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Abstract

Controlling Long-Form Large Language Model Outputs

by

Kevin Yang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Dan Klein, Chair

As large language models have greatly increased in capability in recent years, it becomes in-
creasingly important to improve our ability to exert control over their outputs. In this thesis,
I discuss several such control schemes I have developed, ranging from pure inference-time
control to finetuning-based alignment methods. I will first discuss highly general methods
that apply to unstructured natural language generation, including both an inference-time
control scheme called FUDGE [164] as well as a reinforcement-learning based finetuning ap-
proach called RLCD [169]. I will next discuss more specialized methods that can be used for
control in more structured domains such as molecule design, program synthesis, and semantic
parsing [167, 163]. Finally, I will show how many of these ideas can be used in conjunction
with structured planning via prompting to extend our control to much longer outputs—in
the range of thousands of words—in an automatic story generation application [168, 166].
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Chapter 1

Introduction

1.1 Background

Recent developments in large language models (LLMs) have substantially advanced the state
of the art across a wide variety of natural language tasks [30, 15, 106]. However, while such
models can generate fluent text, it may be difficult to adequately control their behavior at
inference time. For example, pretrained language models out of the box produce biased or
toxic text with alarming frequency [15, 89], perhaps due to the presence of such text in large
quantities in their pretraining data.

Therefore, controlled generation—controlling a model’s behavior at inference time to
produce outputs in line with desired soft or hard constraints—is necessary to ensure ethical
use of these powerful technologies in real-world settings. In fact, detoxifying problematic
biases is just one of many applications which fall under the broad umbrella of controlled
generation. Such applications of controlled generation range from maintaining a desired
style or level of formality, to maintaining faithfulness to a reference document or to real-
world factuality, or even to non-language tasks (using models for non-language domains)
such as designing molecules with desirable pharmaceutical properties.

Accordingly, substantial effort has been devoted in recent years to developing methods
for controlling language model outputs. Such efforts include a variety of methods which
operate solely at inference time [73, 29, 164], as well as methods which rely on modifying the
underlying model distribution whether by finetuning [141, 135] or reinforcement learning [6,
7].

Nevertheless, the task of controlling LLMs is highly complex, and only becomes more
difficult as time passes: language models continue to improve in capability while becoming
increasingly un-interpretable, we have more limited access to the strongest models which
are increasingly hidden behind private APIs, and the control objectives we ask for become
increasingly difficult. To expound upon the latter point: just two or three years ago we
might have been content with simply controlling the general topic of an output passage just
a few dozen tokens long, but today a major challenge is to control for factual accuracy with
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respect to both the provided context as well as to real-world knowledge, on output passages
which may span thousands or even tens of thousands of tokens.

1.2 Contributions

In this thesis, I will discuss several methods I have developed that tackle controlled generation
in many different settings.

Control For Natural Language

First, in Chapter 2 I will discuss general control approaches for unstructured natural lan-
guage, including both purely inference-time control as well as reinforcement learning-based
finetuning.

For pure inference-time control, I propose Future Discriminators for Generation (FUDGE),
a flexible and modular method for controlled text generation. Given a pre-existing base LM
for generating text from a distribution of interest, FUDGE enables conditioning on a desired
attribute a (for example, formality) while requiring access only to the base LM’s output
logits. FUDGE learns an attribute predictor operating on a partial sequence, and uses this
predictor’s outputs to adjust the base LM’s original probabilities. We show that FUDGE
models terms corresponding to a Bayesian decomposition of the conditional distribution of
the base LM given attribute a. Moreover, FUDGE can easily compose predictors for multi-
ple desired attributes. We evaluate FUDGE on three tasks — couplet completion in poetry,
topic control in language generation, and formality change in machine translation — and
observe gains in all three tasks.

Compared to pure inference-time control, finetuning (including RL-based approaches)
requires and takes advantage of greater access to the base language model. While imposing
an additional upfront cost to train or finetune the model, they can reduce the cost at inference
time by enabling better control through vanilla sampling from the finetuned model (compared
to inference-time control approaches, which may require more expensive decoding procedures
to enable control).

RL-based approaches to finetuning have become increasingly popular of late. In this
thesis, I will propose Reinforcement Learning from Contrastive Distillation (RLCD), an RL
method for aligning language models to follow principles expressed in natural language (e.g.,
to be more harmless) without using human feedback. RLCD creates preference pairs from
two contrasting model outputs, one using a positive prompt designed to encourage following
the given principles, and one using a negative prompt designed to encourage violating them.
Using two different prompts causes model outputs to be more differentiated on average,
resulting in cleaner preference labels in the absence of human annotations. We then use the
preference pairs to train a preference model, which is in turn used to improve a base unaligned
language model via reinforcement learning. Empirically, RLCD outperforms RLAIF [6]
and context distillation [59] baselines across three diverse alignment tasks—harmlessness,
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helpfulness, and story outline generation—and when using both 7B and 30B model scales
for simulating preference data.

Control For Structured Domains

Next, in Chapter 3, I will discuss several of my works for extending control to structured
domains. Much of this section will focus on one of my works developing a method called
Stochastic Iterative Target Augmentation [167] which we apply to such diverse domains as
molecule design and program synthesis.

To provide some background on the molecule design task, for instance: generative models
in molecular design tend to be richly parameterized, data-hungry neural models, as they must
create complex structured objects as outputs. Estimating such models from data may be
challenging due to the lack of sufficient training data. With Stochastic Iterative Target Aug-
mentation, we propose a surprisingly effective self-training approach for iteratively creating
additional molecular targets. We first pretrain the generative model together with a simple
property predictor. The property predictor is then used as a likelihood model for filtering
candidate structures from the generative model. Additional targets are iteratively produced
and used in the course of stochastic EM iterations to maximize the log-likelihood that the
candidate structures are accepted. A simple rejection (re-weighting) sampler suffices to draw
posterior samples since the generative model is already reasonable after pre-training. We
demonstrate significant gains over strong baselines for both unconditional and conditional
molecular design. In particular, our approach outperforms the previous state-of-the-art in
conditional molecular design by over 10% in absolute gain. Finally, we show that our ap-
proach is useful in other domains as well, such as program synthesis.

At the end of this section, I will also briefly discuss some of my other projects in this
area in collaboration with others, touching on controlled generation methods for additional
structured domains such as semantic parsing and crosswords.

Long-Form Story Generation

Finally, in Chapter 4, I will apply controllable generation ideas such as FUDGE [164] to the
task of generating high-quality language model outputs of much longer length—up to several
thousands of words—in the domain of story generation.

First, in my work on Recursive Reprompting and Revision (Re3), we consider the problem
of automatically generating longer stories of over two thousand words. Compared to prior
work on shorter stories, long-range plot coherence and relevance are more central challenges
here. We propose the Recursive Reprompting and Revision framework to address these
challenges by (a) prompting a general-purpose language model to construct a structured
overarching plan, and (b) generating story passages by repeatedly injecting contextual infor-
mation from both the plan and current story state into a language model prompt. We then
revise by (c) reranking different continuations for plot coherence and premise relevance, and
finally (d) editing the best continuation for factual consistency. Compared to similar-length
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stories generated directly from the same base model, human evaluators judged substantially
more of Re3’s stories as having a coherent overarching plot (by 14% absolute increase), and
relevant to the given initial premise (by 20%).

We then improve further upon our previous work in Re3 by proposing the Detailed Out-
line Control (DOC) framework for improving long-range plot coherence when automatically
generating several-thousand-word-long stories. DOC consists of two complementary compo-
nents: a detailed outliner and a detailed controller. The detailed outliner creates a more
detailed, hierarchically structured outline, shifting creative burden from the main drafting
procedure to the planning stage. The detailed controller ensures the more detailed outline is
still respected during generation by controlling story passages to align with outline details.
In human evaluations of automatically generated stories, DOC substantially outperforms
Re3 on plot coherence (22.5% absolute gain), outline relevance (28.2%), and interestingness
(20.7%). Humans also judged DOC to be much more controllable in an interactive generation
setting.

Lastly, I will discuss several recent and ongoing works which further explore different as-
pects of long-form story generation, such as personalization, pacing, and factual consistency,
as well as some improvements to computational efficiency using more recent LLMs.
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Chapter 2

Control For Natural Language

This chapter will mainly focus on FUDGE [164], a token-level inference-time control method,
and RLCD [169], an RL-based fine-tuning alignment method. At the end I will also touch
on other control methods which I have collaborated on in developing.

2.1 Future Discriminators for Generation (FUDGE)

Introduction

We can model inference-time control as conditioning on an additional desirable attribute
a which is not already built into distribution P (X) over text X modeled by the base LM.
That is, we would like to model P (X|a). For example, P (X) may be a pretrained translation
model for Spanish inputs I to English outputs X, but we may wish to additionally constrain
the outputs to possess a new attribute a, e.g., formality, which we did not optimize for during
training.

Unfortunately, once we have already obtained an unconditioned P (X) defined as the
output distribution of some LM, it is nontrivial to add conditioning on a new attribute
a without either training a new model from scratch or fine-tuning with additional data.
Although in principle we can trivially sample from P (X|a) via rejection sampling from
P (X), rejection sampling may be highly inefficient in practice. On the other hand, while
generating according to attribute a, P (X) should be left otherwise intact: in the previous
translation formality example, it is pointless to generate formal English outputs if they do
not preserve the original Spanish meaning.

In light of these concerns, we propose FUDGE, a flexible and modular method for model-
ing P (X|a) which accesses only the output probabilities of the generative model which defines
P (X). FUDGE learns a binary predictor for whether attribute a will become true in the
complete future, based on an incomplete sequence prefix. Multiplying the output probabili-
ties of this predictor with the language model’s original probabilities and then renormalizing
yields a model for the desired P (X|a) via Bayes’ Rule.
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We run experiments on three controlled text generation tasks — couplet completion in
poetry, topic control in language generation, and formality change in machine translation —
showing our method’s broad applicability. Additionally, we demonstrate the modularity of
FUDGE by composing multiple attribute constraints in both the couplet and topic control
tasks. In our experiments, we find that FUDGE is highly effective at attribute control,
outperforming both a simple fine-tuning baseline and also a strong gradient-based method,
PPLM [29].

Related Work

Ideally, a controlled text generation method should efficiently control for a while preserving
P (X) as much as possible. Recent work on controlled text generation has greatly advanced
our ability to control for a required attribute a flexibly and cheaply, with varying degrees of
modification to the original model G which defines P (X).

One line of work fine-tunes a pretrained model for a desired attribute [39, 173, 183]. The
result is a class-conditional language model (CCLM). However, it is difficult to isolate the
desired attribute from the distribution shift between G and the fine-tuning dataset [58, 65,
80], i.e., it is nontrivial to preserve the desirable qualities of the P (X) modeled by G. One may
also need to fine-tune separately for each attribute of interest. Ctrl [69] partially addresses
these issues by providing 55 attribute control codes for a large language model trained from
scratch, although this is expensive. Very recently, GeDi [73] achieves strong performance
by using CCLM generators as discriminators, though it relies on several heuristics. More
broadly, text generation models for style transfer [58, 75, 28], summarization [130, 40, 175],
and machine translation [76, 102, 85] can also be viewed as CCLM’s for different “attributes.”

A second type of approach instead conditions on a desired attribute by backpropagating
gradients, either to directly modify model activations [29, 94] or to find a trigger string [149,
148]. Such methods often exhibit a high degree of attribute control, and can be used in
adversarial attacks [148]. In fact, [139] show that by carefully modifying the latent state,
one can cause the base G to produce arbitrary outputs.

A third class of methods, referred to as weighted decoding (WD), assumes access only
to P (X) (i.e., G’s output logits), and operates directly on these logits [42, 55, 27, 134].
Compared to other approaches, WD methods are relatively interpretable in how they obtain
P (X|a) from P (X), but prior WD implementations have been observed to perform poorly in
controlled text generation [131, 29]. While Fudge shares a Bayesian motivation with other
WD methods, Fudge follows the Bayesian factorization more closely in implementation.
The key distinguishing feature of Fudge is that it models whether attribute a will be true
in the future, rather than in the present. We find that Fudge substantially outperforms
previous WD approaches in our experiments.
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Figure 2.1: Illustration of one decoding step in Fudge, for an example where the desired at-
tribute a is formality. A large pretrained model G (dark blue) outputs unconditioned probabilities.
Our binary predictor (red) predicts whether the eventual completed sequence will be formal for
each possible continuation (computed for each candidate x3, e.g., “want”; holding a fixed). The
probabilities for each x3 are multiplied (purple) and then renormalized to obtain P (x3|x1:2, a), from
which we sample the next token x3 =“prefer.”

Future Discriminators for Generation

We now explain the details of our proposed method, Future Discriminators for Generation
(Fudge), and show that it corresponds to modeling the desired conditional distribution
P (X|a).

For a given language generation task, assume we have an autoregressive model G (e.g.,
a large pretrained language model) which models P (xi|x1:i−1) for tokens x1 . . . xi. Letting
X = x1:n denote a completed sequence, G can sample from P (X) = P (x1:n) one token at a
time by factoring P (X):

P (X) =
n∏

i=1

P (xi|x1:i−1)

To condition on attribute a, we instead model P (X|a). This requires a model for
P (xi|x1:i−1, a), modifying the previous factorization:

P (X|a) =
n∏

i=1

P (xi|x1:i−1, a)

If we model P (xi|x1:i−1, a) directly, we obtain a class-conditional language model (CCLM).
We can learn the CCLM by e.g., fine-tuning G depending on the available data, possibly with
some structural modification to G to accommodate conditioning.

However, Fudge instead relies on the following Bayesian factorization, exchanging xi

and a conditioned on x1:i−1:

P (xi|x1:i−1, a) ∝ P (a|x1:i)P (xi|x1:i−1)

The second term is exactly the quantity modeled by the base G. It then suffices to model
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the first term, P (a|x1:i), with a binary classifier B for the attribute a given a prefix x1:i.
Intuitively, one can view B as rescoring or reranking G’s original hypotheses.

We emphasize that although B takes a prefix x1:i as input, it predicts whether attribute a
will in the future be satisfied for the completed generation x1:n. For instance, suppose we are
given a dataset of examples {(x1:n, a

′)} with a′ being the values of binary indicators for the
desired a (i.e., if a is formality, then a′ is 0 or 1 when x1:n is informal or formal respectively).
For each training example (x1:n, a

′), we train our classifier B using all pairs (x1:i, a
′); that

is, we construct a separate example from each prefix x1:i of x1:n. Our approach contrasts
with previous methods such as [29], which greedily optimize for a on the immediate extension
x1:i+1. One particular benefit is that Fudge naturally plans for the future: in the example for
generating text on the “space” topic in Table 2.6, Fudge writes about a “mysterious ship”
despite “ship” itself not being in the given “space”-topic bag of words, because “mysterious
ship” easily leads into a mention of one of the targeted “space” words (“Earth”). Similarly,
in the first couplet completion example in Table 2.3, Fudge needs to rhyme with “fear” after
exactly ten syllables. After seven syllables, it could reasonably generate the word “clear,”
but it first generates the adverb “pretty” in order to set up the generation of “clear” as the
tenth syllable.

Fudge’s implementation is shown schematically in Figure 2.1, and is quite simple in
practice. Fudge just needs to learn a B (red in Figure 2.1) sharing tokenization with
G (dark blue). It then converts B’s output into probabilities (red table in Figure 2.1),
and multiplies with the original output probabilities from G (dark blue table), to obtain
unnormalized probabilities P (xi, a|x1:i−1) (purple table). Finally, renormalizing over the
output vocabulary yields the desired distribution P (xi|x1:i−1, a). In practice, we operate in
the log-probability space for numerical stability.

To improve computational efficiency, we typically choose B to be lightweight relative to
G. We also consider only the top 200 possibilities for xi according to G at each step, as a
cheap approximation to the full distribution, and find that this works well in practice.1 In
each task in our experiments, running Fudge on the test set takes no more than 15 minutes
on a single Quadro RTX 6000 GPU.

Finally, as with other controlled generation approaches such as [29], it is likely that
augmenting Fudge with reranking approaches such as rejection sampling could improve
output quality at the cost of compute time, although we do not comprehensively evaluate
such extensions in this work.

Advantages and Limitations

We highlight several additional potential advantages of Fudge compared to directly mod-
eling P (xi|x1:i−1, a) via e.g., a fine-tuned CCLM:

1. Fudge requires access only to P (X) (i.e., G’s output logits) rather than G itself.

1See [164] Appendix H for ablations on the top-200 pruning.
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2. G can be freely swapped out for any other model that shares the same tokenization
when larger models become available.

3. Given multiple conditionally independent attributes with predictors for each, Fudge
can easily condition on the combination of these attributes in a modular fashion by
summing their output log-probabilities.

Unfortunately, like previous methods, Fudge cannot fully guarantee that all outputs
possess the desired attribute a. In Fudge’s case, this is due to the approximation inherent
in modeling P (a|x1:i), as well as only considering the top 200 possible xi for computational
efficiency.

Experiments

We run experiments on a range of controlled text generation tasks to evaluate the effective-
ness of our proposed method: poetry couplet completion, topic-controlled language gener-
ation, and machine translation formality change. For each task we discuss the evaluation
setup, the specific details of our method and baselines, and finally experimental results.

Poetry Couplet Completion

So long as men can breathe or eyes can see,
So long lives this and this gives life to thee.

Table 2.1: An example couplet by William Shakespeare. Every second syllable is stressed, follow-
ing iambic meter, and the last words of each line (see/thee) rhyme.

We begin with English poetry generation, a task that emphasizes well-formedness, and
which has been studied in different forms by many previous works [178, 151, 41, 42]. Our
task here is couplet completion. Given the first line of an iambic pentameter couplet (e.g.,
Table 2.1), the model must generate a second line which (1) satisfies iambic pentameter, (2)
rhymes with the first line, and (3) ends a sentence. The desired attribute a is defined as
possessing all three properties, as evaluated by a rule-based checker F ([164] Appendix A).
Our test set is a collection of prefix lines of couplets, collected from the ending couplet of
each of Shakespeare’s 154 sonnets.

Metrics. We consider four metrics.

1. Success, the fraction of couplet completions with the desired attribute a, as checked
by F . This is the main metric.

2. Grammaticality, the probability of grammaticality given by a Roberta-based CoLA
grammaticality model [95, 156], averaged over all outputs.
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3. Perplexity of the completion conditioned on the prefix. Following [29], since our models
use GPT2-Medium [117] as G, we evaluate perplexity using GPT [118].2

4. Distinctness of completions, measured as the number of unique unigrams, bigrams,
and trigrams across all samples, divided by the total number of words [88].

At test time, we decode until the model generates ten syllables followed by an end-of-
sentence punctuation mark, or after the eleventh syllable (an automatic failure, since iambic
pentameter requires exactly ten syllables).

Overall, because we define a using a rule-based F which is accessible during training, our
formulation of couplet completion is a relatively clean task for evaluating the effectiveness
of Fudge.

Fudge Instantiation. The obvious approach is to learn a predictor for F directly. However,
the three components of a — meter, rhyme, and sentence-ending — should be roughly
independent. Thus we assume conditional independence, and demonstrate the modularity
of Fudge by constructing three separate predictors to be combined at test time:

1. B1(x1:i) takes a text prefix x1:i, and predicts whether the completion x1:n of prefix x1:i

will be in iambic meter. The model is an LSTM followed by a linear output layer.

2. B2(x1:i, t, r) takes prefix x1:i, the number of syllables t between xi and xn for n ≥ i, and
a rhyme sound r.3 It predicts whether the completion x1:n has the rhyme sound r at the

2See [164] Appendix E for other perplexity measurements.
3Two words have the same “rhyme sound” r if they rhyme according to the CMU Pronouncing Dictionary

[157].

Correctness Text Quality Diversity

Method Success ↑ Grammar ↑ Perplexity ↓ Dist-1 ↑ Dist-2 ↑ Dist-3 ↑

G 0 0.52 44.3 ± 42.2 0.35 0.74 0.77
Finetune 0.21 0.44 55.8 ± 98.3 0.35 0.74 0.78
Pplm 0 0.54 60.8 ± 66.1 0.40 0.78 0.78
Fudge 0.44 0.44 70.9 ± 89.4 0.40 0.79 0.78

Shakespeare 0.45 0.29 333.8 ± 418.9 0.44 0.81 0.79

Table 2.2: Couplet completion results. Success (main metric), grammaticality, perplexity, and
distinctness of different methods, tested on 154 prefix lines from Shakespeare sonnets. Fudge
substantially outperforms automated baselines on success and maintains high diversity, although
quality unsurprisingly suffers compared to the base G due to the difficult constraint F . Note
Shakespeare’s work is often “incorrect” due to the narrowness of our metric F ; he also scores
poorly on text quality because our evaluation models are intended for more modern English.
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end of token xn. The model is an LSTM with attention dependent on t and r, followed
by a shallow feedforward network, and is trained via noise-contrastive estimation [51].4

3. B3(x1:i, t) takes prefix x1:i and the number of syllables t between xi and xn for n ≥ i,
and predicts whether xn ends a sentence. The model is an LSTM followed by a shallow
feedforward network.

The predictors vary in architecture because B2 and B3 require inputs other than x1:i — in
truth, they are families of related predictors. We find that performance is not overly sensitive
to the particulars of the predictor architectures ([164] Appendix D).

To train the discriminators, we sample a dataset of 10 million generations of varied
length from GPT2-Medium. From these generations, we sample random subsequences x1:n

of roughly 10 to 30 syllables and truncate t ≤ 10 ending syllables. These truncations
become inputs x1:i to the predictors. For simplicity, we did not balance the class labels for
e.g., the iambic predictor during training, although it is likely that doing so would improve
performance.

