
Towards Efficient and Deterministic Dataflow Systems

for Machine Learning

Jacky Kwok
Edward A. Lee, Ed.
Ion Stoica, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-76

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-76.html

May 10, 2024

Copyright © 2024, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I wish to extend my sincere gratitude to everyone who has supported me
throughout my academic journey.

Towards E�cient and Deterministic Dataflow Systems for Machine Learning

by

Jacky Kwok

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Edward A. Lee, Chair
Professor Ion Stoica

Spring 2024

The thesis of Jacky Kwok, titled Towards E�cient and Deterministic Dataflow Systems for
Machine Learning, is approved:

Chair Date

Date

Date

University of California, Berkeley

Edward A. Lee

Ion Stoica

May 1, 2024

April 30, 2024

Towards E�cient and Deterministic Dataflow Systems for Machine Learning

Copyright 2024
by

Jacky Kwok

Abstract

Towards Efficient and Deterministic Dataflow Systems for Machine Learning

by

Jacky Kwok

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Edward A. Lee, Chair

Professor Ion Stoica

This thesis brings together two reports that focus on optimizing a dataflow programming
language for machine learning workloads using the reactor model. The first paper introduces
an efficient parallel reinforcement learning framework that outperforms existing solutions,
such as Ray, in simulation throughput, multi-agent inference and training on a single node.
The proposed approach achieves this by reducing the work needed for synchronization using
the reactor model and decreasing the I/O overhead through optimizing the coordination
of Python worker threads. This work has been accepted as a full paper at the 36th ACM
Symposium on Parallelism in Algorithms and Architectures. The second paper presents a
High-Performance Robotic Middleware (HPRM), which builds on top of the reactor model
and employs optimizations including in-memory object store, adaptive serialization, and
eager protocol with real-time sockets to ensure low-latency and deterministic communication
for autonomous systems. HPRM demonstrates substantial latency reduction compared to the
Robot Operating System (ROS) 2 and achieves higher throughput in CARLA autonomous
driving applications. The work presented in these two papers contributes to the goal of
developing high-performance and reliable systems for machine learning by leveraging the
benefits of the reactor model and optimized communication mechanisms.

i

Contents

Contents i

1 Efficient Parallel Reinforcement Learning Framework using the Reactor
Model 1
1.1 Introduction . 2
1.2 Parallel Reinforcement Learning and Requirements 3
1.3 Introduction to Actor and Reactor Model . 5
1.4 Optimizations for Parallel Reinforcement Learning 10
1.5 Performance Comparison Between LF and Ray 13
1.6 Conclusion . 20
1.7 Lingua Franca Code . 20

2 HPRM: High-Performance Robotic Middleware for Intelligent Autonomous
Systems 22
2.1 Introduction . 23
2.2 Motivation and Requirements . 24
2.3 ROS2 vs. Lingua Franca . 25
2.4 Coordination and Optimizations . 28
2.5 Evaluation . 33
2.6 Conclusions . 37

Bibliography 38

ii

Acknowledgments

I am grateful to everyone who has supported me throughout my academic journey. I would
like to extend a special thanks to Professors Edward A. Lee and Ion Stoica, whose guidance
and expertise were crucial to my research at Berkeley.

Furthermore, I wish to acknowledge and thank Dr. Marten Lohstroh for his thoughtful advice
on both of my papers, Erling Rennemo Jellum for his contribution to the implementation of
real-time sockets, and Shulu Li for his work on the autonomous driving benchmarks.

I am truly fortunate to have been surrounded by such a supportive network of mentors,
collaborators, friends, and family.

1

Chapter 1

Efficient Parallel Reinforcement
Learning Framework using the
Reactor Model

Parallel Reinforcement Learning (RL) frameworks are essential for mapping RL workloads
to multiple computational resources, allowing for faster generation of samples, estimation of
values, and policy improvement. These computational paradigms require a seamless inte-
gration of training, serving, and simulation workloads. Existing frameworks, such as Ray,
are not managing this orchestration efficiently, especially in RL tasks that demand inten-
sive input/output and synchronization between actors on a single node. In this study, we
have proposed a solution implementing the reactor model, which enforces a set of actors to
have a fixed communication pattern. This allows the scheduler to eliminate work needed
for synchronization, such as acquiring and releasing locks for each actor or sending and pro-
cessing coordination-related messages. Our framework, Lingua Franca (LF), a coordination
language based on the reactor model, also supports true parallelism in Python and provides
a unified interface that allows users to automatically generate dataflow graphs for RL tasks.
In comparison to Ray on a single-node multi-core compute platform, LF achieves 1.21x and
11.62x higher simulation throughput in OpenAI Gym and Atari environments, reduces the
average training time of synchronized parallel Q-learning by 31.2%, and accelerates multi-
agent RL inference by 5.12x. This report has been accepted as a full paper at the 36th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA ’24).

CHAPTER 1. EFFICIENT PARALLEL REINFORCEMENT LEARNING
FRAMEWORK USING THE REACTOR MODEL 2

1.1 Introduction

The field of machine learning (ML) has witnessed an exponential increase in computational
requirements for training models, which tend to be increasingly larger deep neural networks.
This complexity has necessitated the creation of new frameworks focused on training these
networks and leveraging specialized hardware to reduce training times. Examples include
TensorFlow [1], MXNet [2], PyTorch [3], and Deepspeed [4]. Beyond classical supervised
learning, emerging AI applications are increasingly required to operate in dynamic environ-
ments and pursue long-term goals, problems that reinforcement learning (RL) is well suited
for. RL is a paradigm where agents learn to make decisions by performing actions in an en-
vironment and receiving feedback in the form of rewards. This approach has already led to
significant achievements such as AlphaGo [5], and more recently, the success of ChatGPT [6].
RL applications span various domains, including traffic systems [7], UAVs [8], large language
models (LLMs) [6], and dexterous manipulation [9].

Deep RL, unlike its traditional counterparts, is typically applied in continuous state space
environments, increasing the complexity of the task and thus the computational burden.
In fact, with many system optimization problems, the CPU is heavily utilized by deep
RL training workloads [10]. However, the scalability of deep RL, particularly in learning
complex state-action associations, hinges on efficiently leveraging both CPUs and GPUs [11,
12]. The combination of RL with deep neural networks necessitates a balanced approach in
computational resource allocation. The processing speed, especially when updating policies
involving millions of parameters, becomes a critical factor. The need to balance CPU and
GPU resources, coupled with the limitations of existing frameworks, highlights the need
for innovative approaches in developing efficient, scalable, and versatile systems capable of
supporting the dynamic and complex nature of modern artificial intelligence and machine
learning applications. This paper addresses these challenges and explores potential solutions,
paving the way for more efficient and effective reinforcement learning systems.

To this end, we introduced an optimized version of Lingua Franca (LF) [13], a polyglot
coordination language for concurrent and time-sensitive applications. Our optimized LF is
tailored to address the unique challenges of RL applications. LF stands out in its ability
to effectively handle a diverse range of workloads, from lightweight, stateless computations
needed for simulation to the more intensive, long-running computations required for train-
ing. A key feature of LF is its unified interface, which is adept at representing RL tasks as
dataflow graphs. This offers a visual representation of the underlying RL processes, display-
ing the dependencies between reactors, ports, state variables, and their data. This enhances
the understanding of the system’s structure, which is crucial for efficiently managing the
diverse computational demands of RL applications. LF also seamlessly integrates with RL
workloads, including training, simulation, and serving. On a single-node multi-core com-
pute platform, in comparison to Ray [14], LF achieves 1.21x and 11.62x higher simulation
throughput in OpenAI Gym [15] and Atari environments, reduces the average training time
of synchronized parallel Q-learning by 31.2%, and accelerates multi-agent RL inference by
5.12x.

CHAPTER 1. EFFICIENT PARALLEL REINFORCEMENT LEARNING
FRAMEWORK USING THE REACTOR MODEL 3

Contributions: In this paper, we demonstrate how the reactor-oriented paradigm imple-
mented in LF optimizes the utilization of computational resources and efficiently parallelizes
RL workloads. We then describe the compilation process and the mechanisms of LF run-
time, illustrating how reactors exploit parallelism and differ from the actors that underpin
Ray. Our investigation also reveals that multithreading offers greater advantages than mul-
tiprocessing in parallel RL on a single node. To leverage these advantages, we introduced
an optimized Reactor C runtime that supports Python without the Global Interpreter Lock,
enabling true parallelism and abstracting away the burden of coordinating worker threads
for RL tasks. We further present an extensive evaluation on the generations of samples from
Open AI Gym and Atari Environments, synchronized parallel Q-learning, and inference of
multi-agent RL. Our results demonstrate that LF outperforms Ray in terms of training,
inference, and simulation for RL.

1.2 Parallel Reinforcement Learning and

Requirements

Reinforcement Learning algorithms aim to enhance an agent’s policy performance within a
given environment, often represented through a simulator. These algorithms alternate cycles
of data collection with the latest policy, value estimation using the latest data (and possibly
data collected from previous policies), and policy improvement. Depending on the signal
provided by the reward function on the collected data and the efficiency of the algorithm
itself, the reinforcement learning process can vary in the amount of data and computational
resources needed to run until satisfactory performance is achieved. For most tasks of interest,
these data and compute requirements are large, motivating parallel reinforcement learning
frameworks that can efficiently leverage multiple computational resources.

Many aspects of the reinforcement learning problem can be parallelized [16]. Data col-
lection can be split across multiple worker threads, learning can be split across multiple
worker threads with each thread maintaining its own value function and policy parameters,
updates to the neural networks can be performed in parallelized fashions using popular deep
learning frameworks [1, 17, 18], and simulators can themselves be parallelized, for example
on accelerated computing infrastructure [19, 20, 21, 22].

Variants in RL Algorithms

Single-Agent Training: The most fundamental scenario in RL is training a single agent,
which involves repeatedly applying the steps of rollout, replay, and optimization. Syn-
chronous algorithms like A2C [23] and PPO [24] follow these steps in sequence, whereas
asynchronous variants (e.g., A3C [23], Ape-X [25], APPO [26], IMPALA [27]) overlap roll-
out and optimization steps to enhance data throughput.

Multi-Agent Training: Multi-agent training involves multiple agents interacting within
the environment, either cooperatively or competitively. While the dataflow structure resem-

CHAPTER 1. EFFICIENT PARALLEL REINFORCEMENT LEARNING
FRAMEWORK USING THE REACTOR MODEL 4

bles that of single-agent training, complexities arise when customizing training for indi-
vidual agents. For instance, if agents require optimization at different frequencies or are
trained with distinct algorithms, the training dataflow must accommodate multiple iterative
loops with varying parameters. Additionally, training populations of agents, such as Double
Q-learning [28], has demonstrated great promise in RL for stabilizing training, improving
exploration and asymptotic performance, and generating a diverse set of solutions.

Model-Based Algorithms: Model-based RL algorithms aim to learn the transition
dynamics of the environment to increase training efficiency [29]. This adds a supervised
training component to parallel RL, involving training one or more dynamics models with
environment-generated data.

Challenges and Opportunities in Framework Optimization:

RL algorithms like Q-learning and SARSA (State-Action-Reward-State-Action) traditionally
rely on sequential learning of a value table. The advent of deep neural networks has enabled
these algorithms to approximate complex functions without an explicit value table. The
combination of RL with deep neural networks in deep RL necessitates a balanced approach in
computational resource allocation. The processing speed, especially when updating policies
involving millions of parameters, becomes a critical factor. Current popular algorithms,
such as Deep Q Networks (DQN) and Advantage Actor Critic (A2C), often employ a hybrid
approach using both CPUs and GPUs. This setup allows for the efficient execution of
different phases of the RL process, with policy evaluation typically occurring on the CPU
and policy updates on the GPU. The evolution of machine learning, especially in the realm
of RL, has ushered in a new era of computational requirements and challenges.

