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Abstract

Trajectory Prediction and Simulation for Improved
Control of Connected Autonomous Vehicles

by

Avikam Chauhan

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alexandre M. Bayen, Chair

Connected autonomous vehicles (CAVs) are uniquely positioned to serve as mobile actua-
tors of human-driven traffic, smoothing out or even completely eliminating phantom traffic
jams on highways — this can significantly improve safety, traffic flow, and fuel efficiency
for all vehicles on the highway. This work builds upon existing reinforcement learning (RL)
based controller algorithms for CAVs, and introduces a Transformer-based machine learning
(ML) model designed to effectively predict the future trajectories of human-driven vehicles.
Additionally, this work presents a GPU-optimized parallel simulator to test CAV controller
performance by simulating large numbers of mixed autonomy traffic trajectories in the high-
way domain.
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Chapter 1

Introduction

1.1 Background

Phantom traffic jams are spontaneous slowdowns of vehicles that arise for no apparent reason
— rather they are the result of inefficiencies in human driving. When one driver lightly taps
the brakes, it can send a chain reaction upstream that is so unstable that it causes stop-and-
go waves, forcing many vehicles to come to a halt. Because drivers have to quickly react
to sudden changes in traffic speed, there is a higher risk of collision, potentially causing
injuries and deaths. Furthermore, the cycles of accelerating and braking (and also idling,
when vehicles come to a full stop) result in increased energy consumption. As the number of
vehicles on highways and freeways continues to increase, this problem becomes increasingly
important to hundreds of millions of people all over the world.

However, modern advances in lane keeping assist systems (LKAS) and adaptive cruise control
(ACC) technologies have transformed our highways into a mixed autonomy regime where
autonomous and human drivers operate together. When autonomous vehicles (AVs) share
information about the traffic around them with other AVs, they form a system of connected
autonomous vehicles (CAVs) that can serve as mobile traffic actuators that can optimize
traffic flow and safety [1]. In past experiments, automated speed controllers have been
shown to eliminate phantom traffic jams for vehicles traveling in a loop.

With the CIRCLES consortium, we have taken this to the next level by training deep re-
inforcement learning (RL) based controllers to optimize the flow of highway traffic by con-
trolling the ACC speed and gap settings for a system of CAVs. Ultimately, these controllers
can reduce phantom traffic jams, improve the throughput of highways, and increase the fuel
efficiency of all vehicles on the road significantly. Paired with real-time traffic data and cus-
tom kernel smoothing algorithms, these deep RL controllers were deployed to 100 CAVs and
tested in real-world highway traffic on I-24 near Nashville, TN, in November 2022. [2]. This
first-of-its-kind experiment produced a massive dataset that can be extended for further AV
research [3].
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To train an RL agent to smooth flows of traffic, the problem is formulated as a partially-
observable Markov decision process (POMDP), where the agent is the AV, and its action
space includes the control of either the vehicle’s ACC speed and gap settings, or the vehicle’s
acceleration directly. The observation space can include data from onboard sensors (e.g.
leader speed, leader gap) as well as aggregated traffic flow information (using INRIX). The
reward function is designed to incentivize fuel efficiency, smoother flow of traffic, and safety.

Although these models have a probabilistic component that attempts to predict the likelihood
of another vehicle cutting in front of the AV (based on the gap and relative speed between
the AV and the leader vehicle), they do not utilize local sensing of neighboring vehicles,
and thus cannot accurately predict lane changes or adjust their speed and gap accordingly.
Furthermore, the RL agent training environment only consists of single lanes and fixed size
arrays of vehicle platoons, and as such, there is scope for more sophisticated training and
simulation environments where vehicles make lane changes like human drivers do in the real-
world. This could also reduce the “sim2real” gap in performance when deploying such RL
controllers to real-world experiments.

