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Abstract

Reliable Representation Learning: Theory and Practice

by

Yaodong Yu

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Yi Ma, Co-chair

Professor Michael I. Jordan, Co-chair

Machine learning models trained on vast amounts of data have achieved remarkable success across
various applications. However, they also pose new challenges and risks for deployment in real-
world high-stakes domains. Decisions made by deep learning models are often difficult to interpret,
and the underlying mechanisms remain poorly understood, and large-scale foundational models
can memorize and leak private personal information. Given that deep learning models operate as
black-boxes, it is challenging to understand, let alone resolve, various types of failures in current
machine learning systems.

In this dissertation, we present research towards building reliable machine learning systems through
the lens of representation learning. The first part focuses on transparent representation learning.
We first propose a principled and effective objective function, called coding rate reduction, for mea-
suring the goodness of representations, and present a white-box approach to understanding trans-
former models. We then show how to derive a family of mathematically interpretable transformer-
like deep network architectures by maximizing the information gain of the learned representations.
The second part focuses on privacy-preserving representation learning. We first present our inves-
tigation on understanding the effectiveness of learned representations using federated optimization
methods, and present our approach for overcoming data heterogeneity when training deep, non-
convex models in the federated setting. Next, we describe our work on training the first set of vision
foundation models with rigorous differential privacy guarantees, and demonstrate the promise of
high-utility differentially private representation learning.
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Chapter 1

Introduction

In recent years, the practice of machine learning—particularly deep learning models trained at
immense scales—has captured people’s imagination by its empirical successes in learning use-
ful representations from real-world high-dimensional and multi-modal data [145, 100, 250, 201].
Much of this success is owed to deep networks’ ability in effectively learning compressible low-
dimensional structures in the data distribution and then transforming the distribution to a compact
and structured representation. Such a representation then facilitates many downstream tasks, e.g.,
classification [145, 100, 61, 63, 26], recognition and segmentation [77, 168, 76, 29, 140], and
generation [81, 136, 108, 201, 212, 214].

1.1 Representation Learning
To state the common problem behind all these practices more formally, one may view a given
dataset as samples of a random vector x in a high-dimensional space, say RD. Typically, the
distribution of x has much lower intrinsic dimension than the ambient space. Generally speaking,
by learning a representation, we typically mean to learn a continuous mapping parameterized
by θ, say f(·;θ), that transforms x to a so-called feature vector z in another (typically lower-
dimensional) space, say Rd. It is hopeful that through such a mapping:

x ∈ RD f(x;θ)−−−−−→ z ∈ Rd, (1.1)

the low-dimensional intrinsic structures of x are identified and represented by z in a more compact
and structured way so as to facilitate subsequent tasks such as classification or generation. The
feature z can be viewed as a (learned) compact code for the original data x, so the mapping f is
also called an encoder.

In recent developments, the predominant practice has been to learn first a task-agnostic rep-
resentation by pre-training a large deep neural network, in some cases known as a foundation
model [21]. The so-learned representation can subsequently be fine-tuned for multiple specific
tasks. This has been shown to be more effective and efficient for many practical tasks across
diverse data modalities, including speech [203], language [26], natural images [190], and vision-
language [201]. Notice that representation learning in this context is very different from that for
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From Open-loop to Autoencoding Learning

From open-end encoding or decoding to a complete autoencoding 
system to facilitate self-supervised learning and consistency.

Most existing machine learning systems are open-loop systems trained end to end, 
integration of encoding/decoding is necessary to support both recognition and generation.

Yu, Buchanan, Pai, Chu, Wu, Tong, Bai, Zhai, Haeffele, Ma

Figure 4: The autoencoding process to be studied in Sections 2 and 3. Each encoder layer
f ` and decoder layer gL�` are (partial) inverses of each other. Moreover, the overall representation
Z = f(X) is parsimonious (compressed, linearized, and sparse, as in Section 2.1), and the

autoencoding is to be consistent in the sense that X ⇡ cX.

3. Sparse : the low-dimensional structures corresponding to di↵erent parts of the data
distribution are statistically incoherent or geometrically orthogonal, and also axis-
aligned, so as to ensure a more compact encoding and aid downstream processing.

4. Consistent : for autoencoding/generative purposes, we desire that the learned rep-
resentation is invertible, in the sense that we can decode features to recover the cor-
responding input data, either on the level of individual samples or distribution-wise.

For the last item, specifically, we would also like to learn an inverse mapping: g : Z 2
Rd⇥n ! cX 2 RD⇥N such that cX and X are quantitatively close in some sense. Figure 4
illustrates the overall process and the desired four goals of such a representation learning.
In this section (Section 2), we will mainly show how to achieve the first three items on this
list by developing an encoding scheme; we will address the last item in the next section
(Section 3) by showing how the proposed encoding scheme can be naturally reversed.

An objective which promotes parsimonious representations. Previously, Yu et al.
(2020) have proposed to obtain parsimonious representations via maximizing the informa-
tion gain (Ma et al., 2022), a principled measure of the information content of the features.
A concrete instantiation of the information gain is the coding rate reduction (Yu et al.,
2020) of the features, i.e.,

�R(Z | ⇧[K]) = R(Z)�Rc(Z | ⇧[K]). (7)

The first term R(Z) in the above expression is an estimate of the lossy coding rate (i.e.,
rate distortion function) for the whole set of features, when using a codebook adapted to
Gaussians. More specifically, if we view the token feature vectors (zi)i2[n] in Z 2 Rd⇥n as
i.i.d. samples from a single zero-mean Gaussian, an approximation of their (lossy) coding
rate, subject to quantization precision ✏ > 0, is given in (Ma et al., 2007) as:

R(Z)
.
=

1

2
logdet(I + ↵Z⇤Z) =

1

2
logdet(I + ↵ZZ⇤), where ↵

.
=

d

n✏2
. (8)

The second term Rc in the rate reduction objective (7) is also an estimate of the lossy
coding rate, but under a di↵erent and more precise codebook—one which views the token
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Compressive Autoencoding as a Model Problem and Goal

Abstractly: seek maps f : RD ! Rd, g : Rd ! RD, such that

x 2 RD f(x)����! z 2 Rd g(z)����! bx 2 RD.

satisfies x ⇡ bx = g � f(x) in a suitable sense; and z is

1. Compressed , preserving only intrinsic low-dimensionality of x;
2. Linearized , having (piecewise) linear geometry, to aid

interpolation and extrapolation in the representation space;
3. Sparse: distinct modes of variability in x are geometrically

incoherent and moreover axis-aligned.

f(x, ✓)

RD Rd

M

M1

M2

Mj

xi

S1
S2

Sj

zi

Figure 1: Left and Middle: The distribution D of high-dim data x 2 RD is supported on a manifold M and
its classes on low-dim submanifolds Mj , we learn a map f(x, ✓) such that zi = f(xi, ✓) are on a union of
maximally uncorrelated subspaces {Sj}. Right: Cosine similarity between learned features by our method
for the CIFAR10 training dataset. Each class has 5,000 samples and their features span a subspace of over 10
dimensions (see Figure 3(c)).

the component distributions Dj are (or can be made). One popular working assumption is that the
distribution of each class has relatively low-dimensional intrinsic structures.9 Hence we may assume
the distribution Dj of each class has a support on a low-dimensional submanifold, say Mj with
dimension dj ⌧ D, and the distribution D of x is supported on the mixture of those submanifolds,
M = [k

j=1Mj , in the high-dimensional ambient space RD, as illustrated in Figure 1 left.

With the manifold assumption in mind, we want to learn a mapping z = f(x, ✓) that maps each of
the submanifolds Mj ⇢ RD to a linear subspace Sj ⇢ Rd (see Figure 1 middle). To do so, we
require our learned representation to have the following properties:

1. Between-Class Discriminative: Features of samples from different classes/clusters should
be highly uncorrelated and belong to different low-dimensional linear subspaces.

2. Within-Class Compressible: Features of samples from the same class/cluster should be
relatively correlated in a sense that they belong to a low-dimensional linear subspace.

3. Maximally Diverse Representation: Dimension (or variance) of features for each class/cluster
should be as large as possible as long as they stay uncorrelated from the other classes.

Notice that, although the intrinsic structures of each class/cluster may be low-dimensional, they are
by no means simply linear in their original representation x. Here the subspaces {Sj} can be viewed
as nonlinear generalized principal components for x [VMS16]. Furthermore, for many clustering
or classification tasks (such as object recognition), we consider two samples as equivalent if they
differ by certain class of domain deformations or augmentations T = {⌧}. Hence, we are only
interested in low-dimensional structures that are invariant to such deformations,10 which are known to
have sophisticated geometric and topological structures [WDCB05] and can be difficult to learn in a
principled manner even with CNNs [CW16, CGW19]. There are previous attempts to directly enforce
subspace structures on features learned by a deep network for supervised [LQMS18] or unsupervised
learning [JZL+17, ZJH+18, PFX+17, ZHF18, ZJH+19, ZLY+19, LQMS18]. However, the self-
expressive property of subspaces exploited by [JZL+17] does not enforce all the desired properties
listed above; [LQMS18] uses a nuclear norm based geometric loss to enforce orthogonality between
classes, but does not promote diversity in the learned representations, as we will soon see. Figure 1
right illustrates a representation learned by our method on the CIFAR10 dataset. More details can be
found in the experimental Section 3.

2 Technical Approach and Method

2.1 Measure of Compactness for a Representation

Although the above properties are all highly desirable for the latent representation z, they are by no
means easy to obtain: Are these properties compatible so that we can expect to achieve them all at

9There are many reasons why this assumption is plausible: 1. high dimensional data are highly redundant; 2.
data that belong to the same class should be similar and correlated to each other; 3. typically we only care about
equivalent structures of x that are invariant to certain classes of deformation and augmentations.

10So x 2 M iff ⌧(x) 2 M for all ⌧ 2 T .
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Idea: “foundation models” () z sufficient to reconstruct x... 6 / 53

Self-Consistency: Closed-Loop Feedback and Self-Critiquing Game

Self-Consistency: How to Learn Correctly & Autonomously?

Goal: Transcribe the data X ⇢ [k
j=1Mj onto an LDR Z ⇢ [k

j=1Sj :

f(Mj) = Sj| {z }
linear

with Si ? Sj| {z }
discriminative

and g(f(Mj)) = Mj| {z }
auto-embedding

. (7)

Autoencoding of multiple low-dim nonlinear submanifolds:

X ⇢ [k
j=1Mj

f(x,✓)������! [k
j=1Zj ⇢ Sj

g(z,⌘)�����! X̂ ⇢ [k
j=1Mj . (8)

Ma (EECS, UCB & IDS, HKU) Closed-Loop Transcription February 16, 2023 13 / 59

A mixture of 
low-dimensional manifold

A mixture of 
incoherent subspaces

[DTL+YYSM, Entropy2022] [PBWYM, ICLR2024]

Figure 1.1: The distribution D of high-dim data x is supported on a manifold M and its classes
on low-dim submanifolds Mj , we aim to learn a mapping f(x;θ) such that it maps complicated
high-dimensional data to a compact and structured representation (e.g., a union of maximally un-
correlated subspaces {Sj}), and to learn a mapping g(z;η) to (approximately) regenerate the orig-
inal data.

a specific task, where z only needs to be good enough for predicting a specific label y (as in su-
pervised learning [218]). In a task-agnostic setting, the learned representation z needs to encode
almost all essential information about the distribution of the data x. That is, the learned represen-
tation z not only is a more compact and structured representation for the intrinsic structures of x,
but can also recover x to a certain degree of faithfulness. Conceptually, one effective way to verify
whether a representation z has encoded sufficient information about x is to see how well we can
recover x from z through an (inverse) mapping, say g(·;η), known as a decoder (or a generator):

x ∈ RD f(x;θ)−−−−−→ z ∈ Rd g(z;η)−−−−−→ x̂ ∈ RD. (1.2)

As the encoder f is typically compressive and lossy, we should not expect the inverse mapping to
recover x exactly, but an approximate x̂ = g ◦ f(x) ≈ x. We normally seek optimal encoding
and decoding mappings such that the decoded x̂ is the closest to x, either sample-wise—say, by
minimizing the expected mean squared error—or in a relaxed distributional sense. We refer to
the above process as compressive encoding and decoding or compressive autoencoding, as illus-
trated in the diagram in Figure 1.1. This idea is highly compatible with the original goals laid out
for autoencoders by [143, 105], which can be viewed as a generalization of the classic principal
component analysis [127] for the case where the low-dimensional structure of x is linear.

Through tremendous empirical efforts over the last eleven years, it has become clear that deep
networks are very effective in modeling nonlinear encoding and decoding mappings. A wide
range of applications of deep learning, including those mentioned above, rely on realizing such
an encoding or decoding scheme partially or entirely by learning f or g separately or together.

1.2 Challenges
Despite much empirical success of deep representation learning, they also pose new challenges
and risks that are critical to address for their deployment in real-world high-stakes domains. Re-
searchers have shown that (1) decisions made by deep models are difficult to interpret [167]; (2)
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large-scale foundation models can memorize and leak private personal information [51]; (3) mod-
els can fail unpredictably under mild adversarial attacks or distribution shifts [240, 206]; (4) mod-
els are poorly calibrated, especially under complex environment [86, 191]. In this dissertation, we
mainly focus on transparency and privacy.

Transparency and interpretability. Along the development of deep learning, many deep net-
work architectures have been proposed and practiced for f or g, from the classic LeNet [150] to
AlexNet [146], to ResNet [99] and then to the more recent transformer [250]. Despite their popu-
larity, these networks have largely been designed empirically and trained and used as “black-box”
function approximators. Many of the popular techniques and recipes for designing and training
deep networks were developed through heuristic and empirical means, as opposed to rigorous
mathematical principles, modeling and analysis. Practitioners constantly face a series of chal-
lenges for any new data and tasks: What architecture or particular components they should use
for the network? How wide or deep the network should be? Which parts of the networks need to
be trained and which can be determined in advance? Last but not the least, after the network has
been trained, learned and tested: how to interpret functions of the operators; what are the roles and
relationships among the multiple attention heads and multilayer perceptron (MLP) blocks in the
transformer architecture [250]? As a result, desired properties of the learned feature representation
z are not clearly specified or justified, and many heuristic measures or loss functions have been
proposed and practiced for training task-agnostic representations with these models.

Privacy risks. Despite the widespread deployment of large-scale deep learning models, there
are significant privacy and legal risks of training these models on sensitive data that often contain
personal information or copyrighted material [51]. Studies have shown that generative founda-
tion models such as GPT-3 can sometimes regurgitate memorized information about individuals
and licensed content from its training data when prompted to do so [31]; [177] showed that non-
generative vision SSL models can also be probed to reveal sensitive information about individual
samples in its training data when given partial information; and [227, 30] demonstrated that one
could prompt text-to-image diffusion models to generate near-perfect copy of certain training sam-
ples. Even in the scenario that the training data for these models are considered public in most
cases, some of the data may be sensitive; additionally, there are certain privacy and copyright laws
that apply to model training even on such public data [102]. Given these risks, there is an urgent
need to train foundation models that can adhere to relevant privacy and copyright laws.

1.3 Overview

1.3.1 Part I: Transparent Representation Learning
The fundamental question of representation learning and a central problem that we will address in
this part, is: What is a principled and effective measure for the goodness of representations? Con-
ceptually, the quality of a representation z depends on how well it identifies the most relevant and
sufficient information of x for subsequent tasks, and how efficiently it represents this information.
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In Chapter 2, we propose the principle of Maximal Coding Rate Reduction (MCR2), an in-
formation theoretic measure that maximizes the coding rate difference between the whole dataset
and the sum of each individual class, to learn intrinsic low-dimensional structures from high-
dimensional data that most discriminate between classes.

In Chapter 3, we introduce a generalized coding rate function and propose a unified objective
function called sparse rate reduction, which can be used for measuring the quality of the learned
representation in an unsupervised manner. Furthermore, we show that a transformer-like deep ar-
chitecture can be derived from unrolling an alternating minimization scheme for the sparse rate re-
duction objective. This creates a mathematically interpretable, transformer-like architecture called
CRATE (Coding RATE transformer), where each layer performs a single step of an alternating
minimization algorithm to optimize the sparse rate reduction objective.

Chapter 2 is based on a joint work with Kwan Ho Ryan Chan, Chong You, Chaobing Song,
and Yi Ma [290]. Chapter 3 is based on a joint work with Sam Buchanan, Druv Pai, Tianzhe Chu,
Ziyang Wu, Shengbang Tong, Benjamin D. Haeffele, and Yi Ma [289], and also a joint work with
Tianzhe Chu, Shengbang Tong, Ziyang Wu, Druv Pai, Sam Buchanan, and Yi Ma [291].

1.3.2 Part II: Privacy-preserving Representation Learning
In this section, we explore two strategies for mitigating privacy risks in representation learning:
federated learning [176] and differential privacy (DP) [65]. Federated learning is an emerging
paradigm for machine learning where multiple data holders (clients) collaborate to train a model
on their combined dataset. Clients only share updated models and other statistics computed from
their local dataset, which ensures that their raw data remains local and private. Differential privacy
focuses on limiting the influence of individual training data points on the trained model, and hence
has the potential to mitigate privacy risks for sensitive information that is confined to a single or
a few training examples. In Chapter 4, we study the effectiveness of learned representations us-
ing federated optimization methods and propose an approach called Train-Convexify-Train (TCT)
to overcome data heterogeneity when training deep, nonconvex models in a federated setting. In
Chapter 5, we introduce a method to train foundational vision models, called ViP (Vision Trans-
former with Differential Privacy), that offers a DP guarantee and demonstrates the promise of
high-utility differentially private representation learning.

Chapter 4 is based on a joint work with Alexander Wei, Sai Praneeth Karimireddy, Yi Ma, and
Michael I. Jordan [293]. Chapter 5 is based on a joint work with Maziar Sanjabi, Yi Ma, Kamalika
Chaudhuri, and Chuan Guo [292].

1.3.3 Connecting theory and practice.
A primary objective of this dissertation is to bridge the gap between theory and practice in deep
representation learning. Theoretical frameworks could offer unified understandings and formal
guarantees, thereby enhancing the reliability and interpretability of deep learning models. For
instance, the rate reduction framework in Chapter 2 and Chapter 3 connects seemingly disparate
approaches such as compressive encoding/decoding, rate reduction, and deep network architec-
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tures. On the other hand, as demonstrated in this dissertation, scaling up principled models and
algorithms can lead to promising performance on large-scale, real-world tasks. This is an exciting
time to connect theory and practice and build machine learning systems that are both reliable and
trustworthy.
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Part I

Transparent Representation Learning
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Chapter 2

Representation Learning via Maximal
Coding Rate Reduction

To learn intrinsic low-dimensional structures from high-dimensional data that most discriminate
between classes, we propose the principle of Maximal Coding Rate Reduction (MCR2), an information-
theoretic measure that maximizes the coding rate difference between the whole dataset and the
sum of each individual class. We clarify its relationships with most existing frameworks such as
cross-entropy, information bottleneck, information gain, contractive and contrastive learning, and
provide theoretical guarantees for learning diverse and discriminative features. The coding rate
can be accurately computed from finite samples of degenerate subspace-like distributions and can
learn intrinsic representations in supervised, self-supervised, and unsupervised settings in a uni-
fied manner. Empirically, the representations learned using this principle alone are significantly
more robust to label corruptions in classification than those using cross-entropy, and can lead to
state-of-the-art results in clustering mixed data from self-learned invariant features.

2.1 Context and Motivation
Given a random vector x ∈ RD which is drawn from a mixture of, say k, distributions D =
{Dj}kj=1, one of the most fundamental problems in machine learning is how to effectively and
efficiently learn the distribution from a finite set of i.i.d samples, say X = [x1,x2, . . . ,xm] ∈
RD×m. To this end, we seek a good representation through a continuous mapping, f(x, θ) : RD →
Rd, that captures intrinsic structures of x and best facilitates subsequent tasks such as classification
or clustering.

Supervised learning of discriminative representations. To ease the task of learning D, in the
popular supervised setting, a true class label, represented as a one-hot vector yi ∈ Rk, is given for
each sample xi. Extensive studies have shown that for many practical datasets (images, audios, and
natural languages, etc.), the mapping from the data x to its class label y can be effectively modeled
by training a deep network [80], here denoted as f(x, θ) : x 7→ y with network parameters
θ ∈ Θ. This is typically done by minimizing the cross-entropy loss over a training set {(xi,yi)}mi=1,
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through backpropagation over the network parameters θ:

min
θ∈Θ

CE(θ,x,y) .= −E[⟨y, log[f(x, θ)]⟩] ≈ − 1

m

m∑

i=1

⟨yi, log[f(xi, θ)]⟩. (2.1)

Despite its effectiveness and enormous popularity, there are two serious limitations with this ap-
proach: 1) It aims only to predict the labels y even if they might be mislabeled. Empirical studies
show that deep networks, used as a “black box,” can even fit random labels [300]. 2) With such an
end-to-end data fitting, despite plenty of empirical efforts in trying to interpret the so-learned fea-
tures [298], it is not clear to what extent the intermediate features learned by the network capture
the intrinsic structures of the data that make meaningful classification possible in the first place.
The precise geometric and statistical properties of the learned features are also often obscured,
which leads to the lack of interpretability and subsequent performance guarantees (e.g., generaliz-
ability, transferability, and robustness, etc.) in deep learning. Therefore, the goal of this work is
to address such limitations of current learning frameworks by reformulating the objective towards
learning explicitly meaningful representations for the data x.

Minimal discriminative features via information bottleneck. One popular approach to interpret
the role of deep networks is to view outputs of intermediate layers of the network as selecting
certain latent features z = f(x, θ) ∈ Rd of the data that are discriminative among multiple classes.
Learned representations z then facilitate the subsequent classification task for predicting the class
label y by optimizing a classifier g(z):

x
f(x,θ)−−−−−→ z(θ)

g(z)−−−−→ y.

The information bottleneck (IB) formulation [244] further hypothesizes that the role of the network
is to learn z as the minimal sufficient statistics for predicting y. Formally, it seeks to maximize the
mutual information I(z,y) [49] between z and y while minimizing I(x, z) between x and z:

max
θ∈Θ

IB(x,y, z(θ)) .= I(z(θ),y)− βI(x, z(θ)), β > 0. (2.2)

Given one can overcome some caveats associated with this framework [142], such as how to ac-
curately evaluate mutual information with finitely samples of degenerate distributions, this frame-
work has been successful in describing certain behaviors of deep networks. But by being task-
dependent (depending on the label y) and seeking a minimal set of most informative features for
the task at hand (for predicting the label y only), the network sacrifices generalizability, robust-
ness, or transferability, in case the labels can be corrupted or the learned features be tackled. To
address this, our framework uses label y only as side information to assist learning diverse and
discriminative representations, hence making learned features more robust to mislabeled data.

Contractive learning of generative representations. Complementary to the above supervised
discriminative approach, auto-encoding [12, 143] is another popular unsupervised (label-free)
framework used to learn good latent representations, which can be viewed as a nonlinear extension
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Figure 1: Left and Middle: The distribution D of high-dim data x 2 RD is supported on a manifold M and
its classes on low-dim submanifolds Mj , we learn a map f(x, ✓) such that zi = f(xi, ✓) are on a union of
maximally uncorrelated subspaces {Sj}. Right: Cosine similarity between learned features by our method
for the CIFAR10 training dataset. Each class has 5,000 samples and their features span a subspace of over 10
dimensions (see Figure 3(c)).

the component distributions Dj are (or can be made). One popular working assumption is that
the distribution of each class has relatively low-dimensional intrinsic structures. There are several
reasons why this assumption is plausible: 1). High dimensional data are highly redundant; 2).
Data that belong to the same class should be similar and correlated to each other; 3). Typically
we only care about equivalent structures of x that are invariant to certain classes of deformation
and augmentations. Hence we may assume the distribution Dj of each class has a support on a
low-dimensional submanifold, say Mj with dimension dj ⌧ D, and the distribution D of x is
supported on the mixture of those submanifolds, M = [k

j=1Mj , in the high-dimensional ambient
space RD, as illustrated in Figure 1 left.

With the manifold assumption in mind, we want to learn a mapping z = f(x, ✓) that maps each of
the submanifolds Mj ⇢ RD to a linear subspace Sj ⇢ Rd (see Figure 1 middle). To do so, we
require our learned representation to have the following properties:

1. Between-Class Discriminative: Features of samples from different classes/clusters should
be highly uncorrelated and belong to different low-dimensional linear subspaces.

2. Within-Class Compressible: Features of samples from the same class/cluster should be
relatively correlated in a sense that they belong to a low-dimensional linear subspace.

3. Maximally Diverse Representation: Dimension (or variance) of features for each class/cluster
should be as large as possible as long as they stay uncorrelated from the other classes.

Notice that, although the intrinsic structures of each class/cluster may be low-dimensional, they are
by no means simply linear in their original representation x. Here the subspaces {Sj} can be viewed
as nonlinear generalized principal components for x [VMS16]. Furthermore, for many clustering or
classification tasks (such as object recognition), we consider two samples as equivalent if they differ
by certain class of domain deformations or augmentations T = {⌧}. Hence, we are only interested
in low-dimensional structures that are invariant to such deformations (i.e., x 2 M iff ⌧(x) 2 M for
all ⌧ 2 T ), which are known to have sophisticated geometric and topological structures [WDCB05]
and can be difficult to learn in a principled manner even with CNNs [CW16, CGW19]. There are
previous attempts to directly enforce subspace structures on features learned by a deep network
for supervised [LQMS18] or unsupervised learning [JZL+17, ZJH+18, PFX+17, ZHF18, ZJH+19,
ZLY+19, LQMS18]. However, the self-expressive property of subspaces exploited by [JZL+17] does
not enforce all the desired properties listed above [HYV20]; [LQMS18] uses a nuclear norm based
geometric loss to enforce orthogonality between classes, but does not promote diversity in the learned
representations, as we will soon see. Figure 1 right illustrates a representation learned by our method
on the CIFAR10 dataset. More details can be found in the experimental Section 3.

2 Technical Approach and Method

2.1 Measure of Compactness for a Representation

Although the above properties are all highly desirable for the latent representation z, they are by no
means easy to obtain: Are these properties compatible so that we can expect to achieve them all at

3

Figure 2.1: Left and Middle: The distribution D of high-dim data x ∈ RD is supported on
a manifold M and its classes on low-dim submanifolds Mj , we learn a map f(x, θ) such that
zi = f(xi, θ) are on a union of maximally uncorrelated subspaces {Sj}. Right: Cosine similarity
between learned features by our method for the CIFAR10 training dataset. Each class has 5,000
samples and their features span a subspace of over 10 dimensions (see Figure 2.3c).

to the classical PCA [127]. The idea is to learn a compact latent representation z ∈ Rd that ade-
quately regenerates the original data x to certain extent, through optimizing decoder or generator
g(z, η):

x
f(x,θ)−−−−−→ z(θ)

g(z,η)−−−−−→ x̂(θ, η). (2.3)

Typically, such representations are learned in an end-to-end fashion by imposing certain heuristics
on geometric or statistical “compactness” of z, such as its dimension, energy, or volume. For
example, the contractive autoencoder [210] penalizes local volume expansion of learned features
approximated by the Jacobian ∥∂z/∂θ∥. Another key design factor of this approach is the choice
of a proper, but often elusive, metric that can measure the desired similarity between x and the
decoded x̂, either between sample pairs xi and x̂i or between the two distributions Dx and Dx̂.
However, the distance between two distributions, say the KL divergence KL(Dx||Dx̂), is very
difficult to evaluate when the data distributions are discrete and degenerate. In practice, it can only
be approximated with the help of an additional disriminative network, known as GAN [81, 8].

Representations learned through this framework can be arguably rich enough to regenerate the
data to a certain extent. But depending on the choice of the regularizing heuristics on z and similar-
ity metrics on x (or Dx), the objective is typically task-dependent and often grossly approximated
[210, 81]. When the data contain complicated multi-modal structures, naive heuristics or inaccu-
rate metrics may fail to capture all internal subclass structures or to explicitly discriminate among
them for classification or clustering purposes. For example, one consequence of this is the phe-
nomenon of mode collapsing in learning generative models for data that have mixed multi-modal
structures [155]. To address this, we propose a principled measure (on z) to learn representations
that promotes multi-class discriminative property from data of mixed structures, which works in
both supervised and unsupervised settings.

This work: Learning diverse and discriminative representations. Whether the given data X of
a mixed distribution D can be effectively classified depends on how separable (or discriminative)
the component distributions Dj are (or can be made). One popular working assumption is that
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the distribution of each class has relatively low-dimensional intrinsic structures. There are several
reasons why this assumption is plausible: 1). High dimensional data are highly redundant; 2).
Data that belong to the same class should be similar and correlated to each other; 3). Typically
we only care about equivalent structures of x that are invariant to certain classes of deformation
and augmentations. Hence we may assume the distribution Dj of each class has a support on a
low-dimensional submanifold, say Mj with dimension dj ≪ D, and the distribution D of x is
supported on the mixture of those submanifolds, M = ∪k

j=1Mj , in the high-dimensional ambient
space RD, as illustrated in Figure 2.1 left.

With the manifold assumption in mind, we want to learn a mapping z = f(x, θ) that maps
each of the submanifolds Mj ⊂ RD to a linear subspace Sj ⊂ Rd (see Figure 2.1 middle). To do
so, we require our learned representation to have the following properties:

1. Between-Class Discriminative: Features of samples from different classes should be highly
uncorrelated and belong to different low-dimensional linear subspaces.

2. Within-Class Compressible: Features of samples from the same class should be relatively
correlated in a sense that they belong to a low-dimensional linear subspace.

3. Maximally Diverse Representation: Dimension (or variance) of features for each class should
be as large as possible as long as they stay uncorrelated from the other classes.

Notice that, although the intrinsic structures of each class/cluster may be low-dimensional, they
are by no means simply linear in their original representation x. Here the subspaces {Sj} can be
viewed as nonlinear generalized principal components for x [253]. Furthermore, for many clus-
tering or classification tasks (such as object recognition), we consider two samples as equivalent
if they differ by certain class of domain deformations or augmentations T = {τ}. Hence, we are
only interested in low-dimensional structures that are invariant to such deformations (i.e., x ∈ M
iff τ(x) ∈ M for all τ ∈ T ), which are known to have sophisticated geometric and topological
structures [256] and can be difficult to learn in a principled manner even with CNNs [46, 47].

There are previous attempts to directly enforce subspace structures on features learned by a
deep network for supervised [153] or unsupervised learning [124, 302, 197, 306, 303, 301, 153].
However, the self-expressive property of subspaces exploited by [124] does not enforce all the
desired properties listed above [90]; [153] uses a nuclear norm based geometric loss to enforce
orthogonality between classes, but does not promote diversity in the learned representations, as we
will soon see. Figure 2.1 right illustrates a representation learned by our method on the CIFAR10
dataset. More details can be found in the experimental Section 2.3.

2.2 Technical Approach and Method

2.2.1 Measure of Compactness for a Representation
Although the above properties are all highly desirable for the latent representation z, they are by no
means easy to obtain: Are these properties compatible so that we can expect to achieve them all at
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once? If so, is there a simple but principled objective that can measure the goodness of the resulting
representations in terms of all these properties? The key to these questions is to find a principled
“measure of compactness” for the distribution of a random variable z or from its finite samples
Z. Such a measure should directly and accurately characterize intrinsic geometric or statistical
properties of the distribution, in terms of its intrinsic dimension or volume. Unlike cross-entropy
(2.1) or information bottleneck (2.2), such a measure should not depend explicitly on class labels
so that it can work in all supervised, self-supervised, semi-supervised, and unsupervised settings.

