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Abstract

FogROS2-SGC: A Secure and Global Connectivity Framework For Latency Sensitive
Cloud Robotics

by

Kaiyuan Chen

Connectivity between robots and cloud machines is one of the most fundamental components in
Cloud Robotics. We study the network infrastructure of FogROS2, an open-source Cloud Robotics
platform, and propose FogROS2-SGC, a network extension of FogROS2 that can effectively con-
nect robot systems across different physical locations, networks, and Data Distribution Services
(DDS). FogROS2-SGC uses globally unique and location-independent identifiers to identify robots
and cloud services. It securely and efficiently connects them and routes data between robotics
components around the globe with a peer-to-peer network (Global Data Plane). FogROS2-SGC
is agnostic to the ROS2 distribution and configuration, is compatible with non-ROS2 software,
and seamlessly extends existing ROS2 applications without any code modification. Since memory
copy and synchronization operations are expensive for memory-constrained robots, the implemen-
tation of FogROS2-SGC processes can route data without performing unnecessary copies (also
known as “zero copy”).

We consider latency critical cloud robotics applications that varying network conditions can cause
instability and collisions. We observe such failure can be minimized in the almost universal case
where there are multiple sources available for cloud servers. We extend FogROS2-SGC routing
infrastructure by enabling multiple cloud robotics services to connect as the same globally unique
identifiers. In the presence of multiple identical services, FogROS2-SGC dynamically identifies
and transitions (“anycast”) to the optimal service deployment that meets latency requirements, thus
empowering robots with limited on-board computing capacity to safely and efficiently navigate
dynamic, human-dense environments. The anycast is achieved through managing a state machine-
based scheduler that dynamically monitors the application latency and adjusts the routing states.

We evaluate FogROS2-SGC with various simulated Cloud Robotics benchmarks (visual SLAM,
motion planning, grasp planning). We show FogROS2-SGC with one connectivity case study with
4 robots and compute nodes that are 3600 km apart, and two latency sensitive case studies on
collision avoidance and target tracking.
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Chapter 1

Introduction

A prevailing trend indicates an increasing demand to employ resource-intensive models and al-
gorithms for accurate robotics perception and control: popular visual perception modules include
Segment Anything (SAM) [43], semantic VSLAM [77], Neural Radiance Fields (NeRF) [74], and
Language Embedded Radiance Fields (LERF) [61]; intelligent motion control modules include
learning hand-eye coordination with grasping [45], Model Predictive Path Integral (MPPI) [75].
The complexity of large or foundational models necessitates more than just the robot onboard
computing capabilities.

Cloud [41] or Fog Robotics [29] has been proposed to utilize centralized cloud or distributed
edge resources to reduce latency, enhance performance, and facilitate real-time processing and
decision-making in robotic systems [22]. Cloud Robotics ([29, 34, 68]) enables robots to access
external computing resources for visual perception ([62, 43, 77, 74, 42]), reinforcement learning-
based intelligent motion control ([75, 17]), grasp and motion planning [68] [34], visual servo-
ing [71], and human-robot interaction [28].

ROS2 is the defacto standard for building robotics applications. It modularizes a robotics
application into nodes, and connects the nodes into a graph. Nodes communicate with each other
through a publish-subscribe (pub/sub) system, where publisher nodes send messages to topics, and
nodes subscribed to these topics receive these messages.

FogROS2 [35] —now an official part of the ROS2 ecosystem—outsources heavy computing
tasks to on-demand hardware resources and accelerators, such as GPU, TPU, ASIC, FPGA, and
high performance CPU servers. We recognize the importance of connectivity between robots and
cloud machines in Cloud Robotics, and study the network infrastructure based on FogROS2 with
a focus on Global Connectivity, Security, and Support for Latency Sensitive Robotics Appli-
cations.

1.1 Cloud Robotics Connectivity
As robots are increasingly deployed worldwide, they require mechanisms to efficiently, reliably,
and securely communicate with other robots, sensors, computers, and the cloud. The applications
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Figure 1.1: FogROS2-SGC enables Secure Global Connectivity for robots, allowing robots to communicate with other
robots, computers, and the cloud through a standard ROS2 interface. With FogROS2-SGC, (A) drones navigating large
construction sites can seamlessly communicate, even when their IP addresses are constantly changing due to switching
Wi-Fi and cellular networks; (B) shipping and stocking robots from different corporations can securely share only the
required topics necessary to facilitate the transfer of goods at a warehouse; and (C) globally distributed robots can
participate in fleet learning. In experiments, we demonstrate FogROS2-SGC on Fleet-DAgger [31], a fleet learning
algorithm, with 4 robot arms operating simultaneously in different locations.

are broad, from mobile robots with changing IP addresses due to traveling through different net-
works, to a fleet of globally distributed robots learning collaboratively. Robots connecting to the
cloud, a nearby computer on a different network, or a robot halfway around the world introduce
additional challenges: (1) Robots that are accessible to other systems on the public internet may be
vulnerable to unauthorized connections and data breaches. (2) The heterogeneity of interconnected
devices, communication protocols, and configurations causes incompatibilities that hinder integra-
tion and operation. (3) The changing network topology of mobile robots and Unmanned Aerial
Vehicles (UAVs) challenges their ability to stay connected. To illustrate some of these challenges
(Fig. 1.1), consider:

(A) Security and inspection drones Drones navigate a construction site and stream data to
a central station that updates a dynamically-changing SLAM map [66]. As drones fly through
different cellular and Wi-Fi networks, their IP addresses change, but they should remain securely
connected.

(B) Coordinating heterogeneous mobile robots in a warehouse Robots belonging to differ-
ent companies (e.g., shipping vs. warehouse) and of different makes and models hand off items
between container and warehouse. Each robot has unique software packages and versions (e.g.,
operating systems and network protocols) and must communicate, but only a few selected topics
are necessary for the handoff.

(C) Distributed fleet learning Robot arms at different locations pool their data and collectively
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update a shared control policy. Robots unable to make progress can fall back on remote human
teleoperators, using algorithms such as Fleet-DAgger [31].

To address these challenges, we present FogROS2-SGC (Secure Global Connectivity), an ex-
tension of FogROS2 that securely and reliably connects robots across different software compo-
nents, network protocols, and physical locations. FogROS2-SGC enables disjoint ROS2 networks
to connect to ROS2 topic interfaces named with globally-unique and location-independent iden-
tifiers. The robots using FogROS2-SGC can roam freely while staying connected because the
identifiers are constant. They are 256-bit strings that are secure and anonymous to unauthorized
attackers by construction —a brute-force attack would have to find a match among 1077 possibil-
ities (a value close to the number of protons in the observable universe1). FogROS2-SGC adopts
a security-first routing design, where only authenticated parties can connect to the robot and es-
tablish secure communication. In contrast to prior work such as SROS2 [52] and FogROS2 [35],
FogROS2-SGC does not require merging distributed ROS2 networks, allowing robots to keep their
ROS2 networks private and expose public topics only if explicitly configured. Providing fine-grain
isolation and access control reduces the attack surface and enhances scalability.

FogROS2-SGC seamlessly integrates with ROS2 applications without code modifications via
an SGC proxy. Its implementation and security policy configuration are agnostic to ROS2 distri-
butions and their network transport middleware vendors. FogROS2-SGC is also compatible with
non-ROS2 programs that interact with ROS2 components and can provide secure global connec-
tivity to non-cloud servers and computers. Furthermore, since memory copy and synchronization
operations are expensive for memory-constrained robots, the implementation of FogROS2-SGC
processes can route data without performing unnecessary copies (also known as “zero copy”).

1.2 Latency Sensitive Cloud Robotics
Latency-sensitive or safety-critical tasks in cloud and fog robotics may be subject to potential
network failures and congestion. We recognize typical cloud robotics service providers usually
provide multiple cloud services at different locations and data centers. Fig. 1.2 shows a use case
of FogROS2-SGC that enables robots to connect to distributed robotic services with location-
independent deployment of latency sensitive cloud robotics applications. It enables robust opera-
tion of latency sensitive applications, such as tracking or collision detection, by connecting robots
to service deployments that satisfy these bounds. We present an extension to FogROS2-SGC that
use these independent cloud compute servers and providers, and enable reliable latency perfor-
mances by dynamically selecting the optimal service out of all available servers.

In ROS2 [48], robotics applications are built in a location-independent way: heterogeneous
robots and modular services2 publish to and subscribe from (pub/sub) each other as if they are
running on the same machine. However, completely adhering to the ROS2 multiple-party pub-
/sub communication paradigm in fog robotics falls short on the following aspects: (1) Mirrored

1The Eddington Number [26] (NEdd) is currently estimated to be 1080.
2Service refers to generic robotics application instead of the specific ROS2 service communication model.