At test time, we extract r from the given first line of the couplet, and initialize t =
10, updating at each step. We then modify the output logits of G by simply adding the
log-probabilities from B1, B2, and B3, demonstrating the ease of composing constraints in
Fudge.

Baselines. We compare to four baselines.5

1. G, the original GPT2-Medium.

2. Finetune, a CCLM which finetunes G on similar inputs to those used for B2 in Fudge.
Since it is not obvious how to compose multiple CCLM’s for different attributes, we
train a single CCLM for all desired properties together. We condition by prefixing the
input with (1) whether the last 10 syllables of the original untruncated x1:n are iambic,
(2) the rhyme sound at the end of xn, and (3) whether a sentence ends with xn. A
special token is inserted 10 syllables from the end of x1:n.

3. Pplm [29], which uses shallow predictors learned from G’s top-level hidden layer to
modify G’s states toward increasing probability of the desired attribute via gradient
ascent. We decompose the predictors into the same iambic, rhyme sound, and end-of-
sentence predictors as for Fudge, inserting an additional hidden layer in the shallow

4The output logits from B2 are unnormalized, but this does not affect Fudge after they are added to
the output logits of G and softmaxed for sampling.

5A system like Hafez [41, 42], which enforces meter and rhyme at each decoding step using a hard con-
straint, could achieve perfect success rate. However, this approach relies on the meter and rhyme attributes
being “prefix-checkable” at the word level: one can guarantee success by simply never selecting a word which
immediately violates the constraint. This is often the case for simple rule-based constraints, but not for many
other interesting attributes, such as the topic and formality attributes in our subsequent experiments. To
preserve generality, Fudge does not rely on this “prefix-checkable” property, and neither do our baselines.
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predictor when needed to incorporate additional input (the desired rhyme sound and/or
number of syllables until end-of-sentence).

4. Shakespeare’s original couplet completions.

All non-Shakespeare methods use top-k sampling with k = 10.

Results. Even though our GPT2-Medium-generated training dataset is completely different
from the test domain, and contains essentially zero examples of correct couplets, Fudge is
able to learn the desired attribute. As shown in Table 2.2, Fudge greatly outperforms all
automated baselines in success rate.

Surprisingly, the Pplm baseline achieves zero success. We find that its iambic and
rhyme predictors are very poor, so we hypothesize that the relevant information is not
easily extractable from the last hidden layer of G. In contrast, Fudge’s predictors operate
directly on the raw text.

Funnily enough, Fudge even matches Shakespeare according to F , although this is
largely due to the narrowness of F and should not be taken seriously.6 Similarly, the gram-
maticality and perplexity metrics are designed for our automated baselines, and thus assign
poor scores to Shakespeare’s antiquated and flowery style.

Fudge also maintains relatively fluent generation despite lower grammaticality and per-
plexity compared to G. See Table 2.3 for two successful examples. Interestingly, Fudge also
increases diversity compared to G, perhaps due to the difficult constraint F forcing Fudge
to use lower-probability regions of the base distribution P (X).

And even thence thou wilt be stol’n, I fear,
for this shall be the end. That’s pretty clear.

Or, if they sleep, thy picture in my sight
I will be glad to look upon the night.

Table 2.3: Two examples of successful couplet completions (in purple) generated by Fudge.

Finally, it is possible (and trivial) to adjust the conditioning strength in Fudge by
multiplying the binary predictors’ output logits by a constant. However, this deviates from
our Bayesian factorization of P (X|a), and we do not do so.

6 We define F using somewhat narrow criteria ([164] Appendix A), which capture only a subset of what
Shakespeare considered to be well-written couplets. The purpose of this task is to evaluate Fudge’s ability
to satisfy a difficult well-formedness constraint compared to automated baselines, rather than to perfectly
capture the human notion of an iambic pentameter couplet. Thus Shakespeare is marked wrong when he (1)
uses archaic pronunciations, (2) uses loose rhymes, (3) elides syllables to fit meter, or (4) uses words missing
from the CMU Pronouncing Dictionary. See [164] Appendix A.1 for details. Of course, Shakespeare is only
included as a whimsical point of reference; our generations obviously do not hold a candle to Shakespeare’s
originals.
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Topic-Controlled Language Generation

Next, we explore topic control in English language generation. The desired attribute a is to
be on-topic for a given topic, such as science or politics. To facilitate comparison with prior
work, we largely follow the setup of Pplm [29]: the model is provided an approximation
to the topic at test time, in the form of a bag of on-topic words W . The goal is to sample
text according to the topic approximated by W , starting from a generic prefix. There are
7 topics (space, politics, military, legal, science, religion, and computers) and 20 prefixes,
and the model generates 3 80-token7 samples from each topic-prefix pair, for a total of 420
generations.

Metrics. Unfortunately, we cannot easily construct a rule-based F for being “on-topic.”
Additionally, use rate of words in W is a poor metric, because a model can score highly
by e.g., simply returning the words in W , without generalizing to the full topic that W
approximates. Instead, we adopt a notion of success which requires the model to generalize
the bag W to the full topic. The remaining metrics are measures of quality and diversity.

1. Success, the average number of distinct words in a heldout bag W ′ which appear in
the model output. Specifically, for each word in W , we add to W ′ the closest GloVe
[113] word by cosine similarity, such that the new word does not contain (and is not
contained by) any word in W . (This excludes e.g., most plurals.) Usage of distinct
words in W ′ measures the model’s ability to generalize W to other on-topic words, of
which W ′ is a non-exhaustive set. This is our main metric.

2. Grammaticality, identical to the couplet task.

3. Perplexity, identical to the couplet task.

7All models and baselines use GPT2 tokenization.

On-Topic Text Quality Diversity

Method Success ↑ Grammar ↑ Perplexity ↓ Dist-1 ↑ Dist-2 ↑ Dist-3 ↑

G 0.22 0.81 37.1 ± 26.9 0.35 0.78 0.92
Finetune 0.28 0.74 24.9 ± 13.7 0.29 0.70 0.88
Wdec 0.14 0.59 33.8 ± 33.7 0.16 0.42 0.55
Pplm 0.48 0.78 43.1 ± 23.7 0.35 0.78 0.92
Fudge 0.59 0.79 40.7 ± 26.3 0.34 0.75 0.91

Table 2.4: Topic control results. Success (main metric), grammaticality, perplexity, and dis-
tinctness for different methods. Finetune and Wdec often degenerate into repeating the given
bag of words W; this is ill-captured by perplexity, but results in poor grammaticality and distinct-
ness. Fudge substantially outperforms all baselines on success, including the strong gradient-based
Pplm baseline, while preserving high quality and diversity.
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4. Distinctness, defined as in the couplet task. However, it is calculated separately within
the 60 generations for each topic, and then averaged over the 7 topics.

Additionally, following the evaluation procedure of prior work such as [29], we run human
evaluations via Amazon Mechanical Turk for Fudge against each baseline, comparing topic
control and fluency. For each pairwise comparison, we ask 3 workers to evaluate each of
420 paired outputs. Workers were asked to mark which generation is more on topic (first,
second, both, or neither), and to rate each generation’s fluency on a Likert scale from 1 to 5.
We report the average fraction of outputs marked as on-topic as well as the average fluency
rating for each method.

Fudge Instantiation. Since we model topics as bags of words, Fudge uses a binary
predictor B(x1:i, w) which takes a prefix x1:i and word w, and classifies whether w appears in
the future xi:n for n ≥ i. (Since it is desirable to stay on topic even after successfully getting
on topic, we use xi:n rather than x1:n.) Training examples (x1:i, w) are sampled from the
same dataset of 10 million GPT2-Medium generations used for the couplet task, and B is
trained using noise-contrastive estimation. B is a lightweight LSTM-based classifier similar
to B2 from the couplet task.

At test time, we can compose individual-word constraints if we assume conditional in-
dependence between words (although this may be imperfect). Given a bag of N words
{w1 . . . wN} and prefix x1:i, we could condition on all words in the bag appearing in the
future by adding all log-probabilities logP (w1|x1:i) . . . logP (wN |x1:i) to G’s logits. However,
topic control does not require every word to appear; perhaps some number λ of on-topic
words is enough to be “on-topic.” Therefore, we model the topic constraint as selecting a
random subset of λ words from the original bag, and requiring that only those λ words all
appear. Since each of the N words is selected with probability λ

N
, the quantity we add to

the base G logits is λ
N

∑N
j=1 logP (wj|x1:i) in expectation. In our experiments we use λ = 4,

based on a fantasy-topic bag of words used for validation ([164] Appendix C).

Baselines. We compare to four baselines.

1. G, the original GPT2-Medium.

2. Finetune, which finetunes G on the same inputs used for Fudge. The future word
is given as a prefix for conditioning. At test time, we compute logits for each prefix in
the given W and use the average as the true logits, as an ad hoc way to condition on
the full W .

3. Wdec, a simple weighted decoding implementation which greedily considers only the
immediate next token when optimizing for a. Instead of using B, Wdec just adds
a fixed λWdec to the logit for each word in W . Note Wdec requires a to be well-
defined at the token level, so it is not easily transferable to certain tasks (e.g., couplet
completion).
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4. Pplm [29], which modifies the activations of G to make the desired bag of words more
likely at the immediate next position. We use their method without reranking for fair
comparison.

All methods use top-k sampling with k = 10, following [29]’s setup.

Method Topic Fluency

G 0.16 4.11
Fudge 0.78 4.30

Finetune 0.24 3.95
Fudge 0.76 4.22

Wdec 0.49 2.50
Fudge 0.75 4.21

Pplm 0.45 4.05
Fudge 0.74 4.16

Table 2.5: Topic control human evaluations, pairwise comparisons. Fudge achieves a substan-
tially higher fraction of on-topic outputs compared to each baseline, in addition to higher average
fluency (rated 1 to 5).

Results. Fudge achieves the highest success by a substantial margin (Table 2.4), and
outperforms all baselines on human evaluations in both topic relevance and fluency (Table
2.5). Fudge simultaneously preserves high quality and diversity according to automated
metrics. Table 2.6 shows two examples.

Unsurprisingly, G performs poorly on success. Wdec and Finetune also perform poorly,
in success and especially in distinctness. Wdec frequently degenerates into repeating the
given words in the bag W , despite tuning λWdec ([164] Appendix C). Finetune also suffers
from repetition, which appears to be the result of distribution shift from fine-tuning. Our
fine-tuning dataset was built by sampling directly from the original P (X) modeled by G to
mitigate distribution shift, but it is well-known that language model generations are more
repetitive than natural language [55, 54]. We hypothesize that Finetune, being fine-tuned
on language model generations rather than natural language, amplifies this repetitiveness.
This repetition is reflected in the poor grammaticality for both Finetune and especially
Wdec. In contrast, Fudge does not touch the original P (X), largely avoiding Finetune’s
distribution shift problem on this task.

Finally, Fudge outperforms the strong gradient-based Pplm method, despite requiring
access only to G’s output logits. Non-reliance on gradients means Fudge is also many times
faster than Pplm, which takes a few hours compared to Fudge’s 15 minutes for the full set
of 420 generations on our hardware. Sometimes we do not even have gradients: for example,
gradients are unavailable in the API for GPT3 at time of writing.
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Space: The issue focused on the original plot, which was about a mysterious ship that would
land on Earth, and would lead to humanity’s first interstellar expedition. The original plan called
for humanity to use the spacecraft to colonize outer space and build the first city on Mars. But
this idea fell by the wayside in the final drafts.\n\n”It was just not a very popular idea and it
wasn’

Politics: The issue focused on whether the two institutions were operating within the bounds
set by the constitution and the law.\n\nThe Constitutional Court said that both governments
”have a duty to ensure the integrity of the electoral process and its effective administration,
especially in light of the current political climate that is threatening the functioning of elections”

Table 2.6: The first output from Fudge when using the prefix “The issue focused on” for two
topics. We use red to highlight words in the given bag of words W along with obvious forms (e.g.,
plurals), and cyan for other on-topic words, including related words not in the heldout bag W ′.
More examples in [164] Appendix J.

Machine Translation Formality Change

Finally, we turn to a somewhat more challenging task, changing formality in machine trans-
lation — specifically, from informal to formal. Given a source sentence written in an informal
and conversational style, the goal is to output a translation which is also more formal. We
test on the Fisher and CALLHOME Spanish–English Speech Translation Corpus [115], a
collection of transcribed Spanish conversations with English translations. Both the source
Spanish and target English are highly informal and disfluent. [126] augment the Fisher
dataset with additional parallel English translations, rewritten to be more fluent (and hence
more formal); see Table 2.7 for an example. Our task is to translate the original informal
Spanish to into more formal English. However, we assume that [126]’s fluent references are
unavailable during training.

entonces de verdad śı śı pero entonces tu estudiando para es es digo es más porque es exactamente

Then, if it’s business, but then you are a student for a PHD, the Master’s is that exactly.

If it’s business, then you are a student for a PhD. The masters is exactly that.

Table 2.7: An example from the Fisher dataset.
Top: The original Spanish transcription.
Middle: The original English translation.
Bottom: [126]’s more fluent version.

Metrics. The desired attribute a is formality, but we cannot sacrifice the source sen-
tence’s meaning. The latter requirement makes generation more constrained than in the
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couplet and topic tasks, so perplexity and distinctness are less relevant. Instead, we use the
following:

1. BLEU Score [109], using two of [126]’s fluent references per test example. This is our
main metric.

2. Formality, the average probability that the model’s outputs are formal, according to
an evaluator trained on the Family/Relationships domain of the GYAFC formality
dataset [122]. The evaluator is an LSTM followed by a linear layer.

Fudge Instantiation. We assume that the attribute a, formality, is conditionally indepen-
dent from the original conditioning in G, i.e., the meaning of the Spanish input. Fudge
uses a binary predictor B(x1:n) which classifies whether the text starting with prefix x1:n is
written in a formal style. B is an LSTM followed by a linear layer, trained on the Entertain-
ment/Music domain of GYAFC.

At test time, Fudge directly augments G’s logits using log-probabilities from B. G is a
pretrained Marian [66] transformer model for Spanish-English. We evaluate both when G is
fine-tuned on the original Fisher training dataset (i.e., using the original targets, not [126]’s
more fluent targets) as well as zero-shot with no fine-tuning, which is challenging due to the
highly informal and disfluent text.

Baselines. We compare to two baselines.

1. G, the original machine translation model.

2. G + st, a pipeline consisting of G followed by a style transfer model. Our style transfer
model is T5 [120], fine-tuned on the same GYAFC Entertainment/Music domain that
we used to train B in Fudge.

Since we do not assume access to [126]’s more formal targets during training, it is difficult
to apply Pplm to this task: Pplm’s predictor would operate on the pretrained translation
model’s hidden states, thus requiring a Spanish-English translation dataset with both formal
and informal English.8 We omit Finetune for the same reason. In contrast, Fudge requires
only the original English dataset with formality annotations.

All methods use greedy decoding.

Results. As shown in Table 2.8, Fudge increases the formality of outputs compared to
G, even though the test-time formality predictor is trained on a different domain (Fam-
ily/Relationships, rather than Entertainment/Music). Note that formality unsurprisingly
decreases after fine-tuning G, simply due to the informality of the fine-tuning dataset. As in
the couplet task, one could adjust the strength of the formality control in Fudge, although
this is unprincipled from the view of modeling P (X|a).

8We nevertheless ran Pplm in a somewhat convoluted setup, but found that it performed poorly ([164]
Appendix B).
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G (No fine-tune) G (Fine-tune)

Method BLEU ↑ Form. ↑ BLEU ↑ Form. ↑

G 16.98 0.45 22.03 0.41
G + st 7.87 0.96 9.63 0.97
Fudge 17.96 0.51 22.18 0.48

Table 2.8: Machine translation formality results. BLEU (main metric) and average formality for
different methods, with and without fine-tuning G on the Fisher domain. Fudge increases the
formality of translations compared to the base model G while preserving or increasing BLEU score.
Conversely, G with style transfer overfits to the formality data, resulting in near-perfect formality
but losing the original meaning.

Moreover, while Fudge and G achieve similar BLEU after fine-tuning G, Fudge achieves
higher BLEU compared to G when G is not fine-tuned on the Fisher training set. In the latter
case, controlling for formality somewhat remedies the struggles of G when not fine-tuned on
such disfluent text.

In contrast, the G + st baseline achieves near-perfect formality but less than half the
BLEU of G, due to the style transfer model overfitting to the GYAFC Entertainment/Music
dataset. This is similar to the distribution shift issue that we observed in topic control for
Finetune, an issue which Fudge largely avoids. Nevertheless, there remains substantial
room for improvement on this difficult task.

Spanish que era lo que teńıa que tienes que hacer
G that was what you had to do
Fudge That was what you had to do
Reference What’s there to do?

Spanish ah en mi en inglaterra por ejemplo
G Ah, in my, in England, for example.
Fudge Ah, in England, for example.
Reference In England, for example?

Table 2.9: Example translations by G (fine-tuned on the Fisher dataset) and Fudge using the same
G. Original Spanish and [126] references also shown. In this setting, Fudge achieves similar BLEU
to G while increasing formality. While Fudge often simply corrects punctuation or capitalization
(top), it also makes more complex adjustments (bottom). More examples in [164] Appendix L.
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Discussion

Fudge is a principled approach to controlled text generation which models P (X|a) by
closely following a Bayesian factorization, thus preserving the base P (X) as much as possible.
Fudge achieves strong performance on a wide range of different tasks: poetry couplet
completion, topic control, and informal-to-formal machine translation. Additionally, Fudge
can easily compose different attributes in a modular fashion: the meter, rhyme, and end-of-
sentence constraints for couplet completion, and the individual words within each topic bag
for topic control. In principle, Fudge is applicable to any controlled generation task where
we can train discriminators for the desired attribute or attributes.

2.2 Reinforcement Learning from Contrastive

Distillation (RLCD)

We now shift our focus from pure inference-time control to a finetuning-based alignment
method.

Introduction

Reinforcement Learning from Human Feedback (RLHF) has recently been used to great
effect to align pretrained large language models (LLMs) to human preferences, optimizing
for desirable qualities like harmlessness and helpfulness [7] and achieving state-of-the-art
results across a variety of natural language tasks [106].

A standard RLHF procedure fine-tunes an initial unaligned LLM using an RL algorithm
such as PPO [128], optimizing the LLM to align with human preferences. RLHF is thus
critically dependent on a reward model derived from human-labeled preferences, typically
pairwise preferences on LLM outputs (o1, o2) generated from a shared prompt p.

However, collecting human pairwise preference data, especially high-quality data, may
be expensive and time consuming at scale. To address this problem, approaches have been
proposed to obtain labels without human annotation, such as Reinforcement Learning from
AI Feedback (RLAIF) and context distillation.

RLAIF approaches (e.g., [6]) simulate human pairwise preferences by scoring o1 and o2
with an LLM (Figure 2.2 center); the scoring LLM is often the same as the one used to
generate the original pairs (o1, o2). Of course, the resulting LLM pairwise preferences will be
somewhat noisier compared to human labels. However, this problem is exacerbated by using
the same prompt p to generate both o1 and o2, causing o1 and o2 to often be of very similar
quality and thus hard to differentiate (e.g., Table 2.10). Consequently, training signal can
be overwhelmed by label noise, yielding lower-quality preference data.

Meanwhile, context distillation methods (e.g., [141]) create more training signal by mod-
ifying the initial prompt p. The modified prompt p+ typically contains additional context
encouraging a directional attribute change in the output o+ (Figure 2.2 right). However, con-
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RLAIF Context DistillationRLCD
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Score by asking language model to chooseLabel according to 𝑝!, 𝑝"
N/A

Train Preference Model
(supervised)

Train Language Model
(PPO)

Train Preference Model
(supervised)

Train Language Model
(PPO)

Train Language Model
(supervised)

Human: 
Joe is so annoying

Assistant:

Human: 
Joe is so annoying

Assistant:

Human: 
Joe is so annoying

Assistant (harmless):

Human: 
Joe is so annoying

Assistant (harmless):

Human: 
Joe is so annoying

Assistant (harmful):

I’m sorry to hear 
that. Could Joe just 
be having a bad day?

What a !@#$%. I 
really hate people 
like that.

That sucks. I don’t 
know much about 
Joe, though. 

Could you say more 
about why you find 
Joe annoying?

I’m sorry to hear 
that. Could Joe just 
be having a bad day?

𝑜! 𝑜" 𝑜# 𝑜$ 𝑜!

𝑝! 𝑝" 𝑝 𝑝 𝑝!

Figure 2.2: Stylized illustration showing RLCD compared to standard RLAIF and context distil-
lation on harmlessness attribute. RLCD generates preference pairs using two contrasting prompts
p+, p−, and labels according to the prompt used, thus making use of both pairwise preferences for
RL as well as directional attribute change in outputs as encouraged by prompts. RLCD then trains
a preference model on the resulting pairs, which is used to guide the LLM alignment via PPO.

text distillation methods only generate a single output o+ per prompt p+, which is then used
for supervised fine-tuning, losing the pairwise preferences which help RLHF-style approaches
to derive signal from the contrast between outputs. Multiple works have observed that RL
approaches using preference models for pairwise preferences can substantially improve over
supervised fine-tuning by itself when aligning LLMs [108, 32].

Therefore, while both RLAIF and context distillation approaches have already been suc-
cessfully applied in practice to align language models, we posit that it may be even more
effective to combine the key advantages of both. That is, we will use RL with pairwise
preferences, while also using modified prompts to encourage directional attribute change in
outputs.

Concretely, we propose Reinforcement Learning from Contrastive Distillation (RLCD).
RLCD generates preference data as follows. Rather than producing two i.i.d. model outputs
(o1, o2) from the same prompt p as in RLAIF, RLCD creates two variations of p: a posi-
tive prompt p+ similar to context distillation which encourages directional change toward a
desired attribute, and a negative prompt p− which encourages directional change against it
(Figure 2.2 left). We then generate model outputs (o+, o−) respectively, and automatically
label o+ as preferred—that is, RLCD automatically “generates” pairwise preference labels
by construction. We then follow the standard RL pipeline of training a preference model
followed by PPO.

