 0.09 71.42± 0.14 61.13± 0.09 56.84± 0.15

Ada 87.36 ±0.06 90.37±0.26 43.91 ±1.11 47.78 ±0.96 18.17 ±3.89 17.84 ±1.77

Margin (94.25± 0.02) (94.02± 0.12) (73.58± 0.11) (70.92± 0.09) (61.3± 0.28) (55.77± 0.32)

CIFAR-10-LT Teacher Obj. CIFAR-100-LT Teacher Obj.
Lstd Lbal Lrob Lstd Lbal Lrob

Ada 41.90± 0.44 66.23± 0.39 71.17± 0.32 0.00± 0.00 1.46± 0.61 9.15± 0.54
Alpha (71.67± 0.08) (77.87± 0.16) (79.66± 0.13) (42.52± 0.08) (45.44± 0.14) (45.64± 0.11)

Ada 47.52 ±0.95 66.74 ±0.35 70.33 ±0.50 0.00 ±0.00 0.00 ±0.00 12.46 ±0.36

Margin (72.69± 0.24) (78.20± 0.09) (78.87± 0.12) (31.26± 0.21) (34.06± 0.12) (42.90± 0.07)

TinyImageNet-LT Teacher Obj.
Lstd Lbal Lrob

Ada 0.00± 0.00 0.00± 0.00 0.00± 0.00
Alpha (28.14± 0.12) (0.50± 0.00) (0.50± 0.00)

Ada 0.00± 0.00 0.00± 0.00 0.41± 0.17
Margin (9.18± 0.09) (7.92± 0.10) (23.08± 0.15)
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Table B.6: Results from comparison to group DRO (Algorithm 1 in Sagawa et al. [2020a])
without distillation. “No vali” uses the training set to update group Lagrange multipliers, as
done originally by Sagawa et al. [2020a]. “With vali” uses the validation set to compute group
Lagrange multipliers as done in all other experiments in our paper. Worst-class accuracy
is shown above, and balanced accuracy is shown in parentheses below. Mean and standard
error are shown over 5 repeats.

CIFAR-10 group DRO CIFAR-100 group DRO TinyImageNet group DRO
No vali With vali No vali With vali No vali With vali

86.65 ±0.49 89.32 ±0.21 40.35 ±1.18 43.89 ±1.12 0.00 ±0.00 9.17 ±1.55

(93.61± 0.09) (92.34± 0.07) 70.25± 0.17 65.18± 0.08 (6.55± 0.41) (47.67± 0.22)

CIFAR-10-LT group DRO CIFAR-100-LT group DRO TinyImageNet-LT group DRO
No vali With vali No vali With vali No vali With vali

51.59 ±2.49 59.93 ±0.59 0.00 ±0.00 0.19 ±0.17 0.00 ±0.00 0.00 ±0.00

(71.94± 0.75) (74.39± 0.17) (39.81± 0.23) (40.47± 0.17) (9.79± 0.40) (22.49± 0.10)
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Appendix C

Deferred Proofs and Discussion for
Chapter 4

C.1 Proofs
Lemma 2. Let (Ω,F) be a measurable space with a regular conditional probability property,
and let X : Ω→ RD, Z : Ω→ R be F-measurable random variables. Suppose Pj and Pk are
σ-finite probability measures on (Ω,F), where Pj denotes the conditional probability measure
of X given that Z = j, and Pk denote the same for Z = k, and Pj is absolutely continuous
with respect to Pk. Let f : RD × R→ R be defined as in Section 4.3, and f(x, z) ≥ 0 for all
x ∈ RD, z ∈ R. If the function f satisfies monotonicity in the second argument such that
f(x, j) ≤ f(x, k) for all x ∈ RD and for j ≤ k, and if the Radon Nikodym derivative dPj

dPk
is

bounded almost everywhere with respect to Pk by a finite constant C > 0, then

E[f(X,Z)|Z = j] ≤ CE[f(X,Z)|Z = k].

Proof. Under Lemma 2’s assumptions,

E[f(X,Z)|Z = j] =

∫
RD

f(x, j)dPj

≤
∫
RD

f(x, k)dPj

=

∫
RD

f(x, k)
dPj

dPk

dPk

≤ C

∫
RD

f(x, k)dPk

= CE[f(X,Z)|Z = k].

The second inequality follows from monotonicity, and the third by the Radon Nikodym
theorem since Pj << Pk.
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Lemma 3. Let f : X × Z → R, where X ⊆ RD, Z ⊆ R. Assume that X ,Z are both finite,
with X ∈ X , Z ∈ Z. Let f̃ be the projection of f onto the set of functions over X × Z that
are monotonic with respect to Z such that for j ≤ k, f(x, j) ≤ f(x, k). For z(i) ∈ Z, let
z(1) ≤ z(2) ≤ ... ≤ z(|Z|). Define the average statistical parity violation:

Rf
△
=

|Z|∑
i=1

E[f(X,Z)|Z = z(i)]− E[f(X,Z)|Z = z(i+1)]

|Z|

Then Rf̃ ≤ Rf .

Proof. Let f̃ : X × Z → R be the projection of f onto the class of functions monotonic in
the second argument, defined as follows:

f̃ = argmin
f ′

||f − f ′||

s.t. f ′(x, j) ≤ f ′(x, k) ∀j, k ∈ Z; j ≤ k
(C.1)

where
||f − f ′||2 =

∑
x∈X ,z∈Z

(f(x, z)− f ′(x, z))2.

The projection f̃ can be computed in O(|X ||Z|) time using the pool-adjacent-violators
algorithm from isotonic regression [Ayer et al., 1955, JB, 1964], since a one dimensional
projection can be done independently in O(|Z|) time for each x ∈ X .

Rf is a telescoping sum:

Rf =
E[f(X,Z)|Z = z(1)]− E[f(X,Z)|Z = z(|Z|)]

|Z|

For discrete X and Z, we have

E[f(X,Z)|Z = j] =
∑
x∈X

f(x, j)P (X = x|Z = j)

which implies

Rf =
1

|Z|
∑
x∈X

(
f(x, z(1))P (X = x|Z = z(1))

−f(x, z(|Z|))P (X = x|Z = z(|Z|))

)
.

We now show that f̃(x, z(1)) ≤ f(x, z(1)), and f̃(x, z(|Z|)) ≥ f(x, z(|Z|)):
Suppose f̃(x, z(1)) > f(x, z(1)). Then we can set f̃ ′(x, z(1)) = f(x, z(1)) without violating the
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monotonicity constraints, and ||f − f̃ ′|| < ||f − f̃ ||, which contradicts that f̃ solves (C.1). A
similar argument can be made for z(|Z|).

Since f̃(x, z(1)) ≤ f(x, z(1)) and
f̃(x, z(|Z|)) ≥ f(x, z(|Z|)), we have

f(x, z(1))P (X = x|Z = z(1))

− f(x, z(|Z|))P (X = x|Z = z(|Z|))

≥ f̃(x, z(1))P (X = x|Z = z(1))

− f̃(x, z(|Z|))P (X = x|Z = z(|Z|))

Since the above inequality is true for all x, it holds for the sum over x ∈ X , therefore
Rf̃ ≤ Rf .

Lemma 4. Suppose X is a continuous (or with a straightforward extension, discrete) random
variable, and let S be a nonempty set such that for all x ∈ S, the joint probability density
values pX,Ŷ |Z=z(x, 1) > 0 for z = j, k. Suppose we have monotonicity where f(x, j) ≤ f(x, k)

for j ≤ k for all x ∈ S. For a binary classifier this implies P (Ŷ = 1|X = x, Z = j) ≤ P (Ŷ =
1|X = x, Z = k). Then we can bound one-sided statistical parity as follows:

P (Ŷ = 1|Z = j)

P (Ŷ = 1|Z = k)
≤ inf

x∈S

pX|Z=j(x)pX|Ŷ=1,Z=k(x)

pX|Z=k(x)pX|Ŷ=1,Z=j(x)

Proof. Fix x ∈ S. By Bayes’ theorem and monotonicity,

P (Ŷ = 1|Z = j)

= P (Ŷ = 1|X = x, Z = j)
pX|Z=j(x)

pX|Ŷ=1,Z=j(x)

≤ P (Ŷ = 1|X = x, Z = k)
pX|Z=j(x)

pX|Ŷ=1,Z=j(x)

= P (Ŷ = 1|Z = k)
pX|Ŷ=1,Z=k(x)

pX|Z=k(x)

pX|Z=j(x)

pX|Ŷ=1,Z=j(x)

Since the inequality holds for all x ∈ S, the tightest bound holds for the infimum.

Lemma 5. Let Y ∈ {0, 1} be a random variable representing the target. Let S be a nonempty
set such that for all x ∈ S, the following joint probability density values are non-zero for
z = j, k: pX,Y,Ŷ |Z=z(x, 1, 1) > 0 and pX,Y |Ŷ=1,Z=z(x, 1) > 0. Then,

P (Ŷ = 1|Y = 1, Z = j)

P (Ŷ = 1|Y = 1, Z = k)
≤ inf

x∈S

cj(x)

ck(x)
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where cz(x) =
pX|Z=z(x)P (Y = 1|Ŷ = 1, Z = z)

pX|Ŷ=1,Z=z(x)P (Y = 1|Z = z)

Proof. Let S be a nonempty set such that for all x ∈ S, the following joint probability density
values are non-zero for z = j, k:

pX,Y,Ŷ |Z=z(x, 1, 1) > 0 and pX,Y |Ŷ=1,Z=z(x, 1) > 0
Fix x ∈ S.
Suppose we have a monotonic binary classifier, where P (Ŷ = 1|X = x, Z = j) ≤ P (Ŷ =

1|X = x, Z = k) for j ≤ k.
By Bayes’ theorem, we have

P (Y = 1|Z = j)P (Ŷ = 1|Y = 1, Z = j)pX|Y=1,Ŷ=1,Z=j(x)

= pX|Z=j(x)P (Ŷ = 1|X = x, Z = j)P (Y = 1|X = x, Ŷ = 1, Z = j)

and pX|Ŷ=1,Z=j(x)P (Y = 1|X = x, Ŷ = 1, Z = j)

= pX|Y=1,Ŷ=1,Z=j(x)P (Y = 1|Ŷ = 1, Z = j)

Let cz(x) =
pX|Z=z(x)P (Y=1|Ŷ=1,Z=z)

pX|Y =1,Z=z(x)P (Y=1|Z=z)
. This is well defined for x ∈ S.

Combining both applications of Bayes’ theorem and the monotonicity assumption:

P (Ŷ = 1 |Y = 1, Z = j)

=
pX|Z=j(x)P (Y = 1|X = x, Ŷ = 1, Z = j)

P (Y = 1|Z = j)pX|Y=1,Ŷ=1,Z=j(x)

∗ P (Ŷ = 1|X = x, Z = j)

=
pX|Z=j(x)P (Y = 1|Ŷ = 1, Z = j)

P (Y = 1|Z = j)pX|Ŷ=1,Z=j(x)

∗ P (Ŷ = 1|X = x, Z = j)

= cj(x)P (Ŷ = 1|X = x, Z = j)

≤ cj(x)P (Ŷ = 1|X = x, Z = k)

=
cj(x)

ck(x)
P (Ŷ = 1|Y = 1, Z = k)

Since this holds for all x ∈ S, it holds for the infimum.

C.2 Counterexamples
To supplement Section 4.6, we give various counterexamples showing that certain relations
between statistical parity and monotonicity do not hold.
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Monotonicity does not imply statistical parity.

We show that monotonic function f may violate one-sided statistical parity by an example
that illustrates Simpson’s paradox. Suppose X ∈ {0, 1}, where X = 1 means a law student
passed the bar and X = 0 means the student did not. Let Z ∈ {0, 1, 2, 3} be the poverty level
of the student, where Z = 3 represents the highest poverty level. Suppose f(X,Z), or the
admissions score, is monotonic in Z and takes the values shown in Fig. C.1. Suppose that
the distributions P (X = x|Z = z) are given by figure C.2. Then the maximum one-sided
statistical parity violation is

E[f(X,Z)|Z = 1]− E[f(X,Z)|Z = 2]

= f(0, 1)P (X = 0|Z = 1)− f(0, 2)P (X = 0|Z = 2)

− f(1, 1)P (X = 0|Z = 1) + f(1, 2)P (X = 0|Z = 2)

= 1.5(0.9)− 1.5(0.1)

= 1.2.

Thus, there is a positive one-sided satistical parity violation even though f(X,Z) is monotonic
in Z. This violation comes from the fact that even though f(0, 1) ≤ f(0, 2), this is outweighed
by the fact that P (X = 0|Z = 1) ≥ P (X = 1|Z = 2). This illustrates that for a monotonic
function, the statistical parity violation depends on the conditional probabilities P (X =
x|Z = z), and indeed Lemma 2 bounds the one-sided statistcal parity violation by a ratio of
conditional probabilities.
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Figure C.1: Monotonic admissions scores for Counterexamples C.2 and C.2.

Statistical Parity does not imply a bound on monotonicity violations.

We show that the converse of Lemma 2 does not hold: a model that satisfies statistical parity
may have arbitrarily high monotonicity violations regardless of the likeihood ratio C. Suppose
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Figure C.2: Distribution of X,Z for Counterexamples C.2 and C.2. The displayed values are
P (X = x|Z = z) for X ∈ {0, 1} and Z ∈ {0, 1, 2, 3}.

the distribution of men and women for a given height x is equal for all heights, such that
C = 1. Suppose that statistical parity is satisfied such that men and women were equally likely
to be selected for a sports team on average.Statistical parity could hold if the model accepted
all men over some height h that splits the population in half (say h = 5′8′′), and accepted all
women under height h. But then for a height less than h, P (Ŷ = 1|Z = female) = 0 while
P (Ŷ = 1|Z = male) = 1, and for height over h, P (Ŷ = 1|Z = male) = 0 while P (Ŷ = 1|G =
female) = 1. Therefore, neither a positive nor a negative monotonicity constraint holds: there
is no constant C ′ > 0 such that P (Ŷ = 1|X = x, Z = male) ≤ C ′P (Ŷ = 1|X = x, Z = female)
or P (Ŷ = 1|X = x, Z = female) ≥ C ′P (Ŷ = 1|X = x, Z = male) for all x.

Monotonic projection can be more unfair in the worst case.

While Lemma 3 shows that projecting a function onto monotonicity constraints cannot
increase the average one-sided statistical parity violation, it can increase violations in the
worst case. Consider a continuation of the example from C.2, but this time let f(X,Z)
be defined by Fig. C.3, and let f̃(X,Z) be defined by Fig. C.1. In this case, Fig. C.1 is
the monotonic projection of Fig. C.3. Then the worst case statistical parity violation for
the monotonic projection f̃ is higher than the worst case statistical parity violation for the
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non-monotonic f :

E[f̃(X,Z)|Z = 1]− E[f̃(X,Z)|Z = 2]

= 1.5(0.9)− 1.5(0.9)

= 1.2

E[f(X,Z)|Z = 1]− E[f(X,Z)|Z = 2]

= 1.0(0.9)− 0.5(0.9)

= 0.85

For a given pair j, k, as long as f̃(x, j) ≤ f(x, j) and f̃(x, k) ≥ f(x, k), then the violation

Rf (j, k) = E[f(X,Z)|Z = j]− E[f(X,Z)|Z = k]

will not be worse for the monotonic projection f̃ : Rf̃ (j, k) ≤ Rf (j, k). Lemma 3 holds because
the inequalities f̃(x, j) ≤ f(x, j) and f̃(x, k) ≥ f(x, k) hold for j = z(1) and k = z(|Z|), but
this counterexample exists because those inequalities do not necessarily hold for any other
pairs j, k in between.
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Figure C.3: Nonmonotonic admissions scores for Counterexample C.2.

C.3 Tradeoff between likelihood ratios in Lemma 4
The bound in Lemma 4 contains two likelihood ratios: pX|Z=j(x)

pX|Z=k(x)
and

pX|Ŷ =1,Z=k(x)

pX|Ŷ =1,Z=j(x)
. When the

first likelihood ratio is low, the second inverse likelihood ratio may be high. For example,
suppose Z is an individual’s poverty level (j being low poverty and k being high poverty), X
is the number of extracurricular activities the individual is involved in, and Ŷ = 1 means the
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individual is accepted into university. Suppose all individuals with above a certain number of
extracurricular activities is accepted. Then the first likelihood ratio could be low when the
number of extracurricular activities X is low. Similarly, the likelihood that a high poverty
individual accepted into university has a low number of extra curricular activities is probably
also higher than the likelihood that a low poverty individual accepted into university has a
low number of extracurricular activities. This implies that the second inverse likelihood ratio
would be high, thus trading off with the first likelihood ratio.

C.4 Further Analysis of Law School Admissions
Experiments

Figure C.4 shows the distribution of the LSAT scores, undergraduate GPA, and bar exam
outcomes. Examples where the bar exam outcome was missing were omitted in our experi-
ments.

C.5 Further Analysis of Funding Proposals Experiments
Figure C.5 gives a histogram of the four different poverty levels, which are ordinal with level
3 being the most impoverished.

Figure C.6 (top) shows the training examples’ average number of exciting projects, where
the error bars show the standard error of the mean. The poverty level feature ranges from
0 to 3, with 0 denoting low poverty and 3 denoting the highest poverty level. For ease of
visualization, we show the quartiles of the students-reached feature.

Figure C.6 (middle) shows the predicted probability that a project is exciting for a GAM
model without the proposed ethical constraints. The model gives lower scores to poverty
level 2 (poorer schools) than to poverty level 1 (richer schools) for every quartile of students
reached. The model also gives higher scores for project that reach 30-100 students tahn to
projects that reach 100+ students.

Figure C.6 (bottom) shows that training with an ethical monotonicity shape constraint
works: at the same poverty level, projects that affect more students are given a higher score.
For the same quartile of students reached, the score also does not decrease for higher poverty
levels.
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Figure C.4: Distribution over the full Law School Admissions dataset of undergraduate GPA
and LSAT score students for students that passed the bar exam (top) and students that failed
the bar exam (bottom). The dataset consists of 94.86% students that passed the bar exam.
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Figure C.5: Histogram of the poverty level feature from the Funding Proposals dataset. 0
represents lowest poverty and 3 represents highest poverty.
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Funding Proposals: Training Examples

Funding Proposals: Unconstrained Model Predictions

Funding Proposals: Monotonic Model Predictions

Figure C.6: (top) Plot of the observed rate of exciting projects (mean number of exciting
projects) as a function of each project’s poverty level and number of students reached. Error
bars show the standard deviation. (middle) Unconstrained model predictions. (bottom)
Shape-constrained model predictions.
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Part II

Metrics in Multi-Stakeholder Systems
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Chapter 5

On Counterfactual Metrics for Social
Welfare: Incentives, Ranking, and
Information Asymmetry

5.1 Introduction
As machine learning (ML) is increasingly deployed in dynamic social systems with asymmetries
in power and information between stakeholders, a core challenge is that the metrics that
are optimized do not always align with social welfare. From education to healthcare to
recommender systems, it has been repeatedly shown that the impact of the ability of modern
ML to optimize arbitrarily complex objectives is often limited by the difficulty in choosing
what to optimize [Liu et al., 2023, McNee et al., 2006, Obermeyer et al., 2019].

One particularly consequential example of this gap is the incentive misalignment that
occurs when average treated outcome measures are used as accountability and ranking metrics.
This has led to measurable societal harm when those being ranked may selectively choose
whom to treat. As an illustrative example, Dranove et al. [2003] showed that the publication
of hospital mortality rate metrics by the New York Health Department led to dramatically
worse outcomes for severely ill patients. Specifically, hospitals had an incentive to selectively
treat the healthiest patients, rather than those who would benefit most from treatment.
Today, the Centers for Medicare and Medicaid Services (CMS) continues to invest billions of
dollars in the development of quality metrics [Wadhera et al., 2020, Casalino et al., 2016]. In
addition to determining direct provider compensation [Institute, 2022], these metrics also feed
into large scale ranking systems such as the US News and World Report and the LeapFrog
Hospital Safety Score [Rosenberg, 2013, Health and Agency, 2022]. At the same time, studies
have continued to question the relationship between these metrics and patient outcomes [see,
e.g., Glance et al., 2021, Gonzalez and Ghaferi, 2014, Ryan et al., 2009, Hwang et al., 2014,
Jha et al., 2008, Smith et al., 2017].

In this work, we directly study the incentive misalignment when average treated outcomes
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are used as quality metrics. To mitigate this misalignment, we propose alternative metrics that
have a foundation in causal inference. Specifically, given counterfactual estimates of patient
outcomes, we outline effective usage of these estimates and discuss prevailing limitations
when providers may engage in strategic behavior.

More generally, our analysis applies to any environment where metrics are learned from
data over which an agent controls treatment selection. We refer to healthcare as a running
example where these effects are well documented. However, other domains subject to this
phenomenon include education, where student outcome metrics affect school rankings, funding,
and accreditation [Koretz, 2017]; and online ranking platforms for commercial businesses like
restaurants that may exercise some screening over their customers.

To study the welfare effects that arise from this dynamic interaction between quality
metrics and hospitals, we employ a principal-agent model where the principal chooses a quality
metric as a reward function, and the agent responds by optimizing this reward function to
the best of their private abilities and information. To analyze the welfare effects of metric
choices, we apply a causal framework similar to that of policy learning, where the goal is
to allocate treatments that maximize the total positive effects over a population relative to
treating no one [Manski, 2008]. Our key ingredient is that the principal only has indirect
control of the implemented policy—they may design a metric that shapes an agent’s reward
and hence behavior but cannot directly choose an agent’s policy.

Contributions. We show that average treated outcome metrics incur unbounded regret
by this definition of welfare, and show that regret can be reduced by (i) accounting for
counterfactual untreated outcomes and (ii) considering total welfare instead of average welfare
among treated patients. Applying these two simple insights yields an optimal functional
form for a quality measure that achieves zero regret as long as the principal can learn the
mean conditional untreated potential outcomes. We refer to this as rewarding the total
treatment effect. Connecting the proposed counterfactual metric to practice, we discuss two
issues that arise when operationalizing the metric in real applications. First, we study the
complications that arise when the total treatment effect is used to rank different agents
that might serve different treatment populations. Second, we consider practical issues of
information asymmetry, where the agent might observe more features about each patient
than the principal. Even an unbiased estimate of the counterfactual untreated outcome is not
sufficient to maximize patient welfare when information asymmetries remain. In addition to
giving theoretical regret bounds, we also empirically show that it is not always better for a
principal to condition on all known features, as this can amplify regret. Our model yields new
connections between information asymmetry in the principal-agent model and unobserved
heterogeneity in causal inference.