However, to be able to effectively build upon this work and design next-generation controllers
that can optimize traffic even further, these improved controller models must be paired with
a performant and scalable simulator designed to handle these large volumes of data (i.e.
hundreds of thousands of trajectories per hour). Ultimately, the development of perception,
planning, and control software for autonomous vehicles (AVs) is a highly data-intensive
and computationally demanding process, and it requires fast, scalable virtual simulation
software to collect relevant data, train models (with software-in-the-loop feedback), and run
experiments to quantify controller performance. Because it is often infeasible to collect such
large amounts of multi-modal data (e.g. video, sensors, traffic, road maps) with physical
vehicles and unsafe to directly test models in real-world scenarios, AV simulation is crucial
to the development of next-generation control algorithms and software.

1.2 Related Work

Vehicle Trajectory Prediction Models

For effective control of autonomous vehicles, the prediction of neighboring vehicle trajectories
is a highly relevant and important problem. Past works have demonstrated the capabilities
of deep learning architectures such as long short-term memory (LSTM) and recurrent neural
networks (RNNs) for highway traffic, and Transformers for city traffic.

One such example of a vehicle trajectory prediction model is the Wayformer, developed by
Waymo. The authors present a Transformer-based architecture to predict vehicle trajec-
tories in city traffic, and their model is tightly coupled with the associated Waymo Open
Motion Dataset. At its core, it uses Transformer encoder and decoder blocks, in a variety of
arrangements, that allow it to take in multimodal inputs (e.g. traffic light states, roadgraph
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information, vehicle trajectory histories, and agent interactions) and predict the future posi-
tions and velocities of vehicles within each example [4]. However, as this model architecture
is designed specifically for the Waymo dataset (it relies on roadgraph information as an in-
put) and the dynamics of city traffic are different from that of highway traffic, it is not as
directly applicable for this specific domain.

Another related example utilizes LSTM models to predict future trajectories of vehicles
in dense traffic on highways, using an end-to-end prediction method (i.e. the model does
not extract features that could identify a particular maneuver, rather it directly predicts
the future vehicle positions and velocities) [5]. The authors highlight that their model
architecture includes spatio-temporal information of neighboring vehicles to allow for better
predictions, yet the trajectories tend to diverge as the prediction horizon gets larger [5].

Parallelized Vehicle Trajectory Simulators

Although there have been prior works in developing parallel, optimized simulators for au-
tonomous vehicles, they generally have not been designed for this scale of simulation (either
focusing on smaller-scale city traffic, or lacking the spatial sensing that is needed for effective
control of AVs in highway traffic).

One such example of a parallelized vehicle simulator is Webots.HPC, which is a toolkit
for running Webots-SUMO simulations at scale on high-performance computing (HPC) re-
sources. The authors describe their implementation of batching large numbers of simulations
at the same time (tested with 6 compute nodes on the Palmetto cluster, and 8 simulation in-
stances per node), which allows them to generate large datasets that contain rare edge cases
that are dangerous to recreate in real-world traffic [6]. However, this work is focused on gen-
erating comprehensive datasets for AV driving scenarios, and does not focus on optimizing
the parallel simulation of individual large-scale experiments.

Another example of a state-of-the-art AV simulator is the Waymax simulator, which offers
a parallelized, differentiable AV simulator that makes it easier to train ML models. This
simulator provides the capability to simulate non-vehicle agents (e.g. pedestrians, bicyclists)
which are important for AVs that drive in city traffic [7]. This simulator is written in JAX,
which allows for efficient simulation on GPUs or TPUs, but this simulator is tightly coupled
to the associated Waymo Open Motion Data dataset, and it is restricted to city traffic with
only 128 individual agents being simulated at the same time [7].

