
Towards a Quantum Hardware Roofline: Evaluating

the Impact ofGate Expressivity on Processor Design

Justin Kalloor
Mathias Weiden
Ed Younis
De Jong Wibe
John D. Kubiatowicz
Iancu Costin

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-78

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-78.html

May 10, 2024

Copyright © 2024, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Towards a Quantum Hardware Roofline: Evaluating the Impact of
Gate Expressivity on Processor Design

by Justin Kalloor

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,

University of California at Berkeley, in partial satisfaction of the requirements for the

degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor John Kubiato z
Research Advisor

sh/';)~
May 7, 2024

Professor John Wawrzynek
Second Reader

Abstract
The design space of current quantum computers is expansive, with no

obvious winning solution, leaving practitioners with a crucial question:
“What is the optimal system configuration to run an algorithm?” This
paper explores hardware design trade-offs across NISQ systems to better
guide algorithm and hardware development. Algorithmic workloads and
fidelity models drive the evaluation to appropriately capture architectural
features such as gate expressivity, fidelity, and crosstalk. As a result of
our analysis, we extend the criteria for gate design and selection from
only maximizing average fidelity to a more comprehensive approach that
additionally considers expressivity with respect to algorithm structures.
A custom synthesis-driven compilation workflow that produces minimal
circuit representations for a given system configuration drives our method-
ology and allows us to analyze any gate set effectively. In this work, we
focus on native entangling gates (CNOT, ECR, CZ, ZZ, XX, Sycamore,√
iSWAP), proposed gates (B Gate, 4

√
CNOT, 8

√
CNOT), as well as pa-

rameterized gates (FSim, XY). By providing a method to evaluate the
suitability of algorithms for hardware platforms, this work emphasizes
the importance of hardware-software codesign for quantum computing.

1 Introduction

Quantum computers offer an exciting opportunity to explore problems pre-
viously considered intractable. An assortment of companies have introduced
gate-based quantum machines that range in qubit technology: superconducting
transmon qubits [5], fluxonium qubits [4], trapped-ion qubits [10], neutral atoms
[23], and several others.

While existing hardware offerings are not mature enough to provide realistic
quantum advantage [1] or quantum utility [24], they can be used as a good
indicator of the future. Practical questions have already arisen in the community
related to the comparison of different hardware solutions: “What computer
should I use to run my algorithm? How can I improve my current quantum
processor? What gates should I provide to end-users?”

In the current Noisy Intermediate Scale Quantum (NISQ) computing era,
gates are imperfect and introduce error in program outputs. Thus, the most
important performance metric for current systems is their ability to execute
algorithms with the least amount of error, i.e. maximize algorithmic fidelity.

To this end, hardware designers attempt to improve the accuracy of an al-
gorithm’s execution using a multi-stage design process aimed at optimizing be-
havior across multiple hardware characterization criteria: gate fidelity, crosstalk
(gate parallelism and qubit connectivity), etc. This process, centered around
gate fidelity, proceeds as follows: First choose a native entangling two-qubit gate
that can be implemented with high fidelity, and that is “good enough” to repre-
sent any two qubit process (unitary). After this, develop additional techniques,
e.g. crosstalk mitigation, to further improve gate fidelity.

We believe that this design process can be improved upon from both a
hardware and end-user perspective. Most hardware characterization metrics

1

([30, 12, 25]) are gate and algorithm agnostic; therefore, these widely accepted
metrics (e.g. gate fidelity) are hard to correlate directly with algorithm per-
formance across systems with distinct hardware characteristics. Full algorithm
fidelity models that capture hardware characteristics (gate fidelity and paral-
lelism/crosstalk) have been introduced in the literature [9]. While they are
able to assess the fidelity of an algorithm when executed on a single hardware
configuration, these models still lack predictive power when varying architec-
tural parameters. The problem stems from the fact that these metrics combine
algorithm-agnostic hardware characterization metrics with metrics that charac-
terize the program implementation and resource consumption (e.g. gate count,
circuit depth), and implicitly the impact of the program generators and com-
pilers.

In this paper we argue that gate set design should be driven by represen-
tational power in the context of a given algorithm or algorithmic workload.
In order to attain the most resource efficient implementation, we use custom
compilation workflows that combine traditional compilers, such as Cirq [15] or
Tket [44], with circuit synthesis tools. Note that the inferences made in this pa-
per could not be obtained without leveraging the BQSKit [49] circuit synthesis
tools.

The evaluation is driven by a workload that contains several algorithms of
wide interest, such as QFT, QAOA [18], TFIM models [43], Quantum Finance
algorithms [19], and Quantum Machine Learning models [8]. For each algorithm
we consider problem instances of increasing scale (qubit count) and generate
the most resource efficient implementation for a given hardware configuration
(gate set and qubit interconnect topology). We consider native entangling gates
(CNOT, ECR, CZ, ZZ, XX, Sycamore,

√
iSWAP), proposed gates (B Gate,

4
√
CNOT, 8

√
CNOT), as well as parameterized gates (FSim, XY), together with

several qubit interconnect topologies.
This paper makes the following contributions:
First, we introduce analytical models that combine hardware (gate fidelity,

parallelism and qubit connectivity) and algorithm implementation (gate count,
depth) characteristics to provide useful guidance for hardware and compiler
designers, as well as system end-users. We introduce a comparative performance
roofline based approach which is able to derive which particular metric can lead
to overall improvements in algorithmic fidelity, as well as upper bounds on
these metrics past which no additional end-user gains can be expected. For
example, when comparing Sycamore (Google) and CNOT (IBM) entangling
gates for a particular algorithmic workload, our analyses show that there are
ranges of relative gate fidelities where one configuration can always outperform
the other. Once a certain threshold fidelity has been attained, no improvements
in one- or two-qubit gate fidelity on any architecture can lead to better relative
performance with respect to the other.

Next, we introduce a circuit synthesis based compilation procedure which
indicates that the existing gate set design criteria that favors choosing gates
based on their attainable fidelity and representational power of random two-
qubit process may be misleading. Instead, our analysis shows that the criteria

2

should be augmented with their representational power for multi-qubit processes
(e.g. three qubit) that are drawn from implementations of existing algorithms.
For example, while the B-gate [50] is the most expressive gate for two qubit
unitaries, we cannot uncover advantages when using it to represent complex
programs. When compared against CNOT, B-gates lead to gate count increases
and possible fidelity decreases. At the other end of the spectrum, we show that
several low-entanglement gates such as 4

√
CNOT and

√
iSWAP are sometime

able to offer similar expressive performance as maximally entangling gates for
important circuits such as TFIM, QFT, and QAE, leading to better algorithmic
fidelity.

As discussed in Section 11, we believe our assessment procedure extends well
beyond NISQ into the Fault Tolerant era of quantum computing.

2 Background

2.1 Quantum Computing Basics

The fundamental unit of information in a quantum computer is the qubit, which
can be represented as a vector of the form

|ψ⟩ = α

[
1
0

]
+ β

[
0
1

]

where α and β are complex numbers such that |α|2 + |β|2 = 1 and

[
1
0

]
and[

0
1

]
are orthonormal basis vectors representing the two distinct quantum states.

These basis vectors can also be written in Dirac notation as |0⟩ =

[
1
0

]
and

|1⟩ =

[
0
1

]
. |α|2 and |β|2 represent the probability of measuring |0⟩ and |1⟩

respectively. As α and β are complex numbers, this qubit has both an amplitude
associated with each basis state, as well as a additional relative phase between
the two numbers which cannot be measured directly 1, but can be leveraged for
speedup in quantum algorithms.

The state of a quantum system with n qubits in states |ψ1⟩, |ψ2⟩, . . . |ψn⟩
lies in a 2n × 2n Hilbert space, and can be represented by the tensor product
|ψ1⟩⊗|ψ2⟩⊗· · ·⊗|ψn⟩. This quantum state |ψ⟩ can be evolved by use of 2n×2n

unitary operators[34]. Any n-qubit unitary can be broken down into a set of
smaller unitaries, typically 1 or 2 qubit unitary gates. This series of gates can be
drawn using the quantum circuit model [14]. Single qubit and multi-qubit gates
act on qubits which are drawn as horizontal wires (see Figure 1). The number
of wires or qubits n is called the circuit width, while the length or depth of the
circuit is T . The depth is typically drawn as the x-axis of the circuit.

1The phase cannot be measured directly in the standard Z-basis corresponding to the basis
states |0⟩ and |1⟩, but can be measured in other bases

3

Figure 1: Example quantum circuit with 5 qubits broken down into the native gates
of the device. Each qubit is represented by a horizontal line, and the timing of the
circuit is described by the x-axis. In this case, the native gates consist of the H, Rz,
Rx 1-qubit gates and the 2-qubit CNOT gate.

