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Abstract

Object Discovery In Multi-Scene NeRFs

by

Junkeun Yi

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Trevor Darrell, Chair

Unsupervised Object-Centric Learning is an effective means of learning reusable representa-
tions that can explain data in meaningful partitions, through creating a separate represen-
tation for each ‘object’ in the scene [3]. In recent literature, Slot Attention [11] has shown
to be an effective unsupervised method for learning object representations, showing effec-
tiveness in tasks such as object discovery [10], composition [18], and novel view synthesis
[16]. However, while showing remarkable results when operating on synthetic datasets such
as CLEVR [5] and MultishapeNet [17], it has yet to show promising results when applied
to natural images. Meanwhile, NeRFs [13] have shown that given many views, a neural
field can be created that contains a dense and high resolution representation of a scene. In
this thesis, we propose a new multi-scene NeRF method which leverages the ability of Slot
Attention to discover object representations in the input data to train a model capable of
representing many scenes. We demonstrate that when different scenes share common objects
in the foreground area, the slot attention method can discover reusable representations of
these objects to be shared in the volumetric rendering process.
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Chapter 1

Introduction

Given a handful of objects, one can create many different scenes by scattering the objects in
different layouts. While training a NeRF [13] on each scene can be easily done using ready
tools such as Nerfstudio [21], it can be counter intuitive as to why one should have to learn
a new model from scratch for each scene when they share much in common. In this setting,
it may be beneficial to create representations for the shared objects between the scenes, and
reuse these representations for jointly training each scene containing these objects.

We start with chapter 2 by introducing the related works in object-centric learning and
neural novel view synthesis.

In chapter 3, we propose a novel method to train a NeRF model to learn object represen-
tations to reuse in a multi-scene setting. Crucially, these object representations are learned
in an unsupervised manner, and thus are discovered by the model in a fashion that aids its
field representation of each scene.

In chapter 4, we show the experiments done on the method, changing the difficulty of
each scene by varying the objects and background. We also show ablation experiments done
on the method to show the impact of the design choices made.

Finally, in chapter 5 we provide an analysis for object-centric learning in the novel view
synthesis setting and end with proposals for future research.
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Chapter 2

Related Works

2.1 Object-Centric Learning

Object-Centric Learning is a way of addressing the binding problem in neural networks, in
which the ability of a network to bind information into entities that can lead to human-level
generalization [3]. Slot Attention [11] is an attention mechanism which inverts the commonly
used dot-product attention [12][22] by applying the softmax operator over the queries. As the
softmax operation leads to the queries competing to represent different parts of the input, it
leads to compact and disentangled representations of the input, called slots. This technique
has shown to be effective in object discovery [11], video prediction [10][23], and novel view
synthesis [17][24][19][15], in which the slots are used as a bottleneck representation before
the decoder layer such that the outputs can be represented by a compact set of vectors. Our
work deviates from previous work in that we focus mostly in real-world data whereas the
focus of previous work is in the synthetic domain. In addition, we guide each slot to represent
a specific object, such as a single chair, while previous works use the slots to represent a
template for a class of objects, such as the general notion of chairs.

2.2 Neural Novel View Synthesis

Neural Radiance Fields

In the NeRF [13] methods of novel view synthesis, a radiance field is trained to represent
coordinate-based representations of a scene. These models employ volumetric rendering [6]
to create a view of the scene. Recently, NeRF methods have evolved to include the use
of proposal samplers [1] and multiresolution hash encodings [14] to increase the speed of
training and quality of the generated views. We reuse the concepts introduced in these
papers by creating a NeRF method resuing proposal samplers [1] and sinusoidal positional
encodings [13].
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Object-Centric Novel View Synthesis