5.2 Related work
Our work combines technical structure from policy learning and contract theory to analyze
misalignments in accountability metrics, which have long been critiqued in the social sciences.
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Policy learning. The evaluation of treatment policies by their causal effects is well
established in policy evaluation and policy learning [Manski, 2008, Hirano and Porter, 2009,
Stoye, 2009, Athey and Wager, 2021]. We directly apply the same measures of utility and
regret in this work. Building on these measures, we consider a setting where a principal
(regulatory agency) can only indirectly affect the policy through measuring an agent (hospital).
We also note that our formulation is not the only way in which strategic behavior may arise.
For example, Sahoo and Wager [2022] model patients’ strategic responses when the hospital
learns a policy with limited treatment capacity. Combining this model with ours would
produce an interesting pipeline analysis.

Contract theory. The principal-agent model is well established in economics as a way to
model incentives and equilibrium dynamics when a principal sets a contract with rewards as
a function of actions, and an agent decides which action to take based on private information
and costs [Laffont and Martimort, 2009, Gibbons et al., 2013, Milgrom and Roberts, 1992].
Contract theory provides a structure to analyze moral hazard, where the structure of the
contract and information asymmetry may lead to misalignment between the principal and
agents’ incentives [Arrow, 1963, Holmstrom and Milgrom, 1991]. More recently, there is a
growing recognition of the importance of the algorithmic and statistical aspects of contract
theory [e.g., Carroll, 2015, Tetenov, 2016, Spiess, 2018, Dütting et al., 2019, Dütting et al.,
2020, Bates et al., 2022, Alon et al., 2022]. Our work contributes to this line of thought,
linking moral hazard from contract theory with causal inference, and showing how incentive
and statistical considerations jointly guide the choice of accountability metrics.

Specifically, we use this framework to analyze misalignments under a particular form
of action and information asymmetry where the agent controls treatment selection, and
might know more about each treatment unit than the principal. Lazzarini et al. [2022]
applied contract theory to analyze why regulatory agencies might lean towards outcome-based
contracts (such as the average treated outcome) rather than counterfactual assessment. Our
model differs in both goal and setup: while they model the agent’s effort levels, our model
considers welfare effects when the agent has general control over all treatment assignments.

Strategic classification. The framework of performative prediction describes the distribu-
tion shifts and distortion in validity that result from agent strategy in response to ML-driven
decision making [Perdomo et al., 2020, Hardt et al., 2016a]. Related lines of work in strategic
classification have considered whether classifiers incentivize agent improvement [Ahmadi
et al., 2022, Kleinberg and Raghavan, 2020, Bechavod et al., 2020, Haghtalab et al., 2020],
drawing connections to causality [Miller et al., 2020, Shavit et al., 2020]. We consider a
specific strategic structure to improve metrics when agents manipulate treatment policies.

Accountability, auditing, and measurement. Historically, the mismatch between
accountability metrics and welfare has been well documented across domains, from monetary
policy to education [Goodhart, 1984, Campbell, 1979, Muller, 2019, Koretz, 2017, Mau, 2019].
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Extensive work in the social sciences has critically examined accountability and auditing
practices [Power, 1994, Strathern, 1997, Hoskin, 1996, Rothstein, 2008]. Our work builds
on these qualitative insights by modeling a particular misalignment that occurs when the
measured party has selection power over treatment allocations, also known as “creaming”
[Lacireno-Paquet et al., 2002]. Measurement theory has also given both qualitative and
statistical tools for understanding the validity of measurements [Bandalos, 2018], with recent
extensions to fair ML [Jacobs and Wallach, 2021]. Guerdan et al. [2023] apply counterfactual
modeling to estimate the measurement error when proxy outcomes are used to guide treatment
decisions. Complementing this focus on measurement validity, we model the treatment
incentives induced when measurements are used to reward agents, and study the resulting
welfare effects.

5.3 Principal-Agent Model
To analyze the incentives and welfare effects that arise from quality metrics, we define a
principal-agent model where we will refer to the organization that collects the metrics and
pays or ranks the providers as the principal, and the healthcare providers as agents. First,
the principal specifies a function for rewarding the agents based on their actions and the
observed outcomes. In response, the agent allocates treatment decisions with knowledge of
this reward function. Our focus is on designing reward functions with high utility for the
principal, which corresponds to social welfare.

Formal model

We suppose that a single agent has access to independently and identically distributed
samples of characteristics Xi ∈ X for i ∈ {1, ..., n} treatment units (referred to generally as
the treatment population). The agent assigns a binary treatment according to treatment rule
π : X → [0, 1], and we use T π

i ∈ {0, 1} to denote a Bernoulli random variable indicating the
realizations of the treatment rule: π(Xi) = P (T π

i = 1|Xi). This framework allows for T π to
be either stochastic or deterministic.

To model patient outcomes from treatment, we apply the potential outcomes framework
[Neyman, 1923, Rubin, 1974]. Let Yi(t) be the potential outcome if the patient had received
treatment t ∈ {0, 1}. Let Yi ∈ R denote the observed outcome under treatment assignments
Yi = Yi(T

π
i ) under the Stable Unit Treatment Value Assumption (SUTVA) [Rubin, 1980],

which implies the consistency and non-interference assumptions. Let τ(X) = E[Yi(1) −
Yi(0)|X] denote the conditional average treatment effect given covariates X, and let µt(X) =
E[Yi(t)|X] denote the conditional mean of the potential outcome under treatment t.

We suppose that the principal observes {Xi, T
π
i }ni=1 (also denoted X,Tπ) for all units,

and Yi for all units for which T π
i = 1 (denoted Y). The principal must then choose a reward

function w : X n × {0, 1}n × Rn → R with which to reward the agent.
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Turning to our behavioral assumption, we consider an agent that is risk neutral and
maximizes their expected reward. That is, the agent chooses the treatment rule π from their
set of possible treatment rules Π that maximizes E[w(X,Tπ,Y)]. Let

πw ∈ argmax
π∈Π

E[w(X,Tπ,Y)]

denote this best response. In maximizing this expected reward, we assume that the agent
knows µt(x) for all x ∈ X and t ∈ {0, 1}. Note that there is no explicit model of the agent’s
cost here to keep the focus on incentives induced by accountability metrics alone, and all
budget constraints are contained in the agent’s feasible set of treatment rules Π. We further
discuss these assumptions and possible extensions in the Appendix.

Total welfare and regret

Following existing work in policy evaluation [Manski, 2008], for a given treatment rule π,
we define the total effect of treatment on welfare as V (π) = E[Yi(T

π
i )− Yi(0)]. V (π) is the

utility of treatment rule π relative to the alternative outcomes under no treatment [Manski,
2008, Athey and Wager, 2021]. Thus, maximizing V (π) also maximizes total welfare E[Y ]
compared to treating no one. As also done in policy learning [Athey and Wager, 2021], to
evaluate different quality measures chosen by the principal, we define the regret for a given
policy π compared to the best feasible policy in Π to be R(π) = maxπ̃∈Π V (π̃)− V (π). We
compare different choices of quality measures w by analyzing the effect on total welfare for
the induced treatment rule π. In other words, the principal’s goal is to choose a reward
function w that leads the agent to best respond with a treatment rule with minimal regret,
R(πw).

5.4 Comparisons of Quality Metrics
Using a principal-agent model, we formally compare different choices of quality metrics w
by analyzing the regret for the induced treatment rule π given by the agent’s best response.
Starting with the status quo of rewarding the average treated outcome, we show that this
incurs unbounded regret. We reduce this to two main problems with the metric: (i) lack of
accounting for untreated outcomes, and (ii) rewarding an average effect instead of a total
effect. Addressing each of these in turn, we show that the regret for rewarding the average
treatment effect on the treated (ATT) is bounded but can still be high, and that rewarding
the total treatment effect finally achieves zero regret.

Status quo: average treated outcome

We begin by analyzing regret under the current common quality measure that rewards the
average treated outcome, as done by the mortality measures in the New York and Philidelphia
health departments in the 1990s analyzed by [Dranove et al., 2003], and in many CMS quality
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measures [Institute, 2022]. Lazzarini et al. [2022] also refers to these as “outcome contracts.”
The reward function for the average treated outcome (ATO) takes the following form:

Reward Function 1 (ATO).

wATO(X,T
π,Y) =

{∑n
i=1 YiT

π
i∑n

i=1 T
π
i

∑n
i=1 T

π
i >0,

0 otherwise.

The agent’s unconstrained best response is

πwATO(x) = 1(x ∈ argmax
x

µ1(x) and µ1(x) > 0).

Proposition 2 (ATO Regret). If the conditional mean untreated potential outcomes µ0(x)
are unbounded, then the regret for the reward function wATO may be arbitrarily large.

Intuitively, there are at least two failure modes that can lead to this unbounded regret.
First, this reward leads the agent to ignore higher treatment effects of the patients with a
lower treated outcome, such as sicker patients with higher mortality probability but more
benefit from surgery. This matches the findings from Dranove et al. [2003]. Second, wATO

rewards agents that treat the patients with a higher treated outcome, even though treatment
actually harms those patients, such as healthier patients who might incur more risks or side
effects from treatment.

More broadly, there are two main problems with the construction of the ATO metric that
lead to this unbounded regret. First, the lack of accounting for counterfactual outcomes leads
to the two failure modes above. Second, the measure of an average outcome instead of a total
outcome means that the agent will only treat the single patient with the covariate value x
that maximizes µ1. We next analyze several reasonable modifications to reward functions
that address each of these problems.

Accounting for counterfactuals

When the principal operates with full information of the agent’s selection covariates Xi,
then regret can be reduced if they also have access to an unbiased estimator of the mean
conditional untreated potential outcome.

Assumption 1. The principal accesses an estimator µ̂0(x) which is unbiased: E[µ̂0(x)] =
µ0(x) ∀x ∈ X .

In general, obtaining an unbiased estimator µ̂0(x) can be difficult, but circumstances
under which causal inference can be reliably conducted are well understood [Hernan and
Robins, 2020]. As a concrete example, suppose the principal has access to an auxiliary data
source {X ′

j, T
′
j , Y

′
j }mj=1, with outcomes for untreated patients with T ′

j = 0, collected from
clinical trials or observational data. In addition to standard assumptions for identification of
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µ′
0(x) = E[Y ′

j (0)|X ′
j = x], the principal may use this data if the distribution of the conditional

untreated potential outcome is also the same, µ′
0(x) = µ0(x), and the support of X ′

j covers
the support of Xi. The difficulty of obtaining such a dataset is lessened by the fact that
the principal does not require identification of the treated potential outcome µ′

1(x) or the
conditional average treatment effect τ ′(x), so the treatment need not be the same. Access
to additional scientific knowledge (in the form of, e.g., a more intricate structural model
or functional form assumptions) can also aid in the estimation of µ0(x). Medical research
continues to develop patient risk scores using combinations of such methods [Sullivan et al.,
2004, Jones and Cossart, 1999] and evaluate their validity [Kaafarani et al., 2011, Janssens,
2019].

Under the perhaps optimistic assumption of access to an unbiased estimator µ̂0(x), this
work focuses on effective ways for the principal to apply this estimator. It turns out that
even given this unbiased estimate, principal-agent incentive misalignment can still occur, and
there are still pitfalls with its downstream usage. We begin by showing how to effectively
incorporate this estimator into the reward function. In later sections, we discuss effective
usage in a ranking context and regret bounds under information asymmetry.

Given µ̂0(x), the principal can modify wATO by directly subtracting an estimate of the un-
treated potential outcomes, and thus reward the average treatment effect on the treated (ATT):

Reward Function 2 (ATT).

wATT(X,T
π,Y) =

{∑n
i=1(Yi−µ̂0(Xi))T

π
i∑n

i=1 T
π
i

∑n
i=1 T

π
i >0,

0 otherwise.

The agent’s unconstrained best response is

πwATT(x) = 1(x ∈ argmax
x

τ(x) and τ(x) > 0).

The resulting regret is bounded, but still not zero.

Proposition 3 (ATT Regret). If µ̂0(x) is unbiased and π is unconstrained, then the regret
for the reward function wATT is upper bounded as
R(πwATT) ≤ maxπ∈Π V (π).

Now that the reward function accounts for the counterfactual untreated outcome, Propo-
sition 3 shows that the regret cannot exceed the maximum utility. This is notably not true of
the wATO, where the regret can be arbitrarily high due to the agent sometimes treating those
with a negative treatment effect. Still, while accounting for untreated potential outcomes
avoids treating those with a negative treatment effect, the ATT as a reward function still
suffers from misalignment with total welfare due to the fact that it rewards the average effect
rather than the total effect. This means that in the best response, the agent only treats
patients with the single value x with maximum treatment effect τ(x).



CHAPTER 5. ON COUNTERFACTUAL METRICS FOR SOCIAL WELFARE:
INCENTIVES, RANKING, AND INFORMATION ASYMMETRY 133

Rewarding total effects

To expand the agent’s treatments to cover all individuals who would benefit, we modify the
above reward function by simply removing the denominator, thus rewarding a total effect
instead of an average effect. This yields a reward function for the total treatment effect (TT).

Reward Function 3 (TT).

wTT(X,T
π,Y) =

n∑
i=1

(Yi − µ̂0(Xi))T
π
i

The agent’s unconstrained best response is

πwTT(x) = 1(τ(x) > 0),

which yields zero regret.

Proposition 4 (TT Regret). If µ̂0(x) is unbiased, then the regret is R(πwTT) = 0.

The regret is zero regardless of the feasible set Π. Thus, with two modifications to the
status quo wATO, a quality measure wTT can be constructed that is aligned with total welfare,
as long as the principal has access to an unbiased estimator µ̂0(x).

5.5 Ranking With Multiple Agents
In Section 5.4 we’ve shown that rewarding the total treatment effect leads the agent to
maximize total welfare. While this theory applies cleanly in isolation, in real systems, quality
measures are often further employed to rank hospitals [Rosenberg, 2013, Health and Agency,
2022, Smith et al., 2017]. It turns out that even wTT can exhibit problems as a ranking
measure when different hospitals have different treatment population sizes and distributions.
To apply reward functions as ranking measures, we show that the total treatment effect can
be modified to a more general form that allows for reweighting by covariates X while still
preserving incentive alignment. By reweighting the reward function relative to a reference
covariate distribution, we show that the resulting quality measure leads to better hospitals
receiving better rankings.

Notationally, discussion of ranking requires extending our setting to account for multiple
agents. Suppose each agent k ∈ {1, ..., K} observes its own sample of nk patients with
covariates drawn i.i.d. from distribution PXk with the same support X . Each agent has
different treatment effects, denoted by µk

t (x) and τ k(x). For rankings to be meaningful, we
assume that the untreated potential outcome is the same for all k: µk

0(x) = µ0(x) for all k.
In short, one provider not treating a patient is equivalent to another provider not treating
the same patient. Extending the principal’s action space to the multi-agent ranking setting,
the principal publishes score functions {wk}Kk=1, and each agent k best responds individually
with their own treatment policy πk. The agents are then ranked from highest to lowest score
function values. We expand this notation in the Appendix.
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Defining desirable ranking properties

For any regulatory agency or potential patient that would utilize these rankings, a clear
desirable property would be that better hospitals should be ranked higher. From the agents’
perspectives, this property may also make the scores feel more “fair.” We formally define this
property with two different degrees of strictness for the meaning of “better.”

First, we define “better” as an agent having uniformly higher treatment effects for all
possible covariate values x, such that any patient would be better off being treated by this
agent.

Definition 3 (Uniform Rank Preservation). A set of score functions {wk}Kk=1 preserves
treatment effect ordering uniformly over X if for all j, k ∈ {1, ..., K},

τ j(x) ≥ τ k(x) ∀x ∈ X =⇒ max
πj∈Πj

E[wj(X
k,Tπj ,Yj)] ≥ max

πk∈Πk

E[wk(X
k,Tπk ,Yk)].

A more relaxed version of the uniform rank preservation requirement is one where an agent
is “better” if it has higher treatment effects on average over a reference covariate population
PX0 .

Definition 4 (Relative Rank Preservation). A set of score functions {wk}Kk=1 preserves
treatment effect ordering relative to a reference population PX0 with support X if for all
j, k ∈ {1, ..., K},

E[τ j(X0)] ≥ E[τ k(X0)] =⇒ max
πj∈Πj

E[wj(X
k,Tπj ,Yj)] ≥ max

πk∈Πk

E[wk(X
k,Tπk ,Yk)].

This relative definition requires explicitly defining a reference population, which calls
for careful consideration of policy goals and societal needs. Any set of scores will implicitly
prioritize some populations, and calling attention to this as an explicit part of the ranking
properties induced by quality measures can help policymakers more intentionally align their
choices with policy goals.

Satisfying desirable ranking properties

We now formally show that wTT as written does not directly satisfy these ranking properties.

Proposition 5. If wk is directly given by wTT for each agent k, then both ranking properties
in Definitions 3 and 4 will be violated.

Intuitively, this breaks down because wTT is subject to two auxiliary effects on top
of the treatment effects. First, agents with a larger treatment population nk (e.g., larger
hospitals) will have higher rankings even with the same conditional average treatment effects.
Second, agents with different distributions of covariates PXk but the same conditional average
treatment effects will also end up with different rankings if some covariate values are “easier”
to treat than others.
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To mitigate these auxiliary effects, we show that there exists a general modular form of
wk that preserves the zero regret property for individual agent best responses. This general
form can then be tailored to satisfy desirable ranking properties. In particular, consider the
following weighted total treatment effect reward function:

Reward Function 4 (Weighted TT).

wg
TT(X,T

π,Y) =
n∑

i=1

(Yi − µ̂0(Xi))T
π
i g(Xi).

Any reward function in this family induces the desired agent best response.

Theorem 10 (Incentive Alignment). Suppose µ̂0(x) is unbiased, and π is unconstrained. For
any function g : X → R+, wg

TT yields an agent best response with regret R(πwg
TT) = 0.

Theorem 10 shows that reweighting the reward function by any function of the covariates
X does not hurt incentive alignment. Thus, the principal may choose functions gk for each
agent to achieve desirable ranking properties. Specifically, setting gk to reweight each agent’s
covariate distribution to the reference distribution PX0 satisfies both ranking properties in
Definitions 3 and 4.

Theorem 11 (Ranking Desiderata Satisfied). Let PXk be absolutely continuous with respect
to PX0, and let gk = 1

nk

dPX0

dP
Xk

be the normalized Radon–Nikodym derivative of the reference
distribution PX0 with respect to agent k’s covariate distribution PXk . Then setting wk to be
wgk

TT for agent k’s treatment population satisfies both ranking properties in Definitions 3 and
4 as long as Πk is unconstrained and treatment effects are nonnegative, τ k(x) ≥ 0, for all
k ∈ {1, ..., K}.

Theorem 11 shows that a simple distributional reweighting can achieve the desirable
ranking properties that preserve treatment effect ordering both uniformly over all X and
relatively to some reference population PX0 . In practice, if the exact Radon–Nikodym
derivatives are not known, the importance sampling literature contains many techniques for
estimating expectations with distributional reweighting [Owen, 2013]. Overall, this simple
reweighting modification of the total treatment effect score function addresses important
policy considerations when quality measures are used for ranking.

5.6 Information Asymmetry
So far, the incentive alignment and ranking properties have relied on the assumption that
both principal and agent operate with the same covariate information X. In practice, Dranove
et al. [2003] remark that “providers may be able to improve their ranking by selecting patients
on the basis of characteristics that are unobservable to the analysts but predictive of good
outcomes.” Under such information asymmetry, we show that even the optimistic assumption
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of an unbiased estimator µ̂0(x) is not enough to guarantee zero regret. We both upper and
lower bound regret in terms of the additional heterogeneity observed by the agent.

Suppose the agent observes additional covariates Ui ∈ U , and selects a treatment rule
π : X ,U → [0, 1]. Suppose the principal still observes only {Xi, T

π
i , Yi}ni=1, and chooses a

reward function w(X,Tπ,Y) that does not depend on Ui. Let µt(X,U) = E[Yi(t)|X,U ] and
τ(X,U) = E[Yi(1)− Yi(0)|X,U ]. The utility and regret are still defined as in Section 5.3.

Applying the optimal reward function from the full information setting in Section 5.4,
suppose the principal rewards the agent with the total treatment effect wTT. As in Section
5.4, suppose the principal applies an unbiased estimator µ̂0(X) of the untreated potential
outcome conditional on X, with E[µ̂0(x)] = µ0(x) ∀x ∈ X . Note that the principal identifies
µ0(X), but not µ0(X,U). We show that the regret is bounded if the effect of the agent’s
private information Ui on the untreated potential outcomes is bounded.

Assumption 2 (Bounded Heteogeneity). The effect of Ui on the conditional untreated
potential outcome is bounded as E[|µ0(Xi)− µ0(Xi, Ui)|] ≤ γmarg.

Note that µ0(Xi) = E[µ0(Xi, Ui)|Xi]. Thus, the heterogeneity bound is akin to bounding
a statistical error between the conditional untreated potential outcome µ0(Xi, Ui) known to
the agent, and “marginal” µ0(Xi) estimated by the principal. We can both upper and lower
bound the regret in terms of this error:

Theorem 12 (Regret With Information Asymmetry). Suppose µ̂0(x) is unbiased. Under
Assumption 2, the regret is upper bounded as R(πwTT) ≤ 2γmarg.

This upper bound is tight up to a linear constant.

Proposition 6. ∀ε > 0, there exist distributions of Xi, Ui, Yi(0), Yi(1) wherein R(πwTT) ≥
γmarg − ε.

Thus, this notion of heterogeneity is key to determining regret under information asym-
metry. As a realistic example of cases when Assumption 2 might be satisfied, studies of
cardiovascular disease risk have shown that “the magnitude of risk related to smoking is far
larger than any ostensible benefit related to moderate drinking” [Mukamal, 2006]. Thus, if U
were some attribute for which the relative effect on top of X was small, then γmarg would be
small. On the other hand, Rodgers et al. [2019] report that sex hormones and diabetes have
compounding effects on cardiovascular disease risk. If X and U have strong compounding
effects on Y (0), then γmarg could be large.

Information asymmetry and confounding

Information asymmetry relates closely to the possibility of confounding bias in the estimator
µ̂0(x). First, the agent’s knowledge of U could mean that the data source from which the
principal estimated µ̂0(x) was also confounded by U . In this case, the literature on sensitivity
analysis and policy learning with unobserved confounding proposes a range of robust estimates
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for µ0(x) [see, e.g., Yadlowsky et al., 2022, Kallus and Zhou, 2018]. In our setting, robust
estimation of µ0(x) is not enough, since the agent’s treatment rule can depend on U . Still,
the minimax techniques from these works may be a useful avenue for designing future robust
reward functions w. Second, information asymmetry can exacerbate confounding if the agent
were able to directly affect the principal’s estimator µ̂0(x), which may happen if, e.g., the
principal were to estimate µ̂0(x) from the agent’s untreated units with T π

i = 0. We discuss
this case in detail in the Appendix, and show that a stronger assumption yields a similar
bound to Theorem 14. Most importantly, our key result is that even without confounding,
information asymmetry still causes problems via the agent’s ability to discriminate on U .