Frameworks like Ray have made strides in CPU/GPU orchestration for RL, but they
face efficiency challenges due to the actor model’s inherent communication overhead and
synchronization demands. Ideal frameworks for RL should support heterogeneous compu-
tations, flexibility in computational models, dynamic execution, and large data handling,
while integrating seamlessly with deep learning libraries and simulation frameworks.

We argue that parallel RL frameworks should better handle millions of tasks per second
by providing deterministic concurrency. Current frameworks, on the other hand, fall short
in efficiently meeting the evolving demands of AI applications, indicating a significant gap
in the field. This research aims to propose a novel system architecture that addresses these
comprehensive requirements, bridging the gap in the current landscape and pushing the
boundaries of what is possible in parallel RL.

CHAPTER 1. EFFICIENT PARALLEL REINFORCEMENT LEARNING
FRAMEWORK USING THE REACTOR MODEL 5

1.3 Introduction to Actor and Reactor Model

Actor Model

The actor model [30], a foundational concept in concurrent computing, emerged in the
1970s as a response to the increasing complexity and interactivity in computer systems.
It introduced a novel way to handle concurrent operations by conceptualizing ”actors” as
the primary units of computation. These actors are analogous to objects in object-oriented
programming (OOP) [31], but they are designed specifically to address the challenges of
concurrency. Each actor represents a self-contained unit with its own local state, and actors
interact with each other exclusively through asynchronous message passing. This model
contrasts with traditional approaches that often rely on shared state and synchronization
mechanisms like locks, which can lead to issues like deadlocks and race conditions.

Actors in the model operate independently and concurrently, providing a natural frame-
work for distributed and parallel systems. When an actor receives a message, it can perform
several actions: it can create more actors, send messages to other actors, modify its own
internal state, or decide how to respond to the next message it receives. This makes the
model highly adaptable and scalable, suitable for applications ranging from simple concur-
rent programs to complex distributed systems. The asynchronous nature of message passing
in the actor model is key to its effectiveness in dealing with concurrency. It allows actors
to send and receive messages without waiting for a response, thereby preventing bottlenecks
and enabling continuous operation even when certain components are busy or delayed.

Furthermore, the actor model introduces a flexible approach to message processing, with-
out enforcing any strict order in which messages must be processed. This characteristic is
particularly beneficial in systems where message delivery times can vary unpredictably. Ac-
tors can process incoming messages in different sequences, and the model does not guarantee
that messages will arrive in the order they were sent. This flexibility allows for more effi-
cient utilization of resources and can lead to more robust system designs that are tolerant
of delays and variable message delivery times. Overall, the actor model’s emphasis on inde-
pendent, concurrent actors and asynchronous communication makes it a powerful paradigm
for building scalable and resilient distributed or concurrent systems.

Reactor Model

The reactor model [32] shows great potential as an alternative to the actor model, enabling
efficient and deterministic concurrency. The newly proposed reactor model represents an
advancement in deterministic reactive systems, providing a structured framework for creating
complex, reactive RL applications. Central to this model are the concepts of ”reactors” and
”reactions.” Reactors can be interpreted as deterministic actors, but instead of responding
to messages, they react to discrete events, each linked to a specific logical time, denoted by
a ”tag.” These events can trigger reactions within a reactor, similar to message handlers in
actor systems, but with a key difference: reactions in reactors are governed by a defined

CHAPTER 1. EFFICIENT PARALLEL REINFORCEMENT LEARNING
FRAMEWORK USING THE REACTOR MODEL 6

order, ensuring determinism. Reactions are activated by discrete events, which can also be
generated by reactions. Each event associates a value with a tag, representing its logical
release time within the system. Reactions can access and modify state shared with other
reactions in the same reactor, but interaction between different reactors is solely through
events. This design choice ensures the model’s deterministic nature because the order of
reaction executions is predictable and subject to strict constraints, such as tag order and
execution order for reactions within the same reactor.

The reactor model can be thought of as a ”sparse synchronous model” [33]. This means
that synchronous-reactive interactions at a particular logical time may be confined to iso-
lated parts of the system. When a reaction executes, it exclusively accesses the reactor’s
state. Moreover, for reactions in the same reactor that are triggered at the same tag, their
execution order is predefined, enforcing deterministic behavior. Reactors are composed of
ports (inputs and outputs), hierarchy, local state, and actions. The term ”reactors” not only
relate to actors in actor systems but also aligns with the synchronous reactive programming
paradigm, prominent in languages like Esterel, Signal, and Lustre [34]. Unlike traditional
actors, reactors don’t directly reference their peers. Instead, they use named and typed
ports for interconnection, enabling a hierarchical design. This hierarchy, besides facilitating
deterministic behavior, also serves as a scoping mechanism for ports and imposes constraints
on connection types.

Additionally, reactors feature actions, a variant of ports used for scheduling future events
within the same reactor or as a synchronization mechanism between internal logic and asyn-
chronous external events. This design choice provides a bridge between deterministic internal
logic and the nondeterministic external world, like sensor data, environment states, or net-
work messages. The reactor model also incorporates state variables. The shared resources,
like replay buffers, model parameters, environment states in RL, are key motivators for
grouping reactions in a single reactor. However, reactors themselves do not share state,
ensuring isolation between reactors and allowing parallel execution of reactions in different
reactors, unless a connection necessitates sequential execution.

Connections between reactors establish explicit communication channels. These connec-
tions reveal dependencies that are crucial for scheduling decisions honoring data dependen-
cies. The reactor model simplifies the declaration of these dependencies by breaking down
functionality into reactions with well-defined lexical scopes, thus eliminating dependencies
out of scope. The reactor model’s execution is governed by a run-time environment. This
environment is responsible for maintaining a global event queue and a reaction queue, man-
aging logical time, and executing reactions. Details regarding the scheduler are described
below.

Ray

Several new distributed RL frameworks have recently emerged, such as Acme [35], MSRL [36],
and Menger [37]. However, these frameworks primarily focus on distributing workloads across
multiple nodes rather than optimizing and parallelizing RL tasks on a single-node comput-

CHAPTER 1. EFFICIENT PARALLEL REINFORCEMENT LEARNING
FRAMEWORK USING THE REACTOR MODEL 7

ing platform. In contrast, Ray [38, 14] is an open-source framework designed for distributed
computing and has been widely used to parallelize RL workloads from single-node to multi-
nodes. Ray utilizes the actor model, which is central to its architecture and operation,
making it highly effective for concurrent and distributed computing tasks. The actor model
in Ray is used to encapsulate state and behavior, with actors being distributed across a node
or a cluster and communicating through asynchronous message passing. It is important to
highlight that in this study, our primary focus is on enhancing the efficiency of distributing
actors within a node. Actors can be used for performance reasons (like caching soft state or
ML models), or they could be used for managing long-living connections to databases or to
web sockets. They can maintain state across multiple tasks, which is particularly useful for
applications that require managing large, mutable states, such as machine learning models
or large datasets.

The local scheduler in Ray is a component of a worker node called Raylet. Raylet manages
the worker processes and consists of two components, a task scheduler and an object store.
The task scheduler takes care of scheduling and executing work on a node. It addresses
issues such as a worker being busy, not having the proper resources to run a task, or not
having the values it needs to run a given task. Expensive serialization and deserialization as
well as data copying are common performance bottleneck. Shared memory, specifically that
which is managed directly by the operating system kernel, emerges as a superior mechanism
compared to conventional approaches like socket connections. The fundamental attribute of
the in-memory object store is that all objects within the store are immutable and retained in
shared memory. The object store has its eviction policy, removing objects from the store or
transferring them to other nodes when the allocated size limit is exceeded. This design choice
ensures optimal access speeds, particularly when multiple workers on a singular node need
to engage with the data. Each node provisioned by Ray is equipped with an object store,
within that node’s Raylet. Functionally, the object store takes care of memory management
and ultimately makes sure workers have access to the objects they need in Ray.

Lingua Franca (LF) [39, 40] is a polyglot coordination language designed to facilitate
the development of concurrent systems by focusing on deterministic interactions with the
environments. It operates on the reactor model, where reactors are the fundamental units of
composition, each encapsulating reactions to external stimuli. LF’s main feature is its deter-
ministic nature, meaning that given a set of inputs, a LF program will always produce the
same outputs, greatly enhancing testability and efficiency. This determinism is achieved by
using a superdense model of time (where events are ordered by time and microstep), ensuring
causality and the absence of non-deterministic feedback loops in the reaction network.

The architecture of LF includes a compiler (lfc). The compiler process involves parsing
and validating the LF code, checking for syntax errors, instantiation cycles, and cyclic depen-
dencies among reactions. Valid code can then be transpiled into target code in languages like
C, C++, TypeScript, and Python, which is then combined with a runtime system to manage
the execution of reactors. LF also allows for graphical program representation, enhancing
program structure understanding and error identification.

In LF, reactors can be defined with parameters (immutable after initialization), ports (for

CHAPTER 1. EFFICIENT PARALLEL REINFORCEMENT LEARNING
FRAMEWORK USING THE REACTOR MODEL 8

Figure 1.1: LF: compilation process

data input/output), actions (for scheduling internal events), and timers (for periodic events).
Reactors can also declare state variables to maintain state across logical time. Reactions in
LF, which contain the core logic, are defined with triggers (conditions under which they
execute), sources (additional data inputs), and effects (outputs or actions they can trigger).
LF supports reaction deadlines, where an alternative code block executes if a reaction misses
its specified deadline, thus enforcing timing constraints.

LF allows for flexibility in connecting reactors through multiports (ports handling mul-
tiple data channels) and banks (multiple reactor instances). Connections can be logical, im-
plying synchronization between ports, or physical, introducing intentional nondeterminism
for scenarios where strict event ordering is not required. LF’s syntax permits the creation
of complex interaction patterns among reactors, offering a robust toolset for constructing
scalable and maintainable concurrent systems.

Lingua Franca

The formal semantics of LF is grounded in the theory of discrete-event systems, utilizing a
generalized ultrametric space for modeling the behavior of LF programs [41]. This approach
guarantees that each LF program is deterministic and adheres to causality, essential for
reliability in concurrent system design. LF’s semantic model is fully abstract, providing
both an operational perspective (how the program executes) and a denotational perspective
(the meaning of program constructs), ensuring consistency. An operational semantics of the
reactor model based on a formalization in LEAN [42] is also available.

Fig. 1.1 depicts the compilation process of the LF framework. This process begins with
the source code written in Lingua Franca, with a .lf extension. The source code is then
processed by a modified lfc compiler, tailored to work without Python’s Global Interpreter
Lock (GIL). This study uses a fork of Python 3.9.10 without the GIL. Additionally, the
compilation process involves various no-GIL versions of the Python libraries such as NumPy,
PyTorch, Gym, etc.

This compiler generates C code for each reactor, with files named R1.c, R2.c, and so on

CHAPTER 1. EFFICIENT PARALLEL REINFORCEMENT LEARNING
FRAMEWORK USING THE REACTOR MODEL 9

Figure 1.2: Generated Dataflow Graph for parallel RL tasks

as well as the compiled Lingua Franca library, LinguaFranca.so, which can be imported and
used in Python scripts (*.py). The runtime implementation serves as a bridge between the
high-level coordination language and the underlying Python environment without the GIL,
enabling users to write truly concurrent Python programs. It abstracts away the burden of
coordinating worker threads.