2.2 Quantum Devices

Today’s quantum computers span a range of underlying qubit technologies.
Each technology designates its own restrictions. Today, the most popular tech-
nologies being researched are Superconducting, Ion Trap, and Neutral Atom
computers. Superconducting qubits are built into 2D silicon chips, which allows
them to scale quickly, but means they are fixed in place. As quantum gates
are difficult to apply over large distances, superconducting qubits can typically
only interact with their nearest neighbors (local links). This restriction enforces
a physical topology on the device, which is typically a grid or other 2D planar
graph. When breaking down a large unitary, compilers must ensure that only
these local interactions are used. This process of compiling a large unitary to
a physical topology is called mapping and routing. Ion Trap and Neutral Atom
computers operate on atoms, which can be moved around to interact with any
other qubit. This gives them an all-to-all connectivity, albeit at the cost of
moving around their qubits.

2.3 Quantum Gates

A quantum gate can be considered an elementary operation of a given quantum
computer, similar to logic gates on a classical computer. The set of gates that a
device offers that a larger unitary can be broken down into is called the native
gate set. This gate set is universal if it can represent any n-qubit unitary with
arbitrary precision. The list of these native gate sets are shown in Table 1. The
compiler is responsible for translating the initial quantum circuit to only use
gates that are available in a device’s native gate set.

The gates available on a given machine are a function of the underlying
physics as well as the algorithmic workload that will be targeted. As previously
mentioned, current 2-qubit gate design finds a gate that is “good enough” to
represent arbitrary unitaries and can be implemented with high fidelity. In this
case, “good enough” typically signifies a gate in the CNOT Family (gates that
are equivalent to CNOTs up to single-qubit rotations, which are relatively cheap
to apply). These gates include CNOT, ECR, ZZ, XX, and CZ gates. CNOTs are

4

the most common gate in quantum algorithms as they are easy to understand
(quantum equivalent to an XOR gate). This makes this set of gates a good idea
to target with hardware, even at the potential cost of implementation, since
they are simple to convert to from most CNOT-based algorithms. Other gates
that are offered may be implemented more efficiently for a given device while
potentially suffering from poor re-targeting of a variety algorithms. This trade
off is explored throughout this paper.

Quantum gates are either constant or parameterized. A constant gate im-
plements a single fixed unitary (e.g CNOT, X, Z). A parameterized gate takes
in a set of continuous parameters, which typically correlate to angles of rotation
along different axes. For example the single-qubit U3 gate takes in 3 parame-
ters which correspond to angles for an X,Y, and Z rotation. As parameterized
gates are continuous, the set of parameters can be differentiated over and opti-
mized [48]. While parameterized gates are far more flexible and powerful, they
are much harder to calibrate and this can result in lower fidelities. As 2-qubit
gates are more difficult to implement, they are typically implemented as con-
stant gates (although the XY gate and FSim gate provide 2 exceptions which
we explore later in section 8.4).

Current quantum machines typically offer parameterized single-qubit gates.
These single-qubit gates can be composed to perform any single-qubit unitary
operator. 2-qubit gates are responsible for performing quantum entanglement
between 2-qubits. All of the vendor-provided quantum gates are entangling, and
we explore the strength of these entanglements more in Section 11. A quantum
computer that is able to perform any single-qubit operation and entangle qubits
is universal.

2.4 Sources of Qubit Error

Errors in quantum bits are caused by unwanted interactions with the envi-
ronment. As these quantum systems are extremely hard to isolate, errors are
prevalent in today’s NISQ computers. Because of this, the most important met-
ric to optimize for in NISQ systems is qubit fidelity, which defines how close a
qubit state is to the ideal state. Qubit fidelity is defined as a number between 0
and 1, where 0 represents a qubit state that is orthogonal to the correct state,
and 1 indicates that the states are identical.

2.4.1 Qubit Decoherence

Qubits are only able to keep their quantum state for a period of time. This is
known as the coherence time. The T1 coherence time is a measure of how long
a qubit can maintain the correct amplitudes of α and β before decohering to the
low-level |0⟩ state. The T2 time corresponds to how long the state maintains
its relative phase.

Today, these times sit at around 130 microseconds for T1 times and 100
microseconds for T2 times [21]. They vary greatly between different quantum
technologies and even between qubits in the same computer.

5

2.4.2 Gate Error

In addition to decoherence, applying operations to qubits is also very costly.
Each gate may introduce additional noise, which can be modeled as the qubit
being acted on by an erroneous channel with a probability of error p 2. As shown
in Table 1, single-qubit error rate is reasonably low (on the order of 10−3). On
the other hand, two-qubit gates are much higher (10−2) and have much higher
variance amongst the different links in a machine. These two-qubit gates are
essential to quantum algorithms, as they allow for qubits to entangle, which
provides the speedup for most use cases. Therefore, minimizing the number of
gates, and especially the number of two-qubit gates, is very important for an
effective compiler, as the gate count is negatively correlated with the fidelity of
the final qubit state.

2.4.3 Measurement/Readout Error

Similar to gate errors, measuring a quantum state may also introduce noise.
These errors are also on the order of 10−2 [21] but are outside the scope of this
paper.

2.4.4 Cross Talk Error

The errors we have considered thus far have all been assumed to be localized
and independent. This is an important assumption, especially in the field of
Quantum Error Correction [34]. However, entangled qubits that are acted upon
may cause correlated errors (cross talk) between nearby qubits. Cross talk errors
can be caused by several factors, including but not limited to: unaccounted
entanglement of qubits, electromagnetic radiation when manipulating another
qubit, entanglement that occurs on readout, etc. There have been attempts to
properly model cross talk noise under the Markov assumption for these errors
[42] and we introduce fidelity models in Section 8 that aim to capture this noise.

3 Quantum Hardware Characterization
and Benchmarking

Today’s systems are dominated by superconducting (IBM, Google) and trapped
ion (Quantinuum, IonQ) qubits. Neutral Atom (QuEra, Atom Computing)
and silicon-spin qubits (Intel) are starting to gain traction, while several other
technologies are continuously being developed. All these systems expose to end-
users a universal gate set [34], composed of single-qubit and entangling two-qubit

2This is a simplification of the Kraus Operator formalism of an erroneous channel. There
is an associated probability for all possible errors, but through randomized benchmarking,
this can be captured by a single probability.

6

Hardware Num
Qubits

Tech-
nology

Con-
nec-
tivity

Native Gate Set 1Q/2Q
Error
(RB/XEB)

Google
Sycamore

54 Super-
con-
ducting

2D
NN

1Q: XZ, RZ
2Q:FSim,

√
iSWAP,

Sycamore, CZ

0.001 /
0.01

IBM
Eagle r3

127 Super-
con-
ducting

2D
NN

1Q: SX, RZ, X 2Q:
ECR

0.0002 /
0.007

IBM
Hum-
mingbird
r3

65 Super-
con-
ducting

2D
NN

1Q: RZ, SX, X 2Q:
CNOT

0.00027/
0.012

IBM
Falcon r5

27 Super-
con-
ducting

2D
NN

1Q: RZ, SX, X 2Q:
CNOT

0.0003/
0.0079

Rigetti
Aspen
M3

79 Super-
con-
ducting

2D
NN

1Q: RX, RZ 2q: CZ,
XY

0.001/
0.14, 0.092

Quantin-
uum H2

32 Ion
Trap

A2A 1Q: U1, RZ 2Q: ZZ 3e-5/0.002

IonQ
Forte
(2024)

35 Ion
Trap

A2A 1Q: GPi, 2Q: ZZ,
XX

0.0002/
0.0040

IonQ
Aria

21 Ion
Trap

A2A 1Q: GPi, 2Q: XX 0.0006/
0.0040

Table 1: Summary of existing commercial Quantum Computing hardware [37, 15,
40, 22, 3]. As we can see, most devices available now are superconducting or ion trap
devices, with superconducting devices proving to be easier to scale. This contrasts the
ion trap devices which show on average higher RB fidelity. Additionally, supercon-
ducting qubits have a 2D NN (2D Nearest Neighbor/mesh) topology while ion traps are
all-to-all (A2A).

7

native gates. These gate-set choices are outlined in Table 1. Several methods
exist to characterize today’s quantum machines:
Average Gate Fidelity: The widest used characterization and processor opti-
mization metric is the average gate fidelity, which captures the probability that
a state does not succumb to any error when a gate is applied. Fidelity can be
measured using Randomized Benchmarking (RB) protocols [31, 30, 25], which
use random circuits to generate an error channel with a single probability p, the
average infidelity of the channel. By varying the depth of the circuits, existing
protocols calculate the infidelity per gate (pgate): fidelity is then computed as
1− pgate.

