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Abstract: Lab-trained robot policies for manipulators often suffer performance
drops when deployed in real-world unstructured environments. This happens from
encountering data that’s out of distribution from their training data that are usually
gathered in structured lab environments. To overcome this challenge and help the
robot continually cope in such scenarios, we introduce Continuous Autonomous Im-
provement for Mobile Manipulation, or CAMo. CAMo is a robot learning system
that builds on top of existing foundation models for navigation and manipulation
by collecting data directly from these real-world environments and asynchronously
compiling them to a server for further fine-tuning. Through its mobile base, CAMo
is able to incorporate a lot of diverse scenes and real-world perturbations in its
ever-increasing data set, better enabling itself to adapt to the difficulty of being in an
unstructured environment. By leveraging the multi-modal capacity and stochastic
nature of the diffusion head of its manipulation policy, CAMo can reinforce good
manipulation behaviors through autonomously collected rollouts for similar but
unseen tasks. Along with a LIDAR sensor onboard to enact fail-safe mechanisms
and human intervention data for further navigation improvement, CAMo is able
to continuously improve in the real world with decreasing human involvement as
time goes on.
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1 Introduction

Lab-trained robot policies for manipulation often suffer performance issues when deployed in real-
world unstructured environments. The policies being trained are usually on stationary robot setups
where the arm is tethered to a table with a carefully structured environment in front of it to train
in. Because of having been trained on datasets that involve images in such static settings, these
manipulation policies struggle to cope with different tables or settings in the wild that are too out of
distribution. In this paper, we propose CAMo, a full-stack distributed robot learning system aimed to
tackle this issue by allowing the robot to learn from data recorded in the wild.

CAMo leverages two foundational models, Octo [1] and NoMaD [2], for manipulation and navigation
respectively, and finetunes these models to perform better in real-world scenarios. CAMo’s distributed
architecture and hardware allow it to keep collecting data continuously for several hours from
autonomous rollouts at different in-the-wild locations in a safe manner with as minimal human
intervention as possible. Through this paper, we demonstrate the stages of how we prepared CAMo
to start collecting useful autonomous rollouts on simple manipulation tasks, decreasing the human
effort required along the way. From teleoperation in the wild to asynchronous training, CAMo’s full-
stack system allows the user to easily train manipulation policies in diverse unstructured real-world
environments with decreasing human labor. We show that CAMo, by collecting lots of autonomous
rollouts, can show increased performance to unseen tasks or similar tasks demonstrated in expert
human trajectories.
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2 Related Work

2.1 Foundational Models Used

The CAMo is run using separate policies for manipulation and navigation and finetunes these models
to work better in the wild. For manipulation, we use Octo [1], an open-source generalist manipulation
policy trained on datasets collected by various robot labs and companies [3][4][5]. In this paper,
we leverage the stochastic nature of Octo’s diffusion head and multi-modal capabilities to collect
diverse but successful autonomously collected trajectories to be used for further fine-tuning. For
navigation, we use NoMaD [2], a diffusion policy that allows for goal-conditioned navigation. CAMo
uses NoMaD to traverse different tables using pre-collected topographic maps to continue collecting
manipulation data in diverse environments. Both polices are pre-trained on large diverse datasets and
serves as the backbone from which CAMo finetunes off.

2.2 Lifelong learning

Like previous works in lifelong learning for robotics [6][7], the policies CAMo uses are initialized/pre-
trained on a large dataset collected in diverse environments for both manipulation and navigation.
Similar to human-in-the-loop training papers [8][9], a key training stage involves shared control
where the human can intervene and correct the robot mid-trajectory. However, after the manipulation
policy achieves a certain success threshold, this stage is superseded by learning from completely
autonomous rollouts. We leverage VLMs to filter these trajectories and add to the ever-growing data
buffer accordingly.

2.3 Mobile Manipulation Learning Systems

There exist many mobile manipulation papers in the literature [10][11]. On the hardware side, our
model falls on the low-cost end and is optimized to last a long time without human supervision (i.e. a
large battery, etc.) compared to other platforms out there. Like many of these systems, and due to the
mobility of the robot, we build our own full-stack platform and distributed system to communicate
observations and actions between the robot and an off-site computer. Another aspect that differentiates
our paper from mobile manipulation learning papers [12] [13], is that our manipulation policy learns
to utilize the full 6DOF our robot arm has to offer. While it’s understandable to restrict the action
space to high-level actions for the manipulator to accelerate learning as in previous papers, CAMo is
built to learn complex manipulation tasks required at the places it navigates to.