5.7 Experiments
We turn to several clinical datasets to evaluate the welfare impacts of different quality metrics
under different conditions of information asymmetry. We show empirically that the regret
incurred by wATO can be high. We also show that under information asymmetry, regret can
be amplified if the principal estimates µ̂0(x) conditioned on some subsets of features. With
careful feature selection for x, regret may be reduced.

Horse Colic dataset

The Horse Colic dataset from the UCI repository [Dua and Graff, 2017] contains n = 300
horse colic cases. Horses were either treated with surgery (T = 1) or not (T = 0), with a
treatment rate of 0.6. The 20 covariates include each horse’s age and presenting symptoms
such as abdominal distension, pulse, blood test results, etc. (see Appendix for a full list). Our
outcome of interest Y is whether the horse lived (Y = 1) or died (Y = −1). To approximate
the mean conditional potential outcomes, we apply a logistic model with interaction terms
between the treatment and covariates: P (Y (t) = 1|X = x) = σ(β0 + β1x+ β2t+ β3xt). We
estimate the parameters β on the dataset using logistic regression, and take these as given to
produce µ0(x) and µ1(x). The fitted µ0(x) and µ1(x) show 62 horses benefiting from surgery
and 146 being better off without surgery. On the horses that would benefit, the average
benefit was 0.147, which is fairly significant. The clinical validity of these estimated potential
outcomes cannot be verified from this data alone, and we instead take these estimates as
synthetic potential outcomes.

International Stroke Trial dataset

We also consider data from the International Stroke Trial Collaborative Group [1997], which
was a randomized trial studying the effects of drug treatments in acute stroke. Kallus and
Zhou [2018] studied this dataset in a different policy learning setting, and we apply a similar
setup by comparing treating with high doses of heparin and aspirin (T = 1) with aspirin alone
(T = 0). This leaves n = 7264 patients and a treatment rate of 0.33. The 20 covariates include
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each patient’s age, sex, and clinical symptoms such as prior stroke types and complications.
Like Kallus and Zhou [2018], we consider a scalarized outcome score Y ∈ [−4, 3] that accounts
for patient outcomes including death, recovery, and side effects at 14 days and 6 months
after treatment (details in the Appendix). We approximate the mean conditional potential
outcomes using a linear model with interaction terms between treatment and covariates:
E[Y (t)|X = x] = β0 + β1x+ β2t+ β3xt. We fit an OLS estimate of β, and use the resulting
µ0(x) and µ1(x) functions as synthetic mean conditional potential outcomes. The fitted µ0(x)
and µ1(x) showed 1360 patients benefiting from heparin and 5904 being better off without
heparin. On the patients that would benefit, the average benefit of treatment was 0.025.
This tracks with the study’s findings that the benefit of heparin was non-significant and
inconclusive.

Table 5.1: Utility and regret comparisons for different reward functions. For each reward
function w, we report utility V (πw), regret R(πw), and the realized treatment rate P (T πw

= 1).

Horse Colic dataset Stroke Trial dataset

Reward function Utility Regret Treat rate Utility Regret Treat rate

wATO 0.00000 0.1470 0.1922 0.00004 0.0251 0.0001
wATT 0.00784 0.1391 0.0039 0.00013 0.0250 0.0001
wTT 0.14695 0.000 0.2431 0.02518 0.000 0.1872

wTT (no info) 0.09761 0.0493 0.6275 −0.04888 0.0741 0.4829
wTT (demographic info) 0.09761 0.0493 0.6275 −0.06392 0.0891 0.5041

Results and discussion

We first compare the reward functions from Section 5.4 by calculating the utility and regret
empirically over the dataset using the synthetic potential outcomes. Table 5.1 shows that for
both datasets, the utility for wTT is positive and higher for the Horse Colic dataset than for
the Stroke Trial dataset, which tracks with the clinical finding that the heparin treatment
did not have significant effect. The utility for wATO is close to zero for both datasets.

Next, we consider the effect of information asymmetry on regret. The last two rows of
Table 5.1 show the regret when the principal applies wTT, but either observes no covariates
(“no info”) and identifies E[Y (0)], or only observes age and/or sex (“demographic info”) and
identifies E[Y (0)|demographics]. While conditioning on age has no effect on the Horse Colic
dataset, on the Stroke Trial dataset, conditioning on demographics actually hurts utility
compared to using “no info.” This suggests that it is not always better for the principal
to condition on all known information, and thus policymakers should exercise caution in
designing stratified quality metrics. For example, CMS currently measures age-specific
kidney transplant rates for organ procurement organizations (OPOs) [QCOR, 2023], and our
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findings question the value of such incomplete stratification under OPO treatment selection.
Theoretically, this finding structurally mirrors the phenomenon of bias amplification when
estimating causal effects with unobserved confounding, where conditioning on more observed
features can actually increase bias [Pearl, 2012]. Here we observe regret amplification, and we
encourage replication of similar analyses by regulatory agencies with internal data sources.

We also study a more continuous spectrum of information asymmetry by showing regret
as the principal accumulates increasingly large subsets of the available features. Relating this
to Section 5.6, we first sort the features in ascending order of feature importance, as measured
by estimating γmarg when the principal knows only the individual feature. Then, Figure
5.1 shows regret when the principal knows increasingly large feature subsets, building up
starting from the most “important” feature. Regret is reduced significantly after accounting
for less than half of the features. In practice, the principal would not know true values
of γmarg. However, approximations of γmarg may serve as a reasonable heuristic for feature
selection when a regulator has a large set of known covariates, but needs to prune them for
interpretability or cost.

5.8 Conclusions
We have studied the harm to social welfare that occurs when accountability metrics are
not aligned with social utility. Even under optimistic assumptions about the availability of
an unbiased counterfactual estimate, the potential for regret still exists under information
asymmetry with treatment effect heterogeneity. Given the compounded difficulty of estimating
causal effects on top of our consideration of treatment incentives and ranking, we recommend
that designers exercise caution, humility, and vigilance in their construction of metrics. The
task is difficult, but we have established the contours of one potentially fruitful approach.

Future work

There are many important avenues of future work extending from our framework. Information
asymmetry presents a prevailing challenge in which we provided bounds on regret, and
further analysis on how to improve these regret bounds using ideas from contract design
or robust policy learning would be promising and impactful. There is also significant room
for modeling extensions. While we considered the simplest modeling framework that could
capture the incentive effects of quality measures on treatment selection, there are many other
significant factors to consider in practice, including uncertainty and variation in treatment
costs, competition between agents, and the ability of treatment units (e.g., patients) to decide
where to seek treatment. Analyzing end-to-end regret with these additional factors would be
valuable future work.
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Figure 5.1: Regret under fine-grained information asymmetry on the Stroke Trial dataset
(Horse Colic in the Appendix). The top plot shows γmarg values if the principal only knows
each individual feature. The bottom plot shows regret as the principal accumulates features
from the left (most important).
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Chapter 6

Information Elicitation in Agency Games

6.1 Introduction
The rise of algorithmic and data-driven decision-making has come with an accompanying
rise in reliance on numerical measurements of performance. These numerical metrics drive
actions at scales ranging from that of individual workers such as teachers [Koretz, 2017], to
entire institutions such as hospitals [Muller, 2019], and can have far-reaching impact on social
welfare. The problem of designing and choosing evaluation metrics thus continues to be both
highly consequential and challenging for all types of organizations, from government agencies
to companies.

For example, consider the evaluation-metric design problem faced by a company with
a research division. To monitor the health of the organization and guide compensation,
metrics are collected to evaluate the research division’s productivity. To choose these metrics,
company leadership may start with metrics obtained from ad hoc brainstorming or prior
experience, taking the form of simple measures such as the number of academic publications,
patents, conference presentations, and citations to all of these, along with collaborations
with product teams. Such measures may not, however, fully capture the performance of
the research division—in fact, they will almost inevitably omit some important factors.
The challenge in designing a monitoring system is thus not only in developing methods for
measuring performance and optimizing a given set of metrics, but more broadly how to bring
new metrics to the fore that were previously unknown and are highly relevant.

This frames our central question of how to improve a firm’s specification of metrics.
The perspective underlying this work is that while company leadership may operate under
incomplete information, this does not mean that better information does not exist elsewhere
in the firm. In fact, often, agents being evaluated may have better information not only about
their effort, but also about how to measure outcomes in a more effective, less gameable way.
In the above example, researchers might know of other metrics capturing the quality of their
work that company leadership had overlooked, like the comparative quality of publication
venues. Thus, we model and analyze situations under which an agent being evaluated might
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be willing to share information with the principal to improve the metrics that are used for
evaluation. A key strategic dependence in this work is the relationship between the informant
(the agent) and the metrics—we consider an agent’s incentives to reveal information about
metrics that are directly used to evaluate them.

The incomplete nature of metrics has been discussed in the seminal work of Holmstrom
and Milgrom [1991] on contracts with multidimensional tasks, where a principal may observe
only a subset of dimensions that are relevant to their value or the agent’s cost. When the
principal is aware of which dimensions are missing, Holmstrom and Milgrom [1991] show how
to optimally reward the observed dimensions given properties of the agent’s cost structures.
The distinguishing feature of our setting is that we consider the unobserved dimensions to be
unknown unknowns. We focus on an information transfer mechanism where the agent has the
power to possibly reveal these hidden dimensions to the principal.

Our question also fits into a broad class of problems on information design and persuasion
games that studies the welfare effects of different information structures [Kamenica and
Gentzkow, 2011, Milgrom and Roberts, 1986]. Our model treats an agent as a sender
and principal as a receiver, and can be seen as applying specific restrictions to the class of
information-revelation strategies that the agent can choose from in order to capture properties
of the design of metrics in agency problems faced by firms. Specifically, we consider a setting
where the agent’s information revelation strategy cannot depend on the value of the realized
signal. Thus, we seek to model an agent’s choice of whether or not to reveal the observability
of a metric, rather than a realized signal value.

To yield initial tractable insights to this metric discovery problem, we examine an agent’s
incentives for information sharing through the lens of an agency game with information
transfer. We build on a classical agency game where a principal contracts an agent to
complete a task, and the principal only has partial information about the agent’s costs when
setting a contract. To capture the agent’s additional information and opportunity to improve
the metrics by which they are evaluated, our model supposes that the agent is privately
aware of additional variables that correlate with their cost of task completion, and further
has the opportunity to reveal these additional variables to the principal prior to the design of
the contract. We analyze when the agent would prefer for the contract to depend on these
cost-correlated variables compared to an agnostic contract. Importantly, the agent must
decide whether to reveal their cost-correlated variables to the principal prior to realizing the
values of those variables or their true costs.

While the principal is always better off when having more information about the agent’s
costs, the incentives for the agent are more nuanced—revealing information reduces the
amount of information rent the agent can extract when their costs turn out to be low.
However, better information also means more high-cost jobs will go forward that the agent
otherwise would not have accepted, as the optimal contract would adequately reward high-cost
tasks.

We first consider whether the agent prefers to reveal or conceal the observability of a
cost-correlated environmental variable. We show that the agent prefers to reveal the variable
if conditioning on this cost-correlated variable reveals a strong enough differentiation between
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high and low costs of task completion. Next, we expand the agent’s action space to include
the ability to garble or add noise to their information before it passes to the principal. For
example, in modern online platforms, avenues for introducing this type of noise include third
party clients or policies requiring differential privacy [Dwork et al., 2006]. We show that
under a fairly wide set of conditions, the agent may prefer to reveal a garbled signal over
both fully concealing and fully revealing the original variable. This suggests that a noisy
information transfer mechanism can yield superior equilibria over simpler or more restrictive
alternatives.

Contributions

Our contributions can be summarized as follows:

1. We introduce a model for the process of discovery of unknown metrics, in the form of
an agency game with information transfer.

2. We present sufficient conditions under which an agent would prefer revealing a metric
to a principal over keeping the metric concealed; and vice versa.

3. We further relax the agent’s action space to include the ability to reveal garbled infor-
mation, where the choice of the amount of garbling interpolates between concealment
and revelation. In this setting, we give sufficient conditions for the agent to prefer
garbling over full revelation.

4. We analyze the consequences of information revelation on principal utility and total
welfare, leveraging connections between our model and price discrimination.

Related Work

Our model builds on literature from contract design and agency games. It also fits into a
large literature on information design, and can be seen as a specific structure of information
design problem. Our model also overlaps with price discrimination, and we bring techniques
from these literatures to a new motivation of discovering metrics.

Agency games and contract design We build from the well-established contract design
problem of Laffont and Tirole [1986], which concerns a principal’s design of a contract when
an agent’s effort and cost type are privately held by the agent. Key to this setting are
asymmetries in values and information between the principal and agent, and the literature
explores issues of moral hazard and adverse selection that arise from these asymmetries
[Laffont and Martimort, 2009, Gibbons et al., 2013, Milgrom and Roberts, 1992].

A fundamental result regarding signaling incentives in contract theory is Holmström
[1979]’s sufficient statistic theorem, which showed that it benefits an agent for the contract
to be conditioned on any information that is independently informative of the agent’s effort.
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Our setting models an agent’s incentive to share information about its cost type, which
yields different results from the analysis of effort signaling, and is closer to some analyses
of persuasion games which we discuss in more detail below. Milgrom [1981] also classifies
the “favorableness” of signals to an agent, presenting monotonicity properties that we also
leverage in this work.

Persuasion games and information design The use of stakeholder-supplied information
for decision-making was seminally introduced by Milgrom and Roberts [1986] in the form of
persuasion games. Milgrom and Roberts [1986] give an example of understanding a buyer’s
purchasing strategy in the face of a seller who can send a quality signal about their product.
While this broad motivation of information transfer from interested parties is very close to
our motivation of learning business metrics from evaluated agents, the game that we present
differs in two main ways from the particular setting in Milgrom and Roberts [1986].

First, we restrict the agent’s information revelation strategy for a given variable to not be
able to depend on the realized value of the variable. In other words, the agent must commit
to fully revealing a variable in advance of realizing the variable’s value. In this sense, our
setting can be viewed as a constrained persuasion game. The purpose of this restriction is to
bring our setting closer to a problem of variable discovery, where the fundamental problem
is a principal’s lack of awareness of a variable’s observability, rather than signaling [Spence,
1978], where the uncertainty is about the variable’s realized value.

The second main distinction is in the direction of information transfer. In our setting, the
“decision-maker” is the agent, who decides whether or not to complete a task. We consider
the agent’s incentive to reveal information about their decision-making parameters (their
cost type) to a principal who designs a payment contract. This second distinction is more
technical and less important for the fundamental motivation of revealing observability instead
of value.

More broadly, Bayesian persuasion and information design provides a general framework
for analyzing the effects of the distribution of information on the outcomes of a game
[Kamenica, 2019, Bergemann and Morris, 2019]. Many works have cast this general form to
analyze applications from grading systems in schools to courtroom evidence policies [Kamenica
and Gentzkow, 2011, Boleslavsky and Cotton, 2015, Ostrovsky and Schwarz, 2010]. Our
model can be seen as a specific instantiation of an information design problem where the
sender is the agent, the receiver is the principal, and the contracting relationship determines
the principal’s and agent’s action spaces and equilibria. We impose a constraint over the
sender’s information transfer policy in order to capture the incentives for an agent to reveal
observability of a variable to the principal, whereas prior work has focused on revealing the
value of a signal (similarly to Milgrom and Roberts [1986]). Also built into this constraint
is that the agent cannot lie about their signal, as our model is motivated by understanding
settings where a principal has powerful data collection and verification capabilities.
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Price discrimination Our analysis framework of an agency game with information transfer
has analogies with classical price discrimination, and thereby opens new avenues for applying
the well-developed tools from price discrimination to understanding the metric design problem.
It also uncovers new challenges that extend existing price discrimination perspectives. This
connection has also been discussed by Bergemann et al. [2015], who define a mapping from
third degree price discrimination onto the class of agency problems and establish the existence
of market segmentations that achieve all possible trade-offs between consumer and producer
surplus within some basic constraints. Our work complements this analysis—instead of
analyzing all possible segmentations, we consider the agent’s information-revelation incentives
as a function of the properties of a specific segmentation induced by some cost-correlated
variable which is initially only available to the agent.

Our garbling setting also notably differs from the models of price discrimination with
transportation costs and arbitrage [Wright, 1993] or restricted price discrimination [Aguirre
et al., 2010]. While both garbling and restricted price discrimination mechanisms effectively
interpolate between full discrimination and no discrimination, we prove a substantive difference
between these mechanisms by showing that while the agent might prefer some intermediate
amount of garbling over both full revelation or hiding, the agent will always prefer either
full discrimination or no discrimination over any intermediate restriction over the amount of
allowed price discrimination. We give a more detailed comparison of our garbling model to
price discrimination in Section 6.4.

Sunspots and correlated equilibria Our model is also connected to the so-called sunspots
literature [Woodford, 1990, Howitt and McAfee, 1992]. In this literature, there are multiple
steady-state equilibria and an observable random variable produces a correlated equilibrium,
with agents conditioning their behavior on this otherwise extraneous variable not because
it matters to payoffs, but because it predicts others’ behaviors. The literature is known as
sunspots because, during the 19th century, some people believed sunspot activity predicted
agricultural yields [Jevons, 1884], and while it did not, it could predict the behavior of
commodity traders who believed it did. This literature is the polar opposite of the problem
we study: sunspots are a known, extraneous variable believed to be relevant, while we study
an unknown (to the principal) relevant variable.

Preferences for privacy Our model also interacts with literatures on privacy and
information-hiding, by highlighting a simple situation where agents experience conflict-
ing incentives both for and against sharing information. The result can be that agents may
prefer partial sharing, which echoes the subtleties that arise elsewhere when privacy and
behavior interact [Cummings et al., 2016].
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6.2 Model Setup: Agency Game with Information
Transfer

To gain insight into the incentives surrounding the discovery of metrics, we start with a
standard agency game in which a principal contracts an agent to complete a task. In such a
game, we ask, when does the agent have an incentive to reveal observability of a cost-correlated
variable to the principal?

Specifically, suppose a principal contracts the agent to complete a task, where an agent
may exert binary effort. Suppose the principal receives value b if the agent exerts effort and
completes the task, and zero otherwise (we assume that the task is completed deterministically
if the agent exerts effort). Suppose the agent incurs cost C ∈ R+ for exerting effort. The
exact cost is unobserved to the principal, but the principal is aware of a prior distribution
over agent’s cost type, denoted by the random variable C. The agent observes both the
proposed transfer and their realized cost type before deciding whether or not to exert effort.
This maps onto the well-established agency game setup where the principal must design a
contract when the agent’s cost and effort are private [Laffont and Tirole, 1986].

To model a setting where the agent might possess additional information, suppose the
agent is aware of an environmental variable X ∈ X which is correlated with cost C. The
question of knowledge of X becomes significant when X is correlated with C.

In introducing this correlation into the agency game, we assume that X is an unknown
unknown to the principal. Prior to the principal’s design of the contract, the agent has a
choice of whether or not to inform the principal of the environmental variable X, which
entails revealing both the observability of X at the time of the design of the contract, and the
realized value of X at the execution of the contract (which the principal can verify). If the
agent chooses not to inform the principal of the observability of X, then the rest of the game
proceeds as a standard agency game with private cost: the principal designs a contract based
on their knowledge of the prior distribution C. If the agent chooses to inform the principal of
X, then the principal can offer a contract that conditions on the realized value of X.

The timing of the full agency game with the possibility of agent information transfer is
summarized in Figure 6.1. The text in black matches the standard agency game [Laffont and
Tirole, 1986], and the text in gray represents additional elements introduced by our model.

In our simplified environment involving binary effort, the principal’s contract design
problem when X is concealed reduces to choosing a single transfer amount p where the agent
is paid p if the task is completed, and zero otherwise. If X is revealed, then the principal
offers a contract with distinct transfers ρ(x) for different realized values of x ∈ X . At the
time of the execution of the contract, the agent receives transfer ρ(x) if the task is completed
and X = x; and zero otherwise. We assume that the principal still receives the same value b
if the task is completed, regardless of X.

The key question in this work concerns the agent’s decision of whether or not to inform
the principal of the existence of the environmental variable X at time t = 1. In Section
6.3, we consider this as a binary decision of whether or not to reveal X; we will later relax
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t = 0

P and A
share prior
distribution
over C.
A knows
prior joint
distribution
of C,X.

t = 1

A decides
whether or
not to reveal
observability
of X, including
the joint distri-
bution of C,X.

t = 2

P offers a con-
tract, which can
depend on X if
observability of X
was revealed.

t = 3

X is real-
ized.
A learns
their cost
type C.

t = 4

A decides
whether
or not to
accept the
contract.

t = 5

The con-
tract is ex-
ecuted and
utilities re-
alized.

Figure 6.1: Timing of the agency game with information transfer between principal (P) and
agent (A).

this in Section 6.4 to expand the agent’s action space to reveal a garbled version of X, thus
interpolating between the concealed and revealed settings.

Notation

Let F (c) = P(C ≤ c) denote the cumulative distribution function (CDF) of the prior cost
distribution C. We also define Fx(c) = P(C ≤ c|X = x) as the CDF of the conditional
distribution of C given X. Throughout, we will assume that the cost C is a continuous
random variable with density f(c) = F ′(c) and with conditional density fx(c) = F ′

x(c).
We will use Π to denote the principal’s utility, V to denote the agent’s utility, and W to

denote total welfare, defined as the sum of the principal’s and agent’s utilities.

Let 1(·) denote an indicator function with 1(x ∈ S) =

{
1 if x ∈ S
0 otherwise.

All proofs are given in the Appendix.

6.3 Welfare Effects of Information Revelation
We now consider the agent’s decision of whether to conceal or reveal the existence X at time
t = 1 in the agency game with information transfer outlined in Figure 6.1. To analyze this
decision, we compare the agent’s utility in the information-agnostic contract that results from
keeping X concealed and in the informed contract that depends on X. We also analyze the
consequences of the resulting decision on the principal’s utility and on total welfare.

As an overview, we give sufficient conditions for the agent to prefer to conceal, and
sufficient conditions for the agent to prefer to reveal X. In general, the principal always
prefers the revealed setting. Finally, we analyze the consequences of revelation on total
welfare, connecting to analogous results from price discrimination.
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Utilities for Principal and Agent

We begin by outlining the contract and equilibrium behavior of the principal and agent when
the contract is agnostic of X, which we refer to as the concealed information setting. Then,
we outline the contract and equilibrium behavior when the principal can condition on X to
determine payments to the agent, which we refer to as the revealed information setting. We
assume that both principal and agent are risk neutral throughout.

Concealed information contract

If information is not revealed, then the rest of the game proceeds as a standard agency game
with private cost, where the principal chooses a single transfer p based on their knowledge of
the prior distribution over the agent’s cost C. The agent’s optimal policy at the execution
of the contract is to exert effort if their realized cost is less than or equal to the payment.
Thus, the agent’s best response to the principal’s choice of transfer p is to exert effort with
probability F (p) = P(C ≤ p) (the set where C = p has measure zero).