FogROS2-SGC supports both publish-subscribe and service communication models in ROS2.
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Figure 1.2: A Sample Use Case of FogROS2-SGC FogROS2-SGC enables the location-independent deployment of
fog robotics applications, allowing robots to connect with distributed robotic services with a unified ROS2 interface. It
enables robust operation of latency sensitive applications, such as tracking or collision detection, by connecting robots
to service deployments that satisfy these bounds.

robotics services can be distributed to heterogeneous geographic locations and network domains.
The framework needs to globally and securely discover and connect robots with those service de-
ployments, while differentiating services hosted by other users or tasks. (2) The pub/sub paradigm
leads to the request being published to all the deployments, leading to more network congestion
and failure. While still adhering to ROS2 interfaces, a robot should select the one deployment that
fulfills the application-specific latency bound. (3) Deployment selection should be adaptive to fluc-
tuating application latency caused by varying network latency and hardware resource utilization,
and network failures

We introduce a latency-aware extension to FogROS2-SGC that enables launching multiple
instances of robotics task servers across different geographical and network domains, all identifi-
able by a location-independent identifier unique to the task. Robots use this identifier for global
discovery and selection of service deployments based on dynamic ROS2 application latency anal-
ysis. FogROS2-SGC enforces an anycast invariant [14], in which each robot subscribes to exactly
one service deployment. When failures or latency variations occur, FogROS2-SGC seamlessly
switches to an alternative deployment that meets the latency constraints, while adhering to the
anycast invariance.

1.3 System Assumptions
We consider a number of robots and cloud services at different subnetworks. Some of the subnet-
works can not be directly accessible from the outside, such as local area networks behind Network
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Address Translation (NAT). NAT allows multiple robots to share the same IP, but the translation is
dynamic and ROS2 nodes outside cannot directly access the robots. For any pair between robot and
cloud service, there is a direct and trusted path that is connected through FogROS2-SGC switches.

1.3.1 Security Model
FogROS2-SGC is secure against the following security threats:

• The robots communicate across wide-area networks with untrusted infrastructure. FogROS2-
SGC guarantees that no unauthorized attacker can eavesdrop or tamper with ROS2 messages.
Authorization is identified by user-configured cryptographic keys. The FogROS2-SGC pre-
vents attackers from accessing any content in ROS2 messages and differentiates authentic
robots from spoofing attackers.

• Authorized participants can deterministically derive global identifiable addresses with ROS2
topic information and cryptographic secrets. Attackers cannot reverse any information used
to recover addresses or topics. FogROS2-SGC prevent attackers that know part of the ROS2
topic information from deducing the global address. For example, the attackers who know
the topic name and type information cannot guess the address, because they lack the author
information and security credentials of the ROS2 node.

• FogROS2-SGC connects robots without merging distributed ROS2 networks. Every robot
can have an arbitrary number of private ROS2 topics and only public interfaces are shared
with other authorized ROS2 networks. Other ROS2 nodes interact with these public inter-
faces just as they interact with a local ROS2 topic. This protects the privacy of the robot
and prevents unintended messages from being shared with other disjoint networks of the
system. For example, in scenario (B), a delivering robot from one company and receiving
robot from another may have some proprietary topics that are kept private from each other.
FogROS2-SGC isolates the topics private to each robot.

1.3.2 Features
FogROS2-SGC extends FogROS2 to address the Secure Global Connectivity (SGC) problem of
securely and reliably connecting globally distributed robots, sensors, computers, and the cloud.
We enumerate 10 new features to differentiate from related libraries and alternative approaches.

1. No Application Modification Unmodified ROS2 applications work with FogROS2-SGC
and operate as though all modules reside on a single computer.

2. Globally identifiable addresses FogROS2-SGC enables a scalable number of ROS2 net-
works to publish a subset of ROS2 topics to other disjoint ROS2 networks around the globe.
For example, in scenario (C) from Fig. 1.1, the robot arms are located at different geographic
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locations with different local ROS2 networks. FogROS2-SGC allows remote human teleop-
erators to operate the robot arms as if the arms are connected to local networks. FogROS2-
SGC also allows disjoint robots to publish to the same local ROS2 topics with globally
unique and identifiable addresses.

3. Location Independence Connectivity The robotics services can be deployed at different
geographic locations and network domains. FogROS2-SGC interconnects them with robots
as if they were all on the same computer.

4. Seamless and resilient connectivity to network dynamism FogROS2-SGC adapts to the
dynamic network behaviors of drones and mobile robots. FogROS2-SGC does not rely
on static IP addresses to identify the robots because such addresses are usually bound to
a physical location. Adding or reconnecting to robots should not restart the ROS2 node
entirely, as this causes service interruptions and failures. FogROS2-SGC adapts its service
selection to fluctuating network conditions and application latency.

5. Efficient message routing ROS2 messages are buffered in memory to be processed by
FogROS2-SGC. Because robots often have memory and compute resource constraints, FogROS2-
SGC is memory-efficient by reducing unnecessary message copying and memory synchro-
nization. Experiments suggest that FogROS2-SGC reduces the network latency of a cloud-
based grasp planning application by 9.42× compared to unsecured rosduct [8]-rosbridge [23].

6. DDS-agnostic compatibility ROS2 adopts the Data Distribution Service (DDS) as its under-
lying network transport middleware to marshal, unmarshal, and exchange messages. ROS2
supports different DDS implementations, such as CycloneDDS [16], FastDDS [27], and RTI
Connext [3]. However, a warehouse in scenario (B) may have robots running different ver-
sions of ROS2 and DDS. FogROS2-SGC is DDS-agnostic by leveraging ROS2 abstractions
and not using any DDS-specific interfaces.

1.4 Contribution
We claim the following four contributions:

1. FogROS2-SGC, an extension of FogROS2 that connects disjoint ROS2 networks by assign-
ing public ROS2 topics with globally-unique and location-independent identifiers.

2. a location-independent routing framework that discovers and connects with ROS2 topics
across different network domains

3. an Anycast-based communication extension for latency-sensitive cloud robotics applications

4. A Rust implementation of FogROS2-SGC that uses zero-copy message processing and asyn-
chronous network operations for robots with memory and compute constraints.
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We also note that the paper facilities the deployment of many robotics applications, such as
vSLAM [66], motion planning [33], FleetDAgger [31], Lifelong LERF [61], grasp planning [49].
The case studies are merely to show the generality, real life applicability and performance of the
proposed FogROS2-SGC. We do not claim the contribution of designing or implementing these
algorithms.

1.5 Thesis Organization
This thesis is organized in the following way: we cover the background of ROS2, FogROS2 and
other realted work in Cloud Robotics in Chapter 2, the design of FogROS2-SGC in Chapter 3, the
latency sensitive extension of FogROS2-SGC in Chatper 4, and Cloud Robotics case studies in
Chapter 5.
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Chapter 2

Background and Related Work

2.1 Related Work
James Kaufner introduced the term ’Cloud Robotics’ in 2010 [41]. Cloud and fog computing have
been applied to robotic tasks such as grasp planning (Tian et al. [70], Kehoe et al. [39], and Li et
al. [46]), parallelized Monte-Carlo grasp perturbation sampling (Kehoe et al. [37, 38, 40]), and
motion planning (Lam et al. [44]). Chen et al. [21] and Ichnowski et al. [35]. propose frameworks
for offloading computation to resources on the edge or cloud, while Ichnowski et al. [34] and
Anand et al. [12] present systems that leverage serverless computing [53]. Modern computing
paradigms have enabled new applications such as multi-robot interactive fleet learning (Swamy et
al. [67], Hoque et al. [31]) and remote sharing of robot systems (Tanwani et al. [69], Bauer et al.
[15]).

Robot Operating System (ROS) 2 [48], the successor of ROS, is the de-facto standard for devel-
oping robotics applications due to its broad availability and adaptability. In ROS 2, computational
modules are abstracted into nodes, and they communicate with each other using a multi-party pub-
lish/subscribe paradigm through topics. All nodes subscribing to the same topics receive data from
other nodes that publish them. Over the past decades, various attempts have been made to enable
robotics applications in ROS or ROS2 to leverage Cloud or Fog computational resources. Rapyuta
Mohanarajah et al. [54] is a proprietary platform for centralized management and deployment of
ROS application pipelines.

Remote interactions between robots and the cloud raise security, compatibility, and connec-
tivity challenges for robots. Virtual Private Networks (VPNs) are the most common approach for
establishing secure communication between robots and the cloud for both ROS and ROS2 (e.g.,
Lim et al. [47]). Since establishing a VPN link between a robot and the cloud is a complex pro-
cess [30], FogROS [21] and FogROS2 [35] automate the certificate generation and VPN setup.
SROS2 [52] is an alternative approach to securing ROS2 communication that enforces access
control of ROS2 topics. However, it requires DDS-dependent discovery mechanisms to ensure
connectivity. Discovery mechanisms for DDS (such as the discovery server for FastDDS [27] and
the RTI routing service for RTI Connext [3]) are vendor-specific and not compatible with other
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Figure 2.1: Comparison of FogROS2-SGC with other distributed ROS2 systems. In this table, we compare the
feature support of different distributed ROS2 systems with the features. Some features can be supported but require
non-trivial effort beyond changing the configuration. For example, both the routing service in rti connext and discovery
server in FastDDS/SROS2 support global connectivity but require manually modifying routing rules or setting up a
point-to-point VPN when a new node joins [5]. Rosbridge and FogROS2 support only unidirectional global and
resilient connectivity (marked with *), meaning that one side of the communication must have a fixed IP. In contrast,
the identifier-based routing of FogROS2-SGC allows either side to have a dynamic IP address.

DDS implementations. Zenoh for ROS2 [11] is integrated with CycloneDDS to enhance peer-to-
peer connectivity, but it is not compatible with other DDS implementations. ROS Remote [60]
by Pereira et al. and MSA [76] by Xu et al. propose alternative protocols to unify cloud-robot
communication. However, alternative protocols require modifications to ROS applications and are
not compatible with ROS2. Finally, rosbridge [23] proposed by Crick et al. is widely adopted
by both ROS1 and ROS2 to allow non-ROS software to interact with ROS2 nodes. It can also be
used to bridge two non-compatible and remote ROS applications when used in conjunction with
rosduct [8]. However, rosduct and rosbridge have significant message latency when the message
size is large (e.g., images). A summary of how FogROS2-SGC differs from related work can be
found in Fig. 2.1.