Low-dimensional degenerate distributions. In information theory [49], the notion of entropy
H(z) is designed to be such a measure. However, entropy is not well-defined for continuous ran-
dom variables with degenerate distributions. The same difficulty resides with evaluating mutual
information I(x, z) for degenerate distributions. This is unfortunately the case here. To alleviate
this difficulty, another related concept in information theory, more specifically in lossy data com-
pression, that measures the “compactness” of a random distribution is the so-called rate distortion
[49]: Given a random variable z and a prescribed precision ϵ > 0, the rate distortion R(z, ϵ) is
the minimal number of binary bits needed to encode z such that the expected decoding error is
less than ϵ, i.e., the decoded ẑ satisfies E[∥z − ẑ∥2] ≤ ϵ. Although this framework has been
successful in explaining feature selection in deep networks [174], the rate distortion of a random
variable is difficult, if not impossible to compute, except for simple distributions such as discrete
and Gaussian.

Nonasymptotic rate distortion for finite samples. When evaluating the lossy coding rate R,
one practical difficulty is that we normally do not know the distribution of z. Instead, we have a
finite number of samples as learned representations where zi = f(xi, θ) ∈ Rd, i = 1, . . . ,m, for
the given data samples X = [x1, . . . ,xm]. Fortunately, [172] provides a precise estimate on the
number of binary bits needed to encoded finite samples from a subspace-like distribution. In order
to encode the learned representation Z = [z1, . . . ,zm] up to a precision ϵ, the total number of
bits needed is given by the following expression: L(Z, ϵ) .

=
(
m+d
2

)
log det

(
I + d

mϵ2
ZZ⊤). This

formula can be derived either by packing ϵ-balls into the space spanned by Z or by computing the
number of bits needed to quantize the SVD of Z subject to the precision, see [172] for proofs.
Therefore, the compactness of learned features as a whole can be measured in terms of the average
coding length per sample (as the sample size m is large), a.k.a. the coding rate subject to the
distortion ϵ:

R(Z, ϵ)
.
=

1

2
log det

(
I +

d

mϵ2
ZZ⊤

)
. (2.4)

Rate distortion of data with a mixed distribution. In general, the features Z of multi-class data
may belong to multiple low-dimensional subspaces. To evaluate the rate distortion of such mixed
data more accurately, we may partition the data Z into multiple subsets: Z = Z1 ∪ · · · ∪ Zk,
with each in one low-dim subspace. So the above coding rate (2.4) is accurate for each subset.
For convenience, let Π = {Πj ∈ Rm×m}kj=1 be a set of diagonal matrices whose diagonal entries
encode the membership of the m samples in the k classes. More specifically, the diagonal entry
Πj(i, i) of Πj indicates the probability of sample i belonging to subset j. Therefore Π lies in a
simplex: Ω .

= {Π | Πj ≥ 0, Π1 + · · ·+Πk = I}. Then, according to [172], with respect to this
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partition, the average number of bits per sample (the coding rate) is

Rc(Z, ϵ | Π)
.
=

k∑

j=1

tr(Πj)

2m
log det

(
I +

d

tr(Πj)ϵ2
ZΠjZ

⊤
)
. (2.5)

When Z is given, Rc(Z, ϵ | Π) is a concave function of Π. The function log det(·) in the above
expressions has been long known as an effective heuristic for rank minimization problems, with
guaranteed convergence to local minimum [70]. As it nicely characterizes the rate distortion of
Gaussian or subspace-like distributions, log det(·) can be very effective in clustering or classifica-
tion of mixed data [172, 271, 131].

2.2.2 Principle of Maximal Coding Rate Reduction
On one hand, for learned features to be discriminative, features of different classes/clusters are
preferred to be maximally incoherent to each other. Hence they together should span a space of the
largest possible volume (or dimension) and the coding rate of the whole set Z should be as large as
possible. On the other hand, learned features of the same class/cluster should be highly correlated
and coherent. Hence, each class/cluster should only span a space (or subspace) of a very small
volume and the coding rate should be as small as possible. Therefore, a good representation Z of
X is one such that, given a partition Π of Z, achieves a large difference between the coding rate
for the whole and that for all the subsets:

∆R(Z,Π, ϵ)
.
= R(Z, ϵ)−Rc(Z, ϵ | Π). (2.6)

If we choose our feature mapping z = f(x, θ) to be a deep neural network, the overall process
of the feature representation and the resulting rate reduction w.r.t. certain partition Π can be
illustrated by the following diagram:

X
f(x,θ)−−−−−→ Z(θ)

Π,ϵ−−−→ ∆R(Z(θ),Π, ϵ). (2.7)

Note that ∆R is monotonic in the scale of the features Z. So to make the amount of reduction
comparable between different representations, we need to normalize the scale of the learned fea-
tures, either by imposing the Frobenius norm of each class Zj to scale with the number of features
in Zj ∈ Rd×mj : ∥Zj∥2F = mj or by normalizing each feature to be on the unit sphere: zi ∈ Sd−1.
This formulation offers a natural justification for the need of “batch normalization” in the prac-
tice of training deep neural networks [120]. An alternative, arguably simpler, way to normalize
the scale of learned representations is to ensure that the mapping of each layer of the network is
approximately isometric [199].

Once the representations are comparable, our goal becomes to learn a set of features Z(θ) =
f(X, θ) and their partition Π (if not given in advance) such that they maximize the reduction
between the coding rate of all features and that of the sum of features w.r.t. their classes:

max
θ,Π

∆R
(
Z(θ),Π, ϵ

)
= R(Z(θ), ϵ)−Rc(Z(θ), ϵ | Π), s.t. ∥Zj(θ)∥2F = mj, Π ∈ Ω. (2.8)



CHAPTER 2. REPRESENTATION LEARNING VIA MAXIMAL CODING RATE
REDUCTION 13

We refer to this as the principle of maximal coding rate reduction (MCR2), an embodiment of
Aristotle’s famous quote: “the whole is greater than the sum of the parts.” Note that for the
clustering purpose alone, one may only care about the sign of ∆R for deciding whether to partition
the data or not, which leads to the greedy algorithm in [172]. More specifically, in the context of
clustering finite samples, one needs to use the more precise measure of the coding length mentioned
earlier, see [172] for more details. Here to seek or learn the best representation, we further desire
the whole is maximally greater than its parts.
Relationship to information gain. The maximal coding rate reduction can be viewed as a gener-
alization to Information Gain (IG), which aims to maximize the reduction of entropy of a random
variable, say z, with respect to an observed attribute, say π: maxπ IG(z,π)

.
= H(z)−H(z | π),

i.e., the mutual information between z and π [49]. Maximal information gain has been widely used
in areas such as decision trees [200]. However, MCR2 is used differently in several ways: 1) One
typical setting of MCR2 is when the data class labels are given, i.e. Π is known, MCR2 focuses on
learning representations z(θ) rather than fitting labels. 2) In traditional settings of IG, the number
of attributes in z cannot be so large and their values are discrete (typically binary). Here the “at-
tributes” Π represent the probability of a multi-class partition for all samples and their values can
even be continuous. 3) As mentioned before, entropy H(z) or mutual information I(z,π) [107] is
not well-defined for degenerate continuous distributions whereas the rate distortion R(z, ϵ) is and
can be accurately and efficiently computed for (mixed) subspaces, at least.

2.2.3 Properties of the Rate Reduction Function
In theory, the MCR2 principle (2.8) benefits from great generalizability and can be applied to
representations Z of any distributions with any attributes Π as long as the rates R and Rc for
the distributions can be accurately and efficiently evaluated. The optimal representation Z∗ and
partition Π∗ should have some interesting geometric and statistical properties. We here reveal
nice properties of the optimal representation with the special case of subspaces, which have many
important use cases in machine learning. When the desired representation for Z is multiple sub-
spaces, the rates R and Rc in (2.8) are given by (2.4) and (2.5), respectively. At the maximal rate
reduction, MCR2 achieves its optimal representations, denoted as Z∗ = Z∗

1 ∪ · · · ∪Z∗
k ⊂ Rd with

rank(Z∗
j ) ≤ dj . One can show that Z∗ has the following desired properties (see Appendix A for a

formal statement and detailed proofs).

Theorem 2.2.1 (Informal Statement). Suppose Z∗ = Z∗
1 ∪ · · · ∪ Z∗

k is the optimal solution that
maximizes the rate reduction (2.8). We have:

• Between-class Discriminative: As long as the ambient space is adequately large (d ≥∑k
j=1 dj), the subspaces are all orthogonal to each other, i.e. (Z∗

i )
⊤Z∗

j = 0 for i ̸= j.

• Maximally Diverse Representation: As long as the coding precision is adequately high, i.e.,
ϵ4 < c · minj

{
mj

m
d2

d2j

}
, where c > 0 is a constant. Each subspace achieves its maximal

dimension, i.e. rank(Z∗
j ) = dj . In addition, the largest dj − 1 singular values of Z∗

j are
equal.
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Figure 2.2: Comparison of two learned representations Z and Z ′ via reduced rates: R is the number of
ϵ-balls packed in the joint distribution and Rc is the sum of the numbers for all the subspaces (the green
balls). ∆R is their difference (the number of blue balls). The MCR2 principle prefers Z (the left one).

In other words, in the case of subspaces, the MCR2 principle promotes embedding of data into
multiple independent subspaces, with features distributed isotropically in each subspace (except
for possibly one dimension). In addition, among all such discriminative representations, it prefers
the one with the highest dimensions in the ambient space. This is substantially different from the
objective of information bottleneck (2.2).

Comparison to the geometric OLE loss. To encourage the learned features to be uncorrelated
between classes, the work of [153] has proposed to maximize the difference between the nuclear
norm of the whole Z and its subsets Zj , called the orthogonal low-rank embedding (OLE) loss:
maxθ OLE(Z(θ),Π)

.
= ∥Z(θ)∥∗ −

∑k
j=1 ∥Zj(θ)∥∗, added as a regularizer to the cross-entropy

loss (2.1). The nuclear norm ∥ · ∥∗ is a nonsmooth convex surrogate for low-rankness and the non-
smoothness potentially poses additional difficulties in using this loss to learn features via gradient
descent, whereas log det(·) is smooth concave instead. Unlike the rate reduction ∆R, OLE is al-
ways negative and achieves the maximal value 0 when the subspaces are orthogonal, regardless
of their dimensions. So in contrast to ∆R, this loss serves as a geometric heuristic and does not
promote diverse representations. In fact, OLE typically promotes learning one-dim representations
per class, whereas MCR2 encourages learning subspaces with maximal dimensions (Figure 7 of
[153] versus our Figure A.1).

Relation to contrastive learning. If samples are evenly drawn from k classes, a randomly chosen
pair (xi,xj) is of high probability belonging to difference classes if k is large. For example, when
k ≥ 100, a random pair is of probability 99% belonging to different classes. We may view the
learned features of two samples together with their augmentations Zi and Zj as two classes. Then
the rate reduction ∆Rij = R(Zi ∪ Zj, ϵ) − 1

2
(R(Zi, ϵ) + R(Zj, ϵ)) gives a “distance” measure

for how far the two sample sets are. We may try to further “expand” pairs that likely belong to
different classes. From Theorem 2.2.1, the (averaged) rate reduction ∆Rij is maximized when
features from different samples are uncorrelated Z⊤

i Zj = 0 (see Figure 2.2) and features Zi from
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the same sample are highly correlated. Hence, when applied to sample pairs, MCR2 naturally
conducts the so-called contrastive learning [89, 189, 94]. But MCR2 is not limited to expand (or
compress) pairs of samples and can uniformly conduct “contrastive learning” for a subset with any
number of samples as long as we know they likely belong to different (or the same) classes, say by
randomly sampling subsets from a large number of classes or with a good clustering method.

2.3 Experiments with Instantiations of MCR2

Our theoretical analysis above shows how the maximal coding rate reduction (MCR2) is a prin-
cipled measure for learning discriminative and diverse representations for mixed data. In this
section, we demonstrate experimentally how this principle alone, without any other heuristics, is
adequate to learning good representations in the supervised, self-supervised, and unsupervised
learning settings in a unified fashion. Our goal here is to validate effectiveness of this prin-
ciple through its most basic usage and fair comparison with existing frameworks. More im-
plementation details and experiments are given in Appendix A.2. The code can be found in
https://github.com/ryanchankh/mcr2.

2.3.1 Supervised Learning of Robust Discriminative Features
Supervised learning via rate reduction. When class labels are provided during training, we
assign the membership (diagonal) matrix Π = {Πj}kj=1 as follows: for each sample xi with label
j, set Πj(i, i) = 1 and Πl(i, i) = 0,∀l ̸= j. Then the mapping f(·, θ) can be learned by optimizing
(2.8), where Π remains constant. We apply stochastic gradient descent to optimize MCR2, and for
each iteration we use mini-batch data {(xi,yi)}mi=1 to approximate the MCR2 loss.

Evaluation via classification. As we will see, in the supervised setting, the learned representation
has very clear subspace structures. So to evaluate the learned representations, we consider a natural
nearest subspace classifier. For each class of learned features Zj , let µj ∈ Rp be its mean and Uj ∈
Rp×rj be the first rj principal components for Zj , where rj is the estimated dimension of class j.
The predicted label of a test data x′ is given by j′ = argminj∈{1,...,k} ∥(I − UjU

⊤
j )(f(x

′, θ) −
µj)∥22.
Experiments on real data. We consider CIFAR10 dataset [144] and ResNet-18 [100] for f(·, θ).
We replace the last linear layer of ResNet-18 by a two-layer fully connected network with ReLU
activation function such that the output dimension is 128. We set the mini-batch size asm = 1, 000
and the precision parameter ϵ2 = 0.5. More results can be found in Appendix A.2.3.2.

Figure 2.3a illustrates how the two rates and their difference (for both training and test data)
evolves over epochs of training: After an initial phase, R gradually increases while Rc decreases,
indicating that features Z are expanding as a whole while each class Zj is being compressed.
Figure 2.3c shows the distribution of singular values per Zj and Figure 2.1 (right) shows the
angles of features sorted by class. Compared to the geometric loss [153], our features are not only
orthogonal but also of much higher dimension. We compare the singular values of representations,
both overall data and individual classes, learned by using cross-entropy and MCR2 in Figure A.1

https://github.com/ryanchankh/mcr2
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Figure 2.3: Evolution of the rates of MCR2 in the training process and principal components of
learned features.
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Figure 2.4: Evolution of rates R,Rc,∆R of MCR2 during training with corrupted labels.

and Figure A.2 in Appendix A.2.3.1. We find that the representations learned by using MCR2 loss
are much more diverse than the ones learned by using cross-entropy loss. In addition, we find that
we are able to select diverse images from the same class according to the “principal” components
of the learned features (see Figure A.3 and Figure A.4 in Appendix A.2.3.1).

Robustness to corrupted labels. Because MCR2 by design encourages richer representations that
preserves intrinsic structures from the data X , training relies less on class labels than traditional
loss such as cross-entropy (CE). To verify this, we train the same network using both CE and
MCR2 with certain ratios of randomly corrupted training labels. Figure 2.4 illustrates the learning
process: for different levels of corruption, while the rate for the whole set always converges to the
same value, the rates for the classes are inversely proportional to the ratio of corruption, indicating
our method only compresses samples with valid labels. The classification results are summarized
in Table 2.1. By applying exact the same training parameters, MCR2 is significantly more robust
than CE, especially with higher ratio of corrupted labels. This can be an advantage in the settings of
self-supervised learning or constrastive learning when the grouping information can be very noisy.
More detailed comparison between MCR2 and OLE [153], Large Margin Deep Networks [67], and
ITLM [220] on learning from noisy labels can be found in Appendix A.2.4 (Table A.5).
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Table 2.1: Classification results with features learned with labels corrupted at different levels.

Ratio=0.1 Ratio=0.2 Ratio=0.3 Ratio=0.4 Ratio=0.5

CE Training 90.91% 86.12% 79.15% 72.45% 60.37%
MCR2 Training 91.16% 89.70% 88.18% 86.66% 84.30%

2.3.2 Self-supervised Learning of Invariant Features
Learning invariant features via rate reduction. Motivated by self-supervised learning algo-
rithms [151, 138, 189, 94, 276], we use the MCR2 principle to learn representations that are in-
variant to certain class of transformations/augmentations, say T with a distribution PT . Given
a mini-batch of data {xj}kj=1, we augment each sample xj with n transformations/augmenta-
tions {τi(·)}ni=1 randomly drawn from PT . We simply label all the augmented samples Xj =
[τ1(xj), . . . , τn(xj)] of xj as the j-th class, and Zj the corresponding learned features. Using
this self-labeled data, we train our feature mapping f(·, θ) the same way as the supervised setting
above. For every mini-batch, the total number of samples for training is m = kn.

Evaluation via clustering. To learn invariant features, our formulation itself does not require the
original samples xj come from a fixed number of classes. For evaluation, we may train on a few
classes and observe how the learned features facilitate classification or clustering of the data. A
common method to evaluate learned features is to train an additional linear classifier [189, 94],
with ground truth labels. But for our purpose, because we explicitly verify whether the so-learned
invariant features have good subspace structures when the samples come from k classes, we use
an off-the-shelf subspace clustering algorithm EnSC [284], which is computationally efficient and
is provably correct for data with well-structured subspaces. We also use K-Means on the original
data X as our baseline for comparison. We use normalized mutual information (NMI), clustering
accuracy (ACC), and adjusted rand index (ARI) for our evaluation metrics, see Appendix A.2.4.2
for their detailed definitions.

Controlling dynamics of expansion and compression. By directly optimizing the rate reduction
∆R = R − Rc, we achieve 0.570 clustering accuracy on CIFAR10 dataset, which is the second
best result compared with previous methods. More details can be found in Appendix A.2.4.1. Em-
pirically, we observe that, without class labels, the overall coding rate R expands quickly and the
MCR2 loss saturates (at a local maximum), see Fig 2.5a. Our experience suggests that learning a
good representation from unlabeled data might be too ambitious when directly optimizing the origi-
nal ∆R. Nonetheless, from the geometric meaning ofR andRc, one can design a different learning
strategy by controlling the dynamics of expansion and compression differently during training. For
instance, we may re-scale the rate by replacingR(Z, ϵ) with R̃(Z, ϵ) .= 1

2γ1
log det(I+ γ2d

mϵ2
ZZ⊤).

With γ1 = γ2 = k, the learning dynamics change from Fig 2.5a to Fig 2.5b: All features are first
compressed then gradually expand. We denote the controlled MCR2 training by MCR2-CTRL.

Experiments on real data. Similar to the supervised learning setting, we train exactly the same
ResNet-18 network on the CIFAR10, CIFAR100, and STL10 [45] datasets. We set the mini-batch
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Figure 2.5: Evolution of the rates of (left) MCR2 and (right) MCR2-CTRL in the training process
in the self-supervised setting on CIFAR10 dataset.

Table 2.2: Clustering results on CIFAR10, CIFAR100, and STL10 datasets.

Dataset Metric K-Means JULE RTM DEC DAC DCCM MCR2-Ctrl

CIFAR10
NMI 0.087 0.192 0.197 0.257 0.395 0.496 0.630
ACC 0.229 0.272 0.309 0.301 0.521 0.623 0.684
ARI 0.049 0.138 0.115 0.161 0.305 0.408 0.508

CIFAR100
NMI 0.084 0.103 - 0.136 0.185 0.285 0.387
ACC 0.130 0.137 - 0.185 0.237 0.327 0.375
ARI 0.028 0.033 - 0.050 0.087 0.173 0.178

STL10
NMI 0.124 0.182 - 0.276 0.365 0.376 0.446
ACC 0.192 0.182 - 0.359 0.470 0.482 0.491
ARI 0.061 0.164 - 0.186 0.256 0.262 0.290

size as k = 20, number of augmentations for each sample as n = 50 and the precision parameter
as ϵ2 = 0.5. Table 2.2 shows the results of the proposed MCR2-CTRL in comparison with methods
JULE [282], RTM [186], DEC [279], DAC [34], and DCCM [272] that have achieved the best
results on these datasets. Surprisingly, without utilizing any inter-class or inter-sample information
and heuristics on the data, the invariant features learned by our method with augmentations alone
achieves a better performance over other highly engineered clustering methods. More comparisons
and ablation studies can be found in Appendix A.2.4.2.

Nevertheless, compared to the representations learned in the supervised setting where the opti-
mal partition Π in (2.8) is initialized by correct class information, the representations here learned
with self-supervised classes are far from being optimal. It remains wide open how to design bet-
ter optimization strategies and dynamics to learn from unlabelled or partially-labelled data better
representations (and the associated partitions) close to the global maxima of the MCR2 objective.
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2.4 Conclusion
This work provides rigorous theoretical justifications and clear empirical evidences for why the
maximal coding rate reduction (MCR2) is a fundamental principle for learning discriminative low-
dim representations in almost all learning settings. It unifies and explains existing effective frame-
works and heuristics widely practiced in the (deep) learning literature. It remains open why MCR2

is robust to label noises in the supervised setting, why self-learned features with MCR2 alone are
effective for clustering, and how in future practice instantiations of this principle can be systemat-
ically harnessed to further improve clustering or classification tasks.

We believe that MCR2 gives a principled and practical objective for (deep) learning and can
potentially lead to better design operators and architectures of a deep network. A potential direction
is to monitor quantitatively the amount of rate reduction ∆R gained through every layer of the deep
network. By optimizing the rate reduction through the network layers, it is no longer engineered
as a “black box.”

On the learning theoretical aspect, although this work has demonstrated only with mixed sub-
spaces, this principle applies to any mixed distributions or structures, for which configurations that
achieve maximal rate reduction are of independent theoretical interest. Another interesting note is
that the MCR2 formulation goes beyond the supervised multi-class learning setting often studied
through empirical risk minimization (ERM) [53]. It is more related to the expectation maximiza-
tion (EMX) framework [18], in which the notion of “compression” plays a crucial role for purely
theoretical analysis. We hope this work provides a good connection between machine learning
theory and its practice.
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Chapter 3

Interpretable White-Box Transformers via
Sparse Rate Reduction

In this work, we contend that the objective of representation learning is to compress and transform
the distribution of the data, say sets of tokens, towards a mixture of low-dimensional Gaussian
distributions supported on incoherent subspaces. The quality of the final representation can be
measured by a unified objective function called sparse rate reduction. From this perspective, pop-
ular deep networks such as transformers can be naturally viewed as realizing iterative schemes to
optimize this objective incrementally. Particularly, we show that the standard transformer block
can be derived from alternating optimization on complementary parts of this objective: the multi-
head self-attention operator can be viewed as a gradient descent step to compress the token sets
by minimizing their lossy coding rate, and the subsequent multi-layer perceptron can be viewed
as attempting to sparsify the representation of the tokens. This leads to a family of white-box
transformer-like deep network architectures which are mathematically fully interpretable. Despite
their simplicity, experiments show that these networks indeed learn to optimize the designed ob-
jective: they compress and sparsify representations of large-scale real-world vision datasets such
as ImageNet, and achieve performance very close to thoroughly engineered transformers such as
ViT. Code is at https://github.com/Ma-Lab-Berkeley/CRATE.

3.1 Introduction
In recent years, deep learning has seen tremendous empirical success in processing massive amounts
of high-dimensional and multi-modal data. Much of this success is owed to effective learning of
the data distribution and then transforming the distribution to a parsimonious, i.e. structured and
compact, representation [202, 40, 92, 173], which facilitates many downstream tasks (e.g., in vi-
sion, classification [99, 63], recognition and segmentation [29, 97, 140], and generation [136, 212,
214]). To this end, many models and methods have been proposed and practiced, each with its own
strengths and limitations. Here, we give several popular methods a brief accounting as context for
a complete understanding and unification that we seek in this work.

https://github.com/Ma-Lab-Berkeley/CRATE
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Transformer models and self-attention. Transformers [250] are one of the latest popular mod-
els for learning a representation for high-dimensional structured data, such as text [250, 61, 26],
images [63, 58], and other types of signals [79, 9]. After the first block, which converts each
data point (such as a text corpus or image) into a set or sequence of tokens, further processing
is performed on the token sets, in a medium-agnostic manner [250, 63]. A cornerstone of the
transformer model is the so-called self-attention layer, which exploits the statistical correlations
among the sequence of tokens to refine the token representation. Transformers have been highly
successful in learning compact representations that perform well on many downstream tasks. Yet
the transformer network architecture is empirically designed and lacks a rigorous mathematical
interpretation. In fact, the output of the attention layer itself has several competing interpretations
[252, 154]. As a result, the statistical and geometric relationship between the data distribution and
the final representation learned by a transformer largely remains a mysterious black box.

Diffusion models and denoising. Diffusion models [226, 108, 231, 232, 228] have recently be-
come a popular method for learning the data distribution, particularly for generative tasks and nat-
ural image data which are highly structured but notoriously difficult to effectively model [257, 62].
The core concept of diffusion models is to start with features sampled from a Gaussian noise distri-
bution (or some other standard template) and iteratively denoise and deform the feature distribution
until it converges to the original data distribution. This process is computationally intractable if
modeled in just one step [141], so it is typically broken into multiple incremental steps. The key to
each step is the so-called score function, or equivalently [66] an estimate for the “optimal denoising
function”; in practice this function is modeled using a generic black-box deep network. Diffusion
models have shown effectiveness at learning and sampling from the data distribution [135, 37,
212]. However, despite some recent efforts [230], they generally do not establish any clear corre-
spondence between the initial features and data samples. Hence, diffusion models themselves do
not offer a parsimonious or interpretable representation of the data distribution.

Structure-seeking models and rate reduction. In both of the previous two methods, the rep-
resentations were constructed implicitly as a byproduct of solving a downstream task (e.g., clas-
sification or generation/sampling) using deep networks. However, one can also explicitly learn a
representation of the data distribution as a task in and of itself; this is most commonly done by
trying to identify and represent low-dimensional structures in the input data. Classical examples
of this paradigm include model-based approaches such as sparse coding [187, 44] and dictio-
nary learning [233, 84, 299], out of which grew early attempts at designing and interpreting deep
network architectures [194, 27]. More recent approaches build instead from a model-free per-
spective, where one learns a representation through a sufficiently-informative pretext task (such
as compressing similar and separating dissimilar data in contrastive learning [243, 258, 222], or
maximizing the information gain in the class of maximal coding rate reduction methods [172,
290, 33]). Compared to black-box deep learning approaches, both model-based and model-free
representation learning schemes have the advantage of being more interpretable: they allow users
to explicitly design desired properties of the learned representation [290, 33, 193]. Furthermore,
they allow users to construct new white-box forward-constructed deep network architectures [83,
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Figure 3.1: The ‘main loop’ of the CRATE white-box deep network design. After encoding in-
put data X as a sequence of tokens Z0, CRATE constructs a deep network that transforms the data
to a canonical configuration of low-dimensional subspaces by successive compression against a
local model for the distribution, generating Zℓ+1/2, and sparsification against a global dictionary,
generating Zℓ+1. Repeatedly stacking these blocks and training the model parameters via back-
propagation yields a powerful and interpretable representation of the data.

33, 104] by unrolling the optimization strategy for the representation learning objective, such that
each layer of the constructed network implements an iteration of the optimization algorithm [83,
33, 245]. Several recent works [283, 109, 55] consider the connections between transformer archi-
tectures [250] and unrolled optimization. Unfortunately, in this paradigm, if the desired properties
are narrowly defined, it may be difficult to achieve good practical performance on large real-world
datasets.

Our contributions, and outline of this work. In this work, we aim to remedy the limitations
of these existing methods with a more unified framework for designing transformer-like network
architectures that leads to both mathematical interpretability and good practical performance. To
this end, we propose to learn a sequence of incremental mappings to obtain a most compressed
and sparse representation for the input data (or their token sets) that optimizes a unified objective
function known as the sparse rate reduction, specified later in Eq. (3.1). The goal of the map-
ping is illustrated in Chapter 3.1. Within this framework, we unify the above three seemingly
disparate approaches and show that transformer-like deep network layers can be naturally derived
from unrolling iterative optimization schemes to incrementally optimize the sparse rate reduction
objective. In particular, our contributions and outline of this chapter are as follows:

• In Chapter 3.2.2 we show, using an idealized model for the token distribution, that if one
iteratively denoises the tokens towards a family of low-dimensional subspaces, the asso-
ciated score function assumes an explicit form similar to a self-attention operator seen in
transformers.

• In Chapter 3.2.3 we derive the multi-head self-attention layer as an unrolled gradient descent
step to minimize the lossy coding rate part of the rate reduction, showing another interpreta-
tion of the self-attention layer as compressing the token representation.
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• In Chapter 3.2.4 we show that the multi-layer perceptron which immediately follows the
multi-head self-attention in transformer blocks can be interpreted as (and replaced by) a
layer which incrementally optimizes the remaining part of the sparse rate reduction objective
by constructing a sparse coding of the token representations.

• In Chapter 3.2.5 we use this understanding to create a new white-box (fully mathematically
interpretable) transformer architecture called CRATE (i.e., Coding RAte reduction Trans-
formEr), where each layer performs a single step of an alternating minimization algorithm
to optimize the sparse rate reduction objective.

Hence, within our framework, the learning objective function, the deep learning architecture, and
the final learned representation all become white boxes that are fully mathematically interpretable.
As the experiments in Chapter 3.3 show, the CRATE networks, despite being simple, can already
learn the desired compressed and sparse representations on large-scale real-world datasets and
achieve performance on par with much more heavily engineered transformer networks (such as
ViT) on a wide variety of tasks (e.g., classification and transfer learning).

3.2 Technical Approach and Justification

3.2.1 Objective and Approach
We consider a general learning setup associated with real-world signals. We have some random
variable X =

[
x1, . . . ,xN

]
∈ RD×N which is our data source; each xi ∈ RD is interpreted as a

token1, and the xi’s may have arbitrary correlation structures. We use Z =
[
z1, . . . ,zN

]
∈ Rd×N

to denote the random variable which defines our representations. Each zi ∈ Rd is the representation
of the corresponding token xi. We are givenB ≥ 1 i.i.d. samples X1, . . . ,XB ∼ X , whose tokens
are xi,b. The representations of our samples are denoted Z1, . . . ,ZB ∼ Z, and those of our tokens
are zi,b. Finally, for a given network, we use Zℓ to denote the output of the first ℓ layers when
given X as input. Correspondingly, the sample outputs are Zℓ

i and the token outputs are zℓ
i,b.

Objective for learning a structured and compact representation. Following the framework
of rate reduction [33], we contend that the goal of representation learning is to find a feature
mapping f : X ∈ RD×N → Z ∈ Rd×N which transforms input data X ∈ RD×N with a po-
tentially nonlinear and multi-modal distribution to a (piecewise) linearized and compact feature
representation Z ∈ Rd×N . While the joint distribution of tokens (zi)

N
i=1 in Z may be sophis-

ticated (and task-specific), we further contend that it is reasonable and practical to require that
the target marginal distribution of individual tokens zi should be highly compressed and struc-
tured, amenable for compact coding. Particularly, we require the distribution to be a mixture of
low-dimensional (say K) Gaussian distributions, such that the kth Gaussian has mean 0 ∈ Rd,

1For language transformers, tokens roughly correspond to words [250], while for vision transformers, tokens
correspond to image patches [63].
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covariance Σk ⪰ 0 ∈ Rd×d, and support spanned by the orthonormal basis Uk ∈ Rd×p. We de-
note U[K] = (Uk)

K
k=1 to be the set of bases of all Gaussians. Hence to maximize the information

gain [173] for the final token representation, we wish to maximize the rate reduction [172, 290]
of the tokens, i.e., maxZ ∆R(Z;U[K]) = R(Z) − Rc(Z;U[K]), where R and Rc are estimates
of lossy coding rates to be formally defined in Eq. (3.7) and Eq. (3.8). This also promotes token
representations zi from different Gaussians to be incoherent [290].

Since rate reduction is an intrinsic measure of goodness for the representation, it is invari-
ant to arbitrary rotations of the representations. Therefore, to ensure the final representations are
amenable to more compact coding, we would like to transform the representations (and their sup-
porting subspaces) so that they become sparse with respect to the standard coordinates of the re-
sulting representation space.2 The combined rate reduction and sparsification process is illustrated
in Chapter 3.1. Computationally, we may combine the above two goals into a unified objective for
optimization:

max
f∈F

EZ

[
∆R(Z;U[K])− λ∥Z∥0

]
= max

f∈F
EZ

[
R(Z)−Rc(Z;U[K])− λ∥Z∥0

]

s.t. Z = f(X),
(3.1)

where the ℓ0 norm ∥Z∥0 promotes the sparsity of the final token representations Z = f(X).3 We
call this objective “sparse rate reduction.”