Representing RL tasks as a Dataflow Graph

The diagram synthesizer in LF provides a streamlined process to represent parallel RL tasks
as dataflow graphs [13]. By simply initializing reactors and setting their input and output
ports, LF can automatically generate the corresponding dataflow graph. This diagrammatic
feature is seamlessly integrated with Visual Studio Code and Eclipse, offering a visual repre-
sentation of the underlying RL processes. The resulting diagram (Fig. 1.2) clearly displays
the reactors, ports, state variables, and their data dependencies, simplifying the understand-
ing of the system’s structure and aiding in the debugging of parallel RL tasks. Users are
therefore better positioned to manage the parallelization of RL processes. LF also offers a
compact syntax for ports that are capable of sending or receiving across various channels,
and a syntax for multiple instances of a reactor. These concepts are known as multiports
and banks of reactors. For example, we have created a bank of six instances of ReplayBuf-
ferReactor and one instance of LearnerReactor, connecting them using multiport. Detailed
information about the implementation is provided in the appendix.

RolloutReactor: This reactor is pivotal in interacting with the environment. It gathers
trajectories by executing a policy and recording the resulting states, rewards, and other
pertinent outcomes. It receives gradients from the LearnerReactor for policy updates and
sends experience (e.g. trajectories) to the ReplayBufferReactor.

• EnvironmentState: The present state of the environment.

• PolicyState: Stores the parameters of a neural network used as the policy.

CHAPTER 1. EFFICIENT PARALLEL REINFORCEMENT LEARNING
FRAMEWORK USING THE REACTOR MODEL 10

• ActionBuffer : A temporary repository for actions decided by the policy.

• RewardBuffer : Temporary repository for rewards after actions.

• ObservationBuffer : Temporary repository for new observations post-action.

ReplayBufferReactor: Acting as a centralized experience replay buffer, this reactor
stores trajectories from the RolloutReactor for subsequent sampling. It provides batched
experience to the LearnerReactor for policy updates.

• ExperienceData: An accumulation of experiences (state, action, reward, subsequent
state, and termination info).

• SamplingPointer : Indices or pointers facilitating efficient sampling.

• PrioritizedInfo: For prioritized replay buffers, additional information will be used to
manage sampling.

LearnerReactor: The LearnerReactor updates policies based on sampled experiences
from the ReplayBufferReactor or directly from the RolloutReactor, and broadcasts updated
gradients to the RolloutReactor.

• ModelParameter : The parameters of neural networks.

• OptimizerState: Elements related to the optimization process, such as momentum
variables and correction terms.

• LearningRate: The current learning rate, either static or dynamically adjusted.

• TargetNetworkParameters : In algorithms like DQN [43], these are slowly updated
parameters offering a stable learning target.

1.4 Optimizations for Parallel Reinforcement

Learning

Scheduling Algorithm

The execution process of programs in LF involves a scheduler responsible for overseeing all
scheduled future events, managing the logical time progression, and executing triggered re-
actions in the order dictated by the dependency graph. The scheduling mechanism in LF,
depicted in Fig. 1.3, operates with an event queue that strictly follows a tag order for pro-
cessing upcoming events. Upon adding an event to the queue and processing it, the scheduler
identifies triggered reactions, placing them in a reaction queue. These reactions are subse-
quently moved to a ready queue and executed by worker threads once all dependencies, as

CHAPTER 1. EFFICIENT PARALLEL REINFORCEMENT LEARNING
FRAMEWORK USING THE REACTOR MODEL 11

Figure 1.3: Scheduling mechanism in the LF runtime [39]

outlined by the Action-Port Graph (APG), are satisfied. Within this scheduling framework,
the scheduler ensures a sequential execution of reactions that depend on one another, aiming
to maximize parallelism.

The scheduling mechanism is similar to Directed Acyclic Graph (DAG)-based strategies
but differs by accommodating reactions within the Action-Port Graph (APG) that may not
always need execution. Since the scheduler cannot predict in advance which reactions will
be triggered at a given tag, it cannot precompute an optimal schedule. To address this, the
scheduler assigns a level to each reaction, allowing reactions at the same level to execute
concurrently while still maintaining dependencies between different levels. This reduces
synchronization overhead by eliminating the need for runtime graph analysis to determine
dependencies. The scheduler processes reactions sequentially, advancing to the next level
only after completing all reactions at the current level. This approach substantially reduces
synchronization overhead and contention on shared resources, contributing to its efficiency.

Scheduling Optimizations

The scheduling algorithm described in the above section is relatively straightforward to
implement, but achieving competitive performance requires additional optimizations. These
optimizations, implemented in the C runtime in LF, are detailed below.

Coordination of worker threads: Conceptually, the scheduler and workers are dis-
tinct; however, in practice, having a central scheduler with separate worker threads can
cause significant synchronization overhead. To mitigate this, our implementation allows any
worker thread to become the scheduler, allowing it to move ready reactions to the queue or
advance the logical time once all reactions are processed. Additionally, LF leverages the fact
that we know the number of parallel reactions (reactions at the same level) to execute from
the APG, and thus can use a counting semaphore to regulate the number of active workers.

Lock-free data structure: The three queues (event, reaction, and ready queue) and
other data structures are shared across all workers. Mutex-based synchronization would be
inefficient due to high contention over these shared resources. Accordingly, LF adopts lock-
free data structures wherever feasible. For example, the ready queue is a fixed-size buffer
with an atomic counter, which corresponds to the maximum number of parallel reactions

CHAPTER 1. EFFICIENT PARALLEL REINFORCEMENT LEARNING
FRAMEWORK USING THE REACTOR MODEL 12

defined by the APG level. Each time a worker tries to execute a reaction it atomically
decrements the counter. If the counter is negative, it indicates an empty queue, and the
worker should proceed accordingly. Otherwise, the counter provides the index within the
buffer from which to read. This operation is safe without additional synchronization, as all
workers are waiting for upcoming new reactions.

Enabling Multi-threading for Reinforcement Learning

Parallel processing is a cornerstone in the field of machine learning, enabling the handling
of computationally intensive tasks and large-scale data. The parallel execution models,
namely multithreading and multiprocessing, provide different advantages. This section aims
to dissect these models to guide the selection of an appropriate parallel execution strategy
for RL.

Multithreading in RL:

1. Shared Memory Space: Multithreading involves threads operating within the same
memory space, which facilitates faster and more efficient data sharing among threads
compared to multiprocessing.

2. Resource Efficiency: The creation and management of threads consume fewer resources
than processes. This efficiency stems from the shared memory space and the absence
of a need for complex inter-process communication mechanisms.

3. I/O Bound Task Optimization: Multithreading proves advantageous for I/O-bound
operations, where the ability to perform other tasks while waiting for I/O operations
enhances efficiency.

4. Context Switching: The shared process and memory space of threads enable faster
context switching than multiprocessing, as less information needs to be saved and
restored.

Multiprocessing in RL

1. CPU Bound Task Optimization: Multiprocessing is typically more suitable for CPU-
bound tasks. However, most of the CPU-bound tasks (e.g. gradient updates) in RL
should be offloaded to GPU instead.

2. Fault Tolerance and Stability: The isolated nature of processes in multiprocessing
ensures that a crash in one process does not impact others, thus enhancing application
stability. The scheduler in LF guarantees the safety of threads and permits users to
specify actions in the event of a failure.

3. Bypassing the GIL in Python: In Python, the Global Interpreter Lock (GIL) lim-
its thread execution, multiprocessing provides a viable alternative for parallel CPU
computations. This has been resolved by leveraging the No GIL version of Python.

CHAPTER 1. EFFICIENT PARALLEL REINFORCEMENT LEARNING
FRAMEWORK USING THE REACTOR MODEL 13

Optimizing Thread Allocations

The principle that running a task with multiple threads can speed up the process is generally
true, as each thread can handle a portion of the work simultaneously. However, the scaling is
not always linear due to various factors like thread allocation and CPU architecture. In our
benchmarks, the Intel CPU has a hybrid architecture, featuring a combination of performance
and efficiency cores. Performance cores are designed for high-speed and intensive tasks,
while efficiency cores are optimized for lower power consumption and handling background
tasks. The original LF runtime randomly allocates threads for workers. As a result, when
synchronous tasks are distributed across these cores, the overall speed is bounded by the
slower efficiency cores. To achieve linear scaling, the Reactor C runtime has been optimized
to prioritize using the performance cores before spawning threads.

1.5 Performance Comparison Between LF and Ray

To demonstrate the improved performance of LF over Ray for parallel RL workloads, we
run the following experiments. We believe these experiments are comprehensive and ade-
quate to support our assertion that our optimized implementation of the reactor model for
RL significantly advances the state of the art for parallel RL. The benchmarks can be ac-
cessed through the following GitHub repository:https://github.com/jackyk02/parallel_
rl_benchmarks.

1. We demonstrate lower overhead of broadcast and gather operations with LF than with
Ray, and show that the overhead difference scales favorably for LF as we increase both
the number of actors/reactors and the communication object size. While not an RL
benchmark, this toy workload resembles the computation done in RL, and is useful for
highlighting why exactly it is that LF outperforms Ray.

2. In most parallel RL settings, (e.g., as is typically the case with policy gradient and Q-
learning algorithms), the majority of the parallelism that can be obtained by porting
these algorithms to leverage parallel compute is in the data collection phase of the
algorithm (as opposed to for example value estimation or policy improvement). As
such, we extensively test parallel data collection in popular RL simulated environments
with both LF and Ray.

3. To demonstrate that LF integrates seamlessly with other forms of parallel compute
paradigms, namely GPU acceleration, and to demonstrate the versatility LF provides
to implement various reinforcement learning algorithms, we implement and evaluate
synchronized parallel Q-learning with deep neural networks.

4. Finally, we observe that multi-agent RL lends itself very well to being parallelized, as
each agent can maintain its own learning and data collection actors. We evaluate in
such a multi-agent RL (MARL) setting and observe favorable results for LF.

https://github.com/jackyk02/parallel_rl_benchmarks
https://github.com/jackyk02/parallel_rl_benchmarks

CHAPTER 1. EFFICIENT PARALLEL REINFORCEMENT LEARNING
FRAMEWORK USING THE REACTOR MODEL 14

Experimental Setup

The actor model is a popular approach for developing parallel RL applications, with Ray
being notable for its usability and efficiency in handling multiple actors. However, LF intro-
duces a different model of computation, imposing more restrictions compared to the actor
model. We hypothesize that the reactor model with LF can outperform Ray, which is very
widely used today for parallel RL. Drawing evidence from this study [39], the reactor model
has been shown to surpass the performance of the traditional Actor Framework, Akka and
C++ Actor Framework, by factors of 1.86x and 1.42x, respectively, for non-RL workloads.
More specifically, the reactor model with a fixed set of actors and fixed communication pat-
terns allows the scheduler to eliminate work needed for synchronization. Furthermore, with
our customized implementation, LF leverages No GIL Python for multithreading, which of-
fers several benefits, including efficient data sharing within a shared memory space and faster
context switching. Previous studies[44] have demonstrated that using the No GIL version
results in a speed-up of 10.9% across 58 tests in the pyperformance benchmark suite. The
reduced overhead is also demonstrated by both Fig. 1.4 and Fig. 1.5 . The term, overhead,
refers to the duration required for one actor to send a payload to another and for it to be
received. This process may include serialization and deserialization, acquiring and releasing
locks for each actor, sending and processing coordination-related messages, as well as trans-
ferring data over the network. All measurements were performed on AWS EC2 m5.8xlarge
instance, equipped with an Intel® Xeon® Platinum 8175M CPU @ 2.50GHz featuring 32
vCPUs. This setup includes 128 GiB of RAM and offers a 10 Gbps network bandwidth. The
system runs on Ubuntu 20.04 and use Python 3.9.10, with NumPy version 1.22.3 and gym
version 0.19.0.

Figure 1.4: Mean Overhead of Broadcast and Gather 10MB Object with Different Number
of Actors using Ray and LF.