2.2 FogROS2
Chen et al. [21] propose FogROS, a cloud robotics framework that offloads ROS applications to
the public cloud. Ichnowski et al. [35] and Chen et al. [20] extend FogROS with ten major features,
including ROS2 support and major cloud service providers. FogROS2-SGC (Secure and Global
Connectivity) [19][18] connects distributed ROS2 nodes through a global peer-to-peer network.
In this work, we build upon the FogROS design philosophy, allowing for offloading and connect-
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ing robots with ROS2 applications without any code modifications. Furthermore, we extend our
study to enabling latency sensitive fog robotics applications. On the technique side, FogROS2
uses Virtual Private Network (VPN) optimized for single cloud and robot, and FogROS2-SGC
lacks flexible network routing management. In contrast, our approach in FogROS2-SGC lever-
ages the unique communication paradigm Anycast. This allows robots the flexibility to connect to
one of several location-independent services and dynamically switch to meet application latency
constraints.
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Chapter 3

Secure and Global Connectivity

We propose FogROS2-SGC, a network extension of FogROS2 that can effectively connect robot
systems across different physical locations, networks, and Data Distribution Services (DDS). See
Fig. 4.1 for the system architecture. FogROS2-SGC sends messages via a globally unique identi-
fier (Sec. 3.1). This identifier is unique to a robot and topic pair; thus, it can be used for sending
and receiving messages regardless of robot location or network address (Sec. 4.1). The identi-
fier is secure and communication is encrypted, meaning only authorized robots and nodes can
access messages from its referenced topic (Sec. 3.3). To implement routing based on the identifier,
FogROS2-SGC consists of two main software components—(1) a router (Sec. 4.1 and 3.3), respon-
sible for securely routing messages between other routers and nodes, and (2) a proxy (Sec 3.4), that
converts between ROS2 messages and the secure routers. As robots can be compute and memory-
constrained, FogROS2-SGC provides a compute and memory-efficient implementation (Sec. 3.5).

FogROS2 
Robot

Camera 
Node

SGC 
Routing (IV.B)

SGC Proxy (IV.D)

SGC
Routers

(IV.E)

SGC
Router
(IV.E)

Identity 
Manager

(IV.A)
SGC Proxy (IV.D)

SGC
Router
(IV.E)

Identity 
Manager

(IV.A)

Security (IV.C)

Fleet 
Learning 

Node

SGC Network
ROS2 Nodes

ROS2 Network

 /image Global 
Identifier 
(IV. A): 
[75e…0fc]  /image

FogROS2 Cloud
SGC Components
SGC Routers

Figure 3.1: System overview of FogROS2-SGC’s architecture showing a connection between a robot camera stream
(on the ROS2 topic /image) and the cloud. The FogROS2-SGC assigns the ROS2 topic /image an anonymous,
globally-unique and location-independent 256-bit identifier [75e...0fc] (truncated for brevity). The messages
between identifiers are securely routed with the SGC router.
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3.1 Global Addressability
Maintaining a globally unique identifier enables the identification of a specific robotic component
across subnetworks. FogROS2-SGC uses ROS2 topics as the minimal granularity for the global
identifier because a topic is an interface to ROS2 nodes, and a ROS2 node can publish or subscribe
to multiple ROS2 topics at the same time. For example, a ROS2 vSLAM node in openVSLAM [66]
has four ROS2 topics for camera information, video streaming, output localization, and mapping
information. These ROS2 topics expose standardized interfaces with fixed message types. Users
can limit the exposure of the ROS2 network by allowing only parts of the interface to be public.
Partitioning public and private interfaces also enhances privacy and isolation, prevents unintended
message exchanges, and reduces communication overhead.

The identifier is designed to be unique, deterministic, and location-independent. To avoid name
collisions, every identifier has 256 binary bits, leading to 2256 possible identifiers. Instead of letting
users decide, all identifiers are cryptographically derived from the metadata of the ROS2 topics by
an identifier manager in the SGC proxy. The SGC proxy collects metadata such as the ROS2
node’s name, author, maintainer, interface, and description from standard ROS2 interface and user
configuration file. The metadata also has a unique string in case the user needs to deploy the
same topic at different locations. Every topic has an associated security certificate in X.509 [57]
to verify the identity of those who want to publish or subscribe to the network. All the metadata
is serialized and converted into a 256-bit string using SHA-256 [4], a widely used cryptographic
hashing algorithm that maps arbitrary lengths of text to almost-unique 256-bit binary strings.

Security Analysis: The hashed string is suitable for use as the globally unique identifier for
the following reasons: (1) Deterministic: The hash is deterministic so that every party holding the
same metadata can derive the same hash value and thus the same global identifier. (2) One-way:
SHA-256 is a one-way function, so the attacker cannot deduce or reverse the original metadata
from the 256-bit identifier. (3) Avalanche effect: A small change to the original metadata leads to
a new hash value that appears unrelated to the original hash value. (4) Large namespace: There
are 2256 possible identifiers and it has been proved to be computationally intractable to find two
messages with the same hash. Verification of these guarantees can be found in Appel [13].

3.2 Location-Independent Routing
Although having all identifiers in the same globally-flat namespace protects the privacy of the
node’s identity information and physical location, the identifiers do not carry any routing informa-
tion. Flipping a bit in the identifier may lead to a drastic change in its physical location, or from
existent to nonexistent. Therefore, securely routing messages between flat identifiers is a chal-
lenging problem. To solve this problem, FogROS2-SGC consolidates and extends the Global Data
Plane (GDP) [55], a peer-to-peer network that routes messages between location-independent iden-
tifiers. The routers are set up by the user and peer-wise connected into a routing graph; robots do
not need to know other robots’ addresses as long as there is a connected routing path. The routers
can be any machine that has network and general compute capabilities, such as an edge computer
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or a cloud server. Every router stores the mapping between the identifiers and the corresponding
routing information of the identifiers in the Routing Information Base (RIB).

A joining robot or router broadcasts an advertisement packet that announces the existence of
the identifier and the routing information to the robot. The packet format is aligned with other
FogROS2-SGC packets in Fig. 3.3. Other routers store the routing information in RIB and broad-
cast the advertisement packet. Routing is achieved by looking up the destination routing informa-
tion in the RIB and forwarding to that destination.

Fig. 3.2 illustrates a step-by-step example of a publishing and subscribing /camera topic
with FogROS2-SGC. The figure assumes that all the connections between routers are established.
This can be achieved through configuration or dynamic node discovery [6]. The steps are:

1. The robot SGC proxy P1 generates an advertisement message for the ROS2 topic /camera
and sends it to Router 1.

2. After verifying the advertisement message, Router 1 records the advertisement in its RIB and
forwards the topic information to Router 2. There can be multiple routers between Router 1
and Router 2.

3. The cloud SGC proxy P2 requests to subscribe to /camera, and the subscribe request is
sent to Router 2.

4. The subscribe request from Router 2 is routed to Router 1 by checking the source information
at Router 2’s RIB. After verifying the request, Router 1’s RIB records P2 as the data sink.

5. The subscribe request from Router 1 is routed to the robot by checking the source informa-
tion at Router 1’s RIB. If the destination is not found, the router broadcasts a query to other
routers.

6. The robot’s ROS2 publisher sends a ROS2 message to the proxy. The proxy forwards it to
Router 1, Router 1 forwards to Router 2, and Router 2 to the cloud subscriber. At each hop,
the messages are forwarded from source to sink.

3.3 Secure Communication
The security of the communication is achieved by using a secure network protocol between routers.
We use Datagram Transport Layer Security (DTLS) [4] to provide communications privacy. The
DTLS protocol provides secure and authenticated communication on User Datagram Protocol
(UDP) and includes a built-in mechanism for dealing with lost or out-of-order packets. DTLS
on UDP is well-suited for latency-critical robotics communications systems due to its lightweight
nature and low overhead compared to Transmission Control Protocol (TCP). The cryptographic al-
gorithms used to secure the ROS2 packet generation process can be found in Fig. 3.3. The message
has the following security guarantees: Confidentiality: The ROS2 messages are encrypted with
AES Encryption [25] to ensure that only parties with the correct cryptographic key can decrypt the
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Figure 3.2: An illustration of how a routing connection is established between robot and cloud. The steps are further
described in Section 4.1. (1,2) Advertisement generation and publish. (3,4,5) Subscribe request. (6) Data routing.
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FogROS2-SGC Packet on the right is the message that is routed by FogROS2-SGC. The payload is encrypted to
protect the confidentiality of the original ROS2 message. The encrypted data is hashed so that the receiver can verify
the message is intact. The hash is signed with the sender’s key so that the receiver can verify that the message comes
from an authentic and authorized sender.
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original ROS2 message data. Integrity: The encrypted message is hashed by SHA-256 [13] so the
receiver or third-party auditor can easily verify that the message is intact and no other attacker has
tampered with the message. Authenticity: The hashed message is signed by the RSASSA-PSS [9]
algorithm so that receivers can verify that the message is sent from an authorized sender.