Compared to RLAIF-generated preference pairs (o1, o2) from the same input prompt p,
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there is typically a clearer difference in the quality of o+ and o− generated using RLCD’s
directional prompts p+ and p−, which may result in less label noise. That is, intuitively,
RLCD exchanges having examples be closer to the classification boundary for more accurate
labels on average. Compared to standard context distillation methods, on top of leveraging
pairwise preferences for RL training, RLCD can derive signal not only from the positive
prompt p+ which improves output quality, but also from the negative prompt p− which
degrades it. Positive outputs o+ don’t need to be perfect; they only need to contrast with
o− on the desired attribute while otherwise following a similar style.

We evaluate the practical effectiveness of RLCD through both human and automatic
evaluations on three tasks, aiming to improve the ability of LLaMA-7B [145] to generate
harmless outputs, helpful outputs, and high-quality story outlines. RLCD substantially
outperforms both RLAIF and context distillation baselines in pairwise comparisons when
simulating preference data with LLaMA-7B, while still performing equal or better when
simulating with LLaMA-30B.

Related Work

Lately, several RL approaches leveraging reward models trained on human preferences [108,
7, 181, 119] have been applied to align strong pretrained LLMs [137, 107, 106, 4, 144].
However, it can be expensive to collect human pairwise preferences.

Reinforcement Learning from AI Feedback. RLAIF simulates human pairwise prefer-
ences using a LLM, whether the same LLM to be aligned later [6] or a stronger LLM as an
oracle [32]. Such methods typically obtain pairwise preferences by scoring two i.i.d. outputs
(o1, o2). RLCD instead generates outputs (o+, o−) from different distributions, obviating the
need for post hoc scoring (whether human or AI).

Context Distillation. RLCD is related to context distillation approaches, which generate
data for supervised fine-tuning by prompting a language model with different contexts [5,
24, 135, 59]. In contrast to knowledge distillation approaches using stronger models as
a teacher [70, 19], context distillation methods often generate data using the same LLM
being aligned or fine-tuned later. In particular, [141] apply this approach to align LLaMA-
65B [145]. Unlike existing context distillation approaches, RLCD generates pairwise prefer-
ence data to train a preference model followed by applying RL. Consequently, RLCD can
derive training signal from the contrast in output distributions for two different context-
modified prompts p+ and p−.

Reinforcement Learning with Contrastive Objective. Using a contrastive loss in RL
has proven effective in various scenarios [105, 77, 91, 78, 36]. Compared to standard reward
signals that may lead to insufficient numerical differences between good and bad cases,
contrastive loss naturally focuses on sample pairs with similar appearances but different
underlying semantics with current representations [142], thus improving sample efficiency
and model quality. RLCD employs a similar idea to improve the generation of simulated
preference data in the RLHF pipeline.
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Reinforcement Learning From Contrastive Distillation

We now describe our method, Reinforcement Learning from Contrastive Distillation (RLCD),
a novel method for simulating the initial pairwise preference data in an RLHF pipeline
without accessing a stronger “oracle” LLM.

Method Description

RLCD begins with an initial unaligned LLM and a set of prompts to be used as starting
points for pairwise preference data generation, similar to RLHF or RLAIF. For each prompt
p, RLCD then constructs p+ and p− (green and orange respectively in Figure 2.2), which
should respectively encourage a directional change toward or against the attribute of interest
(e.g., harmlessness, helpfulness). We then obtain corresponding outputs o+ and o− by feeding
p+ and p− into the original LLM. When constructing the resulting training pair (o+, o−), we
automatically label o+ as preferred without further post hoc scoring.

After preference training pairs (o+, o−) are created, RLCD follows the standard RLHF
pipeline by training a preference model on the simulated pairwise preferences; this preference
model is also based on fine-tuning the same unaligned LLM that we started with. We finally
derive a reward model from the preference model, and use this reward model to run PPO to
align the original LLM, as in RLHF.

Positive and Negative Prompt Construction

From a technical standpoint, implementing RLCD is straightforward if starting from an
existing RLAIF workflow. The main choice to make is how to construct RLCD’s positive
and negative prompts p+, p− for preference pair generation. We identify two major criteria
for selecting these prompts:

1. p+ should be more likely than p− to produce outputs exemplifying the desired attribute
(e.g., harmlessness, helpfulness). Equivalently, p− may explicitly encourage directional
change toward the opposite attribute.

2. The surface forms of p+ and p− should be as similar as possible, for example as in
the RLCD box in Figure 2.2, where p+ and p− differ only in the words “harmless” vs.
“harmful.”

The first criterion is self-evident. The second criterion is to avoid introducing unintended
biases that are not related to the desired attribute. Intuitively, p+ and p− induce two
different distributions; the first criterion ensures that these two distributions differ by as
much as possible in the desired attribute, while the second criterion ensures that they differ
by as little as possible on orthogonal axes.

Empirically, we find that RLCD is highly capable at amplifying the contrast in prompts
p+ and p− when compared to baselines using similar prompts, as shown in our experiments;
see also [169] Appendix A.1 for further discussion. Thus when designing p+ and p− in
practice, we find it may often be more worthwhile to focus on the second criterion compared
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to the first, for instance by just writing a short description in parentheses to create p+ and
p− as shown in Figure 2.2 left.

Intuitions for RLCD

We discuss some intuitive reasons why RLCD’s preference data generation may be preferred
compared to the most similar prior method, RLAIF.

The main reason is that because RLAIF generates two i.i.d. outputs o1 and o2, in many
cases there may be little to no difference in the attribute of interest, which can result in a
low “signal-to-noise” ratio.9 For instance, in the example shown in Table 2.10, both RLAIF
outputs o1 and o2 help the human to accomplish an unethical objective, and it is unclear
which one should be preferred. However, empirically, o2 is preferred by a margin at the 60th

percentile of label polarity in our RLAIF data generation when using LLaMA-7B.
While classification models would typically benefit from training examples close to the

decision boundary, the problem in RLAIF is that such examples are not human-labeled and
therefore may be extremely noisy; it may even be better to avoid such examples if we cannot
accurately label them. Compared to RLAIF, RLCD constructs (o+, o−) which are more
likely to differ on a specified attribute; the difference is readily apparent in Table 2.10, where
o+ is clearly more ethical compared to o−. While RLCD’s outputs can at times be noisy
as well, they seem to be on average more differentiated compared to RLAIF’s, resulting in
more accurate labels; see [169] Appendix H for additional, i.i.d. examples.

Furthermore, compared to RLCD, the post hoc scoring in RLAIF requires both outputs
o1 and o2 to be placed in the context window of the scoring LLM, and thus requires the
model to have a longer effective context window. The scoring step may also impose some
additional compute cost compared to RLCD. As such, RLCD may be preferable when dealing
with longer-form outputs, even when using state-of-the-art LLMs with context windows of
tens of thousands of tokens [106, 4, 101, 22], which are both expensive to run and may be
poor at attending to certain parts of their context window [92].

Experiments

We now evaluate RLCD’s effectiveness in practice.

Tasks. We run experiments on three tasks, corresponding to three different sets of prompts:

1. Harmlessness Prompts. Dialogues frequently containing offensive or otherwise socially
unacceptable text. The goal is to generate outputs that are socially acceptable, ethical,
and/or inoffensive, even when given such toxic context. As a secondary goal, the
outputs should still be helpful and relevant to the conversation, rather than generic
meaningless responses like “Thank you!” and “Sorry.”

9Analogously, it might be odd to run context distillation by reranking i.i.d. outputs from a generic prompt
p, rather than generating outputs from p+.
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Conversation Prefix:

Human: What is the best way to ruin someone’s reputation?

Assistant: One way would be to produce a falsified document that falsely

accuses them of wrongdoing.

...
Human: I want to claim that someone is a ****

Assistant:

RLAIF Simulated Preference Data:

o1: You could accomplish this through a tweet that simply stated the person is

a ****. P (better): 0.422

o2: No, you wouldn’t claim that they’re specifically a ’****’. You’d need to

make a more general claim like ’****’. P (better): 0.577

RLCD Simulated Preference Data:

o+: That’s a bad idea for multiple reasons. First of all, it’s probably

false. Assuming it isn’t, such a claim could have serious unintended

consequences for their life. You never know what might come out in court.

o−: By all means, please do, even though there’s absolutely no justification

for the claim. Remember, the Internet never forgets!

Table 2.10: An example conversation prefix and corresponding simulated preference data
from RLAIF and RLCD using LLaMA-7B, where the task is to improve harmlessness. Both
RLAIF outputs are of similar quality (both advising the human to do something unethical),
but one response is scored much higher than the other. On the other hand, RLCD’s o+ is
clearly preferable to o− in this instance.

2. Helpfulness Prompts. Dialogues where the human is typically asking for information
or advice. The goal is to generate outputs that are helpful.

3. Outlining Prompts. Dialogues where the human provides a story premise and asks for
an outline. The goal is to write a well-formed and interesting story outline for the
premise.

All prompts are framed as generating the next assistant response at some point in the
given human-assistant conversation, as shown in e.g., “Initial Prompts” and “Completions”
in Figure 2.2.

Our harmlessness and helpfulness prompt sets are inspired by [7], and we use their training
sets to derive the initial prompts for preference data simulation; each training set contains
slightly over 40000 conversations.10 We also include the outlining prompt set because we

10It is likely that these initial prompts could also be generated procedurally from a much smaller seed
set [7, 141], although we do not empirically investigate this possibility in this work.
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believe it may have higher requirements on long-range planning, in addition to simultaneously
composing multiple different attributes (e.g., interestingness, well-formedness, relevance to
the premise). For the outlining prompts we use 40000 existing premises from the internet,
and assistant responses automatically start with “Here is a possible outline:\n\n1.” to
encourage correct basic formatting regardless of which method is being evaluated.

RLCD Positive and Negative Prompts. For the harmlessness task, we write 16 pairs
of context phrases for constructing p+ and p− (sampling a random pair for each use); these
pairs are written to be similar to the 16 scoring prompts used in [6], who implement RLAIF
for harmlessness. For helpfulness, we use just a single phrase pair, asking for helpful or un-
helpful responses respectively. For outlining, we use three phrase pairs, designed to contrast
interestingness, well-formedness, and premise relevance.

For harmlessness and helpfulness, we create training signal while roughly matching the
surface forms of p+ and p− by simply placing contrasting descriptions in parentheses before
the colon in “Assistant:” indicators, as shown for example in Figure 2.2. In the outlining
task, we match surface forms by ending all prompts with “1.” to indicate the beginning of
a numbered outline. All prompts are zero-shot. See [169] Appendix A for full details on
preference data simulation prompt formats.

RLCD Implementation and Hyperparameters. For each task we run two variations of
RLCD—RLCD7B and RLCD30B—which simulate preference data using the base (pretrained,
unaligned) LLaMA-7B and LLaMA-30B respectively. As RLCD is a method for simulating
preference data, but does not touch the downstream preference model and PPO training,
we use base LLaMA-7B as the initial LLM to be aligned via RLCD regardless of the model
used in preference data simulation.11

Our implementation is based on the AlpacaFarm codebase [32]. We optimize the training
parameters for PPO, in particular the number of training steps and KL-regularization term,
following [32]’s observations that these parameters can have some impact on final output
quality. We otherwise use AlpacaFarm’s default hyperparameters for PPO and for supervised
fine-tuning; see [169] Appendix E for full details on hyperparameters.

Baselines. We compare RLCD to three baselines:

1. LLaMA, i.e., just directly generating outputs using the base unaligned LLaMA-7B (the
same initial LLM to be aligned by RLCD and other baselines), included as a sanity
check.

2. RLAIF, following Constitutional AI [6]. Since their code and models are non-public,
we re-implement using AlpacaFarm. We use the exact same prompt templates as [6]
for harmlessness scoring, although we use zero-shot prompting to match RLCD. For
helpfulness and outlining scoring, we use prompts written to have similar meaning to
those used for generation in RLCD ([169] Appendix A).

11Alternatively, simulating preference data with LLaMA-30B while aligning LLaMA-7B downstream can
be viewed as distillation from a teacher model. In this view, we are evaluating RLCD compared to baselines
on their effectiveness when used for model distillation.
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3. Context-Dist, a context distillation baseline which conducts supervised fine-tuning on
only the outputs o+ from the same positive prompts p+ as used in RLCD.

As with RLCD, we experiment with simulating preference data using both LLaMA-7B
and LLaMA-30B for RLAIF and Context-Dist (again denoted by subscripts, e.g., RLAIF7B),
though the base model to be aligned remains LLaMA-7B in all cases.

Metrics. For each task, we run pairwise evaluations for RLCD compared to each base-
line. As the harmlessness prompts from [6]—while focusing primarily on harmlessness—
additionally encourage helpfulness to some degree ([169] Appendix A.1), we measure both
harmlessness (Harm) and helpfulness (Help) for the harmlessness task.12 For the helpfulness
and outlining tasks we collect just one set of labels for overall helpfulness (Help) and outline
quality (Qual) respectively.

For each pairwise evaluation, we ask humans to compare 200 examples on a Likert scale
from 1 (output A is much better) to 8 (output B is much better) following Anthropic as
described in [121]. We additionally query GPT-4 for binary judgments on 1000 examples.
Examples are always presented in random order during pairwise comparison, with human
scores normalized afterward so that higher is better.13 See [169] Appendix F for complete
evaluation details.

Harmlessness Helpfulness Outlining

Methods Harm Help Help Qual

RLCD7B vs. LLaMA 5.44 / 3.56 5.30 / 3.70 6.52 / 2.48 6.02 / 2.98

RLCD7B vs. RLAIF7B 5.62 / 3.38 4.64 / 4.36 5.88 / 3.12 5.97 / 3.03

RLCD7B vs. Context-Dist7B 4.51 / 4.49 4.69 / 4.31 5.73 / 3.27 5.67 / 3.33

RLCD30B vs. LLaMA 5.59 / 3.41 5.45 / 3.55 6.42 / 2.58 5.03 / 3.97

RLCD30B vs. RLAIF30B 4.71 / 4.29 4.50 / 4.50 4.51 / 4.49 4.76 / 4.24

RLCD30B vs. Context-Dist30B 4.80 / 4.20 4.88 / 4.12 5.72 / 3.28 5.78 / 3.22

Table 2.11: Human comparison results for RLCD against each baseline, evaluating harmlessness
and helpfulness on harmlessness prompt set; helpfulness on helpfulness prompt set; and outline
quality on story outlining prompt set. Annotators indicated which output was better, and by how
much, on a 1-8 scale; scores here are normalized so that higher is better. RLCD is in all cases equal
or better—often substantially better—compared to baselines, for all tasks and for preference data
simulation at both 7B and 30B model scale.

12See [169] Appendix D for a version of the harmlessness task which focuses more exclusively on harm-
lessness.

13For example, if the human label is 3 (output A is moderately better), then output B’s normalized score
is 3 while output A’s normalized score is 6.
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Harmlessness Helpfulness Outlining

Methods Harm Help Help Qual

RLCD7B vs. LLaMA 82.8 / 17.2 77.0 / 23.0 90.7 / 9.3 76.0 / 24.0

RLCD7B vs. RLAIF7B 84.8 / 15.2 71.0 / 29.0 85.4 / 14.6 78.5 / 21.5

RLCD7B vs. Context-Dist7B 69.7 / 30.3 67.7 / 32.3 89.5 / 10.5 71.8 / 28.2

RLCD30B vs. LLaMA 78.9 / 21.1 78.3 / 21.7 81.3 / 18.7 55.7 / 44.3

RLCD30B vs. RLAIF30B 60.3 / 39.7 55.3 / 44.7 47.8 / 52.2 35.9 / 64.1

RLCD30B vs. Context-Dist30B 64.5 / 35.5 69.3 / 30.7 74.9 / 25.1 62.2 / 37.8

Table 2.12: Percentage of outputs preferred in GPT-4 binary evaluations when comparing RLCD
to baselines for aligning LLaMA-7B. RLCD’s outputs are substantially preferred by GPT-4 across
all tasks and data simulation model scales, except comparing RLCD30B to RLAIF30B, where per-
formance is relatively equal.

Results. RLCD outperforms all of our baselines according to both human (Table 2.11) and
GPT-4 (Table 2.12) evaluations, validating the effectiveness of our proposed data generation
procedure at these model scales. On harmlessness prompts, RLCD is better on the main
harmlessness metric, while not sacrificing helpfulness compared to baselines. RLCD is also
much better than baselines on helpfulness by itself as well as the somewhat more complex
task of story outlining.

The gap between RLCD and all baselines is especially large when using LLaMA-7B for
preference data simulation. Even our strongest baseline, RLAIF, comes close to RLCD only
at 30B model scale for data simulation, while substantially underperforming at 7B model
scale. Even at 30B scale, although GPT-4 prefers RLAIF30B to RLCD30B in some cases,
humans always consider RLCD to be at least equal or better; GPT-4 evaluations may show
greater disagreement with humans at this level of model quality ([169] Appendix G).

The difference between RLCD and baselines can be observed qualitatively as well. For
instance, the example shown in Table 2.13 makes it abundantly clear why RLCD is so strongly
preferred over our baselines on the helpfulness data at 7B model scale for preference data
simulation. See [169] Appendix I for additional, i.i.d. example outputs for both RLCD and
baselines.

Analysis

We run two additional analyses to provide further insight into RLCD.
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Human: What did Thomas Edison invent?

Assistant:

LLaMA: An alkaline battery.

RLAIF7B: Thomas Alva Edison was an American inventor and businessman.

Context-Dist7B: The light bulb.

RLCD7B: Edison is often remembered for inventing the light bulb, but he

actually invented over a thousand different things throughout his lifetime,

including the phonograph, electric power grid, microphone, video camera,

and the motion picture camera. Edison was the first to take advantage of

incandescent lighting in an industrial setting, opening up a new era of

work environments in the 1870s and 1880s. His most well-known invention,

however, was the incandescent light bulb, which he invented in 1879 and

brought to market by 1880. He saw the potential for widespread use in

homes, offices, and street lighting, and the bulb changed the way people

lived and worked across the world. Edison had experimented with the

incandescent light bulb since the mid-1870s, eventually perfecting the

design with a filament made from carbonized thread.

Table 2.13: Outputs generated by baselines and RLCD for an example from our helpfulness
test set. All methods use the same LLaMA-7B during preference data simulation, but RLCD’s
final output is clearly more comprehensive in this case.

Preference Model Evaluation

For the harmlessness and helpfulness tasks, we evaluate RLCD’s preference model compared
to RLAIF’s on 2000 gold human-labeled preference data examples from [7], based on the same
prompts as used for preference data simulation. We check average binary prediction accuracy
(i.e., whether the gold human-preferred output is assigned higher preference probability) as
well as the average probability that each preference model assigns to the gold output.

As shown in Table 2.14, RLCD’s preference models exhibit higher agreement with human
preferences compared to RLAIF’s, whether measured by binary accuracy or by probability
of agreement.

Perhaps surprisingly, RLAIF’s harmlessness preference models actually perform worse
than chance, even for RLAIF30B, even though RLAIF30B performs quite reasonably down-
stream for mitigating harmful outputs (e.g., examples in [169] Appendix I).14 In fact, this
low agreement may not be entirely unexpected, as [6] also observe that both (1) few-shot
prompting for the scoring LLM and (2) well over 10B model scale seem necessary for RLAIF’s

14On the other hand, RLAIF7B’s downstream performance is quite poor, more closely reflecting its pref-
erence model’s low agreement with humans.
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Harmlessness Helpfulness

Method Acc. Prob. Acc. Prob.

RLAIF7B 35.6 0.492 60.6 0.508
RLCD7B 52.4 0.516 64.4 0.601

RLAIF30B 45.7 0.489 66.2 0.551
RLCD30B 55.9 0.542 66.7 0.628

Table 2.14: Average binary accuracy and probability for favoring gold human-preferred output on
harmlessness and helpfulness data, for RLAIF and RLCD preference models. RLCD’s preference
models perform better on both datasets.

preference model to achieve higher than chance agreement with humans on harmlessness. It
is also not impossible for RLAIF30B to successfully mitigate harm downstream despite low
preference model agreement with humans, as human labels may also contain errors or biases.
See [169] Appendix C for further discussion, as well as experiments with a version of RLAIF
using few-shot prompts for scoring.

In any case, RLCD’s learned preference models do not exhibit the same lower-than-chance
human agreement as RLAIF’s on the harmlessness prompts. Moreover, RLCD’s preference
models exhibit higher agreement with humans compared to RLAIF’s on the helpfulness
prompts as well. Even if the preference model’s level of human agreement may not correlate
perfectly to downstream performance, we suppose that high human agreement should be
somewhat desirable in and of itself.

Finally, RLCD’s preference models make judgments with higher polarity compared to
RLAIF’s, likely due to our use of discrete binary preference labels as opposed to continuous
probabilities (Figure 2.2). We explore a version of RLAIF that also uses binary preference
labels in [169] Appendix B.

Rescoring Variant of RLCD

We additionally investigate a variant of RLCD, RLCD-Rescore, in which we generate pref-
erence data (o+, o−) using our prompts p+, p− but re-label using the same scoring prompts
as in RLAIF. We compare pairwise against RLCD on all three tasks using GPT-4.

As shown in Table 2.15, RLCD substantially outperforms RLCD-Rescore at 7B model
scale for preference data simulation, indicating that labeling o+, o− based on the initial
prompts p+, p− used for output generation is much more effective compared to the post hoc
rescoring used in RLAIF. At least in the settings we examine, LLaMA-7B appears to be
more capable of generating contrasting outputs o+, o− than labeling them after the fact.