CHAPTER 1. EFFICIENT PARALLEL REINFORCEMENT LEARNING
FRAMEWORK USING THE REACTOR MODEL 15

Number of Actors

Fig. 1.4 illustrates the mean overhead of broadcasting and gathering a 10MB object across
different numbers of actors in a parameter server setup. Two frameworks are compared: Ray
and LF. The x-axis represents the number of actors, which are 2, 4, 8, and 16, while the
y-axis shows the overhead in milliseconds. Both frameworks exhibit an increase in overhead
as the number of actors grows, but Ray consistently has a higher overhead than LF. For
instance, with 16 actors, Ray’s overhead is close to 20 milliseconds, whereas LF’s is just
above 5 milliseconds.

Object Size

Fig. 1.5 presents a comparison of the mean overhead for broadcasting and gathering opera-
tions on objects of varying sizes using 16 actors, between Ray and LF frameworks, including
a 99% confidence interval (CI). The x-axis displays the object size in megabytes (MB), rang-
ing from 0 to 500 MB, while the y-axis indicates the overhead in milliseconds. From the
graph, we can observe that as the object size increases, the overhead for both Ray and LF
also increases. However, Ray’s overhead grows at a higher rate than LF’s. For instance, with
the largest object size of 500 MB, Ray’s overhead approaches 800 milliseconds, whereas LF’s
overhead is about half of that, around 400 milliseconds.

Figure 1.5: Mean Overhead of Broadcast and Gather on 16 actors with Different Object
Sizes using Ray and LF.

Both Fig. 1.4 and Fig.1.5 support the hypothesis that the reactor model employed by LF
can outperform traditional actor models like Ray, particularly in scenarios with a greater
number of actors and larger object size, due to optimizations such as reduced synchronization
work and efficient multithreading with No GIL Python.

CHAPTER 1. EFFICIENT PARALLEL REINFORCEMENT LEARNING
FRAMEWORK USING THE REACTOR MODEL 16

Open AI Gym Environments

In Fig. 1.6, we see that LF outperforms Ray in terms of simulation throughput for Open AI
Gym Environments by 1.21x on average, with a particularly significant lead in the Blackjack
environment. This suggests that LF is more efficient, especially in situations where there
is a lower CPU demand for action updates within the environment. It’s important to note
that vectorized environments are asynchronous and do not parallelize inference of policy.
Therefore, it is not included in our benchmarks.

Figure 1.6: Simulation Throughput of Ray and LF with 16 actors in Various Gym Environ-
ments.

Atari Environments

In Fig. 1.7, we compare the performance of Ray and LF on Atari environments, specifically
on Pacman, Pong, and SpaceInvader. Here, LF again significantly outperforms Ray in terms
of observations per second. On average, LF is roughly 11.62x faster than Ray across these
environments. The substantial performance difference can be attributed to LF’s efficiency in
handling high I/O (input/output) bound tasks. Atari environments are more complex than
the previously mentioned OpenAI gym environments. They represent each state as an 80x80
numpy array, which requires more computational resources to serialize and deserialize, espe-
cially when data needs to be sent over a network. Ray’s use of pickle5 for serialization does
help to increase throughput by efficiently serializing NumPy arrays, but it still introduces
overhead during network transmission and the serialization/deserialization process. This
overhead is particularly significant in environments where state updates are frequent and
must be communicated quickly. LF’s ability to handle the demands of complex simulation
environments is thus a key advantage.

CHAPTER 1. EFFICIENT PARALLEL REINFORCEMENT LEARNING
FRAMEWORK USING THE REACTOR MODEL 17

Figure 1.7: Simulation Throughput of Ray and LF with 16 actors in Various Atari Environ-
ments.

Synchronized Parallel Q-learning

Deep Q-Networks (DQNs) [43] are an advancement in reinforcement learning that utilize
deep neural networks to estimate Q-values. The Q-values are predictions of the expected
discounted returns after taking certain actions given particular states in an environment.
DQNs extend the capabilities of traditional Q-learning by handling larger state and action
spaces, which are common in complex problems. These networks can scale up effectively with
more data or increased model complexity; therefore, DQN usually utilizes GPUs for gradient
updates. However, since AWS EC2 m5.8xlarge does not include a GPU, benchmarking was
conducted on a workstation with an Intel i9-13950HX CPU @ 2.20GHz featuring 32 vCPUs,
NVIDIA RTX4090, and 32 GiB of RAM. The system also runs on Ubuntu 20.04 and uses
Python 3.9.10, with numpy 1.22.3, torch 1.9.0, and gym 0.20.0.

DQN has been implemented in a synchronized parallel Q-learning setup within a Black-
Jack environment [43]. The dataflow graph is shown in Fig. 1.8. The network is trained to
take a blackjack hand as input and output scores for each of the possible actions in the game,
which represent the expected rewards of taking those actions. The computational tasks are
distributed with the rollout and replay buffer being executed on a CPU, while the DQN Re-
actor uses a GPU. This setup takes advantage of GPUs for complex matrix operations and
multicore CPUs for sequential decision-making simulations in Open AI Gym environments.

The benchmark results, as seen in Fig. 1.9, demonstrate performance improvements using
LF over Ray. In tests with a 500 sample batch size from the replay buffer, the average training
time decreased by 31.2%. The data also shows that while Ray’s training time increases with
larger mini-batch sizes, LF’s performance remains stable, indicating its ability to handle
larger batches efficiently.

CHAPTER 1. EFFICIENT PARALLEL REINFORCEMENT LEARNING
FRAMEWORK USING THE REACTOR MODEL 18

Figure 1.8: Dataflow Graph of Parallel Q-learning

Figure 1.9: Synchronized Parallel Q-learning with Different Batch Sizes from a Replay Buffer

Multi-Agent RL Inference Comparison

In Multi-Agent RL (MARL), multiple agents operate in a common environment, where
each of them tries to optimize its own return by interacting with the environment and
other agents [45]. In centralized MARL, a central controller aggregates information across
the agents, including joint actions, rewards, and observations, and policies across different
agents. In decentralized MARL, which is more common in cooperative situations, each agent
makes decisions based on its local observations [46].

We validate LF in a MARL setting with ma-gym [47], a MARL library based on OpenAI
Gym [15]. We use the TrafficJunction4-v0 environment, in which four agents are trying to
pass a crossroad without crashing. This is a decentralized setting where each agent gets its
own local observation. As shown in Fig. 1.10, LF requires significantly less inference time
than Ray (less than 1/2 the fitted line’s slope). It is also noteworthy that as the number

CHAPTER 1. EFFICIENT PARALLEL REINFORCEMENT LEARNING
FRAMEWORK USING THE REACTOR MODEL 19

of agents increases as shown in Fig. 1.11, LF’s inference time scales better (again, less than
1/2 the rate of increase than that of Ray). In TrafficJunction environments with 10 agents,
LF achieves a 5.12x speed-up compared to Ray.

Figure 1.10: Inference Time Between Ray and LF over Episode Counts

Figure 1.11: Inference Time Comparison between Ray and LF across Various Numbers of
Agents

CHAPTER 1. EFFICIENT PARALLEL REINFORCEMENT LEARNING
FRAMEWORK USING THE REACTOR MODEL 20

1.6 Conclusion

We demonstrate that LF outperforms the widely used framework Ray in handling training,
serving, and simulation tasks in RL. We achieve this by reducing the work needed for syn-
chronization using the reactor model and decreasing the I/O overhead through optimizing
the coordination of Python worker threads. Our empirical evaluations demonstrate LF’s su-
perior performance: a 1.21x and 11.62x higher simulation throughput in OpenAI Gym and
Atari environments, a 31.2% reduction in average training time for synchronized parallel
Q-learning, and a 5.12x acceleration in multi-agent RL inference. We aim to incorporate the
optimizations for single-node described in this work into LF’s federated execution, enabling
efficient distributed training and serving across nodes. We also plan to delve deeper into
the potential applications of our optimizations in deploying deep RL on embedded systems,
and will compare it with frameworks such as the Robot Operations System, a middleware
commonly used in robotics.

1.7 Lingua Franca Code

1 target Python {

2 threading: True

3 }

4

5 preamble {=

6 #Import packages

7 #e.g Torch , Gym , Numpy

8 =}

9

10 reactor RolloutReactor {

11 input [6] gradients

12 output [6] trajectories

13

14 state EnvironmentState

15 state PolicyState

16 state ActionBuffer

17 state RewardBuffer

18 state ObservationBuffer

19

20 reaction(startup) {=

21 #Initialize Environment

22 =}

23

24 reaction(gradients) -> trajectories {=

25 #Perform rollouts for the Environment

26 =}

27 }

28

29 reactor ReplayBufferReactor {

CHAPTER 1. EFFICIENT PARALLEL REINFORCEMENT LEARNING
FRAMEWORK USING THE REACTOR MODEL 21

30 input [6] trajectories

31 output [6] dataset

32

33 state ExperienceData

34 state SamplingPointer

35 state PrioritizedInfo

36

37 reaction(startup) {=

38 #Initialize ReplayBuffer

39 =}

40

41 reaction(trajectories) -> gradients {=

42 #Append Trajectories into ReplayBuffer

43 =}

44 }

45

46 reactor LearnerReactor {

47 output [6] gradients

48 input [6] dataset

49

50 state ModelParameter

51 state OptimizerState

52 state LearningRate

53 state TargetNetworkParameters

54

55 reaction(startup) -> gradients {=

56 # Initialize the policy

57 =}

58

59 reaction(dataset) -> gradients {=

60 # Update the policy

61 =}

62 }

63

64 main reactor {

65 rollout = new [6] RolloutReactor ()

66 replay = new [6] ReplayBufferReactor ()

67 learner = new [6] LearnerReactor ()

68

69 # Specifiy

70 (learner.gradients)+ -> rollout.gradients

71 (rollout.trajectories)+ -> replay.trajectories

72 (replay.dataset)+ -> learner.dataset

73 }

22

Chapter 2

HPRM: High-Performance Robotic
Middleware for Intelligent
Autonomous Systems

The rise of intelligent autonomous systems, especially in robotics and autonomous agents,
has created a critical need for robust communication middleware that can ensure real-time
transmission and processing of extensive sensor data. Current robotics middleware like
Robot Operating System (ROS) 2 faces challenges with nondeterminism and high commu-
nication latency when dealing with large data across multiple subscribers on a multi-core
compute platform. To address these issues, we present High-Performance Robotic Middle-
ware (HPRM), built on top of the deterministic coordination language Lingua Franca (LF).
HPRM employs optimizations including an in-memory object store for efficient zero-copy
transfer of large payloads, adaptive serialization to minimize serialization overhead, and
an eager protocol with real-time sockets to reduce handshake latency. Benchmarks show
HPRM achieves up to 173x lower latency than ROS2 when broadcasting large messages
to multiple nodes. We then demonstrate the benefits of HPRM by integrating it with the
CARLA simulator and running deep reinforcement learning agents along with object detec-
tion workloads. In the CARLA autonomous driving application, HPRM attains 4.79x higher
throughput than ROS2. The deterministic coordination semantics of HPRM, combined with
its optimized IPC mechanisms, enable efficient and predictable real-time communication for
intelligent autonomous systems. This work is currently under review for publication.

CHAPTER 2. HPRM: HIGH-PERFORMANCE ROBOTIC MIDDLEWARE FOR
INTELLIGENT AUTONOMOUS SYSTEMS 23

2.1 Introduction

Due to the advancements in AI, the area of intelligent autonomous systems is rapidly grow-
ing. These systems, especially in the context of robotics and autonomous agents, are critical
in both performance and reliability due to their capability to analyze extensive sensor data
in real-time. They require a robust communication infrastructure to ensure real time trans-
mission and processing of data.