In 2019, Google introduced the cross entropy benchmarking (XEB) protocol
[2] as another way to compute average gate fidelity. Importantly, this study also
shows that the total average fidelity of a circuit can be approximated using a
simple digital error model, validated for NISQ size systems.
Process Fidelity: As RB protocols have trouble scaling past three qubit pro-
cesses, Cycle Benchmarking (CB) [17] has been proposed to improve charac-
terization scalability to larger processes (and hardware). CB based protocols
indicate that besides average gate fidelity, hardware dependent metrics such as
qubit connectivity and algorithm specific metrics such as gate parallelism per
cycle need to be taken into account when assessing algorithm fidelity.
Quantum Volume: Quantum Volume (QV) [12] characterizes the capability
of hardware to execute random circuits of a certain size. This metric cannot
be used to compare the fidelity of different process implementations running on
the same machine or that of a single process running across different machines.
Algorithmic Qubits: IonQ’s Algorithmic Qubits (AQ) metric [9] captures
a system’s ability to execute an algorithmic workload. AQ protocols measure
the largest number of effectively perfect qubits you can deploy for a typical
quantum program. It is similar to QV, but it additionally considers quantum
error correction and presents a clear and direct relationship to qubit count. The
AQ metric captures the impact of the compilation tool-chain.

All of these protocols and metrics reveal different useful information about a
single configuration of quantum machine. However, they all fail when comparing
across different hardware and gate sets. While we can measure the fidelity and
quantum volume of a CNOT-based machine and of a Sycamore-based machine,
this does not give us any information on their respective abilities to run a given
algorithm. AQ encapsulates the algorithmic potential of different hardware, but
it is still unable to quantify the degree to which one needs make changes to an
architecture’s configuration in order to provide better comparative performance.

In order to make these inferences, we advocate for an algorithmic workload
based approach centered around circuit fidelity models that combine hardware
characterization metrics with the hardware’s ability to represent and implement
a particular algorithm. We start with the simple digital model based on average
gate fidelity, which we then extend to account for crosstalk due to parallel gate
execution as well as qubit connectivity (an idle qubit can be affected when
executing an operation on a neighboring qubits).

8

3.1 Roofline

The roofline model [47] provides an intuitive understanding of performance bot-
tlenecks in classical hardware. The model outputs the maximum attainable
performance on a machine as a function of the operational intensity of an appli-
cation. This allows hardware and software architects to understand the inherent
limits of their design in the context of important universal metrics: computa-
tional power and network bandwidth.

Our paper introduces a quantum analog, which highlights bottlenecks in
algorithmic fidelity when comparing two different machines by gate expressivity,
fidelity, and connectivity. While the classical roofline is fixed for a particular
hardware, our relative roofline is fixed for an algorithmic workload. This allows
for simple comparisons to be made between quantum computers for targeted
domains. As a consequence, our model is compiler dependent, which motivates
our custom compiler workflow and the importance of numerical synthesis based
transpilation (Section 4.2).

4 Quantum Algorithms and Compilers

As we have introduced, minimizing the number of gates in a circuit and the
average error introduced by each gate will improve algorithmic fidelity. The
gate count for a given algorithm implementation is determined by hardware
characteristics: 1) representational power of the native gate set; and 2) qubit
interconnection topology.

Due to exponentially compounding gate infidelities, the dominant factor in
the total fidelity is gate count. This has two consequences: 1) comparisons
between system configurations should be done using the implementation with
the fewest number of gates attainable, together with the lowest depth or highest
gate parallelism; and 2) the compilation tool-chain plays a very important role
in determining the overall “performance” of a given configuration.

4.1 Quantum Algorithms

Domain generators [33, 37] that produce the circuit associated with a given
algorithm tend to have the following common characteristics:

• They are developed to generate circuits in a restricted gate set. Most gen-
erators use directly the CNOT gate, while some hardware-vendor-provided
generators target only vendor supported native gates.

• The generated circuits have a logical qubit connectivity that resembles the
domain level structure. For example, optimal QFT circuits are generated
assuming an all-to-all qubit connectivity. Circuits generated for fermionic
[33] interactions map fermions to qubits using a logical topology that
resembles the structure of the physical system modeled.

9

• Some generators are deemed optimal. Optimality here relates only to to
asymptotic complexity: a good compiler can greatly reduce the constants
that appear in the complexity formula.

Due to these properties, a quantum compiler’s ability to: 1) eliminate gates
that are redundant or can be simplified from the circuit; 2) map and route
the input circuit to the hardware configuration; and 3) translate (transpile)
the input circuit to a different gate set is paramount for accurate architectural
comparisons.

4.2 Quantum Compilers

Traditional vendor compilers use peephole optimizations based on 2-qubit gate
synthesis (KAK decomposition [45]), application of gate commutativity rules,
or domain specific pattern rewriting rules (e.g. Tket’s phase gadgets [11]).
They also provide mapping and routing algorithms [37, 44, 26] and translation
between multiple gate sets (“transpilation”). In particular, transpilation is per-
formed using a 1:1 gate rewriting rule: any 2-qubit gate is rewritten directly
from one (e.g. CNOT) to another (e.g. Sycamore).

Benchmark Size Gate BQSKit Tket Cirq Qiskit

mul 10 163

a2a mesh a2a mesh a2a mesh a2a mesh
cz 67 89 104 134 134 227 132 141
b 110 125 208 480 - - - -
syc 103 139 208 319 260 364 - -

qft 16 264
cz 237 336 240 522 264 563 264 426
b 242 302 480 1044 - - - -
syc 241 365 480 828 288 755 - -

TFIM 16 240
cz 200 200 240 240 240 240 240 240
b 200 202 480 480 - - - -
syc 200 208 480 219 440 440 - -

Table 2: Comparison of two qubit gate counts for a subset of the benchmarks and gate
sets across our different compilers. The first number under each compiler is for an
all-to-all topology system, while the second number is for a mesh topology. Synthesis
based compilers, such as BQSKit, produce the circuits with the least amount of gates.
Note that Cirq (Qiskit) is unable to compile to the B Gate (B and Sycamore Gate).

4.2.1 Circuit Synthesis

Numerical circuit synthesis [49, 39] based tools have been introduced recently
and have been shown to provide better quality implementations [13, 29, 48, 46]
when compared against vendor compilers, albeit at the expense of increased
compilation time. Numerical synthesis uses iterative optimization to approx-
imate a unitary with bounded error while trying to minimize the number of
gates. Some of these tools integrate optimization [13] with mapping [29] and
gate transpilation [48]. They can search a large space of circuit structures and
transformations.

10

All compilation tools have one thing in common: the compilation workflow
is custom and it consists of repeated applications of passes and transformations.
While it is hard to quantify the impact of optimization, mapping, and transpi-
lation phases in isolation, we note that compilers can realize up to an order of
magnitude in gate count reduction, even when the input circuit is “optimally”
generated.

Family Benchmarks (circuit width)
TFIM TFIM 16, TFIM 64, TFXY 16,

TFXY 64
QAE qae 9, qae 13, qae 17, qae 21
QFT qft 4, qft 12, qft 64
QAOA qaoa 10
QPE qpe 14, qpe 18
Adder adder 9, adder 63, mul 10, mult 60
Shor shor 12, shor 16, shor 24, shor 28
Grover grover 5
Hubbard hubbard 4, hubbard 8, hubbard 12
QML qml 6, qml 13, qml 22
VQA vqe 12 (LiH), vqe 14 (BeH2)

Table 3: Our Benchmarks: List of benchmark circuits organized by family. Each
circuit was initially created with CNOT and U3 gates.

5 Evaluation Procedure

We used the algorithms shown in Table 3 for our evaluation. They include
many important categories including Variational Algorithms (VQA and QAOA)
[36, 18], Finance (QAE) [19], Number Theory (QFT, QPE, Shor) [6], Physical
Simulation (Hubbard, Ising(TFIM)) [7, 43], Search (Grover [32]), and Quantum
Machine Learning (QML). The QML circuit is based on [8] and has an n-bit
encoder and a two-local network. Most benchmarks were generated using Qiskit
circuit generators[37], while the TFIM circuits were generated with F3C++
compiler [35]. For each algorithm we generate several instances across inputs
and circuit sizes (number of qubits). Overall, we believe that our algorithmic
workload provides a good sampling of the space of circuit implementations. We
consider up to 64 qubit programs, with gate counts as high as 37000 accounting
for a maximum depth of 44500. The logical topology of these programs ranges
from linear in TFIM to all-to-all in QFT.

We translate and optimize the benchmarks for native gates present in to-
day’s hardware (CNOT, ECR, CZ, ZZ, XX, Sycamore,

√
iSWAP), as shown

in Table 1. Additionally, we examine experimental gates theorized to provide
algorithmic fidelity advantages due to either high expressivity or high fidelity,
B and 4

√
CNOT or 8

√
CNOT respectively.