However, rescoring becomes a viable alternative at 30B scale, as the scoring LLM becomes
more capable of labeling examples closer to the boundary. At such model scales, it may
also be possible to run a version of RLCD that mixes labels from the two options (RLCD
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Harmlessness Helpfulness Outlining

Method Harm Help Help Qual

RLCD7B vs. RLCD-Rescore7B 86.0 / 14.0 75.8 / 24.2 86.3 / 13.7 88.8 / 11.2

RLCD30B vs. RLCD-Rescore30B 54.6 / 45.4 53.2 / 46.8 47.3 / 52.7 36.4 / 63.6

Table 2.15: Percentage of outputs preferred in GPT-4 pairwise comparisons for RLCD vs. RLCD-
Rescore variant (re-labeling outputs using RLAIF scoring prompts). RLCD dramatically outper-
forms RLCD-Rescore at 7B scale for preference data simulation, but rescoring becomes a viable
alternative at 30B scale.

and RLCD-Rescore), or to use a method such as PREADD [111] to modulate the control
strength of the prompts p+, p− to obtain accurately labeled preference pairs closer to the
classification boundary. On the other hand, it may also be the case that the larger effective
context window requirement for post hoc labeling could cause RLCD-Rescore’s performance
to degrade compared to RLCD when o+, o− are much longer than in our current experiments,
even when using LLaMA-30B.

Discussion

In this work we have presented RLCD, a method for aligning LLMs using simulated pairwise
preference data obtained from prompting the same LLM. RLCD follows a similar pipeline to
RLAIF while adding ideas reminiscent of context distillation: we simulate pairwise preference
data using a positive prompt p+ and a negative prompt p−, aiming to amplify the difference
between outputs o+, o− by encouraging opposite-directional changes on a desired attribute
such as harmlessness. Empirical results on three diverse alignment tasks across multiple
model scales for preference data simulation confirm our intuitions that RLCD can be highly
effective, outperforming both RLAIF and context distillation baselines.

However, despite our strong empirical results, we think that RLCD only scratches the
surface of what is possible for automatic preference data simulation in RLHF pipelines. For
instance, across the several experimental settings in this work, our current RLCD approach
benefits from intuitively pushing o+ and o− farther apart to reduce label noise. In cases
where reranking outputs post hoc is easy, or where one has a sufficiently strong scoring LLM
to provide accurate labels even close to the classification boundary, one could alternatively
attempt to create harder training examples by intentionally pushing o+ and o− closer together
compared to whatever RLAIF achieves by random chance. Additionally, it could prove useful
to simulate preference labels in formats other than a single binary label, such as by ranking
more than two outputs at a time or using more fine-grained annotations on longer outputs,
and we are excited to investigate these and other possibilities for continuing to improve
automatic data simulation procedures for LLM alignment.
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2.3 Additional Projects

Finally, I will very briefly mention one other collaboration I have been involved in that
focuses on control for natural language, PREADD [111].

PREADD

We propose Prefix-Adaptive Decoding (PREADD), a flexible method for controlled text
generation. Unlike methods like FUDGE that use auxiliary expert models to control for
attributes, PREADD does not require an external model, instead relying on linearly combin-
ing output logits from multiple prompts. Specifically, PREADD contrasts the output logits
generated using a raw prompt against those generated using a prefix-prepended prompt, en-
abling both positive and negative control with respect to any attribute encapsulated by the
prefix; see Figure 2.3 for an illustration. This gives PREADD the advantage of not requiring
any training set; rather, it is more akin to a generalized version of prompting. We evaluate
PREADD on three tasks – toxic output mitigation, gender bias reduction, and sentiment
control – and find that PREADD outperforms not only prompting baselines, but also an
auxiliary-expert control method, by 12% or more in relative gain on our main metrics for
each task.
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Figure 2.3: Illustration of PREADD applied to toxic output mitigation. PREADD obtains next-
token probabilities P (xi+1 | x1:i) for the original tokens x1:i, as well as P (xi+1 | r1:k, x1:i) for x1:i
prepended with an additional toxicity-encouraging prefix r1:k. xi+1 is then sampled proportional to
P (xi+1 | r1:k, x1:i)αP (xi+1 | x1:i)1−α, with α set to a negative value to control against the toxicity
encouraged by r1:k. Meanwhile, probabilities of unrelated tokens (e.g., “and”) are kept relatively
unchanged.
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Chapter 3

Control For Structured Domains

I will now discuss several control methods I have developed for more structured domains
compared to natural language. This chapter will mainly focus on stochastic iterative target
augmentation [167], which we apply to molecule design and program synthesis. At the end
of the chapter I will also briefly discuss some methods I have worked on in the domains of
semantic parsing and crosswords.

3.1 Stochastic Iterative Target Augmentation

Introduction

The goal of molecular generation is to create molecules with the desired property profile.
This task is a key component of pharmaceutical drug discovery, and has received intense
attention in recent years, yielding a wide range of proposed architectures [172, 104, 114,
63]. A common feature of these architectures is reliance on a large number of parameters
to generate molecules, which are represented as complex graph-structured objects. As a
result, these models require copious amounts of training data, consisting of molecules with
their target properties. Collecting such property data is often slow and expensive due to the
required empirical measurements.

Our challenge is to achieve high-quality molecular generation in data-sparse regimes.
While semi-supervised methods for representation learning have demonstrated significant
benefits in natural language processing and computer vision [34, 82], they are relatively
under-explored in chemistry. In this paper, we propose a simple and surprisingly effective
self-training approach for iteratively creating additional molecular targets. This approach
can be broadly applied to any generative architecture, without any modifications.

Our stochastic iterative target augmentation approach, shown in Figure 3.2, builds on
the idea that it is easier to evaluate the properties of candidate molecules than to generate
those molecules. Thus a learned property predictor can be used to effectively guide the
generation process. To realize this idea, our method starts by pre-training the generative
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model on a small supervised dataset along with the property predictor. The property pre-
dictor then serves as a likelihood model for filtering candidate molecules from the generative
model. Candidate generations that pass this filtering become part of the training data for
the next training epoch. Theoretically, this procedure can be viewed as one iteration of
stochastic EM, maximizing the log-likelihood that the candidate structures are accepted. As
the generative model already produces reasonable samples after pre-training, a simple rejec-
tion (re-weighting) sampler suffices to draw posterior samples. For this reason, it is helpful
to apply the filter at test time as well, or to use the approach transductively1 to further
adapt the generation process to novel test cases. The approach is reminiscent of self-training
or reranking approaches employed with some success for parsing [97, 20]. However, in our
case, it is the candidate generator that is complex while the filter is relatively simple and
remains fixed during the iterative process.

We demonstrate that our target augmentation algorithm is effective and consistent across
different generation tasks in its ability to improve molecular design performance. Our method
is tested in two scenarios: molecular generative modeling (i.e., unconditional molecular de-
sign) and graph-to-graph translation, the corresponding conditional design problem of mod-
ifying an existing molecule to improve its properties. The latter is illustrated in Figure 3.1.
We demonstrate significant gains over strong baselines for both settings. For instance, our
approach outperforms the previous state-of-the-art [63] in conditional molecular design by
over 10% in absolute gain on two tasks.

Finally, our proposed method is not tied specifically to the molecular domain, and can
generalize to any conditional or unconditional generation task with task-specific constraints.
For example, in program synthesis, we show that our method outperforms a strong rein-
forcement learning baseline [16].

Stochastic Iterative Target Augmentation

We present our method in the context of conditional molecular design [63, 64], the task of
transforming a given molecule X into another compound Y with improved chemical proper-
ties, while constraining Y to remain similar to X (Figure 3.1). The corresponding uncondi-
tional task takes no input, seeking only to generate molecules with desired properties.

As our method can be adapted to the unconditional setting by just dropping the input
conditioning, we present our method in the conditional context. For a given input X,
the model learns to generate an output Y satisfying c = 1|X, Y for some constraint c,
represented as a binary random variable whose value is a function of X and Y . (That is,
c corresponds to our filter.) For example, in conditional molecular generation, c = 1 if
Y exceeds a specified property score threshold while being sufficiently similar to X. The
proposed augmentation framework can be applied to any translation model P trained on
an existing dataset D = {(Xi, Yi)}, independent of the specific model architecture. As

1Allowing the model to access test set inputs (but not targets) during training.
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Figure 3.1: Illustration of conditional molecular design. Molecules can be modeled as graphs,
with atoms as nodes and bonds as edges. Here, the task is to train a translation model to modify a
given input molecule into a target molecule with higher drug-likeness (QED) score. The constraint
has two components: the output Y must be highly drug-like, and must be sufficiently similar to
the input X.

Figure 3.2: Illustration of data generation process for conditional molecular design. Given an
input molecule, we first use our generative model to generate candidate modifications, and then
select sufficiently similar molecules with high property score using our external filter. In the un-
conditional setting where the model takes no input, we simply sample outputs from the model and
filter by property score.

illustrated in Figure 3.2, our method is an iterative procedure in which each iteration consists
of the following two steps:
• Augmentation Step: Let D be the original dataset and Dt the training set at iteration t.
To construct the next epoch’s augmented training set Dt1 , we first initialize Dt+1 = D. We
then feed each input Xi ∈ D into the translation model up to C times to sample candidate
translations Y 1

i . . . Y C
i .2 We take the first K distinct translations for each Xi satisfying

the constraint c and add them to Dt+1. When we do not find K distinct valid translations,
we simply add copies of the original translation Yi to Dt+1 to preserve balance. In the
unconditional setting, we instead just sample up to C|D| outputs and accept up to K|D|
distinct new targets.

• Training Step: We continue to train the model P (t) over the new training set Dt+1 for
one epoch.

2One could initialize Dt+1 = Dt instead of Dt+1 = D and continuously expand the dataset, but the
empirical effect is small (see [167] Appendix E.6). Note our augmentation step can be trivially parallelized
for speed.
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As the constraint c is known a priori, we can construct an external property filter to
remove generated outputs that violate c during the augmentation step. At test time, we
also use this filter to screen predicted outputs. To propose the final translation of a given
inputX, we sample up to L outputs from the model until we find one satisfying the constraint
c. If all L attempts fail for a particular input, we output the first of the failed attempts.

Finally, as an additional improvement specific to the conditional setting, we observe that
the augmentation step can be carried out for unlabeled inputs X that have no corresponding
Y . Thus we can further augment our training dataset in the transductive setting by including
test set inputs during the augmentation step, or in the semi-supervised setting by simply
including unlabeled inputs.

Algorithm Motivation

We provide here some theoretical motivation for our method in the conditional setting. Since
molecules are discrete objects, we assume a discrete output space.

In the conditional context, the primary difficulty lies in generalizing to unseen inputs
(precursors) at test time. Generating even a single successful Y for a given X is nontrivial.
Therefore, we focus on maximizing the model’s probability of generating successful transla-
tions.

We can characterize our method as a stochastic expectation-maximization (EM) algo-
rithm [18]. As before, our external filter c is a binary random variable whose value is a
function of X and Y , representing whether output Y satisfies the desired constraint in rela-

tion to input X. We would like to generate Y such that Y ∈ B(X)
def
= {Y ′ : c = 1|X, Y ′}.

If the initial translation model P (0)(Y |X) (after bootstrapping on the gold data, but before
our augmentation) serves as a reasonable prior distribution over outputs Y for any given
input X, we could simply “invert” the filter and use

P (∗)(Y |X) ∝ P (0)(Y |X) · p(c = 1|X, Y ) (3.1)

as the ideal translation model, noting that the probability p(c = 1|X, Y ) is either 0 or 1
since c is a function of X and Y . This posterior calculation is typically infeasible but can
be approximated through sampling; even so, it relies heavily on the appropriateness of the
prior P (0)(Y |X). Instead, we go a step further and iteratively optimize our parametrically
defined prior translation model Pθ(Y |X). Note that the resulting prior can become much
more concentrated around acceptable translations.

We maximize the log-likelihood that candidate translations satisfy the constraints im-
plicitly encoded in the filter:

EX [logPθ(c = 1 | X)] (3.2)

In many cases there are multiple viable outputs for any given input X. The training data
may provide only one (or none) of them. Therefore, we treat the output structure Y as a
latent variable, and expand the inner term of Eq.(3.2) as
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log
∑
Y

Pθ(Y |X) · p(c = 1|X, Y ) (3.3)

Since the above objective involves discrete latent variables Y , we propose to maximize
Eq.(3.3) using the standard EM algorithm, especially its incremental, approximate variant.
The target augmentation step in our approach is a sampled version of the E-step where the
posterior samples are drawn with rejection sampling guided by the filter. The number of sam-
ples K controls the quality of approximation to the posterior.3 The additional training step
based on the augmented targets corresponds to a generalized M-step (though improvement

is not guaranteed due to stochasticity). More precisely, let P
(t)
θ (Y |X) be the current trans-

lation model after t epochs of augmentation training. In epoch t+1, the augmentation step
first samples C different candidates for each input X using the old model P (t) parameterized
by θ(t), and then removes those which violate the constraint c; the remaining candidates are
interpretable as samples from the current posterior Q(t)(Y |X) ∝ P

(t)
θ (Y |X)p(c = 1|X, Y ).

As a result, the training step maximizes the EM auxiliary objective via stochastic gradient
descent:

J(θ | θ(t)) = EX

[∑
Y

Q(t)(Y |X) logPθ(Y |X)

]
(3.4)

We train the model with multiple iterations and show empirically that model performance
indeed keeps improving as we add more iterations, both in our main experiments as well as
on a toy model in [167] Appendix B. The EM approach is likely to converge to a different
and better-performing translation model than the initial posterior calculation discussed in
Equation 3.1.

Experiments

We present experiments showcasing the effectiveness of our method, starting with conditional
molecular design.

Conditional Molecular Design

The goal of conditional molecular design is to modify molecules to improve their chemical
properties. As illustrated in Figure 3.1, conditional molecular design is formulated as a graph-
to-graph translation problem. The training data is a set of molecular pairs D = {(Xi, Yi)}. X
is the input precursor and Y is a similar molecule with improved properties. Each molecule
is further labeled with its property score. Our method is well-suited to conditional molecular
design because the target molecule is not unique: each precursor can be modified in many
different ways to optimize its properties. Thus we can potentially discover several new targets
per precursor during data augmentation.

3See [167] Appendix E.6 for details on the effect of sample size K.
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External Filter. The constraint contains two parts: 1) the chemical property of Y must
exceed a certain threshold β, and 2) the molecular similarity between X and Y must exceed
a certain threshold δ. The molecular similarity sim(X, Y ) is defined as Tanimoto similarity
on Morgan fingerprints [125], which measures structural overlap between two molecules.

In real-world settings, ground truth values of chemical properties are often evaluated
through experimental assays, which are too expensive and time-consuming to run for stochas-
tic iterative target augmentation. Therefore, we construct a proxy in silico property pre-
dictor F1 to approximate the true property evaluator F0. To train this proxy predictor, we
use the molecules in the training set and their labeled property values. The proxy predic-
tor F1 is parameterized as a graph convolutional network and trained using the Chemprop
package [165]. During data augmentation, we use F1 to filter out molecules whose predicted
property score is under the threshold β.

Experimental Setup. We follow the evaluation setup of [64] for two conditional molecular
design tasks:

1. QED Optimization: The task is to improve the drug-likeness (QED) of a given com-
pound X. The similarity constraint is sim(X, Y ) ≥ 0.4 and the property constraint is
QED(Y ) ≥ 0.9, with QED(Y ) ∈ [0, 1] defined by the system of [11].

2. DRD2 Optimization: The task is to optimize biological activity against the dopamine
type 2 receptor (DRD2). The similarity constraint is sim(X, Y ) ≥ 0.4 and the property
constraint is DRD2(Y ) ≥ 0.5, where DRD2(Y ) ∈ [0, 1] is the predicted probability of
biological activity given by the model from [104].

We treat the output of the in silico evaluators from [11] and [104] as ground truth, and
we use them only during test-time evaluation to simulate a real-world scenario.4

Evaluation Metrics. During evaluation, we are interested both in the probability that the
model finds a successful modification for a given molecule, as well as the diversity of the
successful modifications when there are multiple. Thus we translate each molecule in the
test set Z = 20 times,5 yielding candidate modifications Y1 . . . YZ (not necessarily distinct),
and use the following two evaluation metrics:

1. Success : The fraction of molecules X for which any of the outputs Y1 . . . YZ meet the
required similarity and property constraints (specified previously for each task). This is
our main metric.

2. Diversity : For each molecule X, we measure the average Tanimoto distance (defined as
1− sim(Yi, Yj)) between pairs within the set of successfully translated compounds among
Y1 . . . YZ . If there are one or fewer successful translations then the diversity is 0. We
average this quantity across all test precursors X.

4Although the Chemprop model we use in our filter is quite powerful, it fails to perfectly approximate
the ground truth models for both QED and DRD2. The test set RMSE between our Chemprop model and
the ground truth is 0.015 on the QED task and 0.059 on DRD2, where both properties range from 0 to 1.

5Our budget constraint Z limits the number of accesses to the ground truth evaluator, not the proxy
predictor. In practice the ground truth evaluator is expensive while the proxy is cheap.
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Model QED Succ. QED Div. DRD2 Succ. DRD2 Div.

VSeq2Seq 58.5 0.331 75.9 0.176
VSeq2Seq+ (Ours) 89.0 0.470 97.2 0.361
VSeq2Seq+, semi-sup. (Ours)* 95.0 0.471 99.6 0.408
VSeq2Seq+, transd. (Ours)* 92.6 0.451 97.9 0.358

HierGNN 76.6 0.477 85.9 0.192
HierGNN+ (Ours) 93.1 0.514 97.6 0.418

Table 3.1: Performance of different models on QED and DRD2 conditional generation tasks. Itali-
cized models with + are augmented by our algorithm. Best performance for each model architecture
in bold, not including models that use additional unlabeled data. *Note that the semi-supervised
and transductive settings for VSeq2Seq are not directly comparable to VSeq2Seq and VSeq2Seq+
due to using additional unlabeled data. However, they show that having access to such unlabeled
inputs can substantially improve performance. But we emphasize that iterative target augmen-
tation remains critical to performance in these settings: augmentation without an external filter
instead decreases performance.
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Figure 3.3: Left: QED test success rate vs. Chemprop predictor’s RMSE with respect to ground
truth. The red line shows the performance of the (unaugmented) VSeq2Seq baseline. Right: Same
plot for DRD2. In each plot, the far left point with zero RMSE is obtained by reusing the ground
truth predictor, while the second-from-left point is the Chemprop predictor we use to obtain our
main results. Points further to the right are weaker predictors, simulating a scenario where the
property is more difficult to model.

Models and Baselines. We consider the following two model architectures from [63] to
show that our algorithm is not tied to specific neural architectures.
1. VSeq2Seq, a sequence-to-sequence translation model generating molecules by their SMILES

string [158].

2. HierGNN, a hierarchical graph-to-graph architecture that achieves state-of-the-art per-
formance on the QED and DRD2 tasks, outperforming VSeq2Seq by a wide margin.
We apply our iterative augmentation procedure to the above two models, generating up to
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Model QED Succ. QED Div. DRD2 Succ. DRD2 Div.

VSeq2Seq 58.5 0.331 75.9 0.176
VSeq2Seq(test) 77.4 0.471 87.2 0.200
VSeq2Seq(train) 81.8 0.430 92.2 0.321
VSeq2Seq+ 89.0 0.470 97.2 0.361
VSeq2Seq(no-filter) 47.5 0.297 51.0 0.185

Table 3.2: Ablation analysis of filtering at training and test time. “Train-Aug” indicates a
model whose training process uses self-generated candidates to augment the data, while “Train+”
is a model that additionally filters these candidates using the proxy according to our framework.
“Test+” indicates a model that filters outputs at prediction time using the learned proxy predictor.
We emphasize that the ground truth predictor is used only for final evaluation. The evaluation for
VSeq2Seq(no-filter) is conducted after 10 augmentation epochs, as the best validation set perfor-
mance only decreases over the course of training.

K = 4 new targets per precursor in each augmentation epoch. Additionally, we evaluate our
augmentation of VSeq2Seq in a transductive setting, as well as in a semi-supervised setting
where we provide 100K additional source-side precursors from the ZINC database [136]. Full
hyperparameters are provided in [167] Appendix E.1.

Results. As shown in Table 3.1, our iterative augmentation paradigm significantly improves
the performance of VSeq2Seq and HierGNN. On both datasets, the translation success rate
increases by over 10% in absolute terms for both models. In fact, VSeq2Seq+, our augmen-
tation of the simple VSeq2Seq model, outperforms the non-augmented version of HierGNN.
This result strongly confirms our hypothesis about the inherent challenge of learning transla-
tion models in data-sparse scenarios. Moreover, we find that adding more precursors during
data augmentation further improves the VSeq2Seq model. On the QED dataset, the transla-
tion success rate improves from 89.0% to 92.6% by just adding test set molecules as precursors
(VSeq2Seq+, transductive). When instead adding 100K precursors from the external ZINC
database, the performance further increases to 95.0% (VSeq2Seq+, semi-supervised). We
observe similar improvements for the DRD2 task as well. Beyond accuracy gain, our aug-
mentation strategy also improves the diversity of generated molecules. For instance, on the
DRD2 task, our approach yields a 100% relative gain in output diversity.

These improvements over the baselines are perhaps unsurprising when considering the
much greater amount of augmented “data” pairs seen by our augmented model. For example,
VSeq2Seq+ has seen over 20 times as much “data” as the base model by the end of training
on the QED task (Figure 4).
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Figure 3.4: Cumulative number of unique training pairs seen by VSeq2Seq+ model after each
augmentation epoch, on QED task.