To tailor the security with the communication patterns of robotics applications, FogROS2-SGC
allows flexible peering with other routers or end points. One may choose to use a dedicated DTLS
connection per ROS2 topic, which is ideal for large message payload and frequent communication
(e.g., video streaming). One may also choose to use a shared DTLS tunnel, where multiple ROS2
topics share the same DTLS connection. Sharing the same connection reduces the cost of secure
connection management and message processing, which is ideal for small message payloads and
less frequent communication.

3.4 Transparent and Compatible SGC proxy
The SGC proxy is the interface between FogROS2-SGC and the ROS2 network. In order to allow
seamless integration with any unmodified ROS 2 application code and mainstream DDS vendors,
The SGC proxy converts between ROS2 communication and FogROS2-SGC communication bidi-
rectionally. The user first identifies ROS2 topics that they wish to publish or subscribe through a
configuration file. The proxy launches a local ROS2 publisher or subscriber for the correspond-
ing topic. New messages from the local ROS2 network are actively subscribed to by the proxy,
and sent to the FogROS2-SGC network. Once the verified subscribers receive the messages, they
convert them to standard ROS messages and publish to their local ROS2 network.

To allow non-ROS2 programs to communicate with ROS2 nodes, SGC proxy converts ROS2
messages to a unified JSON-based message format in transit. As a result, FogROS2-SGC can
be extended to a variety of protocols such as TCP, UDP, DTLS, TLS, and gRPC. Note, however,
that some of the protocols need special handling to be aligned with FogROS2-SGC. For example,
gRPC requires the IP addresses of both robot and cloud for bidirectional message passing.

3.5 Compute and Memory-Efficient SGC router
FogROS2-SGC can be deployed on low-power robots under memory and compute constaints,
so an efficient implementation of the routing algorithm in Section 4.1 is crucial to the overall
performance of the system. Fig. 3.4 shows the architecture of the SGC router. An idiomatic
workflow of the router implementation is to (1) receive data from ROS2/network, (2) decide which
network connection to forward, and (3) forward data to ROS2/network. Because FogROS2-SGC
needs to be extensible to heterogeneous network protocols, the router needs to maintain many
simultaneous network connections, ranging from ROS2’s publish/subscribe protocol to general
network protocol such as DTLS.

Because low-power robots run under memory constaints, memory copying operations and syn-
chronization operations (such as mutex) are expensive. SGC router is implemented in Rust [51]
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Figure 3.4: SGC router architecture. (Orange) Subscribe to a local ROS2 network and publish to FogROS2-SGC rout-
ing network. (Magenta) Receive from FogROS2-SGC routing network and publish to local ROS2 network. (Black)
Intermediate SGC router that facilitates message routing. SGC router asynchronously reads, writes, and manages all
the network connections. All the message passing (arrows) is zero-copy and does not require movement of actual
messages.

to eliminate memory copying operations and the need for synchronization. Rust is a programming
language that features a single ownership model: every data object has a single owner, and passing
the data is moving the ownership from one variable to another. As a result, it prevents race con-
ditions and reduces data copying by enforcing the passing of data objects by references instead of
values.

3.6 Implementation
We implement FogROS2-SGC prototype in 5,000 Lines of Code in Rust. The rust component
takes standard REST API interface to take the message control flow. We use r2r, a rust binding
of ROS2 to acquire messages from ROS2 middleware. The system integrates ROS with additional
networking capabilities (DTLS) under conditional compilation flags. It utilizes crates such as
tokio, serde, redis, and tracing in Rust for asynchronous runtime, serialization, data
management, and logging respectively.

The proxy implementation features asynchronous and event-driven, which it is built using
asynchronous programming principles, leveraging Rust’s tokio runtime.

The proxy can be partitioned in the following workflow components:

• FogROS2-SGC automates the operational mode (pub, sub, noop) for a topic based on the
CLI output of ros2 topic info. It marks the topic as a remote publisher (pub) if no
local publishers are present. It marks it as a remote subscriber (sub) if no local subscribers
are found. It does nothing (noop) if both local publishers and subscribers are present.

• ros topic creator: It manages creation of topics based on their action (pub or sub).
It establishes a DTLS stream for data transfer between local ROS topics and remote end-
points. For pub, sets up a publisher that sends data to a remote subscriber. For sub, sets up
a subscriber that receives data from a remote publisher.

• create new remote publisher and create new remote subscriber These
manage the creation of remote endpoints for topics designated as publishers or subscribers.
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It interact with RIB (implemented with redis) for registering and discovering entities in a
distributed system. It listen for Redis keyspace notifications to dynamically manage the list
of active publishers or subscribers. It establishes DTLS streams for connecting to remote
subscribers or publishers respectively.

• ros topic manager The manager coordinates the overall management of ROS topics as
one single ROS2 node. It regularly checks for new topics and manages their lifecycle based
on the configuration and dynamic discovery. It utilizes a Redis-based mechanism to manage
and update the status of topics across multiple nodes.

The proxy and switches contains a Forward Information Base, that routes GDP packets within
a network, utilizing a combination of asynchronous message passing and reactive programming to
handle incoming GDP packets and routing updates.

1. Initialization: A hash table (coonection rib table) is initialized to keep track of the
routing information for various GDP channels associated with different GDP names.

2. Asynchronous Event Handling: The function enters an event loop using tokio::select!,
handling different types of messages concurrently:

• GDP Packet Reception: Packets received from the fib rx channel are checked
against the routing table. If an entry exists, the packet is forwarded to the appropri-
ate destinations using the send to destination function. If no entry is found, a
query is sent to the RIB (Routing Information Base) to resolve the destination, and the
packet may be dropped or buffered.

• Channel Registration: New channels (GDPChannel objects) received from the channel rx
are registered in the hash table, adding new routing entries or updating existing ones.

• RIB Responses: Responses from the RIB, which can indicate new routing information
or updates, are handled by updating the routing table and possibly forwarding the GDP
packets to the newly resolved destinations.

• Routing Status Updates: Status updates received on the stat rs channel prompt
a refresh of the routing advertisements to all known destinations, ensuring the routing
information is current.

3. Routing Table Management: The routing table is dynamically updated based on the net-
work topology and routing information received from the RIB or directly via the channels.

4. Packet Forwarding: The send to destination function is used to forward packets to
the appropriate channels based on the routing table. This includes handling send failures due
to closed channels.
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Chapter 4

Latency Sensitive FogROS2-SGC

In this chapter, we introduce an extension to FogROS2-SGC that enables latency-sensitive robotics
applications by deploying replicated services in a location-independent manner and connecting
with user-specified time constraints. We name the extension as FogROS2-LS, illustrated in Fig.
4.1, Location-independent robotics service is achieved through a secure and global routing frame-
work (Sec. 4.1) that associates local ROS2 topics with globally-unique and secure identifiers. The
same services can be replicated at different geographic locations with the same identifier, allow-
ing robots to discover the location independent services and connect as if the service were on the
same machine. FogROS2-LS uses Policy-Guided Anycast (Sec. 4.2) to address the challenge of
choosing a single deployment from several instances sharing the same identifier without any ap-

Adaptive Routing Scheduler (III.C)

Fo
gR

O
S2

-L
S

An
yc

as
t (

III
.B

)

Robot

Fast 
Deployment

Slow 
Deployment

Failed 
Deployment

Figure 4.1: System Diagram of FogROS2-LS components FogROS2-LS enables latency-sensitive fog robotics ap-
plications through an adaptive scheduler that generates routing policies. The routing policy directs robots to connect
with the optimal service deployment by Anycast.
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plication or interface modifications of ROS2. This approach enables connection to a single service
deployment based on a routing policy. This policy is dynamically generated by the Adaptive State
Machine Scheduler (Sec. 4.3), which monitors and orchestrates application latency.

4.1 Location Independent Routing
Location Independent and Unique Identifiers FogROS2-LS enables multiple location indepen-
dent deployments of the same service by assigning a shared globally unique identifier to all the
service deployments. Robots can deterministically generate the identifier to discover and con-
nect with the service. FogROS2-SGC details the identifier cryptographic construction process, in
which an unauthorized attacker attempting a brute-force attack would have to guess the service
identifier or reverse the information used to generate it among 1077 possibilities, a value near the
number of protons in the observable universe. The original FogROS2-SGC uses this property for
mobility, allowing robots to move freely across different network domains. FogROS2-LS extends
FogROS2-SGC’s identifier generation process so that multiple servers at various geographic loca-
tions can host the same ROS2 service by assigning their service interfaces with the same identifier.
FogROS2-LS also supports identifier generation for both ROS2 publish/subscribe and service/-
client communication paradigm.

Flexible Global Service Discoverability and Connectivity Given a shared identifier associ-
ated with a fog robotic service replicated across various geographical locations, robots face the
challenge of globally discovering and connecting to these deployments. This task is challenging
due to heterogeneous network domains, firewalls, and Network Address Translation (NAT) [72],
which sometimes restrict accessibility to network addresses or ports outside of certain domains. It
is further complicated by the flexibility requirement of FogROS2-LS that the robot can dynami-
cally select the service based on the latency requirement.

FogROS2-LS achieves flexible global discoverability by maintaining a global routing informa-
tion base, a centralized registry storing all routing data, enabling newcomers to directly connect
with existing publishers and subscribers. This registry solely aids in connection establishment and
maintenance without data routing. This provides two clear benefits: (1) it is sufficiently lightweight
to operate on low-end servers, with UC Berkeley offering a public version; (2) it enables flexible
packet control to specific endpoints by direct robot-service connections, since intermediary routers
can introduce protocol complexities and inefficiencies.