11

Figure 2: Our Hardware Comparison Procedure: A synthesis-based cross-compilation
process (sometimes called “transpilation”) allows us to explore multiple gate sets and
the ability to express an algorithm in terms of gate count, depth, and parallelism. From
there, we can understand the effects of topology and fidelity on the overall performance
of a quantum machine.

An overview of our process is shown in Figure 2. We use a custom compila-
tion workflow that composes compilers (Qiskit, Cirq, Tket) with the BQSKit [49]
circuit synthesis tools and selects the best resultant circuits. This workflow com-
bines rule-based and algorithm-level transformations (Tket, Qiskit) with the
power of multi-qubit translation offered by numerical synthesis. When trans-
lating between gate sets, numerical synthesis performs global optimizations of
multi-qubit circuits, which leads to better results compared to peephole pattern
replacement and 1:1 gate translation offered by vendor compilers. Table 2 shows
a sampling of these results. While details of the compilation workflow are be-
yond the scope of this paper, to our knowledge, we generate the best attainable
implementations of a given algorithm on a given hardware configuration. These
resource “optimal” circuits3 are then run through our fidelity models described
in Section 7 in order to compare overall performance.

6 Gate Representational Power

Given a reference implementation using CNOT gates, in Figure 3 we show the
relative two-qubit gate count (averaged across circuit families) after re-targeting
to a particular gate. This data shows the ability of a gate to represent a partic-
ular algorithm, i.e. it captures its expressivity and entanglement power. When
considering existing native gates, the {CZ, ZZ, XX, ECR} set seems to have the
same representational power as CNOT gates. The native gates {Sycamore,

3Meaning they do not improve with further compilation and optimization.

12

Figure 3: Normalized two-qubit gate count for existing hardware (top) and theorized
hardware (bottom). We plot the relative count with respect to the optimally compiled
CNOT based circuit. The gate count encapsulates logical algorithm connectivity and
serves as a proxy for a gate’s ability to represent the algorithm.

√
iSWAP} have lower representational power than CNOT, as illustrated by

their higher gate counts. When considering theorized gates, we see that {B,
4
√
CNOT, 8

√
CNOT} have overall lower representational power than CNOT. This

is surprising as the motivation behind the introduction of the B-gate was its op-
timal 2-qubit representational power.

This behavior is also algorithm dependent. The TFIM, QAE, and QFT
circuits require almost the same number of gates, irrespective of which gate it is
used. For the rest of the circuits, we see more nuanced behavior. The gate set
{CZ, ZZ, XX, ECR, CNOT} leads to the least amount of gates used, with much
higher gate counts for the set {Sycamore,

√
iSWAP, B, 4

√
CNOT, 8

√
CNOT }.

This data indicates that the machine with the highest gate fidelity will be
best suited to execute TFIM, QFT, and QAE. For the rest of the algorithms, the
best machine will consider trade offs in both gate fidelity and circuit structure
(gate count, parallelism etc.). Our data also indicates that gate representational
power with respect to full algorithms needs to be taken into account when
selecting a system configuration. We discuss in detail representational power
trade-offs in Section 10.

7 Circuit Fidelity Models

In the NISQ era, it is critical to maximize the probability that a circuit’s output
state is correct. The output expectation can be described a function of the
average gate fidelity of the machine, written as [34]:

Fgate(E , U) =

∫
dψ ⟨ψ|U†E(ψ)U |ψ⟩

where U is the target unitary and E is the erroneous channel trying to implement
U.

13

To assess algorithm fidelity on a particular system configuration, we use a
series of models that capture circuit characteristics together with an increasing
number of architectural features: (1) gate fidelity; (2) gate fidelity and paral-
lelism. In Section 8.5 we discuss a model based on qubit connectivity as well.

Let F(·) denote a circuit fidelity model, and let A and B denote two distinct
system configurations. In order to enable system comparisons, we analyze the
objective function given by:

π = FA(·)− FB(·)

7.1 Gate Fidelity

Our first model is derived from [2], in which the authors verify that the measured
fidelity and estimated fidelity based on this model track almost exactly for their
tested circuits.

Definition 7.1 (Digital Fidelity Model). The average circuit fidelity Fd can
be estimated as

Fd =
∏

i=1,2,..

fni
i

where ni is the number of i-qubit gates in the circuit, and fi is the average
fidelity of an i-qubit gate. For systems with only one- and two-qubit native
gates this becomes:

Fd = fn1
1 · fn2

2

with the objective function:

πd = fA1
nA
1 · fA2

nA
2 − fB1

nB
1 · fB2

nB
2

7.2 Gate Fidelity and Parallelism

In many systems, parallel execution impacts the attainable gate average fidelity.
To capture this, we use a model based on Cyclic Benchmarking [17]. The
protocol considers circuits as a series of cycles, with which we can calculate
a single cycle fidelity as function of the 1-qubit and 2-qubit process fidelities
(γ). The process fidelity and average fidelity as defined above are related by a
simple linear equation [20].

Definition 7.2 (Cyclic Fidelity Model).

Fc =
∏

(1− ei · Pi)
m

where Pi is the average parallelism of i-qubit gates in the circuit, and ei is
the average process infidelity for an i qubit gate (1 − γi). ei can be measured
using the Cycle Benchmarking protocol. The objective function for our machine
comparison becomes:

14

πc = Fc
A − Fc

B

= (1− eA1 · PA
1)m

A

· (1− eA2 · PA
2)m

A

− (1− eB1 · PB
1)m

B

· (1− eB2 · PB
2)m

B

8 Evaluating Quantum Machines

Now, we can finally answer the question “What machine should I use to run my
algorithm?”.

The answer is rendered trivial when considering currently published gate
fidelity figures. Quantinuum boasts by far the highest 2-qubit gate fidelity at
0.998 and its ZZ gate can express our algorithmic workload well. For algorithms
that use more qubits than H2’s capacity, the models suggest the IBM Eagle
system.

A more insightful question is how could system configurations be changed
in order to improve competitiveness, e.g. : “How can other machines become
better than H2?”.

8.1 Quantifying Design Trade-offs

Our procedure allows us to quantify the trade-offs between a gate’s represen-
tational power for an algorithm and its fidelity. This is a comparative analysis
where we vary the models’ parameters and solve for the objective function as de-
fined in Section 7. As gates continue to improve and calibration/noise-mitigation
techniques advance, architects and end-users must consider:

1. “What gate fidelity do I need in order to out-perform other machines?
How does this vary by algorithm class?”

2. “Does single-qubit gate count matter for relative performance?

3. “Is offering multiple entangling gates worth the development and mainte-
nance effort?”

4. “How does the underlying chip topology affect the relative performance?”

Given that the maximum attainable gate fidelity is 1, in order to compare
NISQ-era devices, we want to use realistic constraints. First, to simplify the
model, we will initially limit the single-qubit gate type to only the U3 gate.
Current machines have parameterizable rotation gates that can be composed to
perform any arbitrary single-qubit unitary. As 2-qubit gate errors still dominate,
this simplification is justified. Based on Table 1, single-qubit gate fidelities vary
from around 0.999 to 0.99999 across all quantum machines considered, while
2-qubit gates range from 0.990 to 0.999.

15

Figure 4: Machine capability to ex-
ecute the adder 9 algorithm. CNOT
fidelity is on the x-axis and the rel-
ative Sycamore fidelity on the y-axis.
We plot the winning machine at each
point. The middle area shows where
the choice of best machine is a function
of the single-qubit fidelity. In the other
areas, each machine wins irrespective
of 1-qubit gate fidelity. The published
2-qubit gate fidelities are shown with
the black dotted lines, while the corre-
sponding rooflines are plotted with solid
black lines. The CNOT (Sycamore)
gate always wins when its fidelity is
right of (above) the roofline.

Figure 5: Gate set comparison
against CNOT. CNOT fidelity is fixed
to the IBM Falcon (vertical dotted line
in Figure 4). The bars correspond to a
vertical slice of the full analysis (Fig-
ure 4) for each of the circuit fami-
lies: TFIM, QAE, QFT, QAOA, QPE,
Adders, Grover, Shor, Hubbard, QML,
and VQE. Encouragingly, low entan-
glement gates (8

√
CNOT) can provide

better overall circuit fidelity for several
important algorithms.