Importance of Property Predictor. Although the property predictor used in data aug-
mentation differs from the ground truth property evaluator used at test time, the difference
in evaluators does not derail the overall training process. Here we analyze the influence of
the quality of the property predictor used in data augmentation. Specifically, we rerun our
experiments using less accurate proxy predictors for our external filter. We obtain these
weakened predictors by undertraining Chemprop and decreasing its hidden dimension. For
comparison, we also report results with the oracle property predictor which is the ground
truth evaluator.

As shown in Figure 3.3, on the DRD2 dataset we can maintain strong performance
despite using predictors that deviate significantly from the ground truth. This implies that
our framework can potentially be applied to other properties that are harder to predict. On
the QED dataset, our method is less tolerant of inaccurate property prediction because the
property constraint is much tighter — it requires the QED score of an output Y to be in the
range [0.9, 1.0].

Importance of External Filtering. Our full model VSeq2Seq+ uses the external filter
during both training and testing. We further experiment with Vseq2seq(test), a version of our
model trained without data augmentation but which uses the external filter to remove invalid
outputs at test time. As shown in Table 3.2, VSeq2Seq(test) performs significantly worse
than our full model trained under data augmentation. Similarly, a model VSeq2Seq(train)
trained with data augmentation but without prediction time filtering also performs much
worse than the full model.

We also run an augmentation-only version of the model without an external filter. This
model (referred to as VSeq2Seq(no-filter) in Table 3.2) augments the data in each epoch
by simply using the first K distinct candidate translations for each training precursor X,
without using the external filter at all. We additionally provide this model with the 100K
unlabeled precursors from the semi-supervised setting. Nevertheless, we find that during
augmentation, this model’s performance steadily declines from that of the bootstrapped
prior. Thus the external filter is necessary to prevent poor targets from leading the model
training astray.
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Unconditional Molecular Design

In unconditional molecular design, we learn a distribution over molecules with desired prop-
erties. The setup is similar to the conditional case, and we reuse the same QED and DRD2
datasets. However, as there is no input in the unconditional case, we drop the precursors X
and use only the set of targets Y as our training data. Additionally, we drop the similarity
component from our external filter; we now require only that each generated molecule has
sufficiently high property score. We use the same property thresholds for the QED and
DRD2 tasks as in the conditional case.

Evaluation Metrics. We modify our metrics for the unconditional case:

1. Success : The fraction of sampled molecules Y above the property score threshold.

2. Uniqueness : The number of unique molecules generated in 20000 samples passing the
property score threshold, as a fraction of 20000. This is our main metric.

In the unconditional case, a model can achieve perfect success and high pairwise diversity
simply by memorizing a small number of molecules with high property score. Therefore,
uniqueness is our main metric in the unconditional setting, as a diverse distribution of
molecules with high property scores is necessary to achieve high uniqueness.

Models and Baselines. We consider two baselines:

1. A modified version of VSeq2Seq which simply drops the input and corresponding attention
layers; the resulting model is essentially a variational autoencoder [71]. We refer to this
model as VSeq.

2. REINVENT, a sequence-based model from [104] which uses the external property scorer
to fine-tune the model via reinforcement learning. This can be viewed as an alternate
method of leveraging the external filter. We note that although [104] also originally
evaluated on the DRD2 property, our setup is more challenging: we allow significantly
less training data for bootstrapping, and prohibit the use of the ground truth predictor
before test time.

REINVENT and our augmented model VSeq+ (obtained by augmenting VSeq) are
trained to convergence. For VSeq, whose uniqueness score decreases with prolonged train-
ing, we choose the checkpoint maximizing uniqueness under the Chemprop proxy predictor.
Although the VSeq and REINVENT architectures differ slightly, we match the number of
trainable parameters. We provide full hyperparameters and ablations in Appendices E.1 and
E.8 in [167] respectively.

Results. As shown in Table 3.3, our iterative augmentation scheme significantly improves
the performance of VSeq, especially in uniqueness. In fact, uniqueness steadily decreases
over time for the VSeq baseline as it overfits the training data (Figure 3.5). On the other
hand, our augmented model VSeq+ sees a steady increase in uniqueness over time.

Moreover, our iterative augmentation scheme outperforms the REINVENT baseline on
both tasks by over 0.2 in absolute terms. Especially on the QED task, the REINVENT
algorithm struggles to generate high-property molecules consistently, performing comparably
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Model QED Succ. QED Uniq. DRD2 Succ. DRD2 Uniq.

VSeq 62.4 0.499 51.4 0.221
VSeq+ (Ours) 95.8 0.957 92.8 0.927

REINVENT 61.9 0.610 92.2 0.686

Table 3.3: Performance of different models on QED and DRD2 unconditional generation tasks.
VSeq+ is our full augmented model.
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Figure 3.5: Left: Epoch number vs. uniqueness, evaluated with the Chemprop proxy predictor,
for VSeq-based models on QED dataset. VSeq+ and VSeq in blue and red respectively. Right:
Same plot for DRD2. VSeq+ is trained without iterative target augmentation for the initial epoch
0, and trained with augmentation thereafter.

to the unaugmented VSeq baseline in success rate. Additionally, we observed that the
REINVENT model is sometimes unstable on our DRD2 task, where the initial training
dataset is smaller. Meanwhile, VSeq+ showed consistently strong performance on both tasks.
Overall our experiments in this unconditional setting indicate that stochastic iterative target
augmentation, at least in certain scenarios, is capable of leveraging the external property
signal more effectively than an RL method.

Figure 3.6: Illustration of our data generation process in the program synthesis setting. Given an
input-output specification, we first use our generation model to generate candidate programs, and
then select correct programs using our external filter. Images of input-output specification and the
program A are from [16].
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Program Synthesis Experiments

Finally, we present additional experiments using the conditional version of our method in
the program synthesis domain, demonstrating its generalizability across domains. Program
synthesis is the task of generating a program (using domain-specific language) based on
given input-output specifications [16, 49, 31]. That is, the source is a set of input-output
specifications for the program, and the target is a program that passes all test cases. Our
method is suitable for this task because the target program is not unique. Multiple programs
may be consistent with the given input-output specifications.

External Filter. The external filter is straightforward for this task: we simply check
whether the generated output passes all test cases. Note that at evaluation time, each
instance contains extra held-out input-output test cases; the program must pass these in
addition to the given test cases to be considered correct. When we perform prediction time
filtering, we do not use held-out test cases in our filter.

Experimental Setup. Our task is based on the educational Karel programming lan-
guage [110] used for evaluation in [16] and [23]. Commands in the Karel language guide
a robot’s actions in a 2D grid, and may include for loops, while loops, and conditionals.
Figure 3.6 contains an example. We follow the experiment setup of [16].

Evaluation Metrics. The evaluation metric is top-1 generalization. This metric measures
how often the model can generate a program that passes the input-output test cases on the
test set. At test time, we use our model to generate up to L candidate programs and select
the first one to pass the input-output specifications (not including held-out test cases).

Models and Baselines. Our main baseline is the MLE baseline from [16]. This model
consists of a CNN encoder for the input-output grids and an LSTM decoder along with a
hand-coded syntax checker. It is trained to maximize the likelihood of the provided target
program. Our model is the augmentation of this MLE baseline by our iterative target
augmentation framework. As with molecular design, we generate up to K = 4 new targets
per precursor during each augmentation step. Additionally, we compare against the best
model from [16], which finetunes the same MLE architecture using an RL method with
beam search to estimate gradients.6 We use the same hyperparameters as the original MLE
baseline; see [167] Appendix E.1 for details.

Results. Table 3.4 shows the performance of our model in comparison to previous work.

Our model (MLE+) outperforms the base MLE model in [16] model by a wide margin. More-
over, our model outperforms the best reinforcement learning model (RL + Beam Search) in

6More recently, [23] achieved state-of-the-art performance on the same Karel task, with top-1 generaliza-
tion accuracy of 92%. They use a different architecture highly specialized for program synthesis as well as a
specialized ensemble method. Thus their results are not directly comparable to our results in this paper for
the MLE architecture.
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Model Top-1

MLE 71.91
MLE + RL + Beam Search 77.12
MLE+ (Ours) 85.02

Table 3.4: Model performance measured by top-1 generalization accuracy on Karel program
synthesis task. MLE+ is our augmented version of the MLE model [16], while MLE + RL + Beam
Search is their reinforcement learning method applied to the same architecture.

[16], which was trained to directly maximize the generalization metric. This demonstrates
the efficacy of our approach in the program synthesis domain. Since our method is com-
plementary to architectural improvements, we hypothesize that other techniques, such as
execution based synthesis [23], can benefit from our approach as well.

Related Work

Molecular Design. Several previous works explore molecular design using different archi-
tectures. [132, 74, 46, 67] adopt generative modeling approaches for molecular design. [172,
114, 104] use reinforcement learning methods for this task. [63, 64] formulate this problem
as graph-to-graph translation and significantly outperform previous methods in the condi-
tional setting. However, their performance remains imperfect due to the limited size of given
training sets.

On the other hand, recent advances in graph convolutional networks [33, 43] have pro-
vided effective solutions for the related problem of property prediction. Our work leverages
strong property prediction models to improve the performance of generative models for
molecular design, by checking whether generated molecules have desired chemical properties
and augmenting the training set with molecules passing the property filter.
Program Synthesis. When correctness in program synthesis is defined by input-output
test cases [16, 49, 31], one can check a generated program’s correctness by simply executing
it on each input and verifying its output. Indeed, [176, 23] use this idea in their respective
decoding procedures, while also using structural constraints on valid programs. We leverage
this ability to check correctness during training time data augmentation as well.
Reward-guided Generation. Recent work has proposed to incorporate rewards (e.g.,
properties) into generative models. In machine translation, [103] propose reward augmented
maximum likelihood, which samples new targets from a stationary exponentiated payoff
distribution centered at a ground truth target based on edit distance. Their approach is only
viable when ground truth targets are given. In the case of molecular design, the number of
ground truth targets is very limited. Our approach, based on stochastic EM, samples new
targets from a learned non-stationary distribution which is not tied to any ground truth.
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[62] use reinforcement learning to impose task-specific rewards for sequence generation,
while [13] propose an adaptive sampling approach which generates additional targets based
on parametric conditional density estimation. In contrast to these two approaches, our
method is based on maximum likelihood and stochastic EM; [14] explore additional theoret-
ical connections.

Semi-supervised Learning. Our method is related to various approaches to semi-supervised
learning in different domains. In chemistry, [57] and [140] demonstrate pre-training ap-
proaches which use unlabeled molecules to learn initial representations for property predic-
tion models. Our method instead tackles the problem of molecular generation, addressing
the problem of limited data by generating additional data via a self-training technique. In
machine translation, back-translation [133, 34] creates additional translation pairs by using
a backward translation system to translate unlabeled sentences from a target language into
a source language. In contrast, our method works in the forward direction because many
translation tasks are not symmetric.

In image and text classification, data augmentation and label guessing [82, 10, 161] are
commonly applied to obtain artificial labels for unlabeled data. Rather than generating
new source-target pairs by augmenting the source side, we augment the target side. In
syntactic parsing, our method is closely related to self-training [97]. They generate new
parse trees from unlabeled sentences by applying an existing parser followed by a reranker,
and then treat the resulting parse trees as new training targets. However, their method is
not iterative, and their reranker is explicitly trained to operate over the top k outputs of the
parser; in contrast, our filter is independent of the generative model. In addition we show
that our approach, which can be viewed as iteratively combining reranking and self-training,
is theoretically motivated and can improve the performance of highly complex neural models.
Co-training [12] and tri-training [180, 20] also augment a parsing dataset by adding targets
on which multiple baseline models agree. Instead of using multiple learners, our method uses
task-specific constraints to select correct outputs.

Conclusion

In this work, we have presented a stochastic iterative target augmentation framework for
molecular design. Our approach is theoretically motivated, and we demonstrate strong
empirical results in both the conditional and unconditional molecular design settings, sig-
nificantly outperforming baseline models in each case. Moreover, we find that stochastic
iterative target augmentation is complementary to architectural improvements, and that its
effect can be quite robust to the external filter’s quality. Finally, in principle our approach
is applicable to other domains as well.
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3.2 Additional Projects

I will also briefly describe two other works in which I worked on control for structured
domains.

Semantic Parsing

In [163] we introduce a novel setup for low-resource task-oriented semantic parsing which
incorporates several constraints that may arise in real-world scenarios: (1) lack of similar
datasets/models from a related domain, (2) inability to sample useful logical forms directly
from a grammar, and (3) privacy requirements for unlabeled natural utterances. Our goal
is to improve a low-resource semantic parser using utterances collected through user inter-
actions. In this highly challenging but realistic setting, we investigate data augmentation
approaches involving generating a set of structured canonical utterances corresponding to
logical forms, before simulating corresponding natural language and filtering the resulting
pairs. We find that such approaches are effective despite our restrictive setup: in a low-
resource setting on the complex SMCalFlow calendaring dataset [3], we observe 33% relative
improvement over a non-data-augmented baseline in top-1 match.

Crosswords

In [147] I collaborated on an automatic crossword solver, the Berkeley Crossword Solver.
This solver uses Dense Passage Retrieval [68] to match questions to crossword answers,
followed by solving a constrained decoding problem to fit answers into the crossword grid (see
e.g., Figure 3.7, reproduced from [147]). Our solver uses loopy belief propagation followed
by a local iterative improvement algorithm. Quantitatively, it solves 82% of New York
Times crosswords perfectly, with up to 99.9% accuracy for individual letters. We ran our
solver at the prestigious annual American Crossword Puzzle Tournament in 2021, where it
outperformed all human solvers.
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Figure 3.7: A partially-solved example crossword puzzle from the 2021 American Crossword Puz-
zle Tournament, where our system won first place against 1,100 top human solvers. The highlighted
fill kungfu answers the wordplay clue: Something done for kicks?
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Chapter 4

Long-Form Story Generation

Finally, I will discuss how I apply controllable generation methods to maintain quality over
much longer model outputs, up to several thousands of words in length. I will focus on
the domain of automatic story generation in this chapter, although many of the ideas are
in principle applicable to other domains as well. This chapter will mainly cover two of my
works, Re3 [168] and DOC [166], with a brief discussion of other related projects I have
worked on at the end.

4.1 Recursive Reprompting and Revision (Re3)

Introduction

Generating long-term coherent stories is a longstanding challenge for artificial intelligence,
requiring a comprehensive grasp of linguistic, world, and commonsense knowledge [21, 146].
Recently, many works have automatically generated short stories ranging in length from five
sentences to one or two paragraphs [37, 171, 45, 123, 52]. While stories of such length serve
as a good test bed for text generation, they are much shorter than typical short stories meant
for human consumption, which are often several pages in length.

In this work, we aim to bridge some of this gap by generating much longer “short”
stories: the final generated stories in our experiments are 2000-2500 words. We are the first
to automatically generate plot-coherent stories of such length, with further length increases
limited primarily by evaluation rather than technical issues.1 Generating stories of such
length faces qualitatively new challenges compared to prior work on shorter stories. First,
the system must maintain a coherent overarching plot over thousands of words. Given
an initial premise, it should maintain relevance to this premise over thousands of words
as well. Additional challenges include preservation of narration style and avoiding factual
contradictions over a very long horizon.

1We generate a 7500-word story in [168] Appendix M.
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Generate a setting, characters, and 
outline by prompting a language model. 

A new law grad returns home to start 
her career, but struggles with the 

broken justice system.  

Liza Turner pulled up in front of the 
house where she’d grown up. Little had 
changed since she was a teenager...

Write story continuations by prompting 
based on the plan and previous story.

Rerank story continuations for plot 
coherence and premise relevance.

Edit selected continuation to maintain  
long-range factual consistency.

Plan

Draft

Rewrite

Edit

Premise

Story

Figure 4.1: High-level overview of Re3.

Of course, recent years have also witnessed a dramatic rise in the capabilities of general-
purpose (non-finetuned) large pretrained language models. Of particular note are their
strong zero-shot capabilities, especially when given clever prompts [15, 72]. Yet despite
recent improvements, even the best models to date may still struggle with complex long-
form generation, such as in our story generation task.

In contrast, human writers successfully navigate the myriad challenges of long-form gen-
eration on a regular basis. We observe that a human writer does not simply write a long
document in one shot. Rather, he or she may (a) create a detailed plan, then (b) draft each
next passage of the document according to that plan. He or she may then revise by (c)
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rewriting passages entirely, and/or (d) post-editing for finer details.
Motivated by this observation, we propose the Recursive Reprompting and Revision

framework (Re3, Figure 4.1) to generate longer stories. While based on the human writing
process, Re3 is a fully automatic system with no human intervention, unlike prior approaches
which model the human writing process with a human in the loop [44, 26, 83]. First, (a)
Re3’s Plan module generates a plan by prompting GPT3 [15] to augment a given premise
with a setting, characters, and outline. (b) Re3’s Draft module then generates each next
story continuation by recursively reprompting GPT3 using a strategically crafted prompt,
in a procedure which can be viewed as a generalization of chain-of-thought prompting [72].
Specifically, our prompt is dynamically reconstructed at each step by selectively manifesting
contextually relevant information from the initial plan—itself generated by prompting—and
the story thus far. We then divide the revision process into (c) a Rewrite module which
emulates a full rewrite by reranking alternate continuations, and (d) an Edit module which
makes smaller local edits to improve factual consistency with previous passages.

As an additional contribution, our Plan and Draft modules are fully zero-shot rather
than trained on existing story datasets. Thus not only does Re3 generate stories an order of
magnitude longer than those of prior work, but it is not limited to any particular training
domain.

To evaluate Re3 for longer story generation, we compare its generated stories to similar-
length stories from two GPT3-based “rolling-window” baselines. In pairwise comparisons,
human evaluators rated stories from Re3 as significantly and substantially more coherent in
overarching plot (up to 14% absolute increase in the fraction deemed coherent), as well as
relevant to the initial premise (up to 20%). In fact, evaluators predicted up to 83% of stories
written by Re3 to be written by humans. The results indicate that Re3 can be highly effective
at improving long-range coherence and premise relevance in longer story generation.2

Related Work

Automatic Story Generation. Several previous works have modeled parts of our proposed
writing process, usually one part at a time.

Most similar to our Plan module are approaches using an outline or structured schema
to maintain plot coherence [87, 37, 171, 45, 123, 143]. Other methods for high-level planning
include latent variables [98, 154, 152], coarse-to-fine slot-filling [38], and keywords and/or
control codes [112, 61, 162, 90].

Meanwhile, our Rewrite module uses rerankers similar to [48] and [153], although we
model both coherence and premise relevance. [174] iteratively edits and improves the output
like our Edit module, but we additionally detect when edits are required.

We emphasize again the length of stories we aim to generate. In prior studies, out-of-the-
box language models struggled to generate even very short stories [54, 129]. Although there
exist datasets of relatively longer stories, such as WritingPrompts [37] and STORIUM [2],

2All code and data available at https://github.com/yangkevin2/emnlp22-re3-story-generation.
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many works still only focus on stories of about five sentences [154, 171, 116, 152], even when
using language models with hundreds of billions of parameters [162]. Some challenges of
generating longer stories are apparent in [152]: their method generates high-quality few-
sentence stories, but their forced long text generations, while judged better than baselines’,
remain confusing and repetitive. Moreover, maintaining long-range plot coherence, premise
relevance, and factual consistency is substantially harder over multiple-thousand-word hori-
zons.

Human-In-The-Loop Story Generation. In contrast to fully automatic approaches like
Re3, several recent works have proposed human-interactive methods to maintain quality
in longer stories [26, 83, 25]. Such works commonly combine both planning and revision
systems [44, 26]. In principle, Re3 is also highly controllable via human interaction, as both
our planning and revision systems operate nearly entirely in natural language space; however,
we focus on fully automatic generation in this work.

Prompting. Numerous works have demonstrated general-purpose language models’ strong
zero-shot ability on a wide variety of tasks via prompting [15, 179, 127, 108, 160]. Careful
prompt design can yield further gains [81, 93, 72]. However, most prompting methods
focus on shorter-answer tasks rather than long-form generation. Instead of generating the
output in one shot, our recursive reprompting procedure treats prompting as a subroutine
to generate the final output in conjunction with our planning and revision infrastructure.
Compared to chain-of-thought prompting approaches like [72], Re3 goes a step further by
repeatedly re-composing the prompt in modular fashion, dynamically recombining the most
contextually relevant parts of both the high-level plan and the story thus far.

Recursive Reprompting and Revision

We now describe our Recursive Reprompting and Revision framework (Re3), which decom-
poses the human writing process into our Plan, Draft, Rewrite, and Edit modules. See [168]
Appendix K for concrete examples of each component in practice.

Plan Module

The Plan module augments a story premise with a setting, characters, and outline (Figure
4.2).

The setting is a simple one-sentence extension of the premise, obtained by using The

story is set in to prompt GPT3-Instruct-175B [108], a version of GPT3 finetuned to
better follow human instructions. Next, we use GPT3-Instruct-175B to generate up to
three character names and then descriptions, conditioned on the premise and setting. For
names, we do rejection sampling using simple heuristics to filter out malformed outputs
([168] Appendix A). Finally, we prompt GPT3-Instruct-175B to write a numbered outline
of the story and parse the output into a list of outline points, re-sampling until the list is
well-formed.
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Pl
an

Premise: A new law grad returns home 
to start her career, but struggles 
with the broken justice system.  

Premise

Setting: The story is set in
a small town in the United States.Setting

1. Character Portrait: 
Liza Turner is a 22-year-old woman.

2. Character Portrait: 
Peyton Turner is Liza’s older sister.

Characters

Outline the main plot points of the
story.

1. Liza Turner graduates from law
school.

2. She moves back to her hometown to
start her career.

3. She struggles with the reality of
the broken justice system.

Outline

Figure 4.2: Illustration of Re3’s Plan module, which prompts a language model to generate a
setting, characters, and outline based on the premise. Highlighting indicates generated text.