Many NeRF models have been trained to visualize object-centric views of a scene, including
ObSuRF [20], uORF [24], and sVORF [15], the two latter models employing Slot Attention.
In addition to NeRF models, models may use a light field to represent a scene, such as in
COLF [19], and train a transformer model, such as in OSRT [17]. Our method deviates from
the above methods in that instead of creating a model that can represent an infinite number
of scenes given a reference image, we train only for a fixed number of scenes with no reference
image. In addition, we redirect the focus of the model in learning object representations for
specific objects in the scene instead of creating object template representations, which allows
us to train a single NeRF model for all objects instead of having to train multiple models
conditioned on each slot such as in uORF, sVORF and COLF. In a separate direction, NeRFs
can be augmented to create hierarchical feature fields aligning to objects in many scales, as
seen in GARField [8].
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Chapter 3

Method

3.1 Preliminaries

In this section, we introduce some preliminaries to our method.

Neural Radiance Fields (NeRFs)

In the classic NeRF setting, a multilayer perceptron (MLP) is trained to represent a scene as
a volumetric field, in which each particle in the field is associated with blocking and emitting
light. A ray, represented as r(t) = o + td, has origin o and direction d, and each pixel of
the camera can be represented by such a ray to create a bundle of rays for each camera. For
distance tk ∈ t in tn to tf of the camera’s near and far plane, each 3D position along the ray
is transformed by a sinusoidal positional encoding to create the positional encoding of the
point,

γ(r(tk)) = [sin(r(tk)), cos(r(tk)), · · · , sin(2L−1r(tk)), cos(2
L−1r(tk))]

⊤ (3.1)

where L is a hyperparameter. The positional encoding is passed to an MLP parameterized
by weights θ to output the density τ and RGB color c:

∀tk ∈ t, [τk, ck] = MLP(γ(r(tk)); θ) (3.2)

For the RGB color prediction, the MLP also inputs the view direction as well. The density
and color estimate for each position is then used for the volumetric rendering, represented
as the integral estimate

C(r; θ; t) =
∑
k

Tk(1− exp (−τk(tk+1 − tk)))ck (3.3)

where Tk = exp (−
∑

k′<k(tk′+1 − tk′ )) and C(r; θ; t) is the final color prediction for the given
pixel represented by the ray r.

Finally, given a set of images of a scene and known camera poses, the sum of squared
differences between the input pixels and predicted pixel values is used as the loss for training
the network with gradient descent.
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Slot Attention

In the classic dot-product attention setting, there are three sets of vectors: the query Q ∈
RNQ×D, key K ∈ RN×D, and value V ∈ RN×D vectors. K and V are created from the
input, and Q can be separately initialized to apply cross-attention. Slot attention inverts the
original method by applying the softmax operator over the queries, and by setting NQ << N ,
the small number of query vectors, called slots, compete to explain the input. Formally, the
attention between each input i and slot j is:

attni,j :=
eMi,j∑
l e

Mi,l
, (3.4)

M :=
1√
D
K ·Q⊤ ∈ RN×NQ (3.5)

where the softmax occurs over the slots Q and the normalization ensures the slots attend to
all of the input. The slots are aggregated using a weighted mean:

updates := W⊤ · V ∈ RNQ×D (3.6)

Wi,j :=
attni,j∑N
l=1 attnl,j

(3.7)

The slots, along with the updates, are passed into a gated recurrent unit [2] and an MLP
with a residual connection [4] to create a new set of slots. Typically, slot attention is applied
over several iterations to improve performance.

3.2 Method

In this section we describe our method for creating an object-centric multi-scene neural
radiance field. Our model has three components, the scene-conditioned feature embedding
module, the cross-scene slot attention module, and the scene reconstruction module, which
roughly equate to an encoder, processor and decoder module. An overview of the model can
be seen in figure 3.1.