FogROS2-LS enables global connectivity through proxying local ROS2 communication to We-
bRTC [64], a peer-to-peer network transport protocol that facilitates global connections and is
commonly used for web-based video conferencing. We refer readers to [64] for its design and
guarantees. In FogROS2-LS, the global routing information base maintains the WebRTC channel
details of current publishers and subscribers, allowing newcomers to utilize this information to
directly establish WebRTC connections with existing participants.
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Figure 4.2: Comparison of Publish/Subscribe and Anycast Communication Paradigms ROS2’s publish/subscribe
paradigm publishes a message (e.g. a request from robots) to all existing subscribers, which wastes computational and
network resources. In our context, the Anycast paradigm is more appropriate, as it forwards to only the most optimal
deployment based on the policy.

4.2 Policy-Guided Anycast
Many ROS2 applications utilize the publish/subscribe paradigm in ROS2 to emulate a server and
client setup, where the robot client publishes to the request topic and subscribes from the response
topic, while the server subscribes from the request topic and publishes to the response topic. This
emulation works if only one service deployment exists in the network. Otherwise, the robot may
send requests to multiple deployments (Fig 4.2.A), wasting compute and network resources in
the context of multiple deployments of the same service. Additionally, the robot could receive
duplicated responses from multiple deployments.

Recognizing that robots need to communicate with only one of the services, FogROS2-LS
resolves this issue by formulating Anycast to describe this one-to-one-of-many relationship: the
request message only needs to be forwarded to any of the deployment that subscribes to the request
topic, instead of all of them. Other idle service deployments in ROS2 consume negligible network
and CPU resources, which can be used to handle other robots or services. However, we note that
this is conceptually different from IP Anycast [14]: IP Anycast concentrates on routing packets to a
destination IP address shared by multiple locations, while FogROS2-LS bridges publish/subscribe
to one of many services (Fig 4.2.B).

FogROS2-LS enables Anycast by managing its global routing state: which ROS2 topics should
be globally discoverable, published, or subscribed to. Anycast is achieved when a single service
deployment subscribes to service request topics and publishes to service response topics, with the
robot maintaining a location-independent connection exclusively with that service deployment.
Given that a service may use multiple ROS2 topics, we use state to refer to the aggregation of the
global topic publish or subscribe relationship of a robot or service deployment at a specific time.
An example of the state definition can be found in Listing 1. FogROS2-LS has predefined three
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states to facilitate Anycast: the robot state designated for the robot, the service state for actively
managing requests, and the standby state which prevents the exposure of any global service topics
to other machines. One can also define their own state, but additional adaptation is required for
anycast invariance.

Each FogROS2-LS-integrated robot or service operates its own state machine. To switch from
one service deployment to another, the scheduler reassigns the state machine, marking the old
deployment as standby, and the new one as service. FogROS2-LS automates the state transition-
ing by tearing down the network connections of the previous state, updating the global routing
information base, and establishing the connections for the new state.

We transform an intricate network routing management problem into a straightforward state
machine management problem. Instead of designing networking protocols and maintaining com-
plex routing states, we only need to keep the invariant that only one service deployment is in ser-
vice state, while other deployments are in standby state (Fig 4.2.C). In FogROS2-LS, the collective
states of all the state machines for the robot and service form the policy, which is user-initialized
(Listing 1) and overseen by an adaptive scheduler (Sec. 4.3). To minimize the service interruption
of state transitioning, FogROS2-LS maintains the underlying network connection from previous
services, merely pausing the packet forwarding instead of completely tearing down the connec-
tions. This strategy leverages the minimal overhead involved in keeping a network connection
active, allowing for the reuse of these connections when switching for those services that require
continuous operation.

4.3 Adaptive Time-Bounded Policy Scheduler
FogROS2-LS ensures an application’s adherence to the time constraint by monitoring the applica-
tion latency, checking if the latency fulfills the bound, and dynamically adjusting its routing policy.
The latency is profiled by adjusting the routing rules ahead of the deployment. The necessity for
a user-defined time bound is to avoid impractical monitoring of the most optimal machine and to
prevent overly frequent switching.

FogROS2-LS uses a centralized scheduler to determine which machine should be the service
machine for the robot. The scheduling decision translates to the actual state machine updates
that are synchronized across all available deployments for consistency and fault tolerance. The
scheduler passively monitors the application latency and is triggered when the application fails to
fulfill the latency bound or if the current service machine is disconnected. The scheduling decision
is based on historical profiling results on both active and idle service deployments. The scheduler
temporarily directs the messages to the selected service and collects latencies for a short period
of time. FogROS2-LS gathers application latency profiles at bootstrapping and when none of the
available machines fulfill the latency bound based on the past data.

To accommodate diverse ROS2 applications, FogROS2-LS provides three latency collection
mechanisms: (1) measurement of the difference between the request and response time of ROS2
services, (2) heuristics to align the request and response topics in ROS2 pub/sub and to get the
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Listing 1 FogROS2-LS State and Policy Configuration File Example This
state definition section illustrates how the user specifies the machine’s state—such
as standby, which the node remains idle, and service, which the node actively listens for
input requests and outputs to the response topic. The state machine also allows specifying the
parameters such as camera frame rate and resolution. User can also add their own custom states.
The second half of the configuration file defines the desired latency bound for the messages from
the request topic and response topic.

1 # III.B
2 state_definition:
3 standby: # do not publish or subscribe to any topics
4 service:
5 topics:
6 - /yolo/input: sub # subscribes to YOLO input
7 - /yolo/output: pub # publish to YOLO output
8 robot:
9 topics:

10 - /yolo/input: pub # subscribes to YOLO input
11 - /yolo/output: sub # publish to YOLO output
12 params:
13 - /camera: rgb_module.profile:=640x480x30
14
15 initial_policy:
16 turtlebot: robot
17 machine_edge: service
18 machine_cloud: standby
19
20 # Section III.C Adaptive Latency Monitoring
21 latency_bound:
22 median: 0.3 # in second, max/min/median/mean/stddev

State Definition

Initial Policy

timing difference of the request topic and response topic, and (3) direct input of latency from a
pre-defined ROS2 interface.

4.4 Implementation
Beyond FogROS2-SGC, we prototype additional 2,000 Lines of Code in Rust that takes standard
REST API interface to take the message control flow. We implement a ROS2 wrapper of FogROS2-
LS for developers to easily access and control the routing. The wrapper is implemented as a ROS2
module with 2000 LoC in Python. Both FogROS2-SGC and its ROS2 wrapper are open source on
Github 1.

1https://github.com/KeplerC/fogros2-ls
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4.4.1 Software-Defined Rust Switch
On top of FogROS2-SGC, FogROS2-LS implements a Rust-based API POST handler that pro-
cesses incoming JSON payloads representing ROSTopicRequest. It sends these requests through
a channel for further processing and responds with a ROSResponse containing the result of the
operation. The server’s listening port is configured through the environment variable SGC API PORT.
This differentiates possible ROS2 domains if one needs to use FogROS2-LS on the same physical
machine or local network.

4.4.2 Timebound Analyzer
The policy scheduler is implemented as a Time Bound Analyzer that analyzes the application
latency. It is implemented as a ROS 2 node written in Python that monitors and analyzes network
latency in a distributed system of ROS nodes. The node collects latency data, calculates various
statistical parameters, and publishes this data for monitoring and potential adaptive control.

Upon initialization, the Time Bound Analyzer declares and retrieves necessary ROS pa-
rameters latency window (time window for latency measurements) that collects latency of a
certain interval, subscribes to a latency topic to receive latency measurements, gathers system in-
formation such as IP address, CPU count, and checks for GPU availability using psutil and
pynvml ad finally initializes a publisher to send out profile information about the node.

Upon an incoming messages on the latency topic that contains the application latency, it man-
ages a sliding window of latency measurements to maintain recent data within a specified time
frame and automatically discards the oldest data to prevent unbounded growth of the data struc-
ture. The latency update is triggered by the stats timer callback function is invoked pe-
riodically and is responsible for aggregating recent latency measurements, computing statistical
measures such as mean, median, standard deviation, and range (min/max) of latency, and publish-
ing the computed profile to a ROS topic for external use.

Statistical measures The policy scheduler supports various statistical measurements on analy-
sis such as goodness of variance fit, which calculates the goodness of variance fit (GVF)
and a statistic related to the classification of data into specified classes using Jenks natural breaks
optimization, and classify that classifies individual measurements into categories based on
break points.

4.4.3 Policy Scheduler
Based on the time bound analyzer, the policy scheduler manages and optimizes distributed system
resources dynamically based on profiling data such as network latency and system performance
metrics.

The scheduler is implemented as a ROS2 node. On initialization, the node initializes by declar-
ing necessary ROS parameters that influence operational decisions such as the maximum number
of waiting profiles and automatic resource switching capabilities. It loads configuration settings
from a YAML file, establishing initial resource assignments and operational parameters for service
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machines. It also subscription to profile topics and service handlers of profiling data and respond
to system management commands from the time bound analyzer.

The profile is managed from various service machines is received and processed to update
the internal state and performance metrics for each machine.The node monitors system timeouts
and disconnects to make adjustments in resource assignments based on the latest data. Several
ROS services are implemented to handle specific requests such as system profiling optimization,
active profile listing, and manual resource switching based on current profiling data. Actions
triggered by service calls may include state adjustments and resource reallocation to optimize
system performance.