For a given choice of transfer p, the principal’s expected utility when X is hidden is given
by

Πcon(p) := F (p)(b− p). (6.1)

The utility of the agent under the principal’s choice of transfer p is given by

Vcon(p) := E[(p− C)1(C < p)]. (6.2)

The principal moves first and chooses p∗ ∈ argmaxp≥0Πcon(p). The agent’s utility at
equilibrium is then Vcon(p

∗).

Revealed information contract

If the environmental variable X is revealed at time t = 1, then the principal has the ability
to instead choose a transfer which depends the value of X, denoted as ρ : X → R+. Since
the agent is aware of the values of both C and X before deciding whether to exert effort,
and there is no possibility to lie about X, the agent’s optimal policy is to exert effort if their
realized cost is less than or equal to the transfer given the realized X value. Therefore, the
agent’s best response to the principal’s transfer function ρ(·) is to exert effort with probability
Fx(ρ(x)) when X = x. The principal’s expected utility in this revealed setting is given by

Πrev(ρ) := E[FX(ρ(X))(b− ρ(X))] = E[ΠX(ρ(X))],

where Πx(p) := Fx(p)(b− p).
The utility of the agent under the principal’s choice of transfer function ρ(·) is then

Vrev(ρ) := E[(ρ(X)− C)1(C < ρ(X))] = E[VX(ρ(X))],

where Vx(p) := E[(p− c)1(C < p)|X = x].
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For ease of exposition, our analysis will focus on a one-dimensional binary feature:
X = {0, 1}, where X = 1 with probability θ. We frame the principal’s decision problem
as that of choosing ρ(0) = p0 and ρ(1) = p1. Further extensions to higher cardinalities or
continuous X may be of practical interest, though we expect our qualitative insights to extend
to these settings.

The principal’s expected utility becomes

Πrev(p0, p1) := (1− θ)Π0(p0) + θΠ1(p1),

and the agent’s utility becomes

Vrev(p0, p1) := (1− θ)V0(p0) + θV1(p1).

The principal moves first and chooses p∗0, p∗1 ∈ argmaxp0,p1 Πrev(p0, p1), resulting in an
equilibrium where the agent’s utility is Vrev(p

∗
0, p

∗
1).

Without loss of generality, we will refer to the situation when X = 1 as the “stronger”
situation with generally lower cost for effort. That is, p∗0 > p∗1.

In the rest of this section, we will analyze the effects of information revelation on the
agent’s utility, principal’s utility, and total welfare. Specifically, we will compare Vcon(p

∗)
to Vrev(p

∗
0, p

∗
1) to understand the agent’s incentive to reveal X. We will also analyze the

consequences of the agent’s revelation decision on the principal’s utility, as well as consequences
on total welfare.

Agent’s Revelation Incentives

The central goal in this work is to analyze the circumstances under which the agent would
prefer to either conceal or reveal the existence of X at time t = 1. Thus, to begin, we will
analyze situations that lead to Vcon(p

∗) being higher than Vrev(p
∗
0, p

∗
1) or vice versa, focusing

on properties of the distributions F , F0, and F1. In the analogy to price discrimination, we
may think of F (p) as the task completion “quantity” as a function of price p, or the proportion
of agents drawn uniformly at random from a population with costs distributed as C that
would complete the task for price p.

We present sufficient conditions on the distributions F0, F1 for the agent to either prefer
to conceal or to prefer to reveal. We then build intuition for these conditions through an
example using exponential and Weibull distributions.

Concealment condition with one zero-cost type

First, we present a sufficient condition for the agent to prefer to conceal X when one of
the agent types is anchored at zero. That is, X = 1 implies that the agent incurs zero cost.
Proposition 7 gives a sufficient condition on F0 for the agent to prefer for the environmental
variable X to remain concealed.
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Proposition 7 (Sufficient concealment condition with zero-cost type). Suppose F0 is a concave
and continuously differentiable CDF. Suppose C|X = 1 takes value 0 with probability 1.
Suppose the ratio F0(p)

f0(p)
is strictly monotone increasing for p > 0. Then Vcon(p

∗) > Vrev(p
∗
0, p

∗
1)

if
θ > (1− θ) 1

η((1− θ)p∗0)
− 1

η0 (p∗0)
, (6.3)

where η(p) = p(1−θ)f0(p)
(1−θ)F0(p)+θ

and η0(p) = pf0(p)
F0(p)

are the respective price elasticities for task
completion quantity for the mixture distribution C and the conditional distribution F0.

Qualitatively, the elasticity η captures the sensitivity of the task completion to price.
Thus, the inequality in equation (6.3) corresponds to a scenario when the sensitivity of the
task completion to price when X = 0 does not differ too strongly from that of the concealed
setting. For example, this arises when F0 is close to the constant function 1. We give another
example using the exponential distribution in Section 6.3 below, where equation (6.3) holds
if the mean of F0 is low enough. In summary, the agent prefers concealment if the higher
cost type still has relatively low cost.

Concealment and revelation conditions under a decreasing ratio assumption

To give additional sufficient conditions for concealment and revelation beyond the anchored
setting with one zero-cost type, we apply an analysis technique similar to that of Aguirre
et al. [2010], who analyzed the effects of third degree monopoly price discrimination on total
welfare.

Suppose the principal, on knowing X, is constrained to choose transfers p0, p1 subject to
the constraint that p0− p1 < r for some r ≥ 0. Let p0(r), p1(r) denote the principal’s optimal
transfers under this constraint:

p0(r), p1(r) ∈ argmax
p0,p1

Πrev(p0, p1)

s.t. p0 − p1 ≥ r.
(6.4)

For notational convenience, let Vconst(r) := Vrev(p0(r), p1(r)). In a similar structure to Aguirre
et al. [2010], the results in this section come from considering the “marginal effect of relaxing
the constraint” on the agent’s value.

Under the following closely analogous assumptions to those invoked by Aguirre et al.
[2010], we derive properties of Vconst(r).

Assumption 3 (Concave principal utility). The principal’s utility in each realized environment
is strictly concave: Π′′

0(p) < 0, Π′′
1(p) < 0.

Assumption 4 (Decreasing ratio condition (DRC)). The ratios V ′
0(p)

Π′′
0 (p)

and V ′
1(p)

Π′′
1 (p)

are both
decreasing in p.
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Assumption 4 is analogous to the “increasing ratio condition” assumption from Aguirre
et al. [2010], which instead has the derivative of total welfare in the numerator. Our analysis
naturally extends this to focus on agent utility. Assumption 4 holds in almost the same set
of conditions as the assumption on total welfare from Aguirre et al. [2010], and we discuss
the subtleties of the differences between these assumptions in Appendix E.1.

Lemma 16. Under Assumptions 3 and 4, Vconst(r) is strictly quasi-convex for r ∈ [0, p∗0− p∗1].
That is, if there exists r̂ ∈ [0, p∗0 − p∗1] such that Vconst(r̂) = 0, then V ′′

const(r̂) > 0.

The strict quasi-convexity of the agent’s utility in r makes it possible to derive sufficient
conditions for revelation and concealment by differentiating Vconst and evaluating the sign of
the derivative at extreme values of r. Adapting this machinery from Aguirre et al. [2010],
but focusing on the agent’s value instead of total welfare, we give such sufficient conditions
for the agent to prefer concealing or revealing X below.

Proposition 8 (Sufficient concealment condition under DRC). Under Assumptions 3 and 4,
Vcon(p

∗) > Vrev(p
∗
0, p

∗
1) if

(1− θ)(b− p∗0)
2− σ0(p∗0)

<
θ(b− p∗1)
2− σ1(p∗1)

, (6.5)

where σx(p) = Fx(p)f ′
x(p)

f2
x(p)

is the curvature of the inverse of the task completion quantity function
Fx(p).

Proposition 8 implies that a high enough difference in curvature between σ0(p
∗
0) and

σ1(p
∗
1) implies that the agent will prefer the concealed contract over the revealed contract.

That is, inverse task completion quantity when X = 0 is more convex than the inverse task
completion quantity when X = 1 at the revealed transfers p∗0, p∗1. This is exactly the flipped
version of the condition in Aguirre et al. [2010]’s Proposition 2, which implied that total
welfare is higher under price discrimination. We next give a sufficient condition for the agent
to prefer revelation.

Proposition 9 (Sufficient revelation condition under DRC). Under Assumptions 3 and 4,
Vcon(p

∗) < Vrev(p
∗
0, p

∗
1) if

2 + L(p∗)α1(p
∗)

2 + L(p∗)α0(p∗)
>

θF1(p
∗)/f1(p

∗)

(1− θ)F0(p∗)/f0(p∗)
, (6.6)

where L(p) = b−p
p

is the Lerner index [Lerner, 1995], and αx(p) =
−pf ′

x(p)
fx(p)

is the curvature of
the task completion quantity function Fx(p),

Intuitively, Proposition 9 says that if the curvatures of F0 and F1 are different enough
(relative to the ratio of the CDFs themselves), then the agent will prefer to reveal the
environmental variable X.
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Remark An important property analyzed by Milgrom [1981] is the monotone likelihood
ratio property (MLRP), which here would say that f0(c)

f1(c)
is increasing for all c. The MLRP

would imply that both sides of the inequality in equation (6.6) are greater than 1. However,
this does not necessarily imply an order between these ratios, and there exist distributions
that satisfy the MLRP that yield either of the inequality directions above. We give a specific
example of this using the Weibull distribution in Section 6.3 below.

Example: Exponential and Weibull Distributions

To concretely illustrate the conditions in Propositions 7, 8, and 9, we parameterize the
conditional cost distributions using the exponential distribution and the more general Weibull
distribution.

First, to illustrate the condition in Proposition 7, let C|X = 0 ∼ Exp( 1
λ0
), where λ0

represents the scale parameter and is also the mean of the distribution. Specifically,

F0(c) =

{
1− e−

1
λ0

c
c ≥ 0

0 c < 0.
(6.7)

Then the condition in Equation (6.3) is equivalent to λ0 < bψ(θ), where ψ(θ) = θ(
( 1
1−θ )

1
θ −( 1

1−θ )
1−θ
θ −θ

)
is monotone decreasing function bounded between 0 and 1 for θ ∈ [0, 1]. Thus, as long as
the average cost λ0 is less than a θ-dependent scaling of the task completion value b, the
condition in Proposition 7 holds. In other words, if the average cost when X = 0 is not too
high, then the agent will prefer concealment.

Beyond fixing F1 at zero cost, let C be a mixture of exponential distributions with
C|X = 0 ∼ Exp( 1

λ0
) and C|X = 1 ∼ Exp( 1

λ1
), where

Fx(c) =

{
1− e−

1
λx

c c ≥ 0

0 c < 0.
(6.8)

Figure 6.2 plots the difference Vrev(p
∗
0, p

∗
1)−Vcon(p

∗) for all λ0, λ1 ∈ [0, b]. As seen in Proposition
7, if λ1 = 0, then the agent prefers to hide if λ0 is sufficiently low. This continues to hold for
λ1 sufficiently close to 0. More generally, Figure 6.2 shows that the agent prefers to reveal if
the means λ0, λ1 are sufficiently far apart.

For the exponential mixture, the inequalities in Propositions 8 and 9 do not hold for any
combinations of λ0, λ1. Thus, the condition in Proposition 7 covers cases not covered by
Proposition 8. However, we see Propositions 8 and 9 take effect for the more general Weibull
distribution, with

Fx(c) =

{
1− e(−

1
λx

c)
kx

c ≥ 0

0 c < 0.
(6.9)

For example, for a fixed λ0, λ1, increasing k = k0 = k1 increases the difference in curvature
between F0 and F1 at p∗, yielding a set of values of k > 1 in which the condition in Proposition
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Figure 6.2: Difference between agent’s utility in the revealed setting and concealed settings
when C is distributed as a mixture of exponentials. For each pair (λ0, λ1), a positive value
indicates that the agent prefers revelation, and a negative value indicates that the agent
prefers concealment. The contour line shows all (λ0, λ1) for which Vrev(p

∗
0, p

∗
1)− Vcon(p

∗) = 0.
The parameters b = 1 and θ = 1

2
are fixed, and λ0 and λ1 are varied up to b.

9 holds. For Proposition 8, the condition holds if k1 is sufficiently small, and k0 is sufficiently
large for λ0 > λ1.

Principal’s Revelation Preferences

While the agent might sometimes prefer the hidden setting over the revealed setting, we next
show that the principal always prefers revelation. First, Lemma 17 shows that the principal
is never worse off under revelation.

Lemma 17 (Principal prefers revelation). Revealing X never decreases the value of the
principal: Πrev(ρ

∗) ≥ Πcon(p
∗), where ρ∗ ∈ argmaxρΠrev(ρ). Revealing X strictly increases

the value of the principal only if X and C are not independent.

The principal strictly benefits from information revelation if the monotone likelihood ratio
property (MLRP) is satisfied between the revealed distributions.

Assumption 5 (Monotone likelihood ratio property (MLRP) [Milgrom, 1981]). The ratio
f0(c)
f1(c)

is strictly increasing in c.

Lemma 18 (Principal strictly benefits from revelation). Let F0 and F1 be continuously
differentiable CDFs. If the MLRP holds (Assumption 5), then the principal strictly benefits
when X is revealed: Πrev(p

∗
0, p

∗
1) > Πcon(p

∗).
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Intuitively, as the first mover, the principal will never be hurt by having additional freedom
to condition on X when selecting prices that maximize their utility. Lemma 18 gives the
MLRP as a sufficient condition for revelation of X to yield a strict benefit for the principal.

Total Welfare Consequences

We now consider whether revealing X increases total welfare, or the sum of utilities of the
principal and agent. When X is concealed, total welfare is given by

Wcon(p) := Vcon(p) + Πcon(p),

and when X is revealed, total welfare is given by

Wrev(p0, p1) := Vrev(p0, p1) + Πrev(p0, p1).

The question of whether price discrimination increases total welfare has been well stud-
ied [Varian, 1985]. Our comparison of the concealed vs. revealed contracts has a direct
isomorphism with third degree monopoly price discrimination. Specifically, our concealed
setting corresponds to monopoly pricing without price discrimination, with the seller acting
as principal and buyer acting as agent. Our revealed setting corresponds to a monopoly seller
enacting third degree price discrimination over markets segmented by X.

Thus, with minor adjustments, we can apply results from the price discrimination literature
that characterize the effects of third degree monopoly price discrimination on total welfare.
Mirroring Varian [1985]’s seminal work, Lemma 19 shows that total welfare increases only
if the quantity of tasks completed also increases in the revealed setting compared to the
concealed setting.

Lemma 19. Total welfare increases under revelation (Wrev(p
∗
0, p

∗
1)−Wcon(p

∗)) only if task
completion quantity increases under revelation,

F (p∗) < (1− θ)F0(p
∗
0) + θF1(p

∗
1).

Example when total welfare decreases

It is still possible for total welfare to decrease under information revelation. Mirroring an
example from Varian [1985], we provide an illustrative example here where total welfare
decreases when task completition quantity does not increase.

Suppose C|X = 1 ∼ Unif(0, 1), and C|X = 0 ∼ Unif(1
2
, 3
2
). Suppose θ = 1

2
. Suppose

b = 1. Then the optimal payments for each of F, F0, F1 all fall in the “interior” of F (x):

1

2
≤ p∗1 < p∗ < p∗0 ≤ 1.

When the solutions all fall in the interior, we have p∗ = p∗1+p∗0
2

, and F (p∗) = F1(p∗1)+F0(p∗0)

2
. This

now violates the necessary condition in Lemma 19, since the output does not increase under
revelation, but the payments change. Total welfare decreases as long as p∗0 ̸= p∗1.
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6.4 Information Revelation With Garbling
So far, we have compared the settings when the environmental variable X is either concealed
or and revealed, focusing on the agent’s incentive to induce each setting at time t = 1. We
now generalize the agent’s action space to instead be able to reveal a garbled version of
the variable X. From a modeling standpoint, the agent’s garbling action space interpolates
between the concealed and revealed settings. In this work, we consider a randomized response
garbling mechanism which has been applied in many settings, from statistical informativeness
[Blackwell, 1951] to survey experiment design [Warner, 1965] to differential privacy [Dwork
et al., 2006, Kasiviswanathan et al., 2011].

As an overview of results in this section, we show that there exist conditions under which
the agent would prefer to garble over both concealment and revelation. Thus, having the
option to garble can benefit the agent, and even induce the agent to reveal more information
when they would otherwise fully opt to conceal X. We also analyze the effects of garbling on
the principal’s utility and total welfare.

Model Setup: Information Transfer with Garbling

Suppose the agent has the option to present the principal with a different variable Y with
random noise on top of X, defined as

Y =

{
X w.p. ε
ξ w.p. 1− ε

=

{
X w.p. 1+ε

2

¬X w.p. 1−ε
2
,

(6.10)

where ξ ∼ Bernoulli(γ) is independent of X and C. This work considers this randomized
response mechanism for binary X, though further extensions with different noise models can
be made for continuous X.

The game with garbling proceeds as before, but the agent selects ε ∈ [0, 1] at time t = 1.
The full timing is outlined in Figure 6.3. The agency game with garbled information transfer
is a generalization of the previous game: in the previous timing in Figure 6.1, the agent’s
choice at t = 1 would be equivalent to selecting ε from a more restricted set {0, 1}.

It is assumed that the principal, on knowing Y , cannot back out the previous value of X.
The principal treats the variable Y as an environmental variable with prior joint distribution
Y,C, and proceeds to design the optimal contract conditioning on Y . The principal does not
have access to ε when designing the contract—only the variable Y and its potential values.

The game proceeds as delineated for the revealed information contract in Section 6.3,
but using the variable Y ∈ Y instead of X. Specifically, the principal designs a contract
with transfer function ρ : Y → R+, and upon execution of the contract, the agent receives
transfer ρ(y) if they exert effort and Y = y. For binary X and Y following equation (6.10),
the principal chooses ρ(0) = p0 and ρ(1) = p1.

Let the conditional distribution of the cost C given Y be distributed with CDF P(C ≤
c|Y = y) = Gy(c). We focus our analysis on a simple randomized response noise model that
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t = 0

P and A
share prior
distribution
over C.
A knows
prior joint
distribution
of C,X.

t = 1

A selects ε,
and reveals the
observability
of Y (6.10), in-
cluding joint
distribution of
C, Y .

t = 2

P offers a
contract, which
depends on Y .

t = 3

X and Y are
realized.
A learns their
cost type C.

t = 4

A decides
whether or
not to accept
the contract.

t = 5

The contract
is executed
and utilities
realized.

Figure 6.3: Timing of the agency game with garbled information transfer between principal
(P) and agent (A).

does not change the marginal distribution over X, setting γ = θ = 1
2
. In this case, we have

G0(c) =
1 + ε

2
F0(c) +

1− ε
2

F1(c), and G1(c) =
1 + ε

2
F1(c) +

1− ε
2

F0(c).

Similar results can be derived for general γ, θ, and there is further room to explore the
interaction between these parameters in future work.

As in Section 6.3, the utility of the principal under revelation of a given garbled variable
Y defined by equation (6.10) is given by

Πgarb(p0, p1) = (1− θ)E[(b− p0)1(C < p0)|Y = 0] + θE[(b− p1)1(C < p1)|Y = 1],

and the utility of the agent is given by

Vgarb(p0, p1) = (1− θ)E[(p0 − C)1(C < p0)|Y = 0] + θE[(p1 − C)1(C < p1)|Y = 1].

The principal moves first and chooses p0(ε), p1(ε) ∈ argmaxp0,p1 Πgarb(p0, p1). The agent’s
resulting utility is Vgarb(p0(ε), p1(ε)).

To simplify notation, we make the following abbreviations in the rest of this section:
Πgarb(ε) = Πgarb(p0(ε), p1(ε)), Vgarb(ε) = Vgarb(p0(ε), p1(ε)).

Garbling and Prices

First, we analyze the effects of the information revelation amount ε on the equilibrium prices
set by the principal. Specifically, we show that both p0(ε), p1(ε) are monotone with respect
to ε.

Lemma 20 (Monotonic price changes). Suppose γ = θ = 1
2
. Suppose the principal’s utility is

strictly concave as a function of price (Assumption 3). Suppose the MLRP holds (Assumption
5). Then p′0(ε) > 0 and p′1(ε) < 0 for all ε ∈ [0, 1].
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Lemma 20 acts as a sanity check that as the principal is aware of more information, the
degree of differentiation between prices also increases. Furthermore, with less noise, the price
in the higher-cost environment will only increase, and the price in the lower-cost environment
will only decrease.

Agent’s Garbling Incentives

For the agent, there is no clear ordering between Vgarb(p0(ε), p1(ε)), Vcon(p
∗), and Vrev(p

∗
0, p

∗
1).

Garbling can be better for the agent than concealment, even when hiding is preferred over
revelation, Vcon(p

∗) > Vrev(p
∗
0, p

∗
1). Garbling can also be better than revelation, even when

revelation is preferred over hiding, Vcon(p
∗) < Vrev(p

∗
0, p

∗
1). We illustrate both of these cases

using exponential distributions in Section 6.4, as previously done for the full concealment
and revelation comparison in Section 6.3.

To give a more general theoretical characterization of the agent’s garbling incentives,
we give sufficient conditions for the agent to prefer a nonzero amount of garbling over full
revelation. This can be seen as a softer version of the previous analysis of when the agent
prefers full concealment over full revelation.

Garbling condition under one zero-cost type

As in Section 6.3, we first analyze the restricted case where one of the agent types is anchored
at zero-cost: suppose C|X = 1 takes value 0 with probability one. Proposition 10 gives a
sufficient condition for the agent to prefer a non-zero amount of garbling over full revelation.

Proposition 10 (Sufficient garbling condition with zero-cost type). Suppose γ = θ = 1
2
.

Suppose C|X = 1 takes value 0 with probability 1. Suppose F0 is continuously differentiable
and f0(c) is bounded. Vgarb(ε) is maximized at ε∗ < 1 if

b− p∗0
2− σ0(p∗0)

< g0(p
∗
0), (6.11)

where g0(p) =
∫ p

0
(1− F0(c))dc is the restricted mean cost of task completion, and σ0(p) =

F0(p)f ′
0(p)

f0(p)2
is the curvature of the inverse quantity function.

Notably, the inequality in equation (6.11) captures distributions that are not captured
by Proposition 7. Thus, comparing Proposition 10 to Proposition 7 shows that the agent
might want to garble, even if they may not always want to hide. In fact, the condition
in equation (6.11) is quite general, and we show in the example in Section 6.4 below that
equation (6.11) applies to any log-concave Weibull distribution.
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General garbling condition

Generalizing beyond the anchored setting, Proposition 11 gives a sufficient condition for the
agent to prefer garbling over revelation for general F0, F1, which depends on similar identities.
First, we generalize the restricted mean cost function g0(p) to a comparison of agent utilities.