Another related work, titled “Scaling Is All You Need”, builds upon the Waymax simulator,
and allows for 64-256 individual agents to be simulated simultaneously [8]. The authors
use JAX vector operations to perform batched inference on observation data and batched
updates to the state representation, and present a method of preparing and pre-loading batch
data to the GPU memory to maximize simulation throughput [8]. However, it still does not
provide a large enough scale to simulate the I-24 MOTION dataset that is the subject of this
work, and it is also restricted to city traffic with the same dataset as the Waymax simulator.
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Lastly, LPSim is a large-scale parallel regional traffic simulation that enables microsimu-
lation analysis of network traffic assignments for both on-road vehicles and aircraft. The
simulator is optimized to run on multiple GPUs, and can simulate millions of trips across a
network of hundreds of thousands of nodes and edges in minutes [9]. The fundamental state
representation for this simulator is created by spatially segmenting the edges in the network
(each of which is an element in a large array), and storing the speed of each vehicle at its cor-
responding physical location [9]. This simulator is designed to generate new human-driven
trajectories between origin and destination pairs, and it utilizes the intelligent driver model
(IDM) to control vehicle dynamics, but it doesn’t allow for the re-simulation of previously
collected trajectories or the insertion of CAVs into the flow.

1.3 Contributions Of This Work

Given the limitations and constraints of existing vehicle trajectory prediction
models and large-scale parallelized simulators, this work presents a Transformer-
based ML model to predict the future trajectories of human-driven vehicles in
highway traffic, along with a GPU-optimized parallel simulator co-designed to
test CAV controller performance by simulating large numbers of mixed auton-
omy traffic trajectories in the highway domain.

The trajectory prediction model presented in Chapter 2 is a hybrid approach, combining
a Transformer encoder architecture (similar to the Wayformer model) with a feature-based
prediction model (similar to the manuever-based model described in the LSTM paper). The
architecture of the parallelized trajectory simulator, presented in Chapter 3, builds upon the
spatial segmentation methodology from LPSim, and allows for the accurate re-simulation of
pre-recorded trajectories and the introduction of custom CAV controllers (that rely on local
sensing and aggregate downstream traffic data) into the flow.
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Chapter 2

Vehicle Trajectory Prediction Model

2.1 Dataset Formats and Pre-Processing

I-24 MOTION Dataset

The dataset being used for this work is the I-24 MOTION dataset, which is collected using
a system of 294 high-resolution cameras mounted on a 4.2-mile stretch of Interstate 24 in
southeast Nashville, TN. Video recordings are captured from the cameras, and then computer
vision algorithms are used to identify, classify, and track vehicles trajectories at 25 Hz on this
segment of the highway. The dataset consists of 4-hour recordings during morning rush-hour
traffic (5 AM to 9 AM) across a span of 10 days. At this time of day, vehicles heading
westbound (into Nashville) generally experience stop-and-go waves, while vehicles heading
eastbound (away from Nashville) are in free-flow.

The I24-MOTION dataset is formatted as JSON objects, which provides convenience and
flexibility in data access, but at the cost of efficiency and performance. For each day, there
are hundreds of thousands of trajectories (and each JSON file could be anywhere from 10 to
20 GB). The dataset needs to be pre-processed and converted into a different format that is
optimized specifically for model training.

Trajectory Prediction Dataset

Because the trajectory prediction model is implemented using TensorFlow, the JSON objects
within the I-24 MOTION dataset must be converted into TFRecord objects. The trajectory
is broken up into 2 segments: the past (25 samples, over a 1 second interval) and the future
(the remaining portion of the initial trajectory). Each sample also includes basic vehicle
information, such as the length, width, height, and class of vehicle (sedan, midsize, van,
pickup, semi, or truck).

Since the trajectories are of varying lengths, it is important to appropriately select and sort
the trajectories for efficient model training and optimal model performance. The trajecto-
ries are filtered by trajectory length, and only the trajectories that are within 1 standard
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deviation of the mean trajectory length are used for training and testing the model. Still,
it is inefficient to naively sample trajectories from the dataset and pad all samples to the
length of the longest trajectory, and it is ineffective to truncate trajectories to the length of
the shortest trajectory. To resolve this issue, the dataset is chunked into trajectories that
are similar lengths (i.e. bins of size 100), and samples are padded to the next multiple of
100.