8.2 Two-Qubit Gate Analysis

We use the adder 9 algorithm to directly compare IBM Falcon (CNOT) with
Google Sycamore (Sycamore) machines as our driving example. The corre-
sponding objective function (defined in Section 7) is:

πd = fA1
70 · fA2

49 − fB1
91 · fB2

66

For comparisons, we rewrite the objective function to use the Sycamore
fidelity relative to CNOT. We vary the CNOT fidelity along the x-axis and the
relative Sycamore fidelity along the y-axis. We then have two remaining free
variables:

πd = fA1
70 · x49 − fB1

91 · (x · y)66

The results are summarized in Figure 4. Each point represents a two-system
configuration we are comparing, with the 2-qubit fidelities set according to the
x and y position. We identify three behavioral regions. In two regions, one
configuration wins against the other, no matter the single-qubit gate fidelity of

16

the system. In these regions 2-qubit gate fidelity and expressivity determine
system behavior. In the central region, the behavior depends on the fidelity of
single-qubit gates: one machine can be improved relative to the other by tuning
their single-qubit gate fidelity. For each system we also compute a 2-qubit gate
threshold fidelity, shown with continuous lines: once that is reached on a system,
no improvements4 in the other system’s 2-qubit gate fidelity will change the
overall ordering. We also plot the published fidelities of the respective hardware
gates with a dotted line. The distance between actual and threshold fidelity for
a gate indicates a window of opportunity to improve the other system.

We refer to this method of relative comparison as a quantum hardware
roofline, as it allows us to compute bounds on the required improvements for
a particular system configuration. For example, In Figure 4, once the CNOT
gate reaches the threshold fidelity of 0.9968, no improvements in the Sycamore
fidelity will outperform a CNOT based machine.

Figures 5 and 6 extend these results across algorithm classes and gatesets.
Figure 5 compares several gates against the CNOT gate whose fidelity is fixed to
that of the IBM Falcon system (each bar is a vertical slice of the plot in Figure 4
at the IBM Falcon fidelity). Again, configurations can be improved by improving
only 2-qubit fidelity, or by improving 1-qubit and 2-qubit gate fidelity together.
The exact behavior is algorithm and gate set dependent. Encouragingly, low
entanglement gates can provide advantages for some algorithms. Figure 6 shows
this behavior when targeting the Cyclic Model. The trends are similar across
models, with the Cyclic Model placing a much smaller emphasis on the single-
qubit configuration. This is to be expected since the model penalizes the impact
of 2-qubit gates.

8.3 Single-Qubit Gate Analysis

To understand the implications for 1-qubit gate design we consider the closure
of the 1-qubit dependent behavior (middle region) across “any” algorithm. To
this end, we constrain the 1-qubit gate count as a function of the two-qubit
gate count. We lower bound the 1-qubit gate count as 1

8 of the corresponding
2-qubit gate count, far below the ratio found in any of our experimental data.
We upper bound with twice the 2-qubit gate count: any consecutive U3 gates
can be combined into one, so there are at most two 1-qubit gates in between
the 2-qubit gates.

Now, we can vary the 1-qubit gate count between these bounds (keep nA1
and nB1 as variables). Then, we can analyze how the objective function behavior
changes as we fix single-qubit fidelity (F1) for both machines.

π = (F1)
nA
1 · x4153 − (F1)

nB
1 · y5944

This analysis for adder 9 on the Falcon and Sycamore machines is shown in
Figure 7. The 1-qubit dependent region shrinks as the 1-qubit fidelity improves,
even as we allow for any single-qubit gate count. At some 1-qubit fidelity, the

4We vary the fidelities within the constraints of our model.

17

Figure 6: Sycamore Fidelity Com-
parison across algorithm classes using
the cyclic fidelity model [17]. We see
similar trends in terms of machine-
dominant regions and rooflines, how-
ever the single-qubit impact is much
smaller with this model.

Figure 7: This plot shows the be-
havior of the 1-qubit dependent region
as we fix the 1-qubit fidelity. The 1-
qubit region shrinks as the fidelity in-
creases, and disappears entirely when
you reach a 1-qubit fidelity of 0.999988
for adder 9.

region completely disappears. We denote this as the 1-qubit threshold fidelity :
once this is reached, no improvement in 1-qubit gate fidelity will improve the
relative performance between two machines.

We can solve for the threshold fidelity for different initial 2-qubit gate counts,
as present in algorithms. We set up the objective function such that the 2-qubit
counts for each machine are related by a ratio, and we vary this ratio along the
x-axis in Figure 8.

π = yn
A
1 · fA2

nA
2 − yn

B
1 · fB2

nA
2 ·x

As shown in Figure 8, there is an upper bound ratio (3.5) where the threshold
fidelity drops below the current worst NISQ-era worst single-qubit fidelities!
For any two circuits where the 2-qubit gate ratio is higher than the upper
bound (3.5), no improvements in the 1-qubit gate count on any machine can
change relative performance. This explains why for several circuit families, the
CNOT machine always beats the 8

√
CNOTmachine regardless of the single-qubit

configuration!
We can then derive hardware-specific upper bound ratios which give direct

information about the potential of changing relative performance in practice.
Instead of using our generic bounds for our fidelity model, we use the 2-qubit
gate fidelity ranges of existing machines and show results in Table 4. As in-
dicated, the actual upper bounds are around 1.6, much lower than the 3.5 ab-
solute threshold. Overall, this data indicates that for most systems, relative

18

Figure 8: The X-axis shows the 2-qubit gate count ratio when comparing the imple-
mentations on two machines, while the Y-axis shows the resulting threshold 1-qubit
fidelity. We also plot the range of 2-qubit gate count ratios we see for each gate com-
pared to CNOT. The black dotted lines show the current NISQ single-qubit fidelity
range. When using the upper bound on gate count ratio, the ordering of most machine
comparisons is affected by the single-qubit gates. This quickly changes when we con-
sider specific machines as shown in Table 4.

performance orderings can be changed by tuning 1-qubit gates. However, when
comparing QML or Shor circuits on Falcon and Sycamore machines, algorithm
and compiler designers should not focus on 1-qubit gate reduction in order to
improve relative performance.

8.4 Mixing Entangling Gates

Systems such as Aspen and Sycamore offer multiple entangling gates and param-
eterized entangling gates. These gates will have different average fidelities and
may be used together within a single circuit. In Figure 9 we show the 2-qubit
gate counts for the Sycamore and Aspen machines when using parameterized
and multiple 2-qubit entangling gates within the same circuit. Heterogeneous
gate sets like Sycamore+

√
iSWAP and CZ+XY express circuits as well as the

Sycamore or CZ gate alone, respectively. Therefore, on these systems choosing
the highest fidelity gate for any algorithm may be sufficient.

The parameterized FSim gate leads to significant gate count reduction when
compared to the Sycamore and

√
iSWAP gates, while the XY Gate provides no

benefit over the CZ gate. The FSim gate takes two parameters, while the XY
gate only has one. This allows the FSim gate to express complex unitaries more
efficiently. Accordingly, FSim implementations can outperform Sycamore gate
implementations even with a larger (0.4%) drop in fidelity! The circuit quality
of the FSim gate may also point to a finite spanning gate set of FSim family
gates that are able to express circuits as well as the full parameterized gate.
A finite set of constant gates may prove to be easier to calibrate than a fully
parameterized gate, leading to a higher gate fidelity.

19

Machine 1 Machine 2 Threshold
IBM Falcon IBM Eagle 1.46
IBM Falcon Google Sycamore 1.70
IBM Falcon Quantinuum H2 1.06
IBM Eagle Google Sycamore 2.69
IBM Eagle Quantinuum H2 1.69
Google Sycamore Quantinuum H2 1

Table 4: The upper bound on 2-qubit gates ratio that determines the impact of 1-qubit
gate tuning for selected pairs of NISQ machines. We use gate fidelity provided by the
data-sheets for each machine [15, 37, 38]. Gate count ratios less than the threshold
ratio signify circuits where tuning 1-qubit gates can improve the relative performance.
For Sycamore vs. H2 (1), the only way to improve relative performance is by improving
2-qubit gate fidelity, while for the Falcon vs. H2 (1.06) there is a slight window of
opportunity.

Figure 9: 2-qubit gate ratios relative to CNOT, for the Aspen and Google hardware
systems. We show homogeneous implementations (CZ, Sycamore,

√
iSWAP), hetero-

geneous implementations (CZ+XY, Sycamore+
√
iSWAP), and parameterized entan-

gling gates (XY, FSim). Heterogeneous implementations (stacked bars) are as good as
homogeneous ones. The parameterized FSim gate is able to express every algorithm
well and is worth targeting.

8.5 Topology

The physical qubit interconnection topology impacts system behavior by:

1. Increasing gate counts when the algorithm logical topology is mismatch-
ing, as shown in Figure 10.

2. Adding cross talk due to the device qubit couplings.

Architects can use our models to answer: “What fidelity improvement is
needed to overcome a more restrictive topology?”. In Figure 11 we compare the
capabilities of H2 (ZZ, all-to-all) with Sycamore (Sycamore, mesh) using the
cyclic fidelity model. As before, we are able to identify ranges where a certain
combination (gate, topology) performs best irrespective of 1-qubit gate fidelity,
as well as ranges where relative performance depends on 1-qubit gate fidelity as
well. The orange region in the graph shows the fidelity range in which Sycamore
loses on account of being mapped to a more restrictive topology. The size of
this orange region corresponds to the change in ability to express a circuit, and
varies by algorithm.