In the architecture of autonomous systems, modules are typically organized as coarse-
grained processes [48]. This design paradigm, which emphasizes functional independence and
resource isolation, ensures that a failure in one module does not compromise the integrity or
functionality of other modules or the system as a whole. Consequently, the exchange of data
across different modules is predominantly facilitated through Inter-Process Communication
(IPC) [49, 50] techniques. For instance, in a scenario where a robot is tasked with identify-
ing specific objects for humans, the image data captured by the camera module undergoes
several steps: serialization into a buffer, copying into the system kernel, transferring to the
target process, and finally, deserialization. These operations usually lead to high latency in
applications that make use of high-resolution cameras or LiDAR sensors.

Frameworks like the Robot Operating System (ROS) [51] and MQTT [52] have seen
significant adoption in critical, concurrent, and distributed settings, including autonomous
vehicles and industrial automation. These frameworks are valued for their convenience,
modularity, and the use of a publish-subscribe mechanism, which can easily be leveraged
for message exchange in distributed systems. However, the publish-subscribe mechanism,
particularly in high-stakes environments like autonomous driving, introduces a level of non-
determinism [53] due to varying communication timing, potentially resulting in unpredictable
message handling sequences. This unpredictability is a significant concern in environments
where the consequences of errors are severe. In addition, to support message passing in
autonomous navigation systems, frameworks such as ROS2 generally utilize sockets-based
communication [54]. However, this method falls short in scenarios involving the processing of
large data packets across numerous subscribers, as it leads to an increase in communication
latency with message size.

In this study, we offer an alternative to ROS2—High-Performance Robotic Middleware
(HPRM). HPRM is an open-source robotic middleware built on top of a coordination lan-
guage, Lingua Franca (LF) [13]. LF, which is based on the reactor model [32], is a polyglot co-
ordination language that combines the most effective semantic elements from well-established
computational models. This includes the actor model, Logical Execution Time (LET), syn-
chronous reactive languages, and discrete event systems like SystemC. LF advances the field
by integrating time as a primary element within its programming paradigm, thereby facilitat-
ing deterministic interactions across various physical and logical timelines. HPRM is meant
to enhance the capability of robotic middleware in handling large volumes of sensor data
and ML workloads using efficient IPC techniques. Specifically, it uses an in-memory object
store to efficiently transfer large objects across different processes, adaptive serialization for
different types of sensor data in Python, and an eager protocol and real-time sockets to min-

CHAPTER 2. HPRM: HIGH-PERFORMANCE ROBOTIC MIDDLEWARE FOR
INTELLIGENT AUTONOMOUS SYSTEMS 24

imize the handshake latency for transmitting control and object references. Our approach
significantly reduces the overhead associated with local IPC compared to ROS2 [55].

We demonstrate the benefits of HPRM by integrating it with CARLA [56] to be running
reinforcement learning (RL) agents and object detection in autonomous driving scenarios.
HPRM is also seamlessly integrated with ROS2 and can easily install ROS2 dependencies
and make use of LF’s precise timing semantics. The HPRM runtime system is implemented
in C and applications are modular, just like ROS and MQTT, allowing independent processes
to be deployed.

2.2 Motivation and Requirements

Motivation

Frameworks like ROS2, are becoming more prevalent in critical applications, including au-
tonomous driving, where the implications of unpredictable behaviors are significant. How-
ever, the coordination mechanism in ROS2 introduces nondeterminism [53], leading to arbi-
trary ordering in the handling of messages. This inherent nondeterminism in the publish-
subscribe communication models poses a risk and could compromise the reliability of such
systems.

Furthermore, robotics middleware [57], such as ROS2, faces considerable delays in mes-
sage delivery, which can compromise the efficacy of real-time robotic operations when dealing
with large volumes of data or multiple subscribers. Consider the scenario in autonomous
navigation systems, where a planning module has to process large-scale inputs from per-
ception before sending actions to other components like a localization module and vehicle
control systems. For instance, the large-scale inputs may consist of high-definition video
that can easily exceed 50 MB for a short clip. LiDAR sensors can generate about 10-70
MB/s, cameras can produce 10-20 MB/s depending on the resolution and frame rate. More-
over, many developers within the ROS community have experienced latency problems when
publishing large data [58][59][60]. Therefore, minimizing communication delays is pivotal
for improving the real-time responsiveness of robotic systems, thereby improving the overall
user experience in scenarios that demand real-time data processing.

Kronaur, et al. [61] highlights the proportional increase in communication latency relative
to message size using ROS2. Specifically, they observe that for messages around 4MB, the
median delay for ROS2 is around 10ms. In scenarios of 1MB data being distributed to five
subscribers, ROS2 exhibited a median latency nearing 80ms.

Requirements

This section outlines the key features and capabilities that HPRM must possess to address
the challenges faced by current robotics middleware. These requirements focus on ensuring

CHAPTER 2. HPRM: HIGH-PERFORMANCE ROBOTIC MIDDLEWARE FOR
INTELLIGENT AUTONOMOUS SYSTEMS 25

efficient communication, reliable performance, and ease of use for developers working on
intelligent autonomous systems. The three main requirements for HPRM are:

• Efficient Communication: HPRM must prioritize minimal data movement and em-
ploy zero-copy mechanisms wherever possible to maintain low communication latency,
even as message sizes increase. The framework should effectively handle the transmis-
sion of large payloads, significantly reducing overhead compared to current methods
and improving overall system efficiency.

• Real-time Performance and Fault Tolerance: HPRM must guarantee real-time
properties, maintaining high reliability and successful message delivery even in sce-
narios with heavy workloads and multiple subscribers. The framework should include
mechanisms for detecting and handling faults caused by violations of timing require-
ments, allowing for application-specific fault handlers.

• Ease of Use and Integration: HPRM should abstract away the complexities of
managing object read and write access, as well as the decision-making process for se-
lecting appropriate transport mechanisms based on message size and type. The frame-
work should be designed for seamless integration with popular robotics middleware
platforms, such as ROS2, requiring minimal to no modifications for compatibility. Ad-
ditionally, HPRM should enable users to easily deploy their applications across various
embedded platforms without concern for platform-specific details.

2.3 ROS2 vs. Lingua Franca

ROS2

ROS2 comprises a suite of tools and libraries designed to support robotics application de-
velopment. It allows developers to encapsulate software components within distinct units
known as nodes, each running within its own OS process. These nodes can either reside on
the same device or be spread out over several machines, communicating through the network.
Regardless of their physical placement, nodes engage through a publisher-subscriber (pub-
sub) system, where publishers announce topics and subscribers associate specific callback
functions with those topics. In this paper, we employ ROS2, which utilizes a communication
framework compliant with the Data Distribution Service (DDS) [62] to facilitate the pub-sub
mechanism. The inherent pub-sub structure raises concurrency issues within the application
logic, issues which are challenging to identify and resolve.

The zero-copy feature has been incorporated into both Cyclone DDS and Fast DDS.
However, this feature is currently only available for rclcpp, the C++ implementation of the
ROS2 client library. As of now, there is no support for the ROS2 Python client library [63].

When ROS2 nodes are running on the same hardware, a NIClevel loopback is applied
without any network transmission [64, 65]. In such methods, messages are copied several

CHAPTER 2. HPRM: HIGH-PERFORMANCE ROBOTIC MIDDLEWARE FOR
INTELLIGENT AUTONOMOUS SYSTEMS 26

times throughout processes and OS-kernel levels, leading to unnecessary memory copy and
system calls. Furthermore, since a socket is a point-to-point communication interface, col-
lective communications become inefficient. For example, if one process publishes a message
to the other three processes, the entire communication stream is repeated three times.

Wang, et al. propose a hybrid solution termed Towards Zero Copy (TZC)[66], designed
to optimize the handling of large messages in ROS2. In TZC, messages are separated; a
lightweight descriptor traverses the conventional path over a ROS topic via TCPROS, while
the main body of the message resides in shared memory. TZC utilizes a unique double
reference counting system anchored in shared memory, employing a double-linked list with
reference-counted nodes and leveraging Boost’s shared ptr for conventional ROS message
delivery. Despite its innovation, TZC’s dependency on TCP introduces sensitivity to the
sequence of connection establishments, leading to inefficiencies not present in more straight-
forward solutions. Furthermore, TZC’s lack of a robust mechanism to manage message life-
cycles could potentially leave unclaimed payloads, risking memory leaks if their descriptors
fail to be accurately transmitted. Furthermore, TZC is not actively developed or maintained
and is not compatible with ROS2.

Lingua Franca

Lingua Franca (LF) is presented as an open-source polyglot coordination language designed
to facilitate deterministic interactions among concurrent and reactive components known as
reactors. The characteristic of LF that underpins our research is its deterministic nature [67].
LF orchestrates event flow through a system, where events are tagged, facilitating transmis-
sion from one reactor’s port to another’s. Each event is marked with a logical tag from a
totally-ordered set G, ensuring every reactor processes events in a sequential tag order. Each
event tag consists of a timestamp t ∈ T indicating logical time and a microstep m ∈ N for
capturing super-dense time, allowing for precise event scheduling.

LF’s design supports polyglot programming, enabling reactions within reactors to be au-
thored in a variety of programming languages, including C, C++, Python, TypeScript, or
Rust. This polyglot capability ensures that LF can be seamlessly integrated into diverse
development environments by compiling LF programs into the chosen target language [39].
HPRM is developed on top of the Python target and will support C++ in the future. Cur-
rently, LF’s Python and C-runtime support various embedded platforms, including Arduino,
Raspberry Pi, and Zephyr RTOS.

Furthermore, for extremely latency-critical tasks, the optimal solution would be to avoid
serialization through intra-process communication, allowing direct access to messages with-
out copying or serialization. LF allows users to easily switch to intra-process communication
in Python with HPRM. Kwok et al. [11] have enabled users to write truly concurrent Python
programs without the limitations imposed by the Global Interpreter Lock.

An example LF program demonstrates the definition of a reactor, including its members.
The connectivity is achieved through input and output ports, with the → operator establish-
ing logical connections and an optional “after” clause for introducing time delays. Reactors

CHAPTER 2. HPRM: HIGH-PERFORMANCE ROBOTIC MIDDLEWARE FOR
INTELLIGENT AUTONOMOUS SYSTEMS 27

maintain state variables accessible to their reactions, and they utilize timers and actions for
event generation, with the ability to incorporate asynchronous external events via physical
actions.

1 target Python

2 reactor A {

3 input x

4 output y

5 reaction(x) -> y {=

6 # ... something here ...

7 =} deadline (10 msec) {=

8 print("Deadline violation detected.")

9 =}

10 }

11 reactor B {

12 input x

13 output y

14 reaction(x) {=

15 # ... something here ...

16 =}

17 reaction(startup) -> y {=

18 # ... something here ...

19 =}

20 }

21 main reactor {

22 a = new A()

23 b = new B()

24 a.y -> b.x after 0

25 b.y -> a.x

26 }

Listing 2.1: Lingua Franca Example Code

Time is treated as the core element in LF, with the framework providing access to both
logical and physical clocks. The design principle is such that logical time closely follows
physical time, maintaining a temporal coherence that ensures logical events occur near their
physical counterparts but not before. Reactions can be assigned deadlines, and LF supports
deadline handlers for managing situations where deadlines are violated, thereby maintaining
system responsiveness and reliability. Reactor A has a specified deadline of 10 milliseconds
(this value can be adjusted as a parameter of the reactor). If the reaction to event x is
triggered for more than 10 milliseconds in physical time, the fault handler code will be
executed in place of the first body of code.

LF employs socket-based IPC methods. However, such a socket communication mech-
anism is not satisfactory for the processing of large-scale sensor data or machine learning
(ML) workloads, and communication latency would increase with the growth of the message
size.

Our contribution through this paper is the expansion of LF’s deterministic properties,
enabling efficient IPC between reactors while preserving determinism.