The TFRecord data structure is defined as follows:

f e a t u r e s = {
‘ id ’ : t f . i o . FixedLenFeature ( [ 1 ] , t f . s t r i n g ) ,
‘ timestamps ’ : t f . i o . RaggedFeature ( t f . f l o a t 3 2 ) ,
‘ x po s i t i on s ’ : t f . i o . RaggedFeature ( t f . f l o a t 3 2 ) ,
‘ y po s i t i on s ’ : t f . i o . RaggedFeature ( t f . f l o a t 3 2 ) ,
‘ length ’ : t f . i o . FixedLenFeature ( [ 1 ] , t f . f l o a t 3 2 ) ,
‘ width ’ : t f . i o . FixedLenFeature ( [ 1 ] , t f . f l o a t 3 2 ) ,
‘ he ight ’ : t f . i o . FixedLenFeature ( [ 1 ] , t f . f l o a t 3 2 ) ,
‘ c o a r s e v e h i c l e c l a s s ’ : t f . i o . FixedLenFeature ( [ 1 ] , t f . i n t64 ) ,
‘ d i r e c t i on ’ : t f . i o . FixedLenFeature ( [ 1 ] , t f . i n t64 ) ,
‘ f i r s t t imes tamp ’ : t f . i o . FixedLenFeature ( [ 1 ] , t f . f l o a t 3 2 ) ,
‘ last t imestamp ’ : t f . i o . FixedLenFeature ( [ 1 ] , t f . f l o a t 3 2 ) ,
‘ s t a r t i n g x ’ : t f . i o . FixedLenFeature ( [ 1 ] , t f . f l o a t 3 2 ) ,
‘ ending x ’ : t f . i o . FixedLenFeature ( [ 1 ] , t f . f l o a t 3 2 )

}

2.2 Model Architecture and Training

The trajectory prediction model is designed to allow an AV to effectively predict the future
trajectory of human-driven vehicles around it. The model architecture includes a Trans-
former encoder block that takes in the vehicle’s past states and physical characteristics, and
allows it to learn key hidden features (about the vehicle dynamics and driver behavior) that
allow for more accurate predictions of future states. The hidden features are combined with
the current state and fed into a recurrent neural network (RNN) block, which outputs the
predicted state of the vehicle at the next timestep.

More specifically, the model architecture is as follows:

• Input: (B ×H × 6)

• Positional Embedding: (B ×H × 6) → (B ×H × 6)

• Projection Layer (Dense): (B ×H × 6) → (B ×H × FP )

• Transformer Encoder (6 layers, 8 attention heads): (B ×H × FP ) → (B ×H × FP )
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• Dense Layer: (B × {H · FP}) → (B × FH)

• Repeat + Concatenate: (B ×O × FH) + (B ×O × FP ) → (B ×O × {FH + FP})

• RNN Intermediate Layer (Dense): (B ×O × {FH + FP}) → (B ×O ×R)

• RNN Output Layer (Dense): (B ×O ×R) → (B ×O × 2)

• Output: (B ×O × 2)

The model was trained with a batch size B = 32, history H = 25 samples, projected feature
dimension FP = 256, hidden feature dimension FH = 512, and RNN intermediate dimension
R = 128. O is the length of the output sequence, which depends on the specific trajectory
that inference is being performed on.

The model is trained with teacher forcing, where the RNN input is the ground truth vehicle
state at the current timestep, and the loss function (the predicted future vehicle state at the
next timestep) is defined as the mean squared error (MSE) from the ground truth vehicle
state at the next timestep. The purpose of training with teacher forcing is to avoid the
problem of vanishing or exploding gradients that can occur over such long sequences.

During inference, the RNN input will be the observed vehicle state at the current timestep,
which mimics a live prediction of the vehicle’s trajectory as new sensor data is received. That
being said, it is also possible to use the RNN output at a given timestep as the RNN input
for the next timestep (as this would allow for the generation of predictions further ahead
into the future). However, as the time horizon increases, the predictions may diverge from
the ground truth because the range of possible future coordinates gets wider and routing
information (e.g. the vehicle’s destination) are not known.