20

Figure 10: 2-qubit gate counts averaged across circuit families mapped to each device
topology and gate set.

Figure 11: Topology effects for (ZZ, Sycamore) X (all-to-all, mesh). Dark blue region:
relative performance can be changed by tuning 1-qubit fidelity. Light Blue region: ZZ
always performs best, regardless of topology. Gold region: Sycamore always performs
best. In the other regions, the bolded configuration performs best.

21

While Figure 11 is able to model the first effect of topology, we must turn to
the coupling-based model introduced in [17] in order to understand cross talk:

Fctop
= (1− ec1 · C1)

n1 · (1− ec2 · C2)
n2

where Ci is the number of other qubits on average that each qubit is coupled to
and eci is the error per coupling for an i-qubit gate. Ci is a direct measure of the
physical chip topology. For a grid topology, usually associated with supercon-
ducting qubits, C2 is a constant between 1 and 4. For all-to-all connectivities
provided by ion traps C2 is instead 1

2N(N − 1). The error per coupling is mea-
sured by the Cycle Benchmarking protocol, but these numbers are not provided
for today’s devices.

9 Validation

These models trade off accuracy for tractability. While full noise simulation is
able to give the most accurate view of algorithmic fidelity, it does not scale to
system sizes of interest. However, we can use it as a point of comparison to
validate the fidelity models we have chosen.

We first compare random circuits with varied gate count (see Figures 12a,
12b). We compare our digital model against two other models: full simulation
and a depolarization channel model. We use Qiskit’s provided noisy backends
which account for T1 and T2 coherence times of qubits, as well as explicit error
channels for each gate application [37]. We expect the fidelity model to closely
lower bound both other procedures, which we see in Figure 12a. Secondly, we
ensure that our model outputs similar relative results as we vary the 2-qubit
error for different gate sets. We show these experiments in Figure 12b for the
grover 5 circuit transpiled to a CNOT machine and a B-gate machine. We see
that the relative performance remains the same as we vary the error.

We add further confirmation by running an full 2-qubit analysis as shown in
Figure 4 using noisy simulation. As shown in Figure 12c, we see that the roofline
numbers across both experiments closely match. We feel that the correlations
seen in our model across these experiments in addition to the correlation seen
in experiments run on real hardware [2, 17] validate the utility of our fidelity
model.

10 Evaluating Gate Representational Power

A gate set’s ability to realize a circuit comes down to its expressivity and en-
tanglement. Gate expressivity identifies a gate’s ability to represent a random
two-qubit unitary. Architects often use the Weyl Chamber to directly visualize
gate expressivity [28], as shown in Figure 13. The Weyl Chamber removes all
non-local parameters from a 2-qubit unitary and plots it into a tetrahedron.
Most 2-qubit gates can express any 2-qubit unitary in three applications (along
with single qubit rotation gates). The most expressive gate, the B-gate, can

22

Figure 12: Validation experiments for our fidelity model. (a) Plot against full simu-
lation on IBM Noisy Simulator and derived depolarization channel. We keep constant
depth circuits with varied CNOT count gates. (b) Varying the 2-qubit gate error of
our model vs. a general depolarization model. (c) and (d) 2-qubit gate analysis for
adder 9 and grover 5 respectively using fully noisy simulation. We see that the roofline
numbers and regions closely match the behavior seen in Figure 4.

express any unitary in two applications (it can also easily be realized on a su-
perconducting machine) [50].

Gate entanglement is a gate’s ability to maximize the entanglement between
two qubits. CNOTs and most hardware native gates are maximally entangling,
meaning that a single application to two qubits will leave them perfectly cor-
related. The 4

√
CNOT and 8

√
CNOT gates trade off entangling power for large

potential gains in gate fidelity.
Several trends have become apparent in our research. Most notably, we see

that with current state-of-the-art compilation, the B-gate does not lead to better
circuits, nor does it increase fidelity. This is surprising, because the B-gate is the
most expressive 2-qubit gate. On the other hand, we see some equally surprising
positive results for the 4

√
CNOT and 8

√
CNOT gates. These low entangling gates

require 4 and 8 applications respectively to represent a single CNOT gate. This
makes their comparable expressivity in important circuits such as QFT, TFIM,
and QAE circuits exciting.

23

Figure 13: Projection of various 2-qubit gates onto the Weyl Chamber. Gates located
at the same point represent unitaries that differ by single qubit rotations applied to
each qubit (a 1:1 mapping).

10.1 Weyl Chamber Distribution of Two-Qubit Algorithm
Blocks

Under our procedure, it is clear that the expressivity and entanglement of a
native 2-qubit gate is not strongly correlated with algorithm performance under
the currently accepted design criteria. While expressivity is assessed based on
the power to implement random 2-qubit unitaries, optimal implementations of
algorithms impose structure on the set of 2-qubit unitaries that these gates
decompose.

To understand this structure, for any circuit represented in any gate set, we
form maximal 2-qubit unitaries and plot their position within the Weyl chamber,
as shown in Figure 14.

The distribution of 2-qubit unitaries drawn from circuits is not random. The
input structure of the Adder group is spread out (it contains diverse unitaries),
and it so happens that expressive gates, such as B, have trouble representing
some of them. On the other hand, the input structure of the QFT algorithm is
more periodic which allows Sycamore and B-gates to represent it well.

10.2 Synthesis Derived Gate Selection Criteria

The incorporation of circuit synthesis in our compilation workflow enables us to
derive additional criteria for gate selection and development. The advantages
derived from our flow are due to synthesis’ powerful compilation capabilities.

Given an input circuit, traditional compilers will use local peepholes opti-
mizations, translating from one gate set to another using analytical, one-to-one
gate rewriting rules for 2-qubit gates. For example, a CNOT is translated into
a sequence of two Sycamore gates and additional U3 gates. Any 2-qubit unitary
can be represented using at most three CNOT gates. Thus it is expected to use
more Sycamore than CNOT gates to represent an arbitrary 2-qubit gate. As
mentioned, it takes at most two B-gates to implement random 2-qubit processes.

One-to-one gate rewriting has been shown to be less than optimal [48].

24

Figure 14: Position in the Weyl chamber of 2-qubit unitaries/blocks that arise in the
Adder group (left) and QFT group (right) for different native gates. The initial spread
of Adder unitaries proves to be a very difficult pattern for the Sycamore and B-gates to
instantiate, hence the massive increase in gate count. On the other hand, the relatively
simple pattern we see in the QFT unitaries (series of controlled rotations) are able to
be expressed optimally by Sycamore and B-gates.

BQSkit’s synthesis based compiler [49] employs a different strategy. Given an
input circuit, BQSKit partitions it into multi-qubit blocks (partitions). Each
partition is optimized and translated using optimal topology aware direct uni-
tary synthesis [13], combined with a powerful synthesis based mapping and
routing algorithm [29]. Thus, deploying synthesis leads to different conclusions
than when using vendor provided compilers, as we see in Figure 15.

More insights can be gained by examining gate representational power to
implement 3-qubit blocks/processes that arise in algorithm implementations.
We use the BQSKit partitioner to decompose a circuit in maximal 3-qubit gates
and then use direct synthesis to generate circuits targeting each native gate set.
This procedure results in implementations for each block that use an optimal
number of 2-qubit gates, irrespective of gate choice. We plot the gate count
distribution of blocks in Figure 16. The CNOT family of gates unsurprisingly
have a one-to-one mapping, but the story changes for the Sycamore and B-
gates. Using Sycamore gates increases gate count, which is to be expected.
On the other hand, we see that the B-gate is able to better express some more
complicated blocks (5-7 CNOT blocks reduce to 4 B-gates). However, the overall
gate count reduction is held back by the B-gate’s inability to express simpler
blocks efficiently. While a larger block granularity (4+ qubits) would not remove
all simple blocks from these circuits, it remains to be seen whether the average
increased complexity in each block would allow the B-gate to outperform other
gates.

Overall, this analysis indicates that existing gate design criteria should be
augmented. In addition to choosing a gate based on attainable fidelity and its
representational power for random 2-qubit unitaries, the gate representational

25

Figure 15: Comparison of fidelity plots when compiled with synthesis vs. Cirq. Non-
local optimization leads to resource-efficient circuits for different gate sets, which re-
sults in vastly different comparisons. Note that under the Cirq compilation, there is
no Sycamore roofline.

Figure 16: 2-qubit gate count distribution for the 3-qubit partitions present in the
final compiled circuits of the Hubbard group. We compare the distribution of the CZ,
Sycamore, and B Gate. The B-gate fails to express the simple blocks (fewer than 4
CNOT gates) efficiently but is able to simplify some of the longer blocks, while the
Sycamore gate increases the number of gates across the board.