Definition 5 (Agent utility dominance). Let ∆(p0, p1) := (V1(p0)−V1(p1))−(V0(p0)−V0(p1))
denote the difference in sensitivities to the price change from p0 to p1 in each environment.

When F1 exhibits first order stochastic dominance over F0, we have that ∆(p0, p1) > 0 for
p0 > p1. The greater the dominance of V1(p) over V0(p) for all p, the greater the difference
∆. Thus, we refer to ∆(p0, p1) as agent utility dominance. Using this definition, we now
generalize the sufficient garbling condition from the anchored setting.

Proposition 11 (Sufficient garbling condition). Suppose γ = θ = 1
2
. Suppose F0, F1 are

continuously differentiable. Vgarb(ε) is maximized at ε∗ < 1 if

−Π′
1(p

∗
0)

(
b− p∗0

2− σ0(p∗0)

)
− Π′

0(p
∗
1)

(
b− p∗1

2− σ1(p∗1)

)
< ∆(p∗0, p

∗
1), (6.12)

where σx(p) = Fx(p)f ′
x(p)

fx(p)2
is the curvature of the inverse quantity function.

The left hand side of the inequality in equation (6.12) is a weighted version of the difference
b−p∗0

2−σ0(p∗0)
− b−p∗1

2−σ1(p∗1)
, which arises repeatedly in Aguirre et al. [2010]’s analysis of the effects of

price discrimination on total welfare, and also previously arose in Proposition 8. In cases
where Π′

0(p
∗
1) > −Π′

1(p
∗
0), the condition in Proposition 8 (equation (6.3)) would imply the

condition in Proposition 11 (equation (6.12)), since ∆(p∗0, p
∗
1) ≥ 0.

Example: Exponential and Weibull Distributions

We first illustrate the condition in Proposition 10 using an exponential distribution. Suppose
C|X = 1 takes value 0 with probability one, and suppose C|X = 0 ∼ Exp( 1

λ0
), with F0

defined as in equation (6.7). In this case, g0(p∗0) = λ0F0(p
∗
0), and b−p∗0

2−σ0(p∗0)
= λ0F0(p

∗
0)

1
2−F0(p∗0)

.
Therefore, the inequality in equation (6.11) holds for all λ0 > 0.

The significance of this example is that if one agent type is anchored at 0, and the
non-zero-cost environment induces an exponential distribution, the agent will always have an
incentive to garble, regardless of the mean of the non-zero-cost distribution. Consider this in
comparison to the exponential example from Section 6.3, where the condition in Proposition
7 showed that agent prefers to fully conceal X when λ0 is small enough.

For a Weibull distribution with F0 given by equation (6.9), we have for k0 ≥ 1,

g0(p) =
λ

k0

(
Γ

(
1

k0

)
− Γ

(
1

k0
,
pk0

λk00

))
.
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If k0 ≥ 1, then the inequality in equation (6.11) from Proposition 10 holds for all λ0. This
encompasses all log-concave Weibull distributions. If k0 < 1, then equation (6.11) does not
necessarily hold, and fully flips for k0 < 0.5.

Similarly to Figure 6.2, we can also consider simulations beyond the zero-cost anchored
setting by considering all combinations of λ0, λ1 when C|X = 0 ∼ Exp( 1

λ0
) and C|X = 1 ∼

Exp( 1
λ1
), with Fx given by equation (6.8). Figure 6.4 illustrates the combinations of λ0, λ1 for

which the agent prefers some amount of garbling over full revelation. Figure 6.4 shows that
V ′

garb(1) < 0 as long one of the conditional means λ0 or λ1 is small enough. That is, as long as
one of the revealed settings has low enough cost, the agent always prefers to garble, regardless
of how high the cost of the other setting goes. This contrasts the revelation example in
Section 6.3, where even if λ1 is close to 0, high enough λ0 leads to the agent being willing to
reveal.

V ′
garb(1)

λ1

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.00
0.0270

0.0225

0.0180

0.0135

0.0090

0.0045

0.0000

0.0045

λ0

Figure 6.4: Plot of V ′
garb(1) for a mixture of exponential distributions with means λ0, λ1. A

negative value indicates that the agent prefers some amount of garbling over full revelation.
As long as one of the revealed settings has low enough average cost, the agent always prefers
some amount of garbling over full revelation, regardless of how high the mean is of the other
setting.

Finally, Figure 6.5 show a case in which the agent would prefer to reveal some amount of
information via garbling over both concealment and revelation, but if not given the option
to garble, then they would otherwise prefer concealment over revelation in the game from
Figure 6.1.

Principal’s Garbling Preferences

Similarly to Section 6.3, the principal always prefers for more information to be revealed.
In fact, the garbling parameter ε directly interpolates between the concealed and revealed
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utilities for the principal.

Lemma 21. Πcon(p
∗) ≤ Πgarb(p0(ε), p1(ε)) ≤ Πrev(p

∗
0, p

∗
1) for all ε.

Also similarly to the comparison of full concealment and revelation settings, revealing less
noisy information yields a strict improvement in the principal’s utility if the MLRP holds.

Lemma 22 (Strict principal improvement). Suppose γ = θ = 1
2
. Suppose the principal’s

utility is strictly concave (Assumption 3). If the MLRP holds (Assumption 5), then Π′
garb(ε) >

0 for all ε ∈ [0, 1].

Garbling and Total Welfare

We now discuss the relationship between the agent’s the choice of garbling amount ε and
total welfare, Wgarb(p0, p1) := Πgarb(p0, p1) + Vgarb(p0, p1). For notational convenience, let
Wgarb(ε) := Wgarb(p0(ε), p1(ε)).

First, we show that relative to the fully concealed setting, the marginal effect of revealing
any information on total welfare is initially positive relative to full concealment.

Lemma 23 (More information initially increases total welfare). W ′
garb(0) ≥ 0. The inequality

is strict if Π′
garb(0) > 0, which is true under strict concavity of Π0(p),Π1(p) (Assumption 3)

and the MLRP (Assumption 5).

Second, we also know that the optimal amount of garbling chosen by the agent also
increases total welfare over the fully concealed setting.

Lemma 24 (Optimal garbling increases welfare over concealment). Let ε∗ ∈ argmaxε∈[0,1] Vgarb(ε).
Then Wgarb(ε

∗) ≥ Wgarb(0).

Intuitively, Lemma 24 follows from the fact that the principal is never hurt by additional
information. Given that the agent benefits from their optimal garbling choice, total welfare
must increase.

The increase in total welfare is important from a mechanistic standpoint: consider
a principal deciding whether or not to allow for agent garbling in an information transfer
mechanism. There exist cases when the agent would reveal some amount of garbled information
in the game, but would choose to conceal if only allowed to choose between concealment and
revelation (see Figure 6.5 for an example). Thus, the garbling mechanism leads to higher
total welfare in those situations.

While the agent’s chosen amount of garbling ε∗ improves total welfare over concealment,
the question remains of where ε∗ falls relative to the optimal amount of garbling that maximizes
total welfare. Lemma 25 shows that the optimal amount of garbling that maximizes total
welfare must necessarily reveal at least as much information as the optimal amount of garbling
chosen by the agent. Under Assumptions 3 and 5, if ε∗ < 1, then the ε that maximizes total
welfare is strictly higher than the ε that maximizes agent utility.
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Lemma 25 (More information increases total welfare relative to agent optimal garbling).
W ′

garb(ε) ≥ V ′
garb(ε) for all ε ∈ [0, 1]. The inequality is strict if Π′

garb(0) > 0, which is true
under strict concavity of Π0(p),Π1(p) (Assumption 3) and the MLRP (Assumption 5).

Garbling vs. Restricted Price Discrimination

Our garbling model expands the agent’s action space from a binary choice between full
concealment and full revelation for a given X to a continuous choice of revealing a garbled
version parameterized by ε. Thus, ε interpolates between the full concealment and full
revelation settings.

Garbling is not the only way to interpolate between the full concealment and full revelation
settings. In the price discrimination literature, there is an established model that interpolates
between full price discrimination and no price discrimination by restricting that price difference
between market segments can be no greater than some parameter r. Wright [1993] models
this restriction as arising from a “cost of transport” or arbitrage between two markets. Aguirre
et al. [2010] apply this interpolation by analyzing the marginal effect of r on total welfare.
We refer to this interpolation using r as a restricted price discrimination model. We also
leveraged this technique to analyze the agent’s utility in Section 6.3.

We now discuss in detail how the garbling model that we have introduced compares with
this restricted price discrimination model. Specifically, we consider how the interpolation
between concealment and revelation introduced through varying ε in our garbling model
compares to interpolation using a constraint parameter r.

In fact, the trajectory of the principal and agents’ utilities as r varies is different from the
trajectory of the principal and agents’ utilities as ε varies. Most importantly to our setting,
there is a qualitative difference between the functions Vconst(r) and Vgarb(ε). Lemma 16 shows
that the value of r that maximizes Vconst(r) always corresponds with either full concealment
or full revelation. However, under the same conditions, the value of ε that maximizes Vgarb(ε)
is not always at the extremes, and is often somewhere in between 0 and 1. This is significant
in our setting since the agent’s power to choose ε is directly built into the game, and the
existence of an optimal ε ∈ (0, 1) means that the agent benefits from the additional degree of
freedom in their action space.

To visualize this difference between these interpolation methods, we can further map the
combinations of principal and agent value onto the surplus triangle from Bergemann et al.
[2015]. Figure 6.5 shows an example where there exists an intermediate value ε that the agent
prefers over both concealment and revelation. In summary, both this example and Lemma 16
show that while there sometimes exist intermediate values ε that the agent prefers over both
concealment and revelation, this is notably not true for intermediate restrictions r to the
amount of price discrimination.
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Figure 6.5: Trajectories of principal and agent utilities over ε and r, mapped onto the triangle
of possible combinations of principal and agent utilities from Bergemann et al. [2015]. Here,
cost is distributed as a mixture of exponentials with C|X = 1 ∼ Exp( 1

λ1
), C|X = 0 ∼ Exp( 1

λ0
),

with λ0 = 0.5, λ1 = 0.01. The point A corresponds to the concealed setting (Vcon(p
∗),Πcon(p

∗)),
and the point F corresponds to the revealed setting (Vrev(p

∗
0, p

∗
1),Πrev(p

∗
0, p

∗
1)). The solid blue

line shows all combinations of Πgarb(ε), Vgarb(ε) for ε ∈ [0, 1]. The dashed orange line shows
all combinations of Vconst(r),Πconst(r) for r ∈ [0, p∗0 − p∗1]. First, note that the agent’s utility
at A is higher than at F , so the agent prefers concealment over revelation for this particular
X. However, there exists a point along the ε trajectory in which Vgarb(ε) achieves higher
agent utility than the point A. However, this is not true of the r trajectory. In general,
Lemma 16 shows that intermediate values of r will always be dominated by either the fully
concealed or fully revealed settings.

6.5 Conclusions and Future Work
We have presented a model in which an agent decides whether or not to reveal the observability
of an environmental variable to a principal. We first considered a simple action space where
the agent must choose between concealing or revealing a given variable X, and we later relaxed
this to a continuous action space where the agent can choose to reveal a garbled version
of the given environmental variable X. In both cases, we gave sufficient conditions on the
conditional cost distributions for the agent to prefer revelation over concealment, concealment
over revelation, and garbling over revelation. Our agency game has a price discrimination
analog, which makes it possible to leverage existing results from price discrimination to
analyze total welfare; however, our model also offers a qualitatively different perspective and
interpolation method via garbling.

More broadly, this work was motivated by analyzing a mechanism by which one might
discover unknown unknowns. Even as data and computational methods become increasingly
sophisticated and widely available, this problem of discovery of which metrics or variables
to analyze continues to permeate the natural sciences, social sciences, and engineering. In
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this work, we’ve explored one avenue for discovery of metrics in a setting of information
asymmetry where relevant environmental variables are unknown to a principal, but known to
an evaluated agent. There are other possibilities for formulating the question of who holds
relevant information, and when they would be willing to share it. For example, one could
model incentives for third-party individuals to offer new metrics, or perhaps bi-directional
information transfer where a principal and agent both hold distinct information. The key
element of our work that may be worth retaining in alternative information design frameworks
is the property that the variable itself may be unknown to the information receiver.

Going beyond information design, our broader motivation is to apply these insights to
help design mechanisms that would benefit all players. For example, if sharing information
would increase total welfare, but decrease an agent’s private utility, then perhaps a wealth
transfer mechanism exists to adequately compensate the agent for revealing the information.
Or, perhaps there exist auction or tournament frameworks that may further encourage
information sharing. Finally, a particularly interesting avenue for future work would be to
consider the possibility of cooperation and competition between multiple agents in this agency
game with information transfer.



164

Appendix D

Deferred Proofs and Discussion for
Chapter 5

D.1 Estimating the Untreated Potential Outcome
Our main paper considers incentive problems under the assumption that the principal has
access to measures of patient risk through an unbiased estimator of the untreated potential
outcome, µ̂0(x) with E[µ̂0(x)] = µ0(x).

Obtaining such an unbiased estimator can be difficult. Still, the conditions under which
causal estimation can be done are well understood. In this section, we give some examples of
sufficient conditions for identification of µ0(x). This is not an exhaustive list, but rather a
starting point for analysis of existing data sources.

Examples of data sources

We list two examples of data sources that may contribute to building the estimator µ̂0,
along with sufficient conditions for identification. These may not always be realistic, and
are also not the only possible conditions for identification. In reality, practitioners may also
be able to leverage knowledge of a more detailed structure causal model, or functional form
assumptions (see Hernan and Robins [2020] for a more thorough coverage of methodologies
and assumptions).

1. Auxiliary untreated data. Suppose the principal has access to an auxiliary dataset
{X ′

j, T
′
j , Y

′
j }mj=1. Then the principal may produce an unbiased estimator µ̂0(x) for µ0(x)

from this auxiliary dataset if:

a) µ′
0(x) = E[Y ′

j (0)|X ′
j = x] is identifiable from this dataset. A set of sufficient

conditions for this would be if ignorability was satisfied, {Y ′
j (0), Y

′
j (1)} |= T ′

j|X ′
j,

and P (T ′
j = 0|Xj = x) > 0 ∀x ∈ X , and SUTVA was satisfied, Y ′

j = Y ′
j (T

′
j)

(encompassing both consistency and non-interference).
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b) The relationship between the untreated potential outcome Y ′
j (0) and the covariates

X ′
j is the same as in the treatment population between Yi(0) and Xi. That is,

E[Y ′
j (0)|X ′

j = x] = E[Yi(0)|Xi = x].

c) The support of X ′
j covers the support of Xi. Formally, the distribution of Xi is

absolutely continuous with respect to the distribution of X ′
j.

2. Untreated patients in the treatment population. In the main paper, we have
assumed that the principal only observed outcomes Yi for treated units with T π

i = 1.
If the principal also observed a fraction of outcomes for untreated units, with T π

i = 0,
then these may also be incorporated into the estimate for µ̂0(x). Sufficient conditions
for identifying µ0(x) from a dataset of the agent’s untreated units are:

a) No information asymmetry: the agent’s treatment policy π only depends on Xi.
Under this assumption, we have no confounding: {Yi(0), Yi(1)} |= T π

i |Xi.

b) Positivity: P (T π
i = 0|Xi = x) > 0 for all x ∈ X , and Yi is observed for a nonzero

proportion of untreated units for all x.

The positivity assumption is particularly tricky. In the principal-agent game, there is
no guarantee that the agent’s best response policy π would satisfy positivity. Positivity
may be enforced by restricting the treatment rule class Π to only include treatment
rules where π(x) < 1, but this may not always be possible or ethical from a policy
standpoint. In practice, it may be possible to create a composite dataset that combines
data from both sources. That way, data from untreated patients in the treatment
population could supplement auxiliary untreated data to produce a better estimator
µ̂0(x) than using auxiliary untreated data alone.

Necessity of estimating the untreated potential outcome

Here we address the necessity of including an estimate of the untreated potential outcome
in the reward function w. We show that if w is completely unable to differentiate between
different distributions over the untreated potential outcome, perhaps through incorporating
some estimate of some function of Yi(0) or through other constraints (e.g. co-monotonicity of
µ1(x) and µ0(x)), then regret is necessarily unbounded.

Formally, let D denote a distribution over Xi, Yi(1), Yi(0). Let D′ denote an alternate
distribution such that ED′ [Yi(0)|Xi = x] = µ′

0(x), and the joint distribution Xi, Yi(1) under
D′ remains unchanged. Let Yi continue to denote the observed outcome under treatment
assignments Yi = Yi(T

π
i ), and note that the distribution of Yi changes under D′ as well. We

show that if the reward function w cannot differentiate between worlds D and D′, then regret
will necessarily be unbounded.

Assumption 6 (Non-degenerate w). Assume that w does not always induce a degenerate
best response: that is, there exists a distribution D such that argmaxπ∈ΠED[w(X,T

π,Y)]
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contains πw with ED[π
w(Xi)] > 0 (in other words, there exists a non-measure-zero set X

with πw(x) > 0 ∀x ∈ X ).

Theorem 13. Suppose w satisfies Assumption 6. Let S be the set of all pairs of distributions
D,D′ such that the distributions of Xi, Yi(1) remain unchanged between D and D′. If for all
pairs of distributions D,D′ ∈ S, ED[w(X,T

π,Y)] = ED′ [w(X,Tπ,Y)] for all π, then regret
is unbounded.

Proof. Let π′ ∈ argmaxπ∈ΠED′ [w(X,Tπ,Y)], with π′(x) = δ > 0 for all x ∈ X , with X being
a set of measure ρ > 0 (which exists by Assumption 6). Let µ1(x) = E[Yi(1)|X = x] = α for
all x ∈ X . Let D be distribution such that µ0(x) = ED[Yi(0)|X = x] = β for all x ∈ X . Since
ED[w(X,T

π,Y)] = ED′ [w(X,Tπ,Y)] for all π, we have π′ ∈ argmaxπ∈ΠED[w(X,T
π,Y)] as

a candidate best response to w under distribution D.
Denote the welfare maximizing policy for distribution D as

π∗ ∈ argmax
π∈Π

ED[π(Xi)(µ1(Xi)− µ0(Xi))].

Choose β > α. Then the set of welfare maximizing policies contains a π∗ with π∗(x) = 0 for
all x ∈ X .

The regret is then

R(π′) = ED[(π
∗(Xi)− π′(Xi))(µ1(Xi)− µ0(Xi))] ≥ −δ(α− β)ρ.

Fixing δ > 0, ρ > 0, α < ∞ and choosing β to be arbitrarily high results in arbitrarily
high regret.

D.2 Proofs From Section 5.4 on Reward Function
Comparisons

This section provides proofs and formal statements for the best responses and regrets
corresponding to each reward function in Section 5.4.

Notation

Let
∫
f(Z)dPZ denote integration of the function f(Z) with respect to the probability measure

for the random variable Z. Let the bold variable Z denote the vector of i.i.d. random variables
{Zi}ni=1. Let 1(·) denote an indicator function with

1(x ∈ S) =

{
1 if x ∈ S
0 otherwise.

Let πw denote the agent’s best response for the reward function w:

πw = argmax
π∈Π

E[w(X,Tπ,Y)].
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Additional reward function

A simple extension from wATO would be to measure the total treated outcome (TO):
Reward Function 5 (TO):

wTO(X,T
π,Y) =

n∑
i=1

YiT
π
i . (D.1)

The unconstrained best response is πwTO(x) = 1(µ1(x) > 0). Like wATO, this incurs
unbounded regret; however, this rule treats more people due to treating all individuals for
whom the treated outcome is positive. Thus, there is no longer the “creaming” Muller [2019]
issue of maximizing the average effect at the expense of the total effect.

Formal statements and proofs for agent best responses

We give formal statements and proofs for the agent best responses to the different reward
functions stated in Section 5.4.

Proposition 12 (ATO Best Response). Suppose Π is the set of all functions π : X → [0, 1],
and suppose X is a discrete random variable supported on X . Then the agent’s best response
to wATO is:

πwATO(x) =

{
1 if x ∈ argmaxx µ1(x) and µ1(x) > 0

0 otherwise.

Proof. By the tower property,

E[wATO(X,T
π,Y)] = E[E[Yi|T π

i = 1, Xi]|T π
i = 1] =

∫
E[Yi|T π

i = 1, Xi]dPXi|Tπ
i =1.

Since T π
i only depends on Xi by construction, we have the strong ignorability property that

{Yi(0), Yi(1)} |= T π
i |Xi. Therefore,∫

E[Yi|T π
i = 1, Xi]dPXi|Tπ

i =1 =

∫
µ1(Xi)dPXi|Tπ

i =1.

For discrete Xi, this is equal to∑
x∈X

µ1(x)P (Xi = x|T π
i = 1) =

∑
x∈X

µ1(x)
π(x)P (Xi = x)∑
z∈X π(z)P (Xi = z)

.

The π function that maximizes this is exactly that given in Proposition 12.

As a tool to prove further results, we give the following lemma for the optimal treatment
rule.
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Lemma 26 (Optimal Treatment Rule). If the agent’s treatment rule π depends only on Xi,
then the treatment rule π∗ that maximizes V (π) is

π∗(x) =

{
1 if τ(x) > 0

0 otherwise.

Proof.

V (π) = E[Yi(T
π
i )− Yi(0)]

= E[Yi(T
π
i )− Yi(0)|T π

i = 1]P (T π
i = 1) + E[Yi(T

π
i )− Yi(0)|T π

i = 0]P (T π
i = 0)

= E[Yi(1)− Yi(0)|T π
i = 1]P (T π

i = 1).

By the tower property,

E[Yi(1)− Yi(0)|T π
i = 1] = E[E[Yi(1)− Yi(0)|T π

i = 1, Xi]|T π
i = 1].

Since we have ignorability in Xi,

E[Yi(1)− Yi(0)|T π
i = 1, Xi] = E[Yi(1)− Yi(0)|Xi] = τ(Xi).

Thus,

V (π) = E[τ(Xi)|T π
i = 1]P (T π

i = 1) =

∫
τ(Xi)P (T

π
i = 1)dPXi|Tπ

i =1.

By Bayes’ theorem,∫
τ(Xi)P (T

π
i = 1)dPXi|Tπ

i =1 =

∫
τ(Xi)P (T

π
i = 1|Xi)dPXi

=

∫
τ(Xi)π(Xi)dPXi

.

The π function that maximizes this is exactly as given in Lemma 26.

Proposition 13 (ATT Best Response). Suppose Π is the set of all functions π : X → [0, 1],
and suppose X is a discrete random variable supported on X . Then the agent’s best response
to wATT is:

πwATT(x) =

{
1 if x ∈ argmaxx τ(x) and τ(x) > 0

0 otherwise.

Proof.

E[wATT(X,T
π,Y)] = E[Yi − µ̂0(Xi)|T π

i = 1]

= E[Yi|T π
i = 1]− E[E[µ̂0(Xi)|T π

i = 1, Xi]|T π
i = 1].