The state machine in the scheduler manages a dictionary of service states, keeping track of the
operational state and performance metrics of each connected service machine. The state machine
scheduler manages the logic to handle transitions of machine states (such as from standby to active)
based on performance evaluations and current system needs. Performance metrics such as latency
are monitored to determine the optimal machine for resource allocation. Heuristic-based decision
processes evaluate if a machine’s performance meets required criteria, enabling dynamic adjust-
ments. Functionality to run parallel profiling across multiple machines is included to optimize
resource allocation in real-time.
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Chapter 5

Evaluation

This chapter describes the implementation effort of FogROS2-SGC and the evaluation of the ex-
isting implementation. Due to the nature of performing secure computation and communication
in and between the secure enclaves, the research prototype is independent from all of the previous
GDP implementations.

5.1 System Benchmark
In this section, We evaluate FogROS2-SGC on system benchmarks to show how it performs against
alternative designs and on robotics benchmarks to show how robotics applications benefit from
FogROS2-SGC.

5.1.1 Evaluation Setup
We use an Intel NUC with an Intel® Pentium® Silver J5005 CPU @ 1.50 GHz with a 5 Mbps
network connection to act as the robot. The robot is connected with a Standard DS3 v2 cloud
instance (4 vCPUs, 14 GiB memory) on Microsoft Azure. The robot is located in California (west
coast of U.S.), and the cloud server is located in Virginia (east coast of U.S.).

We evaluate the performance of FogROS2-SGC’s message processing latency and throughput
against other distributed ROS2 systems. Messages are sent in binary with type sensor msgs
CompressedImage and response with string type std msgs/String. We compare against
the following baselines (1) VPN: We use Wireguard VPN [10], which is the same VPN as
FogROS2 [34]. (2) Rosbridge: Rosbridge is the most commonly used websocket proxy that
allows non-ROS code to interact with ROS code. We use Rosbridge in combination with Rosduct
in the same way as FogROS [21]. (3) Capsule: We use Capsule, a software switch inspired by
Netbricks [59], to emulate the design of FogROS2-SGC. We also implement rosduct [8] in ROS2
that converts between ROS2 and network traffic. The detailed description and implementation can
be found in FogROS-G [19]. FogROS2-SGC uses the default DTLS network protocol. We include
FogROS2-SGC-TCP, a variant that uses TCP instead of DTLS.
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Figure 5.1: Message round trip latency to the cloud (lower is better). Latency is averaged over more than 50 packet
window. FogROS2-SGC is 19 times faster than rosbridge baseline for 8000 byte message.

ROS2 Message Latency: We measure the Round Trip Time (RTT) between when a robot pub-
lishes a ROS2 message to the cloud and when data is received by the cloud, which echoes a short
message on a separate ROS2 topic. The RTT also includes the time of parsing the messages and
analyzing the latency. The result can be found in Fig. 5.1. FogROS2-SGC with DTLS has similar
performance as VPN, which has 0.076s round trip latency for small messages. FogROS2-SGC is
10.2% faster than VPN for 8000 byte messages (0.088 vs 0.097). FogROS2-SGC is 19× faster than
rosduct-rosbridge (0.088 vs 1.67). There are two reasons for this: (1) Rosduct is implemented in
Python and provably slower than Rust. It uses blocking network operations while FogROS2-SGC
uses non-blocking asynchronous network operations for sending and receiving data. (2) Rosbridge
requires seralization of binary messages in JSON, which require more bytes and lead to larger
messages.

ROS2 Message Throughput: Message throughput is measured by the number of messages
processed per second. Different from other experiments, throughput is measured on the local
area network connected with Ethernet, in order to prevent network bandwidth from being the
bottleneck. Table 5.1 shows the message processing throughput. FogROS2-SGC achieves near-
native throughput as ROS2 and incurs only 3% overhead due to the security and conversion to
a unified message format. FogROS2-SGC has 2.1× higher throughput than rosbridge, because
rosbridge requires more bytes to serialize binary strings.

Startup and Advertisement Time: In a RIB that has 10,000 routing records, the average time
for publishing a name to the RIB takes 4ms and subscribing to a name from RIB takes 2ms. The
average startup time from starting a program to receiving the first message takes 2.4 ms.
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Protocol Throughput (msg/second)

Original ROS 330.43
SROS2 320.17
Rosduct-Rosbridge 152.79
FogROS2-SGC-TCP 268.03
FogROS2-SGC 320.40

Table 5.1: Message throughput evaluation of FogROS2-SGC (higher is better). Every message is 1000 bytes. The
throughput of FogROS2-SGC is near native performance while adding secure and global connectivity and 2.1 times
higher than rosbridge.

vSLAM Grasp Planning Motion Planning

Scenario fr1/xyz1 fr1/loop raw matrix Compressed Apartment Cubicle

rosduct-rosbridge 10.31 10.29 20.3 13.67 0.08 0.08
VPN 1.16 1.45 5.7 1.47 0.07 0.07
FogROS2-SGC-TCP 1.19 1.57 8.4 1.58 0.07 0.07
FogROS2-SGC 1.15 1.42 - 1.45 0.07 0.07

Table 5.2: Network latency of FogROS2-SGC on cloud robotics applications (lower is better) FogROS2-SGC is
better than rosduct-rosbridge and VPN on vSLAM and compressed grasp planning. We conducted motion planning
on other scenarios (Home, TwistyCool) and the latency is the same.

5.2 Simulated Cloud Robotics Benchmark
We evaluate the network latency of FogROS2-SGC with 3 example cloud robotics applications:
SLAM with ORB-SLAM2 [56], Grasp Planning with Dex-Net [49], and Motion Planning with
Motion Planning Templates (MPT) [33]. The detailed description of these benchmarks can be
found in [21].

As detailed in Table 5.3, although FogROS2-SGC can scale to multiple robots and provide
fine grained access control for the robots, it demonstrates even better point-to-point performance
than VPN in the vSLAM and grasp planning experiments. FogROS2-SGC is 9.42 times faster than
rosbridge-rosduct on compressed grasp planning images. However, FogROS2-SGC cannot reliably
transmit large and uncompressed grasp planning matrices. The raw matrix after serialization is
larger than 13MB. We observe a significant amount of lost and out of order messages because the
default transport protocol of FogROS2-SGC is DTLS over UDP and the communication channel
does not recover from lost and out of order messages. Although transmitting such large message
within single ROS2 message is rare, users can choose other supported transport protocols (such as
TCP, gRPC) to meet the requirement of their applications.

5.2.1 ORB-SLAM2
ORB-SLAM2 [56] is a visual simultaneous localization and mapping system that uses monocular
video input. In this experiment, a Camera Node publishes a 640×480 resolution video with each
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Figure 5.2: Example FogROS2-SGC applications in experiments. In experiments, we run 3 sample applications,
each with one node accelerated by cloud computing, with the nodes and topics shown here. For brevity, we only depict
the VPC-based solution here, but we also experiment with the proxy-based solution.

Figure 5.3: Grasp Planning: A robot with an overhead depth camera and either a suction or parallel jaw gripper (left)
must plan a grasp on one of the objects in the bin beneath it given an RGBD image observation (middle). Examples
of planned grasps (green) and their q-values are shown for both parallel jaw and suction grippers (right).

frame 48 KiB on average to the cloud (Fig. 5.2). On the cloud an ORB-SLAM2 node subscribes
to the video feed [65] and computes a pointcloud map along with the current estimated location
within the map, which are sent back to the robot. For more details on the ORB-SLAM2 algorithm,
we refer readers to the paper and open-source code available from Mur-Artal and Tardós [56].

5.2.2 Dex-Net Grasping Service
Grasp analysis computes the contact point(s) for a robot gripper that maximize grasp reliability—
the likelihood of successfully lifting the object given those contact points. To plan grasps on rigid
objects in industrial bins using an overhead depth camera, we use an open-source implementa-
tion of the fully-convolutional grasp-quality convolutional neural network (FC-GQ-CNN) [63, 50]
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Figure 5.4: Motion Planning Scenarios. We run OMPL [24] motion planning problems as benchmarks. Left-to-right:
Apartment, Cubicles, Home, and Twistycool. In these problems, the robot is a rigid-body object that must, through
rotation and translation, find a collision-free path through the environment, from a start pose to a goal pose.

from Dex-Net[49]. We wrap FC-GQ-CNN in a ROS node and deploy it to the cloud along with
pretrained neural-network weights as a Docker image. We refer the reader to Satish et al. [63] and
Mahler et al. [50] for details and code for the neural network and grasping environment.

This node subscribes to 3 input topics containing a scene depth image and mask for objects to be
grasped, and a message of type sensor msgs/CameraInfo containing camera intrinsics. Internally,
the node feeds this to FC-GQ-CNN, which outputs a grasp pose and associated estimate of grasp
quality. The node wraps these outputs, along with the gripper type and coordinates in image space,
into a gqcnn ros/GQCNNGrasp message, and publishes it.

While the node can be run both locally or in the cloud, using cloud GPU instances as opposed
to a CPU for neural-network inference can greatly reduce computation time. In either case, the
node is wrapped inside of a Docker container, reducing the need for resolving dependency issues
between deep-learning libraries, CUDA, OS, and ROS versions. The pretrained models in the
image is intended for a setup similar to that shown in Figure 5.3; variations in camera pose, camera
intrinsics, or gripper type may require retraining the underlying model for accurate predictions. We
compare grasp planning times across 10 trials using both the CPU onboard the edge computer and
FogROS2-SGC with the Docker images on the cloud. We also show compute times when using a
compressed depth image format to transfer images instead of transferring raw images to the cloud
directly. For the latter case, images are compressed and decompressed using the republish
node from the image transport ROS package [1].