CHAPTER 2. HPRM: HIGH-PERFORMANCE ROBOTIC MIDDLEWARE FOR
INTELLIGENT AUTONOMOUS SYSTEMS 28

2.4 Coordination and Optimizations

Centralized Coordination

In HPRM, we employ a centralized coordination mechanism. The Runtime Infrastructure
(RTI) is employed to manage communication and synchronization among distributed compo-
nents, named federates. In this strategy, the RTI is responsible for monitoring and regulating
event tags during advancement of logical time, thereby assuring that federates process mes-
sages in a global consistent order. The RTI keeps track of the information below for each
federate, identified as f :

• Tag Advance Grant (TAGf): The latest tag sent to federate f , enabling it to update
its current event tag to TAGf . Initially, TAGf is set to −∞.

• Logical Tag Complete (LTCf): This represents the most recent tag reported by
federate f , signifying the completion of all tasks (computations and communications)
associated with that tag or any preceding it.

• Next Event Tag (NETf): This indicates the latest event tag from federate f , essen-
tially the earliest future event in its queue. An empty queue is denoted by a special
maximal tag, ∞. Absence of an NET message would be represented as −∞.

For a federate p to advance to a logical time t in response to its upstream reaction, it
must first receive authorization from the RTI. This authorization is contingent upon the
RTI’s assurance that p has received all messages up to and including time t.

A fundamental rule in this model is that a federate’s logical time does not precede the
physical time as indicated by its local physical clock.

s.out → p.in after 200 msec;

In the connection above, a message with timestamp t from sender s cannot be sent before
the local clock at s reaches t and also cannot be sent before the RTI grants to s a time advance
to t. It is noted that given that s lacks upstream federates, the RTI always grants it a time
advance.

If we denote the communication latency as L, the message from s to p will reach p only
after physical time t + L measured by s’s physical clock. If there is a clock discrepancy E
between s’s and p’s hosts, p will receive the message at physical time t + E + L measured
by t’s physical clock. The delay parameter a (200 msec in the example) in the after clause
then determines the timestamp t+ a for the message as received by p. At the receiving end,
if E + L > a, then federate p will lag behind physical time by at least E + L− a. However,
if a > E+L, it does not cause p’s logical time to lag behind physical time. The RTI, having
authorized s to move to time t, cannot permit p to advance to a time t+ a or beyond until
it confirms the message’s delivery to p. To mitigate risks associated with delays and ensure
prompt processing of physical actions and meeting deadlines, it’s advisable to set the after

CHAPTER 2. HPRM: HIGH-PERFORMANCE ROBOTIC MIDDLEWARE FOR
INTELLIGENT AUTONOMOUS SYSTEMS 29

delay a on connections to federates receiving network messages to exceed any anticipated
E + L.

The centralized coordination approach ensures the precise and timely execution of activ-
ities and events across a federated network.

Decentralized Coordination

The decentralized coordination model extends PTIDES, a real-time protocol also applied in
Google Spanner, a globally distributed database. This model draws inspiration from works
by Lamport, Chandy, and Misra [68, 69]. In this decentralized coordination strategy, the
RTI plays a limited role, coordinating startup, shutdown, and clock synchronization. It is
not involved in the execution of the distributed program.

In this approach, each federate is associated with a Safe-to-Process (STP) offset defined
by the user. For a given federate fi, we define Si ∈ T as its STP offset. A federate is
restricted from progressing to any tag g = (t,m) until the condition Ti ≥ t+ Si is satisfied,
where Ti denotes the physical time on fi’s machine. If fi is associated with physical actions,
then Si ≥ 0. In other cases, Si may assume positive, negative, or zero values. The STP
offset’s purpose is to ensure that all potentially influencing events from other federates, with
tags preceding g, are received by fi by the time the physical clock fulfills the aforementioned
condition, thus facilitating processing in tag order.

Federates communicate directly through sockets in a peer-to-peer architecture, bypassing
the RTI, and logical time advancement does not require RTI to be involved. Federates can
proceed with their logical time to t once their physical clock aligns with or after t + STP .
Similar to the after clause, if the STP offset is greater than the total of network latency,
clock synchronization error, and execution times combined, then every event will be handled
in the order of their tags. Since the assumptions about network latency and others can be
violated, HPRM also provides a handler for STP violation.

The decentralized coordination model is designed to make software components react,
even as communication latencies increase, prioritizing availability. Conversely, the centralized
model ensures the predefined behavior of software components, even with delayed inputs,
prioritizing consistency. This distinction highlights the decentralized model’s emphasis on
availability over consistency in scenarios of network degradation. Users can easily switch
to decentralized coordination by specifying the target property in HPRM, which allows for
flexible adaptation to varying applications.

Previous research [70] has shown that even under minimal stress on ROS2, it can observe
dangerous out-of-order message sequences 0.2% of the time (600 out of 300k tests). This
error rate increases by two orders of magnitude under stress. In contrast, it has been verified
that using centralized coordination implementation yields zero errors over 300k test runs
for this scenario. Using decentralized coordination in LF, no errors are found for realistic
message publishing periods down to 1ms. Errors only began appearing for unrealistically
small periods below 1ms, but unlike ROS2, these errors were detectable.

CHAPTER 2. HPRM: HIGH-PERFORMANCE ROBOTIC MIDDLEWARE FOR
INTELLIGENT AUTONOMOUS SYSTEMS 30

Figure 2.1: Architecture of in-memory object stores

Optimizations

It is noted that all benchmarks were conducted on a personal workstation, equipped with an
Intel® i7-13620H featuring @4.90 GHz with 10 cores and a NVIDIA RTX4060. This setup
includes 32 GiB of DDR4 RAM. The system runs on Ubuntu 22.04 and uses Python 3.10.12.

In-memory Object Store

The shared memory (SM) module was introduced in Python 3.8 and has been used as
a workaround to enable zero-copy in ROS2. By mapping the relevant region of shared
memory into each process’s address space, the module allows processes to access the same
data without needing to copy data into separate buffers, thus saving CPU cycles and memory
bandwidth. The Python SM module is used to create a block of shared memory that can
be accessed by multiple processes. Processes can share complex data types more easily by
using this shared memory block. It allows for the creation, destruction, and management
of shared memory segments, and it supports the creation of NumPy arrays [71] that can
directly map to a shared memory block. However, this approach is inefficient compared to
the in-memory object stores when transferring large objects.

In-memory object stores also enable zero-copy data transfer, reducing memory usage and
improving performance. HPRM seamlessly integrates with the Plasma in-memory object
store [72], automatically enabling it for the transfer of large payloads (greater than 64KB)
between processes. This use of in-memory object store is inspired by Ray [14]. The archi-
tecture of Plasma object store is shown in Fig 2.1. Plasma runs as a separate process and
is written in C++ and is designed as a single-threaded event loop based on the Redis event

CHAPTER 2. HPRM: HIGH-PERFORMANCE ROBOTIC MIDDLEWARE FOR
INTELLIGENT AUTONOMOUS SYSTEMS 31

Figure 2.2: Comparison of delay in writing NumPy arrays to shared memory between Python
shared memory module and Plasma object store

loop library. The plasma client library can be linked into applications. Clients communicate
with the Plasma store via messages serialized using Google Flatbuffers.

Plasma outperforms Python’s SM module for several reasons. Firstly, Plasma implements
bulk eviction policies to manage memory more efficiently at scale. By evicting objects in
bulk, the store can reduce the overhead associated with eviction, such as the cost of deciding
which objects to evict and the process of eviction. Secondly, Plasma is designed to store
data in a columnar format, which is optimized for efficient memory access and CPU cache
utilization. This columnar format enables faster read and write operations, as well as better
compression, leading to improved performance and reduced memory footprint compared to
Python’s SM module.

Figure 2.2 compares the delay in milliseconds when writing NumPy arrays of varying
sizes to shared memory, utilizing both the Python SM module and the Plasma object store.
The Python SM module’s delay appears to increase linearly with the object size, growing
significantly faster than the Plasma object store’s delay. In contrast, the Plasma object
store’s delay increases at a much slower rate as the size of the object grows. At the largest
object size of 50 MB, the Python SM module’s delay exceeds 40 milliseconds, while the
Plasma object store’s delay remains just under 10 milliseconds. This demonstrates the
Plasma object store’s superior performance and scalability when dealing with large objects,
making it a more efficient choice for applications that require high-throughput data transfer
between processes.

CHAPTER 2. HPRM: HIGH-PERFORMANCE ROBOTIC MIDDLEWARE FOR
INTELLIGENT AUTONOMOUS SYSTEMS 32

Figure 2.3: The serialization and deserialization throughput of ROS2 Numpy Package, in-
band serialization, and out-of-band serialization

Adaptive Serialization

Traditional pickle serialization in Python often requires making one or more copies of the
data being serialized. For example, when a large object is serialized, pickle first creates a
bytes representation of the object, which is then written to the output stream. This process
inherently involves copying the data. Out-of-band serialization, on the other hand, allows
large data buffers to be handled separately from the main serialization stream. By using
PickleBuffer objects, it’s possible to avoid these additional memory copies, as the data does
not need to be copied into the pickle stream but can instead be transmitted directly to the
consumer in its original form.

By separating the metadata from the actual data buffers, out-of-band serialization allows
the transmission of large data buffers without embedding them into the serialized pickle
stream. This separation is particularly beneficial for applications that transmit large amounts
of data between processes or over the network, as it enables the direct transfer of memory
buffers without the overhead of serialization and deserialization processes.

Out-of-band serialization is faster than regular pickle serialization for scenarios involving
large data objects because it minimizes unnecessary data copies, optimizes data transfers,
and reduces the overall serialization and deserialization overhead. It is optimized for zero-
copy pickling of contiguous arrays. This increases the throughput of serializing buffer-like
objects, such as NumPy. The benchmark shown in Figure 2.3 illustrates the serialization

CHAPTER 2. HPRM: HIGH-PERFORMANCE ROBOTIC MIDDLEWARE FOR
INTELLIGENT AUTONOMOUS SYSTEMS 33

and deserialization throughput for a 5 MB NumPy Array. It compares the performance
between ROS2 NumPy package[73], in-band serialization and out-of-band serialization. The
ROS2 NumPy package serializes NumPy arrays by embedding them into a message data type
supported by ROS2, such as PointCloud or Image. The results demonstrate that, compared
to the ROS2 NumPy package and in-band serialization, out-of-band serialization achieves a
serialization throughput that is 14,045x and 49.2x higher, and a deserialization throughput
that is 2.96x and 20.2x greater, respectively.

HPRM implements adaptive serialization, which dynamically adjusts the serialization
method based on the data type. Data types such as lists, byte arrays, and integers continue
to be serialized using the in-band approach, while data types like NumPy arrays and Tensors
utilize out-of-band serialization for optimal performance. Additionally, we have developed a
recursive serializer for data structures storing different types of objects, including dictionary
and list. This serializer separates objects like NumPy arrays from other objects that can
be transmitted between reactors using regular serialization. The serialized bytes are then
retrieved from the in-memory object store by the receiver and combined with the object
received over the network to reconstruct the data structure.

Eager Protocol & Real-Time Sockets

To minimize the latency for transmitting small payloads, such as object references, metadata,
and vehicle controls, we’ve implemented an eager protocol [74]. It pre-allocates fixed-size
buffering space (64KB) for the message, reducing the handshake latency or wait time involved
for the other federate to allocate memory for a new message. Also, the Nagle algorithm [75],
enabled by default, bundles short TCP messages together to avoid network traffic. As
a result, it was delaying small messages. A socket option has been added to HPRM for
disabling it.