26

power for multi-qubit blocks (e.g. three qubit unitaries), drawn from implemen-
tations of real workloads, should be considered.

11 Discussion

While we have introduced and examined several models, we have emphasized
the derivation of the roofline approach for the digital fidelity model. A similar
derivation can be made for the cyclic model, emphasizing a relative roofline
for 1-qubit and 2-qubit process fidelities. Each cycle’s fidelity has an absolute
parallelism threshold of 1

Pi
according to the model, and this number will reduce

as specific machines/circuits are targeted. We have also emphasized building a
roofline model for hardware improvement by considering relative gate fidelity
across two configurations. This derivation is useful to hardware designers and
algorithm developers. By changing emphasis from fidelity to gate count and
circuit depth, a similar derivation can produce roofline models for compiler de-
velopers to guide circuit optimization decisions: “What mix of gates to choose?;
“Should I reduce gate count or increase gate parallelism?” etc.

Multiple studies [27, 41] have touched on the idea of co-designing quantum
hardware, compilers and algorithms. This paper extends this process by con-
sidering device gate sets that target specific algorithms. For TFIM, QFT, and
QAE circuits, we have shown that a designer should maximize gate fidelity even
at the cost of expressivity and entanglement capability. On the other hand,
we see highly expressive gates such as the B-gate provide little improvement in
overall circuit fidelity.

We see that restricting the topology from an all-to-all connectivity leads to
a potentially massive need for higher gate fidelity, varying by algorithm. This
means that for Adder-based circuits, Hubbard models, or QML networks, an
ion trap machine with a ZZ or XX gate is best suited.

Our results indicate that unlike classical benchmarking which is compiler
independent, quantum system evaluation and benchmarking is sensitive to the
quality of compilation tools. For the time being, the compilation workflow
requires circuit synthesis for robust inferences.

We believe our methodology will apply beyond the NISQ era into the Fault
Tolerant (FT) quantum regime. Every Quantum Error Correction Code (QEC)
admits a transversal gate set. This is the set of gates that can be applied simply,
without ever leaving the code space. However, as proved by Eastin and Knill
[16], the set of gates in any transversal gate set is not universal. This requires a
FT computer to admit a protocol for at least 1 non-transversal gate. There are
several methods to apply a non-transversal gate, but they require large resource
overhead in terms of additional qubits, latency, and cost. While for NISQ,
we directly minimize two-qubit gate count, FT quantum computing requires
minimization of this overhead. The choice of QEC, choice of non-transversal
gate, as well as the choice of protocol to implement the non-transversal gate all
suggest a new design space to which we can apply a similar analysis to the one
in this paper.

27

12 Conclusion

In this paper, we introduce a procedure for performing comparisons between
quantum system configurations. In our quantum roofline analysis, we derive
bounds on system properties (e.g. gate fidelity) that can be used as a stop
criteria for optimization efforts. We then evaluate machines across a large set
of important algorithms and are able to quantify the trade-off required between
gate fidelity, expressivity, and entanglement for different circuit families in order
to maximize circuit execution fidelity. Our work also shows that the ability of
circuit synthesis to generate resource minimal circuits is paramount to perfor-
mance evaluation, and it enables new design criteria for gate set adoption. We
believe our procedure is of interest not only to hardware designers, but compiler
and algorithm developers as well.

References

[1] S. Aaronson and L. Chen, “Complexity-Theoretic Foundations of Quantum
Supremacy Experiments,” arXiv:1612.05903 [quant-ph], Dec. 2016, arXiv:
1612.05903. [Online]. Available: http://arxiv.org/abs/1612.05903

[2] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett,
Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth,
E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff,
K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho,
M. R. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey,
Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh,
A. N. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero,
D. Lyakh, S. Mandra, J. R. McClean, M. McEwen, A. Megrant,
X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley,
C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana,
E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger,
V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher,
B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and
J. M. Martinis, “Supplementary information for ”Quantum supremacy
using a programmable superconducting processor”,” Nature, vol. 574,
no. 7779, pp. 505–510, Oct. 2019, arXiv:1910.11333 [quant-ph]. [Online].
Available: http://arxiv.org/abs/1910.11333

[3] Highly Scalable Quantum Computing Wth Atomic Arrays, Atom
Computing, 2023. [Online]. Available: https://atom-computing.com/wp-
content/uploads/2022/08/Atom-Computing-Atomic-Arrays.pdf

[4] F. Bao, H. Deng, D. Ding, R. Gao, X. Gao, C. Huang, X. Jiang, H.-S.
Ku, Z. Li, X. Ma, X. Ni, J. Qin, Z. Song, H. Sun, C. Tang, T. Wang,
F. Wu, T. Xia, W. Yu, F. Zhang, G. Zhang, X. Zhang, J. Zhou, X. Zhu,

28

Y. Shi, J. Chen, H.-H. Zhao, and C. Deng, “Fluxonium: an alternative
qubit platform for high-fidelity operations,” Physical Review Letters, vol.
129, no. 1, p. 010502, Jun. 2022, arXiv:2111.13504 [quant-ph]. [Online].
Available: http://arxiv.org/abs/2111.13504

[5] R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen,
Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. O’Malley, P. Roushan,
J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, “Coherent
josephson qubit suitable for scalable quantum integrated circuits,”
Phys. Rev. Lett., vol. 111, p. 080502, Aug 2013. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.111.080502

[6] S. Beauregard, “Circuit for Shor’s algorithm using 2n+3 qubits,” Feb. 2003,
arXiv:quant-ph/0205095. [Online]. Available: http://arxiv.org/abs/quant-
ph/0205095

[7] S. Bravyi and A. Kitaev, “Fermionic quantum computation,” Annals of
Physics, vol. 298, no. 1, pp. 210–226, May 2002, arXiv:quant-ph/0003137.
[Online]. Available: http://arxiv.org/abs/quant-ph/0003137

[8] M. Cerezo, G. Verdon, H.-Y. Huang, L. Cincio, and P. J. Coles,
“Challenges and opportunities in quantum machine learning,” Nature
Computational Science, vol. 2, no. 9, pp. 567–576, Sep. 2022,
number: 9 Publisher: Nature Publishing Group. [Online]. Available:
https://www.nature.com/articles/s43588-022-00311-3

[9] J.-S. Chen, E. Nielsen, M. Ebert, V. Inlek, K. Wright, V. Chaplin,
A. Maksymov, E. Páez, A. Poudel, P. Maunz, and J. Gamble,
“Benchmarking a trapped-ion quantum computer with 29 algorithmic
qubits,” Aug. 2023, arXiv:2308.05071 [quant-ph]. [Online]. Available:
http://arxiv.org/abs/2308.05071

[10] J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,”
Phys. Rev. Lett., vol. 74, pp. 4091–4094, May 1995. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.74.4091

[11] A. Cowtan, S. Dilkes, R. Duncan, W. Simmons, and S. Sivarajah, “Phase
gadget synthesis for shallow circuits,” Electronic Proceedings in Theoretical
Computer Science, vol. 318, p. 213–228, May 2020. [Online]. Available:
http://dx.doi.org/10.4204/EPTCS.318.13

[12] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta,
“Validating quantum computers using randomized model circuits,”
Physical Review A, vol. 100, no. 3, p. 032328, Sep. 2019, arXiv:1811.12926
[quant-ph]. [Online]. Available: http://arxiv.org/abs/1811.12926

[13] M. G. Davis, E. Smith, A. Tudor, K. Sen, I. Siddiqi, and C. Iancu, “To-
wards optimal topology aware quantum circuit synthesis,” in 2020 IEEE
International Conference on Quantum Computing and Engineering (QCE),
2020, pp. 223–234.