5.2.3 Motion Planning
Motion planning computes a collision-free motion for a robot to get from one configuration to
another. Sampling-based motion planners randomly sample configurations and connect them to-
gether into a graph, rejecting samples and motions that are in collision. These planners can be
scaled with additional computing cores.

Using FogROS2-SGC, we deploy a multi-core sampling-based motion planner [32, 33] to a
96-core computer in the cloud to solve motion planning problems from the Open Motion Planning
Library (OMPL) [24] (see Fig. 5.4). This planner node subscribes to topics for the collision model
of the environment and motion plan requests (Fig. 5.2). When the planner node receives a message
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vSLAM Grasp Planning Motion Planning

Scenario fr1/xyz1 fr1/loop raw matrix Compressed Apartment Cubicle

rosduct-rosbridge 10.31 10.29 20.3 13.67 0.08 0.08
VPN 1.16 1.45 5.7 1.47 0.07 0.07
FogROS2-SGC-TCP 1.19 1.57 8.4 1.58 0.07 0.07
FogROS2-SGC 1.15 1.42 - 1.45 0.07 0.07

Table 5.3: Network latency of FogROS2-SGC on cloud robotics applications (lower is better) FogROS2-SGC is
better than rosduct-rosbridge and VPN on vSLAM and compressed grasp planning. We conducted motion planning
on other scenarios (Home, TwistyCool) and the latency is the same.

on any of these topics, it computes a motion plan, and then publishes it to a separate topic. For more
details on the multi-core motion planner, we refer the reader to the paper and the open-source code
by Ichnowski and Alterovitz [33]. To configure FogROS2-SGC to work with multi-core motion
planner, we record the steps we use to setup the dependencies (e.g., FCL [58] and Nigh [36]) in a
script.

We compare the planning time as the difference between publishing a motion plan request
message, and receiving the plan result message, and show the results in Table 5.3. The same
motion planning problem is solved in a fraction of the time on the cloud when compared to using
the edge computer. However, when the network latency (between 0.3 s and 0.6 s) is longer than the
motion planning computing time. For simpler planning problems, there may be little to no benefit
to a cloud deployment. If the motion planner is asymptotically-optimal (finds shorter/better plans
the longer it runs and with more CPU cores), then one could potentially run the motion planner for
the same amount of time but get a better path using the cloud. Anand et al. [12] explored and shown
the benefit of using the tradeoff between more cores and the resulting motion plan optimality.

As detailed in Table 5.3, although FogROS2-SGC can scale to multiple robots and provide
fine grained access control for the robots, it demonstrates even better point-to-point performance
than VPN in the vSLAM and grasp planning experiments. FogROS2-SGC is 9.42 times faster than
rosbridge-rosduct on compressed grasp planning images. However, FogROS2-SGC cannot reliably
transmit large and uncompressed grasp planning matrices. The raw matrix after serialization is
larger than 13MB. We observe a significant amount of lost and out of order messages because the
default transport protocol of FogROS2-SGC is DTLS over UDP and the communication channel
does not recover from lost and out of order messages. Although transmitting such large message
within single ROS2 message is rare, users can choose other supported transport protocols (such as
TCP, gRPC) to meet the requirement of their applications.
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Figure 5.5: The experiment setup of Fleet-DAgger. Two ABB YuMi robots located in two separate buildings in
Berkeley utilize computation from a server located in Pittsburgh for an image based block pushing task.

5.3 Cloud Robotics Case Studies

5.3.1 Connectivity Case Study: Fleet-DAgger
We apply FogROS2-SGC to the control of a fleet of 4 physical robot arms, an increasingly relevant
setting in robotics and the third motivating example in Fig. 1.1. We use the physical experiment
setup from Fleet-DAgger [31], where each robot simultaneously performs an image-based block-
pushing task (see Fig. 1.1C). The task is to repeatedly push a cube to a goal region randomly
generated in the image, where a new goal is sampled from the reachable workspace upon reaching
the previous goal. The 4 workspaces have an identical setup (but different block positions and
goals) to enable the aggregation of each robot’s data into a shared dataset and training of a sin-
gle shared policy on this dataset, as is typical in fleet learning [31]. When autonomous control
is unreliable, the robots fall back on and learn from remote human teleoperation, where global
connectivity can dramatically increase the number of available humans. The arms belong to two
bimanual ABB YuMi robots in two different labs about 1 km apart with separate local area net-
works. To test global connectivity, compute is off-loaded to a separate node in a third local area
network at Carnegie Mellon University 3600 km away, where the robot nodes send images of the
current state and receive actions to execute.

In a previous implementation, Hoque et al. [31] use Secure Shell (SSH) and Secure File Trans-
fer Protocol (SFTP) to communicate between robots and the centralized compute node and Python
multiprocessing to enable simultaneous execution. This approach requires storing all SSH creden-
tials at a single node (a security concern), writing image data to the file system of all nodes at
every timestep, complex asynchronous programming, and restricting all node locations to within
the university campus firewall. To mitigate these issues, we (1) re-implement the communication
system with ROS2 and (2) seamlessly connect all nodes with FogROS2-SGC with TCP by modi-
fying only a single configuration text file on each node. Relative to the previous implementation,
the FogROS2-SGC implementation reduces communication time by 64% (Table 5.4), where com-
munication time includes image transmission latency and synchronization across all arms but not
machine learning or arm motion. FogROS2-SGC also reduces communication time by 33% rela-
tive to the initial implementation even when the robots are in Berkeley, CA and the server is moved
to Pittsburgh, PA. Note that the SSH method does not work between Berkeley and Pittsburgh due
to university network firewalls [2]. A diagram of the system architecture is in Fig. 5.5.
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Communication System Server Location Communication Time (s)

SSH + SFTP Berkeley, CA 0.86
Pittsburgh, PA -

FogROS2-SGC Berkeley, CA 0.31
Pittsburgh, PA 0.58

Table 5.4: Communication time of SSH+SFTP and FogROS2-SGC (lower is better). FogROS2-SGC with TCP
reduces the communication time per experiment step (i.e., one simultaneous action on the 4 arms) by 64% when
compared to SSH+SFTP, and has 33% lower communication time than SSH+SFTP in Berkeley even if the server is
moved to Pittsburgh. SSH does not work if the server is in Pittsburgh due to a university firewall restriction.

Delay added to Edge 1 Edge 1 Edge 1

Failure Rate (%) Only + Edge 2 + Cloud(W) + Cloud(E) + Cloud(W) + Cloud(E)

x ms Applied to 100% Packets 56.7% 0.0% 10.0% 30.0% 6.7%

(Failure Reduction) (∞) (5.7x) (1.9x) (8.5x)

x ms Applied to 50% Packets 26.7% 0.0% 6.7% 53.3% 10.0%

(Failure Reduction) (∞) (4.0x) (0.5x) (2.7x)

Table 5.5: When local network was congested, FogROS2-SGC reduced failures: Upon application of random
network delays on Edge #1, FogROS2-SGC automatically re-route to alternative services, i.e. Edge 2, Cloud(W),
Cloud(E). Such automatic switching functionality to an alternative, location independent service(s) improves robust-
ness of the system and reduced failure rate (lower the better) of the overall system. FogROS2-SGC matches per-
formance of the best individual machine, reducing the failure rate by up to 8.5 times by selecting the best available
machine compared to single edge service system under heavy network congestion. We also showed that FogROS2-
SGC enabled flexible yet reliable access to open cloud services via Anycast to reduce failure rate.

5.3.2 Latency-Sensitive Collision Avoidance
We demonstrated location-independent FogROS2-LS services with two latency-sensitive physical
robotics tasks: (A) high-speed collision avoidance (Fig. 5.6) and (B) continuous object following
(Fig. 5.7). Both tasks required continuous visual feedback from the robots and time-sensitive con-
trols back to the robots. The first task required a single time-sensitive command while the second
required continuous commands. To offload visual perception to both edge and cloud servers, we
streamed online camera feeds from these robots to off-board servers via FogROS2-LS for contin-
uous QR Code pose estimation (AprilTag [73]). 6D pose of the target and robotics control signals
were then sent back, also via FogROS2-LS, to complete the feedback loop. FogROS2-LS contin-
uously monitored the round trip time of each frame of pose estimation on all available edge and
cloud servers connected to the operating robot during run time.

When the current service failed to return 6D poses to the robot within the designated time,
FogROS2-LS autonomously switched to another operational service. This approach enhances sys-
tem robustness, both by averting potential failures, such as in collision avoidance scenarios, and
by facilitating recovery in instances of continuous object tracking.
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Figure 5.6: High Speed Collision Avoidance Evaluation (a) The robot arm approached the target with maximum
speed and decelerates at 5cm away from the target based on the visual detection of the QR Code. Delayed estimation
leads to failure by collision. (b) Architecture of multiple off-board perception servers both on the Edge and in the
Cloud (c) Baseline experimental results (without network delays) showing that FogROS2-LS reduces failure by 3.7x
when two Cloud servers were available to support a location independent service, compared to the case of a single, far
away Cloud (E) service.