3 CAMo’s System Architecture

3.1 Hardware Setup

CAMo boasts being on the lower end of the range of prices compared to other mobile manipulator
platforms (refer to Table 1) while maintaining competitive functionality and extremely easy to change
and prototype. Equipped with an AgileX Tracer for the mobile base and a ViperX 300s with 6DOF for
the manipulator platform, CAMo can lift payloads as large as 750g and can easily support hardware
extensions with the Tracer’s 100kg payload. CAMo has a portable ECOFlow Delta 1.2kWh battery
that allows it to run for several hours. The base has a separate in-built battery that also allows it to
run for several hours. For onboard compute, CAMo contains a NVIDIA Jetson AGX Orin, which is
more than enough to support real-time data collection while communicating with off-site computers
for other purposes. CAMo’s has a shoulder camera propped with a stand and gripper camera to make
data resemble the setups of systems on which Octo was trained on. CAMo contains a navigational
camera at its midsection whose input is fed to NoMaD for navigation and a RPLIDAR S2 for safety
purposes while being on the move. Finally, these parts are encased with commonly found aluminum
extrusions that allow for rapid prototyping and durability to shield the components.
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Figure 1: Anatomy of CAMo: Showcasing different components of the mobile manipulator system

Hardware Component Price
AgileX Tracer 7k USD
ViperX 300s 6k USD
RPLIDAR S2 400 USD
Cameras (Fish eye USB x2, Logitech C920 x1) | 100 USD
NVIDIA Jetson AGX Orin 2k USD
ECOFlow Delta Battery 900 USD
Total: 16.4k USD

Table 1: Price Breakdown of CAMo

3.2 Distributed Software Pipeline

Being a mobile system, it would be impractical for the robot to contain all of its compute resources
onboard. Not only does the system need to store large amounts of autonomously collected data and
train large foundation models, but it also needs to be capable of allowing humans to easily intervene
for navigation and manipulation while being on the move. For this purpose, we’ve developed a
distributed communication system with AgentLace that allows the compute onboard to communicate
with an offsite computer to offload data, run model inference, and asynchronously train models.
The software also allows for an additional connection of a laptop connected with a VR headset and
controller so that a human can intervene in the robot’s manipulation and navigation systems while it’s
running.

As illustrated in Figure 2, the compute onboard CAMo acts purely as a server to execute commands
received by an off-site computer on the manipulation and navigation hardware. This off-site com-
puter regularly stores data collected and sent by the onboard compute or the human intervener and
consolidates it to create a bigger dataset that will be used for further fine-tuning. The off-site PC is
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Figure 2: Diagram of Distributed Communication

asynchronously kick-starting training scripts for these large foundation models on more powerful
TPUs. While the off-site PC is capable of also running training scripts, TPU training reduces wait
times by 4 or 5 hours allowing improvements to be seen in the system relatively quickly. The off-site
PC, also responsible for running model inference, switches to the newer models as they become
available.

The separation of responsibilities provided by this distributed system drastically reduces the main-
tenance of the mobile robot itself, instead allowing the user to debug any system bugs from a full
developer setup on the off-site PC. For ease of development, we’ve learned it’s best to keep the
responsibilities of the robot’s compute to be minimal.

3.3 Training Methodology

CAMo uses two foundation models for manipulation and navigation. For manipulation, we use Octo,
an open-source generalist robot policy pre-trained on 800k trajectories collected from different labs.
For navigation, we use NoMaD, a diffusion policy pre-trained on many navigation datasets available
online. Out of the box, taking only a fish eye camera in front of the robot as input, NoMaD is robot
controller agnostic and can navigate the Agile X tracer without additional fine-tuning. However,
Octo, being able to take in different camera viewpoints and requiring a dataset collected on the
robot arm to unnormalize actions, requires an initial dataset of expertly collected trajectories to
be finetuned for controlling the ViperX arm with the camera setup CAMo has. When fine-tuning
these policies, NoMaD is given just the images of the front-facing camera and odometry of the base
whereas Octo is given images from the gripper camera, shoulder camera and language text of the task
used for conditioning. Although Octo can take proprioception of the arm, we find that providing this
information during training causes causal confusion and performance drops.

After initially collecting a dataset of expert trajectories, we move on to the second stage where a
human intervener can further fine-tune the policies while the robot is in the wild. While the base is
navigating between goal nodes, a human can assume control of the base at any time with a controller.
The onboard compute is notified of the switch in command and immediately starts logging the
intervention data. Similarly, CAMo supports shared control for manipulation. While the robot is
performing rollouts, a human can intervene using the VR headset and complete the manipulation
task. Unlike navigation, all manipulation rollouts are recorded, including the ones where a human has
intervened. During this stage, the navigation policy is able to improve avoiding obstacles and humans
and making sharp turns even though the base being controlled is much wider than those present in its
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Figure 3: Random Task Sampling Experiment Setup

pre-trained datasets. The manipulation policy also improves in its success rates on the tasks its tasked
with.

After the first two stages of training, when the manipulation policy shows reasonable success rates at
the given tasks, constant human intervention is no longer needed and CAMo is able to continue to
improve its manipulation policy with autonomous rollouts. Navigation is also seen to require fewer
interventions and resorts to failsafe mechanisms and alerting supervising humans if completely stuck.
To prevent the collection of suboptimal data, we use GPT4 to query if a trajectory has been successful
or not given the task. Wv3e query GPT4 whether an object has been successfully picked up or not
after a grasp.