White-box deep architecture as unrolled incremental optimization. Although easy to state,
each term of the above objective can be computationally very challenging to optimize [270, 33].
Hence it is natural to take an approximation approach that realizes the global transformation f op-
timizing (3.1) through a concatenation of multiple, say L, simple incremental and local operations
f ℓ that push the representation distribution towards the desired parsimonious model distribution:

f : X
f0

−−→ Z0 → · · · → Zℓ fℓ

−−→ Zℓ+1 → · · · → ZL = Z, (3.2)

where f 0 : RD → Rd is the pre-processing mapping that transforms input tokens xi ∈ RD to their
token representations z1

i ∈ Rd.
Each incremental forward mapping Zℓ+1 = f ℓ(Zℓ), or a “layer”, transforms the token distribu-

tion to optimize the above sparse rate reduction objective Eq. (3.1), conditioned on the distribution
of its input tokens Zℓ. In contrast to other unrolled optimization approaches such as the ReduNet
[33], we explicitly model the distribution of Zℓ at each layer, say as a mixture of linear sub-
spaces or sparsely generated from a dictionary. The model parameters are learned from data (say
via backward propagation with end-to-end training). This separation of forward “optimization”
and backward “learning” clarifies the mathematical role of each layer as an operator transforming
the distribution of its input, whereas the input distribution is in turn modeled (and subsequently
learned) by the parameters of the layer.

2That is, having the fewest nonzero entries.
3To simplify the notation, we will discuss the objective for one sample X at a time with the understanding that

we always mean to optimize the expectation.
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We show that we can derive these incremental, local operations through an unrolled optimiza-
tion perspective to achieve Eq. (3.1) through Chapter 3.2.3, Chapter 3.2.4, Chapter 3.2.5. Once
we decide on using an incremental approach to optimizing (3.1), there are a variety of possible
choices to achieve the optimization. Given a model for Zℓ, say a mixture of subspaces U[K],
we opt for a two-step alternating minimization process with a strong conceptual basis: first in
Chapter 3.2.3, we compress the tokens Zℓ via a gradient step to minimize the coding rate term
minZ R

c(Z;U[K]); second, in Chapter 3.2.4, we sparsify the compressed tokens, with a suitably-
relaxed proximal gradient step on the difference of the sparsity penalty and the expansion term,
i.e., minZ [λ∥Z∥0 − R(Z)]. Both actions are applied incrementally and repeatedly, as each f ℓ in
Eq. (3.2) is instantiated with these two steps.

3.2.2 Self-Attention via Denoising Tokens Towards Multiple Subspaces
There are many different ways to optimize the objective Eq. (3.1) incrementally. In this work, we
propose arguably the most basic scheme. To help clarify the intuition behind our derivation and
approximation, in this section (and Appendix B.1.1) we study a largely idealized model which nev-
ertheless captures the essence of nearly the whole process and particularly reveals the reason why
self-attention-like operators arise in many contexts. Assume that N = 1, and the single token x is
drawn i.i.d. from an unknown mixture of Gaussians (N (0,Σk))

K
k=1 supported on low-dimensional

subspaces with orthonormal bases U[K] = (Uk)
K
k=1 and corrupted with additive Gaussian noise

w ∼ N (0, I), i.e.,
x = z + σw, (3.3)

where z is distributed according to the mixture. Our goal is simply to transform the distribution of
the noisy token x to the mixture of low-dimensional Gaussians z. Towards incremental construc-
tion of a representation f for this model following Eq. (3.2), we reason inductively: if zℓ is a noisy
token Eq. (3.3) at noise level σℓ, it is natural to produce zℓ+1 by denoising at the level σℓ. In the
mean-square sense, the optimal estimate is E[z|zℓ], which has a variational characterization (e.g.
[87]):

E[z| · ] = argmin
f

E
z,w

[
∥f(z + σℓw)− z∥22

]
. (3.4)

Setting zℓ+1 = E[z|zℓ], Eq. (3.4) thus characterizes the next stage of Eq. (3.2) in terms of an
optimization objective based on a local signal model for zℓ. Moreover, letting x 7→ qℓ(x) denote
the density of zℓ, Tweedie’s formula [66] allows us to express the optimal representation solving
Eq. (3.4) in closed-form:

zℓ+1 = zℓ + (σℓ)2∇x log q
ℓ(zℓ). (3.5)

Tweedie’s formula expresses the optimal representation in terms of an additive correction (in gen-
eral a nonlinear function of zℓ) to the noisy observations by the gradient of the log-likelihood of
the distribution of the noisy observations, giving the optimal representation a clear interpretation as
an incremental perturbation to the current noisy distribution qℓ. This connection is well-known in
the areas of estimation theory and inverse problems [66, 234, 205, 178, 129, 251, 211], and more
recently has found powerful applications in the training of generative models for natural images
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[118, 255, 226, 232, 228]. Here, we can calculate a closed-form expression for this score func-
tion ∇x log q

ℓ, which, when combined with Eq. (3.5) and some technical assumptions4, gives the
following approximation (shown in Chapter B.1.1). Let ⊗ denote the Kronecker product; then we
have

zℓ+1 ≈
[
U1, . . . ,UK

]

diag


softmax


 1

2(σℓ)2



∥U⊤

1 z
ℓ∥22

...
∥U⊤

Kz
ℓ∥22








⊗ Ip






U⊤

1 z
ℓ

...
U⊤

Kz
ℓ


 , (3.6)

This operation resembles a self-attention layer in a standard transformer architecture withK heads,
sequence length N = 1, the “query-key-value” constructs being replaced by a single linear pro-
jection U ∗

kz
ℓ of the token zℓ, and the aggregation of head outputs (conventionally modeled by

an MLP) done with the two leftmost matrices in Eq. (3.6). We thus derive the following useful
interpretation, which we will exploit in the sequel: Gaussian denoising against a mixture of sub-
spaces model leads to self-attention-type layers in the transformation f . Given an initial sample x
following the model (3.3), we can repeatedly apply local transformations to the distribution with
Eq. (3.6) in order to realize the incremental mapping f : x → z in (3.2).5 These insights will guide
us in the design of our white-box transformer architecture in the upcoming subsections.

3.2.3 Self-Attention via Compressing Token Sets through Optimizing Rate
Reduction

In the last subsection, we have seen that the multi-head attention in a transformer resembles the
score-matching operator that aims to transform a token zℓ towards a mixture of subspaces (or
degenerate Gaussians). Nevertheless, to carry out such an operation on any data, one needs to
first learn or estimate, typically from finite samples, the parameters of the mixture of (degenerate)
Gaussians, which is known to be a challenging task [172, 254]. This challenge is made even
harder because in a typical learning setting, the given set of tokens are not i.i.d. samples from the
mixture of subspaces. The joint distribution among these tokens can encode rich information about
the data—for example, co-occurrences between words or object parts in language and image data
(resp.)—which we should also learn. Thus, we should compress / denoise / transform such a set
of tokens together. To this end, we need a measure of quality, i.e., compactness, for the resulting
representation of the set of tokens.

A natural measure of the compactness of such a set of tokens is the (lossy) coding rate to encode
them up to a certain precision ε > 0 [172, 290]. For a zero-mean Gaussian, this measure takes a
closed form. If we view the tokens in Z ∈ Rd×N as drawn from a single zero-mean Gaussian, an

4Such as σ being smaller than the nonzero eigenvalues of Σk and the normalization assumption πi det(Σi +
σ2I)−1/2 = πj det(Σj + σ2I)−1/2 for all i, j ∈ [K], where πk is the mixture proportion for the kth Gaussian.

5This statement can be made mathematically rigorous by exploiting a deep connection between neural ODEs and
diffusion models, following ideas in Song et al. [232] and Chen, Daras, and Dimakis [38].
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estimate of their (lossy) coding rate, subject to quantization precision ε > 0, is given in [172] as:

R(Z)
.
=

1

2
logdet

(
I +

d

Nε2
Z∗Z

)
=

1

2
logdet

(
I +

d

Nε2
ZZ∗

)
. (3.7)

In practice, the data distribution is typically multi-modal, say an image set consisting of many
classes or a collection of image patches as in Chapter 3.1. It is more appropriate to require that
the set of tokens map to a mixture of, say K, subspaces (degenerate Gaussians) [33]. As before
we denote the (to be learned) bases of these subspaces as U[K] = (Uk)

K
k=1, where Uk ∈ Rd×p.

Although the joint distribution of the tokens Z is unknown, the desired marginal distribution of
each token zi is a mixture of subspaces. So we may obtain an upper bound of the coding rate
for the token set Z by projecting its tokens onto these subspaces and summing up the respective
coding rates:

Rc(Z;U[K]) =
K∑

k=1

R(U ∗
kZ) =

1

2

K∑

k=1

logdet
(
I +

p

Nε2
(U ∗

kZ)∗(U ∗
kZ)

)
. (3.8)

We would like to compress (or denoise) the set of tokens against these subspaces by minimizing
the coding rate. The gradient of Rc(Z;U[K]) is

∇ZR
c(Z;U[K]) =

p

Nε2

K∑

k=1

UkU
∗
kZ
(
I +

p

Nε2
(U ∗

kZ)∗(U ∗
kZ)

)−1

. (3.9)

The above expression approximates the residual of each projected token U ∗
kzi regressed by other

tokens U ∗
kzj [33]. But, differently from [33], not all tokens in Z are from the same subspace.

Hence, to denoise each token with tokens from its own group, we can compute their similarity
through an auto-correlation among the projected tokens as (U ∗

kZ)∗(U ∗
kZ) and convert it to a dis-

tribution of membership with a softmax, namely softmax ((U ∗
kZ)∗(U ∗

kZ)). Then, as we show in
Chapter B.1.2, if we only use similar tokens to regress and denoise each other, then a gradient step
on the coding rate with learning rate κ can be naturally approximated as follows:

Zℓ+1/2 = Zℓ − κ∇ZR
c(Zℓ;U[K]) ≈

(
1− κ · p

Nε2

)
Zℓ + κ · p

Nε2
· MSSA(Zℓ | U[K]), (3.10)

where MSSA is defined through an SSA operator as:

SSA(Z | Uk)
.
= (U ∗

kZ)softmax ((U ∗
kZ)∗(U ∗

kZ)) , k ∈ [K], (3.11)

MSSA(Z | U[K])
.
=

p

Nε2
·
[
U1, . . . ,UK

]


SSA(Z | U1)

...
SSA(Z | UK)


 . (3.12)
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3.2.4 MLP via Iterative Shrinkage-Thresholding Algorithms (ISTA) for
Sparse Coding

In the previous subsection, we focused on how to compress a set of tokens against a set of (learned)
low-dimensional subspaces. Optimizing the remaining terms in the sparse rate reduction objective
(3.1), including the non-smooth term, serves to sparsify the compressed tokens, hence leading to
a more compact and structured (i.e., parsimonious) representation. From Eq. (3.1) amd Eq. (3.7),
this term is

max
Z

[R(Z)− λ∥Z∥0] = min
Z

[
λ∥Z∥0 −

1

2
logdet

(
I +

d

Nε2
Z∗Z

)]
, (3.13)

where R(Z) denotes the coding rate of the whole token set, as defined in Eq. (3.7). In addition to
sparsification via the ∥Z∥0 term, the expansion term R(Z) in (3.13) promotes diversity and non-
collapse of the representation, a highly desirable property. However, prior work has struggled to
realize this benefit on large-scale datasets due to poor scalability of the gradient ∇ZR(Z), which
requires a matrix inverse [33].

To simplify things, we therefore take a different approach to trading off between represen-
tational diversity and sparsification: we posit a (complete) incoherent or orthogonal dictionary
D ∈ Rd×d, and ask to sparsify the intermediate iterates Zℓ+1/2 with respect to D. That is,
Zℓ+1/2 = DZℓ+1 where Zℓ+1 is more sparse. The dictionary D is global, i.e., is used to sparsify
all tokens simultaneously.

By the incoherence assumption, we have D∗D ≈ Id; thus from Eq. (3.7) we have R(Zℓ+1) ≈
R(DZℓ+1) = R(Zℓ+1/2). Thus we approximately solve Eq. (3.13) with the following program:

Zℓ+1 = argmin
Z

∥Z∥0 subject to Zℓ+1/2 = DZ. (3.14)

The above sparse representation program is usually solved by relaxing it to an unconstrained con-
vex program, known as LASSO:

Zℓ+1 = argmin
Z

[
λ∥Z∥1 + ∥Zℓ+1/2 −DZ∥2F

]
. (3.15)

In our implementation, motivated by Sun, Nasrabadi, and Tran [237] and Zarka et al. [296], we
also add a non-negative constraint to Zℓ+1,

Zℓ+1 = argmin
Z≥0

[
λ∥Z∥1 + ∥Zℓ+1/2 −DZ∥2F

]
, (3.16)

which we then incrementally optimize by performing an unrolled proximal gradient descent step,
known as an ISTA step [17], to give the update:

Zℓ+1 = ReLU(Zℓ+1/2 + ηD∗(Zℓ+1/2 −DZℓ+1/2)− ηλ1)
.
= ISTA(Zℓ+1/2 | D). (3.17)

As shown in Appendix A.3 of [289], one can arrive at a similar operator to the above ISTA-like
update for optimizing Eq. (3.13) by properly linearizing and approximating the rate term R(Z).
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Here the SSA operator in Eq. (3.11) resembles the attention operator in a typical transformer
[250], except that here the linear operators of value, key, and query are all set to be the same
as the subspace basis, i.e., V = K = Q = U ∗

k .6 Hence, we name SSA( · |Uk) : Rd×N →
Rp×N the Subspace Self-Attention (SSA) operator (more details and justification can be found in
Eq. (B.18) in Chapter B.1.2). Then, the whole MSSA operator in Eq. (3.12), formally defined as
MSSA( · |U[K]) : Rd×N → Rd×N and called the Multi-Head Subspace Self-Attention (MSSA) op-
erator, aggregates the attention head outputs by averaging using model-dependent weights, similar
in concept to the popular multi-head self-attention operator in existing transformer networks. The
overall gradient step Eq. (3.10) resembles the multi-head self-attention implemented with a skip
connection in transformers.

Notice that if we have N = 1 tokens as well as take an aggressive gradient step (κ = 1)
and tune the quantization error (ε =

√
p/N ), the multi-head subspace self-attention operator in

Eq. (3.12) becomes the ideal denoiser defined in Eq. (3.6), with the one minor difference that
the aggregation of the heads is done by a linear function here, while in Eq. (3.6) it is done by
a nonlinear mixture-of-experts type function.7 This provides two very related interpretations of
the multi-head self-attention operator, as denoising and compression against a mixture of low-
dimensional subspaces.

3.2.5 The Overall White-Box CRATE Architecture
By combining the above two steps:

1. (Chapter 3.2.2 and Chapter 3.2.3) Local denoising and compression of tokens within a sam-
ple towards a mixture-of-subspace structure, leading to the multi-head subspace self-attention
block – MSSA;

2. (Chapter 3.2.4) Global compression and sparsification of token sets across all samples through
sparse coding, leading to the sparsification block – ISTA;

we can get the following rate-reduction-based transformer layer, illustrated in Figure 3.2,

Zℓ+1/2 .
= Zℓ + MSSA(Zℓ | U ℓ

[K]), Zℓ+1 .
= ISTA(Zℓ+1/2 | Dℓ). (3.18)

Composing multiple such layers following the incremental construction of our representation in
Eq. (3.2), we obtain a white-box transformer architecture that transforms the data tokens towards
a compact and sparse union of incoherent subspaces.

This model has the parameters (U ℓ
[K])

L
ℓ=1 and (Dℓ)Lℓ=1, which are learned from data via back-

propagation. Notably, in each layer ℓ, the learned U ℓ
[K] retain their interpretation as incoherent

bases for supporting subspaces for the mixture-of-Gaussians model at layer ℓ, and the learned Dℓ

6We note a recent suggestion of Hinton [103] that it is more sensible to set the “value, key, and query” projection
matrices in a transformer to be equal. Our derivation in this section confirms this mathematically.

7This suggests that we could also consider such a mixture of expert type aggregation of the multiple attention
heads. In this work, we use linear aggregation, and leave evaluation of more variants for future work.
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Autocorrelation
& Softmax
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Activation

Figure 3.2: One layer of the CRATE architecture. The full architecture is simply a concatenation
of such layers, with some initial tokenizer and final task-specific architecture (i.e., a classification
head).

retains its interpretation as a sparsifying dictionary at layer ℓ. We emphasize that the parameters
U ℓ

[K] and Dℓ are dependent on the layer ℓ — that is, we learn a different set of parameters at each
layer. This is because at each layer we learn an approximate local parametric model for the input
data distribution, then use that learned model to construct the layer operators that transform the
distribution. Our procedure of parameterizing the data distribution at each layer distinguishes this
work from previous works on unrolled optimization for neural networks such as the ReduNet [33].
Our interpretation clarifies the roles of the network forward pass (given local signal models at each
layer, denoise/compress/sparsify the input) and the backward pass (learn the local signal models
from data via supervision).

We note that in this work, at each stage of our construction, we have chosen arguably the
simplest possible construction to use. We can substitute each part of this construction, so long
as the new part maintains the same conceptual role, and obtain another white-box architecture.
Nevertheless, our such-constructed architecture, called CRATE (i.e., Coding RAte TransformEr),
connects to existing transformer models, obtains competitive results on real-world datasets, and is
fully mathematically interpretable.

3.3 Experiments
In this section, we conduct experiments to study the performance of our proposed white-box trans-
former CRATE on real-world datasets and tasks. As the analysis in Chapter 3.2 suggests, either the
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compression or the sparsification step can be achieved through various alternative design choices or
strategies. CRATE arguably adopts the most basic choices and so our goal with the experiments is
not simply to compete with other heavily engineered transformers while using such a rudimentary
design. Rather, our goals are twofold. First, unlike any empirically designed black-box networks
that are usually evaluated only on end-to-end performance, the white-box design of our network
allows us to look inside the deep architecture and verify if layers of the learned network indeed per-
form their design objective—say performing incremental optimization for the objective Eq. (3.1).
Second, despite their simplicity, our experiments will actually reveal the vast practical potential of
our so-derived CRATE architectures since, as we will show, they already achieve very strong per-
formance on large-scale real-world datasets and tasks. In the remainder of this section we highlight
a selection of results; additional experimental details and results can be found in [289].

Model architecture. We implement the architecture that is described in Chapter 3.2.5, with mi-
nor modifications that are described in Chapter B.1.3. We consider different model sizes of CRATE

by varying the token dimension d, number of heads K, and the number of layers L. We consider
four model sizes in this work: CRATE-Tiny, CRATE-Small, CRATE-Base, and CRATE-Large. A
PyTorch-style pseudocode can be found in Chapter B.1.3, which contains more implementation
details. For training using supervised classification, we first take the CLS token zb = zL+1

1,b of for
each sample, then apply a linear layer; the output of this linear layer ub

.
= Wzb is used as input to

the standard cross-entropy loss. The overall loss averages over all samples b ∈ [B].

Datasets and optimization. We mainly consider ImageNet-1K [59] as the testbed for our archi-
tecture. Specifically, we apply the Lion optimizer [42] to train CRATE models with different model
sizes. Meanwhile, we also evaluate the transfer learning performance of CRATE: by considering
the models trained on ImageNet-1K as pre-trained models, we fine-tune CRATE on several com-
monly used downstream datasets (CIFAR10/100, Oxford Flowers, Oxford-IIT-Pets). More details
about the training and datasets can be found in Chapter B.1.3.

3.3.1 In-depth Layer-wise Analysis of CRATE

Do layers of CRATE achieve their design goals? As described in Chapter 3.2.3 and Chapter 3.2.4,
the MSSA block is designed to optimize the compression term Rc(Z) and the ISTA block to spar-
sify the token representations (corresponding to the sparsification term ∥Z∥0). To understand
whether CRATE indeed optimizes these terms, for each layer ℓ, we measure (i) the compression
term Rc(Zℓ+1/2) on the MSSA block outputs Zℓ+1/2; and (ii) sparsity ∥Zℓ+1∥0 on the ISTA block
outputs Zℓ+1. Specifically, we evaluate these two terms by using training/validation samples from
ImageNet-1K. Both terms are evaluated at the per-sample level and averaged over B = 103 sam-
ples.

Chapter 3.4 shows the plots of these two key measures at all layers for the learned CRATE-small
model. We find that as the layer index ℓ increases, both the compression and the sparsification
terms improve in most cases. The increase in the sparsity measure of the last layer is caused by
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the extra linear layer for classification.8 These results suggest that CRATE aligns well with the
original design goals: once learned, it essentially learns to gradually compress and sparsity the
representations through its layers. In addition, we also measure the compression and sparsification
terms on CRATE models with different model sizes as well as intermediate model checkpoints and
the results are shown by plots in Figure 3.3. The observations are very consistent across all different
model sizes—both the compression and sparsification terms improve in most scenarios. Models
with more layers tend to optimize the objectives more effectively, confirming our understanding of
each layer’s roles.

To see the effect of learning, we present the evaluations on CRATE-Small trained with different
number of epochs in Chapter 3.5. When the model is not trained enough (e.g. untrained), the
architecture does not optimize the objectives effectively. However, during training—learning better
subspaces U ℓ

[K] and dictionaries Dℓ—the designed blocks start to optimize the objectives much
more effectively.

Visualizing layer-wise token representations. To gain a better understanding of the token rep-
resentations of CRATE, we visualize the output of each ISTA block at layer ℓ in Figure 3.7. Specif-
ically, we visualize the Zℓ+1 via heatmap plots. We observe that the output Zℓ+1 becomes more
sparse as the layer increases. Moreover, besides the sparsity, we also find that Zℓ+1 becomes more
structured (i.e., low-rank), which indicates that the set of token representations become closer to
linear subspaces, confirming our mental picture of the geometry of each layer (as in Chapter 3.1).

Visualizing layer-wise subspaces in multi-head self-attention. We now visualize the U ℓ
[K] ma-

trices used in the MSSA block. In Chapter 3.2.3, we assumed that U ℓ
[K] were incoherent to capture

different “views” of the set of tokens. In Fig. 3.6, we first normalize the columns in each U ℓ
k , then

we visualize the [U ℓ
1 , . . . ,U

ℓ
K ]

∗
[U ℓ

1 , . . . ,U
ℓ
K ] ∈ RpK×pK . The (i, j)-th block in each sub-figure

corresponds to (U ℓ
i )

∗U ℓ
j for i, j ∈ [K] at a particular layer ℓ. We find that the learned U ℓ

[K] are
approximately incoherent, which aligns well with our assumptions. One interesting observation is
that the U ℓ

[K] becomes more incoherent when the layer index ℓ is larger, which suggests that the to-
ken representations are more separable. This mirrors the situation in other popular deep networks
[91].

3.3.2 Evalutions of CRATE on Large Real-World Datasets and Tasks
We now study the empirical performance of the proposed networks by measuring their top-1 accu-
racy on ImageNet-1K as well as transfer learning performance on several widely used downstream
datasets. We summarize the results in Chapter 3.1. As our designed architecture leverages parame-
ter sharing in both the attention block (MSSA) and the MLP block (ISTA), our CRATE-Base model
(22.08 million) has a similar number of parameters to the ViT-Small (22.05 million).

8Note that the learned sparse (tokens) features need to be mixed in the last layer for predicting the class. The
phenomenon of increase in the sparsity measure at the last layer suggests that each class of objects may be associated
with a number of features, and some of these features are likely to be shared across different classes.
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(a) Compression (Model: CRATE-Base).
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(b) Sparsity (Model: CRATE-Base).
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(c) Compression (Model: CRATE-Large).
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(d) Sparsity (Model: CRATE-Large).

Figure 3.3: Left: The compression term Rc(Zℓ+1/2) of the MSSA outputs at different layers. Right: the
sparsity of the ISTA output block, ∥Zℓ+1∥0/(d ·N), at different layers.

From Chapter 3.1, we find that with a similar number of model parameters, our proposed
network achieves similar ImageNet-1K and transfer learning performance as ViT, despite the sim-
plicity and interpretability of our design. Moreover, with the same set of training hyperparameters,
we observe promising scaling behavior in CRATE—we consistently improve the performance by
scaling up the model size. For comparison, directly scaling ViT on ImageNet-1K does not always
lead to consistent performance improvement measured by top-1 accuracy [63]. To summarize, we
achieve promising performance on real-world large-scale datasets by directly implementing our
principled architecture.
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Figure 3.4: Left: The compression term Rc(Zℓ+1/2) of the MSSA outputs at different layers. Right: the
sparsity of the ISTA output block, ∥Zℓ+1∥0/(d ·N), at different layers. (Model: CRATE-Small).
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Figure 3.5: The compression term Rc(Z) (left) and sparsification term ∥Z∥0/(d ·N) (right) across models
trained with different numbers of epochs. (Model: CRATE-Base).

Table 3.1: Top 1 accuracy of CRATE on various datasets with different model scales when pre-trained on
ImageNet. For ImageNet/ImageNetReaL, we directly evaluate the top-1 accuracy. For other datasets, we use
models that are pre-trained on ImageNet as initialization and the evaluate the transfer learning performance
via fine-tuning.

Datasets CRATE-T CRATE-S CRATE-B CRATE-L ViT-T ViT-S

# parameters 6.09M 13.12M 22.80M 77.64M 5.72M 22.05M

ImageNet 66.7 69.2 70.8 71.3 71.5 72.4
ImageNet ReaL 74.0 76.0 76.5 77.4 78.3 78.4

CIFAR10 95.5 96.0 96.8 97.2 96.6 97.2
CIFAR100 78.9 81.0 82.7 83.6 81.8 83.2
Oxford Flowers-102 84.6 87.1 88.7 88.3 85.1 88.5
Oxford-IIIT-Pets 81.4 84.9 85.3 87.4 88.5 88.6
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Figure 3.6: We visualize the [U ℓ
1 , . . . ,U

ℓ
K ]

∗
[U ℓ

1 , . . . ,U
ℓ
K ] ∈ RpK×pK at different layers. The

(i, j)-th block in each sub-figure corresponds to (U ℓ
i )

∗U ℓ
j for i, j ∈ [K] at a particular layer ℓ.

To enhance the visual clarity, for each subspace Ui, we randomly pick 4 directions for display
purposes. (Model: CRATE-Tiny)

3.3.3 Emergence of Semantic Properties in Learned CRATE Attention
Maps

In this subsection, we analyze the attention maps within CRATE models trained on vision tasks.
Previous work [32] use the self-attention in vision transformers to study semantic segmentation
of the input image. [32] demonstrated that a specific self-supervised training method, named
DINO, can lead to the emergence of segmentation in vision transformers. On the other hand,
ViTs trained with supervised learning do not have such properties. In contrast, as we will present
in this subsection, we find that the white-box design of CRATE leads to the emergence of segmen-
tation properties in the network’s self-attention maps, solely through a minimalistic supervised
training recipe—the supervised classification training used in vanilla supervised ViTs. We quan-
tify the segmentation properties of CRATE both qualitatively and quantitatively and compare the
results with ViTs. Through extensive evaluations, we find that the self-attention maps in white-box
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Figure 3.7: Visualizing layer-wise token Zℓ representations at each layer ℓ. To enhance the visual
clarity, we randomly extract a 50×50 sub-matrix from Zℓ for display purposes. (Model: CRATE-
Tiny)

transformers (CRATE) are much more interpretable than vanilla black-box vision transformers.

3.3.3.1 Experimental Setup

Model architecture We utilize the CRATE model at sizes -S/8 and -B/8 (that is, CRATE-Small
and CRATE-Base with patch size 8 × 8). We similarly adopt the ViT model from [63] using the
same scales (-S/8 and -B/8), ensuring consistent configurations between them. Refer to Table B.1
for detailed model performance evaluations on classification tasks.

Datasets. In this subsection, all visual models are trained for classification tasks, using the
methodology described in the beginning of Chapter 3.3, on the complete ImageNet dataset [59],
commonly referred to as ImageNet-21K. This dataset comprises 14,197,122 images distributed
across 21,841 classes. We apply the MaskCut [266] pipeline on the COCO val2017 [166], which
consists of 5,000 RGB images, and assess our models’ performance for both object detection and
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Figure 3.8: Self-attention maps from a supervised CRATE with 8×8 patches trained using clas-
sification. The CRATE architecture automatically learns to perform object segmentation without a
complex self-supervised training recipe or any fine-tuning with segmentation-related annotations.
For each image pair, we visualize the original image on the left and the self-attention map of the
image on the right.

instance segmentation tasks. All evaluation procedures are unsupervised, and we do not update
the model weights during the detection and segmentation evaluation processes.

3.3.3.2 Measuring the Emergence of Segmentation

Visualizing self-attention maps. To qualitatively measure the emergence phenomenon, we adopt
the attention map approach based on the [CLS] token, which has been widely used as a way to in-
terpret and visualize transformer-like architectures [2, 32]. Indeed, we use the same methodology
as [2, 32], noting that in CRATE the query-key-value matrices are all the same; a more formal ac-
counting is deferred to . The visualization results of self-attention maps can be found in Appendix
B.1 of [291]. We observe that the self-attention maps of the CRATE model correspond to semantic
regions in the input image. Our results suggest that the CRATE model encodes a clear semantic
segmentation of each image in the network’s internal representations, which is similar to the self-
supervised method DINO [32]. In contrast, as shown in Chapter B.1 in the Appendices, the vanilla
ViT trained on supervised classification does not exhibit similar segmentation properties.

Object detection and fine-grained segmentation. To further validate and evaluate the rich se-
mantic information captured by CRATE, we employ MaskCut [266], a recent effective approach
for object detection and segmentation that does not require human annotations. A more detailed
methodological description can be found in [266]. This procedure allows us to extract more fine-
grained segmentation for an image based on the token representations learned by different methods.
In Figure 3.10, we visualize the fine-grained segmentation produced by MaskCut on features from
ViT trained by classification, CRATE trained by classification, and CRATE trained via DINO [32],
respectively. We compare the segmentation and detection performance in Table 3.2. Based on
these results, we observe that MaskCut on features learned with supervised ViT typically fails to
produce good segmentation masks, for example, the first image in Figure 3.10 and the ViT-S/8
row in Table 3.2. On the other hand, we notice that, regardless of the training task (supervised
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Figure 3.9: Visualization of semantic heads. We forward a mini-batch of images through a
supervised CRATE and examine the attention maps from all the heads in the penultimate layer.
We visualize a selection of attention heads to show that certain heads convey specific semantic
meaning, i.e. head 0 ↔ “Legs”, head 1 ↔ “Body”, head 3 ↔ “Face”, head 4 ↔ “Ear”.

or unsupervised), CRATE is able to capture semantically meaningful boundaries of the main ob-
jects in an image. Compared to ViT, CRATE provides better internal representation tokens for both
segmentation and detection.

3.3.3.3 Analysis of Segmentation in CRATE

Segmentation emerges through minimalistic design. Our empirical results demonstrate that
self-supervised learning, as well as the specialized design options in DINO [32] (e.g., momentum
encoder, student and teacher networks, self-distillation, etc.) are not necessary for the emergence of
segmentation. We contend that an equally-promising approach to promote segmentation properties
in transformer is to design the transformer architecture with the structure of the input data in mind.
This finding of CRATE represents the first supervised vision model with emergent segmentation
properties, and establishes white-box transformers as a promising direction for interpretable data-
driven representation learning in foundation models.
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Figure 3.10: Visualization of segmentation with MaskCut on COCO val2017 [166]. Top and Bottom
Rows: CRATE architecture clearly detects main objects in the image when trained using either supervised
classification or the DINO self-supervised technique [32]. Middle Row: Note that compared to CRATE, ViT
trained via classification often fails to detect main objects in the images (columns 2, 3, 4).

Table 3.2: Object detection and fine-grained segmentation via MaskCut on COCO val2017 [166]. We
consider models with different scales and evaluate the average precision measured by COCO’s official eval-
uation metric. The first four models are pre-trained with image classification tasks under label supervision;
the bottom three models are pre-trained via the DINO self-supervised technique [32]. CRATE conclusively
performs better than the ViT at detection and segmentation metrics when both are trained using supervised
classification.