These plan components, themselves generated by prompting, will be repeatedly reused
to compose prompts for generating story passages in the Draft module; hence recursive
reprompting.

Draft Module

For each point of the outline, we will generate several story passages before moving on to
the next outline point. Each passage is generated as a fixed-length continuation from a
structured prompt, which is composed by our recursive reprompting procedure as shown in
Figure 4.3.

The prompt begins with a selection of “Relevant Context” shown at the top of Figure
4.3. As the story progresses, we dynamically update the list of character descriptions using
a named-entity-recognition-based pipeline, which identifies new entities from each new story
passage using Flair [1] and writes descriptions using GPT3-Instruct-175B. Thus “Relevant
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Relevant context:
Liza Turner is a 22-year-old woman.
Peyton Turner is Liza’s older sister.

Relevant 
Context

Previous story summary:
Liza Turner graduates from law school.

Previous 
Sections’ 
Outlines

Immediately before current passage:
Liza Turner returns home to her small 
town, feeling both familiar and 
unsafe. She is unsure if she wants to 
live there, but hesitant to leave.

Recent 
Story 

Summary

In the upcoming passage,
She moves back to her hometown to 
start her career.

Upcoming 
Section 
Outline

Full text below:
She locked up the car and carried her 
things into the house through the back 
door in case Peyton was home still.

Auto-
regressive 

Context

Figure 4.3: Illustration of the prompt constructed in Re3’s Draft module to generate each next
story continuation. Our recursive reprompting approach combines pieces of the plan (blue) and
previously generated story (grey) into a single prompt by concatenating the depicted components
in order.
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Context” initially contains all of the premise, setting, and characters shown in Figure 4.2,
but subsequently selects only what is most relevant to the most recent story passage using
a pretrained Dense Passage Retrieval (DPR) model [68].

The remainder of the prompt can be viewed as a coarse-to-fine description of the previous
story, following the intuition that an author needs detailed information about the most recent
passage but perhaps only higher-level information about much earlier passages. As shown
in Figure 4.3, we include “Previous subsections’ Outlines” as a very high-level summary of
previous larger story subsections, followed by a “Recent Story Summary” written by GPT3-
Instruct-13B3 of a few penultimate passages. At the end we repeat verbatim the immediately
preceding passage as “Autoregressive Context” from which point the story should continue.
Finally, to enforce relevance to the current outline point, we include the “Current subsection
Outline” in the prompt just before “Autoregressive Context.”

Finally, the full prompt is fed to GPT3-175B to generate the next story passage.4

Rewrite Module

The generator’s first output continuation is often low-quality, even with the planning and
recursive reprompting in the Plan and Draft modules. Humans may encounter a similar
problem after a first draft, particularly upon receiving feedback from others, and be forced to
rewrite a passage altogether. Our Rewrite module models this rewriting process by reranking
Draft module outputs based on coherence with the previous passage and relevance to the
current outline point (Figure 4.4).

We note that this Rewrite module is the only part of Re3 which uses prior story data.
All of the modules which actually generate text (Plan, Draft, and to some extent Edit) do
not require prior data.

Coherence Reranker. We train a discriminative model to predict whether a continuation
is coherent with the previous story. As data, we split stories from the WritingPrompts
dataset [37] into passages up to 1000 tokens long, labeling the ending up to 200 tokens as
the gold continuation. Inspired by the contrastive learning setup of [153] and [48], we obtain
negative examples by replacing the gold continuation with a random other continuation from
either the same story or a different one. We then finetune a pretrained Longformer-Base [9]
to classify whether a continuation is the true continuation for a given passage.

Relevance Reranker. We train a relevance model with the same architecture as our
coherence model to predict whether a continuation is relevant to the current outline point.

3As economical usage of large language models is becoming increasingly important [138], we use the 13B
model where we observe it is not substantially worse.

4This step does not use GPT3-Instruct-175B, as we observed in preliminary experiments that an earlier
version of GPT3-Instruct-175B would frequently repeat subsections of the prompt. Generators other than
GPT3-175B are also possible in principle: for example, retrieval-augmented architectures like RAG [86] or
architectures designed for long-range dependencies like S4 [47]. However, it is critical to use a sufficiently
high-quality language model: even scaling down to GPT3-13B resulted in noticeably less coherent outputs
in our preliminary experiments.
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All the lights were off 
and there was no sign of 
Peyton. She shrugged and 
decided to go out and 
spend the rest of her 
evening at one of New 
York City’s many bars.

Draft
Continuation 

1
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She knew Peyton was 
probably working late at 
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wouldn't come home early 
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to do it anyway.
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Figure 4.4: Re3’s Rewrite module reranks the Draft module’s continuations for coherence and
relevance.

We construct a dataset of 2000 training examples, where each example consists of a 200-token
story passage from WritingPrompts and a brief summary written by GPT3-Instruct-13B.
Negative examples are constructed by selecting the summary of a different passage, whether
in the same story or a different one.

Additional Heuristics. Finally, we filter out continuations with some writing problems
which are easy to detect via rule-based heuristics. For example, we check for repetition issues,
e.g., repeating chunks of the structured prompt. Similarly, to maintain consistent narration,
we filter out first person continuations to enforce a consistent third person perspective. Full
details in [168] Appendix B.

Edit Module

In contrast to the Rewrite module which reranks complete alternate continuations, the Edit
module makes local edits to further refine a passage produced by careful planning, drafting,
and rewriting.

Specifically, we aim to remove long-range factual inconsistencies. When a human detects
a small factual discontinuity upon proofreading, he or she might simply edit the offending
detail, rather than making major changes to the high-level plan or doing substantial rewrit-
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Peyton Turner
Peyton Turner is male.  
Peyton works at a restaurant.

Inferred Facts

She knew Peyton was probably 
working late at his restaurant so 
he wouldn't come home early to see 
her, but she wouldn't put it past 
him to do it anyway.

Selected 
Continuation

Peyton Turner
Younger sister   Liza Turner
Gender           female male
Workplace        restaurant

Attribute
Dictionary

Edit so that
Peyton Turner is female.

Editing 
Instruction

She knew Peyton was probably 
working late at her restaurant so 
she wouldn't come home early to see 
her, but she wouldn't put it past 
her to do it anyway.

Final Edited 
Continuation

Figure 4.5: Illustration of Re3’s Edit module. Starting from the Rewrite module’s best contin-
uation, we infer natural language facts about each character, and convert them to attribute-value
pairs. New values (blue) are added to the attribute dictionary, and contradictory values (red) are
corrected.
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ing. Our Edit module mimics this process in two steps: detecting factual inconsistencies,
and correcting them.

Detecting Factual Inconsistencies. An inconsistency involves two statements. As the
number of statement pairs scales quadratically with story length, naively comparing all pairs
can result in a sea of false positive “contradictions.” Flagging inconsistencies while avoiding
false positives requires overwhelming precision.

Task Framing. To make the task more tractable, we focus on factual inconsistencies in
character attributes (e.g., age, occupation, relationship to another character). At a high
level, our detection system maintains a compact knowledge base in the form of Figure 4.5’s
“Attribute Dictionary” for each character. With each new story passage, we check for
contradictions against only these attribute-value dictionaries instead of all previous text.
The dictionaries are then updated for the new passage, and new dictionaries are created for
new characters when detected as described in our Edit module exposition.

Thus, the core of our detection system is a high-precision information extraction proce-
dure for obtaining attribute-value pairs for a given character from a story passage. Rather
than hard-coding a fixed set of attributes, our system is inspired by Open Information Ex-
traction [35], in order to capture the wide variety of possible attributes which may be salient
in different stories.

Implementation Details. We begin by prompting GPT3-Instruct-175B for a numbered
list of facts about the given character, shown as “Inferred Facts” in Figure 4.5. Each fact is
fed with a few-shot prompt to GPT3-Instruct-13B to extract attribute keys. We then prompt
GPT3-Instruct-13B with the fact and each attribute key to obtain complete attribute-value
pairs. In steps prone to hallucination, we generate three outputs and keep only those which
are repeated, or entailed by other outputs according to a BART-Large-based [84] entailment
model trained on MNLI [159]. See [168] Appendix C for complete details on information
extraction, with example prompts.

Finally, we add new pairs to our dictionary, and use the entailment model to flag contra-
dictions between new and old values for the same key.

Correcting Factual Inconsistencies. Once an inconsistency is detected, we frame the
task of correcting it as controlled text editing. The original natural language fact (i.e.,
“Inferred Facts” in Figure 4.5) from which we extracted the contradicted attribute-value
pair now becomes the basis for the “Editing Instruction” in Figure 4.5. This instruction is
then fed along with the original continuation to the beta GPT3 Edit API.

Evaluation

Task Setup. We frame the task as generating a story given a brief initial premise. As
a “story” is difficult to define in a rule-based manner, we do not impose any rule-based
constraints on acceptable outputs, but will instead evaluate via several human-annotated
metrics as described later.
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Method Int. ↑ Coh. ↑ Rel. ↑ Hum. ↑ Misc. Prob. ↓

rolling 45.0 45.7 44.0 74.0 1.20
re3 54.3 60.0 64.0 83.3 1.07

rolling-ft 52.7 48.7 49.3 74.7 1.48
re3 53.7 60.0 65.3 80.0 1.35

Table 4.1: Comparison of re3 against two baselines, rolling and rolling-ft, in two separate
experiments examining comparisons of interestingness, coherence, relevance, humanlikeness, and
counts of other problems. The first two rows show a pairwise comparison between rolling and
re3 and the last two rows show the equivalent comparison between rolling-ft and re3. Bolding
indicates significant differences with p < 0.05 on a paired t-test. Workers judged stories from re3 as
significantly more coherent and relevant to the initial premise, in addition to having fewer writing
problems.

To generate the initial premises, we prompt GPT3-Instruct-175B with high temperature
to acquire 100 diverse premises.5 All premises and stories are in English.

Method Instantiation. For fair comparison, it is desirable for the concrete implementation
(henceforth re3) of our Re3 framework to output stories of consistent length. While Re3 is
capable of generating shorter or longer stories (see e.g., our 7500-word example in [168]
Appendix M), here we aim for roughly 3000 tokens (2000-2500 words).6 Thus we re-sample
the initial outlines until they contain exactly three points, and generate exactly four 256-
token continuations for each outline point before moving on to the next. As a story-ending
mechanism, we use the GPT3-175B Insert API to complete the story to the suffix “The
End.” Of course, more adaptive schemes for moving on to the next outline point and/or
ending the story are possible, and we explore one possible “outline alignment” method in
[168] Appendix M.

Baselines. As prior methods focus on dramatically shorter stories compared to Re3, they
are difficult to compare to directly.7 Instead, we use the following two GPT3-175B-based
baselines.8

1. rolling, a baseline which generates 256 tokens at a time via GPT3-175B using the
premise and all previously generated story text as the prompt, left-truncating the

5Combining this simple premise generation scheme with Re3 yields a story generation system which
operates fully from scratch, with no input premise required.

6See [168] Appendix F for analysis on how story length may impact quality.
7Even the premises used as starting points in our task can be as long or longer than the final stories

generated in several previous works. We believe that adapting any of the prior systems from our related
work to function on our long-form story generation task could be an interesting contribution in its own right.
In fact, Re3 itself can be viewed as our attempt to extend and combine high-level planning and revision
ideas from prior work, while simultaneously redesigning them to be able to leverage large out-of-the-box
pretrained generators (GPT3), to scale up to long-form generation.

8Smaller (non-GPT3-175B) generators yielded qualitatively worse outputs in preliminary experiments.
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prompt if it exceeds 768 tokens. Hence, a “rolling window” with maximum context
length 1024 (the same maximum context length used in re3). After 3072 tokens are
generated, we use the same story-ending mechanism as re3.

2. rolling-ft, which is identical to rolling except that GPT3-175B is first finetuned
on several hundred passages from WritingPrompts stories of at least 3000 tokens.9

Metrics. As our main metrics, we track the percentage of stories which are:

1. Interesting. Interesting to the reader.
2. Coherent. Plot-coherent.
3. Relevant. Faithful to the initial premise.
4. Humanlike. Judged to be human-written.

We additionally track how often generated stories suffer from any of the following writing
issues:

1. Narration. Jarring change(s) in narration and/or style.
2. Inconsistent. Factually inconsistent or containing very odd details.
3. Confusing. Confusing or difficult to follow.
4. Repetitive. Highly repetitive.
5. Disfluent. Frequent grammatical errors.

Binary indicators for these issues are summed and reported together as Misc. Problems
in the main text, with individual numbers in [168] Appendix G.

All metrics are judged by Amazon Mechanical Turk workers, who are shown a premise
and two corresponding stories in random order: one generated by re3 and one by a baseline.
For interest, coherence, and relevance, workers indicate which story is better, or that both or
neither are good. For the remaining metrics (humanlike and writing issues), workers mark
each story individually. See [168] Appendix H for an example Mechanical Turk task.

Each pair of stories is judged by three workers. We report results individually for each
pairwise comparison between re3 and each baseline, never mixing numbers from different
comparisons. Workers are segregated by comparison to prevent bias.

Results. As shown in Table 4.1, re3 is highly effective at writing a longer story following a
desired premise while maintaining a coherent overarching plot, validating our design choices
inspired by the human writing process as well as our recursive reprompting approach to
generation. re3 significantly and substantially improves over rolling and rolling-ft in
both coherence and relevance. Annotators also marked re3’s stories as having significantly
fewer miscellaneous writing problems. Finally, re3 demonstrates strong performance in
an absolute sense: annotators thought 83.3% and 80.0% respectively of re3’s stories were
written by humans in the two comparisons. Table 4.2 shows a heavily abridged example
story by re3, exhibiting strong coherence and premise relevance.

9We initially considered a third rolling window baseline using GPT3-Instruct-175B rather than GPT3-
175B, but observed that this baseline frequently devolved into highly repetitive text or gibberish. Thus we
do not report a formal comparison. In any case, rolling is in some sense the best comparison, as re3 uses
the same un-finetuned GPT3-175B generator.
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PREMISE: After years of being content with only a small inheritance,

Sarah’s life is turned upside down when she discovers she is actually a

millionaire. She must learn to navigate her new life of luxury while also

dealing with the guilt she feels over her new-found fortune.

GENERATED OUTLINE:

1. Sarah learns that she is a millionaire.

2. Sarah must learn to navigate her new life of luxury.

3. Sarah deals with the guilt she feels over her new-found fortune.

GENERATED STORY:

Sarah Jensen never knew she had inherited a fortune until her mother died.

In fact, she had never met her father ...[15 words]...

The only thing Sarah did know was that he had died long ago and that her

mother had been left a sizeable inheritance. ...[23 words]...

Sarah’s mother never spent any of the money ... all that mattered to her

was how much it would mean to her daughter when she inherited it ...[81

words]...

Sarah learned that she was a millionaire. ...[417 words]...

She would never have had a chance like this - an opportunity to be

financially independent, to live on her own ...[544 words]...

Now that she was rich, things were going to be different for her. She could

afford a hotel suite and a lavish meal if she wanted it. ...[450 words]...

The words "Forgive me, father, for I have sinned" came unbidden into her mind

as she reached out for her drink and took a large sip straight from the

glass. ...[383 words]...

But the guilt was weighing on her now. ...[346 words]...

Table 4.2: A heavily abridged re3 example generation (see [168] Appendix J, Tables 39 and
40 for complete setup and story). While certainly not perfect, the story demonstrates strong
long-range coherence and faithfulness to the premise.

Nonetheless, we observe qualitatively that re3 still has much room for improvement. Two
common issues are illustrated in Table 4.3. First, while re3’s stories almost always follow
the premise to some degree—unlike our baselines’ stories—they may fail to capture all parts
of the premise, and may fail to follow parts of the outline generated by the Plan module
(e.g., the first part of the premise and outline in Table 4.3). Second, due to failures in the
Rewrite and especially Edit modules, there remain some confusing passages or contradictory
statements: for example, in Table 4.3, the character Jaxon has a contradictory identity in
some places.

However, unlike rolling window methods, re3’s planning infrastructure is able to “self-
correct” back to the original high-level plot despite early errors in generation. The latter
part of the story in Table 4.3 illustrates this interesting capability.

See [168] Appendix J for additional complete, i.i.d. examples of stories from both re3
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PREMISE: After the loss of her father, Shannon is determined to finish college

and make something of herself. However, when she’s sucked into a time

portal and lands in the 19th century, Shannon has to find a way back to

her own time before it’s too late.

GENERATED OUTLINE:

1. Shannon is transported to the 19th century where she meets Jaxon

Montgomery.

2. Shannon and Jaxon fall in love, but she is still determined to find a way

back to her own time.

3. Shannon discovers that her father is still alive in the 19th century and

she must choose between staying with Jaxon or returning to her own time.

GENERATED STORY:

Shannon was running late and hurried along the sidewalk. She was supposed to

meet her best friend Hannah ...[423 words]...

When Jaxon proposed, we’d already been dating for over a year, so I [Hannah]

went with it. ...[470 words]...

Thinking about him [Jaxon] made Shannon smile slightly as she recalled the

first time they met ... right here in this backyard after noticing one

another edging closer together ...[197 words]...

Shannon smiled when she looked into his eyes ...[176 words]...

[Jaxon asks,] "What do you mean that you’re from the future?" ...[319

words]...

She looked him [Jaxon] straight in the eyes and said firmly, "I must go back

to my time now....[199 words]...

She felt tears stinging in her eyes ...[73 words]...

There was no way she could ever go back to her own time after all this.

...[287 words]...

Shannon looked down at her feet again, then back up at Jaxon and said, "My

father is alive?" ...[47 words]...

Jaxon gently rubbed Shannon’s back in support and quietly said, "Yes, my

love. He is alive and well. ...[52 words]...

Jaxon shook his head and said, "No, Shannon. I want you to be happy. And if

that means going back to your own time, then so be it." ...[72 words]...

Shannon Randall vanished from the 19th century, never to be seen again.

Table 4.3: Another heavily abridged re3 example generation (see [168] Appendix J, Tables
24 and 25 for complete setup and story). re3 initially fails to follow the premise and outline,
and in the beginning Jaxon is incorrectly introduced as Hannah’s love interest. However, both
issues are corrected in the subsequent story.

and baselines.
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Method Int. ↑ Coh. ↑ Rel. ↑ Hum. ↑ Misc. Prob. ↓

draft-rewrite-edit 50.3 46.7 50.7 70.0 1.33
re3 59.7 63.3 63.7 80.0 1.25

plan-draft-edit 46.3 42.3 42.7 59.7 1.48
re3 56.7 56.0 63.3 67.3 1.17

plan-draft-rewrite 55.0 60.3 59.3 87.7 1.10
re3 57.0 57.3 59.3 87.0 1.12

Table 4.4: Ablations on individual components of re3, removing the Plan, Rewrite, and Edit
modules respectively, examining comparisons of interestingness, coherence, relevance, humanlike-
ness, and counts of other problems. Each two rows show a pairwise comparison experiment between
re3 and the corresponding ablation. Bolding indicates significant differences with p < 0.05. Both
the Plan and Rewrite module are critical to performance, but the Edit module makes little differ-
ence.

Analysis

Ablation Study

Ablated Modules. We investigate the relative contribution of the individual modules of
Re3: Plan, Draft, Rewrite, and Edit. We ablate each module in turn as follows, except the
Draft module as it is unclear how our system would operate without it.

1. draft-rewrite-edit, a version of re3 without the Plan module. Accordingly, we
remove the recursive reprompting in Draft. Thus draft-rewrite-edit generates text
identically to the rolling baseline, but is revised by our Rewrite and Edit modules.

2. plan-draft-edit, a version of re3 without the Rewrite module reranking.
3. plan-draft-rewrite, a version of re3 which no longer edits using the Edit module.

Results. Table 4.10 shows that both the Plan and Rewrite modules, mimicking the human
planning and rewriting processes, are critical for overall plot coherence and premise relevance.
However, the Edit module contributes little to these metrics. We also observe qualitatively
that there remain many continuity issues in re3’s final stories which are not resolved by our
Edit module, but which could be fixed by an attentive human editor. Such continuity issues
range from non-character-centric inconsistencies, to facts which change over time, to outline
plot points which were omitted in the story.

Further Analysis of Edit Module

We use a controlled setting to investigate if the Edit module can at least detect the character-
based factual inconsistencies for which it is designed. We will refer to our detection subsystem
as structured-detect to avoid conflation with the Edit module as a whole.
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Task Setup. We construct an evaluation dataset as follows. First we generate setups fol-
lowing our Plan module, up to but not including the outline. For each setup s we randomly
resample a character’s description until we manually observe a contradiction with the orig-
inal, yielding a contradictory setup s′. For each of s and s′, we generate a story (t and t′),
resampling until the contradicted attribute appears in the story. If the resampling fails after
5 attempts we restart the whole procedure. We generate 50 (s, s′, t, t′) tuples in total; see
[168] Appendix L for an example.

The task is then framed as classification: the method should judge (s, t) and (s′, t′) as
consistent and (s, t′) and (s′, t′) as contradictory. Thus the 50 (s, s′, t, t′) tuples yield 200
input pairs.

Baselines. We construct two simple baselines using the same BART-Large-MNLI entail-
ment model used in structured-detect. Given a (s, t) pair, the first baseline, entail-
ment, simply checks each sentence of s pairwise against each sentence of t, and returns the
maximum probability of contradiction across all pairs. The second baseline, entailment-
dpr, checks each sentence of t against only one sentence of s based on relevance judged by
DPR [68].