Note: Although we use this autonomous improvement approach initially, we aim to use reinforcement
learning or other methods as a way of improving autonomously for the official release

3.4 Safety

Safety is a crucial aspect of any mobile manipulation system to prevent catastrophic failure and harm
to humans. This is especially true for the environments we deploy CAMo in where humans are going
about their daily tasks and CAMo has to navigate amidst them. To this end, we employ guardrails and
fail-safe mechanisms to avoid complications and allow the system to run continuously with minimal
human supervision and intervention.

Although NoMaD does a good job of avoiding obstacles and humans while its navigating, the
second stage of training with human interventions aims to improve these abilities by adding human
intervention data to the dataset buffer. For manipulation, we enforce bounding boxes to where the
end effector of the arm can be at any given moment during manipulation rollouts at a destination and
retract the arm while it’s navigating between destinations. An RPLIDAR is onboard CAMo to avoid
collisions while navigating and in the event the robot is stuck or not moving for an extended period
of time, an alert is sent to supervising humans.

4 Preliminary Experiments

4.1 Experiment Setup

To have minimal human intervention while ensuring diverse data collection, we run CAMo in the
wild while it performs randomly sampled tasks. We deploy CAMo in the common room on the floor
that our lab is in, where CAMo will encounter many people while running. Initially, we collected
topographic maps of paths between 3 tables in the common room (®P, = 6 paths). As seen in
Figure 3, from whichever table CAMo is currently at, we randomly sample a destination table and a
manipulation task. We feed the corresponding topographic path to CAMo’s goal image-conditioned
navigation policy and then deploy CAMo’s manipulation policy at the table conditioned on the
randomly sampled task text.



Figure 4: Examples of the three different scenarios for soda can pickup

Note: Experiments shown here are preliminary results and will be replaced with other experiments
involving the random sampling experiment above for official release. The experiments below are
used to ascertain good model parameters for finetuning octo on the task of soda can pickup. We then
perform experiments to check if its possible to improve task percentage on autonomous rollouts

The tables below showcase success rates of soda can pickup for three different scenarios: no
distractions, light distractions (1 or 2 objects other than the soda can), and heavy distractions (3
objects other than the soda can). Refer to Figure 4 for examples of these scenarios. Distractions are
distributed at random between each trial.

4.2 Behavior Cloning for Soda Can Pickup
Table 2 compares different BC fine-tuning methods for the Octo model. As we can see, the best

performance comes with expert trajectories and fine-tuning the entire model. Note that the expert
trajectories are co-trained along with the datasets Octo is pre-trained with.

Table 2: Octo BC experiments

Policy No Distraction ~ Light Distraction ~ Heavy Distraction
Octo No Expert Demos - Diffusion Head 0/10 0/10 0/10
Octo Expert Demos - MSE Head 10/10 7/10 3/10
Octo Expert Demos - Diffusion Head 10/10 10/10 5/10
Octo Expert Demos - Finetuning Diffusion Head Only 5/10 3/10 0/10

4.3 Learning from Autonomous Rollouts

The below policies are trained with autonomous rollouts collected by deploying the manipulation
policy and using GPT4 to classify whether a soda can has been successfully grasped or not. Since the
autorollouts involved data that changed the rotation, pitch and yaw of the end effector while the expert
trajectories didn’t, the policy trained with only 33 autorollouts demonstrated extreme behaviors on
those axes. By collecting more autorollouts we were able to homogenize the datasets and a policy
with 77 rollouts performed the best, even on the heavy distraction task which was unseen in the expert
demos.

Table 3: BC with autonomous rollouts

Policy No Distraction ~ Light Distraction =~ Heavy Distraction
Octo No Expert Demos 0/10 0/10 0/10
Octo Expert Demos and 33 Auto Rollouts - Diffusion Head 5/10 0/10 0/10
Octo Expert Demos and 77 Auto Rollouts - Diffusion Head 10/10 10/10 8/10
Octo Expert Demos and 77 Auto Rollouts - MSE Head 10/10 10/10 2/10




5 Conclusion, Limitations and Future Works

We present CAMo, a low-cost mobile manipulator system that continuously improves its manipulation
policy autonomously. By deploying and letting it run directly in the wild, we show that CAMo can
learn to not only navigate amongst humans but also improve upon tasks it hasn’t seen before in
expertly collected demos from autonomously collected rollouts.

Many limitations of CAMo currently provide avenues for future research. CAMo separates the
navigation and manipulation policies in order to bootstrap from models that exist, however, this limits
its capabilities to accomplish tasks that require coordination from both navigation and manipulation.
By offloading inference to an off-site computer due to onboard computational limitations, the
frequency of actions that CAMo can perform is limited. Moreover, CAMo requires a lot of human-
teleoperated expert demos initially to achieve reasonable success from a novel robotic platform.

Future research can investigate improving end-to-end policies that control both navigation and
manipulation. Incorporating reinforcement learning to learn mobile manipulation skills from scratch
in a safe manner is also a big open problem that needs to be addressed.
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