Detection Segmentation
Model Train AP50 AP75 AP AP50 AP75 AP

CRATE-S/8 Supervised 2.9 1.0 1.1 1.8 0.7 0.8
CRATE-B/8 Supervised 2.9 1.0 1.3 2.2 0.7 1.0
ViT-S/8 Supervised 0.1 0.1 0.0 0.0 0.0 0.0
ViT-B/8 Supervised 0.8 0.2 0.4 0.7 0.5 0.4

CRATE-B/8 DINO 3.5 1.1 1.6 2.4 0.5 1.0
ViT-S/8 DINO 5.0 2.0 2.4 4.0 1.3 1.7
ViT-B/8 DINO 5.1 2.3 2.5 4.1 1.3 1.8

Identifying semantic properties of attention heads. We are interested in capturing the semantic
meaning of certain attention heads; this is an important task for interpretability and is already
studied for language transformers [188]. Intuitively, each head captures certain features of the
data. Given a CRATE model, we first forward an input image (e.g. a horse image as in Chapter 3.9)
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and select four attention heads which seem to have semantic meaning by manual inspection. After
identifying the attention heads, we visualize the self-attention map of these heads on other input
images. Interestingly, we find that each of the selected attention heads captures a different part
of the object, and even a different semantic meaning. For example, the attention head displayed
in the first column of Chapter 3.9 captures the legs of different animals, and the attention head
displayed in the last column captures the ears and head. This parsing of the visual input into a part-
whole hierarchy has been a fundamental goal of learning-based recognition architectures since
deformable part models [72, 73] and capsule networks [106, 213]—strikingly, it emerges from the
white-box design of CRATE within our simple supervised training setup.

3.4 Conclusions and Future Work
In this work, we propose a new theoretical framework that allows us to derive deep transformer-
like network architectures as incremental optimization schemes to learn compressed and sparse
representation of the input data (or token sets). The so derived and learned deep architectures are
not only fully mathematically interpretable, but also consistent on a layer-by-layer level with their
design objective. Despite being arguably the simplest among all possible designs, these networks
already demonstrate performance on large-scale real-world datasets and tasks close to seasoned
transformers. We believe this work truly helps bridge the gap between theory and practice of
deep neural networks as well as help unify seemingly separate approaches to learning and repre-
senting data distributions. Probably more importantly for practitioners, our framework provides
theoretical guidelines to design and justify new, potentially more powerful, deep architectures for
representation learning.

We believe this work helps bridge the gap between theory and practice of deep neural net-
works, as well as helps unify seemingly separate approaches to learning and representing data
distributions through the perspective of data compression. These approaches include, but are not
limited to: rate reduction, energy minimization, denoising-diffusion, and transformers. As we
have seen, in these approaches, the role of each layer of the associated deep neural networks can
be interpreted mathematically as operators to incrementally compress (denoise) and transform the
data distribution according to its low-dimensional structures (modeled as Gaussian mixtures). To
a large extent, our work suggests that a universal way to effectively and efficiently learn a data
distribution with intrinsically low-dimensional structures in a high-dimensional space is through
incremental compression, as already stated as a slogan by [270]:

We compress to learn, and we learn to compress.

This work and the previous work of [33] together strongly suggest that various deep neural net-
works are simply means to an end—compression. Different optimization schemes for compression
are manifested as different network architectures and operators, e.g. LeNet, LISTA, ResNet, Re-
duNet, Transformers, which are now elucidated by CRATE.

From a practical standpoint, it is clear that this new framework can now provide us with the-
oretical guidelines to design and justify new, potentially more powerful, deep architectures for
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representation learning that are based on more advanced optimization techniques or strategies, in-
stead of the basic gradient-based technique used to construct CRATE. Also, in this work, we have
only used CRATE to learn deterministic encoding models. We believe that this framework can
be extended to learn structured representations of the data distribution based on more advanced
structured diffusion and denoising. This could potentially lead to more controllable and consistent
generative methods, since improving the consistency and efficiency of existing diffusion-based
generative models remains a challenging open problem [230].

Furthermore, as suggested by [52, 173], for any system to learn a low-dimensional data distri-
bution autonomously and continuously, one needs to integrate the encoder and decoder not only as
an autoencoder but as a closed-loop transcription:

x ∈ RD f(x)−−−−→ z ∈ Rd g(z)−−−−→ x̂ ∈ RD f(x)−−−−→ ẑ ∈ Rd, (3.19)

which allows the system to correct itself by minimizing the discrepancy between the internal rep-
resentations z of the data and ẑ of the generated approximation, without any external help (by
human) to compare between the data x and x̂. So far, the effectiveness of such a closed-loop
transcription system has only been demonstrated with black-box deep architectures such as the
ResNet [52, 246]. It would be possible now to build a closed-loop transcription with purely white-
box encoder and decoder designs. This could ultimately enable us to develop complete learning
systems that are capable of learning autonomously and continuously an internal data representation
that is fully mathematically interpretable, controllable, and eventually self-consistent, or “aligned”,
with the true external data distribution. The so-learned representation, just like our acquired mem-
ory, can support both discriminative and generative tasks, and serve both recognition and prediction
purposes.
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Part II

Privacy-preserving Representation
Learning



43

Chapter 4

Reliable Federated Learning via NTK
Representations

State-of-the-art federated learning methods can perform far worse than their centralized counter-
parts when clients have dissimilar data distributions. For neural networks, even when centralized
SGD easily finds a solution that is simultaneously performant for all clients, current federated op-
timization methods fail to converge to a comparable solution. We show that this performance dis-
parity can largely be attributed to optimization challenges presented by nonconvexity. Specifically,
we find that the early layers of the network do learn useful features, but the final layers fail to make
use of them. That is, federated optimization applied to this non-convex problem distorts the learn-
ing of the final layers. Leveraging this observation, we propose a Train-Convexify-Train (TCT)
procedure to sidestep this issue: first, learn features using off-the-shelf methods (e.g., FedAvg);
then, optimize a convexified problem obtained from the network’s empirical neural tangent ker-
nel approximation. Our technique yields accuracy improvements of up to +36% on FMNIST and
+37% on CIFAR10 when clients have dissimilar data.

4.1 Introduction
Federated learning is a newly emerging paradigm for machine learning where multiple data hold-
ers (clients) collaborate to train a model on their combined dataset. Clients only share partially
trained models and other statistics computed from their dataset, keeping their raw data local and
private [176, 130]. By obviating the need for a third party to collect and store clients’ data, fed-
erated learning has several advantages over the classical, centralized paradigm [56, 119, 82]: it
ensures clients’ consent is tied to the specific task at hand by requiring active participation of the
clients in training, confers some basic level of privacy, and has the potential to make machine
learning more participatory in general [148, 128]. Further, widespread legislation of data porta-
bility and privacy requirements (such as GDPR and CCPA) might even make federated learning a
necessity [198].

Collaboration among clients is most attractive when clients have very different subsets of the
combined dataset (data heterogeneity). For example, different autonomous driving companies may
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only be able to collect data in weather conditions specific to their location, whereas their vehicles
would need to function under all conditions. In such a scenario, it would be mutually beneficial
for companies in geographically diverse locations to collaborate and share data with each other.
Further, in such settings, clients are physically separated and connected by ad-hoc networks with
large latencies and limited bandwidth. This is especially true when clients are edge devices such as
mobile phones, IoT sensors, etc. Thus, communication efficiency is crucial for practical federated
learning. However, it is precisely under such circumstances (large data heterogeneity and low
communication) that current algorithms fail dramatically [111, 158, 134, 207, 262, 3, 157, 5, 260,
etc.]. This motivates our central question: Why do current federated methods fail in the face of
data heterogeneity—and how can we fix them?

Our solution. We make two main observations: (i) We show that, even with data heterogeneity,
linear models can be trained in a federated manner through gradient correction techniques such
as SCAFFOLD [134]. While this observation is promising, it alone remains limited, as linear
models are not rich enough to solve practical problems of interest (e.g., those that require feature
learning). (ii) We shed light on why current federated algorithms struggle to train deep, nonconvex
models. We observe that the failure of existing methods for neural networks is not uniform across
the layers. The early layers of the network do in fact learn useful features, but the final layers fail to
make use of them. Specifically, federated optimization applied to this nonconvex problem results
in distorted final layers.

These observations suggest a train-convexify-train federated algorithm, which we call TCT:
first, use any off-the-shelf federated algorithm [such as FedAvg, 176] to train a deep model to
extract useful features; then, compute a convex approximation of the deep model using its empirical
Neural Tangent Kernel (eNTK) [122, 152, 74, 169, 267], and use gradient correction methods
such as SCAFFOLD to train the final model. Effectively, the second-stage features freeze the
features learned in the first stage and fit a linear model over them. We show that this simple
strategy is highly performant on a variety of tasks and models—we obtain accuracy gains up to
36% points on FMNIST with a CNN, 37% points on CIFAR10 with ResNet18-GN, and 16% points
on CIFAR100 with ResNet18-GN. Further, its convergence remains unaffected even by extreme
data heterogeneity. Finally, we show that given a pre-trained model, our method completely closes
the gap between centralized and federated methods.

4.1.1 Related Work
Federated learning. There are two main motivating scenarios for federated learning (FL). The
first is where internet service companies (e.g., Google, Facebook, Apple, etc.) want to train ma-
chine learning models over their users’ data, but do not want to transmit raw personalized data
away from user devices [204, 22]. This is the setting of cross-device federated learning and is
characterized by an extremely large number of unreliable clients, each of whom has very little data
and the collections of data are assumed to be homogeneous [130, 23, 133, 22]. The second moti-
vating scenario is when valuable data is split across different organizations, each of whom is either
protected by privacy regulation or is simply unwilling to share their raw data. Such “data islands”
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are common among hospital networks, financial institutions, autonomous-vehicle companies, etc.
This is known as cross-silo federated learning and is characterized by a few highly reliable clients,
who potentially have extremely diverse data. In this work, we focus on the latter scenario.

Metrics in FL. FL research considers numerous metrics, such as fairness across users [182, 159,
221], formal security and privacy guarantees [24, 204, 75, 183], robustness to corrupted agents and
corrupted training data [19, 225, 69, 132, 101], preventing backdoors at test time [11, 238, 259,
171], etc. While these concerns are important, the main goal of FL (and our work) is to achieve
high accuracy with minimal communication [176]. Clients are typically geographically separated
yet need to communicate large deep learning models over unoptimized ad-hoc networks [130].
Finally, we focus on the setting where all users are interested in training the same model over the
combined dataset. This is in contrast to model-agnostic protocols [165, 192, 5] or personalized
federated learning [60, 68, 273, 48, 147, 36]. Finally, we focus on minimizing the number of
rounds required. Our approach can be combined with communication compression, which reduces
bits sent per round [239, 6, 88, 235].

Federated optimization. Algorithms for FL proceed in rounds. In each round, the server sends a
model to the clients, who partially train this model using their local compute and data. The clients
send these partially trained models back to the server who then aggregates them, finishing a round.
FedAvg [176], which is the de facto standard FL algorithm, uses SGD to perform local updates
on the clients and aggregates the client models by simply averaging their parameters. Unfortu-
nately, however, FedAvg has been observed to perform poorly when faced with data heterogeneity
across the clients [111, 158, 134, 207, 262, 3, 157, 5, 260, 242, etc.]. Theoretical investigations
of this phenomenon [134, 268] showed that this was a result of gradient heterogeneity across the
clients. Consider FedAvg initialized with the globally optimal model. If this model is not also op-
timal for each of the clients as well, the local updates will push it away from the global optimum.
Thus, convergence would require a careful tuning of hyper-parameters. To overcome this issue,
SCAFFOLD [134] and FedDyn [3] propose to use control variates to correct for the biases of the
individual clients akin to variance reduction [126, 57]. This gradient correction is applied in every
local update by the client and provably nullifies the effect of gradient heterogeneity [134, 181,
36]. However, as we show here, such methods are insufficient to overcome high data heterogeneity
especially for deep learning. Other, more heuristic approaches to combat gradient heterogeneity
include using a regularizer [158] and sophisticated server aggregation strategies such as momen-
tum [112, 263, 164] or adaptivity [207, 133, 35].

A second line of work pins the blame on performance loss due to averaging nonconvex mod-
els. To overcome this, [224, 288] propose to learn a mapping between the weights of the client
models before averaging, [5] advocates a functional perspective and replaces the averaging step
with knowledge distillation, and [265, 157, 241] attempt to align the internal representations of the
client models. However, averaging is unlikely to be the only culprit since FedAvg does succeed un-
der low heterogeneity, and averaging nonconvex models can lead to improved performance [121,
269].
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Figure 4.1: Performance of FedAvg and SCAFFOLD on CIFAR10 when data are split among ten
clients in two ways (#C=2 and α=0.1). The #C=2 split is more non-i.i.d. than the α=0.1 split. For
convex problems (left), gradient correction methods such as SCAFFOLD are relatively unaffected
by data heterogeneity, and consistently outperform FedAvg. However, for nonconvex problems
(right), FedAvg and SCAFFOLD perform very similarly and both are strongly negatively affected
by data heterogeneity.

Neural Tangent Kernels (NTK) and neural network linearization. NTK was first proposed
to analyze the limiting behavior of infinitely wide networks [122, 152]. While NTK with MSE
may be a bad approximation of real-world finite networks in general [78], it approximates the fine-
tuning of a pre-trained network well [184], especially with some minor modifications [4]. That is,
NTK cannot capture feature learning but does capture how a model utilizes learnt features better
than last/mid layer activations.

4.2 The Effect of Nonconvexity in Federated Learning
In this section, we investigate the poor performance of FedAvg [176] and SCAFFOLD [134] em-
pirically in the setting of deep neural networks, focusing on image classification with a ResNet-18.
To construct our federated learning setup, we split the CIFAR-10 dataset in a highly heterogeneous
manner among ten clients. We either assign each client two classes (denoted by #C=2) or dis-
tribute samples according to a Dirichlet distribution with α = 0.1 (denoted by α=0.1). For more
details, see Section 4.4.1.

Insufficiency of gradient correction methods. Current theoretical work [e.g., 134, 207, 3, 261]
attributes the slowdown from data heterogeneity to the individual clients having varying local
optima. If no single model is simultaneously optimal for all clients, then the updates of different
clients can compete with and distort each other, leading to slow convergence. This tension is
captured by the variance of the updates across the clients [client gradient heterogeneity, see 260].
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Table 4.1: Feature learning by FedAvg. We report the test accuracy of a ResNet-18 after (central-
ized) retraining of the last ℓ layers on CIFAR10. The earlier (7 − ℓ) layers are frozen to either
random initialization or to the weights of a FedAvg-trained model. The difference measures utility
of the (7 − ℓ) layers learnt by FedAvg. The baseline FedAvg model without additional training
gets 56.9% accuracy. We see that all layers of the FedAvg model contain useful information.

Layers retrained Accuracy (%) Accuracy (%) Improvement (%)
Random init FedAvg init (FedAvg - Random)

1/7 last layer 35.37 77.93 42.56
2/7 last layers 67.33 87.04 19.71
3/7 last layers 80.18 89.28 9.10
4/7 last layers 88.03 90.57 2.54
5/7 last layers 91.34 91.61 0.27
6/7 last layers 91.78 91.91 0.13

Gradient correction methods such as SCAFFOLD [134] and FedDyn [3] explicitly correct for this
and are provably unaffected by gradient heterogeneity for both convex and nonconvex losses.

These theoretical predictions are aligned with the results of Figure 4.1a, where the loss land-
scape is convex: SCAFFOLD is relatively unaffected by the level of heterogeneity and consistently
outperforms FedAvg. In particular, performance is largely dictated by the algorithm and not the
data distributions. This shows that client gradient heterogeneity captures the difficulty of the prob-
lem well. On the other hand, when training a ResNet-18 model with nonconvex loss landscape,
Figure 4.1b shows that both FedAvg and SCAFFOLD suffer from data heterogeneity. This is de-
spite the theory of gradient correction applying to both convex and nonconvex losses. Further,
the train and test accuracies in Figure 4.1b match quite closely, suggesting that the failure lies in
optimization (not fitting the training data) rather than generalization. Thus, while the current the-
ory makes no qualitative distinctions between convex and nonconvex convergence, the practical
behavior of algorithms in these settings is very different. Such differences between theoretical
predictions and practical reality suggests that black-box notions such as gradient heterogeneity are
insufficient for capturing the difficulty of training deep models.

Ease of feature learning. We now dive into how a ResNet-18 trained with FedAvg (56.9% ac-
curacy) differs from the centralized baseline (91.9% accuracy). We first apply linear probing to the
FedAvg model (i.e., retraining with all but the output layer frozen). Note that this is equivalent to
(convex) logistic regression over the last-layer activations. This simple procedure produces a strik-
ing jump from 56.9% to 77.9% accuracy. Thus, of the 35% gap in accuracy between the FedAvg
and centralized models, 21% may be attributed to a failure to optimize the linear output layer. We
next extend this experiment towards probing the information content of other layers.

Given a FedAvg-trained model, we can use centralized training to retrain only the last ℓ layers
while keeping the rest of the (7 − ℓ) layers (or ResNet blocks) frozen. We can also perform this
procedure starting from a randomly initialized model. The performance difference between these
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two models can be attributed to the information content of the frozen (7− ℓ) layers of the FedAvg
model. Table 4.1 summarizes the results of this experiment. The large difference in accuracy (up
to 42.6%) indicates the initial layers of the FedAvg model have learned useful features. There
continues to be a gap between the FedAvg features and random features in the earlier layers as
well,1 meaning that all layers of the FedAvg model learn useful features. We conjecture this is
because from the perspective of earlier layers which perform simple edge detection, the tasks are
independent of labels and the clients are i.i.d. However, the higher layers are more specialized and
the effect of the heterogeneity is stronger.

4.3 Method
Based on the observations in Section 4.2, we propose train-convexify-train (TCT) as a method for
overcoming data heterogeneity when training deep models in a federated setting. Our high-level
intuition is that we want to leverage both the features learned from applying FedAvg to neural
networks and the effectiveness of convex federated optimization. More specifically, we perform
several rounds of “bootstrap” FedAvg to learn features before solving a convexified version of the
original optimization problem.

4.3.1 Computing the Empirical Neural Tangent Kernel
To sidestep the challenges presented by nonconvexity, we describe how we approximate a neural
network by its “linearization.” Given a neural network f( · ; θ0) with weights θ0 ∈ RP mapping
inputs x ∈ RD to RC , we replace it by its empirical neural tangent kernel (eNTK) approximation
at θ0 given by

f(x; θ) ≈ f(x; θ0) + (θ − θ0)
⊤ ∂

∂θ
f(x; θ0),

at each x ∈ RD. Under this approximation, f(x; θ) is a linear function of the “feature vector”
(f(x; θ0),

∂
∂θ
f(x; θ0)) and the original nonconvex optimization problem becomes (convex) linear

regression with respect to these features.2 Leveraging NTK for solving federated optimization
problems has also been studied in previous work [115, 294].

To reduce the computational burden of working with the eNTK approximation, we make two
further approximations: First, we randomly reinitialize the last layer of θ0 and only consider
∂
∂θ
f(x; θ0) with respect to a single output logit. Over the randomness of this reinitialization,

E[f(x; θ0)] = 0. Moreover, given the random reinitialization, all the output logits of f(x; θ0)
are symmetric. These observations mean each data point x can be represented by a P -dimensional
feature vector ∂

∂θ
f1(x; θ0), where f1( · ; θ0) refers to the first output logit. Then, we apply a dimen-

1The significant decrease in the gap as we go down the layers may be because of the skip connections in the
lower ResNet blocks which allow the random frozen layers to be sidestepped. This underestimates the true utility and
information content in the earlier FedAvg layers.

2For classification problems, we one-hot encoded labels and fit a linear model using squared loss.
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sionality reduction by subsampling p random coordinates from this P -dimensional featurization.3

In our setting, this sub-sampling has the added benefit of reducing the number of bits communi-
cated per round.

In summary, we transform our original (nonconvex) optimization problem over a neural net-
work initialized at θ0 into a convex optimization problem in three steps: (i) reinitialize the last layer
of θ0; (ii) for each data point x, compute the gradient ϕeNTK(x; θ0) :=

∂
∂θ
f1(x; θ0); (iii) subsample

the coordinates of ϕeNTK(x; θ0) for each x to obtain a reduced-dimensionality eNTK representa-
tion. Let S : RP → Rp denote this subsampling operation. Finally, we solve the resulting linear
regression problem over these eNTK representations.4

4.3.2 Convexifying Federated Learning via eNTK Representations
The eNTK approximation lets us convexify the neural net optimization problem: following Sec-
tion 4.3.1, we may extract (from a model trained with FedAvg) eNTK representations of inputs
from each client. It remains to fit an overparameterized linear model using these eNTK features in
a federated manner. For ease of presentation, we denote the subsampled eNTK representation of
input x by z ∈ Rp, where p is the eNTK feature dimension after subsampling. We use zki to repre-
sent the eNTK feature of the i-th sample from the k-th client. Then, for K the number of clients,
Y k
i the one-hot encoded labels, nk the number of data points of the k-th client, n :=

∑
k∈[K] nk

the number of data points across all clients, and pk := nk/n, we can approximate the nonconvex
neural net optimization problem by the convex linear regression problem

min
W

L(W ) :=
K∑

k=1

pk · Lk(W ), where Lk(W ) :=
1

nk

nk∑

i=1

∥W⊤zki − Y k
i ∥22. (4.1)

To obtain the eNTK representation z of an input x, we take θ0 in Section 4.3.1 to be the weights of a
model trained with FedAvg. As we will show in Section 4.4, the convex reformulation in Eq. (4.1)
significantly reduces the number of communication rounds needed to find an optimal solution.

4.3.3 Train-Convexify-Train (TCT)
We now present our algorithm train-convexify-train (TCT), with convexification done via the neu-
ral tangent kernel, for federated optimization.

3That such representations empirically have low effective dimension due to fast eigenvalue decay [see, e.g., 267]
means that such a random projection approximately preserves the geometry of the data points [10, 295]. For all of our
experiments, we set p = 100, 000.

4Given a fitted linear model with weights W ∈ Rp×C , the prediction at x is argmaxj [W
⊤S (ϕeNTK(x))]j .
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TCT — train-convexify-train with eNTK representations

• Stage 1: Extract eNTK features from a FedAvg-trained model. FedAvg is first used to
train the model for T1 communication rounds. Let θT1 denote the model weights after
these T1 rounds. Then, each client locally computes subsampled eNTK features, i.e.,
zki = S (ϕeNTK(x

k
i ; θT1)) for k ∈ [K] and i ∈ [nk].

• Stage 2: Decentralized linear regression with gradient correction. Given samples
{(zki , Y k

i )}nk
i=1 on each client k, first normalize the eNTK inputs of all clients with a

single communication round.a Then, solve the linear regression problem defined in
Eq. (4.1) by SCAFFOLD with local learning rate η and local steps M .b

aFor every feature in the eNTK representation, subtract the mean and scale to unit variance.
bThe detailed description of SCAFFOLD for solving linear regression problems can be found in Algo-

rithm 1, Appendix C.1. It has the same communication and computation cost as FedAvg.

To motivate TCT, recall that in Section 4.2 we found that FedAvg learns “useful” features despite
its poor performance, especially in the earlier layers. By taking an eNTK approximation, TCT op-
timizes a convex approximation while using information from all layers of the model. Empirically,
we find that these extracted eNTK features significantly reduce the number of communication
rounds needed to learn a performant model, even with data heterogeneity.

4.4 Experiments
We now study the performance of TCT for the decentralized training of deep neural networks in the
presence of data heterogeneity. We compare TCT to state-of-the-art federated learning algorithms
on three benchmark tasks in federated learning. For each task, we apply these algorithms on client
data distributions with varying degrees of data heterogeneity. We find that our proposed approach
significantly outperforms existing algorithms when clients have highly heterogeneous data across
all tasks. For additional experimental results and implementation details, see Appendix C.2. Our
code is available at https://github.com/yaodongyu/TCT.

4.4.1 Experimental Setup
Datasets and degrees of data heterogeneity. We assess the performance of federated learning
algorithms on the image classification tasks FMNIST [277], CIFAR10, and CIFAR100 [144]. FM-
NIST and CIFAR10 each consist of 10 classes, while CIFAR100 includes images from 100 classes.
There are 60,000 training images in FMNIST, and 50,000 training images in CIFAR10/100.

To vary the degree of data heterogeneity, we follow the setup of [156]. We consider two
types of non-i.i.d. data distribution: (i) Data heterogeneity sampled from a symmetric Dirichlet
distribution with parameter α [165, 262]. That is, we sample pc ∼ DirK(α) from aK-dimensional
symmetric Dirichlet distribution and assign a pkc -fraction of the class c samples to client k. (Smaller

https://github.com/yaodongyu/TCT
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Figure 4.2: Training/test accuracy vs. communication round for FedAvg (left), SCAFFOLD (mid-
dle), and our algorithm TCT (right) on the CIFAR100 dataset with various degrees of non-iid-ness
(DirK(α) with α ∈ {0.1, 0.01, 0.001}). Dotted lines represent the training accuracy, and dashdot
lines with markers represent the test accuracy.

α corresponds to more heterogeneity.) (ii) Clients get samples from a fixed subset of classes [176].
That is, each client is allocated a subset of classes; then, the samples of each class are split into
non-overlapping subsets and assigned to clients that were allocated this class. We use #C to denote
the number of classes allocated to each client. For example, #C=2 means each client has samples
from 2 classes. To allow for consistent comparisons, all of our experiments are run with 10 clients.

Models. For FMNIST, we use a convolutional neural network with ReLU activations consist-
ing of two convolutional layers with max pooling followed by two fully connected layers (Sim-
pleCNN). For CIFAR10 and CIFAR100, we mainly consider an 18-layer residual network [100]
with 4 basic residual blocks (ResNet-18). In Appendix C.2.2, we present experimental results for
other architectures.

Algorithms and training schemes. We compare TCT to state-of-the-art federated learning al-
gorithms, focusing on the widely-used algorithms FedAvg [176], FedProx [158], and SCAF-
FOLD [134]. (For comparisons to additional algorithms, see Appendix C.2.1.) Each client uses
SGD with weight decay 10−5 and batch size 64 by default. For each baseline method, we run it
for 200 total communication rounds using 5 local training epochs with local learning rate selected
from {0.1, 0.01, 0.001} by grid search. For TCT, we run 100 rounds of FedAvg in Stage 1 follow-
ing the above and use 100 communication rounds in Stage 2 with M = 500 local steps and local
learning rate η = 5 · 10−5.

4.4.2 Main Results
Table 4.2 displays the top-1 accuracy of all algorithm on the three tasks with varying degrees of data
heterogeneity. We evaluated each algorithms on each task under four degrees of data heterogeneity.
Smaller #C and α in Table 4.2 correspond to higher heterogeneity.

We find that the existing federated algorithms all suffer when data heterogeneity is high across
all three tasks. For example, the top-1 accuracy of FedAvg on CIFAR-10 is 56.86% when #C=2,
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Table 4.2: The top-1 accuracy (%) of our algorithm (TCT) vs. state-of-the-art federated learning
algorithms evaluated on FMNIST, CIFAR10, and CIFAR100. We vary the degree of data hetero-
geneity by controlling the α parameter of the symmetric Dirichlet distribution DirK(α) and the #C
parameter for assigning how many labels each client owns. Higher accuracy is better. The highest
top-1 accuracy in each setting is highlighted in bold.

Datasets Architectures Methods Non-i.i.d. degree

FMNIST SimpleCNN

#C = 1 #C = 2 α = 0.1 α = 0.5

FedAvg 35.10% 85.18% 86.18% 90.09%
FedProx 50.04% 84.91% 86.31% 89.77%

SCAFFOLD 12.80% 42.80% 83.87% 89.40%
TCT 86.32% 90.33% 90.78% 91.13%

Centralized 91.40%

CIFAR-10 ResNet-18

#C = 1 #C = 2 α = 0.1 α = 0.5

FedAvg 11.27% 56.86% 82.60% 90.43%
FedProx 12.30% 56.87% 83.31% 90.68%

SCAFFOLD 10.00% 46.75% 80.46% 90.72%
TCT 49.92% 83.02% 89.21% 91.10%

Centralized 91.90%

CIFAR-100 ResNet-18

α = 0.001 α = 0.01 α = 0.1 α = 0.5

FedAvg 53.89% 54.22% 63.49% 67.65%
FedProx 52.87% 54.32% 63.47% 67.54%

SCAFFOLD 49.86% 54.07% 65.67% 71.07%
TCT 68.42% 69.07% 69.66% 69.68%

Centralized 73.61%

which is much worse than the 90.43% achieved in a more homogeneous setting (e.g. α = 0.5). In
contrast, TCT achieves consistently strong performance, even in the face of high data heterogene-
ity. More specifically, TCT achieves the best top-1 accuracy performance across all settings except
CIFAR-100 with α = 0.5, where TCT does only slightly worse than SCAFFOLD.

In absolute terms, we find that TCT is not affected much by data heterogeneity, with perfor-
mance dropping by less than 1.5% on CIFAR100 as α goes from 0.5 to 0.001. Moreover, our algo-
rithm improves over existing methods by at least 15% in the challenging cases, including FMNIST
with #C=1, CIFAR-10 with #C=1 and #C=2, and CIFAR-100 with α = 0.01 and α = 0.001. And,
perhaps surprisingly, our algorithm still performs relatively well in the extreme non-i.i.d. setting
where each client sees only a single class.

Figure 4.2 compares the performances of FedAvg, SCAFFOLD, and TCT in more detail on
CIFAR100 dataset with different degrees of data heterogeneity. We consider the Dirichlet distri-
bution with parameter α ∈ {0.1, 0.01, 0.001} and compare the training and test accuracy of these
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(a) FMNIST.
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(b) CIFAR10.
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(c) CIFAR100.

Figure 4.3: Training accuracy vs. communication round for full batch gradient descent (GD) and
TCT on FMNIST-[#C=2] (a), CIFAR10-[#C=2] (b), and CIFAR100-[α = 0.01] (c). Each dotted
line with square markers represents the training accuracy of GD with some learning rate. Dashed
lines with circle markers represent the training accuracy of TCT with different numbers of local
steps. We also include the training accuracy results of FedAvg with learning rate η = 0.1. We use
TCT-GD to denote the variant of TCT which replaces SCAFFOLD with GD in Stage 2.

three algorithms. As shown in Figures 4.2a and 4.2b, both FedAvg and SCAFFOLD struggle when
data heterogeneity is high: for both algorithms, test accuracy drops significantly when α decreases.
In contrast, we see from Figure 4.2c that TCT maintains almost the same test accuracy for different
α. Furthermore, the same set of default parameters for our algorithm, including local learning rate
and the number of local steps, is relatively robust to different levels of data heterogeneity.

4.4.3 Communication Efficiency
To understand the effectiveness of the local steps in our algorithm, we compare SCAFFOLD (used
in TCT-Stage 2) to full batch gradient descent (GD) applied to the overparameterized linear re-
gression problem in Stage 2 of TCT on these datasets. For our algorithm, we set local steps
M ∈ {102, 103} and use the default local learning rate. For full batch GD, we vary the learning
rate from 10−5 to 10−1 and visualize the ones that do not diverge.

The results are summarized in Figure 4.3. Each dotted line with square markers in Figure 4.3
corresponds to full batch GD with some learning rate. Across all three datasets, our proposed
algorithm consistently outperforms full batch GD. Meanwhile, we find that more local steps for
our algorithms lead to faster convergence across all settings. In particular, our algorithm converges
within 20 communication rounds on CIFAR100 (as shown in Figure 4.3c). These results suggest
that our proposed algorithm can largely leverage the local computation and improve communica-
tion efficiency.