Scene-Conditioned Feature Embedding

In our setup we assume there are Ns scenes with shared objects, with Nc views with known
camera poses per scene. To train a NeRF field, we must first create a feature embedding for
each 3D position of the ray associated with each pixel. To do so, we encode the 3D position
using a sinusoidal encoding [13] and add a learned scene embedding si to each encoding
corresponding to scene i. Finally, the resulting ray is passed into a Transformer Encoder
[22] fenc to get the feature embedding xr;i:

xr;i = fenc(γ(r(t; i)) + si;ϕenc) ∈ RL×D (3.8)
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Feature Encoder

positional 
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scene 
embedding

Slot Attention

Attention Broadcast

Feature
Decoder

Volumetric 
Rendering

rgb, depth, …
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positional 
embedding
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Figure 3.1: Model Overview of proposed method. Given ray samples from different scenes, 1)
the scenes are encoded and scene-conditioned before being passed into the feature encoder. 2)
The resulting features are passed into the cross-scene slot attention module to allocate each
3D position into a set of slots. 3) The resulting slots are broadcasted to the size of the ray
samples by element-wise multiplication with attention weights with respect to the features,
and passed into the feature decoder before finally going through volumetric rendering.
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slot 3slot 2slot 1

Figure 3.2: Example visualization of the goal of slot attention applied to a ray. Each
3D position (represented as white circles) in the ray will be aggregated into a slot most
representative of the entity in the 3D position. Here, 3 slots for the square, circle, and
empty space are shown. In practice, the same slots are trained to explain 3D positions
across multiple rays from a variable number of scenes at the same time.

where L is the number of samples per ray and ϕenc are the weights of the feature encoder.
Given N rays in a batch, the resulting feature bundle is X ∈ RN,L,D. The resulting feature
bundle is sent to the Cross-Scene Slot Attention Module to be encoded into a bottleneck
representation consisting of a set number of slots.

Cross-Scene Slot Attention

In the Cross-Scene Slot Attention module, we apply slot attention to the features X returned
from the previous section. Given features X ∈ RN,L,D, we reshape it to one long sequence
of shape X ∈ R(N×L),D where the sequence length is N ×L. We also initialize slots ∈ RK,D,
where K is the number of slots. Applying slot attention to the features, we get:

Z = slot attention(X ∈ R(N×L),D; slots ∈ RK,D, ϕslots) ∈ RK,D (3.9)

where Z ∈ RK,D are the resulting slots that act as a compact representation of the rays
across the scenes and ϕslots are the weights of the slot attention module.

One thing to note is that the attention is applied over the entire set of 3D positions
instead of per ray. This is to ensure that the slots are able to see all objects in the scene
instead of acting over one pixel value, enabling object-wise representation of the slots.

Another crucial factor is the application of slot attention over rays from different scenes.
This is to ensure that the slots learn to compare objects across scenes. When trained without
this cross-scene visibility, the model finds difficulty in reusing the slot representations across
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scenes in more complicated datasets. Finally, the resulting slots Z are sent to the scene
reconstruction module for volumetric rendering and view reconstruction.

Scene Reconstruction

To recover the 3D position-wise features for volumetric rendering, the slots Z ∈ RK,D must
be rebroadcasted back into the shape of the ray samples: (N,L). To do this, we apply an
adaptation of the slot-mixer method proposed in OSRT [17]. We first compute the attention
weights between the slots and the input features, expand the slots by the shape of the
attention, perform an element-wise multiplication and sum over the slots:

Z̃ = sum(attn⊗ expand(Z); axis=slots) ∈ RN,L,D (3.10)

attn := X · Z ∈ R(N×L),K (3.11)

The resulting 3D position-wide features Z̃ ∈ RN,L,D are then passed to the feature decoder.
The feature decoder is a Transformer Encoder [22] trained to process each ray separately.

It also consists of a density head and RGB head, which are MLPs that decode each 3D
position feature into the density τ and RGB color c. Together, the resulting densities and
colors are:

[τ1,··· ,L, c1,··· ,L] = fdec(z̃r ∈ RL,D;ϕdec) (3.12)

for each of the L 3D positions in the ray feature vector z̃ ∈ RL,D, where ϕdec are the weights
of the feature decoder.