2.3 Experiments and Results

To determine the performance of the model, it was run on the test set, which it had not seen
during the training and validation steps. Despite not having seen these examples before,
the model is able to generally predict the shapes of the trajectories quite successfully. The
diagram below depicts the predicted and actual trajectories for 2 different examples from
the test set, where the respective vehicle remains in the same lane for the duration of the
trajectory.
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(a) Example 1 (b) Example 2

Figure 2.1: Examples of predicted and ground-truth trajectories from the test dataset, where
the vehicles do not change lanes during the trajectory.

The model was also evaluated on trajectories where the selected vehicle changed lanes one or
more times during the course of the trajectory, and this is especially useful because the AV
can use these predictions to preemptively avoid accelerating or even slow down if a nearby
vehicle is likely to change lanes in front of the AV. The diagram below depicts the predicted
and actual trajectories for 2 such examples in the test set.
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(a) Example 1 (b) Example 2

Figure 2.2: Examples of predicted and ground-truth trajectories from the test dataset, where
the vehicles change lanes during the trajectory.

Although the shape of the predicted trajectory captures the trend of the actual trajectory, it
is not a perfect prediction due to differences in the y-coordinates in positions at the extreme
ends of the trajectory. Nevertheless, this model provides added predictive capabilities to AV
controllers, which is expected to improve the performance with respect to flow smoothing
and fuel efficiency.

To understand the overall model performance across a wide variety of trajectories, the model
was run on a test set of over 65, 000 trajectories, and the average distance between the
predicted coordinates and actual coordinates for each trajectory was calculated and plotted
in a histogram, as depicted below.
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Figure 2.3: The average L2 norm of the error in predicted vehicle coordinates, across a test
set of over 65, 000 trajectories.

2.4 Conclusion

The Transformer-based vehicle trajectory prediction model presented in this section is a pow-
erful and capable model that can allow a CAV to forecast the future positions of neighboring
human-driven vehicles around it. This can provide additional boosts in the flow-smoothing
and energy-saving capabilities of RL-based controllers, as they allow for preemptive adjust-
ments for vehicles that will change lanes into or out of the lane the AV is currently in. This
means that AVs can avoid closing gaps that are expected to be filled by another vehicle, and
will also accelerate more cautiously when the leader vehicle changes lanes and leaves a gap
in front of the AV.
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Chapter 3

Parallelized Vehicle Trajectory
Simulation

3.1 Dataset Formats and Pre-Processing

The dataset being used for this work is the I-24 MOTION dataset, which is the same dataset
used to train the human-driven vehicle trajectory prediction model in the previous section.
Just as before, the dataset needs to be pre-processed and converted into a different format
that is specifically optimized for trajectory simulation.

Trajectory Simulation Dataset

To effectively parse and simulate the trajectories in these large files, the dataset must be
pre-processed and converted into a format that is optimized for the simulator. The purpose
of the simulator is to recreate human driver trajectories as accurately as possible, while also
inserting CAVs in the flow that are running custom controller algorithms. As a result, the
trajectory is not sampled from input data (and in fact, if that was the case, introducing
CAVs into the flow would not make sense), but rather re-simulated with the key features
extracted beforehand. To do this, the key features (e.g. the start time, start position, end
time, end position, and the physical coordinates and directions of all lane changes) need to
be extracted from each trajectory during the pre-processing step. As a result, the size of
this processed data is much smaller than the original dataset.

The C++ data structure is defined as follows:

struct Tra jec tory {
unsigned int id ;
double l ength ;
double width ;
double he ight ;
int c o a r s e v e h i c l e c l a s s ;
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int d i r e c t i o n ;
double f i r s t t ime s t amp ;
double l a s t t imestamp ;
double s t a r t i n g x ;
double s t a r t i n g v e l o c i t y ;
int s t a r t i n g l a n e ;
double ending x ;
std : : vector<std : : tuple<double , int>> l ane changes ;

} ;