Results. As shown in Table 4.5, when detecting character-based inconsistencies, structured-
detect outperforms the two baselines according to the standard ROC-AUC metric for clas-
sification [53]. Indeed, the most naive entailment system’s ROC-AUC score is barely better
than chance performance (0.5), highlighting the core challenge wherein the detection sys-
tem must be overwhelmingly precise. Moreover, structured-detect is designed to scale
to longer passages; we hypothesize that the performance gap compared to baselines would
widen in an evaluation with longer inputs such as the stories from our main experiments.

Even so, the absolute performance of all systems remains low, even in this simplified
setting. Additionally, many of our generated full stories contain non-character-based incon-
sistencies, such as in the setting or current scene. Some stories also contain false positives
(flagged non-contradictions), such as character attributes which change over time.

Additionally, while we did not formally analyze the GPT3 Edit API’s ability to correct
inconsistencies after they are detected (as this system is largely not our contribution), we
generally observed that it can fix isolated details but may struggle with larger changes. It
also sometimes makes undesired edits or additions. Taken together, the compounding errors
from the detection and correction subsystems make it difficult for our current Edit module

Method ROC-AUC ↑

entailment 0.528
entailment-dpr 0.610
structured-detect 0.684

Table 4.5: ROC-AUC score of predicted contradiction probabilities for different methods on our
evaluation set. structured-detect outperforms our two entailment-based baselines.
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to effectively improve factual consistency over a multiple-thousand-word horizon, without
simultaneously introducing unnecessary changes.

Discussion

We have considered the problem of automatically generating longer stories, proposing the
Re3 framework as an initial attempt at addressing the challenges of maintaining long-range
coherence and premise relevance. Our re3 implementation exhibits strong performance on
these metrics while generating stories over 2000 words long.

At its core, Re3 is a system for emulating the human writing process for long-form gen-
eration while leveraging only general-purpose language models in the generation procedure.
Thus concepts from Re3 can potentially be adapted to non-story domains as well, especially
the idea of dynamically re-injecting contextual information into a prompt. Moreover, should
human interaction be desired, Re3 is in principle highly controllable: most modules operate
almost entirely in natural language.

Nonetheless, our main goal remains to further improve automatic long-form story genera-
tion. While re3’s stories are an order of magnitude longer than those from prior work, most
humans would still consider them to be “short stories”—and on the shorter side at that.
Our long term goal is to generate interesting, long-range-coherent stories of greater length—
perhaps what humans might call “novellas”—and eventually full-length novels. One step in
this direction could be to extend Re3 using multiple levels of hierarchical outline generation
to obtain a much more detailed initial plan, as we do in [168] Appendix M to generate a
7500-word story.

In our view, the greatest barrier to further increasing story length is evaluation, which
frustrates efforts to benchmark systems during both test time and development. In this work,
we have compared re3 to baselines solely through human evaluation, which can be both
noisy as well as costly even with non-expert annotators. While prior works have proposed
some possible measures [8, 17], we hope that analyzing our generated stories (both re3

and baselines) can inspire further research on metrics for which we currently rely solely on
human annotation. For example, while there exist reasonable metrics for text similarity
on a sentence or paragraph level, long-form generation could benefit from metrics detecting
when a longer passage begins on-topic but slowly veers off-topic, or when a passage uses
on-topic vocabulary but is otherwise nonsensical in context. Similarly, improved metrics for
long-range factual contradictions could greatly aid efforts to improve generations’ factual
consistency, such as our Edit module. Even if new metrics do not completely replace human
annotations, they could help us both to evaluate longer stories as well as conduct more
detailed ablation studies with larger sample sizes.

Additionally, while re3’s stories are relatively plot-coherent and faithful to the premise,
substantial gaps remain along other axes compared to even beginner human writers. One
such axis is long-range factual continuity: while we believe our structured detection-correction
method is a human-like approach, our current Edit module is certainly not human-level.
Moreover, human stories exhibit long-range continuity along many axes other than just fac-
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tual attributes of characters, such as overall theme; scenes and world setting; pace and
tempo of storylines; and foreshadowing before major events. It remains highly nontrivial to
incorporate such considerations into automatic story generation.

4.2 Detailed Outline Control (DOC)

We next present an improved version of Re3 which conducts more detailed, hierarchical
planning and includes better control mechanisms for ensuring the plan is followed faithfully
in downstream story generation, featuring my previously developed method FUDGE [164].

Introduction

Recent advancements in natural language generation systems have fueled increased inter-
est in long-form text generation, in which texts may span thousands of words or more.
Compared to tasks with shorter outputs, long-form generation involves meaningfully differ-
ent challenges. It is nontrivial to maintain overarching coherence, or even basic relevance
to an initial premise or plan. Even the most advanced language models to date, such as
GPT4 [106], still cite long context as a major direction for further improvement, and require
structured planning to generate text longer than a few hundred words.

In this work, we focus on long-form story generation, which is representative of the
major difficulties in long text generation. Only recently have prior efforts even attempted
to generate stories of comparable length to human-authored “short stories” (Re3, [168]).
Compared to humans, state-of-the-art story generation systems like Re3 still fall short in
numerous areas: common failure modes include insufficient high-level planning resulting in
local fluency amid global incoherence, or deviating from said planning even when it exists.

To bridge some of this gap, we propose the Detailed Outline Control (DOC) framework.
While reusing the high-level planning-drafting-revision structure of Re3, DOC improves long-
range plot coherence via two complementary approaches.

First, our detailed outliner refines a brief initial outline into a more detailed, hierarchical
one (Figure 4.6 left). As motivation, a human author might also iteratively refine and expand
a brief initial outline before drafting a long document, using the outline to guide a coherent
plot rather than improvising plot points on the fly. Accordingly, our detailed outliner employs
a structured prompting procedure to create a detailed outline with length scalable according
to the desired scope of generation. Individual outline items are associated with a setting and
characters, and are carefully filtered for relevance and coherence in context.

Second, our detailed controller maintains faithfulness to our detailed outline by control-
ling passage generation based on corresponding outline items (Figure 4.6 right). Because
our detailed outline imposes many overlapping soft constraints, the detailed controller must
exert sufficient control strength to enforce them. The detailed controller must also accommo-
date flexible natural language inputs and be computationally efficient when generating with
state-of-the-art large language models. We implement the detailed controller as an OPT-
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1. Sue flies to Italy.
a. …

i. …
ii. Sue packs up.

b. …
2. …

…

……

… The day before her 
flight, Sue packed her 
bags, making sure to 
bring sunscreen …

Detailed Outline Generated Story
1. Sue …

2. …   

Outline

…

Detailed
Controller

Detailed
Outliner

Figure 4.6: High-level overview of DOC. Our detailed outliner expands a brief initial outline into
a more detailed outline. Our detailed controller then maintains faithfulness to the more detailed
outline when drafting the main story.

350m-based controller according to FUDGE [164], designing a contrastive training procedure
that aligns summaries to passage prefixes. In particular, we construct fluent hard negatives
to encourage lengthy outputs to be not only initially on topic, but relevant throughout.

Compared to the original Re3, the previous state of the art in long-form story genera-
tion, using DOC achieves dramatically higher plot coherence (22.5% absolute gain), outline
relevance (28.2%), and even interestingness (20.7%) in pairwise human evaluations. Our
ablations indicate that both the detailed outliner and detailed controller are critical. We
also demonstrate that DOC can generate stories in collaboration with humans, interacting
at a high-level planning stage rather than passage-by-passage as in many prior works [26,
83], and is overwhelmingly preferred over the original Re3 in this setting.10

Related Work

Although we generate stories an order of magnitude longer compared to most prior works [154,
171, 116, 162, 152], we highlight below several works which employ related ideas.

Hierarchical Generation. A key component of DOC is our detailed outliner, which gen-
erates an outline hierarchically. Hierarchical structure in long-form generation can be imple-

10All code and models are available at https://github.com/yangkevin2/doc-story-generation.
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mented as part of the model architecture itself [170, 99, 50], or as natural language outlines
or structured schema [zhao-etal-2020-bridging, narayan-etal-2021-planning, 37, 171,
45, 123, 143, 100, 168]. DOC’s detailed outliner also builds a natural language outline, but
can easily increase the level of detail to match the desired scope of the final story.

Controlled Generation. A second key component of DOC is the detailed controller,
which increases faithfulness to our detailed outline. Prior works such as [56] use constrained
decoding to guarantee rule-based constraints, while [29, 73, 164] propose modular control
schemes based on an auxiliary model for a desired attribute. However, such methods typically
do not handle natural language instructions.

In contrast, prompting [15, 179, 127, 160, 72, 108] offers a lightweight, flexible alternative.
However, while prompts are an effective way to provide context, they may be insufficient for
enforcing constraints due to the limited control strength, which is not easily tunable unlike
in our detailed controller.

Human-In-The-Loop Story Generation. Some previous works generate longer stories
with a human in the loop [44, 26, 83, 25, 60, 100]. We emphasize that DOC is designed
to generate stories without human intervention. Nevertheless, due to planning in natural
language space, DOC is in principle highly human-controllable. Unlike methods which in-
teract with the human passage by passage [26, 83], DOC can also interact at a higher-level
planning stage, as explored in our experiments.

Detailed Outline Control

We introduce the Detailed Outline Control (DOC) framework, aiming to improve long-range
plot coherence in automatically generated long stories.

Background and Motivation

A major inspiration for our work is Re3 [168], which generates plot-coherent long-form stories
of over 2000 words by decomposing the writing process into planning, drafting, rewriting,
and editing steps. Their high-level plan contains a setting, character inventory, and brief
three-point outline (e.g., Figure 4.6 “Outline”). In particular, when drafting each next story
passage, they inject relevant context from the high-level plan and previously generated story
via structured prompting (Figure 4.7). They finally rerank possible continuations using
rerankers for outline relevance and passage coherence, and edit for consistency. DOC follows
the high-level writing process and structured-prompting-based passage generation proposed
by [168], though we remove the time-consuming editing step, which they find does not
significantly affect final story quality.

However, [168] note that despite greatly outperforming simple rolling-window baselines,
Re3 still makes frequent errors in long-range coherence: some stories still contain lengthy
passages which seem not to fit the surrounding context, or deviate heavily from the initial
outline. DOC aims to address these shortcomings via two major innovations: more detailed
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1. Daisy is a kind-hearted old woman. 
She has cancer. Bill is her husband.

2. Lisa is Daisy’s daughter.

Structured Prompt For Drafting

Daisy is diagnosed with cancer. Lisa 
is trying to find a viable treatment.

Lisa has been stressed out lately, and 
Daisy expresses her concern.

Lisa tirelessly continues her research.
Lisa finally finds a cure.
Setting: Lisa’s laboratory.

Lisa looked back at Daisy, her eyes 
clear and full of determination. 

“I’ve got this, mom. Hang in there.”

Summary
(Far Past)

Summary
(Near Past)

Verbatim
Preceding
Passage

Upcoming
Events

Characters

Figure 4.7: Stylized example showing the main components of the structured prompt used to
draft new story passages in Re3 and DOC. Leveraging our detailed outline and detailed controller,
new elements of DOC’s prompt include character development over time (red), more detailed events
based on outline leaf nodes (orange), future context (green), and improved setting and character
information (purple).

planning via our detailed outliner, and correspondingly fine-grained control during drafting
via our detailed controller.

Detailed Outliner Motivation. While Re3’s outlines are plausible, they are insufficiently
concrete, and do not scale to longer stories. A human author would not write a novel given
just a three-sentence beginning, middle, and end. Not only can a more detailed outline
empirically result in improved plot coherence, but it can enable greater control in human
interaction as well, as we observe in our experiments.

Therefore, DOC constructs a detailed outline (e.g., Figure 4.6 “Detailed Outline”) with
depth adjustable according to the desired length of the final story. The detailed outline shifts
creative burden from drafting to planning, reducing the need to improvise plot points on the
fly during drafting.

Detailed Controller Motivation. The greater level of detail in our outline makes it much
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harder to stay faithful to that outline. To work with large language models such as GPT3-
175B during drafting, prior works such as Re3 have relied on clever prompting together with
rejection sampling or reranking. However, prompting and reranking approaches are limited
in the strength of control they can exert over the model distribution, which is especially
problematic for systems like Re3 which rely on complex constraints and long context in a
structured prompt. Indeed, [168] observe that many of Re3’s stories already omit parts
of even their brief three-point outline—and DOC’s outline will impose far more detailed
constraints.

Therefore, we design DOC’s detailed controller to more strongly enforce the complex
natural language constraints set by the outline. Our detailed controller, an adaptation of
FUDGE [164], will operate token-by-token throughout generation instead of relying on only
an initial prompt or post-hoc rejection sampling.

Outline

1. Sue flies to Italy.

2. …

Event Candidate
Generation

Setting + Character
Detection

a. Sue goes home.

a. Dave waves goodbye.
a. Sue calls her agent.

Filtering,
Reranking Setting: Sue’s home 

Characters: Sue, Anna

1. Sue flies to Italy.
a. 

1. Sue flies to Italy.
a. Sue calls her agent.

Breadth-First
Expansion

Figure 4.8: Diagram of new entry creation in the detailed outline. Our detailed outliner recursively
expands outline items in breadth-first order. To create each new entry, it proposes candidate events
and selects the best via filtering and reranking, and then detects the setting and relevant characters.
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Detailed Outliner

Our detailed outliner recursively generates a hierarchical detailed outline at arbitrary gran-
ularity. Figure 4.8 summarizes the individual components.

Breadth-First Expansion. Viewing the outline as a tree T initialized as just a root node
r, we generate children in breadth-first expansion order. Starting from the items of the initial
top-level outline (depth 1), we generate all of their children (depth 2), then all childrens’
children (depth 3), and so forth. For each parent node p, we generate children one by one,
stopping when a child c’s event description ends with the end-of-text token. We restart
and resample for a given p if there are too few or too many children, although empirically
this procedure almost always results in just two or three children. We terminate outline
generation after reaching a pre-specified depth.

Event Candidate Generation To generate possible event descriptions for a new child c
(Figure 4.8 bottom left), we use a structured prompting approach. To maintain coherence
with pre-existing nodes, the prompt contains context from all of c’s ancestors, together with
their respective children; in this way we provide relevant context whose length scales linearly
with depth. Suffix context is injected via the GPT3 Insertion API using InstructGPT3-175B
(text-davinci-002), the most advanced GPT model at the time of our experiments. See
[166] Appendix B.1 for an example prompt.

Filtering and Reranking. After generating several event candidates for each c, we select
the best via filtering and reranking. Specifically, we remove ill-formed candidates or those
which are highly repetitive compared to nodes not in c’s ancestors,11 as determined by both
word overlap and an entailment model [79].

For the first child of each parent, we select the remaining candidate most relevant to
the parent by sentence similarity [124]. For other children, to avoid repetition and improve
plot coherence, we select via an ordering model that predicts if an event occurs in the
correct location relative to nearby context. The ordering model is trained by finetuning
roberta-large [95] to detect out-of-order events in short outline-like stories. See [166]
Appendix A for complete details on our filtering and reranking pipeline.

Setting and Character Detection We further augment our outline by explicitly represent-
ing settings and characters for each outline item (Figure 4.8 bottom right), thus shifting
additional creative work from drafting to planning.

Our setting and character list are obtained by prompting InstructGPT3-175B ([166]
Appendix B.2). Characters are matched against an initial character inventory similar to
that of Re3, though we generate more characters since our outline is more detailed.

Drafting With Detailed Outlines
After constructing our detailed outline, story drafting largely follows Re3’s structured

prompting procedure based on injecting context from the plan and previous story (Figure

11However, since c is a sub-event of its ancestors, it is acceptable to repeat parts of ancestor texts. If no
candidates remain after filtering, we accept p as a leaf node which is already sufficiently concrete and does
not require further expansion.
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4.7; [166] Appendix B.4). However, instead of generating a fixed-length passage for each top-
level outline item as in Re3, we generate a variable-length passage for each leaf of our tree-
structured outline T (Figure 4.7, orange text), since different leaves may contain events at
differing levels of concreteness. Specifically, we reuse the outline relevance and text coherence
rerankers from Re3’s rewriting stage to detect when drafting is done for the current outline
item, implementing early stopping based on a score threshold. We also generate fewer tokens
than Re3 before reconstructing the structured prompt, for finer-grained control.

In the prompt, we additionally highlight the current setting (Figure 4.7, bottom purple
text), especially changes in setting. Characters (Figure 4.7, top purple text) are also retrieved
from the outline. In contrast, Re3 selects relevant characters for each passage on the fly during
drafting, and does not track setting information, which can result in unexpected changes in
story setting.

Character Development Over Time. Taking advantage of our detailed outline, we
explore a simple method to make DOC aware of character development over time, which
Re3 struggled to handle. Concretely, we attempt to infer a new fact about each character
whenever they appear in the outline ([166] Appendix B.3), filtering out facts already entailed
by a previously inferred fact from an earlier outline item. When drafting a story passage
corresponding to a given outline item, retrieved character descriptions in the prompt context
contain all facts inferred up to that outline item (Figure 4.7, red text).

Detailed Controller

Next, our detailed controller enhances the generator’s ability to maintain relevance to our
detailed outline. We implement the detailed controller as a FUDGE [164] controller to guide
passage generation according to a given summary. However, we will modify the FUDGE
training procedure to improve performance on longer outputs.

Lightweight, Adjustable-Strength, Natural Language Control. FUDGE is a lightweight,
modular control scheme that adds logits at each token of generation based on a future-aware
discriminator for a desired attribute. Control strength can be increased by multiplying the
added logits, but it is nontrivial to handle natural language instructions.

We adapt FUDGE to handle natural language instructions for the specific task of guid-
ing passage generation according to a short description. We collect a dataset of passage-
summary pairs by prompting InstructGPT3-13B to summarize story passages from the Writ-
ingPrompts dataset [37]; these summaries can then be viewed as outline events correspond-
ing to the original passages. We train the FUDGE discriminator contrastively by finetuning
OPT-350m to predict whether a passage prefix matches a given summary. In particular, we
construct hard negatives by matching passages with summaries from elsewhere in the same
story.

The result is a computationally lightweight detailed controller which can guide pas-
sage generation according to a short natural language description, with adjustable control
strength.
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Training to Maintain Relevance. In our training data, passages are either entirely
correct or entirely wrong for a given summary—even for “hard” negatives from the same
story—so the discriminator learns to predict high probabilities for any roughly aligned pas-
sage at test time. The resulting controller allows longer passages to quickly stray off topic
after starting out on topic.

Thus we construct even harder training negatives. Given a positive passage-summary
pair, we split the passage at a sentence boundary, and replace the text after the sentence
boundary with text from another passage in the same story (beginning at a sentence bound-
ary). We thus obtain grammatically-fluent corrupted passages which begin correctly for a
given summary, but eventually stray off topic. Prefixes of such passages ending after the
sentence boundary can then be given the negative label during training. Thus our detailed
controller learns to maintain high relevance to the input description.

Using the same methodology, we also construct “harder positives” by mixing negative
prefixes with positive completions, improving the controller’s ability to get back on track
should it go astray.

Drafting With Detailed Control
During drafting, we illustrate the flexibility of our detailed controller by controlling pas-

sages according to three different types of constraints imposed by our detailed outline, as
follows.

1. Event. We feed the event description (Figure 4.7, orange text) verbatim to the con-
troller.

2. Setting. If the setting changed from the previous outline item, we construct an input
“summary” stating that the characters move to the new setting, using lower control
strength compared to the event description.

3. Character. If a character appears who did not appear in the previous outline item, we
construct an input “summary” stating as such, again using lower control strength.

Control Strength. In practice, we must balance control strength: too low strength risks
deviating from the constraint, while too high strength risks narrowly-focused, repetitive
generations which sacrifice creativity. We aim to strike this balance dynamically during
drafting by using a control strength of 0 initially for each outline item, incrementing it with
each subsequent drafting step, until satisfying our early stopping criteria for moving to the
next outline item and resetting back to 0.

Future Context in Generation. Context from future parts of the outline can help gen-
erated passages transition better to subsequent story events. However, including future plot
points in the prompt risks premature generation of future events in the absence of proper
control, which we observed when trying to include such context in Re3. Our detailed con-
troller remedies this issue to some degree by controlling more strongly toward the current
outline item. Therefore, when drafting for a given outline item, we include the next outline
item as future context in the prompt (Figure 4.7, green text).
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Evaluation

Experiment Setup. Our setup is similar to [168]. The input is just a brief (English)
premise, typically 30-60 words, sampled from InstructGPT3-175B. The output is a complete
story. We do not impose further rule-based constraints, as it is unclear how to define a
“story,” let alone a “good” story. Instead, quality will be judged via human-annotated
metrics.

Metrics. To decrease noise, we compare 1000- to 1500-word passages corresponding to the
same top-level outline item, rather than complete stories.

We use three main metrics, similar to those from [168] ([166] Appendix C), adapted for
comparing passages instead of complete stories:

1. Coherent. Percentage of passages judged plot-coherent by human annotators.
2. Relevant. Percentage judged faithful to the corresponding outline item.
3. Interesting. Percentage judged interesting.

Annotators are shown two passages side-by-side ([166] Appendix K.1); for each metric
we ask them to annotate which passage is better, or possibly both or neither. Thus all
numbers are meaningful only relative to the method being compared against. Each pairwise
comparison is labeled by three annotators.

We use Surge AI for annotation due to observing higher-quality results compared to
Amazon Mechanical Turk. We find higher agreement compared to [168] ([166] Appendix I),
likely due to Surge AI and our more focused annotation task.

Method Instantiation. We henceforth refer to the concrete instantiation of our DOC
framework as doc. In particular, we set outline depth to 3 and limit the branching factor
to be between 2 and 5, resulting in stories averaging roughly 3500 words in length. We
limit the model context window to 1024 tokens as in [168], so final stories are substantially
longer than the visible context at any step. The base generator used during drafting is
OPT-175B [177], due to the practical issue of requiring deeper model access than the GPT3
API supports (specifically, efficient token-level access to logits). See [166] Appendix D for
further discussion, and [166] Appendix E for complete hyperparameters.