Finally, the N ×L set of densities τ and colors c are used in volumetric rendering, where
the resulting RGB color

C(r; i; t;ϕenc, ϕslot, ϕdec) (3.13)

is used as the predicted pixel value passed into the standard NeRF RGB reconstruction loss,
training the weights ϕenc, ϕslot, ϕdec through gradient descent.



9

Chapter 4

Experiments

In this chapter, we describe the experimental results from applications of this method as
well as any ablations done.

4.1 Datasets

Multiple sets of datasets were assembled through the Nerfstudio [21] platform to create set
of scenes with shared objects.

• small objects: The small objects dataset is a set of 4 scenes with up to 6 rigid objects
scattered in different layouts on top of an unmoved table.

• floor objects: The floor objects dataset is a set of 11 scenes with up to 6 rigid objects
scattered in different layouts on top of the floor with partial occlusion of objects. Unlike
the small objects scenes, there is no fixed object across scenes like the table.

• desk objects: The desk objects dataset is a set of 2 scenes that are similar to the
small objects scene, but with a complicated background and more objects.

• tiger: The tiger dataset is a set of 3 scenes with one shared object, a stuffed animal
tiger oriented in different layouts. Since the tiger is a non-rigid object, the aim is for
the slots to bind to parts of the tiger such as the limbs separately.

4.2 Setup

Each batch consists of 4096 rays sampled randomly from any of Ns scenes in the dataset.
For each batch the scenes are sampled randomly, and the batch is separately equally into
4096/Ns rays from each scene. The size of the input encodings are set to 48, while the slot
sizes are set between 64 and 128 depending on the dataset. The number of slots are varied
from 16 to 32 depending on the dataset. The feature encoder and decoder consist of 4 layer
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Figure 4.1: Example frames from each dataset. From left to right: small objects, floor
objects, desk objects, tiger

Dataset PSNR SSIM LPIPS
small objects 24.228 0.6603 0.4837
floor objects 24.704 0.5219 0.683
desk objects 23.282 0.7869 0.3152

tiger 21.18 0.4285 0.6744

Table 4.1: View Synthesis Quality

transformers with model dimensions matching the slot dimensions, while the density and
RGB head are 2-layer MLPs. The models are trained with Adam [9] with a learning rate of
0.001 decreasing in an exponential decay schedule to 0.0001 for up to 300000 steps. Each
model is trained on a single RTX 3090 GPU.

4.3 Novel View Synthesis and Object Discovery

We provide quantitative results on novel view synthesis for each dataset in table 4.1. Outputs
from held out images not seen during training shown in figure 4.2. It can be seen that in the
harder datasets, the model reconstruction quality is lower. Especially for the tiger dataset,
where the texture is not simple (with stripes), the slots struggle to find ‘object’ parts and
poor quality is reflected in the metrics. It should also be noted the predicted RGB quality is
not on par with commonly available NeRF models, as can be seen in the low metric scores.

Qualitative Analysis

In this section, we discuss the qualitative results for outputs of applications of our model.
In figure 4.3, rendered views of the different scenes in the small objects dataset as well as
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Figure 4.2: Example outputs from dataset. Tiled as ground truth image, reconstructed
image, and attention map.

the visualized attention map is shown. Since the attention map happens over the entire ray
samples instead of at the pixel level, the slot which are activated the most often along the ray
is visualized and set as the label for the visualized attention map. This model was trained
for 150000 steps with slots size of 128 and 32 slots, with 4 scenes sampled per batch. It can
be seen that many of the objects have a unique slot representing them, and that many of
these slots are consistent across the different scenes (thus represented by the same color).
However, there are still issues with some objects having multiple slots representing them
across different scenes, as well as the RGB quality not being very detailed.
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Figure 4.3: Rendered views on the small objects dataset. Each row is a separate scene. Left:
RGB, Right: Attention Mask.