4.4.4 Ablations
Gradient correction. We investigate the role of gradient correction when solving overparame-
terized linear regression with eNTK features in TCT. We compare SCAFFOLD (used in TCT) to
FedAvg on solving the regression problems and summarize the results in Figure 4.4. We use the
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(b) CIFAR10.
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Figure 4.4: Comparing TCT to TCT-FedAvg for solving the overparameterized linear regression
problem on (a) FMNIST-[#C=2], (b) CIFAR10-[#C=2], and (c) CIFAR100-[α = 0.01]. We use
TCT-FedAvg to denote a variant of TCT that uses FedAvg instead of SCAFFOLD to perform linear
regression in TCT-Stage 2. Dotted red lines with square markers represent the training accuracy
of TCT-FedAvg with different numbers of local steps. Dashed blue red lines with circle markers
represent the training accuracy of TCT with different numbers of local steps. A darker color means
more local steps.
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(a) Effect of FedAvg communication rounds in Stage 1.
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Figure 4.5: (a). We evaluate TCT on using checkpoints save at different communication rounds
T1 in Stage 1. T1 = 0 corresponds to the randmon initialized model weights scenario (without
FedAvg training). Dash lines with square markers represent the training accuracy, and dotted lines
with circle makers represent the test accuracy. (b). We study the effect of pre-conditioning on
TCT. TCT (wN) corresponds to the setting where eNTK features are normalized, and TCT (woN)
corresponds to the without normalization step setting.

default local learning rate and consider three different numbers of local steps for both algorithms,
i.e., M ∈ {10, 100, 1000}. As shown in Figure 4.4, our approach largely outperforms FedAvg
when the number of local steps is large (M ≥ 100) across three datasets. We also find that the
performance of FedAvg can even degrade when the number of local steps increases. For example,
FedAvg withM = 1000 performs the worst across all three datasets. In contrast to FedAvg, SCAF-
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FOLD converges faster when the number of local steps increases. These observations highlight the
importance of gradient correction in our algorithm.

Model weights for computing eNTK features. To understand the impact of the model weights
trained in Stage 1 of TCT, we evaluate TCT run with different T1 parameters. We consider
T1 ∈ {0, 20, 40, 60, 80, 100}, where T1 = 0 corresponds to randomly initialized weights. From
Figure 4.5a, we find that weights after FedAvg training are much more effective than weights at
random initialization. Specifically, without FedAvg training, the eNTK (at random initialization)
performs worse than standard FedAvg. In contrast, TCT significantly outperforms FedAvg by a
large margin (roughly 20% in test accuracy) when eNTK features are extracted from a FedAvg-
trained model. Also, we find that TCT is stable with respect to the choice of communication rounds
T1 in Stage 1. For example, models trained by TCT with T1 ≥ 60 achieve similar performance.

Effect of normalization. In Figure 4.5b, we investigate the role of normalization on TCT by
comparing TCT run with normalized and unnormalized eNTK features. The same number of local
steps (M = 500) is applied for both settings. We tune the learning rate η for each setting and
plot the run that performs best (as measured in training accuracy). The results in Figure 4.5b
suggest that the normalization step in TCT significantly improves the communication efficiency
by increasing convergence speed. In particular, TCT with normalization converges to nearly 100%
training accuracy in approximately 40 communication rounds, which is much faster than TCT
without normalization.

Pre-training vs. Bootstrapping. In Appendix C.2.4, we explore the effect of starting from a pre-
trained model instead of relying on bootstrapping to learn the features. We find that pre-training
further improves the performance of TCT and completely erases the gap between centralized and
federated learning.

Additionally, we conduct experiments on investigating the role of training loss function and
subsampling approximation in TCT-Stage 2. For TCT-Stage 2, we find that neither using the cross-
entropy loss as the training objective nor applying full eNTK representations significantly improves
the performance of TCT. On the other hand, applying subsampling approximation in TCT-Stage
2 can largely improve the communication efficiency compared to the full eNTK representations
approach. See Appendix C.2.7 for detailed experimental results.

4.5 Conclusion
We have argued that nonconvexity poses a significant challenge for federated learning algorithms.
We found that a neural network trained in such a manner does learn useful features, but fails to
use them and thus has poor overall accuracy. To sidestep this issue, we proposed a train-convexify-
train procedure: first, train the neural network using FedAvg; then, optimize (using SCAFFOLD) a
convex approximation of the model obtained using its empirical neural tangent kernel. We showed
that the first stage extracts meaningful features, whereas the second stage learns to utilize these
features to obtain a highly performant model. The resulting algorithm is significantly faster and
more stable to hyper-parameters than previous federated learning methods. Finally, we also showed
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that given a good pre-pretrained feature extractor, our convexify-train procedure fully closes the
gap between centralized and federated learning.

Our algorithm adds to the growing body of work using eNTK to linearize neural networks and
obtain tractable convex approximations. However, unlike most of these past works which only
work with pre-trained models, our bootstrapping allows training models from scratch. Finally, we
stress that the success of our approach underscores the need to revisit theoretical understanding
of heterogeneous federated learning. Nonconvexity seems to play an outsized role but its effect
in FL has hitherto been unexplored. In particular, black-box notions of difficulty such as gradient
dissimilarity or distances between client optima seem insufficient to capture practical performance.
It is likely that further progress in the field (e.g. federated pre-training of foundational models),
will require tackling the issue of nonconvexity head on.
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Chapter 5

Differentially Private Representation
Learning

Artificial intelligence (AI) has seen a tremendous surge in capabilities thanks to the use of founda-
tion models trained on internet-scale data. On the flip side, the uncurated nature of internet-scale
data also poses significant privacy and legal risks, as they often contain personal information or
copyrighted material that should not be trained on without permission. In this work, we propose
as a mitigation measure a recipe to train foundation vision models via self-supervised learning
with differential privacy (DP) guarantee. We identify masked autoencoders as a suitable learning
algorithm that aligns well with DP-SGD, and train ViP—a Vision transformer with differential
Privacy—under a strict privacy budget of ϵ = 8 on the LAION400M dataset. We evaluate the
quality of representation learned by ViP using standard downstream vision tasks; in particular, ViP
achieves a (non-private) linear probing accuracy of 55.7% on ImageNet, comparable to that of
end-to-end trained AlexNet (trained and evaluated on ImageNet). Our result suggests that scaling
to internet-scale data can be practical for private learning.

5.1 Introduction
Foundation models (e.g., GPT-3, SimCLR, CLIP, etc. [26, 39, 201]) pre-trained on vast amounts of
diverse unlabeled data through self-supervised learning (SSL) have emerged as an important build-
ing block for artificial intelligence (AI) systems [20]. These foundation models enable downstream
applications via fine-tuning, prompting, or training a simpler model on top of the learned represen-
tations to perform more specialized tasks, and have performed tremendously well on challenging
benchmarks in both language and vision domains [26, 201, 247].

Despite the widespread deployment of foundation models, there are significant privacy and
legal risks of training these models on uncurated data that often contain personal information or
copyrighted material. Although the training data for these models are considered public in most
cases, some of the data may be sensitive; additionally, there are certain privacy and copyright laws
that apply to model training even on such public data [102]. In addition, studies have shown that
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Classification Detection / Segmentation

Figure 5.1: (left) Linear probing accuracies of TAN [215] (state-of-the-art DP training method),
AlexNet [145], SimCLR [39] and ViP—our DP-trained model with ϵ = 8. ViP can achieve similar
transfer learning result as SimCLR on iNat-2021 and Places-365, and achieves similar accuracy
on ImageNet as end-to-end trained AlexNet. (right) Average precision (AP) evaluations of Sim-
CLR [39], Mask R-CNN [98] and ViP on MS-COCO. Our DP-trained model outperforms both
SimCLR and Mask R-CNN.

generative foundation models such as GPT-3 can sometimes regurgitate memorized information
about individuals and licensed content from its training data when prompted to do so [31]. More
recently, [177] showed that non-generative vision SSL models can also be probed to reveal sensi-
tive information about individual samples in its training data when given partial information.

Given these risks, there is an urgent need to train foundation models that can adhere to relevant
privacy and copyright laws. To this end, differential privacy (DP; [64]) seeks to limit the influence
of individual training data points on the trained model, and hence has the potential to mitigate
both privacy and copyright risks for sensitive information that is confined to a single or a few
training examples [102]. For any model that can be trained using gradient-based optimization,
DP-SGD [229, 1] can be applied instead to ensure that the trained model satisfies the rigorous
definition of DP. However, there are still significant technical challenges in DP-SGD training of
large-scale foundation vision models:
1. Differentially private representation learning in general is a difficult problem. [248] showed

that even handcrafted features can outperform feature learned by state-of-the-art DP-trained
models, and attaining high-utility learned representations requires significantly more training
data—much more than what is provided in typical supervised/curated datasets.

2. Combining self-supervised learning (SSL) with internet-scale uncurated datasets may seem
like a natural approach to gain access to the large amount of data needed for DP training.
However, most vision SSL training algorithms are based on contrastive learning, where the
objective function depends on multiple samples in an entangled manner. This makes it difficult
to perform the per-sample gradient computation needed in DP-SGD.

3. SSL training requires a much larger number of training epochs compared to supervised learning,
which sharply increases the DP parameter ϵ, leading to meaningless privacy guarantees.

In this work, we describe a successful recipe for training differentially private large-scale founda-
tion models via SSL. Firstly, we identify masked autoencoder (MAE; [93]) as a promising SSL
training algorithm that is amenable to DP-SGD. MAE uses an instance-separable loss function
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Figure 5.2: How to pre-train differentially private transformers (ViP) with synthetic data? In
Step 1, we first pre-train a MAE model on synthetic images with standard optimizers (e.g., SGD,
AdamW). We denote this model by (Syn)-ViP. In Step 2, we use the MAE model pre-trained on
synthetic images as initialization, and then apply differential private optimizers (e.g., DP-SGD,
DP-AdamW) to train a ViP model that satisfies (ϵ, δ)-DP.

and does not require batch normalization, and hence per-sample gradients can be easily com-
puted. We also show that it is tolerant to the large amount of Gaussian noise added in DP-
SGD. Next, we demonstrate that MAE can effectively leverage synthetic datasets containing only
programmatically-generated synthesized textures [16] to warm-start the DP training process, sig-
nificantly reducing the number of training epochs required to reach a high-utility model. The com-
bination of these two ingredients forms a powerful DP training recipe for obtaining high-utility
differentially private foundation vision models.

We implement this training recipe on the LAION400M dataset [217]. We show that the re-
sulting model, which we call ViP (Vision transformer with differential Privacy), learns highly
useful and transferable representations—rivaling that of representation learned by SimCLR on
ImageNet—while providing a strong DP guarantee with ϵ = 8. In Figure 5.1, we compare ViP
with other private and non-private models in terms of downstream linear probing accuracy and
fine-tuning accuracy for different image datasets:

• For iNat-2021 and Places-365 classification, ViP outperforms both TAN [215]—the previous
SOTA for DP supervised training—and AlexNet [145], while matching or exceeding the perfor-
mance of SimCLR pre-trained on ImageNet.

• On ImageNet, the linear probing accuracy of ViP matches that of end-to-end trained AlexNet1.

• On MS-COCO detection and segmentation, ViP outperforms both SimCLR pre-trained on Ima-
geNet and Mask R-CNN.

Our experiments demonstrate that by scaling DP-SGD training to vast amounts of unlabeled data
and using synthetic data to warm-start the model, we can attain high-utility foundation vision
models under stringent privacy guarantees. Consequently, we hope that future work can continue

1The model is sourced from the PyTorch website and is end-to-end trained with supervised learning.
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to build on our successful recipe and further push the performance boundary of large-scale DP
training.

5.2 Background
Differential privacy [65] is a mathematical framework for formal reasoning about information
leakage through a private mechanism. A learning algorithm A is said to be (ϵ, δ)-differentially
private (denoted (ϵ, δ)-DP) if for all training datasets D,D′ that differ2 in a single training sample,
we have:

P (A(D) ∈ S) ≤ eϵP (A(D′) ∈ S) + δ (5.1)

for all outcome sets S. More generally, (5.1) can be expressed as a statistical divergence

D(A(D)∥A(D′))

between the distribution of models trained on D vs. D′, with (ϵ, δ)-DP corresponding to the
“hockey-stick” divergence [219]. Another useful variant is Rényi differential privacy (RDP; [179]),
which uses the Rényi divergence Dα [208]: A is said to be (α, ϵ)-RDP if Dα(A(D)||A(D′)) ≤ ϵ.
Moreover, RDP can be converted to DP via the following [14]: if A is (α, ϵα)-RDP then it is also
(ϵ, δ)-DP with

ϵ = ϵα + log

(
α− 1

α

)
− log δ + logα

α− 1
. (5.2)

DP-SGD training. [1] showed that stochastic gradient descent (SGD)—the quintessential learn-
ing algorithm—can be made differentially private by perturbing the per-iteration gradient with
Gaussian noise. The modified SGD update with gradient perturbation (often referred to as DP-
SGD) is given by θt+1 = θt − ηt g̃t, and

g̃t =
1

B

(∑

x∈Bt

clipC(∇θℓ(x;θt) +N (0, σ2C2I)

)
, (5.3)

where ηt is the learning rate, Bt is the sampled batch, B is the average batch size, σ > 0 is
the noise multiplier, and clipC(·) is the operation that clips the per-sample gradient norm to at
most C > 0. It can be shown that this update procedure is (α, ϵα)-RDP for some computable
ϵα [180]. The end-to-end learning algorithm by running T iterations of SGD is thus (α, T ϵα)-
RDP via composition [179], and a conversion to (ϵ, δ)-DP can be obtained using (5.2). Such
privatization mechanism—per-sample clipping and injecting noise—can be easily integrated with
other first-order optimization algorithms such as Adam [139] and AdamW [170].

2We adopt the removal notion of adjacency, i.e., D′ = D ∪ z for some z and vice versa.
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Self-supervised learning (SSL) has emerged as a prominent approach for scaling up the training
of machine learning models to large-scale unlabeled datasets. Restricting our attention to the vi-
sion domain, SSL pre-trained models generalize effectively across a wide range of transfer learning
downstream tasks such as classification, instance segmentation and object detection [41, 20], espe-
cially under the scenario of limited downstream training data. Vision SSL methods can be broadly
categorized as either joint embedding-based learning (JE) [39, 95, 85, 297, 43] or reconstruction-
based learning (REC) [15, 281, 93]. JE-based approaches design objective functions so that all
views (or image augmentations) of the same sample have similar embeddings, while views of dif-
ferent samples have different embeddings. As a result, most JE-based approaches require a batch
containing multiple samples in order to define the objective function. On the other hand, REC-
based approaches aim to optimize models to reconstruct image inputs in the pixel space based on
partially masked inputs, which promotes the model to learn compressed representations that can
generalize well.

Related work. Recently, an expanding body of literature has emerged on scaling DP training to
large-scale datasets and models in both NLP and vision domains. In NLP, a series of works [7, 287,
160] showed that by combining public pre-training and scaling up the training batch size, it is pos-
sible to fine-tune the pre-trained language model to achieve reasonable downstream performance.
In computer vision, [149] first attempted to scale DP training of convolutional neural networks
(ResNets) to ImageNet. [54] further improved the performance of [149] with a Normalizer-Free
ResNet architecture and an improved training recipe. More recently, [215] proposed a more ef-
ficient hyperparameter tuning method for DP training that led to state-of-the-art performance on
ImageNet. It is worth noting that all these works on DP-trained computer vision models focus on
training supervised models.

5.3 Recipe for Training DP Foundation Vision Models
In this work, we identify a successful recipe for training differentially private foundation vision
models. Training DP foundation models, or in general any deep learning model with a large
number of parameters, poses a significant challenge due to the large amount of injected noise—
N (0, σ2C2I) in (5.3). Indeed, current state-of-the-art differentially private deep learning models
even under-perform linear models with handcrafted features when ϵ is small [54, 248]. We propose
two effective techniques that reduce the magnitude of noise injected during training while attaining
strong (ϵ, δ)-DP guarantees: 1. Scaling up the number of training samples via self-supervised
learning with masked autoencoder; and 2. Facilitating faster training by warm-starting the model
with weights pre-trained on synthetic samples.

5.3.1 Differential Private SSL with Mask Autoencoder
Most existing works on differentially private training [54, 215, 28] focus on supervised learning,
which inherently restricts the quantity of training samples that can be utilized. In contrast, self-
supervised learning approaches unlock the use of (albeit uncurated) internet-scale training data that
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can be on the order of billions of samples, which can potentially satisfy the amount of data needed
for DP training of high-utility models [248].

On the other hand, most existing SSL training approaches do not align with requirements in
DP-SGD training. For example, SimCLR [39] requires a mini-batch of samples in order to com-
pute the contrastive loss; BYOL [85] computes per-sample loss but it utilizes batch normalization
(BN) [120] in the model architecture, resulting in each loss depending on a mini-batch of training
samples.3 Therefore, it is challenging to perform the per-sample gradient clipping as described in
(5.3). Among various types of SSL methods, we identify reconstruction-base learning with masked
autoencoders (MAE) [93] as one of the most suitable SSL approaches for training DP foundation
vision models. The training objective LMAE(θ) is defined as:

LMAE(θ) :=
1

n

n∑

i=1

ℓMSE(g ◦ ψ(mask(xi);θ),xi)︸ ︷︷ ︸
ℓ(xi;θ)

, (5.4)

where n is the number of training samples, xi ∈ RC×H×W is the input of the i-th training image
(C-number of channels, H-height, W -width), mask(·) is a function that mask out a fraction of
the image, ψ : RC×H×W → Rd is the encoder and g : Rd → RC×H×W is the decoder. We use
θ to denote the trainable parameters of the ψ and g, and use ℓMSE to denote the mean squared
error (MSE) loss defined on the pixel space, i.e., ℓMSE(x1,x2) = ∥x1 − x2∥2F . Similar to [93], we
apply vision transformers [63] to instantiate the encoder and decoder maps. As shown in (5.4), the
training objective can be decomposed into n individual losses, and each individual loss ℓ(xi;θ)
only depends on the i-th training sample xi and does not require the label of xi. Therefore, we
can compute per-sample gradient ∇θℓ(xi;θ) and perform per-sample gradient clipping without
modifying the MAE training.

By leveraging the self-supervised MAE training paradigm, we can now significantly scale up
the training data size for DP SSL pre-training. Dataset scaling can effectively reduce the magnitude
of noise in DP-SGD while maintaining the same (ϵ, δn)-DP guarantee, where δn = 1/2n. As
shown in Figure 5.3a, we investigate the impact of injected noise in ViP training by keeping all
training hyperparameters the same except for the number of training samples4. With more training
samples, the magnitude of the injected noise σ becomes smaller. We find that when the noise
magnitude is large, the training loss cannot be further optimized after certain number of training
steps. In contrast, smaller magnitude of noise (as a result of larger training dataset) facilitates
faster optimization of the training loss in comparison to larger noise scenarios. Importantly, the
optimization trajectory is stable despite the presence of noise, allowing the MAE model to learn
useful features.

3Subsequent work by [209] demonstrated that BN can be substituted with group normalization by carefully mod-
ifying the model architecture. However, we have observed that the design of exponential moving averaged online
network in BYOL can result in dynamic instability during training, which poses challenges in the context of DP
training.

4We maintain the same batch size across various data size settings while modifying the noise multiplier σ. Con-
sequently, as the data size increases, the corresponding σ values decrease.
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Figure 5.3: (a). We vary the number of training samples n with the (ϵ, δn)-DP guarantee (δn =
1/2n), and compare the training losses of MAE-DP. By scaling up the training dataset size, we
can consistently improve the ViP training under the same ϵ-DP budget. (b). Compared to ViP
training from random initialization, we can significantly speed up the ViP training by leveraging
the synthetic pre-trained MAE model as initialization.

5.3.2 Synthetic Pre-training Enables Faster DP Training for ViP
Non-private training of SSL models often require a significant number of training epochs, much
larger than what is required in supervised learning [39, 93, 13]. This creates an additional challenge
for DP training since the number of training iterations T directly impacts the privacy guarantee.
Indeed, as mentioned in Section 5.2, DP-SGD with T iterations is (α, T ϵα)-RDP. Consequently,
naively applying DP-SGD to MAE training results in an unfavorable privacy-utility trade-off.

Fortunately, [96] demonstrated that using pre-trained initialization enables much faster model
convergence compared to random initialization. However, in light of our discussion in Section
5.1, it is critical that the pre-training data does not contain any private information, even if the
data is deemed “public”. One promising alternative is pre-training on programmatically-generated
synthetic images [137, 16], which was shown to achieve competitive downstream performance
compared to pre-training on natural images. Doing so allows the MAE to learn spatial structure in
the transformer modules [123] without expending any privacy budget for the natural image data.
More importantly, synthetic pre-training does not carry any privacy risk, and legal risk is limited
to obtaining proper license for the synthetic image generation code.

Thus, to accelerate ViP training, we pre-train the model on synthetic images generated using
the Shaders21k tool developed in [16]. Figure 5.2 shows samples of synthetic images generated by
the tool. In Figure 5.3b, we compare the ViP training with and without synthetic pre-trained initial-
ization. Notably, training ViP with synthetic pre-trained weights converges significantly faster than
those with random initialized weights. Increasing the synthetic pre-training from 20 to 900 epochs
further improves convergence for ViP training. Interestingly, as shown in Figure 5.1, MAE trained
on the synthetic dataset already outperforms existing state-of-the-art DP-trained models [54, 215]
under our transfer learning evaluation, which shows that DP training on datasets even as large as
ImageNet does not learn sufficiently expressive features (see Table 5.1).
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5.3.3 Our Proposed Approach
We now summarize our approach for DP foundation vision model training (also see Figure 5.2).
It is worth mentioning that our proposed approach offers flexibility in the selection of both SSL
training methods and synthetic datasets. For example, developing better synthetic datasets or more
effective SSL learning method can further push the performance of the final DP foundation model.

DP-MAE with Synthetic Pre-training

• Step 1: Synthetic pre-training for initialization. Pre-train mask autoencoder on the syn-
thetic dataset with non-private optimizers.

• Step 2: DP training with synthetic initialization. Apply the synthetic pre-trained model
as initialization and train mask autoencoder on a large-scale natural image dataset (e.g.,
LAION400M) with DP-SGD. The DP guarantee then applies to the natural image dataset.

5.4 Evaluation
We evaluate the effectiveness of our training recipe by applying it to the LAION400M dataset to
train our private foundation vision model: ViP. We consider various downstream tasks in order to
demonstrate the quality and transferability of its learned representation. Furthermore, we compare
ViP to previous state-of-the-art DP-trained models as well as widely adopted non-privately trained
models, and find that ViP significantly improves SOTA for DP training on downstream transfer
tasks (Section 5.4.2) and even outperforms non-private models on several challenging datasets. In
addition to assessing the performance of ViP on non-private downstream tasks, in Section D.2.3,
we also evaluate the ViP model via DP fine-tuning on ImageNet-1K, which shows a notable im-
provement of 10%+ absolute top-1 accuracy compared to previous SOTA [215]. For additional
experimental results on ViP, see Appendix D.2.

5.4.1 Evaluation Setup
Our implementation uses PyTorch, along with the functorch package [110] for computation of
per-sample gradients and the opacus package [286] for privacy accounting. See Appendix D.1 for
additional implementation details.

Datasets. We use 1.05 million samples generated using the Shader21k [16] tool as our syn-
thetic pre-training dataset, and the LAION400M [217] as our private pre-training dataset for the
ViP model5. We evaluate ViP and baseline models via non-private linear probing and fine-tuning

5Some of the links in LAION400M are now broken since its initial release, and the version we use contains ∼233
million real images. We use LAION233M to denote this subsampled version of LAION400M.
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Table 5.1: Linear probing evaluation on downstream classification. We compare ViP with both
private pre-training (DP-NFNet and TAN) and non-private pre-training (AlexNet and SimCLR)
baselines, as well as the synthetically pre-trained MAE model: (Syn)-ViP. ViP consistently out-
performs all private baselines, and has similar transfer learning performance as non-private Sim-
CLR pre-trained on ImageNet-1K. (‡All models except for (Syn)-ViP and ViP are pre-trained on
ImageNet-1K, giving them an unfair advantage for the linear probing evaluation on ImageNet-1K.)

Model DP? SSL? Pre-train dataset # pre-train samples ImageNet-1K‡ Places-365 Places-205 iNat-2021

DP-NFNet ✓ ✗ ImageNet-1k ∼1 million 45.3% 40.1% 39.2% 28.2%

TAN ✓ ✗ ImageNet-1k ∼1 million 49.0% 40.5% 38.2% 31.7%

AlexNet ✗ ✗ ImageNet-1k ∼1 million 56.5% 39.8% 35.1% 23.7%

SimCLR ✗ ✓ ImageNet-1k ∼1 million 67.5% 46.8% 49.3% 34.8%

(Syn)-ViP ✓ ✓ Shaders21k ∼1 million 49.8% 43.2% 45.8% 32.4%

ViP-LAION ✓ ✓ LAION ∼233 million 55.7% 46.1% 48.5% 38.1%

ViP-ImageNet ✓ ✓ ImageNet-1k ∼1 million 52.6% 44.3% 46.5% 34.2%

Table 5.2: Fine-tuning evaluation on few-shot downstream classification. ViP consistently out-
performs both TAN (private) and AlexNet (non-private), as well as (Syn)-ViP by a large margin.
Performance does fall short compared to non-private SimCLR pre-trained on ImageNet-1K despite
having access to more than 100× more data, suggesting that there is much room for improvement
for private learning.

Model Aircraft Caltech-101 CIFAR-100
10-shot 20-shot 30-shot 5-shot 10-shot 30-shot 5-shot 10-shot 30-shot

AlexNet 23.27% 34.47% 41.35% 64.70% 73.57% 81.40% 29.74% 36.31% 49.28%

SimCLR 38.79% 56.90% 64.90% 81.70% 89.11% 94.51% 49.93% 60.18% 71.84%

TAN 22.84% 37.93% 46.01% 49.32% 66.42% 77.87% 21.28% 27.78% 42.35%

(Syn)-ViP 21.79% 46.85% 58.45% 60.51% 76.21% 88.48% 27.62% 38.96% 55.84%

ViP 31.62% 53.05% 64.26% 68.05% 79.03% 88.90% 30.73% 40.95% 57.52%

on the following downstream classification datasets: ImageNet-1K [59], Places-365 and Places-
205 [304], iNaturalist-2021 [249], CIFAR-100 [144], Caltech101 [71], and Aircraft [175]. The
input images are resized and center-cropped to 224×224 resolution. We also evaluate using MS-
COCO instance segmentation and object detection [166], and semantic segmentation with the
ADE20K dataset [305] (in Appendix D.2.1).

Model architecture. Following [93], we use vision transformer (ViT) [63] to instantiate the
masked autoencoder models. The default MAE-encoder has 12 transformer blocks and width 768,
and the default MAE-decoder has 4 transformer blocks and width 512. We denote this MAE model
as MAE-base. We also consider MAE models with different model sizes, including MAE-Nano,
MAE-Tiny, MAE-Small and MAE-Large in Section 5.4.3.
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Optimization and hyperparameters for (DP-)MAE training. We use AdamW [170] for train-
ing MAE – both for synthetic pre-training and differentially private MAE pre-training. When
evaluating pre-trained models in downstream tasks, we apply LARS [285] for linear probing and
AdamW for fine-tuning. For MAE training, we set the masking ratio to 75%. In terms of DP
training, we set ϵ = 8.0 and δ = 1/2n by default for training (ϵ, δ)-DP model. We set the clipping
parameter C = 0.1, sampling ratio q = 81920/n, and noise parameter σ = 0.5.

Existing methods for comparison. We compare with existing state-of-the-art DP-trained mod-
els: DP-NFNet [54] and TAN [215]), both of which are trained differentially privately on ImageNet-
1K using supervised learning. In addition, we present the results of several widely used non-private
models that are pre-trained on ImageNet-1K including AlexNet [145] (supervised learning-based)
and SimCLR [39] (SSL-based) for reference. To measure the effectiveness of DP pre-training
compared to synthetic pre-training, we also evaluate the model pre-trained on synthetically gener-
ated Shader21k data, denoted (Syn)-ViP. We also compare ViP with the non-private MAE model
pre-trained on the same datasets and summarize the results in Table D.4 (Appendix D.2.4).

5.4.2 Transfer Learning Evaluation
To show that ViP learns high-quality representations from its training data, we evaluate its transfer
learning performance on a suite of image classification tasks using both linear probing and few-shot
fine-tuning. For linear probing, we use all the training samples in the downstream task training set
to learn the linear classifier, while freezing all layers except for the final linear layer. For few-shot
fine-tuning, we randomly selectK training samples from each class and fine-tune the entire model.
It is worth noting that both linear probing and fine-tuning evaluations are done using non-private
training; our pre-trained ViP model only satisfies (ϵ, δ)-DP on the LAION233M dataset.

Linear probing. Table 5.1 shows the linear probing results on four large-scale image classifica-
tion datasets: ImageNet-1K, Places-365/205 and iNat-2021. The most suitable baselines in this
setting are DP-NFNet and TAN, both of which are DP-trained on ImageNet-1K with ϵ = 8 and
represent previous state-of-the-art in large-scale DP pre-training. First of all, we find that MAE
pre-training only on synthetic images (i.e., (Syn)-ViP) is already comparable or even outperforms
SOTA DP pre-trained models. After differentially privately pre-training on LAION233M, ViP
effectively improves the performance of (Syn)-ViP on all datasets by a large margin.

Importantly, ViP even outperforms non-private SimCLR pre-trained on ImageNet-1K on all
datasets (except ImageNet-1k itself because SimCLR does not need to transfer), and achieves
similar performance as end-to-end non-privately trained AlexNet. To the best of our knowledge,
this is the first time a DP-trained model can achieve similar performance on vision benchmark
datasets as that of a mainstream (albeit older) model, which demonstrates the potential of our
training recipe.

Few-shot fine-tuning. Table 5.2 shows the few-shot fine-tuning results on Aircraft, Caltech-101
and CIFAR-100. Similar to the linear probing result, (Syn)-ViP already outperforms TAN—the
previous SOTA DP-trained model—across all evaluation settings except for 10-shot classification
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Figure 5.4: (Left) Effect of scaling up model size on MAE training loss. Larger models attain
lower training loss despite the larger magnitude of noise added during DP-SGD. (Right) Effect of
batch size on MAE training loss while fixing ϵ. A large batch size is necessary for convergence.
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Figure 5.5: Effect of scaling up model size on downstream performance. ViP with synthetic pre-
training (blue line) benefits substantially from larger model size. In comparison, ViP with random
initialization (gray line) does not benefit as much from model scaling, as the difference in perfor-
mance between MAE-Large and MAE-Nano is considerably smaller.

on Aircraft. Next, we find that ViP can largely improve upon (Syn)-ViP when the number of
samples per class is small, attaining SOTA performance in all evaluation settings. ViP also achieves
better performance than non-privately pre-trained AlexNet by a large margin, but falls short against
non-private SimCLR despite having access to more than 100× training data. Thus, our result can
be viewed as both a positive and a negative result, showing that there is still a long way to go for
private learning before matching the performance of mainstream vision models across the board.

5.4.3 Scaling Properties
We now study scaling properties of our training recipe, including scaling up (1) the model size, (2)
the training set size, and (3) the previously known successful recipe of scaling up batch size.

Scaling up model size. DP-SGD training is generally unfavorable to large models because the
noise magnitude increases with model size. Interestingly, we show that model performance in fact
improves by scaling up model size using our training recipe. Specifically, we change the MAE-
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encoder size while fixing the MAE-decoder size, resulting in five different model sizes from MAE-
Nano to MAE-Large; Table D.1 in Appendix D.1.1) gives architecture details including number of
parameters. All models are trained to satisfy the same (ϵ, δ)-DP guarantee with ϵ = 8.

Figure 5.4a plots the training curve for the different-sized models. At the beginning of DP
training, due to synthetic pre-training, a larger MAE model can learn more expressive features
and hence the MAE training loss on LAION233M decreases as model size increases. Intriguingly,
the training losses of MAE-Small/Base/Large are similar at the beginning, but larger ViT models
achieve faster convergence despite the large amount of DP noise. Although similar observations on
larger models converge faster have also been described in the context of non-private learning [162],
the fact that we observe the same phenomenon in Figure 5.4a suggests that model scaling can be
effective even for private learning under our training recipe.