29

[14] D. E. Deutsch and R. Penrose, “Quantum computational networks,”
Proceedings of the Royal Society of London. A. Mathematical and Physical
Sciences, vol. 425, no. 1868, pp. 73–90, Sep. 1989, publisher: Royal Society.
[Online]. Available: https://royalsocietypublishing.org/doi/10.1098/rspa.
1989.0099

[15] C. Developers, “Cirq,” Jul. 2023. [Online]. Available: https://doi.org/10.
5281/zenodo.8161252

[16] B. Eastin and E. Knill, “Restrictions on transversal encoded quantum
gate sets,” Physical Review Letters, vol. 102, no. 11, Mar. 2009. [Online].
Available: http://dx.doi.org/10.1103/PhysRevLett.102.110502

[17] A. Erhard, J. J. Wallman, L. Postler, M. Meth, R. Stricker,
E. A. Martinez, P. Schindler, T. Monz, J. Emerson, and R. Blatt,
“Characterizing large-scale quantum computers via cycle benchmarking,”
Nature Communications, vol. 10, no. 1, nov 2019. [Online]. Available:
https://doi.org/10.1038%2Fs41467-019-13068-7

[18] E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum Approximate
Optimization Algorithm,” Nov. 2014, arXiv:1411.4028 [quant-ph]. [Online].
Available: http://arxiv.org/abs/1411.4028

[19] D. Herman, C. Googin, X. Liu, A. Galda, I. Safro, Y. Sun, M. Pistoia,
and Y. Alexeev, “A Survey of Quantum Computing for Finance,”
Jun. 2022, arXiv:2201.02773 [quant-ph, q-fin]. [Online]. Available:
http://arxiv.org/abs/2201.02773

[20] P. Horodecki, M. Horodecki, and R. Horodecki, “General teleportation
channel, singlet fraction and quasi-distillation,” Mar. 1999, arXiv:quant-
ph/9807091. [Online]. Available: http://arxiv.org/abs/quant-ph/9807091

[21] “IBM Quantum Experience,” https://quantum-computing.ibm.com/, ac-
cessed: 2020-11-15.

[22] IonQ Staff, “IonQ Forte: The First Software-Configurable Quantum
Computer.” [Online]. Available: https://ionq.com/resources/ionq-forte-
first-configurable-quantum-computer

[23] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and
M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys.
Rev. Lett., vol. 85, pp. 2208–2211, Sep 2000. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.85.2208

[24] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. van den Berg,
S. Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel, K. Temme, and
A. Kandala, “Evidence for the utility of quantum computing before
fault tolerance,” Nature, vol. 618, no. 7965, pp. 500–505, Jun. 2023,
number: 7965 Publisher: Nature Publishing Group. [Online]. Available:
https://www.nature.com/articles/s41586-023-06096-3

30

[25] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D.
Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Randomized
Benchmarking of Quantum Gates,” Physical Review A, vol. 77, no. 1,
p. 012307, Jan. 2008, arXiv:0707.0963 [quant-ph]. [Online]. Available:
http://arxiv.org/abs/0707.0963

[26] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem for nisq-
era quantum devices,” 2019.

[27] G. Li, A. Wu, Y. Shi, A. Javadi-Abhari, Y. Ding, and Y. Xie, “On the
Co-Design of Quantum Software and Hardware,” in Proceedings of the
Eight Annual ACM International Conference on Nanoscale Computing and
Communication, ser. NANOCOM ’21. New York, NY, USA: Association
for Computing Machinery, Sep. 2021, pp. 1–7. [Online]. Available:
https://dl.acm.org/doi/10.1145/3477206.3477464

[28] S. F. Lin, S. Sussman, C. Duckering, P. S. Mundada, J. M. Baker, R. S.
Kumar, A. A. Houck, and F. T. Chong, “Let each quantum bit choose
its basis gates,” in 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2022, pp. 1042–1058.

[29] J. Liu, E. Younis, M. Weiden, P. Hovland, J. Kubiatowicz, and
C. Iancu, “Tackling the Qubit Mapping Problem with Permutation-Aware
Synthesis,” May 2023, arXiv:2305.02939 [quant-ph]. [Online]. Available:
http://arxiv.org/abs/2305.02939

[30] E. Magesan, J. M. Gambetta, and J. Emerson, “Robust randomized
benchmarking of quantum processes,” Physical Review Letters, vol. 106,
no. 18, p. 180504, May 2011, arXiv:1009.3639 [quant-ph]. [Online].
Available: http://arxiv.org/abs/1009.3639

[31] ——, “Characterizing Quantum Gates via Randomized Benchmarking,”
Physical Review A, vol. 85, no. 4, p. 042311, Apr. 2012, arXiv:1109.6887
[quant-ph]. [Online]. Available: http://arxiv.org/abs/1109.6887

[32] A. Mandviwalla, K. Ohshiro, and B. Ji, “Implementing Grover’s Algorithm
on the IBM Quantum Computers,” in 2018 IEEE International Conference
on Big Data (Big Data), Dec. 2018, pp. 2531–2537. [Online]. Available:
https://ieeexplore.ieee.org/document/8622457

[33] J. R. McClean, I. D. Kivlichan, D. S. Steiger, Y. Cao, E. S. Fried,
C. Gidney, T. Häner, V. Havĺıček, Z. Jiang, M. Neeley, J. Romero,
N. Rubin, N. P. D. Sawaya, K. Setia, S. Sim, W. Sun, K. Sung,
and R. Babbush, “Openfermion: The electronic structure package for
quantum computers,” 2017, cite arxiv:1710.07629. [Online]. Available:
http://arxiv.org/abs/1710.07629

[34] M. A. Nielsen, “A simple formula for the average gate fidelity of a
quantum dynamical operation,” Physics Letters A, vol. 303, no. 4, pp.

31

249–252, oct 2002. [Online]. Available: https://doi.org/10.1016%2Fs0375-
9601%2802%2901272-0

[35] L. B. Oftelie, R. V. Beeumen, E. Younis, E. Smith, C. Iancu, and W. A.
de Jong, “Constant-depth circuits for dynamic simulations of materials on
quantum computers,” Materials Theory, vol. 6, no. 1, mar 2022. [Online].
Available: https://doi.org/10.1186%2Fs41313-022-00043-x

[36] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love,
A. Aspuru-Guzik, and J. L. O’Brien, “A variational eigenvalue solver on
a quantum processor,” Nature Communications, vol. 5, no. 1, p. 4213,
Jul. 2014, arXiv:1304.3061 [physics, physics:quant-ph]. [Online]. Available:
http://arxiv.org/abs/1304.3061

[37] Qiskit contributors, “Qiskit: An open-source framework for quantum com-
puting,” 2023.

[38] Quantinuum System Model H2, Quantinuum, 2023.

[39] P. Rakyta and Z. Zimborás, “Efficient quantum gate decomposition via
adaptive circuit compression,” 2022.

[40] Aspen-M-3 Quantum Processor, Rigetti QCS, 2023.

[41] H. Safi, K. Wintersperger, and W. Mauerer, “Influence of HW-SW-Co-
Design on Quantum Computing Scalability,” Jun. 2023, arXiv:2306.04246
[quant-ph]. [Online]. Available: http://arxiv.org/abs/2306.04246

[42] M. Sarovar, T. Proctor, K. Rudinger, K. Young, E. Nielsen, and
R. Blume-Kohout, “Detecting crosstalk errors in quantum information
processors,” Quantum, vol. 4, p. 321, Sep. 2020, arXiv: 1908.09855.
[Online]. Available: http://arxiv.org/abs/1908.09855

[43] D. Shin, H. Hübener, U. De Giovannini, H. Jin, A. Rubio,
and N. Park, “Phonon-driven spin-Floquet magneto-valleytronics in
MoS2,” Nature Communications, vol. 9, no. 1, p. 638, Feb. 2018,
number: 1 Publisher: Nature Publishing Group. [Online]. Available:
https://www.nature.com/articles/s41467-018-02918-5

[44] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington,
and R. Duncan, “t$|$ket\rangle : A Retargetable Compiler for
NISQ Devices,” Quantum Science and Technology, vol. 6, no. 1, p.
014003, Jan. 2021, arXiv:2003.10611 [quant-ph]. [Online]. Available:
http://arxiv.org/abs/2003.10611

[45] R. R. Tucci, “An introduction to cartan’s kak decomposition for qc pro-
grammers,” 2005.

32

[46] M. Weiden, E. Younis, J. Kalloor, J. Kubiatowicz, and C. Iancu,
“Improving Quantum Circuit Synthesis with Machine Learning,”
Jun. 2023, arXiv:2306.05622 [quant-ph]. [Online]. Available: http:
//arxiv.org/abs/2306.05622

[47] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Commun.
ACM, vol. 52, no. 4, p. 65–76, apr 2009. [Online]. Available:
https://doi.org/10.1145/1498765.1498785

[48] E. Younis and C. Iancu, “Quantum Circuit Optimization and Transpilation
via Parameterized Circuit Instantiation,” Jun. 2022, arXiv:2206.07885
[quant-ph]. [Online]. Available: http://arxiv.org/abs/2206.07885

[49] E. Younis, C. C. Iancu, W. Lavrijsen, M. Davis, E. Smith, and USDOE,
“Berkeley quantum synthesis toolkit (bqskit) v1,” 4 2021. [Online].
Available: https://www.osti.gov//servlets/purl/1785933

[50] J. Zhang, J. Vala, S. Sastry, and K. B. Whaley, “Minimum construction
of two-qubit quantum operations,” Physical Review Letters, vol. 93,
no. 2, p. 020502, Jul. 2004, arXiv:quant-ph/0312193. [Online]. Available:
http://arxiv.org/abs/quant-ph/0312193

33