Since E[µ̂0(x)] = µ0(x) for all x ∈ X , we have E[µ̂0(Xi)|T π
i = 1, Xi] = µ0(Xi). Thus,

E[wATT(X,T
π,Y)] = E[Yi|T π

i = 1]− E[µ0(Xi)|T π
i = 1].
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Since we have ignorability in Xi,

E[Yi|T π
i = 1] = E[E[Yi|T π

i = 1, Xi]|T π
i = 1] = E[E[Yi(1)|Xi]|T π

i = 1] = E[µ1(Xi)|T π
i = 1].

Combining these,

E[wATT(X,T
π,Y)] = E[µ1(Xi)− µ0(Xi)|T π

i = 1] = E[τ(Xi)|T π
i = 1].

For discrete Xi, this is equal to∑
x∈X

τ(x)P (Xi = x|T π
i = 1) =

∑
x∈X

τ(x)
π(x)P (Xi = x)∑
z∈X π(z)P (Xi = z)

.

The π function that maximizes this is exactly that given in Proposition 13.

Proposition 14 (TO Best Response). Suppose Π is the set of all functions π : X → [0, 1].
Then the agent’s best response to wTO is:

πwTO(x) =

{
1 if µ1(x) > 0

0 otherwise.

Proof.
E[wTO(X,T

π,Y)] = nE[Yi|T π
i = 1]P (T π

i = 1).

Since we have ignorability in Xi, we have E[Yi|T π
i = 1] = E[µ1(Xi)|T π

i = 1] (shown in more
detail in the above proofs). Thus,

E[wTO(X,T
π,Y)] = nE[µ1(Xi)|T π

i = 1]P (T π
i = 1) = n

∫
µ1(Xi)P (T

π
i = 1)dPXi|Tπ

i =1.

By Bayes’ theorem,

n

∫
µ1(Xi)P (T

π
i = 1)dPXi|Tπ

i =1 = n

∫
µ1(Xi)P (T

π
i = 1|Xi)dPXi

= n

∫
µ1(Xi)π(Xi)dPXi

.

The π function that maximizes this is exactly that given in Proposition 14.

Proposition 15 (TT Best Response). Suppose Π is the set of all functions π : X → [0, 1].
Then the agent’s best response to wTT is:

πwTT(x) =

{
1 if τ(x) > 0

0 otherwise.

Proof.
E[wTT(X,T

π,Y)] = nE[Yi − µ̂0(Xi)|T π
i = 1]P (T π

i = 1).

Since we have ignorability in Xi, we have E[Yi|T π
i = 1] = E[µ1(Xi)|T π

i = 1]. (shown
in more detail in the above proofs). Since E[µ̂0(x)] = µ0(x) for all x ∈ X , we have
E[µ̂0(Xi)|T π

i = 1] = E[µ0(Xi)|T π
i = 1]. Thus,

E[wTT(X,T
π,Y)] = nE[τ(Xi)|T π

i = 1]P (T π
i = 1) = nV (π).

Applying Lemma 26, the π function that maximizes this is exactly that given in Proposition
15.
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Regret proofs

We give proofs for the regret bounds stated for each reward function in Section 5.4.

Proposition 2 (ATO Regret). If the conditional mean untreated potential outcomes µ0(x)
are unbounded, then the regret for the reward function wATO may be arbitrarily large.

Proof. We construct an family of distributions for which the regret is unbounded. Let
X = {0, 1} with P (Xi = 1) = p, and let µ1(0) = 0, µ1(1) = 1. Let µ0(0) = α, and µ0(1) = β.
Suppose Π is the set of all functions π : X → [0, 1].

For wATO, the agent’s best response is πwATO(0) = 0 and πwATO(1) = 1.
We illustrate two failure modes for the reward function wATO. First, suppose α < 0, and

β = 0. Then the regret is given by

R(πw) = max
π∈Π

V (π)− V (πw) = −α(1− p) + p− p = −α(1− p).

This is unbounded for unbounded α. Intuitively, this illustrates an example where the agent
ignores the higher treatment effect of the patients with a lower treated outcome, such as
sicker patients with higher mortality probability but more benefit from surgery. Since the
agent’s best response does not account for the patient’s untreated potential outcome, the
agent thus ignores the fact that sicker patients would otherwise have very poor outcomes
without treatment. This matches the findings from Dranove et al. [2003].

A second failure mode would be if α = −1, and β > 1. Then the regret is given by

R(πw) = (1− p)− p(β − 1) = 1− pβ.

This is also unbounded for unbounded β. This illustrates an example where the agent
treats the patients with a higher treated outcome, even though treatment actually harms
those patients, such as healthier patients who might incur more risks or side effects from
treatment.

Proposition 3 (ATT Regret). Suppose Π is the set of all functions π : X → [0, 1]. Then the
regret for the reward function wATT is upper bounded by

R(πwATT) ≤ max
π∈Π

V (π).

Proof. Let π∗ = argmaxπ∈Π V (π). Then

π∗(x) =

{
1 if τ(x) > 0

0 otherwise.

R(πwATT) = V (π∗)− V (πwATT)

= E[π∗(Xi)τ(Xi)]− E[πwATT(Xi)τ(Xi)]
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= E[τ(Xi)1(τ(Xi) > 0)]− E[τ(Xi)1(τ(Xi) > 0 ∩Xi ∈ argmax
x∈X

τ(x))]

= E[τ(Xi)1(τ(Xi) > 0 ∩Xi /∈ argmax
x∈X

τ(x))]

Proposition 4 (TT Regret). If E[µ̂0(X)] = µ0(X), then the regret from applying the reward
function wTT is R(πwTT) = 0.

Proof. As shown in Proposition 15,

E[wTT(X,T
π,Y)] = nE[τ(Xi)|T π

i = 1]P (T π
i = 1) = nV (π).

Therefore, the agent’s best response πwTT also maximizes V (π) over the same feasible set,
Π.

D.3 Proofs From Section 5.5 on Ranking
We give expanded notation and proofs for the results in Section 5.5 on modifications of wTT

to satisfy ranking desiderata.

Detailed notation for ranking with multiple agents

We expand the notation for ranking with multiple agents, as applied in Section 5.5. Suppose
there are K agents, where each agent k observes its own sample of nk patients with covariates
X(k) = {X(k)

i }
nk
i=1 drawn i.i.d. from distribution PX(k) with support X . Let Y (k)

i (t) denote
the potential outcomes when agent k treats the patient with treatment t. Let µ(k)

t (x) =

E[Y
(k)
i (t)|X(k)

i = x], and τ (k)(x) = E[Y
(k)
i (1)− Y (k)

i (0)|X(k)
i = x].

For rankings to be meaningful, we assume that if the same patient with covariate value
x ∈ X were to be treated by either agent j or agent k, their potential outcomes would follow
each agent’s respective conditional potential outcome distributions for covariate value x.
Furthermore, the conditional potential untreated outcome has the same distribution for all k:
for each x ∈ X , the distributions PY (k)(0)|X(k)=x are identical for all k ∈ {1, ..., K}. Let µ0(x)

denote the shared mean conditional untreated potential outcome, with µ(k)
0 (x) = µ0(x) for all

k. In short, one provider not treating a patient is equivalent to another provider not treating
the same patient.

Suppose agent k chooses treatment policy πk, thus producing realized treatments denoted
Tπk = {T πk

i }
nk
i=1 and outcomes Y (k)

i = Y
(k)
i (T πk

i ), Y(k) = {Y (k)
i }

nk
i=1.

Suppose the reward function w is used to rank these K agents in the following way: the
principal publishes score functions wk : X nk × {0, 1}nk × Rnk → R, and each agent k gets
score wk(X

(k),Tπk ,Y(k)) after choosing their treatment policy πk. The agents are then ranked
from highest to lowest score function values.
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We assume that each agent seeks to maximize their individual ranking, and make the
simplifying assumption that the agents act independently: that is, each agent does not
consider the potential actions of other agents when choosing their actions. This may be
realistic in a setting with a large number of hospitals serving more-or-less independent
populations, though more complex competitive multi-agent models may make for interesting
future extensions.

Proofs

We give proofs for the proposition and theorems from Section 5.5.

Proposition 5. If

wk(X
(k),Tπk ,Y(k)) =

nk∑
i=1

(Y
(k)
i − µ̂0(X

(k)
i ))T πk

i ,

then both ranking properties in Definitions 3 and 4 will be violated.

Proof. Suppose for agents j and k, Πj and Πk are both unconstrained. For wk as defined
above,

max
πj∈Πj

E[wj(X
(j),Tπj ,Y(k))] = njE[τ

(j)(X(j))1(τ (j)(X(j)) > 0)],

max
πk∈Πk

E[wk(X
(k),Tπk ,Y(k))] = nkE[τ

(k)(X(k))1(τ (k)(X(k)) > 0)].

For Definition 3, suppose τ (j)(x) ≥ τ (k)(x) for all x ∈ X , and X(j) and X(k) are identically
distributed. Then,

E[τ (j)(X(j))1(τ (j)(X(j)) > 0)] ≥ E[τ (k)(X(k))1(τ (k)(X(k)) > 0)].

Let nj, nk be a pair such that

nj < nk
E[τ (k)(X(k))1(τ (k)(X(k)) > 0)]

E[τ (j)(X(j))1(τ (j)(X(j)) > 0)]
.

This immediately results in Definition 3 being violated.
Definition 4 is also violated, since τ (j)(x) ≥ τ (k)(x) for all x ∈ X implies that E[τ (j)(X0)] ≥

E[τ (k)(X0)] for any reference population PX0 . However, for the above nj, nk, we’ve shown
that

max
πj∈Πj

E[wj(X
(j),Tπj ,Y(k))] < max

πk∈Πk

E[wk(X
(k),Tπk ,Y(k))].

Theorem 10 (Incentive Alignment). Suppose E[µ̂0(x)] = µ0(x), and suppose Π is the set of
all functions π : X → [0, 1]. For any function g : X → R+, wg

TT yields an agent best response
with zero regret.



APPENDIX D. DEFERRED PROOFS AND DISCUSSION FOR CHAPTER 5 173

Proof. By the tower property,

E[wg
TT(Y,T

π,X)] = nP (T π
i = 1)E[E[(Yi − µ̂0(Xi))g(Xi)|T π

i = 1, Xi]|T π
i = 1]

= nP (T π
i = 1)E[g(Xi)E[Yi − µ̂0(Xi)|T π

i = 1, Xi]|T π
i = 1].

Since E[µ̂0(x)] = µ0(x) and we have ignorability in Xi,

E[Yi − µ̂0(Xi)|T π
i = 1, Xi] = τ(Xi).

This is shown in more detail in the proof for Proposition 15.
Combining this with the above, we have

E[wg
TT(Y,T

π,X)] = nP (T π
i = 1)E[g(Xi)τ(Xi)|T π

i = 1].

Applying Bayes’ theorem as in Lemma 26,

P (T π
i = 1)E[g(Xi)τ(Xi)|T π

i = 1] =

∫
g(Xi)τ(Xi)P (T

π
i = 1)dPXi|Tπ

i =1

=

∫
g(Xi)τ(Xi)P (T

π
i = 1|Xi)dPXi

=

∫
g(Xi)τ(Xi)π(Xi)dPXi

.

Therefore,
E[wg

TT(Y,T
π,X)] = nE[g(Xi)τ(Xi)π(Xi)].

Since g(Xi) > 0, the treatment rule π that maximizes this is the same as π∗ from Lemma
26. Therefore, the regret is zero.

Theorem 11 (Ranking Desiderata Satisfied). Let PX(k) be absolutely continuous with respect
to PX0, and let gk = 1

nk

dPX0

dP
X(k)

be the normalized Radon–Nikodym derivative of the reference
distribution PX0 with respect to agent k’s covariate distribution PX(k). Then

wk(X
(k),Tπk ,Y(k)) =

nk∑
i=1

(Y
(k)
i − µ̂0(X

(k)
i ))T πk

i gk(X
(k)) (D.2)

satisfies both ranking properties in Definitions 3 and 4 as long as Πk is unconstrained and
treatment effects are nonnegative, τ (k)(x) ≥ 0, for all k ∈ {1, ..., K}.

Proof. As shown in the proof of Theorem 10,

E[wk(X
(k),Tπk ,Y(k))] = nkE[τ

(k)(X
(k)
i )πk(X

(k)
i )gk(X

(k)
i )].

With gk = 1
nk

dPX0

dP
X(k)

, we have

nkE[τ
(k)(X

(k)
i )πk(X

(k)
i )gk(X

(k)
i )] = E[τ (k)(X0)πk(X0)].
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Let Πj, Πk both be unconstrained. Then

max
πj∈Πj

E[wj(X
(j),Tπj ,Y(k))] = E[τ (j)(X0)1(τ

(j)(X0) > 0)],

max
πk∈Πk

E[wk(X
(k),Tπk ,Y(k))] = E[τ (k)(X0)1(τ

(k)(X0) > 0)].

Definition 3 is immediately satisfied, since τ (j)(x) ≥ τ (k)(x) for all x ∈ X implies E[τ (k)(X0)1(τ
(k)(X0) >

0)] ≥ E[τ (k)(X0)1(τ
(k)(X0) > 0)].

If τ (k)(x) ≥ 0 for all x ∈ X and all k ∈ {1, ..., K}, then Definition 4 is satisfied, since

E[τ (j)(X0)] ≥ E[τ (k)(X0)] =⇒ E[τ (j)(X0)1(τ
(j)(X0) > 0)] ≥ E[τ (k)(X0)1(τ

(k)(X0) > 0)].

D.4 Proofs and Additional Results for Section 5.6 on
Information Asymmetry

In this section, we give proofs and additional regret bound results for Section 5.6 on information
asymmetry. First, we prove the regret bounds in Section 5.6 when µ̂0(x) is estimated from
auxiliary data where the mean untreated potential outcome conditioned on X, µ0(x), is
identifiable.

Second, we prove similar results when µ̂0(x) is estimated from the untreated units in the
treatment population, where T π = 0. Under information asymmetry, the mean untreated
potential outcome conditioned on X, µ0(X), is no longer identifiable. Therefore, µ̂0(x) will
be subject to confounding bias. Still, if we apply a similar but stronger assumption than
Assumption 2, we can get similar regret bounds to Theorem 12.

Detailed notation for information asymmetry

We model information asymmetry in our principal agent game as follows: suppose the agent
observes additional covariates per patient Ui ∈ U , and selects a treatment rule π : X ,U → [0, 1]
from a feasible set of treatment rules Π, with π(X,U) = P (T π

i = 1|X,U). Suppose the
principal still observes only {Xi, T

π
i , Yi}ni=1, and chooses a reward function w : X n×{0, 1}n×

Rn → R with which to reward the agent. Notably, the principal’s reward function w cannot
depend on U . Let µt(X,U) = E[Yi(t)|X,U ] and τ(X,U) = E[Yi(1)− Yi(0)|X,U ].

The utility is still defined as in Section 5.3, and with the additional U variable can be
rewritten as

V (π) = E[π(Xi, Ui)τ(Xi, Ui)].

The regret is also still defined as in Section 5.3.
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Proofs for regret bounds with unbiased counterfactual estimate

Suppose the principal estimates the mean conditional untreated potential outcome from
auxiliary data {X ′

j, T
′
j , Y

′
j }mj=1 drawn i.i.d. from auxiliary dataset Q, denoted µ̂Q

0 (x). Suppose
we have a “best case scenario” where the relationship between X ′

j and Y ′
j (0) is the same in

the auxiliary data as the relationship between Xi and Yi(0) in the treatment population, and
the mean untreated potential outcome conditional on X ′

j is identifiable from Q, such that

E[µ̂Q
0 (x)] = E[Y ′

j (0)|X ′
j = x] = E[Yi(0)|Xi = x].

Outside of this ideal setting, any distribution shift or problems with identifiability in the
Q dataset would increase the regret. Proposition 16 below is an intermediate result that does
not actually rely on identifiability of µ0(x), and may provide a good starting point for future
analyses of distribution shift or non-identifiability. To simplify the proofs below, we first give
Lemma 27.

Lemma 27. Under information asymmetry,

E[wTT(X,T
π,Y)] = n(E[π(Xi, Ui)µ1(Xi, Ui)]− E[π(Xi, Ui)µ̂0(Xi)]).

Proof. We have previously shown that

E[wTT(X,T
π,Y)] = nP (T π

i = 1)E[Yi − µ̂0(Xi)|T π
i = 1]

= n(P (T π
i = 1)E[Yi|T π

i = 1]− P (T π
i = 1)E[µ̂0(Xi)|T π

i = 1]).

Considering the first term, since we have ignorability in Xi and Ui,

P (T π
i = 1)E[Yi|T π

i = 1] = P (T π
i = 1)E[E[Yi|Xi, Ui, T

π
i = 1]|T π

i = 1]

= P (T π
i = 1)E[µ1(Xi, Ui)|T π

i = 1]

= P (T π
i = 1)

∫
µ1(Xi, Ui)dPXi,Ui|Tπ

i =1

=

∫
µ1(Xi, Ui)P (T

π
i = 1|Xi, Ui)dPXi,Ui

= E[π(Xi, Ui)µ1(Xi, Ui)].

For the second term, we again apply Bayes’ theorem:

P (T π
i = 1)E[µ̂0(Xi)|T π

i = 1] = P (T π
i = 1)

∫
µ̂0(Xi)dPXi,Ui|Tπ

i =1

=

∫
µ̂0(Xi)P (T

π
i = 1|Xi, Ui)dPXi,Ui

= E[π(Xi, Ui)µ̂0(Xi)].
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Proposition 16. Suppose the principal applies the reward function wTT with an estimate
µ̂Q
0 (X). Then the regret is bounded by the average bias in the conditional untreated potential

outcome estimate.
R(πw) ≤ 2E[|µ̂Q

0 (Xi)− µ0(Xi, Ui)|]. (D.3)

Proof. Let V̂ (π) = 1
n
E[wTT(X,T

π,Y)]. Then πwTT maximizes V̂ (π) as well.

V (π∗)− V (πwTT) ≤ V (π∗)− V (πwTT) + V̂ (πwTT)− V̂ (π∗)

≤ |V (π∗)− V̂ (π∗)|+ |V̂ (πwTT)− V (πwTT)|
≤ 2max

π∈Π
|V̂ (π)− V (π)|

= 2max
π∈Π
|E[π(Xi, Ui)(µ̂

Q
0 (Xi)− µ0(Xi, Ui))]|,

where the last line follows from Lemma 27. By Jensen’s inequality,

max
π∈Π
|E[π(X,U)(µ̂Q

0 (Xi)− µ0(Xi, Ui))]| ≤ max
π∈Π

E[π(Xi, Ui)|µ̂Q
0 (Xi)− µ0(Xi, Ui)|]

≤ E[|µ̂Q
0 (Xi)− µ0(Xi, Ui)|].

Theorem 12 (Regret With Information Asymmetry). If the principal applies the reward
function from wTT with an unbiased estimate µ̂0(X) where E[µ̂0(x)] = µ0(x), then under
Assumption 2, the regret is upper bounded as

R(πwTT) ≤ 2γmarg.

Proof. This follows similarly to the proof of Proposition 16:

V (π∗)− V (πwTT) ≤ V (π∗)− V (πwTT) + V̂ (πwTT)− V̂ (π∗)

≤ |V (π∗)− V̂ (π∗)|+ |V̂ (πwTT)− V (πwTT)|
≤ 2max

π∈Π
|V̂ (π)− V (π)|

= 2max
π∈Π
|E[π(Xi, Ui)(µ̂0(Xi)− µ0(Xi, Ui))]|

By the tower property,

E[π(X,U)µ̂0(X)] = E[E[µ̂0(Xi)π(Xi, Ui)|Xi, Ui]]

= E[π(Xi, Ui)E[µ̂0(Xi)|Xi, Ui]]

= E[π(Xi, Ui)µ0(Xi)].

Therefore,

E[π(Xi, Ui)(µ̂0(Xi)− µ0(Xi, Ui))] = E[π(Xi, Ui)(µ0(Xi)− µ0(Xi, Ui))].
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By Jensen’s inequality,

max
π∈Π
|E[π(Xi, Ui)(µ0(Xi)− µ0(Xi, Ui))]| ≤ max

π∈Π
E[π(Xi, Ui)|µ0(Xi)− µ0(Xi, Ui)|]

≤ E[|µ0(Xi)− µ0(Xi, Ui)|].

The regret bound then follows directly from Assumption 2 which says that

E[|µ0(Xi)− µ0(Xi, Ui)|] ≤ γmarg.

Proposition 6. For all ε > 0, there exists a distribution of Xi, Ui, Yi(0), Yi(1) wherein
R(πwTT) ≥ γmarg − ε.

Proof. We construct a family of distributions of Xi, Ui, Yi(0), Yi(1) that achieves this regret
bound. Let U ∈ {0, 1}, with P (U = 1) = 1

2
. Suppose X is entirely uncorrelated with

Yi(0), Yi(1), such that E[Y (t)|X] = E[Y (t)] = µt. For α > 0, β > 0, let

µ1(x, u) =

{
0 if u = 1

β if u = 0
, µ0(x, u) =

{
−α if u = 1

α if u = 0
,

which also means that µ0(x) = µ0 = 0 for all x. Suppose Π includes all functions π : X ,U →
[0, 1]. Then by Lemma 27, and assuming µ̂0(x) is unbiased, we have

E[wTT(X,T
π,Y)] = n(E[π(Xi, Ui)(µ1(Xi, Ui)− µ0(Xi))].

The resulting policy πwTT that maximizes this is

πwTT(x, u) =

{
0 if u = 1

1 if u = 0
.

Suppose β < α. Then the optimal policy is

π∗(x, u) =

{
1 if u = 1

0 if u = 0
.

with utility V (π∗) = α
2
. The regret R(πwTT) is then

R(πwTT) =
α

2
− β − α

2
= α− β

2
.

Note that γmarg = α. For any ε, choosing β = ε gets R(πwTT) = γmarg − ε
2
, satisfying the

bound in Proposition 6.



APPENDIX D. DEFERRED PROOFS AND DISCUSSION FOR CHAPTER 5 178

Additional regret bounds when estimating the counterfactual using
agent data

Suppose the principal estimates µ̂0(x) from the untreated data from the agent’s treatment
population, i.e. those individuals for whom T π

i = 0. As discussed in Sections 5.6 and
D.1, under full information symmetry, the mean conditional untreated potential outcome is
identifiable as long as the agent’s treatment rule class Π maintains positivity, π(x) > 0 for all
x ∈ X . Under information asymmetry, positivity is no longer sufficient for identifiability, as
the agent’s additional information makes T π

i depend on Ui, and thus ignorability in Xi is no
longer satisfied.

Still, we can analyze what happens when the principal constructs a counterfactual estimator
from the agent’s untreated outcomes. This estimator depends on the agent’s treatment rule
π, and unlike in Section D.1, information asymmetry means that the agent’s treatment rule
π affects this estimator as well. Let µ̂π

0 (X) = E[Yi|T π = 0, X] denote the principal’s estimate
of the mean untreated potential outcome from the agent’s data.