Figure 5.5 shows the effect of model scaling on downstream linear probing and fine-tuning
performance. In particular, the effective reduction in training loss shown in Figure 5.4a indeed
translates to better downstream performance, with larger ViP model consistently achieving better
accuracy without modifications to the training process. Moreover, comparing ViP with synthetic
pre-training (blue line) vs. random initialization (gray line) shows that synthetic pre-training is
crucial for unlocking this scaling behavior: the difference in performance between MAE-Large
and MAE-Nano is much smaller when the model is randomly initialized.

Scaling up dataset size. Next, we investigate the effect of scaling up the number of training
samples in ViP training. We vary the training dataset size from 2M to 23M to 233M while choosing
the magnitude of injected noise σ so that models trained on different dataset sizes satisfy (ϵ, δn)-
DP guarantee with ϵ = 8 and δn = 1/2n, where n is the number of training samples. Table D.8
shows downstream evaluation results. The first row corresponds to the synthetically pre-trained
ViP model and rows 2-4 correspond to DP-trained ViP models with different dataset sizes. As
expected, a larger pre-training dataset size results in a higher-utility ViP model. For example,
scaling from 2M to 233M gives 3.1% linear probing accuracy gain on ImageNet-1K (from 52.6%
to 55.7%). Given that the collection of large labeled datasets is very costly in practice, these results
highlight the significance of self-supervised learning in DP training.

Scaling up batch size. Scaling up the training batch size is a known effective way to achieve
strong performance in DP supervised learning [160]. We analyze the effect of batch size in training
ViP models and show that the same observation holds for DP self-supervised learning. We consider
three different batch sizeB ∈ {8192, 32768, 98304}, and keep the computational budget—number
of per-sample gradient computation—the same for all batch sizes. We then select the noise σ such
that models trained with different batch size satisfy the same (ϵ, δ)-DP. As shown in Figure 5.4b,
we find that larger batch size leads to better stability in the training process as well as faster con-
vergence under the same computational budget. Rows 5-7 in Table D.8 demonstrate that larger
batch size also translates to a substantial improvement in ViP’s transfer learning performance.
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5.5 Discussion and Future Work
We developed a recipe for DP self-supervised learning of foundation vision models, and showed
that the resulting model—ViP—can achieve downstream performance matching or exceeding that
of mainstream non-private models such as SimCLR (with ImageNet-1K pre-training). Our work
shows the potential of scaling DP training to internet-scale unlabeled datasets and presents several
opportunities for future work. 1. Our recipe adapted MAE to DP-SGD training with minimal
modifications. It may be possible to design more specialized SSL training algorithms that con-
form to the requirements of DP-SGD and are more effective at learning useful representations. 2.
Multi-modal SSL is generally more effective than single-modality pre-training due to the additional
supervision from cross-modal alignment [185]. However, existing multi-modal SSL methods are
mostly based on contrastive learning (e.g., CLIP [201], SLIP [185] and FLIP [161]) and do not
admit per-sample gradient computation. Recent work [114] investigated how to fine-tune CLIP on
vision-language tasks with DP guarantee. Additional work may be needed to adapt these methods
to DP-SGD training.
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Appendix A

Appendix: Representation Learning via
Maximal Coding Rate Reduction

This section is organized as follows. We present background and preliminary results for the
log det(·) function and the coding rate function in Section A.1.1. Then, Section A.1.2 and A.1.3
provide technical lemmas for bounding the coding rate and coding rate reduction functions, re-
spectively. Such lemmas are key results for proving our main theoretical results, which are stated
informally in Theorem 2.2.1 and formally in Section A.1.4. Finally, proof of our main theoretical
results is provided in Section A.1.5.

Notations Throughout this section, we use Sd
++, R+ and Z++ to denote the set of symmetric

positive definite matrices of size d×d, nonnegative real numbers and positive integers, respectively.

A.1 Deferred Proofs

A.1.1 Preliminaries
Properties of the log det(·) function.

Lemma A.1.1. The function log det(·) : Sd
++ → R is strictly concave. That is,

log det((1− α)Z1 + αZ2)) ≥ (1− α) log det(Z1) + α log det(Z2)

for any α ∈ (0, 1) and {Z1,Z2} ⊆ Sd
++, with equality holds if and only if Z1 = Z2.

Proof. Consider an arbitrary line given by Z = Z0 + t∆Z where Z0 and ∆Z ̸= 0 are symmetric
matrices of size d × d. Let f(t) .

= log det(Z0 + t∆Z) be a function defined on an interval of
values of t for which Z0 + t∆Z ∈ Sd

++. Following the same argument as in [25], we may assume
Z0 ∈ Sd

++ and get

f(t) = log detZ0 +
d∑

i=1

log(1 + tλi),
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where {λi}di=1 are eigenvalues of Z
− 1

2
0 ∆ZZ

− 1
2

0 . The second order derivative of f(t) is given by

f ′′(t) = −
d∑

i=1

λ2i
(1 + tλi)2

< 0.

Therefore, f(t) is strictly concave along the line Z = Z0 + t∆Z. By definition, we conclude that
log det(·) is strictly concave.

Properties of the coding rate function. The following properties, also known as the Sylvester’s
determinant theorem, for the coding rate function are known in the paper [172].

Lemma A.1.2 (Commutative property [172]). For any Z ∈ Rd×m we have

R(Z, ϵ)
.
=

1

2
log det

(
I +

d

mϵ2
ZZ⊤

)
=

1

2
log det

(
I +

d

mϵ2
Z⊤Z

)
.

Lemma A.1.3 (Invariant property [172]). For any Z ∈ Rd×m and any orthogonal matrices U ∈
Rd×d and V ∈ Rm×m we have

R(Z, ϵ) = R(UZV ⊤, ϵ).

A.1.2 Lower and Upper Bounds for Coding Rate
The following result provides an upper and a lower bound on the coding rate of Z as a function
of the coding rate for its components {Zj}kj=1. The lower bound is tight when all the components
{Zj}kj=1 have the same covariance (assuming that they have zero mean). The upper bound is tight
when the components {Zj}kj=1 are pair-wise orthogonal.

Lemma A.1.4. For any {Zj ∈ Rd×mj}kj=1 and any ϵ > 0, let Z = [Z1, · · · ,Zk] ∈ Rd×m with
m =

∑k
j=1mj . We have

k∑

j=1

mj

2
log det

(
I +

d

mjϵ2
ZjZ

⊤
j

)
≤ m

2
log det

(
I +

d

mϵ2
ZZ⊤

)

≤
k∑

j=1

m

2
log det

(
I +

d

mϵ2
ZjZ

⊤
j

)
,

(A.1)

where the first equality holds if and only if

Z1Z
⊤
1

m1

=
Z2Z

⊤
2

m2

= · · · = ZkZ
⊤
k

mk

,

and the second equality holds if and only if Z⊤
j1
Zj2 = 0 for all 1 ≤ j1 < j2 ≤ k.
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Proof. By Lemma A.1.1, log det(·) is strictly concave. Therefore,

log det
( k∑

j=1

αjSj

)
≥

k∑

j=1

αj log det(Sj), for all {αj > 0}kj=1,

k∑

j=1

αj = 1 and {Sj ∈ Sd
++}kj=1,

where equality holds if and only if S1 = S2 = · · · = Sk. Take αj =
mj

m
and Sj = I + d

mjϵ2
ZjZ

⊤
j ,

we get
m

2
log det

(
I +

d

mϵ2
ZZ⊤

)
≥

k∑

j=1

mj

2
log det

(
I +

d

mjϵ2
ZjZ

⊤
j

)
,

with equality holds if and only if Z1Z⊤
1

m1
= · · · = ZkZ

⊤
k

mk
. This proves the lower bound in (A.1).

We now prove the upper bound. By the strict concavity of log det(·), we have

log det(Q) ≤ log det(S) + ⟨∇ log det(S), Q− S⟩, for all {Q,S} ⊆ Sm
++,

where equality holds if and only if Q = S. Plugging in ∇ log det(S) = S−1 (see e.g., [25]) and
S−1 = (S−1)⊤ gives

log det(Q) ≤ log det(S) + tr(S−1Q)−m. (A.2)

We now take

Q = I +
d

mϵ2
Z⊤Z = I +

d

mϵ2




Z⊤
1 Z1 Z⊤

1 Z2 · · · Z⊤
1 Zk

Z⊤
2 Z1 Z⊤

2 Z2 · · · Z⊤
2 Z2

...
... . . . ...

Z⊤
k Z1 Z⊤

k Z2 · · · Z⊤
k Zk


 , and (A.3)

S = I +
d

mϵ2




Z⊤
1 Z1 0 · · · 0
0 Z⊤

2 Z2 · · · 0
...

... . . . ...
0 0 · · · Z⊤

k Zk


 .

From the property of determinant for block diagonal matrix, we have

log det(S) =
k∑

j=1

log det

(
I +

d

mϵ2
Z⊤

j Zj

)
. (A.4)

Also, note that

tr(S−1Q)

= tr



(I + d

mϵ2
Z⊤

1 Z1)
−1(I + d

mϵ2
Z⊤

1 Z1) · · · (I + d
mϵ2

Z⊤
1 Z1)

−1(I + d
mϵ2

Z⊤
1 Zk)

... . . . ...
(I + d

mϵ2
Z⊤

k Zk)
−1(I + d

mϵ2
Z⊤

k Z1) · · · (I + d
mϵ2

Z⊤
k Zk)

−1(I + d
mϵ2

Z⊤
k Zk)




= tr



I · · · ∗
... . . . ...
∗ · · · I


 = m, (A.5)
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where “*” denotes nonzero quantities that are irrelevant for the purpose of computing the trace.
Plugging (A.4) and (A.5) back in (A.2) gives

m

2
log det

(
I +

d

mϵ2
Z⊤Z

)
≤

k∑

j=1

m

2
log det

(
I +

d

mϵ2
Z⊤

j Zj

)
,

where the equality holds if and only if Q = S, which by the formulation in (A.3), holds if and
only if Z⊤

j1
Zj2 = 0 for all 1 ≤ j1 < j2 ≤ k. Further using the result in Lemma A.1.2 gives

m

2
log det

(
I +

d

mϵ2
ZZ⊤

)
≤

k∑

j=1

m

2
log det

(
I +

d

mϵ2
ZjZ

⊤
j

)
,

which produces the upper bound in (A.1).

A.1.3 An Upper Bound on Coding Rate Reduction
We may now provide an upper bound on the coding rate reduction ∆R(Z,Π, ϵ) (defined in (2.8))
in terms of its individual components {Zj}kj=1.

Lemma A.1.5. For any Z ∈ Rd×m,Π ∈ Ω and ϵ > 0, let Zj ∈ Rd×mj be ZΠj with zero columns
removed. We have

∆R(Z,Π, ϵ) ≤
k∑

j=1

1

2m
log


 detm

(
I + d

mϵ2
ZjZ

⊤
j

)

detmj

(
I + d

mjϵ2
ZjZ⊤

j

)


 , (A.6)

with equality holds if and only if Z⊤
j1
Zj2 = 0 for all 1 ≤ j1 < j2 ≤ k.
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Proof. From (2.4), (2.5) and (2.6), we have

∆R(Z,Π, ϵ)

= R(Z, ϵ)−Rc(Z, ϵ | Π)

=
1

2
log

(
det

(
I +

d

mϵ2
ZZ⊤

))
−

k∑

j=1

{
tr(Πj)

2m
log

(
det

(
I + d

ZΠjZ
⊤

tr(Πj)ϵ2

))}

=
1

2
log

(
det

(
I +

d

mϵ2
ZZ⊤

))
−

k∑

j=1

{
mj

2m
log

(
det

(
I + d

ZjZ
⊤
j

mjϵ2

))}

≤
k∑

j=1

1

2
log

(
det

(
I +

d

mϵ2
ZjZ

⊤
j

))
−

k∑

j=1

{
mj

2m
log

(
det

(
I + d

ZjZ
⊤
j

mjϵ2

))}

=
k∑

j=1

1

2m
log

(
detm

(
I +

d

mϵ2
ZjZ

⊤
j

))
−

k∑

j=1

{
1

2m
log

(
detmj

(
I + d

ZjZ
⊤
j

mjϵ2

))}

=
k∑

j=1

1

2m
log


 detm

(
I + d

mϵ2
ZjZ

⊤
j

)

detmj

(
I + d

mjϵ2
ZjZ⊤

j

)


 ,

where the inequality follows from the upper bound in Lemma A.1.4, and that the equality holds if
and only if Z⊤

j1
Zj2 = 0 for all 1 ≤ j1 < j2 ≤ k.

A.1.4 Main Results: Properties of Maximal Coding Rate Reduction
We now present our main theoretical results. The following theorem states that for any fixed
encoding of the partition Π, the coding rate reduction is maximized by data Z that is maximally
discriminative between different classes and is diverse within each of the classes. This result holds
provided that the sum of rank for different classes is small relative to the ambient dimension, and
that ϵ is small.

Theorem A.1.6. Let Π = {Πj ∈ Rm×m}kj=1 with {Πj ≥ 0}kj=1 and Π1 + · · · + Πk = I be a
given set of diagonal matrices whose diagonal entries encode the membership of the m samples in
the k classes. Given any ϵ > 0, d > 0 and {d ≥ dj > 0}kj=1, consider the optimization problem

Z∗ ∈ argmax
Z∈Rd×m

∆R(Z,Π, ϵ)

s.t. ∥ZΠj∥2F = tr(Πj), rank(ZΠj) ≤ dj, ∀j ∈ {1, . . . , k}.
(A.7)

Under the conditions

• (Large ambient dimension) d ≥∑k
j=1 dj , and

• (High coding precision) ϵ4 < minj∈{1,...,k}
{

1
16

tr(Πj)

m
d2

d2j

}
,
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the optimal solution Z∗ satisfies

• (Between-class discriminative) (Z∗
j1
)⊤Z∗

j2
= 0 for all 1 ≤ j1 < j2 ≤ k, i.e., Z∗

j1
and Z∗

j2
lie

in orthogonal subspaces, and

• (Within-class diverse) For each j ∈ {1, . . . , k}, the rank of Z∗
j is equal to dj and either all

singular values of Z∗
j are equal to tr(Πj)

dj
, or the dj − 1 largest singular values of Z∗

j are

equal and have value larger than tr(Πj)

dj
,

where Z∗
j ∈ Rd×tr(Πj) denotes Z∗Πj with zero columns removed.

A.1.5 Proof of Main Results
We start with presenting a lemma that will be used in the proof to Theorem A.1.6. Refer to [264]
for detailed proof.

Lemma A.1.7. Given any twice differentiable f : R+ → R, integer r ∈ Z++ and c = (m/K) ∈
R+, consider the optimization problem

max
x

r∑

p=1

f(xp)

s.t. x = [x1, . . . , xr] ∈ Rr
+, x1 ≥ x2 ≥ · · · ≥ xr, and

r∑

p=1

xp = c.

(A.8)

Let x∗ be an arbitrary global solution to (A.8). If the function f(·) is defined as

f(x;α,m,K) = log(1 + αx)− 1

K
log(1 +Kαx), (A.9)

where α ≥ 4r
√
K/m > 0 and m,K > 0 are constant. then we have either

• x∗ = [ c
r
, . . . , c

r
], or

• x∗ = [xH , . . . , xH , xL] for some xH ∈ ( c
r
, c
r−1

) and xL > 0.

Next we provide the missing proofs for Theorem A.1.6.

Proof of Theorem A.1.6. Without loss of generality, let Z∗ = [Z∗
1 , . . . ,Z

∗
k ] be the optimal solution

of problem (A.7).
To show that Z∗

j , j ∈ {1, . . . , k} are pairwise orthogonal, suppose for the purpose of arriving
at a contradiction that (Z∗

j1
)⊤Z∗

j2
̸= 0 for some 1 ≤ j1 < j2 ≤ k. By using Lemma A.1.5, the

strict inequality in (A.6) holds for the optimal solution Z∗. That is,

∆R(Z∗,Π, ϵ) <
k∑

j=1

1

2m
log


 detm

(
I + d

mϵ2
Z∗

j (Z
∗
j )

⊤)

detmj

(
I + d

mjϵ2
Z∗

j (Z
∗
j )

⊤
)


 . (A.10)
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On the other hand, since
∑k

j=1 dj ≤ d, there exists {U ′
j ∈ Rd×dj}kj=1 such that the columns of the

matrix [U ′
1, . . . ,U

′
k] are orthonormal. Denote Z∗

j = U ∗
j Σ

∗
j(V

∗
j )

⊤ the compact SVD of Z∗
j , and let

Z ′ = [Z ′
1, . . . ,Z

′
k], where Z ′

j = U ′
jΣ

∗
j(V

∗
j )

⊤.

It follows that

(Z ′
j1
)⊤Z ′

j2
= V ∗

j1
Σ∗

j1
(U ′

j1
)⊤U ′

j2
Σ∗

j2
(V ∗

j2
)⊤ = V ∗

j1
Σ∗

j1
0Σ∗

j2
(V ∗

j2
)⊤ = 0 for all 1 ≤ j1 < j2 ≤ k.

That is, the matrices Z ′
1, . . . ,Z

′
k are pairwise orthogonal. Applying Lemma A.1.5 for Z ′ gives

∆R(Z ′,Π, ϵ) =
k∑

j=1

1

2m
log


 detm

(
I + d

mϵ2
Z ′

j(Z
′
j)

⊤)

detmj

(
I + d

mjϵ2
Z ′

j(Z
′
j)

⊤
)




=
k∑

j=1

1

2m
log


 detm

(
I + d

mϵ2
Z∗

j (Z
∗
j )

⊤)

detmj

(
I + d

mjϵ2
Z∗

j (Z
∗
j )

⊤
)


 ,

(A.11)

where the second equality follows from Lemma A.1.3. Comparing (A.10) and (A.11) gives ∆R(Z ′,Π, ϵ) >
∆R(Z∗,Π, ϵ), which contradicts the optimality of Z∗. Therefore, we must have

(Z∗
j1
)⊤Z∗

j2
= 0 for all 1 ≤ j1 < j2 ≤ k.

Moreover, from Lemma A.1.3 we have

∆R(Z∗,Π, ϵ) =
k∑

j=1

1

2m
log


 detm

(
I + d

mϵ2
Z∗

j (Z
∗
j )

⊤)

detmj

(
I + d

mjϵ2
Z∗

j (Z
∗
j )

⊤
)


 . (A.12)

We now prove the result concerning the singular values of Z∗
j . To start with, we claim that the

following result holds:

Z∗
j ∈ argmax

Zj

log


 detm

(
I + d

mϵ2
ZjZ

⊤
j

)

detmj

(
I + d

mjϵ2
ZjZ⊤

j

)


 s.t. ∥Zj∥2F = mj, rank(Zj) ≤ dj. (A.13)

To see why (A.13) holds, suppose that there exists Z̃j such that ∥Z̃j∥2F = mj , rank(Z̃j) ≤ dj and

log




detm
(
I + d

mϵ2
Z̃jZ̃

⊤
j

)

detmj

(
I + d

mjϵ2
Z̃jZ̃⊤

j

)


 > log


 detm

(
I + d

mϵ2
Z∗

j (Z
∗
j )

⊤)

detmj

(
I + d

mjϵ2
Z∗

j (Z
∗
j )

⊤
)


 . (A.14)

Denote Z̃j = ŨjΣ̃jṼ
⊤
j the compact SVD of Z̃j and let

Z ′ = [Z∗
1 , . . . ,Z

∗
j−1,Z

′
j,Z

∗
j+1, . . . ,Z

∗
k ], where Z ′

j := U ∗
j Σ̃jṼ

⊤
j .
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Note that ∥Z ′
j∥2F = mj , rank(Z ′

j) ≤ dj and (Z ′
j)

⊤Z∗
j′ = 0 for all j′ ̸= j. It follows that Z ′

is a feasible solution to (A.7) and that the components of Z ′ are pairwise orthogonal. By using
Lemma A.1.5, Lemma A.1.3 and (A.14) we have

∆R(Z ′,Π, ϵ)

=
1

2m
log


 detm

(
I + d

mϵ2
Z ′

j(Z
′
j)

⊤)

detmj

(
I + d

mjϵ2
Z ′

j(Z
′
j)

⊤
)


+

∑

j′ ̸=j

1

2m
log


 detm

(
I + d

mϵ2
Z∗

j′(Z
∗
j′)

⊤)

detmj′
(
I + d

mj′ϵ
2Z∗

j′(Z
∗
j′)

⊤
)




=
1

2m
log




detm
(
I + d

mϵ2
Z̃j(Z̃j)

⊤
)

detmj

(
I + d

mjϵ2
Z̃j(Z̃j)⊤

)


+

∑

j′ ̸=j

1

2m
log


 detm

(
I + d

mϵ2
Z∗

j′(Z
∗
j′)

⊤)

detmj′
(
I + d

mj′ϵ
2Z∗

j′(Z
∗
j′)

⊤
)




>
1

2m
log


 detm

(
I + d

mϵ2
Z∗

j (Z
∗
j )

⊤)

detmj

(
I + d

mjϵ2
Z∗

j (Z
∗
j )

⊤
)


+

∑

j′ ̸=j

1

2m
log


 detm

(
I + d

mϵ2
Z∗

j′(Z
∗
j′)

⊤)

detmj′
(
I + d

mj′ϵ
2Z∗

j′(Z
∗
j′)

⊤
)




=
k∑

j=1

1

2m
log


 detm

(
I + d

mϵ2
Z∗

j (Z
∗
j )

⊤)

detmj

(
I + d

mjϵ2
Z∗

j (Z
∗
j )

⊤
)


 .

Combining it with (A.12) shows ∆R(Z ′,Π, ϵ) > ∆R(Z∗,Π, ϵ), contradicting the optimality of
Z∗. Therefore, the result in (A.13) holds.

Observe that the optimization problem in (A.13) depends on Zj only through its singular val-
ues. That is, by letting σj := [σ1,j, . . . , σmin(mj ,d),j] be the singular values of Zj , we have

log


 detm

(
I + d

mϵ2
ZjZ

⊤
j

)

detmj

(
I + d

mjϵ2
ZjZ⊤

j

)


 =

min{mj ,d}∑

p=1

log

(
(1 + d

mϵ2
σ2
p,j)

m

(1 + d
mjϵ2

σ2
p,j)

mj

)
,

also, we have

∥Zj∥2F =

min{mj ,d}∑

p=1

σ2
p,j and rank(Zj) = ∥σj∥0.

Using these relations, (A.13) is equivalent to

max
σj∈R

min{mj,d}
+

min{mj ,d}∑

p=1

log

(
(1 + d

mϵ2
σ2
p,j)

m

(1 + d
mjϵ2

σ2
p,j)

mj

)

s.t.
min{mj ,d}∑

p=1

σ2
p,j = mj, and rank(Zj) = ∥σj∥0

(A.15)

Let σ∗
j = [σ∗

1,j, . . . , σ
∗
min{mj ,d},j] be an optimal solution to (A.15). Without loss of generality we

assume that the entries of σ∗
j are sorted in descending order. It follows that

σ∗
p,j = 0 for all p > dj,
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and

[σ∗
1,j, . . . , σ

∗
dj ,j

] = argmax
[σ1,j ,...,σdj,j

]∈Rdj
+

σ1,j≥···≥σdj,j

dj∑

p=1

log

(
(1 + d

mϵ2
σ2
p,j)

m

(1 + d
mjϵ2

σ2
p,j)

mj

)
s.t.

dj∑

p=1

σ2
p,j = mj. (A.16)

Then we define

f(x; d, ϵ,mj,m) = log

(
(1 + d

mϵ2
x)m

(1 + d
mjϵ2

x)mj

)
,

and rewrite (A.16) as

max
[x1,...,xdj

]∈Rdj
+

x1≥···≥xdj

dj∑

p=1

f(xp; d, ϵ,mj,m) s.t.
dj∑

p=1

xp = mj. (A.17)

We compute the first and second derivative for f with respect to x, which are given by

f ′(x; d, ϵ,mj,m) =
d2x(m−mj)

(dx+mϵ2)(dx+mjϵ2)
,

f ′′(x; d, ϵ,mj,m) =
d2(m−mj)(mmjϵ

4 − d2x2)

(dx+mϵ2)2(dx+mjϵ2)2
.

Therefore, we now apply Lemma A.1.7 and conclude that the unique optimal solution to (A.17) is
either

• x∗ = [
mj

dj
, . . . ,

mj

dj
], or

• x∗ = [xH , . . . , xH , xL] for some xH ∈ (
mj

dj
,

mj

dj−1
) and xL > 0.

Equivalently, we have either

• [σ∗
1,j, . . . , σ

∗
dj ,j

] =
[√

mj

dj
, . . . ,

√
mj

dj

]
, or

• [σ∗
1,j, . . . , σ

∗
dj ,j

] = [σH , . . . , σH , σL] for some σH ∈
(√

mj

dj
,
√

mj

dj−1

)
and σL > 0,

as claimed.

A.2 Additional Simulations and Experiments

A.2.1 Simulations - Verifying Diversity Promoting Properties of MCR2

As proved in Theorem A.1.6, the proposed MCR2 objective promotes within-class diversity. In
this section, we use simulated data to verify the diversity promoting property of MCR2. As shown
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in Table A.1, we calculate our proposed MCR2 objective on simulated data. We observe that
orthogonal subspaces with higher dimension achieve higher MCR2 value, which is consistent with
our theoretical analysis in Theorem A.1.6.

A.2.2 Implementation Details
Training Setting. We mainly use ResNet-18 [100] in our experiments, where we use 4 residual
blocks with layer widths [64, 128, 256, 512]. The implementation of network architectures used in
this work are mainly based on this github repo.1 For data augmentation in the supervised setting,
we apply the RandomCrop and RandomHorizontalFlip. For the supervised setting, we
train the models for 500 epochs and use stage-wise learning rate decay every 200 epochs (decay by
a factor of 10). For the supervised setting, we train the models for 100 epochs and use stage-wise
learning rate decay at 20-th epoch and 40-th epoch (decay by a factor of 10).

Evaluation Details. For the supervised setting, we set the number of principal components for
nearest subspace classifier rj = 30. We also study the effect of rj in Section A.2.3.2. For the
CIFAR100 dataset, we consider 20 superclasses and set the cluster number as 20, which is the
same setting as in [34, 276].

Datasets. We apply the default datasets in PyTorch, including CIFAR10, CIFAR100, and STL10.

Augmentations T used for the self-supervised setting. We apply the same data augmentation
for CIFAR10 dataset and CIFAR100 dataset and the pseudo-code is as follows.

import torchvision.transforms as transforms
TRANSFORM = transforms.Compose([

transforms.RandomResizedCrop(32),
transforms.RandomHorizontalFlip(),
transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor()])

The augmentations we use for STL10 dataset and the pseudo-code is as follows.

import torchvision.transforms as transforms
TRANSFORM = transforms.Compose([

transforms.RandomResizedCrop(96),
transforms.RandomHorizontalFlip(),
transforms.RandomApply([transforms.ColorJitter(0.8, 0.8, 0.8, 0.2)], p=0.8),
transforms.RandomGrayscale(p=0.2),
GaussianBlur(kernel_size=9),
transforms.ToTensor()])

1https://github.com/kuangliu/pytorch-cifar

https://github.com/kuangliu/pytorch-cifar
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(a) PCA: MCR2 training learned
features for overall data.
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(b) PCA: MCR2 training learned
features for overall data.
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(c) PCA: MCR2 training learned
features for every class.
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(d) PCA: cross-entropy training
learned features for overall data.
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(e) PCA: cross-entropy training
learned features for overall data.
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(f) PCA: cross-entropy training
learned features for every class.

Figure A.1: Principal component analysis (PCA) of learned representations for the MCR2 trained
model (first row) and the cross-entropy trained model (second row). In (a) and (d), we visualize
the first 30 components.

Cross-entropy training details. For CE models presented in Table 2.1, Figure A.1d-A.1f, and
Figure A.2, we use the same network architecture, ResNet-18 [100], for cross-entropy training on
CIFAR10, and set the output dimension as 10 for the last layer. We apply SGD, and set learning rate
lr=0.1, momentum momentum=0.9, and weight decay wd= 5e-4. We set the total number
of training epoch as 400, and use stage-wise learning rate decay every 150 epochs (decay by a
factor of 10).

A.2.3 Additional Experimental Results
A.2.3.1 PCA Results of MCR2 Training versus Cross-Entropy Training

For comparison, similar to Figure 2.3c, we calculate the principle components of representations
learned by MCR2 training and cross-entropy training. For cross-entropy training, we take the out-
put of the second last layer as the learned representation. The results are summarized in Figure A.1.
We also compare the cosine similarity between learned representations for both MCR2 training and
cross-entropy training, and the results are presented in Figure A.2.

As shown in Figure A.1, we observe that representations learned by MCR2 are much more
diverse, the dimension of learned features (each class) is around a dozen, and the dimension of the
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Figure A.2: Cosine similarity between learned features by using the MCR2 objective (left) and CE loss
(right).
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(b) Ship

Figure A.3: Visualization of principal components learned for class 2-’Bird’ and class 8-’Ship’.
For each class j, we first compute the top-10 singular vectors of the SVD of the learned features
Zj . Then for the l-th singular vector of class j, ul

j , and for the feature of the i-th image of class
j, zi

j , we calculate the absolute value of inner product, |⟨zi
j,u

l
j⟩|, then we select the top-10 images

according to |⟨zi
j,u

l
j⟩| for each singular vector. In the above two figures, each row corresponds to

one singular vector (component Cl). The rows are sorted based on the magnitude of the associated
singular values, from large to small.
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(a) 10 representative images from each class
based on top-10 principal components of the SVD
of learned representations by MCR2.
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(b) Randomly selected 10 images from each class.

Figure A.4: Visualization of top-10 “principal” images for each class in the CIFAR10 dataset. (a) For each
class-j, we first compute the top-10 singular vectors of the SVD of the learned features Zj . Then for the l-th
singular vector of class j, ul

j , and for the feature of the i-th image of class j, zi
j , we calculate the absolute

value of inner product, |⟨zi
j ,u

l
j⟩|, then we select the largest one for each singular vector within class j. Each

row corresponds to one class, and each image corresponds to one singular vector, ordered by the value of the
associated singular value. (b) For each class, 10 images are randomly selected in the dataset. These images
are the ones displayed in the CIFAR dataset website [144].

overall features is nearly 120, and the output dimension is 128. In contrast, the dimension of the
overall features learned using entropy is slightly greater than 10, which is much smaller than that
learned by MCR2. From Figure A.2, for MCR2 training, we find that the features of different class
are almost orthogonal.

Visualize representative images selected from CIFAR10 dataset by using MCR2. As men-
tioned in Section 2.1, obtaining the properties of desired representation in the proposed MCR2

principle is equivalent to performing nonlinear generalized principle components on the given
dataset. As shown in Figure A.1a-A.1c, MCR2 can indeed learn such diverse and discriminative
representations. In order to better interpret the representations learned by MCR2, we select images
according to their “principal” components (singular vectors using SVD) of the learned features. In
Figure A.3, we visualize images selected from class-‘Bird’ and class-‘Ship’. For each class, we
first compute top-10 singular vectors of the SVD of the learned features and then for each of the
top singular vectors, we display in each row the top-10 images whose corresponding features are
closest to the singular vector. As shown in Figure A.3, we observe that images in the same row
share many common characteristics such as shapes, textures, patterns, and styles, whereas images
in different rows are significantly different from each other – suggesting our method captures all
the different “modes” of the data even within the same class. Notice that top rows are associated
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with components with larger singular values, hence they are images that show up more frequently
in the dataset.

In Figure A.4a, we visualize the 10 “principal” images selected from CIFAR10 for each of the
10 classes. That is, for each class, we display the 10 images whose corresponding features are
most coherent with the top-10 singular vectors. We observe that the selected images are much
more diverse and representative than those selected randomly from the dataset (displayed on the
CIFAR official website), indicating such principal images can be used as a good “summary” of the
dataset.

A.2.3.2 Experimental Results of MCR2 in the Supervised Learning Setting.