Setup Fig. 5.6 shows the physical setup of the collision avoidance evaluation. The Universal
Robots arm (UR10e), with an Intel RealSense D435i mounted on the wrist, advanced towards the
QR Code at maximum speed (measured at 1.3 m/sec). Meanwhile, the camera sent a monocular
video stream to the Edge or Cloud at 640x480 resolution, maintaining a steady QR Code 6D pose
estimation at 90 Hz. Due to bandwidth limitations, we streamed the video to the cloud with H.264
compression. We streamed Video to a local edge server via series of compressed images rather than
H.264, as edge network has better bandwidth. The robot arm underwent maximum deceleration if
robot arm recognized that it was 5 cm away from the target. It is considered failure if the off-board
robot command, in response to the visual detection, failed to reach the robot in time, causing the
robot arm to collide with the target that holds the QR code.

We used FogROS2-LS to connect the robot controller to various Edge or Cloud servers. We
isolated the ROS nodes on the robot controller from Edge server’s using ROS2 domains to avoid
cross interference. All the experiments were conducted 30 times. Prior to each run, FogROS2-LS
profiled networks for up to 100 ms per machine. It then selected the machine with the lowest
round-trip latency that can fullfill the configured time-bound. It then pauses for 500 ms to allow
H.264 stabilization before each robotics trial begin.

Results To benchmark, we calculated the failures rate over the 30 trials for baseline (Fig. 5.6
(c)) and local network congestion (Table 5.5). We showed that the location-independent service
built with FogROS2-LS reduced the failure rate of the collision avoidance robot task, because
FogROS2-LS can choose the best available service automatically via Anycast.

FogROS2-LS can reduce the failure rate by up to 8.5 times. When 100% network latency is
applied and the cloud is available, FogROS2-LS chooses Cloud for almost all the trials, and the
overall performance is close to the performance of the Cloud. Notably, FogROS2-LS can perform
better than any available standalone machines by selecting the available machine with best latency
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Figure 5.7: Position of Mobile Robot Relative to a Circular Path. (a) & (b) Setup & Architecture; (c), the mobile
robot successfully follows the circular path when no network inference was introduced; (d), a 50 ms network delay
was introduced after the initial quadrant, causing mobile robot to immediately deviate from the path; (e) showcases
FogROS2-LS’s ability to recover from the failure encountered by transitioning to another Edge server.

at a given moment. It can achieve an even lower failure rate of up to 1.5 times lower than that of
any single machine available.

In all the series of experiments, one failure case occurred–when 50% latency was applied to
Edge 1 and FogROS2-LS offload perception to Cloud US East. The failure rate of the combined
Cloud-Edge was worse than that of the original Edge 1 machine. This outcome was caused by
imprecise network profiling due to the following reasons: (1) substantial network variation for
Edge and Cloud is not practical for optimization; (2) while the FogROS2-LS network profiler
operates under the assumption of uncorrelated request latencies, the H.264 compression alternates
between transmitting a complete image frame and sending only the difference from the previous
frame, so request latencies can be correlated in time.

5.3.3 Continuous Target Following
Setup We used MyAGV [7] for a continuous target following experiment. This fast-moving mobile
vehicle has Mecanum omnidirectional wheels, a Raspberry Pi 4, and an Intel RealSense D435i
camera. During the experiment, it tracked the QR code on the UR10e robot arm such that the robot
aimed to stay 0.5 meters away in the normal direction of the tag. The wrist of UR10e maintains
a rotation speed of 0.075 rad/s, guiding mobile robot in a circular path. In the meantime, the
Raspberry Pi runs FogROS2-LS to stream the RGB video to the Edge server at 424x240 resolution
at 30 Hz with an Ethernet cable. The position of MyAGV w.r.t. the start is estimated as R(θ)x,
where R(θ) is a 2x2 rotation matrix with angle θ , θ is the angle reading of the UR10’s wrist joint,
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and x is the detected 2x1 position of MyAGV’s camera w.r.t. the QR code. In the evaluation, we
use two identical Edge servers connecting to MyAGV via FogROS2-LS, one executes QR Code
detection, while a backup Edge server remains on standby. While the MyAGV progresses past
the first quadrant (90 degrees) of the target circluar path, we introduce a 50ms network latency,
causing a tracking failure and deviation from the trajectory. A successful FogROS2-LS switch
should facilitate tracking recovery, allowing the system to resume object tracking by leveraging
the backup Edge server.

Results Fig. 5.7 shows the the results of target following with FogROS2-LS. In the presence
of 50 ms network latency after the initial quadrant, MyAGV deviates from the path. FogROS2-LS
is able to recover from the failure encountered in (e) by transitioning to another Edge server.
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Chapter 6

Current and Future Work

This thesis serves as a checkpoint to the network infrastructure design and implementation of
FogROS2-SGC. In order to realize the federated vision that everyone may contribute his or her
own resources and enable secure and efficient computation and communication, we recognize fu-
ture works from the following aspects: (1) scalability, (2) Quality-of-Service, (3) cellular network
integration.

6.1 Quality of Service with FogROS2-FT
Cloud services can suffer occasional downtime, and connectivity between the robot and cloud
are prone to variations in network Quality-of-Service (QoS). We are working on FogROS2-FT
(Fault Tolerant) to mitigate these issues by introducing a multi-cloud extension that automati-
cally replicates independent stateless robotic services, routes requests to these replicas, and directs
the first response back. With replication, robots can still benefit from cloud computations even
when a cloud service provider is down or there is low QoS. Additionally, many cloud computing
providers offer low-cost “spot” computing instances that may shutdown unpredictably. Normally,
these low-cost instances would be inappropriate for cloud robotics, but the fault tolerance nature
of FogROS2-FT allows them to be used reliably.

6.2 Cellular Network Integration
We consider it as future work to integrate FogROS2-SGC with cellular 5G network. We leverage
redundant network interfaces available to robots, such as Wi-Fi and 5G, to improve the reliability
of the cloud robotics. This can further improve the reliabilty of mobile robots that may stream
data to the cloud with home or enterprise Wi-Fi network, while use 5G network to maintain a
reliable and constant network to the cloud. For example, if the robot is in a current network with
high network latency variance, the connectivity framework automatically switch to 5G network or
duplicate the message for both network interfaces.
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6.3 Scalability
The current FogROS2-SGC is designed for the connection among a small number of robots and
cloud services that are mutually connected. It relies on a centralized signaling server to facili-
tate the connection. We consider it as future work to extend the centralized signaling server to a
distributed storage for storing persistent connections at different sub-networks.



39

Bibliography

[1] image transport. wiki.ros.org/image_transport.

[2] UC Berkeley Minimum Security Standard. https://security.berkeley.edu/
policy/minimum-security-standards-networked-devices-mssnd.

[3] RTI Connext DDS. https://www.rti.com/products.

[4] Signature and hash algorithms for TLS and DTLS. https://www.ibm.com/docs/en/
zos/2.5.0?topic=support-signature-hash-algorithms.

[5] Scalable Distributed Robot Fleet With Fast DDS Discovery Server. https://husarnet.
com/blog/ros2-dds-discovery-server. Accessed: 2023-03-1.

[6] Multicast DNS RFC 6762. https://www.rfc-editor.org/rfc/rfc6762.html.

[7] My AGV Mobile Robot. https://shop.elephantrobotics.com/products/
myagv.

[8] rosduct. https://github.com/uts-magic-lab/rosduct.

[9] RSASSA-PSS RFC 4056. https://www.rfc-editor.org/rfc/rfc4056.

[10] wireguard VPN. https://www.wireguard.com/.

[11] Integrating ROS2 with Eclipse zenoh. https://zenoh.io/blog/
2021-04-28-ros2-integration/. Accessed: 2021-02-15.

[12] Raghav Anand, Jeffrey Ichnowski, Chenggang Wu, Joseph M Hellerstein, Joseph E Gonza-
lez, and Ken Goldberg. Serverless multi-query motion planning for fog robotics. In Proc.
IEEE Int. Conf. Robotics and Automation (ICRA). IEEE, 2021.

[13] Andrew W Appel. Verification of a cryptographic primitive: Sha-256. ACM Transactions on
Programming Languages and Systems (TOPLAS), 37(2):1–31, 2015.

[14] Hitesh Ballani and Paul Francis. Towards a global ip anycast service. ACM SIGCOMM
Computer Communication Review, 35(4):301–312, 2005.

wiki.ros.org/image_transport
https://security.berkeley.edu/policy/minimum-security-standards-networked-devices-mssnd
https://security.berkeley.edu/policy/minimum-security-standards-networked-devices-mssnd
https://www.rti.com/products
https://www.ibm.com/docs/en/zos/2.5.0?topic=support-signature-hash-algorithms
https://www.ibm.com/docs/en/zos/2.5.0?topic=support-signature-hash-algorithms
https://husarnet.com/blog/ros2-dds-discovery-server
https://husarnet.com/blog/ros2-dds-discovery-server
https://www.rfc-editor.org/rfc/rfc6762.html
https://shop.elephantrobotics.com/products/myagv
https://shop.elephantrobotics.com/products/myagv
https://github.com/uts-magic-lab/rosduct
https://www.rfc-editor.org/rfc/rfc4056
https://www.wireguard.com/
https://zenoh.io/blog/2021-04-28-ros2-integration/
https://zenoh.io/blog/2021-04-28-ros2-integration/


BIBLIOGRAPHY 40
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