As with the auxiliary data, if we assume a bound on how much Ui affects the untreated
potential outcome given Xi, we can still bound the regret if the principal were to apply the
reward function wTT using µ̂π

0 (X). However, the required assumption is a bit stronger.

Assumption 7. The maximum effect of the unobserved attributes U on the conditional
untreated potential outcome is bounded on average. Define the maximum difference in the
untreated potential outcome for a given x, u to be

∆(x, u) = max
ũ∈U
|µ0(x, u)− µ0(x, ũ)|.

The average difference is bounded as:

E[∆(X,U)] ≤ γmax.

Assumption 7 is stronger than Assumption 2 in the sense that Assumption 2 is not
sufficient to bound the regret when the principal estimates the mean conditional untreated
potential outcome from the agent’s data using µ̂π

0 (X). Furthermore, the bound in Assumption
7 implies that Assumption 2 is satisfied with γmarg ≤ γmax. Intuitively, Assumption 7 is not
sufficient to bound the regret when the principal uses µ̂π

0 (X) because the agent can choose π
to allocate treatment to single values of ũ ∈ U , such that µ̂π

0 (x) ends up matching a single
value µ0(x, ũ).

More generally, Assumption 7 is closer to bounds from senstivity analysis on expected
outcome functions under unobserved confounding Kennedy [2022]. While many existing
sensitivity analyses bound the effect of unobserved confounding on treatment in prior data
Yadlowsky et al. [2022], in this case the agent’s simultaneous treatment selection with data
collection makes it less reasonable to bound the dependence of the treatment on U .
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Theorem 14. Suppose for all π ∈ Π, π(x, u) > 0 for all x ∈ X , u ∈ U . If the principal
applies the reward function wTT using an estimate µ̂π

0 (x), then under Assumption 7, the regret
is upper bounded as

R(πw) ≤ 2γmax.

Proof. This also follows similarly to the proof of Proposition 16:

V (π∗)− V (πwTT) ≤ V (π∗)− V (πwTT) + V̂ (πwTT)− V̂ (π∗)

≤ |V (π∗)− V̂ (π∗)|+ |V̂ (πwTT)− V (πwTT)|
≤ 2max

π∈Π
|V̂ (π)− V (π)|

= 2max
π∈Π
|E[π(Xi, Ui)(µ̂

π
0 (Xi)− µ0(Xi, Ui))]|

By Jensen’s inequality,

max
π∈Π
|E[π(X,U)(µ̂π

0 (X)− µ0(X,U))]| ≤ max
π∈Π

E[π(X,U)|µ̂π
0 (X)− µ0(X,U)|]

≤ max
π∈Π

E[|µ̂π
0 (X)− µ0(X,U)|]

Define
∆Π(x, u) = max

π∈Π
|µ̂π

0 (x)− µ0(x, u)|.

Since for all π ∈ Π, π(x, u) > 0 for all x ∈ X , u ∈ U , we can apply Lemma 28 below,
which says that µ̂π

0 (x) ∈ [minu µ0(x, u),maxu µ0(x, u)]. Therefore, for all x, u,

∆Π(x, u) ≤ ∆(x, u).

Putting this together,

max
π∈Π

E[|µ̂π
0 (X)− µ0(X,U)|] ≤ E[max

π∈Π
|µ̂π

0 (X)− µ0(X,U)|] ≤ E[∆Π(X,U)] ≤ E[∆(X,U)].

Therefore, under assumption 7, R(πw) ≤ 2γmax.

Lemma 28. Suppose that for all π ∈ Π, PU |X=x,Tπ=0 is a well defined probability distribution.
Let µ̂π

0 (x) = E[Y |X = x, T π = 0]. Then for all π, µ̂π
0 (x) ∈ [minu µ0(x, u),maxu µ0(x, u)].

Proof. We decompose µ̂π
0 (x) as

µ̂π
0 (x) = E[Y |X = x, T π = 0] =

∫
µ0(x, u)dPU |X=x,Tπ=0

For any π,
∫
µ0(x, u)dPU |X=x,Tπ=0 =

∫
µ0(x, u)dW (u) for some distribution W ; therefore,{∫

µ0(x, u)dPU |X=x,Tπ=0 : π ∈ Π

}
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⊆
{∫

µ0(x, u)dW (u) : W is a distribution over U,
∫
dW (u) = 1

}
.

Both the maximizer and the minimizer of the smaller set are contained in the larger set.
Specifically,

max
π

µ̂π
0 (x) = max

π

∫
µ0(x, u)dPU |X=x,Tπ=0 ≤ max

W :
∫
dW (u)=1

∫
µ0(x, u)dW (u) ≤ max

u
µ0(x, u)

min
π
µ̂π
0 (x) = min

π

∫
µ0(x, u)dPU |X=x,Tπ=0 ≥ min

W :
∫
dW (u)=1

∫
µ0(x, u)dW (u) ≥ min

u
µ0(x, u)

Therefore, for all π, µ̂π
0 (x) ∈ [minu µ0(x, u),maxu µ0(x, u)].

Overall, we have discussed two plausible data collection settings for the principal to
estimate µ0(x) to implement the reward function wTT. In the first setting using auxiliary
data where µ0(x) is identifiable, the regret is bounded by the gap between the conditional
effects of U on Yi(0) and the marginal effect of only X on Yi(0). In the second setting using
untreated units from the agent’s treatment population, µ0(x) is not identifiable, and the
regret can be bounded under a stronger assumption on the sensitivity of µ0(X,U) to the
agent’s private information Ui.

D.5 Additional Experiment Details and Results
We give additional experiment details and results here.

Implementation

All experiment code is available at https://github.com/serenalwang/counterfactual_
metrics. All models were trained using the linear regression and logistic regression packages
from scikit-learn [Pedregosa et al., 2011]. All categorical features were one-hot encoded.

Additional dataset details

We provide additional setup and training details for each dataset.

Horse Colic dataset

For the Horse Colic dataset from UCI Dua and Graff [2017], we let X consist of all features
observed prior to surgery, which includes 13 categorical features and 7 numerical features.
All features used are listed in Figure D.2. We removed all examples in which the horse was
euthanized, and used the remaining “outcome” variable as Y , where we set Yi = 1 if the horse
lived, and Yi = −1 if the horse died. We only used the main horse-colic.data dataset, and
did not use the “test” dataset included in the UCI directory.

https://github.com/serenalwang/counterfactual_metrics
https://github.com/serenalwang/counterfactual_metrics


APPENDIX D. DEFERRED PROOFS AND DISCUSSION FOR CHAPTER 5 181

To simulate µt(x), we assume that the outcome distribution takes the parametric form,

P (Y (t) = 1|X = x) = σ(β0 + β⊤
1 x+ β2t+ β⊤

3 xt)

where σ(x) = 1
1+e−x is the standard logistic function.

We trained a logistic regression model of Y on X, T , and the interaction term XT to
estimate parameters β̂, and used the resulting estimate to compute µt(x) = σ(β̂0 + β̂⊤

1 x+
β̂2t + β̂⊤

3 xt). For the fitted model, the AUC was 0.9924, and the accuracy was 0.6824.
When computing agent best responses and regret, we take this function µt(x) to be given as
synthetic mean conditional potential outcomes. Note that the clinical validity of µt(x) as
actual potential outcomes cannot be verified from the dataset alone. There may be error in
both our unconfoundedness assumption with respect to X, and in the logistic parametric
specification of the outcome model.

In Table 5.1, the “demographic information” for the Horse Colic dataset consists of only
the age feature.

International Stroke Trial dataset

For the International Stroke Trial dataset International Stroke Trial Collaborative Group
[1997], we let X include all clinical data prior to treatment, which includes all “Randomisation
data” except for dates and times. This includes 17 categorical features and 3 numerical
features. All features used are listed in Figure 5.1. For the outcome variable Y , we apply the
negative of the scalarized composite outcome score from Kallus and Zhou [2018]. Specifically,

Y =− 21(death)− 1(recurrent stroke)− 0.51(pulmonary embolism or intracranial bleeding)
− 0.51(other side effects) + 21(full recovery at 6 months) + 1(discharge within 14 days).

This results in Y ∈ [−4, 3].
To simulate µt(x), we assume the conditional mean of the potential outcome distribution

has the linear parametric form,

E[Y (t)|X = x] = β0 + β⊤
1 x+ β2t+ β⊤

3 xt.

We trained a linear regression model of Y onX, T , and the interaction termXT to estimate
parameters β̂, and used the resulting estimate to compute µt(x) = β̂0+ β̂

⊤
1 x+ β̂2t+ β̂

⊤
3 xt. The

fitted RMSE was 1.34 and the R2 was 0.26. As with the Horse Colic dataset, when computing
agent best responses and regret, we take this function µt(x) to be given as synthetic mean
conditional potential outcomes. In this dataset the unconfoundedness assumption should
hold as this data came from a randomized control trial. However, there may still be error in
the linear parametric specification of the outcome model.

In Table 5.1, the “demographic information” for the Stroke Trial dataset consists of both
the age feature and the sex feature.
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Effect of better estimates of µt(x)

Better estimates of µt(x) may come from doubly robust estimators. However, the contribution
of this work is not to improve estimation methods for µt(x), nor do the proposed reward
policies rely on the quality or variance of µt(x) estimators. The quality of µt(x) only affects
the how well the regrets reported in experiments might approximate real regrets. This is
because in experiments, we estimate µt(x) to simulate potential outcomes for two purposes:
(i) simulating the agent’s perception of potential outcomes and thus yielding the agent’s
best responses; and (ii) calculating an approximate regret. Better estimates of µt(x) would
improve the alignment with both of these simulations with reality.

Our theory only assumes that the principal has an estimator µ̂0(x) which is unbiased
with respect to the agent’s preceived µ0(x) function which the agent uses to calculate their
best response. For the experiments, this unbiasedness assumption is true, as we assume
both principal and agent have access to the same synthetic µt(x) values. We do not directly
simulate the principal’s calculation of µ̂0(x) from a subset of the data, since this would not
affect the actions of the expectation maximizing agent.

The main limitation of our experiments is that in the absence of true counterfactual
outcomes, they rely on parametric estimates of µt which we can’t guarantee are well specified.
An ideal dataset for evaluating true welfare impacts would have a structure that identifies
PXi

and µt(x), where µt(x) ideally matches the agent’s perceived mean conditional potential
outcomes. While we can’t guarantee that our estimated imputed values for µt(x) match real
providers, our experiments provide a structure by which such experiments could be run in the
future if regulatory agencies have internal access to more ideal data, perhaps even through
surveying providers themselves.

Calculating γmarg

When simulating information asymmetry, we compute empirical estimates of γmarg over the
data. For each individual feature in Figures 5.1 and D.2, let X represent the individual
feature, and let U represent the set of all other features. We use the full regression result as
µ0(x, u). To calculate µ0(x) where x represents the individual feature, we take the empirical
conditional mean over the dataset:

µ0(x) =

∑n
i=1 µ0(Xi, Ui)1(Xi = x)

1(Xi = x)
.

Then, γmarg is calculated empirically over the dataset as

γmarg =
1

n

n∑
i=1

|µ0(Xi)− µ0(Xi, Ui)|.

We take these empirical estimates as given in the absence of a closed form for the joint
distribution of all features. More sophisticated Bayesian distribution estimation or smoothing
may produce different γmarg estimates.
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Additional results

Table D.1 shows the utility and regret comparisons for different reward functions, including
an additional comparison to Reward Function 5 in the Appendix, wTO.

Figure D.1 shows the regrets when the principal knows only each individual feature.
Interestingly, use of several of these individual features leads to worse regret than if the
principal knew no features and just estimated the marginal expected untreated potential
outcome E[Y (0)]. This confirms that the regret amplification effect can occur for features
other than the demographic information in Table 5.1.

Table D.1: Utility and regret comparisons for different reward functions. For each reward
function w, we report utility V (πw), regret R(πw), and the realized treatment rate P (T πw

= 1).

Horse Colic dataset Stroke Trial dataset

Reward function Utility Regret Treat rate Utility Regret Treat rate

wATO 0.00000 0.1470 0.1922 0.00004 0.0251 0.0001
wATT 0.00784 0.1391 0.0039 0.00013 0.0250 0.0001
wTO 0.08599 0.0610 0.6706 −0.08278 0.1079 0.6689
wTT 0.14695 0.000 0.2431 0.02518 0.000 0.1872

wTT (no info) 0.09761 0.0493 0.6274 −0.04888 0.0741 0.4829
wTT (demographic info) 0.09761 0.0493 0.6274 −0.06392 0.0891 0.5041

Horse Colic dataset Stroke Trial dataset
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Figure D.1: Regret if the principal only knows the labeled feature. Features are sorted in
order of their individual γmarg.

Figure D.2 is the equivalent of Figure 5.1 for the Horse Colic dataset. For the Horse Colic
dataset, the regret drops to close to zero if the principal knows only a few features. This



APPENDIX D. DEFERRED PROOFS AND DISCUSSION FOR CHAPTER 5 184

is likely due to the fact that there is little variation in other feature values in the dataset
conditioned packed cell volume and pulse, exacerbated by the fact that the dataset is so small.
The value of γmarg for these two features combined is small compared to the individual γmarg

values in Figure D.2 (left), at 0.035.
This may change for larger datasets, where it may be more likely to observe more samples

with the same packed cell volume and pulse values alongside more variation in other feature
values. If in practice other features did not vary much given packed cell volume and pulse,
then the regret shape in Figure D.2 (right) would hold. More data would be needed to verify
the joint distribution of X,U to confirm this.

The Stroke Trial dataset does not exhibit a similar effect since its three numerical features
take significantly fewer possible values relative to the size of the dataset.

γmarg per feature Regret for increasing feature sets

No
ne

Pa
ck

ed
 ce

ll 
vo

lu
m

e
Pu

lse
To

tal
 p

ro
tei

n
M

uc
ou

s m
em

br
an

es
Pe

rip
he

ra
l p

ul
se

Ca
pi

lla
ry

 re
fil

l t
im

e
Re

cta
l t

em
pe

ra
tu

re
Ab

do
m

in
al 

di
ste

ns
io

n
Pa

in
Te

m
pe

ra
tu

re
 o

f e
xt

re
m

iti
es

Re
sp

ira
to

ry
 ra

te
Ab

do
m

ce
nt

es
is 

to
tal

 p
ro

tei
n

Na
so

ga
str

ic 
re

flu
x 

PH
Ab

do
m

en
Na

so
ga

str
ic 

re
flu

x
Re

cta
l e

xa
m

in
ati

on
 - 

fe
ce

s
Pe

ris
tal

sis
Ab

do
m

in
oc

en
tes

is 
ap

pe
ar

an
ce

Na
so

ga
str

ic 
tu

be Ag
e0.0

0.2

0.4

0.6

No
ne

+ 
Pa

ck
ed

 ce
ll 

vo
lu

m
e

+ 
Pu

lse
+ 

To
tal

 p
ro

tei
n

+ 
M

uc
ou

s m
em

br
an

es
+ 

Pe
rip

he
ra

l p
ul

se
+ 

Ca
pi

lla
ry

 re
fil

l t
im

e
+ 

Re
cta

l t
em

pe
ra

tu
re

+ 
Ab

do
m

in
al 

di
ste

ns
io

n
+ 

Pa
in

+ 
Te

m
pe

ra
tu

re
 o

f e
xt

re
m

iti
es

+ 
Re

sp
ira

to
ry

 ra
te

+ 
Ab

do
m

ce
nt

es
is 

to
tal

 p
ro

tei
n

+ 
Na

so
ga

str
ic 

re
flu

x 
PH

+ 
Ab

do
m

en
+ 

Na
so

ga
str

ic 
re

flu
x

+ 
Re

cta
l e

xa
m

in
ati

on
 - 

fe
ce

s
+ 

Pe
ris

tal
sis

+ 
Ab

do
m

in
oc

en
tes

is 
ap

pe
ar

an
ce

+ 
Na

so
ga

str
ic 

tu
be

+ 
Ag

e0.00

0.02

0.04

Figure D.2: Regret under fine-grained information asymmetry on the Horse Colic dataset.
The left plot shows γmarg values if the principal only knows each individual feature. The right
plot shows regret as the principal accumulates features from the left (most important).

D.6 Additional Discussion of Modeling Assumptions
We do not explicitly model the agent’s costs, and all budget constraints are contained in
the agent’s feasible set of treatment rules Π. This may be viewed as considering the agent’s
incentives when there is no cost to treatment, thus decoupling our analysis of the agent’s
incentives to do well on healthcare report cards from the broader treatment pricing market. In
practice, the compensation hospitals and doctors receive for treatment could yield a positive
adjustment or sometimes a negative adjustment to their utility per treated unit. Analysis of
how other external incentives pair with the quality measure incentives would be interesting
future work, but for now we focus on the incentives induced solely by the accountability
metrics.
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Whether the information asymmetry modeled here is common or severe in the medical
space has been debated and may change over time. Dranove et al. [2003] remark that “providers
may be able to improve their ranking by selecting patients on the basis of characteristics
that are unobservable to the analysts but predictive of good outcomes.” However, medical
treatment protocols are also generally heavily codified, with online clinical decision support
tools becoming increasingly widely used 30 years of UpToDate: The evolution of clinical
decision support and the future of evidence-based medicine. Still, if the regulatory agency
does not have full access to patents’ medical records, then information asymmetry will arise.
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Appendix E

Deferred Proofs for Chapter 6

E.1 Proofs from Section 6.3
Here we give full proofs from Section 6.3.

Proof of Proposition 7

To prove Proposition 7, we first reorganize the difference between the agent’s concealed and
revealed utilities:

Vcon(p
∗)− Vrev(p

∗
1, p

∗
1) = θ∆V1 − (1− θ)∆V0

where
∆V0 := V0(p

∗
0)− V0(p∗); ∆V1 := V1(p

∗)− V1(p∗1).
We begin with Lemma 29 below which upper bounds ∆V0.

Lemma 29. For any concave and continuously differentiable CDF F0, ∆V0 ≤ p∗0 − p for any
p < p∗0.

Proof. ∆V0 ≤ p∗0 − p if
V0(p

∗
0)− V0(p)
p∗0 − p

≤ 1.

We upper bound this difference by differentiating V0:

V ′
0(p) =

d

dp

∫ p

0

(p− c)f0(c)dc = F0(p)

Since F0 is a concave and continuously differentiable CDF, by the mean value theorem,

V0(p
∗
0)− V0(p)
p∗0 − p

≤ sup
p
V ′
0(p) = sup

p
F0(p) ≤ 1.
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We now leverage Lemma 29 to prove the full proposition.

Proposition 7 (Sufficient concealment condition with zero-cost type). Suppose F0 is a
concave and continuously differentiable CDF. Suppose C|X = 1 takes value 0 with probability 1.
Suppose the ratio F0(p)

f0(p)
is strictly monotone increasing for p > 0. Then Vcon(p

∗) > Vrev(p
∗
0, p

∗
1)

if

θ > (1− θ) 1

η((1− θ)p∗0)
− 1

η0 (p∗0)

where η(p) = p(1−θ)f0(p)
(1−θ)F0(p)+θ

and η0(p) = pf0(p)
F0(p)

are the respective price elasticities for task
completion quantity for the mixture distribution C and the conditional distribution C|X = 0.

Proof. We consider the extreme case where C|X = 1 has value 0 with probability 1. For this
distribution of C|X = 1, we show that Equation (6.3) implies that

θ∆V1 > (1− θ)∆V0. (E.1)

First, for any nonzero C|X = 0, we have that p∗ < p∗0. Thus, Lemma 29 gives that

(1− θ)∆V0 ≤ (1− θ)(p∗0 − p∗).
Next, we further upper bound this by showing that for any F0 that satisfies Equation

(6.3),
(1− θ)(p∗0 − p∗) < θp∗. (E.2)

Equation (E.1) then follows from the fact that ∆V1 = p∗ when C|X = 1 is always zero.
We now prove that equation (E.2) holds under equation (6.3). First, note that

(1− θ)(p∗0 − p∗) < θp∗ ⇐⇒ (1− θ)p∗0 < p∗.

Since F0 is concave and continuously differentiable, p∗ satisfies the following first-order
condition:

p∗ +
(1− θ)F0(p

∗) + θ

(1− θ)f0(p∗)
= b. (E.3)

Since F0(p)
f0(p)

is strictly monotone increasing for p > 0 and F0(p) is concave, p+ (1−θ)F0(p)+θ
(1−θ)f0(p)

is
also strictly monotone increasing for p > 0. Therefore, (1− θ)p∗0 < p∗ if and only if

(1− θ)p∗0 +
(1− θ)F0((1− θ)p∗0) + θ

(1− θ)f0((1− θ)p∗0)
< b.

We also have that p∗0 satisfies the first-order condition

p∗0 +
F0(p

∗
0)

f0(p∗0)
= b.

Therefore, (1− θ)p∗0 < p∗ if and only if

(1− θ)p∗0 +
(1− θ)F0((1− θ)p∗0) + θ

(1− θ)f0((1− θ)p∗0)
< p∗0 +

F0(p
∗
0)

f0(p∗0)
,

which is equivalent to the condition in equation (6.3).
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Proofs for Propositions 8 and 9

Here we give proofs for Propositions 8 and 9. These analyses parallel those of Aguirre et al.
[2010] for the effects of price discrimination on total welfare.

We first prove Lemma 16, which follows from Assumption 3 and 4.

Lemma 16. Under Assumptions 3 and 4, Vconst(r) is strictly quasi-convex for r ∈ [0, p∗0− p∗1].
That is, if there exists r̂ ∈ [0, p∗0 − p∗1] such that Vconst(r̂) = 0, then V ′′

const(r̂) > 0.

Proof. The constraint in equation (6.4) is binding when r ∈ [0, p∗0 − p∗1]. Therefore, the
optimization problem in equation (6.4) can be rewritten as

max
p1

Π1(p1) + Π0(p1 + r),

yielding a first-order condition that Π′
1(p1) + Π′

0(p1 + r) = 0. Further differentiating this
first-order condition, as done by Aguirre et al. [2010], yields that

p′1(r) =
−Π′′

0(p0(r))

Π′′
0(p0(r)) + Π′′

1(p1(r))
.

A similar method shows that

p′0(r) =
Π′′

1(p1(r))

Π′′
0(p0(r)) + Π′′

1(p1(r))
.