Training details for mainline experiment. For the model presented in Figure 2.1 (Right) and
Figure 2.3, we use ResNet-18 to parameterize f(·, θ), and we set the output dimension d = 128,
precision ϵ2 = 0.5, mini-batch size m = 1, 000. We use SGD in Pytorch [196] as the optimizer,
and set the learning rate lr=0.01, weight decay wd=5e-4, and momentum=0.9.

Experiments for studying the effect of hyperparameters and architectures. We present the
experimental results of MCR2 training in the supervised setting by using various training hyper-
parameters and different network architectures. The results are summarized in Table A.2. Besides
the ResNet architecture, we also consider VGG architecture [223] and ResNext achitecture [280].
From Table A.2, we find that larger batch size m can lead to better performance. Also, models
with higher output dimension d require larger training batch size m.

Effect of rj on classification. Unless otherwise stated, we set the number of components rj = 30
for nearest subspace classification. We study the effect of rj when used for classification, and the
results are summarized in Table A.3. We observe that the nearest subspace classification works for
a wide range of rj .

Effect of ϵ2 on learning from corrupted labels. To further study the proposed MCR2 on learn-
ing from corrupted labels, we use different precision parameters, ϵ2 = 0.75, 1.0, in addition to the
one shown in Table 2.1. Except for the precision parameter ϵ2, all the other parameters are the
same as the mainline experiment (the first row in Table A.2). The first row (ϵ2 = 0.5) in Table A.4
is identical to the MCR2 TRAINING in Table 2.2. Notice that with slightly different choices in ϵ2,
one might even see slightly improved performance over the ones reported in the main body.

A.2.4 Comparison with Related Work on Label Noise
We compare the proposed MCR2 with OLE [153], Large Margin Deep Networks [67], and ITLM [220]
in label noise robustness experiments on CIFAR10 dataset. In Table A.5, we compare MCR2 with
OLE [153] and Large Margin Deep Networks [67] on the corrupted label task using the same
network, MCR2 achieves significant better performance. We compare MCR2 with ITLM [220]
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using the same network. MCR2 achieves better performance without any noise ratio dependent
hyperparameters as required by [220].

A.2.4.1 Experimental Results of MCR2 in the Self-supervised Learning Setting

Training details of MCR2-CTRL. For three datasets (CIFAR10, CIFAR100, and STL10), we
use ResNet-18 as in the supervised setting, and we set the output dimension d = 128, precision
ϵ2 = 0.5, mini-batch size k = 20, number of augmentations n = 50, γ1 = γ2 = 20. We observe
that MCR2-CTRL can achieve better clustering performance by using smaller γ2, i.e., γ2 = 15, on
CIFAR10 and CIFAR100 datasets. We use SGD in Pytorch [196] as the optimizer, and set the
learning rate lr=0.1, weight decay wd=5e-4, and momentum=0.9.

Training dynamic comparison between MCR2 and MCR2-CTRL . In the self-supervised set-
ting, we compare the training process for MCR2 and MCR2-CTRL in terms of R, R̃, Rc, and ∆R.
For MCR2 training, the features first expand (for both R and Rc) then compress (for ). For MCR2-
CTRL, both R̃ and Rc first compress then R̃ expands quickly and Rc remains small, as we have seen
in Figure 2.5 in the main body.

Clustering results comparison. We compare the clustering performance between MCR2 and
MCR2-CTRL in terms of NMI, ACC, and ARI. The clustering results are summarized in Table A.6.
We find that MCR2-CTRL can achieve better performance for clustering.

A.2.4.2 Clustering Metrics and More Results

We first introduce the definitions of normalized mutual information (NMI) [236], clustering accu-
racy (ACC), and adjusted rand index (ARI) [116].

Normalized mutual information (NMI). Suppose Y is the ground truth partition and C is the
prediction partition. The NMI metric is defined as

NMI(Y,C) =

∑k
i=1

∑s
j=1 |Yi ∩ Cj| log

(
m|Yi∩Cj |
|Yi||Cj |

)

√(∑k
i=1 |Yi| log

(
|Yi|
m

))(∑s
j=1 |Cj| log

(
|Cj |
m

)) ,

where Yi is the i-th cluster in Y and Cj is the j-th cluster in C, and m is the total number of
samples.

Clustering accuracy (ACC). Given m samples, {(xi,yi)}mi=1. For the i-th sample xi, let yi be its
ground truth label, and let ci be its cluster label. The ACC metric is defined as

ACC(Y ,C) = max
σ∈S

∑m
i=1 1{yi = σ(ci)}

m
,
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where S is the set includes all the one-to-one mappings from cluster to label, and Y = [y1, . . . ,ym],
C = [c1, . . . , cm].

Adjusted rand index (ARI). Suppose there are m samples, and let Y and C be two clustering of
these samples, where Y = {Y1, . . . , Yr} and C = {C1, . . . , Cs}. Let mij denote the number of the
intersection between Yi and Cj , i.e., mij = |Yi ∩ Cj|. The ARI metric is defined as

ARI =

∑
ij

(
mij

2

)
−
(∑

i

(
ai
2

)∑
j

(
bj
2

)) /(
m
2

)

1
2

(∑
i

(
ai
2

)
+
∑

j

(
bj
2

))
−
(∑

i

(
ai
2

)∑
j

(
bj
2

)) /(
m
2

) ,

where ai =
∑

j mij and bj =
∑

imij .

Comparison with [125, 113]. We compare MCR2 with IIC [125] and IMSAT [113] in Table A.7.
We find that MCR2 outperforms IIC [125] and IMSAT [113] on both CIFAR10 and CIFAR100 by
a large margin. For STL10, [113] applied pretrained ImageNet models and [125] used more data
for training.

More experiments on the effect of hyperparameters of MCR2-CTRL. We provide more exper-
imental results of MCR2-CTRL training in the self-supervised setting by varying training hyperpa-
rameters on the STL10 dataset. The results are summarized in Table A.8. Notice that the choice of
hyperparameters only has small effect on the performance with the MCR2-CTRL objective. We may
hypothesize that, in order to further improve the performance, one has to seek other, potentially
better, control of optimization dynamics or strategies. We leave those for future investigation.
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Table A.1: MCR2 objective on simulated data. We evaluate the proposed MCR2 objective defined in
(2.8), including R, Rc, and ∆R, on simulated data. The output dimension d is set as 512, 256, and 128. We
set the batch size as m = 1000 and random assign the label of each sample from 0 to 9, i.e., 10 classes. We
generate two types of data: 1) (RANDOM GAUSSIAN) For comparison with data without structures, for each
class we generate random vectors sampled from Gaussian distribution (the dimension is set as the output
dimension d) and normalize each vector to be on the unit sphere. 2) (SUBSPACE) For each class, we generate
vectors sampled from its corresponding subspace with dimension dj and normalize each vector to be on the
unit sphere. We consider the subspaces from different classes are orthogonal/nonorthogonal to each other.

R Rc ∆R Orthogonal? Output Dimension

Random Gaussian 552.70 193.29 360.41 ✓ 512
Subspace (dj = 50) 545.63 108.46 437.17 ✓ 512
Subspace (dj = 40) 487.07 92.71 394.36 ✓ 512
Subspace (dj = 30) 413.08 74.84 338.24 ✓ 512
Subspace (dj = 20) 318.52 54.48 264.04 ✓ 512
Subspace (dj = 10) 195.46 30.97 164.49 ✓ 512
Subspace (dj = 1) 31.18 4.27 26.91 ✓ 512

Random Gaussian 292.71 154.13 138.57 ✓ 256
Subspace (dj = 25) 288.65 56.34 232.31 ✓ 256
Subspace (dj = 20) 253.51 47.58 205.92 ✓ 256
Subspace (dj = 15) 211.97 38.04 173.93 ✓ 256
Subspace (dj = 10) 161.87 27.52 134.35 ✓ 256
Subspace (dj = 5) 98.35 15.55 82.79 ✓ 256
Subspace (dj = 1) 27.73 3.92 23.80 ✓ 256

Random Gaussian 150.05 110.85 39.19 ✓ 128
Subspace (dj = 12) 144.36 27.72 116.63 ✓ 128
Subspace (dj = 10) 129.12 24.06 105.05 ✓ 128
Subspace (dj = 8) 112.01 20.18 91.83 ✓ 128
Subspace (dj = 6) 92.55 16.04 76.51 ✓ 128
Subspace (dj = 4) 69.57 11.51 58.06 ✓ 128
Subspace (dj = 2) 41.68 6.45 35.23 ✓ 128
Subspace (dj = 1) 24.28 3.57 20.70 ✓ 128

Subspace (dj = 50) 145.60 75.31 70.29 ✗ 128
Subspace (dj = 40) 142.69 65.68 77.01 ✗ 128
Subspace (dj = 30) 135.42 54.27 81.15 ✗ 128
Subspace (dj = 20) 120.98 40.71 80.27 ✗ 128
Subspace (dj = 15) 111.10 32.89 78.21 ✗ 128
Subspace (dj = 12) 101.94 27.73 74.21 ✗ 128
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Table A.2: Experiments of MCR2 in the supervised setting on the CIFAR10 dataset.

Arch Dim d Precision ϵ2 BatchSize m lr ACC Comment

ResNet-18 128 0.5 1,000 0.01 92.20% Mainline, Fig 2.3

ResNext-29 128 0.5 1,000 0.01 92.55% Different
ArchitectureVGG-11 128 0.5 1,000 0.01 90.76%

ResNet-18 512 0.5 1,000 0.01 88.60% Effect of
Output
Dimension

ResNet-18 256 0.5 1,000 0.01 92.10%
ResNet-18 64 0.5 1,000 0.01 92.21%

ResNet-18 128 1.0 1,000 0.01 93.06%
Effect of
precision

ResNet-18 128 0.4 1,000 0.01 91.93%
ResNet-18 128 0.2 1,000 0.01 90.06%

ResNet-18 128 0.5 500 0.01 82.33%

Effect of
Batch Size

ResNet-18 128 0.5 2,000 0.01 93.02%
ResNet-18 128 0.5 4,000 0.01 92.59%
ResNet-18 512 0.5 2,000 0.01 92.47%
ResNet-18 512 0.5 4,000 0.01 92.17%

ResNet-18 128 0.5 1,000 0.05 86.02%
Effect of lrResNet-18 128 0.5 1,000 0.005 92.39%

ResNet-18 128 0.5 1,000 0.001 92.23%

Table A.3: Effect of number of components rj for nearest subspace classification in the supervised setting.

Number of components rj = 10 rj = 20 rj = 30 rj = 40 rj = 50

Mainline (Label Noise Ratio=0.0) 92.68% 92.53% 92.20% 92.32% 92.17%

Label Noise Ratio=0.1 91.71% 91.73% 91.16% 91.83% 91.78%
Label Noise Ratio=0.2 90.68% 90.61% 89.70% 90.62% 90.54%
Label Noise Ratio=0.3 88.24% 87.97% 88.18% 88.15% 88.10%
Label Noise Ratio=0.4 86.49% 86.67% 86.66% 86.71% 86.44%
Label Noise Ratio=0.5 83.90% 84.18% 84.30% 84.18% 83.76%

Table A.4: Effect of Precision ϵ2 on classification results with features learned with labels corrupted at
different levels by using MCR2 training.

Precision Ratio=0.1 Ratio=0.2 Ratio=0.3 Ratio=0.4 Ratio=0.5

ϵ2 = 0.5 91.16% 89.70% 88.18% 86.66% 84.30%
ϵ2 = 0.75 92.37% 90.82% 89.91% 87.67% 83.69%
ϵ2 = 1.0 91.93% 91.11% 89.60% 87.09% 84.53%
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Table A.5: Comparison with related work on learning from noisy labels.

ResNet18 Ratio=0.1 Ratio=0.2 Ratio=0.3 Ratio=0.4 Ratio=0.5

OLE [153] 91.04% 86.01% 80.69% 71.79% 61.06%
LargeMargin [67] 90.10% 87.42% 83.77% 78.51% 72.48%
MCR2 91.16% 89.70% 88.18% 86.66% 84.30%

WRN16 Ratio=0.1 Ratio=0.3 Ratio=0.5 Ratio=0.7

ITLM [220] 90.33% 88.23% 82.51% 64.74%
MCR2 91.55% 88.81% 84.25% 67.09%

Table A.6: Clustering comparison between MCR2 and MCR2-CTRL on CIFAR10 dataset.

NMI ACC ARI

MCR2 0.544 0.570 0.399
MCR2-Ctrl 0.630 0.684 0.508

Table A.7: Compare with [125, 113] on clustering.

Dataset Metric IIC IMSAT MCR2-Ctrl

CIFAR10
NMI - - 0.630
ACC 0.617 0.456 0.684
ARI - - 0.508

CIFAR100
NMI - - 0.387
ACC 0.257 0.275 0.375
ARI - - 0.178

Table A.8: Experiments of MCR2-CTRL in the self-supervised setting on STL10 dataset.

Arch Precision ϵ2 Learning Rate lr NMI ACC ARI

ResNet-18 0.5 0.1 0.446 0.491 0.290

ResNet-18 0.75 0.1 0.450 0.484 0.288
ResNet-18 0.25 0.1 0.447 0.489 0.293
ResNet-18 0.5 0.2 0.477 0.473 0.295
ResNet-18 0.5 0.05 0.444 0.496 0.293
ResNet-18 0.25 0.05 0.454 0.489 0.294
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Appendix B

Appendix: Interpretable White-Box
Transformers via Sparse Rate Reduction

B.1 Technical Details for CRATE

B.1.1 Companion to Chapter 3.2.2
We first wish to re-iterate the core contributions of our approach in Chapter 3.2.2 at a slightly more
technical level. Connections between denoising and score matching are well-understood [135],
and computing the optimal denoising function (i.e., the conditional expectation) against a mixture-
of-Gaussians model is a rather simple computation giving existing tools such as Tweedie’s formula
[66]. These are not our main contributions. Instead, the main contributions of Chapter 3.2.2 are
two-fold:

• First, we demonstrate a mechanism to learn representations via denoising within a idealized
mixture of Gaussian data model for a single token (i.e., with sequence length N = 1).

• Second, we illustrate the similarities between a such-derived representation learning scheme
and existing self-attention layers within the transformer (with sequence length 1), thus demon-
strating an interpretation of the self-attention layer as a generalized mechanism to denoise
against a mixture-of-Gaussian-marginal model for a set of tokens.

Now we provide more details alluded to in Chapter 3.2.2, which mostly form the technical aspects
of the first listed contribution. To simplify the proofs, we use the following notation correspon-
dences: x 7→ zℓ, z 7→ zℓ+1, and σ 7→ σℓ. Refer to Appendix A.1 in [289] for detailed proof.

Proposition B.1.1. Let u1, . . . ,uK ∈ Rd be independent and have distribution uk ∼ N (0,Σk)
for Σk ⪰ 0, and let z take value uk with probability πk > 0. Let w ∼ N (0, Id) be independent of
z. Let x .

= z + σw. Let x 7→ q(x) be the density of x. We define

Mk
.
= (Σk + σ2Id)

−1/2 (B.1)
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and assume that πi det(Mi) = πj det(Mj) for all 1 ≤ i ≤ j ≤ K. Then we have

∇x log q(x) (B.2)

= −
[
M1, · · · ,MK

]

diag


softmax


−1

2



∥M ∗

1x∥22
...

∥M ∗
Kx∥22








⊗ Id






M ∗

1x
...

M ∗
Kx


 , (B.3)

where ⊗ denotes the Kronecker product, i.e., the block matrix defined by

A⊗B =



A11B · · · A1nB

... . . . ...
Am1B · · · AmnB


 (B.4)

Now we provide a final justification for the result cited in Chapter 3.2.2. Refer to Appendix A.1 in
[289] for detailed proof.

Proposition B.1.2. In the setting of Chapter B.1.1, diagonalize Σk = UkΛkU
∗
k where Uk ∈ Rd×p

is orthogonal and Λk ≻ 0 ∈ Rp×p is diagonal.1 Then we have the approximation

E[z | x] ≈
[
U1, . . . ,UK

]

diag


softmax


 1

2σ2



∥U ∗

1x∥22
...

∥U ∗
Kx∥22








⊗ Ip






U ∗

1x
...

U ∗
Kx


 . (B.5)

Remark 1. Although Chapter B.1.2 is stated as an approximation rather than as a proposition, we
believe it should be possible without too much extra work to convert it into a statement of asymp-
totic equivalence as σ → 0 (in particular, holding for σ below the smallest (nonzero) eigenvalue of
any Σk. Most approximations taken in the derivation of Chapter B.1.2 can immediately be turned
into asymptotic claims; the only slightly delicate point is treating the softmax, which can be ac-
complished using standard “high temperature” convergence behavior of the softmax function (in
particular, as σ → 0 in our expressions, the softmax concentrates on the “best head”).

B.1.2 Companion to Chapter 3.2.3
We again wish to re-iterate the core contribution of our approach in Chapter 3.2.3. The application
of a compression perspective to representation learning has been discussed before, for example in
the line of maximal coding rate reduction works [290]. In Chapter 3.2.3, we provide the following
contributions and developments to this perspective:

• We propose a generalized coding rate function Rc(·;U[K]) which measures the coding rate
with respect to a set of subspaces U[K] as opposed to a set of classes (as in [290, 33]), making
the underlying formulation unsupervised.

1This assumption can be easily relaxed to Λk ⪰ 0 for all k, but requires some more notation to handle, and the
form of the solution does not change. Thus we handle the case where all matrices are full rank for simplicity.
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• We then show how if we adopt the framework of alternating minimization of the sparse rate
reduction objective, then unrolling the first alternating step — gradient descent on this coding
rate objective — nearly exactly recovers the common multi-head attention mechanism found
in transformer networks (except that the query/key/value operators are all the same operation
U ∗

k now, which we interpret as projection onto a single subspace).

In the process of the second contribution, and in the following proofs, we make some simple ap-
proximations and technical assumptions. The validity of these assumptions may be explored, and
the approximations refined, altogether providing a more complex (and possibly more performant)
resulting self-attention like operator. For the sake of technical clarity and simplicity in this work,
we make perhaps the simplest possible choices. As a result, we do not claim that our network is
optimally designed, but rather that the principles we develop in this work (compression, denoising,
sparsification, unrolled optimization) can provide the backbone for far superior and more inter-
pretable network architectures in the future on sundry tasks. As it is, with our straightforward,
simple, and interpretable design, we still obtain meaningful conceptual results and very solid em-
pirical performance.

We now give the derivation of the approximation alluded to in Chapter 3.2.3.

Proposition B.1.3. Let Z ∈ Rd×N have unit-norm columns, and U[K] = (U1, . . . ,UK) such that
each Uk ∈ Rd×p is an orthogonal matrix, the (Uk)

K
k=1 are incoherent, and the columns of Z

approximately lie on
⋃K

k=1 Span(Uk). Let γ = p
Nε2

. Let κ > 0. Then

Z − κ∇ZR
c(Z | U[K]) ≈ (1− κγ)Z + κγ MSSA(Z|U[K]), (B.6)

where as in Chapter 3.2.3 we have

SSA(Z|Uk) = (U ∗
kZ)softmax ((U ∗

kZ)∗(U ∗
kZ)) , (B.7)

MSSA(Z|U[K]) = γ
[
U1, . . . ,UK

]


SSA(Z|U1)

...
SSA(Z|UK)


 , (B.8)

where softmax(·) is the softmax operator (applied to each column of an input matrix), i.e.,

softmax(v) =
1∑n

i=1 e
vi



ev1
...
evn


 , (B.9)

softmax
([
v1, . . . ,vK

])
=
[
softmax (v1) , . . . , softmax (vK)

]
. (B.10)

Proof. According to Chapter 3.9, the gradient ∇ZR
c(Z;U[K]) is

∇ZR
c(Z;U[K]) = γ

K∑

k=1

UkU
∗
kZ (I + γ(U ∗

kZ)∗(U ∗
kZ))−1 . (B.11)
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Notice that according to [33], the gradient is precisely the residual of a ridge regression for each
(projected) token U ∗

kzi using other projected tokens U ∗
kzj as the regressors, hence being the resid-

ual of an auto-regression. However, as we have seen in the work of ReduNet [33], computing the
inverse

(I + γ(U ∗
kZ)∗(U ∗

kZ))−1

can be expensive. Hence for computational efficiency, we may approximate it with the first order
term of its von Neumann expansion:

∇ZR
c(Z;U[K]) = γ

K∑

k=1

UkU
∗
kZ
(
I + γ(U ∗

kZ)∗(U ∗
kZ)

)−1

(B.12)

≈ γ
K∑

k=1

UkU
∗
kZ
(
I − γ(U ∗

kZ)∗(U ∗
kZ)

)
(B.13)

= γ
K∑

k=1

Uk

(
U ∗

kZ − γU ∗
kZ[(U ∗

kZ)∗(U ∗
kZ)]

)
(B.14)

Notice that the term (U ∗
kZ)∗(U ∗

kZ) is the auto-correlation among the projected tokens. As the
tokens Z may be from different subspaces, we would prefer to use only tokens that belong to the
same subspace to regress and compress themselves. Hence we may convert the above correlation
term into a subspace-membership indicator with a softmax operation, whence (B.14) becomes

∇ZR
c(Z;U[K]) (B.15)

≈ γ
K∑

k=1

Uk

(
U ∗

kZ − γU ∗
kZ[(U ∗

kZ)∗(U ∗
kZ)]

)
(B.16)

≈ γ
K∑

k=1

UkU
∗
kZ − γ2

K∑

k=1

Uk

(
U ∗

kZ softmax ((U ∗
kZ)∗(U ∗

kZ))
)

(B.17)
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Then, we can rewrite the above approximation to the gradient of Rc as:

∇ZR
c(Z;U[K]) (B.18)

≈γ
K∑

k=1

UkU
∗
kZ − γ2

K∑

k=1

Uk (U
∗
kZ softmax ((U ∗

kZ)∗(U ∗
kZ))) (B.19)

=γ
K∑

k=1

UkU
∗
kZ − γ2

K∑

k=1

Uk SSA(Z | Uk) (B.20)

=

(
γ

K∑

k=1

UkU
∗
k

)
Z

︸ ︷︷ ︸
≈γZ

−γ2
[
U1, · · · ,UK

]


SSA(Z | U1)

...
SSA(Z | UK)


 (B.21)

≈γZ − γ2
[
U1, · · · ,UK

]


SSA(Z | U1)

...
SSA(Z | UK)


 . (B.22)

Thus the gradient descent step with learning rate κ > 0 gives

Z − κ∇ZR
c(Z | U[K]) ≈ (1− κγ)Z + κγ2

[
U1, . . . ,UK

]


SSA(Z|U1)

...
SSA(Z|UK)


 . (B.23)

B.1.3 Implementation details
In this subsection, we provide more details for implementing CRATE on vision tasks.

B.1.3.1 Architecture of CRATE

Architectural modifications. Compared to the conceptual architecture proposed in Chapter 3.2.5
and Chapter 3.3, we make the following change for the sake of implementation simplicity:

• In the compression step, replace the term p
Nε2

[
U1, . . . ,UK

]
in the MSSA operator with an-

other trainable parameter W ∈ Rd×pK . Thus the MSSA block becomes

MSSA(Z | U[K],W )
.
= W



SSA(Z | U1)

...
SSA(Z | UK)


 . (B.24)

B.1.4 Additional Experiments
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Table B.1: Top 1 accuracy of CRATE on various datasets with different model scales when pre-trained on
ImageNet-21K and fine-tuned on the downstream datasets.

CRATE-T CRATE-S CRATE-B ViT-T ViT-B

# parameters 5.74M 14.12M 38.83M 10.36M 102.61M

ImageNet-1K 62.7 74.2 79.5 71.8 85.8
CIFAR10 94.1 97.2 98.1 97.2 98.9
CIFAR100 76.7 84.1 87.9 84.4 90.1
Oxford Flowers-102 82.2 92.2 96.7 92.1 99.5
Oxford-IIIT-Pets 77.0 86.4 90.7 86.2 91.8

CRATE ViT ViTCRATE 

Figure B.1: More attention maps of supervised CRATE and ViT on images from COCO
val2017. We select the second-to-last layer attention maps to visualize for CRATE and the last
layer for ViT.
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Appendix C

Appendix: Reliable Federated Learning via
NTK Representations

C.1 Additional Details About TCT

C.1.1 An Efficient Implementation of SCAFFOLD

Algorithm 1 Efficient implementation of SCAFFOLD
Input: losses {Lk}, k ∈ [K]. Number of local steps M , server model θ0, learning rate η.
Initialization: client corrections {h−1

k = 0}, local models{θ̂0i } = θ0, k ∈ [K]
for round t = 0, 1, . . . , T do

for clients k = 1, . . . , K in parallel do
Receive θt from server. Update correction

htk = ht−1
k + 1

Mη
(θt − θ̂tk). (C.1)

Initialize client local model θ̂t,0i = θt.
for m = 1, . . . ,M do

Update with a stochastic gradient sampled from local client data

θ̂t,m+1
k = θ̂t,mk − η

(
∇Lk(θ

t,m
i ; ξt,mk )− htk

)
. (C.2)

end for
Set θ̂t+1

k = θ̂t,M+1
k . Communicate θ̂t+1

k to server.
end for
Aggregate θt+1 = 1

K

∑K
k=1 θ̂

t+1
k .1

end for
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We describe a more communication efficient implementation of SCAFFOLD which is equiva-
lent to Option II of SCAFFOLD from [134]. Our implementation only requires a single model to
be communicated between the client and server each round, making its communication complexity
exactly equivalent to that of FedAvg. To see the equivalence, we prove that our implementation
satisfies the following condition for any time step t ≥ 0:

ct+1
k :=

1

M

∑

m∈[M ]

∇Lk(θ
t,m
k ; ξt,mk ) , and

ct+1 :=
1

K

∑

k∈[K]

ctk , we maintain the invariant that

ht+1
k = ct+1

k − ct+1 .

To see this, note that the local client model after updating in round t is

θ̂t+1
k = θ̂t,M+1

k

= θt − η
∑

k∈[K]

∇Lk(θ
t,m
k ; ξt,mk )− htk

= θt −Mη(ct+1
k − htk) .

By averaging this over the clients, we can see that the server model is

θt+1 = θt −Mη
(
ct+1 − 1

K

∑

l∈[K]

htl

)
.

By induction, suppose that htk = ctk − ct. This implies that summing over the clients, it becomes
zero; i.e.,

∑
l∈[K] h

t
l = 0. Plugging this and the previous computations, we have

ht+1
k = htk +

1
Mη

(θt+1 − θ̂t+1
k )

= htk +
1

Mη
(−Mηct+1 +Mη(ct+1

k − htk))

= ct+1
k − ct+1 .

For the base step at t = 0, note that h0i = 0. This completes the proof by induction.

C.1.2 Additional Implementation Details

1Note that when different clients have different number of data points, the actual aggregation step is θt+1 =∑K
k=1(

nk/
∑

j nj)θ̂
t+1
k . However, we present the simplified version with equal weights for all clients to ease the com-

parison with the pseudocode in [134].
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Additional details about linear regression in TCT. In our experiments, we normalize the one-
hot encoded label of each sample so that the normalized one-hot encoded label has mean 0. More
specifically, we subtract [1/C, . . . , 1/C]⊤ ∈ RC×1 from the one-hot encoding label vector, where
C is the number of classes. Further, [117] show that performance for large number of classes
can be improved by increasing the penalty for mis-classification and scaling the target from 1
to a larger value (e.g., 30). [4] show that using Leaky-ReLU, and using K-FAC preconditioning
further improves the performance. However, we do not explore such optimizations in this work–
these (and other optimization tricks for least-squares regression) can be easily incorporated into
our framework.

Local learning rate for TCT. From our experiments, we find that small local learning rates (η ≤
10−4) achieve good train/test accuracy performance for TCT with the normalization step. When
the normalization step in TCT is applied, larger local learning rates diverge. Meanwhile, local
learning rates from [10−6, 10−4] achieve similar performance for TCT (as shown in Table C.6). On
the other hand, without the normalization step, TCT with large learning rate (η ∈ [0.01, 0.5]) does
not diverge. When running more communication rounds, TCT (without the normalization step)
with large learning rate achieves similar performance as the default TCT (with the normalization
step).

Additional details about Stage 2 of TCT. To solve the linear regression problem in TCT-Stage
2, we use the full batch gradient in Eq. (C.2) of Algorithm 1 in our implementation.

Additional details about Figure 4.5. We consider CIFAR10-[#C=2] in Figure 4.5a and 4.5b.

Details about the total amount of compute. We use NVIDIA 2080 Ti, A4000, and A100 GPUs,
and our experiments required around 500 hours of GPU time.
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Algorithm 2 TCT: complete pseudo-code
Input: input dim D, output dim C, loss ℓ(·, ·) : RC×C → R, aggr. weights {w1, . . . , wK},
model f with parameters θ ∈ RP : f(x; θ) = ϕ ◦ ω (x) : RD → RC (e.g., ResNet18), composed
of a feature extractor ϕ : RD → RE and final linear layer ω : RE → RC .
Hyper-parameters: Local steps M (default 500), Stage-1 lr η1 (default 0.01), Stage-1 rounds
T1 (default 100), Stage-2 lr η2 (default 5 · 10−5), Stage-2 rounds T2 (default 100).

Stage 1 (Bootstrapping):
Initialize server model θ0.
for round t = 0, 1, . . . , T1 do

for clients k = 1, . . . , K in parallel do
Receive θt from server and initialize client local model θ̂t,0k = θt.
for m = 1, . . . ,M do

Update with a mini-batch gradient sampled from local client data (xt,mk , yt,mk )

θ̂t,m+1
k = θ̂t,mk − ηi

(
∇θℓ(f(x

t,m
k ; θt,mk ), yt,mk )− htk

)
.

end for
Communicate θ̂t+1

k to server.
end for
Aggregate θt+1 = 1∑

k wk

∑K
k=1wkθ̂

t+1
k .

end for

Stage 2 (Convexification):
Input: Bootstrapped parameters θB decomposed as θB = ϕB ◦ ωB.
Randomly re-initialize using fixed seed linear layer ωr and define θ0 := ϕB ◦ ωr.
[Comment:] Define basis vector e1 := (1, 0, . . . , 0). For input x, (e⊤1 f(x; θ

0)) is the first logit.
Optionally, compute a random sub-sampling mask S (ϕ) over feature params using fixed seed .

[Comment:] For a given input x, we will learn parameters (φ, b) for prediction as

ŷ = φ⊤ϕeNTK(x) + b, where ϕeNTK(x) := S
(
∇ϕ(e

⊤
1 f(x;ϕ

B ◦ ωr))
)
.

Compute normalized eNTK features ϕ̃eNTK(x) (mean 0 and variance 1) across clients.
Also normalize targets to mean 0 using ỹ := y − 1

C
1.

Run SCAFFOLD (Algorithm 1) over params ψ := (φ, b) with learning rate η2, local steps M ,
initial server params: ψ0 = 0, and client losses {Lk} defined over the local data as

Lk(ψ) :=
∑

(xk,yk)

(
φ⊤ϕ̃eNTK(xk) + b− ỹk

)2
.
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Algorithm 3 Compute eNTK Pseudocode, PyTorch-like

def compute_eNTK(model, X, num_params, subsample_size=100000, seed=123):
"""compute eNTK of input X with model"""
# model: model for linearization
# X: (n x d), n -- number of samples, d -- input dimension
# subsample_size: parameter of subsampling operation
# seed: random seed for subsampling operation
# num_params: total number of parameters for model
model.eval()
params = list(model.parameters())
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
random_index = torch.randperm(num_params)[:subsample_size]
eNTKs = torch.zeros((X.size()[0], subsample_size))
for i in range(X.size()[0]):

# compute eNTK for the i-th input
model.zero_grad()
model.forward(X[i:i+1])[0].backward()
eNTK = []
for param in params:

if param.requires_grad:
eNTK.append(param.grad.flatten())

eNTK = torch.cat(eNTK)
# subsampling
eNTKs[i, :] = eNTK[random_index]

return eNTKs
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C.2 Additional Experimental Results

C.2.1 Additional Baselines
In comparison with FedAdam and FedDyn. We compare TCT to FedAdam [207], FedDyn [3],
and FedNova [262] in Table C.1. We consider four settings in Table C.1, including CIFAR10
(#C = 2), CIFAR10 (α = 0.1), CIFAR100 (α = 0.001), and CIFAR100 (α = 0.01). For Fed-
Dyn, we perform similar hyperparameter selection as FedAvg; i.e., select local learning rate from
{0.1, 0.01, 0.001}. For FedAdam, following recommendation by [207], we set the global learning
rate as ηglobal = 0.1 and select local learning rate from {10−1, 10−1.5, 10−2, 10−2.5, 10−3}. Similar
to results in Table 4.2, we find that TCT significantly outperforms the existing methods in high
data heterogeneity settings.