2.5 Evaluation

Mean Latency

Figure 2.4 illustrates the comparison of average latency for broadcast and gather operations
on objects with varying sizes using 4 nodes. This experiment utilizes ROS2 Humble, its vari-
ant with shared memory, and both the centralized and decentralized coordination strategy of
HPRM. The x-axis represents the object size in megabytes (MB), ranging from 1 to 50 MB,
while the y-axis indicates the latency in milliseconds, displayed on a logarithmic scale. The
term latency refers to the duration required for one node to send a payload to another and
for it to be received. This process may include sending and processing coordination-related
messages, serialization and deserialization, and transferring data over the network.

It is important to note that ROS2 Humble (Shared Memory) refers to using Python’s
pickle for serialization and the shared memory module IPC. This approach allows ROS2
to pass object references between processes, a workaround commonly utilized by robotics

CHAPTER 2. HPRM: HIGH-PERFORMANCE ROBOTIC MIDDLEWARE FOR
INTELLIGENT AUTONOMOUS SYSTEMS 34

Figure 2.4: Mean latency of broadcast and gather on 4 nodes with different object sizes

developers to leverage the benefits of shared memory. However, we argue that such a method
is inefficient and requires users to consider the message size and type, as well as to manage
the object read and write access manually. HPRM abstracts away these burdens for the
users.

From the graph, we can observe that as the object size increases, the latency for both
ROS2 and HPRM also increases. However, ROS2’s latency grows at a higher rate than
HPRM’s. Specifically, for 10MB objects, the typical size of large camera images, ROS2’s
mean latency hits 1,161 ms, while HPRM’s mean latency is around 15 ms—about 77x faster.
For the largest object size of 50 MB, ROS2’s average latency is at 7,723 ms, whereas HPRM’s
average latency is 44.6 ms, which is 173x faster. We also observed that the latency of decen-
tralized coordination is lower than that of centralized coordination, as it prioritizes availabil-
ity and incurs less synchronization overhead. Nevertheless, as the size of the object grows,
the impact of synchronization overhead on the mean latency diminishes. We conclude that
HPRM with decentralized coordination consistently shows the lowest latency across all ob-
ject sizes in the plot, outperforming ROS2 Humble and its variant with shared memory.

Applications

To show the improvements in performance, we validated HPRM and ROS2 Humble on
running deep reinforcement learning agents in the CARLA autonomous driving simulator.

CHAPTER 2. HPRM: HIGH-PERFORMANCE ROBOTIC MIDDLEWARE FOR
INTELLIGENT AUTONOMOUS SYSTEMS 35

Figure 2.5: Dataflow diagram of the autonomous driving application

We designed a benchmark that simulates end-to-end urban driving, running ML models
in parallel during inference. Specifically, we adapted a pre-trained Proximal Policy Opti-
mization (PPO) agent developed by Zhang et al. [76] to run in parallel with You Only Look
Once (YOLO) [77] for object detection.

The neural network architecture used by the RL expert employs six convolutional layers
to encode the bird’s-eye view (BEV) and two fully-connected (FC) layers to encode the mea-
surement vector. Outputs of both encoders are concatenated and then processed by another
two FC layers to produce a latent feature, which is then fed into a value head and a policy
head, each with two FC hidden layers. In conjunction, we utilize YOLOv5 for object detec-
tion. The YOLOv5 architecture is structured into three main components: the backbone,
neck, and head. The backbone, leverages Cross-Stage Partial networks, extracts features
from input images. The neck, built upon a Path Aggregation Network, processes these fea-
tures to produce enriched feature maps at various scales. Finally, the head component uses
these feature maps to predict bounding boxes and class probabilities for detected objects.

Figure 2.5 is a data flow diagram automatically generated by the LF tools. The rendered
BEV and RGB camera images from the CARLA simulator are passed separately to the
PPO Agent reactor and the YOLO reactor. PPO Agent runs the policy and passes the
policy action to Fusion reactor, while YOLO is executed in parallel and passes action based
on object detection (e.g. STOP signs and traffic lights) to the Fusion reactor. The fusion
reactor processes the two actions and determines the final actions. When actions are received
by the CARLA reactor, the simulator applies those actions, advancing to the next frame.
The publisher and subscriber implementation of the benchmark in ROS2 follows the same
paradigm as in HPRM, replacing reactors with ROS nodes. For synchronization purposes,
the fusion node in ROS2 blocks until it has received updated actions from both the PPO
Agent and YOLO, after which it sends the final action to the CARLA node.

The throughput is measured after 100 warm-up steps, and then measured across 400
environment step frames. We found that running PPO policy inference in CPU and YOLO
in GPU led to a slight performance increase due to full utilization of compute resources, and
was implemented across the benchmark. The box plot in Figure 2.6 illustrates the frames
per second (FPS) measured when running the CARLA benchmark of 500 environment step
frames with HPRM and ROS2 Humble.

CHAPTER 2. HPRM: HIGH-PERFORMANCE ROBOTIC MIDDLEWARE FOR
INTELLIGENT AUTONOMOUS SYSTEMS 36

Figure 2.6: Performance of HPRM and ROS2 on the CARLA benchmark

From the box plot we can see that HPRM with decentralized and centralized coor-
dination outperforms ROS2, even with shared memory, by 1.41x and 1.30x respectively.
When comparing HPRM with the default ROS2 Humble, the throughput increased by 4.79x.
HPRM with decentralized coordination has the best performance with the note that frame
rates, slightly outperforming HPRM with centralized coordination. The optimizations im-
plemented in this research significantly lowered the IPC overhead, as further demonstrated
in real-world application.

It’s worth noting that the performance gap between HPRM and ROS2 is more pronounced
in the latency benchmark than in the real-world application. This can be attributed to the
fact that our optimizations primarily focus on reducing I/O overhead. The mean latency
benchmark consists of more I/O-bound tasks compared to the actual application, where a
significant portion of the computation time is spent on running inference for ML models. As
a result, the impact of our optimizations is more evident in the mean latency benchmark,
whereas the performance difference in the real-world application is relatively smaller.

CHAPTER 2. HPRM: HIGH-PERFORMANCE ROBOTIC MIDDLEWARE FOR
INTELLIGENT AUTONOMOUS SYSTEMS 37

2.6 Conclusions

In this paper, we presented HPRM, a high-performance robotic middleware designed to
address the challenges of nondeterminism and high communication latency in intelligent au-
tonomous systems. Built on top of the deterministic coordination language Lingua Franca,
HPRM leverages a centralized and decentralized coordination model to ensure predictable
event processing across distributed nodes. We introduced several optimizations in HPRM, in-
cluding an in-memory object store for efficient zero-copy transfer of large payloads, adaptive
serialization to minimize serialization overhead based on data types, and an eager protocol
with real-time sockets to reduce handshake latency.

Our performance evaluation demonstrated the significant benefits of HPRM compared to
ROS2, a widely-used robotics middleware. Benchmark results showed that HPRM achieved
up to 173x lower latency than ROS2 when transmitting large messages to multiple nodes.
Furthermore, we validated the real-world applicability of HPRM by integrating it with
the CARLA autonomous driving simulator and running deep reinforcement learning agents
alongside object detection workloads. In this application, HPRM attained a 4.79x higher
throughput than ROS2.

The deterministic coordination semantics of HPRM, combined with its optimized IPC
mechanisms, enable efficient and predictable real-time communication for intelligent au-
tonomous systems. By abstracting away the complexities of managing shared memory,
object references, and messages, HPRM simplifies the development of high-performance,
deterministic robotic applications.

Future work could explore the integration of HPRM with other programming languages
and real-world robotic platforms to further validate its usability and performance. Addi-
tionally, investigating the scalability of HPRM in larger, more complex distributed robotic
systems could provide valuable insights for further optimizations.

In conclusion, HPRM represents a significant step forward in the development of deter-
ministic, high-performance robotic middleware. Its ability to efficiently handle large data
payloads and ensure predictable event processing makes it a promising solution for the grow-
ing demands of intelligent autonomous systems.

38

Bibliography

[1] Mart́ın Abadi et al. “TensorFlow: A System for Large-Scale Machine Learning”. In:
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI
16). Savannah, GA, USA: USENIX Association, 2016, pp. 265–283.

[2] Tianqi Chen et al. MXNet: A Flexible and Efficient Machine Learning Library for
Heterogeneous Distributed Systems. 2015. url: https://arxiv.org/abs/1512.01274.

[3] Adam Paszke et al. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. 2019. url: https://doi.org/10.48550/arXiv.1912.01703.

[4] Jeff Rasley et al. “Deepspeed: System optimizations enable training deep learning
models with over 100 billion parameters”. In: Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2020, pp. 3505–
3506.

[5] David Silver et al. “Mastering the game of Go with deep neural networks and tree
search”. In: nature 529.7587 (2016), pp. 484–489.

[6] OpenAI. GPT-4 Technical Report. 2023. url: https://arxiv.org/abs/2303.08774.

[7] Li Chen et al. “Auto: Scaling deep reinforcement learning for datacenter-scale auto-
matic traffic optimization”. In: Proceedings of the 2018 conference of the ACM special
interest group on data communication. 2018, pp. 191–205.

[8] Elia Kaufmann et al. “Champion-level drone racing using deep reinforcement learning”.
In: Nature 620.7976 (2023), pp. 982–987.

[9] Ilge Akkaya et al. Solving rubik’s cube with a robot hand. 2019.

[10] Ameer Haj-Ali et al. Deep Reinforcement Learning in System Optimization. 2019.
arXiv: 1908.01275. url: http://arxiv.org/abs/1908.01275.

[11] Ahmet Inci et al. The architectural implications of distributed reinforcement learning
on CPU-GPU systems. 2020.

[12] Lasse Espeholt et al. Seed rl: Scalable and efficient deep-rl with accelerated central
inference. 2019.

[13] Marten Lohstroh et al. “Toward a Lingua Franca for deterministic concurrent systems”.
In: ACM Transactions on Embedded Computing Systems (TECS) 20.4 (2021), pp. 1–
27.

https://arxiv.org/abs/1512.01274
https://doi.org/10.48550/arXiv.1912.01703
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1908.01275
http://arxiv.org/abs/1908.01275

BIBLIOGRAPHY 39

[14] Philipp Moritz et al. “Ray: A distributed framework for emerging {AI} applications”.
In: 13th USENIX symposium on operating systems design and implementation (OSDI
18). 2018, pp. 561–577.

[15] Greg Brockman et al. Openai gym. 2016.

[16] Mohammad Reza Samsami and Hossein Alimadad. Distributed deep reinforcement
learning: An overview. 2020.

[17] James Bradbury et al. JAX: composable transformations of Python+ NumPy programs.
2018.

[18] Adam Paszke et al. Automatic differentiation in pytorch. 2017.

[19] Xavi Puig et al. Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots. 2023.

[20] Andrew Szot et al. “Habitat 2.0: Training Home Assistants to Rearrange their Habi-
tat”. In: Advances in Neural Information Processing Systems (NeurIPS). 2021, pp. 1–
17.

[21] Manolis Savva et al. “Habitat: A Platform for Embodied AI Research”. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV). 2019, pp. 1–
17.

[22] Brennan Shacklett et al. “An extensible, data-oriented architecture for high-performance,
many-world simulation”. In: ACM Transactions on Graphics (TOG) 42.4 (2023), pp. 1–
13.

[23] Volodymyr Mnih et al. “Asynchronous methods for deep reinforcement learning”. In:
International conference on machine learning. PMLR. 2016, pp. 1928–1937.

[24] John Schulman et al. Proximal Policy Optimization Algorithms. 2017. arXiv: 1707.
06347. url: http://arxiv.org/abs/1707.06347.

[25] Dan Horgan et al. Distributed Prioritized Experience Replay. 2018. arXiv: 1803.00933.
url: http://arxiv.org/abs/1803.00933.

[26] Fanyu Zeng and Chen Wang. “Visual navigation with asynchronous proximal policy
optimization in artificial agents”. In: Journal of Robotics 2020 (2020), pp. 1–7.