3.2 Simulator Design and Implementation

The purpose of this component is to accelerate the large-scale simulation of AV trajectories
in highway traffic, which operates with on the order of hundreds of thousands of trajec-
tories per experiment. Because different segments of the highway are independent of each
other, the process of querying local sensing data and updating vehicle speeds and positions
can be parallelized spatially. Furthermore, this lends itself to a memory-efficient simulator
state representation, which also allows for faster lookup of neighboring vehicle speeds and
positions, as needed for evaluating the Intelligent Driver Model (IDM) algorithm and, in
the future, performing inference with the vehicle trajectory prediction model (described in
the previous section) as part of an improved RL controller for CAVs. Paired with a GPU-
optimized kernel, this implementation can provide significant speedups over the baseline.
But first, the concept must be implemented serially to test for simulation correctness, and to
evaluate the improvements in performance by parallelizing the simulator on GPU hardware.
The following sections describe the implementation of the serial and parallel algorithms.

Baseline Serial Algorithm

The baseline serial implementation was developed as a reference point against which the cor-
rectness and performance of the GPU-optimized parallel implementation could be compared.
The algorithm, implemented in Python, is defined as follows:



CHAPTER 3. PARALLELIZED VEHICLE TRAJECTORY SIMULATION 13

Algorithm 1 Baseline Serial Trajectory Simulation Algorithm

active vehicles← [ ]
active trajectories← [ ]
t← trajectories[0].first timestamp
while len(active trajectories) > 0 or len(trajectories) > 0 do

indices to remove← [ ]
for i← 1 to len(active trajectories) do

curr vehicle← active vehicles[i]
curr traj← active trajectories[i]
if t ≥ active trajectories[i].last timestamp then

indices to remove.append(i)
else

leader vehicle← get leader vehicle(curr vehicle)
new velocity← intelligent driver model(curr vehicle, leader vehicle)
curr vehicle.velocity← new velocity
if t ≥ curr traj.lane changes[0][0] then

lane change← curr traj.lane changes.pop(0)
curr vehicle.lane← lane change[1]

end if
end if

end for
for i← len(indices to remove) to 1 do

idx← indices to remove[i]
active vehicles.remove(idx)
active trajectories.remove(idx)

end for
for i← 1 to len(trajectories) do

if t ≥ trajectories[0].first timestamp then
new traj← trajectories.pop(0)
new vehicle← Vehicle(new traj)
active vehicles.append(new vehicle)
active trajectories.append(new traj)

else
break

end if
end for

end while
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GPU-Optimized Parallel Algorithm

In the baseline serial implementation, the trajectories and vehicles were stored as arrays of
objects, but this is not the optimal data structure (in terms of both lookup and update
time). Inspired by the implementation of LP-Sim (described in Chapter 1), I developed the
following optimized data structure and algorithm for simulating mixed-autonomy trajectories
in the highway domain.

As depicted in the diagram below, the 4.2 mile long stretch of the I-24 highway can be
divided up spatially into segments that are 10 feet long, such that only 1 vehicle can be in a
segment at any given point in time. With this structure, 2D arrays can be used to store the
exact location (represented as an offset within the segment, ranging from 0 to 9 feet) and
speed (in feet per second) of all active vehicles in the simulation. Three arrays are needed
(for positions, speeds, and IDs), and they are each of shape (2218, 4). Since the range of
position values is only 0 − 9, and the range of speed values is 0 − 150, both values can be
represented by unsigned chars (1 byte). The IDs are stored as unsigned integers (4 bytes).
The space needed to store these arrays is around 53 KB, which is independent of the number
of vehicles being simulated. To ensure correctness when querying the states of some vehicles
and updating others simultaneously, there need to be copies of each array, and the current
and next states will alternate each timestep to avoid unnecessary memory copy operations.

Figure 3.1: A diagram depicting the spatial segmentation of the 4.2 mile long stretch of I-24,
into segments that are each 10 feet long. This structure is used for three 2D arrays that
store the position, velocity, and unique ID of each active vehicle in the simulation.