Table C.1: The top-1 test accuracy (%) of our algorithm (TCT) vs. other federated learning algo-
rithms (FedAdam [207], FedDyn [3], and FedNova [262]) evaluated on CIFAR10 and CIFAR100.
We vary the degree of data heterogeneity by controlling the α parameter of the symmetric Dirich-
let distribution DirK(α) and the #C parameter for assigning how many labels each client owns.
Higher accuracy is better. The highest top-1 accuracy in each setting is highlighted in bold.

Methods Datasets

CIFAR10 (#C = 2) CIFAR10 (α = 0.1) CIFAR100 (α = 0.001) CIFAR100 (α = 0.01)

FedAdam [207] 33.52% 62.57% 30.85% 37.16%
FedDyn [3] 51.67% 81.03% 50.86% 53.79%

FedNova [262] 53.27% 84.26% 56.06% 58.47%
TCT 83.02% 89.21% 69.07% 69.66%

C.2.2 Results of Other Architectures
In Section 4.4, we use batch normalization [120] as the default normalization layer on CIFAR10
and CIFAR100 datasets, and we denote the ResNet-18 with batch normalization layers by ResNet-
18-BN. In Table C.2, we consider group normalization [274] on CIFAR10 and CIFAR100 and
let ResNet-18-GN denote the ResNet-18 with group normalization. We set num_groups=2 in
group normalization layers. As shown in Table C.2, TCT achieves better performance than FedAvg
with ResNet-18-GN on both CIFAR10 and CIFAR100 datasets. Our experiments indicate that in
extremely heterogeneous settings, group norm is insufficient to fix FedAvg.

C.2.3 Additional Experimental Results of the Effect of Stage 1
Communication Round for TCT

In Figure C.1, we provide additional results of the effect of T1 for TCT on CIFAR10 and CIFAR100
datasets. We find that TCT outperforms existing algorithm across all T1 communication rounds,
where T1 ≥ 20. Extending the number of rounds for the baseline algorithms to 200 rounds does
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Table C.2: The top-1 test accuracy (%) of our algorithm (TCT) vs. FedAvg(-GN) evaluated on
CIFAR10 and CIFAR100. We vary the degree of data heterogeneity by controlling the α parameter
of the symmetric Dirichlet distribution DirK(α) and the #C parameter for assigning how many
labels each client owns. Higher accuracy is better. The highest top-1 accuracy in each setting is
highlighted in bold.

Datasets Architectures Methods Non-i.i.d. degree

CIFAR-10

#C = 1 #C = 2 α = 0.1 α = 0.5

ResNet-18-GN FedAvg 21.23% 56.80% 84.72% 89.03%
ResNet-18-BN FedAvg 11.27% 56.86% 82.60% 90.43%
ResNet-18-BN TCT 49.92% 83.02% 89.21% 91.10%

CIFAR-100

α = 0.001 α = 0.01 α = 0.1 α = 0.5

ResNet-18-GN FedAvg 47.60% 48.60% 53.29% 55.39%
ResNet-18-BN FedAvg 53.89% 54.22% 63.49% 67.65%
ResNet-18-BN TCT 68.42% 69.07% 69.66% 69.68%

not improve their performance. In contrast, running 60 rounds of bootstrapping using FedAvg
followed by 40 rounds of TCT gives near-optimal performance across all settings.
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(a) CIFAR10-(#C=2), Train Accuracy.
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(b) CIFAR10-(#C=2), Test Accuracy.
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(c) CIFAR100-(α = 0.01), Train Accuracy.
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(d) CIFAR100-(α = 0.01), Test Accuracy.

Figure C.1: We evaluate TCT on using checkpoints saved at different communication rounds T1 in
Stage 1. We compare TCT to existing algorithms, including FedAvg, FedProx, and SCAFFOLD.
For all three existing algorithms, we visualize the results of local learning rate η = 0.1. The
train/test accuracy results in the first T1 communication rounds of TCT are the same as FedAvg.
For example, “TCT (T1 = 20)” corresponds to training the model with FedAvg for T1 = 20 rounds
in Stage 1 and then running 100 rounds of SCAFFOLD for solving the linear regression problem
in Stage 2. Plots (a) and (c) display training accuracy and (b) and (d) display test accuracy.



APPENDIX C. APPENDIX: RELIABLE FEDERATED LEARNING VIA NTK
REPRESENTATIONS 130

C.2.4 Additional Experimental Results of Pre-trained Models
In Table C.3 and Figure C.2, we provide additional results of the effect of pre-training for FedAvg
and TCT on CIFAR10 and CIFAR100 datasets. For both methods, we use the ResNet-18 pre-
trained on ImageNet-1k [100] as the initialization. We use FedAvg (last layer) to denote applying
FedAvg on learning the last linear layer of the model, i.e., layers except for the last linear layer are
freezed during training. Compared to results in Table 4.2, we find that using pre-trained model as
initialization largely improves the performance of both FedAvg and TCT. However, FedAvg still
suffers from data heterogeneity. In contrast, TCT achieves similar performance as the centralized
setting on both datasets across different degrees of data heterogeneity.

Table C.3: The top-1 test accuracy (%) of our algorithm (TCT) vs. FedAvg evaluated on CIFAR10
and CIFAR100 with pre-trained model initialization. We vary the degree of data heterogeneity by
controlling the α parameter of the symmetric Dirichlet distribution DirK(α) and the #C parameter
for assigning how many labels each client owns. Higher accuracy is better. The highest top-1
accuracy in each setting is highlighted in bold.

Methods Datasets

CIFAR10 (#C = 2) CIFAR10 (α = 0.1) CIFAR100 (α = 0.001) CIFAR100 (α = 0.01)

Centralized 95.13% 95.13% 80.65% 80.65%
FedAvg (last layer) 63.60% 75.16% 50.40% 51.97%

FedAvg 64.73% 84.25% 62.23% 63.81%
TCT 92.97% 93.70% 79.25% 79.55%
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(a) CIFAR10-(#C=2).
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(b) CIFAR10-(α = 0.1).
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(c) CIFAR100-(α = 0.01).
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(d) CIFAR100-(α = 0.001).

Figure C.2: We evaluate FedAvg and TCT on CIFAR10 and CIFAR100 datasets with pre-trained
ResNet-18. Plots (a) and (b) display training/test accuracy on the CIFAR10 dataset and (c) and (d)
display training/test accuracy on the CIFAR100 dataset.
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C.2.5 Additional Experimental Results of One-round Communication
In Table C.4, we provide additional results of TCT on CIFAR10 and CIFAR100 datasets with one
communication round in TCT-Stage 2. Specifically, we set the number of local steps M = 500,
local learning rate η = 0.00005, and the total number of communication round T = 1 in TCT-Stage
2. The results are summarized in Table C.4. With only one communication round in TCT-Stage 2,
TCT still achieves better performance than FedAvg in three out of four settings in Table C.4. On
the other hand, we recommend setting the communication round in TCT-Stage 2 larger than 10 for
our method TCT in order to achieve satisfying performance.

Table C.4: The top-1 test accuracy (%) of our algorithm (TCT) on CIFAR10 and CIFAR100 with
one communication round in TCT-Stage 2.

Methods Datasets

CIFAR10 (#C = 2) CIFAR10 (α = 0.01) CIFAR100 (α = 0.001) CIFAR100 (α = 0.01)

FedAvg 56.86% 82.60% 53.89% 54.22%
TCT 83.02% 89.21% 68.42% 69.07%

TCT-OneRound 64.94% 82.62% 55.50% 57.51%

C.2.6 Additional Experimental Results of Large Number of Clients
We study the performance of our proposed algorithm as well as existing algorithms in the large
number of clients setting, where we consider the number of clients K = 50 on CIFAR100 with
α = 0.001. The results are summarized in Table C.5. We find our proposed method (TCT: 45.32%)
significantly outperforms existing methods (best test accuracy: 16.70%).

Table C.5: The top-1 accuracy (%) of our algorithm (TCT) vs. state-of-the-art federated learning
algorithms evaluated on CIFAR100 with a large number of clients. We set the degree of data
heterogeneity parameter α = 0.001 and set the total number of clients K = 50. Higher accuracy
is better. The highest top-1 accuracy is highlighted in bold.

Dataset Architecture # Clients FedAvg FedProx SCAFFOLD TCT

CIFAR100 (α = 0.001) ResNet-18 50 16.70% 16.24% 13.41% 45.32%

C.2.7 Additional Ablations
Effect of local learning rate for TCT and FedAdam. As mentioned in [207], FedAdam is more
robust to the choice of local learning rate compared to FedAvg. We conduct additional ablations
on the effect of local learning rate for TCT as well as FedAdam [207] on the CIFAR10 dataset.
For each algorithm, we first select a base local learning rate ηbase and then vary the local learning
rate η ∈ {ηbase · 100, ηbase · 10−0.5, ηbase · 10−1.0, ηbase · 10−1.5}. The results are summarized in
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Table C.6. Compared to FedAdam, we find that TCT is much less sensitive to the choice of local
learning rate.

Table C.6: The top-1 test accuracy (%) of our algorithm (TCT) and FedAdam [207] evaluated on
the CIFAR10 dataset. We vary the local learning rate for both algorithms. Higher accuracy is
better.

Datasets Methods Local learning rate

(ηbase = 10−4) η = ηbase · 100 η = ηbase · 10−0.5 η = ηbase · 10−1.0 η = ηbase · 10−1.5

CIFAR10-(#C=2) TCT 82.12% 83.60% 83.51% 82.37%
CIFAR10-(α = 0.1) TCT 88.68% 89.27% 89.23% 89.15%

(ηbase = 10−1.5) η = ηbase · 100 η = ηbase · 10−0.5 η = ηbase · 10−1.0 η = ηbase · 10−1.5

CIFAR10-(#C=2) FedAdam [207] 31.29% 33.52% 26.20% 14.96%
CIFAR10-(α = 0.1) FedAdam [207] 10.31% 37.26% 62.57% 49.18%

Effect of local learning rate and number of local steps for TCT. We conduct additional abla-
tions on the effect of both the local learning rate η and the number of local steps M for TCT on
CIFAR10 and CIFAR100 datasets. The results in Table C.7 and Table C.8 indicate that TCT is
robust to the choice of the local learning rate η and the number of local steps M . We find that as
the number of steps increases, the learning rate should predictably decrease. The performance is
relatively stable along the diagonal, indicating that it is the product M · η which affects accuracy.

Table C.7: The top-1 test accuracy (%) of our algorithm (TCT) evaluated on the CIFAR10 dataset.
We consider CIFAR10-(#C=2) and we set ηbase = 10−4. We vary both the local learning rate and
the number of local steps for TCT. Higher accuracy is better.

Number of local steps Local learning rate

η = ηbase · 100 η = ηbase · 10−0.5 η = ηbase · 10−1.0 η = ηbase · 10−1.5

M = 50 83.51% 82.37% 80.67% 78.14%
M = 100 83.59% 83.35% 81.73% 79.71%
M = 500 82.12% 83.60% 83.51% 82.37%
M = 1000 80.78% 82.92% 83.59% 83.35%

Effect of training loss for TCT-Stage 2. We compare the performance of quadratic loss (defined
in Eq. (4.1)) and cross-entropy loss (i.e., applying the cross-entropy loss for learning the linear
model in TCT-Stage 2, denoted by TCT-CE) for TCT in Table C.9. As shown in Table C.9, we find
quadratic loss indeed achieves better performance than cross-entropy loss for TCT.

Effect of subsampling for TCT-Stage 2. We study the performance of full eNTK representa-
tion in TCT-Stage 2 (i.e., without random subsampling) to investigate the role of the subsampling
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Table C.8: The top-1 test accuracy (%) of our algorithm (TCT) evaluated on the CIFAR100 dataset.
We consider CIFAR100-(α = 0.01) and we set ηbase = 10−4. We vary both the local learning rate
and the number of local steps for TCT. Higher accuracy is better.

Number of local steps Local learning rate

η = ηbase · 100 η = ηbase · 10−0.5 η = ηbase · 10−1.0 η = ηbase · 10−1.5

M = 50 69.12% 67.31% 64.61% 61.34%
M = 100 69.54% 68.48% 66.43% 63.42%
M = 500 69.03% 69.60% 69.12% 67.31%
M = 1000 68.38% 69.42% 69.54% 68.48%

approximation. We provide the results in Table C.9. As shown in Table C.9, applying full eNTK
representations slightly improves (improvements are smaller than 2% across all settings) the per-
formance of TCT on CIFAR10/100. On the other hand, using subsampled eNTK reduces the
communication cost more than 100x compared to the full eNTK and existing federated learning
algorithms (#parameter of the whole model: 11,169,345, #parameters of the subsample eNTK:
100,000).

Applying last layer representations in TCT-Stage 2. We study the performance of only apply-
ing last layer representations in TCT-Stage 2, and the results are summarized in Table C.10. From
Table C.10, we find that applying eNTK representations with high dimension (i.e., p = 100, 000)
outperforms using the representations before the last layer only, especially in the settings with high
degrees of data heterogeneity. These results provide further evidence on applying eNTK features
instead of the representations before the last layer features.
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Table C.9: The top-1 accuracy (%) of our algorithm (TCT) vs. TCT-CE, TCT-full-eNTK on FM-
NIST, CIFAR10, and CIFAR100. We vary the degree of data heterogeneity by controlling the α
parameter of the symmetric Dirichlet distribution DirK(α) and the #C parameter for assigning how
many labels each client owns. Higher accuracy is better. TCT-CE represents the variant of TCT
where we apply cross-entropy loss in Stage 2 of TCT. TCT-full-eNTK represents the variant of
TCT where we use the full eNTK representation (without subsampling) in Stage 1 of TCT.

Datasets Architectures Methods Non-i.i.d. degree

FMNIST SimpleCNN

#C = 1 #C = 2 α = 0.1 α = 0.5

TCT 86.32% 90.33% 90.78% 91.13%

TCT-CE 86.50% 89.23% 89.66% 90.15%
TCT-full-eNTK 86.32% 90.36% 90.90% 91.18%

CIFAR-10 ResNet-18

#C = 1 #C = 2 α = 0.1 α = 0.5

TCT 49.92% 83.02% 89.21% 91.10%

TCT-CE 45.13% 81.06% 88.03% 91.12%
TCT-full-eNTK 50.38% 84.92% 89.72% 91.69%

CIFAR-100 ResNet-18

α = 0.001 α = 0.01 α = 0.1 α = 0.5

TCT 68.42% 69.07% 69.66% 69.68%

TCT-CE 63.46% 64.08% 65.22% 66.07%
TCT-full-eNTK 69.81% 70.05% 70.12% 70.91%

Table C.10: The top-1 accuracy (%) of our algorithm (TCT) vs. TCT-last-layer on FMNIST, CI-
FAR10, and CIFAR100. We vary the degree of data heterogeneity by controlling the α parameter
of the symmetric Dirichlet distribution DirK(α) and the #C parameter for assigning how many
labels each client owns. Higher accuracy is better. The highest top-1 accuracy in each setting is
highlighted in bold. TCT-last-layer represents the variant of TCT where we apply the representa-
tions of last layer and cross-entropy loss in Stage 2 of TCT.

Datasets Architectures Methods Non-i.i.d. degree

FMNIST SimpleCNN

#C = 1 #C = 2 α = 0.1 α = 0.5

TCT 86.32% 90.33% 90.78% 91.13%

TCT-last-layer 60.43% 83.96% 86.01% 89.33%

CIFAR-10 ResNet-18

#C = 1 #C = 2 α = 0.1 α = 0.5

TCT 49.92% 83.02% 89.21% 91.10%

TCT-last-layer 35.51% 74.55% 86.57% 90.76%

CIFAR-100 ResNet-18

α = 0.001 α = 0.01 α = 0.1 α = 0.5

TCT 68.42% 69.07% 69.66% 69.68%

TCT-last-layer 59.80% 60.04% 64.98% 66.22%
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Appendix D

Appendix: Differentially Private
Representation Learning

D.1 Implementation and Evaluation Details
In this section, we provide implementation details for training and evaluating (Syn)-ViP, ViP, as
well as other existing methods.

D.1.1 Details for MAE model
In Table D.1, we provide details for backbones of MAE model with different model sizes. Both
MAE-Large and MAE-Base encoders are constructed following the identical setup described in
[93].

Table D.1: Details of MAE backbone variants used in ViP.

ViP model MAE Backbone Encoder depth Encoder width Decoder depth Decoder width # parameters

ViP-Nano MAE-Nano 12 192 4 512 18.6M

ViP-Tiny MAE-Tiny 12 384 4 512 34.8M

ViP-Small MAE-Small 12 576 4 512 61.6M

ViP-Base MAE-Base 12 768 4 512 99.0M

ViP-Large MAE-Large 24 1024 4 512 233.3M

D.1.2 Details for ViP Pre-training
For (Syn)-ViP pre-training, we follow the training setup outlined in [93]: we apply the training
parameters specified in Table 8 of [93] and pre-train pre-train (Syn)-ViP on the S21k dataset de-
veloped in [16], which comprises of 1,300,000 training samples, for a total of 1,000 epochs. Our
(Syn)-ViP pre-training applies the self-supervised MAE training methodology and does not use the
label information available in the S21k dataset.
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We now present details for differentially private ViP pre-training. As mentioned in Section 5.3,
we first initialize the model weights with (Syn)-ViP pre-trained on S21k dataset. Then we apply
DP-AdamW1. See the table below for training hyperparameters.

Model lr (η) warmup iterations wd (λ) (β1, β2) epsilon (ϵ) lr decay

ViP-Base 3.84 · 10−4 1,000 0.005 (0.9, 0.95) 10−8 cosine

For masking in the MAE training, we follow the random masking strategy and masking ratio
of 75% in [93] for both (Syn)-ViP pre-training and ViP pre-training. The process of executing each
iteration of DP-AdamW for training the ViP-Base model takes approximately 25 seconds when
utilizing 48 A100 (40GB) GPUs. Each epoch of the (Syn)-ViP-Base model’s training process takes
roughly 90 seconds to complete with 48 A100 (40GB) GPUs.

D.1.3 Details for Downstream Classification Task
Linear probing. We follow the training setup in [93]: we apply BatchNorm [120] before the
last linear layer, and use the LARS [285] optimizer. We choose the base learning rate blr ∈
{0.1, 0.05, 0.01}, batch size B = 16, 384, weight decay λ = 0.0. We set warmup epoch as 10, and
total training epoch as 90. We use the RandomResizedCrop and RandomHorizontalFlip
augmentations.
Few-shot fine-tuning. For vision transformer based architectures, we apply the AdamW optimizer
with learning rate of lr ∈ {3·10−3, 3·10−4, 3·10−5} and set weight decay as 0.05. For convolutional
neural networks (AlexNet, ResNet used in SimCLR), we apply the SGD optimizer because it
consistently outperforms AdamW. We select learning rate lr ∈ {1 · 10−2, 1 · 10−3, 1 · 10−4}, while
setting the momentum as 0.9 and the weight decay as 0.0. For all models we apply the cosine
learning rate decay, and use 10 warm-up epochs and fine-tine with 200 total epochs. We apply
AutoAugment [50] for data augmentation.

D.1.4 Details for Downstream Segmentation and Detection Tasks
COCO object detection and segmentation. We fine-tune the pre-trained (Syn)-ViP and ViP on
COCO with the Detectron2 package [275]. We apply the pre-trained (Syn)-ViP-Base and ViP-
Base as the ViT initializations for the detection and segmentation tasks, and apply the default
hyperparameter config in Detectron2 for ViTDet-Base.
ADE20K semantic segmentation. We follow the setup described in [93] on evaluating pre-trained
MAE models for semantic segmentation. We apply the UPerNet [278] and perform fine-tuning for
100 epochs with a batch size of 16.

1A variant of the standard DP-SGD — we first compute the noisy clipped stochastic gradient described in (5.3),
then apply one step update of AdamW [170] using the estimated gradient.



APPENDIX D. APPENDIX: DIFFERENTIALLY PRIVATE REPRESENTATION LEARNING138

D.1.5 Details for Differentially Private Fine-tuning on ImageNet
We use the pre-trained encoders of (Syn)-ViP and ViP and apply DP-AdamW for DP end-to-end
fine-tuning. The details for parameters in DP-AdamW can found in the following table.

Model sampling ratio q noise σ iterations T lr wd

ViP-Base / (Syn)-ViP-Base 262, 144/n 5.6 1,500 1.02 · 10−3 0.005

We use 50 iterations for learning rate warm-up, and then keep the learning rate constant after-
wards. For selecting parameters not presented in the aforementioned table, we adopt the default
configuration of AdamW in PyTorch [195]. The fine-tuned model satisfies (8, 8 · 10−7)-DP on
the ImageNet-1K dataset in addition to the LAION233M dataset.

D.1.6 Details for Figure 5.1
For the linear probing results, we present the performance of the ViP-Large model, with the sum-
marized results shown in the last row of Table D.1. Regarding the detection and segmentation
results, we utilize the ViP-Base model as the ViT backbone, and the corresponding outcomes can
be found in Table D.2.

D.2 Additional Experimental Results
In this section, we provide additional experimental results on evaluating (Syn)-ViP, ViP, as well as
other existing methods.

D.2.1 Segmentation and Detection Evaluations of (Syn)-ViP/ViP
We summarize the results for object detection and segmentation in Table D.2. Training details can
be found in Appendix D.1.4.

D.2.2 Additional Experiments on ViP Pre-training
In Figure D.1, we plot the training loss v.s. number of training steps for ViP training without
(Syn)-ViP initialization. Compared to the results in Figure 5.4a, when pre-training from scracth
with DP-AdamW, larger models do not converge faster than smaller ones. These results further
demonstrate the effectiveness of synthetic pre-training for unlocking DP-SGD training of larger
vision models.

D.2.3 DP Fine-tuning ViP on ImageNet-1K
Thus far, our main emphasis has been on evaluating DP pre-trained ViP through non-private linear
probing or fine-tuning on downstream tasks. For certain use cases, the downstream task training



APPENDIX D. APPENDIX: DIFFERENTIALLY PRIVATE REPRESENTATION LEARNING139

Table D.2: Evaluation of our DP models ((Syn)-ViP, ViP) as well as existing non-private baselines
on COCO object detection/segmentation and ADE20K semantic segmentation.

Model DP? COCO ADE20K
APbox APmask mIoU

SimCLR [39] ✗ 37.9 33.3 -

Mask R-CNN [98] ✗ 40.0 37.1 -

RefineNet [163] ✗ - - 40.7

MAE [93] ✗ 50.3 44.9 48.1

(Syn)-ViP ✓ 45.0 40.1 38.8

ViP ✓ 45.2 40.4 40.1
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Figure D.1: Training loss of different model sizes. (with random initialization).

set may be privacy-sensitive as well and DP fine-tuning is required. We simulate such a sce-
nario by fine-tuning the privately pre-trained ViP model2 on ImageNet-1K with DP-SGD. As a
result, the fine-tuned model satisfies (8, 8 ·10−7)-DP on the ImageNet-1K dataset in addition to the
LAION233M dataset. We compare against prior works on training DP ImageNet models without
pre-training [149, 54, 215]; results are summarized in Table D.3.

By utilizing our pre-trained ViP as an initialization, we observe an improvement in top-1 accu-
racy of more than 10% compared to the previous SOTA [215], demonstrating the efficacy of our
DP pre-training recipe.

D.2.4 Additional Experiments on the Classification Task
Comparison with non-private MAE. To gain a better understanding of the gap between non-
private training and private training, we use the same synthetic pre-trained model as initialization
and perform DP-AdamW training on LAION233M with σ = 0.03. We keep most of the training
parameters the same except for setting the sampling ratio to q = 4096/n and the number of itera-

2ViP-Base pre-trained on LAION233 shown in the last row of Table 5.1.
3In this case, the ϵ = +∞ for the (ϵ, δ)-DP.
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Table D.3: DP fine-tuning evaluation on ImageNet-1K. We compare (Syn)-ViP and ViP with ex-
isting DP training methods (DP-ResNet-18, DP-NFNet, and TAN) on ImageNet-1K.

Model (ϵ, δ)-DP Top-1 Accuracy

DP-ResNet-18 [149] (13.2, 10−6) 6.2%

DP-NFNet [54] (8, 8 · 10−7) 32.4%

TAN [215] (8, 8 · 10−7) 39.2%

(Syn)-ViP (8, 8 · 10−7) 48.9% ± 0.2

ViP (8, 8 · 10−7) 50.3% ± 0.3

tions T = 60, 0004. We then evaluate the linear probing (few-shot fine-tuning) performance of the
trained model and provide the results in Table D.4 (Table D.5).

For linear probing, our ViP model closes more than half the gap between the (Syn)-ViP model
and the non-private MAE model. With a more refined training recipe, it is plausible that the gap
can be reduced even further, allowing DP-trained foundation vision models to rival non-privately
trained ones on certain downstream tasks. In the context of few-shot fine-tuning, a comparison
between private learning and the non-private MAE model reveals considerable potential for im-
provement in the private learning approach.
Comparison with ViP trained on de-duplicated LAION-2B. Recent work has demonstrated that
there exist duplicated samples in the LAION dataset, which poses copyright and privacy challenges
for foundation models trained on LAION. Therefore, we also pre-train our proposed ViP model
on a de-duplicated subset of LAION-2B [216], denoted by Dedup-LAION-245M, which consists
of a similar number of training samples (245 million) as the one we mainly consider in this work.
We summarize the linear probing performance of the ViP pre-trained on Dedup-LAION-245M
in Table D.4. We find the ViP model pre-trained on the de-duplicated LAION achieves similar
performance as the one trained on LAION-400M [217].

Table D.4: Linear probing evaluation on downstream classification. We compare ViP and (Syn)-ViP
with (non-private) MAE [93].

Model Pre-train dataset DP? SSL? ImageNet-1K‡ Places-365 Places-205 iNat-2021

(non-private) MAE LAION-233M ✗ ✓ 60.5% 48.3% 51.8% 38.5%

(Syn)-ViP LAION-233M ✓ ✓ 49.8% 43.2% 45.8% 32.4%

ViP LAION-233M ✓ ✓ 55.7% 46.1% 48.5% 38.1%

ViP Dedup-LAION-245M ✓ ✓ 55.5% 46.3% 48.1% 38.0%

4While the trained model may not necessarily achieve optimal performance, our main purpose is to present a
non-private model that follows a similar training setup, with the exception of setting the noise to zero. This allows us
to compare its performance to the private model.
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Table D.5: Fine-tuning evaluation on few-shot downstream classification. We compare ViP and
(Syn)-ViP with (non-private) MAE [93].

Model Aircraft Caltech-101 CIFAR-100
10-shot 20-shot 30-shot 5-shot 10-shot 30-shot 5-shot 10-shot 30-shot

(non-private) MAE 36.78% 56.82% 66.20% 72.93% 84.50% 92.78% 34.38% 47.98% 62.88%

(Syn)-ViP 21.79% 46.85% 58.45% 60.51% 76.21% 88.48% 27.62% 38.96% 55.84%

ViP 31.62% 53.05% 64.26% 68.05% 79.03% 88.90% 30.73% 40.95% 57.52%

Linear probing evaluation of ViP with different model sizes. We study the scaling behavior of
ViP and (Syn)-ViP through linear probing. As shown in Table D.7, we compare the performance
of ViP and (Syn)-ViP with different model sizes. The performance of ViP consistently improves
across all datasets as the model size increases. In contrast, increasing the model size from MAE-
Base to MAE-Large results in less than 1% improvement in top-1 accuracy for (Syn)-ViP. These
findings further underscore the effectiveness of our proposed ViP training recipe for scaling up
model size in private pre-training.

Table D.6: Linear probing evaluation of ViP-LAION with different privacy budget on ImageNet-1k
classification. We vary the privacy budget epsilon (ϵ) from 2.0 to +∞, where our default privacy
budget is ϵ = 8.0 and we use ϵ = +∞ to denote the non-private MAE model.

Model Downstream dataset ϵ = 2.0 ϵ = 4.0 ϵ = 8.0 ϵ = +∞

ViP-LAION ImageNet-1k 51.4% 53.8% 55.7% 60.5%

Table D.7: Additional linear probing evaluation on downstream classification (ViP with different
model sizes).

Model # parameters Backbone ImageNet-1K Places-365 Places-205 iNat-2021

(Syn)-ViP-S 61.6M MAE-Small 46.0% 40.9% 43.2% 28.3%

(Syn)-ViP-B 99.0M MAE-Base 49.8% 43.2% 45.8% 32.4%

(Syn)-ViP-L 233.3M MAE-Large 50.2% 43.3% 46.5% 32.7%

ViP-S 61.6M MAE-Small 49.6% 42.4% 44.7% 30.0%

ViP-B 99.0M MAE-Base 55.7% 46.1% 48.5% 38.1%

ViP-L 233.3M MAE-Large 58.0% 48.5% 50.8% 40.6%
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D.2.5 ViP Ablation Experiments
We study the effect of dataset size and batch size in ViP pre-training, and evaluate different models
with linear probing and fine-tuning on ImageNet-1K. We consider the ViP-Base setting and the
results are summarized in Table D.8.

Table D.8: Ablation studies on the effect of dataset size and batch size. The first row shows the
result of (Syn)-ViP, which is the common starting point for all models in the subsequent rows.
Difference in performance compared to (Syn)-ViP is shown in parentheses. See text for details. (‡
represents linear probing evaluation and ⋄ represents 10-shot fine-tuning evaluation.)

Model Batch Size # Train data Noise σ ImageNet-1K ‡ Places-365 ‡ iNat-2021‡ Aircraft⋄ CIFAR-100⋄

(Syn)-ViP - - - 49.8% 43.2% 32.4% 21.8% 39.0%

ViP 98,304 2M 2.50 52.6% (+2.8%) 44.8% (+1.6%) 37.0% (+4.6%) 29.1% (+7.3%) 39.9% (+0.9%)

ViP 98,304 23M 0.66 53.7% (+3.9%) 45.2% (+2.0%) 37.6% (+5.2%) 31.5% (+9.7%) 40.5% (+1.5%)

ViP 98,304 233M 0.48 55.7% (+5.9%) 46.1% (+2.9%) 38.1% (+5.7%) 31.6% (+9.8%) 41.0% (+2.0%)

ViP 8,192 233M 0.41 43.9% (- 5.9%) 41.0% (- 2.2%) 27.6% (- 4.8%) 15.0% (- 6.8%) 39.2% (+0.2%)

ViP 32,768 233M 0.45 53.0% (+3.2%) 45.1% (+1.9%) 36.2% (+3.8%) 30.0% (+8.2%) 40.3% (+1.3%)

ViP 98,304 233M 0.48 55.7% (+5.9%) 46.1% (+2.9%) 38.1% (+5.7%) 31.6% (+9.8%) 41.0% (+2.0%)

We study the effect of MAE-decoder depth and MAE-masking ratio in ViP pre-training, and
evaluate different models with linear probing on ImageNet-1K. We consider the ViP-Base setting
and the results are summarized in Table D.9.

Table D.9: Ablation studies on the effect of decoder depth and masking ratio in MAE.

Model decoder depth masking ratio ImageNet-1K

ViP (default) 4 0.75 55.7%

ViP 1 0.75 43.4%

ViP 2 0.75 51.7%

ViP 8 0.75 50.1%

ViP 4 0.25 53.5%

ViP 4 0.5 54.7%
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