[27] Lasse Espeholt et al. “Impala: Scalable distributed deep-rl with importance weighted
actor-learner architectures”. In: International conference on machine learning. PMLR.
2018, pp. 1407–1416.

[28] Hado Van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learning with
Double Q-learning. 2015.

[29] Thomas M Moerland et al. “Model-based reinforcement learning: A survey”. In: Foun-
dations and Trends® in Machine Learning 16.1 (2023), pp. 1–118.

[30] Carl Hewitt. Actor Model for Discretionary, Adaptive Concurrency. 2010. arXiv: 1008.
1459. url: http://arxiv.org/abs/1008.1459.

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1803.00933
http://arxiv.org/abs/1803.00933
https://arxiv.org/abs/1008.1459
https://arxiv.org/abs/1008.1459
http://arxiv.org/abs/1008.1459

BIBLIOGRAPHY 40

[31] Tim Rentsch. “Object oriented programming”. In: ACM Sigplan Notices 17.9 (1982),
pp. 51–57.

[32] Marten Lohstroh. “Reactors: A Deterministic Model of Concurrent Computation for
Reactive Systems”. PhD thesis. EECS Department, University of California, Berkeley,
Dec. 2020. url: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-
2020-235.html.

[33] Stephen A. Edwards and John Hui. “The Sparse Synchronous Model”. In: Forum on
Specification and Design Languages (FDL). 2020, pp. 1–8.

[34] Albert Benveniste and Gérard Berry. “The Synchronous Approach to Reactive and
Real-Time Systems”. In: Proceedings of the IEEE 79.9 (1991), pp. 1270–1282.

[35] Matthew W Hoffman et al. Acme: A research framework for distributed reinforcement
learning. 2020.

[36] Huanzhou Zhu et al. “MSRL: Distributed Reinforcement Learning with Dataflow Frag-
ments”. In: 2023 USENIX Annual Technical Conference (USENIX ATC 23). Boston,
MA: USENIX Association, July 2023, pp. 977–993. isbn: 978-1-939133-35-9. url:
https://www.usenix.org/conference/atc23/presentation/zhu-huanzhou.

[37] Amir Yazdanbakhsh, Junchao Chen, and Yu Zheng. Menger: Massively large-scale
distributed reinforcement learning. 2020.

[38] Eric Liang et al. “RLlib Flow: Distributed Reinforcement Learning is a Dataflow Prob-
lem”. In: Advances in Neural Information Processing Systems 34 (2021), pp. 5506–
5517.

[39] Christian Menard et al. “High-performance deterministic concurrency using lingua
franca”. In: ACM Transactions on Architecture and Code Optimization 20.4 (2023),
pp. 1–29.

[40] Alexander Schulz-Rosengarten et al. “Polyglot Modal Models through Lingua Franca”.
In: Proceedings of Cyber-Physical Systems and Internet of Things Week 2023. Berkeley,
CA, USA: IEEE, 2023, pp. 337–342.

[41] Xiaojun Liu, Eleftherios Matsikoudis, and Edward A. Lee. “Modeling Timed Concur-
rent Systems”. In: CONCUR 2006 - Concurrency Theory. Vol. LNCS 4137. Springer,
2006, pp. 1–15. doi: 10.1007/11817949_1.

[42] Leonardo de Moura et al. “The Lean theorem prover (system description)”. In: Auto-
mated Deduction-CADE-25: 25th International Conference on Automated Deduction,
Berlin, Germany, August 1-7, 2015, Proceedings 25. Springer. 2015, pp. 378–388.

[43] Volodymyr Mnih et al. Playing Atari with Deep Reinforcement Learning. 2013. arXiv:
1312.5602. url: http://arxiv.org/abs/1312.5602.

[44] Sam Gross. Multithreaded Python without the GIL. https://docs.google.com/
document/d/18CXhDb1ygxg-YXNBJNzfzZsDFosB5e6BfnXLlejd9l0/edit. [Online; ac-
cessed 17-April-2024]. 2021.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-235.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-235.html
https://www.usenix.org/conference/atc23/presentation/zhu-huanzhou
https://doi.org/10.1007/11817949_1
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://docs.google.com/document/d/18CXhDb1ygxg-YXNBJNzfzZsDFosB5e6BfnXLlejd9l0/edit
https://docs.google.com/document/d/18CXhDb1ygxg-YXNBJNzfzZsDFosB5e6BfnXLlejd9l0/edit

BIBLIOGRAPHY 41

[45] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. “Multi-agent reinforcement learn-
ing: A selective overview of theories and algorithms”. In: Handbook of reinforcement
learning and control 325.11 (2021), pp. 321–384.

[46] Afshin Oroojlooy and Davood Hajinezhad. “A review of cooperative multi-agent deep
reinforcement learning”. In: Applied Intelligence 53.11 (2023), pp. 13677–13722.

[47] Anurag Koul. ma-gym: Collection of multi-agent environments based on OpenAI gym.
https://github.com/koulanurag/ma-gym. 2019.

[48] Joseph Sifakis. “Autonomous systems–an architectural characterization”. In: Models,
Languages, and Tools for Concurrent and Distributed Programming: Essays Dedicated
to Rocco De Nicola on the Occasion of His 65th Birthday (2019), pp. 388–410.

[49] Hamed Dinari. “Inter-Process Communication (IPC) in Distributed Environments:
An Investigation and Performance Analysis of Some Middleware Technologies.” In:
International Journal of Modern Education & Computer Science 12.2 (2020).

[50] Aditya Venkataraman and Kishore Kumar Jagadeesha. “Evaluation of inter-process
communication mechanisms”. In: Architecture 86 (2015), p. 64.

[51] Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In: ICRA
workshop on open source software. Vol. 3. 3.2. Kobe, Japan. 2009, p. 5.

[52] Dipa Soni and Ashwin Makwana. “A survey on MQTT: a protocol of internet of
things (IoT)”. In: International conference on telecommunication, power analysis and
computing techniques (ICTPACT-2017). Vol. 20. 2017, pp. 173–177.

[53] Nicholas Hunt et al. “DDOS: taming nondeterminism in distributed systems”. In: ACM
SIGPLAN Notices 48.4 (2013), pp. 499–508.

[54] Tobias Blass et al. “Automatic latency management for ROS2: Benefits, challenges,
and open problems”. In: 2021 IEEE 27th Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE. 2021, pp. 264–277.

[55] Lennart Puck et al. “Performance evaluation of real-time ROS2 robotic control in a
time-synchronized distributed network”. In: 2021 IEEE 17th International Conference
on Automation Science and Engineering (CASE). IEEE. 2021, pp. 1670–1676.

[56] Alexey Dosovitskiy et al. “CARLA: An open urban driving simulator”. In: Conference
on robot learning. PMLR. 2017, pp. 1–16.

[57] Paul Fitzpatrick et al. “A middle way for robotics middleware”. In: Journal of Software
Engineering for Robotics 5.2 (2014), pp. 42–49.

[58] Extremely slow message creation for large arrays in Python. https://github.com/
ros2/rosidl_python/issues/156.

[59] Publishing large data is 30x-100x slower than for rclcpp. https://github.com/ros2/
rclpy/issues/763.

https://github.com/koulanurag/ma-gym
https://github.com/ros2/rosidl_python/issues/156
https://github.com/ros2/rosidl_python/issues/156
https://github.com/ros2/rclpy/issues/763
https://github.com/ros2/rclpy/issues/763

BIBLIOGRAPHY 42

[60] Very slow publishing of large messages. https://github.com/ros2/ros2/issues/
1242.

[61] Tobias Kronauer et al. “Latency analysis of ROS2 multi-node systems”. In: 2021 IEEE
International Conference on Multisensor Fusion and Integration for Intelligent Systems
(MFI). IEEE. 2021, pp. 1–7.

[62] Gerardo Pardo-Castellote. “Omg data-distribution service: Architectural overview”.
In: 23rd International Conference on Distributed Computing Systems Workshops, 2003.
Proceedings. IEEE. 2003, pp. 200–206.

[63] Memory leak in Subscription when using zero-copy with rmw cyclonedds. https://
github.com/ros2/rclpy/issues/833.

[64] Wei Liu et al. “A robotic communication middleware combining high performance and
high reliability”. In: 2020 IEEE 32nd International Symposium on Computer Archi-
tecture and High Performance Computing (SBAC-PAD). IEEE. 2020, pp. 217–224.

[65] Wei Liu et al. “Zoro: A robotic middleware combining high performance and high
reliability”. In: Journal of Parallel and Distributed Computing 166 (2022), pp. 126–
138.

[66] Yu-Ping Wang et al. “TZC: Efficient inter-process communication for robotics mid-
dleware with partial serialization”. In: 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2019, pp. 7805–7812.

[67] Edward A Lee et al. “Consistency vs. availability in distributed cyber-physical sys-
tems”. In: ACM Transactions on Embedded Computing Systems 22.5s (2023), pp. 1–
24.

[68] K. Mani Chandy and Jayadev Misra. “Distributed simulation: A case study in design
and verification of distributed programs”. In: IEEE Transactions on software engineer-
ing 5 (1979), pp. 440–452.

[69] K. Mani Chandy, Victor Holmes, and Jayadev Misra. “Distributed simulation of net-
works”. In: Computer Networks (1976) 3.2 (1979), pp. 105–113.

[70] Soroush Bateni et al. “Risk and Mitigation of Nondeterminism in Distributed Cyber-
Physical Systems”. In: 2023 21st ACM-IEEE International Symposium on Formal
Methods and Models for System Design (MEMOCODE). 2023, pp. 1–11.

[71] Travis E Oliphant et al. Guide to numpy. Vol. 1. Trelgol Publishing USA, 2006.

[72] Apache Arrow. A cross-language development platform for in-memory data. 2022.

[73] ROS2 NumPy, Tooling for converting ROS messages to and from NumPy arrays.
https://github.com/Box-Robotics/ros2_numpy.

[74] Ron Brightwell and Keith Underwood. “Evaluation of an eager protocol optimization
for MPI”. In: European Parallel Virtual Machine/Message Passing Interface Users’
Group Meeting. Springer. 2003, pp. 327–334.

https://github.com/ros2/ros2/issues/1242
https://github.com/ros2/ros2/issues/1242
https://github.com/ros2/rclpy/issues/833
https://github.com/ros2/rclpy/issues/833
https://github.com/Box-Robotics/ros2_numpy

BIBLIOGRAPHY 43

[75] Greg Minshall et al. “Application performance pitfalls and TCP’s Nagle algorithm”.
In: ACM SIGMETRICS Performance Evaluation Review 27.4 (2000), pp. 36–44.

[76] Zhejun Zhang et al. “End-to-End Urban Driving by Imitating a Reinforcement Learn-
ing Coach”. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV). 2021.

[77] Glenn Jocher. YOLOv5 by Ultralytics. Version 7.0. May 2020. doi: 10.5281/zenodo.
3908559. url: https://github.com/ultralytics/yolov5.

https://doi.org/10.5281/zenodo.3908559
https://doi.org/10.5281/zenodo.3908559
https://github.com/ultralytics/yolov5

	1. title.pdf
	2.abstract.pdf
	content.pdf
	Contents
	Efficient Parallel Reinforcement Learning Framework using the Reactor Model
	Introduction
	Parallel Reinforcement Learning and Requirements
	Introduction to Actor and Reactor Model
	Optimizations for Parallel Reinforcement Learning
	Performance Comparison Between LF and Ray
	Conclusion
	Lingua Franca Code

	HPRM: High-Performance Robotic Middleware for Intelligent Autonomous Systems
	Introduction
	Motivation and Requirements
	ROS2 vs. Lingua Franca
	Coordination and Optimizations
	Evaluation
	Conclusions

	Bibliography