Thus, we have that

V ′
const(r) = (1− θ)V0(p0(r))p′0(r) + θV1(p1(r))p

′
1(r)

=

(
−Π′′

1(p1(r)Π
′′
0(p0(r)))

Π′′
0(p0(r)) + Π′′

1(p1(r))

)(
θV ′

1(p1(r))

Π′′
1(p1(r))

− (1− θ)V ′
0(p0(r))

Π′′
0(p0(r))

)
=

(
−Π′′

1(p1(r)Π
′′
0(p0(r)))

Π′′
0(p0(r)) + Π′′

1(p1(r))

)
(θw1(p1(r))− (1− θ)w0(p0(r)))

(E.4)

where wx(p) :=
V ′
x(p)

Π′′
x(p)

.
Taking the second derivative, we have that

V ′′
const(r) =

(
−Π′′

1(p1(r)Π
′′
0(p0(r)))

Π′′
0(p0(r)) + Π′′

1(p1(r))

)
(θw′

1(p1(r))p
′
1(r)− (1− θ)w′

0(p0(r))p
′
0(r))

+ (θw1(p1(r))− (1− θ)w0(p0(r)))
∂

∂r

(
−Π′′

1(p1(r)Π
′′
0(p0(r)))

Π′′
0(p0(r)) + Π′′

1(p1(r))

)
.

The first term
(

−Π′′
1 (p1(r)Π

′′
0 (p0(r)))

Π′′
0 (p0(r))+Π′′

1 (p1(r))

)
is positive by strict concavity given by Assumption 3.

If V ′
const(r̂) = 0, then θw1(p1(r̂))− (1− θ)w0(p0(r̂)) = 0. By the DRC, w′

1(p1(r̂))p
′
1(r̂) > 0

since w′
1(p1(r̂)) < 0 and p′1(r̂) < 0. Similarly, w′

0(p0(r̂))p
′
0(r̂) < 0. Therefore, V ′′

const(r̂) > 0.
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Given Lemma 16, we now prove Propositions 8 and 9 by signing the derivative V ′
const(r)

for extreme values of r.

Proposition 8 (Sufficient concealment condition under DRC). Under Assumptions 3 and 4,
Vcon(p

∗) > Vrev(p
∗
0, p

∗
1) if

(1− θ)(b− p∗0)
2− σ0(p∗0)

<
θ(b− p∗1)
2− σ1(p∗1)

,

where σx(p) = Fx(p)f ′
x(p)

f2
x(p)

is the curvature of the inverse of the task completion quantity function
Fx(p).

Proof. If Vconst(r) is strictly monotone decreasing in r, then Vcon(p
∗) > Vrev(p

∗
0, p

∗
1). Since

Vconst(r) is strictly quasi-convex, a sufficient condition for Vconst(r) to be strictly monotone
decreasing is V ′

const(p
∗
0 − p∗1) < 0.

By equation (E.4), we have that V ′
const(p

∗
0 − p∗1) < 0 if θw1(p

∗
1)− (1− θ)w0(p

∗
0) < 0. By

the first-order condition that
b− p∗x =

Fx(p
∗
x)

fx(p∗x)
, (E.5)

we have that
wx(p

∗
x) =

Fx(p
∗
x)

Π′′
x(p

∗
x)

=
b− p∗x

Π′′
x(p

∗
x)/fx(p

∗
x)

Note that
Π′′

x(p) = −2fx(p) + f ′
x(p)(b− p)

Therefore, also applying the first-order condition from equation (E.5), we have

Π′′
x(p

∗
x)/fx(p

∗
x) = −2 +

Fx(p)f
′
x(p)

f 2
x(p)

= −2 + σx(p).

A similar argument yields Proposition 9.

Proposition 9 (Sufficient revelation condition under DRC). Under Assumptions 3 and 4,
Vcon(p

∗) < Vrev(p
∗
0, p

∗
1) if

2 + L(p∗)α1(p
∗)

2 + L(p∗)α0(p∗)
>

θF1(p
∗)/f1(p

∗)

(1− θ)F0(p∗)/f0(p∗)
,

where L(p) = b−p
p

is the Lerner index, and αx(p) = −pf ′
x(p)

fx(p)
is the curvature of the task

completion quantity function Fx(p).

Proof. If Vconst(r) is strictly monotone increasing in r, then Vcon(p
∗) < Vrev(p

∗
0, p

∗
1). Since

Vconst(r) is strictly quasi-convex, a sufficient condition for Vconst(r) to be strictly monotone
increasing is V ′

const(0) > 0.
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By equation (E.4), we have that V ′
const(0) > 0 if θw1(p

∗)− (1− θ)w0(p
∗) > 0.

wx(p
∗) =

Fx(p
∗)/fx(p

∗)

−2 + (b− p∗)(f ′
x(p

∗)/fx(p∗))
=

Fx(p
∗)/fx(p

∗)

−2− L(p∗)αx(p∗)

Therefore, θw1(p
∗)− (1− θ)w0(p

∗) > 0 if

θF1(p
∗)/f1(p

∗)

2 + L(p∗)α1(p∗)
<

(1− θ)F0(p
∗)/f0(p

∗)

2 + L(p∗)α0(p∗)

Comparison of decreasing ratio condition to increasing ratio
condition

The results in Section 6.3 depend on the decreasing ratio condition (DRC) given in Assumption
4. This is analogous to the “increasing ratio condition (IRC)” from Aguirre et al. [2010], which
says that the ratio W ′

x(p)
Π′′

x(p)
is increasing in p. We now discuss in more detail the relationship

between the DRC and the IRC, including sufficient conditions under which the DRC holds.
In introducing the IRC, Aguirre et al. [2010] describe a “very large set of demand functions”
for which the IRC holds. Aguirre et al. [2010] give sufficient conditions for the IRC to hold in
Appendix B from their paper, which includes linear functions and exponential and constant
elasticity functions.

For all of the sufficient conditions that Aguirre et al. [2010] proposes for the IRC, these
are also sufficient conditions for the DRC if paired with the additional condition that Fx(p)

fx(p)
is

increasing in p for x ∈ {0, 1}. For example, a specific sufficient condition for the DRC, which
also implies the IRC, is the following: Let σ(p) = F (p)f ′(p)

f(p)2
. If σ(p) ≤ 1, and α(p) = −pf ′(p)

f(p)
is

non-decreasing and positive in p, then the DRC holds. The IRC would also hold. A similar
analogy can be made for all other conditions given in Appendix B of Aguirre et al. [2010].

Proofs from Section 6.3

Lemmas 17 and 18 show that the principal always benefits from more information being
revealed. Assumption 5 further implies that the principal strictly benefits from revelation.

Lemma 17 (Principal prefers revelation). Revealing X never decreases the value of the
principal: Πrev(ρ

∗) ≥ Πcon(p
∗), where ρ∗ ∈ argmaxρΠrev(ρ). Revealing X strictly increases

the value of the principal only if X and C are not independent.

Proof. Assuming that the principal’s feasible set of payments does not change between
markets, the solution ρ̂(x) = p∗ is in the feasible set of the principal’s optimization problem
with information revealed. Therefore,

max
ρ

Πrev(ρ) ≥ Πrev(ρ̂) = Πcon(p
∗).



APPENDIX E. DEFERRED PROOFS FOR CHAPTER 6 191

If X and C are independent, we have Fx = F for all x ∈ X , so

max
ρ

Πrev(ρ) = max
ρ

E[F (ρ(X))(b− ρ(X))]

By Jensen’s inequality, we have

max
ρ

E[F (ρ(X))(b− ρ(X))] ≤ E[max
ρ
F (ρ(X))(b− ρ(X))] = E[F (p∗)(b− p∗)] = Πcon(p

∗).

Therefore, if X and C are independent, then Πrev(ρ
∗) ≤ Πcon(p

∗).

Lemma 18 (Principal strictly benefits from revelation). Let F0 and F1 be continuously
differentiable CDFs. If the MLRP holds (Assumption 5), then the principal strictly benefits
when X is revealed: Πrev(p

∗
0, p

∗
1) > Πcon(p

∗).

Proof. Since F0, F1 are continuously differentiable, the first-order necessary conditions hold
for the optimal payments p∗0, p∗1 in equation (E.5). By these conditions, p∗0 = p∗1 only if there
exists a value p such that

p+
F0(p)

f0(p)
= p+

F1(p)

f1(p)
= b.

Such a value p cannot exist if F0(p)
f0(p)

̸= F1(p)
f1(p)

for all p. The MLRP implies that F0(p)
f0(p)

< F1(p)
f1(p)

for
all p; therefore, p∗0 ̸= p∗1, and maximum value for Πrev is strictly greater than the maximum
value for Πcon.

Proofs from Section 6.3

Lemma 19. Total welfare increases under revelation (Wrev(p
∗
0, p

∗
1)−Wcon(p

∗)) only if task
completion quantity increases under revelation,

F (p∗) < (1− θ)F0(p
∗
0) + θF1(p

∗
1).

Proof.

Wrev(p
∗
0, p

∗
1)−Wcon(p

∗) = (1− θ)
∫ p∗0

0

(b− c)f0(c)dc+ θ

∫ p∗1

0

(b− c)f1(c)dc−
∫ p∗

0

(b− c)f(c)dc

= (1− θ)
∫ p∗0

0

(b− c)f0(c)dc+ θ

∫ p∗1

0

(b− c)f1(c)dc

− (1− θ)
∫ p∗

0

(b− c)f0(c)dc− θ
∫ p∗

0

(b− c)f1(c)dc

= (1− θ)
∫ p∗0

p∗
(b− c)f0(c)dc− θ

∫ p∗

p∗1

(b− c)f1(c)dc
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Upper bounding this:

(1− θ)
∫ p∗0

p∗
(b− c)f0(c)dc− θ

∫ p∗

p∗1

(b− c)f1(c)dc ≤ (1− θ)
∫ p∗0

p∗
(b− p∗)f0(c)dc− θ

∫ p∗

p∗1

(b− p∗)f1(c)dc

=⇒ Wrev(p
∗
0, p

∗
1)−Wcon(p

∗) ≤ (b− p∗)

(
(1− θ)

∫ p∗0

p∗
f0(c)dc− θ

∫ p∗

p∗1

f1(c)dc

)
.

The right hand term is exactly the difference in output:(
(1− θ)

∫ p∗0

p∗
f0(c)dc− θ

∫ p∗

p∗1

f1(c)dc

)
= (1− θ)(F0(p

∗
0)− F0(p

∗))− θ(F1(p
∗)− F1(p

∗
1))

= (1− θ)F0(p
∗
0) + θF1(p

∗
1)− ((1− θ)F0(p

∗) + θF1(p
∗))

= (1− θ)F0(p
∗
0) + θF1(p

∗
1)− F (p∗)

=⇒ Wrev(p
∗
0, p

∗
1)−Wcon(p

∗) ≤ (b− p∗) ((1− θ)F0(p
∗
0) + θF1(p

∗
1)− F (p∗))

Since (b−p∗) > 0, if (1−θ)F0(p
∗
0)+θF1(p

∗
1)−F (p∗) ≤ 0, then Wrev(p

∗
0, p

∗
1)−Wcon(p

∗) ≤ 0.

E.2 Proofs from Section 6.4
Here we give proofs for results for the garbling model presented in Section 6.4.

Proofs from Section 6.4

Lemma 20 (Monotonic price changes). Suppose γ = θ = 1
2
. Suppose F0, F1 are continuously

differentiable CDFs, the principal’s utility is strictly concave (Assumption 3), and the MLRP
holds (Assumption 5). Then p′0(ε) > 0 and p′1(ε) < 0 for all ε ∈ [0, 1].

Proof. p0(ε), p1(ε) must satisfy first-order necessary conditions for optimality:

p0(ε) +
1+ε
2
F0(p0(ε)) +

1−ε
2
F1(p0(ε))

1+ε
2
f0(p0(ε)) +

1−ε
2
f1(p0(ε))

= b; p1(ε) +
1+ε
2
F1(p1(ε)) +

1−ε
2
F0(p1(ε))

1+ε
2
f1(p1(ε)) +

1−ε
2
f0(p1(ε))

= b

Differentiating these first-order conditions, we have:

p′0(ε) =
Π′

0(p0(ε))− Π′
1(p0(ε))

−2Π′′
Y=0(p0(ε))

; p′1(ε) =
Π′

1(p1(ε))− Π′
0(p1(ε))

−2Π′′
Y=1(p1(ε))

, (E.6)

where

ΠY=0(p) =
1 + ε

2
Π0(p) +

1− ε
2

Π1(p); ΠY=1(p) =
1 + ε

2
Π1(p) +

1− ε
2

Π0(p).

Strict concavity from Assumption 3 makes both denominators of p′x(ε) positive.
The MLRP also implies that p0(ε) < p∗0 and p1(ε) > p∗1 for any ε. Therefore, by strict

concavity of Πx(p), we have Π′
0(p0(ε)) > 0, and Π′

1(p0(ε)) < 0, implying that p′0(ε) > 0.
Similarly, Π′

1(p1(ε)) < 0, and Π′
0(p1(ε)) > 0, implying that p′1(ε) < 0.
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Proofs from Section 6.4

We first expand Vgarb(ε) for γ = θ = 1
2
.

Vgarb(ε) =
1

2

(
1 + ε

2
V0(p0(ε)) +

1− ε
2

V1(p0(ε)) +
1 + ε

2
V1(p1(ε)) +

1− ε
2

V0(p1(ε))

)
. (E.7)

To prove Proposition 10, we first give Lemma 30 to handle the anchored zero-cost agent.

Lemma 30. Suppose C|X = 1 takes value 0 with probability 1. Suppose f0 is bounded:
f0(p) < B for all p in the support. Then for any fixed value b > 0, there exists δ > 0 such
that for any ε > δ, p1(ε) = 0.

Proof. Define h(p, ε) = p+ 1
f0(p)

1+ε
1−ε

+ F0(p)
f0(p)

. By choosing δ close to 1, we can make the term
1+δ
1−δ

arbitrarily large, and consequently 1
f0(p1)

1+δ
1−δ

arbitrarily large, since f0(p) > 0. Then for
any b, we choose δ close enough to 1 such that 1

B
1+δ
1−δ

> b.

Proposition 10 (Sufficient garbling condition with zero-cost type). Suppose γ = θ = 1
2
.

Suppose C|X = 1 takes value 0 with probability 1. Suppose F0 is continuously differentiable
and f0(c) is bounded. Vgarb(ε) is maximized at ε∗ < 1 if

v − p∗0
2− σ0(p∗0)

< g0(p
∗
0),

where g0(p) =
∫ p

0
(1 − F0(c))dc is the restricted mean cost of task completion, and σ0(p) =

F0(p)f ′
0(p)

f0(p)2
is the curvature of the inverse quantity function.

Proof. We show that the condition in equation (6.11) implies that V ′
garb(1) < 0.

For C|X = 1 taking value 0 with probability 1, we have V1(p) = p. Substituting this into
equation (E.7),

Vgarb(ε) =
1

2

(
1 + ε

2
V0(p0(ε)) +

1− ε
2

p0(ε) +
1 + ε

2
p1(ε) +

1− ε
2

V0(p1(ε))

)
.

Differentiating this, we have

2V ′
garb(ε) =p

′
0(ε)

(
1 + ε

2
F0(p0(ε)) +

1− ε
2

)
+ p′1(ε)

(
1 + ε

2
+

1− ε
2

F0(p1(ε))

)
+

1

2
((V0(p0(ε))− V0(p1(ε)))− (p0(ε)− p1(ε)))

Evaluating this derivative at ε = 1, Lemma 30 implies that p1(ε) = 0 and p′1(1) = 0.

2V ′
garb(1) = p′0(1)F0(p

∗
0) +

1

2
(V0(p

∗
0)− p∗0).
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V0(p
∗
0)− p∗0 = E[(p∗0 − C)1(C < p∗0)|X = 0]− p∗0 = −

1

2
g0(p

∗
0).

=⇒ 4V ′
garb(1) = −g0(p∗0) + 2F0(p

∗
0)p

′
0(1)

Simplifying 2F0(p
∗
0)p

′
0(1):

2F0(p
∗
0)p

′
0(1) =

F0(p
∗
0)f0(p

∗
0)

2f0(p∗0)
2 − F0(p∗0)f

′
0(p

∗
0)

=

F0(p∗0)

f0(p∗0)

2− F0(p∗0)f
′
0(p

∗
0)

f0(p∗0)
2

=
v − p∗0

2− σ0(p∗0)

Therefore,

V ′
garb(1) < 0 ⇐⇒ −g0(p∗0) +

v − p∗0
2− σ0(p∗0)

< 0.

Proposition 11 (Sufficient garbling condition). Suppose γ = θ = 1
2
. Suppose F0, F1 are

continuously differentiable. Vgarb(ε) is maximized at ε∗ < 1 if

−Π′
1(p

∗
0)

(
b− p∗0

2− σ0(p∗0)

)
− Π′

0(p
∗
1)

(
b− p∗1

2− σ1(p∗1)

)
< ∆(p∗0, p

∗
1).

Proof. Differentiating with respect to ε, we have

2V ′
garb(ε) =p

′
0(ε)

(
1 + ε

2
F0(p0(ε)) +

1− ε
2

F1(p0(ε))

)
+ p′1(ε)

(
1 + ε

2
F1(p1(ε)) +

1− ε
2

F0(p1(ε))

)
+

1

2
((V0(p0(ε))− V0(p1(ε)))− (V1(p0(ε))− V1(p1(ε))))

Substituting in the price derivatives from equation (E.6) and the agent utility dominance
identity from Definition 5,

2V ′
garb(ε) =

(
Π′

0(p0(ε))− Π′
1(p0(ε))

−2Π′′
Y=0(p0(ε))

)(
1 + ε

2
F0(p0(ε)) +

1− ε
2

F1(p0(ε))

)
+

(
Π′

1(p1(ε))− Π′
0(p1(ε))

−2Π′′
Y=1(p1(ε))

)(
1 + ε

2
F1(p1(ε)) +

1− ε
2

F0(p1(ε))

)
+

1

2
(−∆(p0(ε), p1(ε)))
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Let

zε0(p) =
V ′
Y=0(p)

Π
′′
Y=0(p)

=
1+ε
2
F0(p) +

1−ε
2
F1(p)

Π
′′
Y=0(p)

,

zε1(p) =
V ′
Y=1(p)

Π
′′
Y=1(p)

=
1+ε
2
F1(p) +

1−ε
2
F0(p)

Π
′′
Y=1(p)

.

Then

4V ′
garb(ε) = (Π′

0(p0(ε))− Π′
1(p0(ε))) (−zε0(p0(ε))) + (Π′

1(p1(ε))− Π′
0(p1(ε))) (−zε1(p1(ε)))

−∆(p0(ε), p1(ε))

Evaluating this at ε = 1, we have

4V ′
garb(1) = (Π′

0(p
∗
0)− Π′

1(p
∗
0)) (−z0(p∗0)) + (Π′

1(p
∗
1)− Π′

0(p
∗
1)) (−z1(p∗1))

−∆(p∗0, p
∗
1)

where
zx(p) =

V ′
x(p)

Π′′
x(p)

Note that V ′
x(p

∗
x) = W ′

x(p
∗
x), so at p∗, this is identical to the z function from Aguirre et al.

[2010]. By first-order optimality conditions,

−zx(p∗x) =
b− p∗x

2− σx(p∗x)
Therefore, V ′

garb(1) < 0 if

(−Π′
1(p

∗
0))

(
b− p∗0

2− σ0(p∗0)

)
+ (−Π′

0(p
∗
1))

(
b− p∗1

2− σ1(p∗1)

)
< ∆(p∗0, p

∗
1).

Proofs from Section 6.4

Lemma 21. Πcon(p
∗) ≤ Πgarb(p0(ε), p1(ε)) ≤ Πrev(p

∗
0, p

∗
1) for all ε.

Proof. For ε ∈ {0, 1}, the inequalities clearly hold. Fix ε ∈ (0, 1). For the lower bound,

Πgarb(p0(ε), p1(ε)) ≥ Πgarb(p
∗, p∗) = Πcon(p

∗).

For the upper bound, since the noise ξ is independent of X and C,

Πgarb(p0, p1) = ϕ(θ, γ)Πrev(p0, p1) + ψ(θ, γ)Πrev(p1, p0) ≤ Πrev(p
∗
0, p

∗
1)

where ϕ, ψ are some positive functions of θ, γ.
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Lemma 22 (Strict principal improvement). Suppose γ = θ = 1
2
. Suppose the principal’s utility

is strictly concave (Assumption 3). If the MLRP holds (Assumption 5), then Π′
garb(ε) > 0 for

all ε ∈ [0, 1].

Proof.

Πgarb(ε) =
1

2
(b− p0(ε))

(
1 + ε

2
F0(p0(ε)) +

1− ε
2

F1(p0(ε))

)
+

1

2
(b− p1(ε))

(
1 + ε

2
F1(p1(ε)) +

1− ε
2

F0(p1(ε))

)

Differentiating with respect to ε:

4Π′
garb(ε) =F0(p0(ε))(b− p0(ε))− F0(p1(ε))(b− p1(ε))

+ F1(p1(ε))(b− p1(ε))− F1(p0(ε))(b− p0(ε))

By the MLRP and strict concavity of Π0(p),Π1(p), we have that p1(ε) < p0(ε) < p∗0.
Strict concavity of Π0(p) and the optimality of p∗0 for Π1 then implies that

F0(p1(ε))(v − p1(ε)) < F0(p0(ε))(v − p0(ε)).

Similarly, by the MLRP and strict concavity of Π0(p),Π1(p), we have that p∗1 < p1(ε) <
p0(ε). Strict concavity of Π1(p) and the optimality of p∗1 for Π1 implies that

F1(p0(ε))(v − p0(ε)) < F1(p1(ε))(v − p1(ε)).

Proofs from Section 6.4

Lemma 23 (Reducing garbling initially increases total welfare). Relative to full concealment
with ε = 0, revealing Y with some garbled noise initially does not decrease total welfare:
W ′

garb(0) ≥ 0. The inequality is strict if Π′
garb(0) > 0, which is true under strict concavity of

Π0(p),Π1(p) (Assumption 3) and the MLRP (Assumption 5).

Proof.
W ′

garb(ε) = V ′
garb(ε) + Π′

garb(ε)

V ′
garb(0) = 0, so W ′

garb(0) ≥ 0. The strict inequality comes from applying Lemma 22 that
Π′

garb(0) > 0.

Lemma 24 (Optimal garbling increases welfare over concealment). Let ε∗ ∈ argmaxε∈[0,1] Vgarb(ε).
Then Wgarb(ε

∗) ≥ Wgarb(0).
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Proof.
Wgarb(ε

∗) = Vgarb(ε
∗) + Πgarb(ε

∗)

Lemma 21 implies Πgarb(ε
∗) ≥ Πgarb(0). By optimality of ε∗, Vgarb(ε

∗) ≥ Vgarb(0).

Lemma 25 (More information increases total welfare relative to agent optimal garbling).
W ′

garb(ε) ≥ V ′
garb(ε) for all ε ∈ [0, 1]. The inequality is strict if Π′

garb(0) > 0, which is true
under strict concavity of Π0(p),Π1(p) (Assumption 3) and the MLRP (Assumption 5).

Proof. Lemma 21 implies that Π′
garb(ε) > 0, which implies that W ′

garb(ε) ≥ V ′
garb(ε). The

inequality is strict under the conditions of Lemma 22.
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