Now, to be able to handle lane changes, a different representation must be used that allows
GPU threads to quickly lookup the next lane change for any given vehicle. To achieve this,
the structs containing lane change information are written into shared GPU memory by the
CPU function that parses the JSON file when the simulator is initialized. The structs are
then referenced in a hash table (where the key is the unique integer ID for each trajectory),
which allows for constant time lookup of lane change parameters.
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To handle the introduction of new vehicles into the simulator at various timesteps through-
out the experiment, the CPU thread will check the current simulation time against the
first timestamp for trajectories that have not yet started simulation. If a vehicle needs to
be added, the CPU thread will initialize the struct and copy it to shared GPU memory,
and insert the vehicle’s initial state into the 3 simulation state arrays. Since the trajectories
are already sorted by first timestamp before the simulation is run, this is highly efficient.
Furthermore, the struct that contains lane change information also stores the ending x co-
ordinate of the trajectory, and the GPU thread compares the current vehicle position with
this ending x coordinate to determine when to remove the vehicle from the simulator.

Formally, the CPU logic is defined as follows:

Algorithm 2 GPU-Optimized Parallel Simulator — CPU Logic

active trajectory id← 0
d pos 1, d speed 1, d pos 2, d speed 2← cudaMalloc(num vehicles)
d id 1, d id 2← cudaMalloc(num vehicles× sizeof(unsigned int))
h pos, h speed← new unsigned char[num vehicles]
h id← new unsigned int[num vehicles]
trajectories← read trajectories(filename)
h lane changes← new LaneChange[trajectories.size()]
d lane changes← cudaMalloc(trajectories.size()× sizeof(LaneChange))
current time← trajectories[0].first timestamp
while current time < simulation end time do

active trajectory id← insert new vehicles(current time, active trajectory id,
trajectories, h pos, h speed, h id, h lane changes)

d pos 1, d speed 1, d id 1, d lane changes← h pos 1, h speed 1, h id 1, h lane changes
d pos 2, d speed 2← cudaMemset(UCHAR MAX, num vehicles)
d id 2← cudaMemset(0, num vehicles)
gpu kernel(d pos 1, d speed 1, d id 1, d pos 2, d speed 2, d id 2, d lane changes)
cudaDeviceSynchronize()
d pos 1, d pos 2← d pos 2, d pos 1
d speed 1, d speed 2← d speed 2, d speed 1
d id 1, d id 2← d id 2, d id 1
h pos 1, h speed 1, h id 1, h lane changes← d pos 1, d speed 1, d id 1, d lane changes
update lane change info(active trajectory id, trajectories, h lane changes)
current time← current time + timestep

end while

The CPU thread calls a GPU kernel to perform the local sensing data lookup, calculate the
instantaneous acceleration of each vehicle, and update its position and velocity for the next
timestep. This GPU kernel is defined as follows:
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Algorithm 3 GPU-Optimized Parallel Simulator — GPU Kernel

idx← blockIdx.x× blockDim.x + threadIdx.x
stride← blockDim.x× gridDim.x
while idx < num segments× num lanes do

lane← idx÷ num segments
segment← idx % num segments
current id← id[idx]
if current id = 0 then

idx← idx + stride
continue

end if
curr pos← pos[idx]
curr speed← speed[idx]
for i← segment to num segments do

check idx← lane× num segments + i
if id[check idx] ̸= 0 then

lead pos← pos[check idx]
lead speed← speed[check idx]
break

end if
end for
accel← intelligent driver model(curr pos, curr speed, lead pos, lead speed)
curr speed← curr speed + (accel× timestep)
curr pos← curr pos + (curr speed× timestep)
lane change← lane changes[id[idx]]
if not lane change.lane change completed and lane change.next lane ̸= −1 then

if curr pos ≥ lane change.lane change x then
lane← lane change.next lane
lane change.lane change completed← true

end if
end if
next segment← curr pos÷ 10
next idx← lane× num segments + next segment
if curr pos < 4.2× 5280 then

pos 2[next idx]← curr pos
speed 2[next idx]← curr speed
id 2[next idx]← current id

else
lane change.trajectory completed← true

end if
idx← idx + stride

end while
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3.3 Experiments and Results

Both the baseline serial implementation and the GPU-optimized parallel implementation of
the simulator were benchmarked on a complete single-day dataset of more than 580, 000 tra-
jectories. The serial implementation ran in 63.32 minutes, while the parallel implementation
ran in 1.27 minutes, resulting in a speed-up of 49.85x. The GPU algorithm was tested on
Perlmutter, a HPE Cray EX supercomputer, with 1 AMD EPYC 7763 CPU and 4x NVIDIA
A100 GPUs. The graph below breaks down the execution time of the parallelized simulator
into the various steps of the process (e.g. initialization, GPU kernel, memory operations,
and CUDA synchronization).