Dataset PSNR SSIM LPIPS
floor objects - base 24.319 0.5193 0.6933

floor objects - incremental 23.989 0.5162 0.6926

Table 4.2: Incremental Learning Quality at 120000 steps, averaged metrics over all 11 scenes.
The ablated model has only started training on all the scenes at step 100000
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Figure 4.4: Top: base model output, Bottom: ablated model output

Figure 4.5: Effect of the cross-scene attention in the desk objects dataset. Left 2 columns
are outputs from a model trained to perform without cross-scene attention, instead applying
slot attention only within rays of each scene. The right two columns are outputs from the
base model trained with cross-scene slot attention between rays. Visualized are the rendered
RGB and attention maps for each of the 2 scenes in the dataset.

4.4 Ablations

Incrementally Adding Scenes

We ablate the floor objects scene by trying a training regimen where initially only 2 scenes
are trained, and after every 10000 steps we incrementally add another scene to be trained
as well. Quantitative results can be seen in 4.2 for results at 120000 steps. The quality of
reconstruction on both models perform similarly. In figure 4.4, the RGB reconstruction of a
scene seen only after step 100000 is visualized at step 120000. On the top is the base model
output, where the scene was trained from step 0. It can be seen that even though in the
ablated model the scene was only trained for 20000 steps, the visual quality is similar to
that of the base model.
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Figure 4.6: Teatime dataset from LERF trained on 4 rotations of the scene. Only one scene
is visualized, with predicted RGB and attention map.

Cross-Scene Attention

We examine the effects of the Cross-Scene Slot Attention by ablating the model to perform
slot attention only within a scene instead of applying the slot attention across scenes. In
figure 4.5, we visualize outputs of this ablation to the desk objects dataset. In the top row,
the first scene is visualized and in the bottom row the second scene is visualized. The left
two columns are from the ablated model, and the right two columns are from the base model.
While the rendered RGB quality is similar for the base model and ablation, the attention
maps are much more consistent in the base model. While in the base model many of the
slots bind to specific objects and is consistent between scenes, in the ablated model many
of the slots are not consistent across the two scenes and many slots are shared between the
actual objects and the background.

Training on one scene

The model performs best when trained on multiple scenes, and struggles when it is trained
on one scene. This can be attributed to the inability to make conclusions about object
boundaries when given only a static scene of objects, as it is ambiguous what parts are
separate or joined. This effect can be observed even when the number of scenes is artificially
expanded with data augmentations. We trained the model in the teatime scene from the
LERF datasets [7], creating 4 copies of the scene by applying z-axis rotations onto the base
scene in 3 different angles. Outputs can be seen in figure 4.6. As can be seen, the attention
map is incoherent. In fact, we observed that the attention map was worse when trained on
multiple rotations of the scene than when trained with only scene.
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4.5 Additional Visualizations

Additional visualizations of rendered videos can be found in this google drive: link

https://drive.google.com/drive/folders/1gr56ZkmVaDPH-wU3E7vu5bI0pEehm1WR?usp=drive_link
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Chapter 5

Conclusion

Unsupervised object-centric methods have found a unique niche in novel view synthesis
settings thanks to their ability to create visually informative representations, allowing for
human interpretation of the activations of a neural network. This thesis expanded upon
these works by proposing a novel method of training a Neural Radiance Field for a multi-
scene setting with reusable object representations. Our method successfully discovers simple
objects in scenes, creating visually discriminate representations for them. However, our
method does struggle in harder scenes where the objects are not rigid and has textured
surfaces not limited to single colors.

Object-centric learning is a natural step in finding relationships between visual informa-
tion, as can be seen in the experimental results of this paper. Making associations across
scenes for shared object information can lead to rich feature representations that are poten-
tially reusable. In future work, such representations can potentially be used for downstream
tasks that pertain to the compositionality of a scene, such as in scene editing, object removal,
or question answering.
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