Figure 3.2: A breakdown of the runtimes of high-level operations during the simulation.

The subprocesses that take the majority of the runtime are: initialization, the GPU kernel,
and updating lane change information (CPU). The most expensive component of the simu-
lator initialization is reading the trajectories in from a JSON file, but this is necessary to set
up the data structures that capture the simulator state. The GPU kernel is generally quite
optimized, as it minimizes interference between threads by maintaining separate read-only
and write-only versions of the 3 state arrays (position, speed, ID). The CPU function that
updates lane change information is a bottleneck for the simulator performance because it
iterates through all the active trajectories to check if their respective lane changes have been
completed (and then updates the struct with the next lane change if applicable).
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Below, the graphs display how the runtime scales with the number of simulator timesteps
and the number of trajectories being simulated. There is an initial cost associated with
the initialization of the parallel simulator (which means that it is slower than the serial
implementation for smaller-scale simulations), but as the simulation scale increases, the par-
allel simulator demonstrates much better runtime and scaling performance than the baseline
serial algorithm.

(a) Increasing number of timesteps. (b) Increasing number of trajectories.

Figure 3.3: Performance graphs that depict the runtime as the number of simulation
timesteps increase (left) and as the number of trajectories simulated increases (right).

The parallel simulator demonstrates great scaling properties. Specifically, when modeling
the scaling in the form O(n1+ϵ), the runtime scales with a factor of ϵ = −0.8 with respect
to both the number of timesteps and the number of trajectories. This is because of the
simulator’s unique state representation (which is only dependent on the size of the highway,
not the number of trajectories). Of course, there are components of the program that do
scale with the number of trajectories, such as lane change information (which is not stored
in the spatially segmented format).

To determine the optimal GPU grid size and block size, additional experiments were run
to evaluate the simulator performance while varying parallelization parameters. The graphs
below depict the runtime as the grid size increases (but the block size remains constant),
and vice versa, respectively. For the other experiments, the block size was chosen to be 256,
and the grid size was determined by dividing the maximum number of concurrently active
vehicles by 256.
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(a) Increasing GPU grid size. (b) Increasing GPU block size.

Figure 3.4: GPU strong scaling graphs that depict the runtime as the GPU grid size increases
(left) and as the GPU block size increases (right).

3.4 Conclusion

This large-scale, GPU-optimized parallel simulator is designed to efficiently simulate hun-
dreds of thousands of mixed-autonomy trajectories in the highway domain. As demonstrated
through benchmarks, the parallelization and use of GPU kernels allow for a speed-up of nearly
50x over the serial algorithm. This simulator can be used during the training process for
next-generation RL controllers for CAVs, potentially improving the resulting policies even
further. It can also be used to benchmark the performance of existing RL controllers, with a
realistic multi-lane environment that accurately re-creates real-world trajectories of human
driven vehicles.

One caveat of this dataset is that it includes AV trajectories as well, but in the future, these
can either be held out by filtering the trajectories that correlate with the onboard AV data
recorded during the MegaVanderTest, or the simulator can be run on new datasets collected
from the I-24 MOTION system, where the recorded trajectories would consist of purely
human-driven trajectories.

There is scope to push the envelope of large-scale mixed-autonomy simulation, and even this
simulator can be optimized further to provide higher performance. Innovation in the field
of high-performance computing, along with highly-optimized vehicle simulation software,
will continue to support the development of next-generation CAV controller software and
improve highway throughput, traffic safety, and fuel efficiency for users all over the world.
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