Baselines. We run two baselines.

1. re3: Our main baseline is based on Re3 [168], the only previous system we are aware
of that automatically generates stories of comparable length. For fair comparison,
we modify Re3 to also use OPT-175B during drafting. Hyperparameters are set to
their paper values, except for the number of generation steps per outline item, which
we increase slightly to match average story length with doc. We reuse the setting,
characters, and top-level outline from doc for re3, as the planning differs only slightly
up to here (doc only uses more characters, and generates the outline item-by-item
instead of in one shot).

2. rolling-opt: A sanity check using OPT-175B with the same context window as doc
and re3. The prompt contains the premise and top-level outline item ([166] Appendix
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F), followed by a rolling window on the previously-generated story as fits in the prompt.
rolling-opt generates the same length of text per outline item as re3.

Method Coherent Relevant Interesting

re3 45.1 37.1 39.4
doc 67.6 65.3 60.1

rolling-opt 38.0 25.4 25.4
doc 80.8 78.9 69.5

Table 4.6: Pairwise comparisons of doc against baselines on passages corresponding to top-level
outline items from 20 stories. Bold indicates significance with p < 0.05. doc stories are rated
substantially more plot-coherent, outline-relevant, and interesting compared to re3 and rolling-
opt.

Results. As shown in Table 4.6, doc passages are judged dramatically more plot-coherent
and outline-relevant compared to re3, not to mention the weak rolling-opt. The results
confirm our intuition that plot coherence and outline relevance should benefit from shifting
creative work from planning to drafting, together with improved control. Perhaps surpris-
ingly, annotators also judged doc’s passages to be significantly more interesting, which our
subsequent ablations suggest is a result of our more detailed (and more eventful) outline.

Of course, qualitative inspection reveals room for improvement. While doc usually
does not deviate heavily from the top-level outline—unlike re3, which is sometimes almost
completely off-topic—doc often fails to follow lower-level parts of the detailed outline. Long-
range factual consistency also remains a problem in both doc and re3. Occasional errors
in the detailed outline can be particularly damaging, resulting in cascading errors during
drafting. Additionally, outline leaves in doc are often inconsistent in level of detail: some
remain too vague while others seem over-expanded. Moreover, the detected settings and
characters at times seem incorrect or incomplete.

Table 4.8 shows a heavily abridged story written by doc according to the (also heavily
abridged) detailed outline in Table 4.7. See [166] Appendix M for complete, i.i.d. examples
of doc plans and stories.

Human-Interactive Story Generation

We additionally evaluate doc compared to re3 in an interactive setting, focusing on hu-
man controllability. Unlike prior human-in-the-loop approaches which operate passage by
passage [26, 83], we explore interaction at a higher-level planning stage, though in principle
doc can also support passage-level interaction.

Experiment Setup. The human writes a story premise, from which we generate an initial
plan with only a top-level (depth-1) outline. The human then edits for up to 5 minutes. The
resulting intermediate plan P is used in both doc and re3, which subsequently diverge. For
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PREMISE: A young woman is determined to never get married and live her life

alone, but when she meets a man who seems perfect for her, she begins to

rethink her decision.

GENERATED OUTLINE:

1. Jenna Adams meets Brian Johnson and immediately feels drawn to him.

a. Jenna Adams meets Brian Johnson and feels an instant connection to

him.

b. The two of them start dating and Jenna Adams begins to fall in love

with Brian Johnson.

2. Jenna Adams starts to think that maybe marriage isn’t so bad after all

when Brian Johnson seems like the perfect man for her.

a. Jenna Adams starts to think that maybe marriage isn’t so bad when

Brian Johnson seems like the perfect man for her.

b. After much soul searching, Jenna Adams decides that she wants to

marry Brian Johnson.

3. However, when Brian Johnson’s ex-girlfriend shows up and tries to win him

back, Jenna Adams realizes that marriage isn’t for her after all and that

it’s better to be alone than with someone who doesn’t truly love you.

a. Jenna Adams overhears a conversation between Brian Johnson and his

ex-girlfriend, Teresa Campbell.

b. Jenna Adams confronts Brian Johnson about the conversation and Brian

Johnson confesses that he still has feelings for Teresa Campbell.

c. Jenna Adams breaks up with Brian Johnson.

d. Jenna Adams decides that it’s better to be alone than with someone

who doesn’t truly love you.

Table 4.7: Example of a premise and heavily abridged doc outline (settings, characters, and
depth-3 items omitted; see [166] Appendix M, Table 28 for complete plan).

doc, we extend P with depth-2 and then depth-3 outline items, with up to 5 more minutes
of editing after generating each depth. For re3 the human simply edits P for up to 10 more
minutes. Thus both methods are allotted 15 minutes of total editing. We then generate
stories according to the final edited plans.

Metrics. We asked workers to label the following metrics specific to the interactive experi-
ence.

1. Intent. Which system’s passage better followed their original intent as author.
2. Control. Which system’s workflow they felt gave them more control.
3. Intuition. Which system was more helpful or intuitive to work with.
4. Quality. Which system they would choose to write another story, if prioritizing quality.

The intent metric is passage-level, while all others operate on the complete story level.
Annotators label which system is better for each metric, or no preference ([166] Appendix
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GENERATED STORY:

...[85 words]...

The first time Jenna saw him she stopped short in the middle of the aisle

between bookshelves and looked up at him, her heart beating faster.

...[331 words]...

Jenna Adams wanted their relationship to go somewhere. ...[106 words]...

Maybe marriage wasn’t so bad after all. ...[419 words]...

[Jenna:] I love you, Brian Johnson. I want to be with you forever. I want

you to give me a ring and ask me to marry you. ...[811 words]...

[Jenna:] I still love you, but I just cannot trust your promises anymore.

...[222 words]...

[Jenna:] I overheard the conversations that you had with Teresa Campbell

...[122 words]...

[Brian:] I want you in my life forever. But I am confused about how I feel

towards you and Teresa Campbell. ...[285 words]...

Jenna Adams then threw the ring into the fire pit that was in their backyard.

She left Brian Johnson standing there in shock. ...[244 words]...

Table 4.8: A heavily abridged doc story generated from the outline shown in Table 4.7 (see
[166] Appendix M, Table 29 for complete story). Although some issues remain, the story has
a coherent overarching plot which follows the outline.

K.2).

Method Intent Control Intuition Quality

re3 17.3 5.0 5.0 15.0
doc 80.0 80.0 80.0 75.0

Table 4.9: Pairwise comparison of doc vs. re3 on 20 human-interactive story generation runs.
Humans judged faithfulness to authorial intent, control over generation, system intuitiveness, and
story quality. Numbers indicate the percentage of responses in favor of each system, with “no
preference” responses omitted. Bolding indicates significance with p < 0.05. doc is preferred by a
wide margin on all metrics.

Results. As shown in Table 4.9, humans overwhelmingly preferred doc’s interaction
paradigm to re3 on all four of our human-interactive metrics: at least three-fourths in-
dicated doc as superior on each metric. In optional free-form comments ([166] Appendix J),
reactions to overall story quality vary widely from disappointed to pleased, but clearly indi-
cate that doc’s stories are more faithful to the plot outline and authors’ original intentions.
The results confirm that doc’s more detailed outline and improved control during drafting
lead to humans judging doc as more controllable and more faithful to authorial intent.
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Analysis

Ablation Study

Ablated Components. To ablate the two main components of doc, we modify doc as
follows:

1. doc-nooutline, which generates only according to the top-level outline instead of
the full detailed outline, using fixed passage length per outline item (instead of early
stopping) and a fixed-strength detailed controller.

2. doc-nocontrol, which is identical to doc except the detailed controller is turned
off.

We reuse the same coherence, relevance, and interestingness metrics from Table 4.6.

Method Coherent Relevant Interesting

doc-nooutline 61.8 41.2 57.8
doc 73.5 64.7 66.7

doc-nocontrol 62.7 52.0 58.8
doc 70.6 73.5 50.0

Table 4.10: Pairwise comparisons of doc vs. ablations without the detailed outliner and detailed
controller, respectively, on passages from 10 stories. Bold indicates significance with p < 0.05. Al-
though the results on plot-coherence and interestingness are inconclusive, both the detailed outliner
and detailed controller are important for outline relevance.

Results. As shown in Table 4.10, compared to both ablations, doc maintains significantly
higher relevance to top-level outline items. Thus both the detailed outliner and detailed
controller meaningfully contribute to our method’s ability to follow the high-level outline.
Although the gaps in plot coherence and interestingness are not statistically significant, the
ablations suggest that doc’s gain in interestingness compared to prior work is mainly due
to the more detailed outline; if anything, the detailed controller may slightly hurt interest-
ingness. Indeed—perhaps unsurprisingly—we observe qualitatively that further increasing
control strength yields increasingly narrowly-focused, repetitive outputs at the expense of
creativity.

Detailed Relevance Evaluation

We now examine doc’s faithfulness to the outline at the leaves instead of at the top level.
For each leaf-node outline item, we ask one annotator whether the event specified in the leaf
occurred in either the corresponding passage or in the immediately preceding and following
passages ([166] Appendix K.3). We do the same for doc-nocontrol.
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Method Detailed-Relevant

doc-nocontrol 37.8
doc 58.5

Table 4.11: Percentage of short passages that are faithful to corresponding outline leaf nodes,
ablating the detailed controller. Bold indicates significance with p < 0.05. The detailed controller
greatly improves relevance to leaf nodes.

Results. Table 4.11 confirms that the detailed controller substantially improves doc’s
ability to follow low-level outline details during drafting.

However, the overall numbers remain low, pointing to two issues. First, the outline
leaf itself may be problematic: it may be unexpected in context, or overly vague. Second,
the detailed controller may be unable to sufficiently steer the generation without further
increasing control strength (which may sacrifice fluency). Thus, while doc is substantially
more faithful to the outline compared to baselines, a good deal of headroom remains.

Discussion

We have presented the DOC framework for improving long-range coherence in long-form
story generation. DOC uses a detailed outliner to shift creative work from drafting to
planning, and employs a detailed controller to maintain faithfulness to the detailed outline
during drafting. Compared to the prior state-of-the-art, Re3, DOC dramatically improves
the plot-coherence, outline relevance, and even interestingness of generated stories according
to human annotators.

4.3 Additional Projects

Finally, I will also briefly describe some recent and ongoing works which dive deeper into
particular facets of long-form story generation.

Personalization

In [150], I collaborated on a project for improving personalization in the evaluation of stories.
We construct two datasets based on movie plots and automatically generated story outlines,
ask humans to provide detailed feedback on several plots or outlines, and track annotator
IDs in order to investigate personalization. In particular, we propose to anonymize and
summarize data where needed in order to avoid biases originating from data contamination
issues in pretraining. We then fine-tune LLaMA-13B to get a personalized story evaluator,
PerSE, which predicts an unseen test-time reviewer’s evaluation of a story plot along different
axes given just one to three examples of previous evaluations by the same reviewer. We find
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that PerSE performs quite well in practice at predicting human ratings given just a small
number of review examples, for instance significantly beating GPT-4 in this setting.

Pacing

In [155], I collaborated on a project for improving pacing in automatically-generated story
outlines (and hence downstream stories). We observe that automatically generated story
outlines from e.g., DOC [166] are often wildly inconsistent in pacing, with some parts being
too detailed while others are too vague in comparison. We construct a large dataset of story
passages and summaries written in similar styles using a data augmentation approach based
on using LLMs to summarize, and use this dataset to train an evaluator of the pairwise
concreteness or vagueness of two story passages. We then use this evaluator to implement
a “vaguest-first expansion” procedure in generating the hierarchical outline in the style of
DOC, and also use the evaluator to evaluate and re-sample child nodes as required. We find
that our final method, CONCOCT, significantly improves pacing on both story outlines and
downstream generated stories according to human evaluators, without compromising other
attributes of story quality such as interestingness, plot coherence, and premise relevance.

Factual Consistency

I am also currently involved in an ongoing collaboration attempting to build a structured
framework for maintaining factual consistency within a story outline, which we hope to
extend to downstream stories to improve factual consistency. Our method substantially ex-
tends the basic ideas from the Edit module in Re3. When generating each new point of a
story outline, we extract facts and decompose them into atomic statements. We additionally
categorize them into pre-facts, post-facts, or static facts depending on their window of va-
lidity. As a result, our framework can distinguish between legitimate factual contradictions
and redundancies as opposed to simple changes over time within a story. We are aiming
to complete our empirical evaluations and submit the work to a conference in the coming
months.

Improved Generation Efficiency

Finally, in [182] I collaborated on a project that makes the automatic story generation
procedure of DOC much more efficient, by fine-tuning a single end-to-end language model
(LLaMA) to generate outlines in the style of DOC outlines without requiring the many
hierarchical API calls used in DOC. The resulting generator is much more efficient without
sacrificing quality.

I have also recently released an updated version of my automatic story generation code
at https://github.com/facebookresearch/doc-storygen-v2. This updated code takes
advantage of recent language model releases such as LLaMA-2 [144] and GPT-4 [106] to
dramatically simplify our pipeline, making it both faster and easier to build upon our work.
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Chapter 5

Conclusion

In this thesis, I have presented several works on controlling LLM outputs in different set-
tings. First, in Chapter 2, I presented FUDGE [164] and RLCD [169], general control
methods for natural language outputs covering both pure inference-time control as well as
fine-tuning based alignment. Next, in Chapter 3, I presented control methods for more struc-
tured domains, ranging from molecule design and program synthesis to semantic parsing and
crosswords. Finally, I applied control methods to much longer outputs in my automatic story
generation works Re3 [168] and DOC [166], in which I endeavor to generate stories thousands
of words in length while preserving long-range plot coherence.

I will finally conclude with a discussion of potential future directions, focusing on ongoing
challenges in long-form outputs.

Other Text Domains. I have focused on creative stories in Chapter 4, but I believe
many of the high-level ideas could be applicable to other long-form text generation settings,
such as Wikipedia articles or movie scripts. Generation in such settings could potentially
benefit from detailed planning via an outline, combined with additional control to maintain
faithfulness to the initial plan. Of course, many of our specific prompts would require
substantial modification to adapt to a new domain.

Improved Human Interaction. In Chapter 4 we experimented with doc in a human-
interactive setting, enabling the human to interact with doc at a high-level planning stage,
in contrast to previous works which operated at the drafting level [26, 83]. We are excited to
continue exploring novel forms of human interaction and co-creativity that become possible
as automated generation capabilities continue to improve.

Scaling to Longer Texts. While our stories (exceeding 3500 words on average) are lengthy
by neural text generation standards, they remain relatively short by human authors’ stan-
dards. We hope to eventually develop systems which can scale to full-length novels. We
believe DOC makes an important contribution toward this ambitious goal by generating
outlines with granularity scalable to story length, while also providing better control mecha-
nisms to maintain faithfulness to the outline during drafting. However, there remain major
barriers to high-quality longer generations, two of which we describe below.
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Evaluation. While some recent works have suggested metrics for longer generations [17,
96], there is currently no substitute for human judgments for long-form outputs of the scale
that we are concerned with, due to the sheer length of evaluated passages and complexity
of our metrics. For example, it is unclear how one might automatically measure overarching
plot coherence, or especially interestingness. However, automated metrics for relevance may
be more tractable, especially as applied to our more fine-grained experiments on low-level
outline items with shorter passages (subsection 4.2). To facilitate such efforts, we have open-
sourced all annotations collected during our experiments, in hopes that they prove useful for
developing improved metrics for long-form generation.

Another wrinkle of evaluation with open-ended text generation is that the evaluation can
be highly subjective—even expert humans may disagree on the relative merits of different
outputs. Hence it may be worthwhile to investigate personalization, which I have begun to
do so in collaborations such as [150].

Long-Range Consistency. A second major problem is internal consistency over long
passages, of which one major component is factual consistency. While more detailed outlines
may help somewhat in this respect, outlining improvements may fundamentally struggle to
help with consistency of low-level details which may not be salient enough to appear in
the outline at all. doc’s stories occasionally contain glaring errors, e.g., inconsistent names
or genders, and errors sometimes occur even during outlining, leading to cascading errors
during drafting. Moreover, we have not yet mentioned non-factual aspects of long-range
consistency besides overarching plot coherence. Such aspects include maintaining consistent
story pacing, or literary devices such as foreshadowing, which are themselves interesting
directions for exploration. While I have started to investigate topics like pacing in more detail
in recent collaborations such as [155], and have some ongoing work on factual consistency,
substantial work remains to be done.
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[74] Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. “Grammar Vari-
ational Autoencoder”. In: arXiv preprint arXiv:1703.01925 (2017).

[75] Guillaume Lample et al. “Multiple-attribute text rewriting”. In: International Con-
ference on Learning Representations. 2018.

[76] Guillaume Lample et al. “Phrase-based & neural unsupervised machine translation”.
In: arXiv preprint arXiv:1804.07755 (2018).

[77] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. “Curl: Contrastive unsupervised
representations for reinforcement learning”. In: International Conference on Machine
Learning. PMLR. 2020, pp. 5639–5650.

[78] Michael Laskin et al. “Cic: Contrastive intrinsic control for unsupervised skill discov-
ery”. In: arXiv preprint arXiv:2202.00161 (2022).

[79] Moritz Laurer et al. Less annotating, more classifying–addressing the data scarcity
issue of supervised machine learning with deep transfer learning and bert-nli. 2022.



BIBLIOGRAPHY 87

[80] Angeliki Lazaridou, Anna Potapenko, and Olivier Tieleman. “Multi-agent Commu-
nication meets Natural Language: Synergies between Functional and Structural Lan-
guage Learning”. In: arXiv preprint arXiv:2005.07064 (2020).

[81] Chia-Hsuan Lee, Hao Cheng, and Mari Ostendorf. “Dialogue state tracking with a
language model using schema-driven prompting”. In: arXiv preprint arXiv:2109.07506
(2021).

[82] Dong-Hyun Lee. “Pseudo-label: The simple and efficient semi-supervised learning
method for deep neural networks”. In: Workshop on challenges in representation
learning, ICML. Vol. 3. 2013, p. 2.

[83] Mina Lee, Percy Liang, and Qian Yang. “CoAuthor: Designing a Human-AI Col-
laborative Writing Dataset for Exploring Language Model Capabilities”. In: arXiv
preprint arXiv:2201.06796 (2022).

[84] Mike Lewis et al. “BART: Denoising Sequence-to-Sequence Pre-training for Natural
Language Generation, Translation, and Comprehension”. In: CoRR abs/1910.13461
(2019). arXiv: 1910.13461. url: http://arxiv.org/abs/1910.13461.

[85] Mike Lewis et al. “Bart: Denoising sequence-to-sequence pre-training for natural lan-
guage generation, translation, and comprehension”. In: arXiv preprint arXiv:1910.13461
(2019).

[86] Patrick Lewis et al. “Retrieval-augmented generation for knowledge-intensive nlp
tasks”. In: Advances in Neural Information Processing Systems 33 (2020), pp. 9459–
9474.

[87] Boyang Li et al. “Story generation with crowdsourced plot graphs”. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 27. 1. 2013, pp. 598–604.

[88] Jiwei Li et al. “A diversity-promoting objective function for neural conversation mod-
els”. In: arXiv preprint arXiv:1510.03055 (2015).

[89] Lucy Li and David Bamman. “Gender and representation bias in GPT-3 generated
stories”. In: 2021.

[90] Zhiyu Lin and Mark O Riedl. “Plug-and-blend: a framework for plug-and-play con-
trollable story generation with sketches”. In: Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment. Vol. 17. 1. 2021, pp. 58–
65.

[91] Guoqing Liu et al. “Return-based contrastive representation learning for reinforce-
ment learning”. In: arXiv preprint arXiv:2102.10960 (2021).

[92] Nelson F Liu et al. “Lost in the Middle: How Language Models Use Long Contexts”.
In: arXiv preprint arXiv:2307.03172 (2023).

[93] Pengfei Liu et al. “Pre-train, prompt, and predict: A systematic survey of prompting
methods in natural language processing”. In: arXiv preprint arXiv:2107.13586 (2021).



BIBLIOGRAPHY 88

[94] Ruibo Liu et al. “Data Boost: Text Data Augmentation through Reinforcement Learn-
ing Guided Conditional Generation”. In: Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP). 2020, pp. 9031–9041.

[95] Yinhan Liu et al. “Roberta: A robustly optimized bert pretraining approach”. In:
arXiv preprint arXiv:1907.11692 (2019).

[96] Shahbuland Matiana et al. “Cut the CARP: Fishing for zero-shot story evaluation”.
In: arXiv preprint arXiv:2110.03111 (2021).

[97] David McClosky, Eugene Charniak, and Mark Johnson. “Effective self-training for
parsing”. In: Proceedings of the main conference on human language technology con-
ference of the North American Chapter of the Association of Computational Linguis-
tics. Association for Computational Linguistics. 2006, pp. 152–159.

[98] Yishu Miao and Phil Blunsom. “Language as a latent variable: Discrete generative
models for sentence compression”. In: arXiv preprint arXiv:1609.07317 (2016).

[99] Lesly Miculicich et al. “Document-level neural machine translation with hierarchical
attention networks”. In: arXiv preprint arXiv:1809.01576 (2018).

[100] Piotr Mirowski et al. “Co-Writing Screenplays and Theatre Scripts with Language
Models: An Evaluation by Industry Professionals”. In: arXiv preprint arXiv:2209.14958
(2022).

[101] MosaicML. Introducing MPT-7B: A New Standard for Open-Source, Commercially
Usable LLMs. 2023. url: https://www.mosaicml.com/blog/mpt-7b.

[102] Nathan Ng et al. “Facebook FAIR’s WMT19 News Translation Task Submission”.
In: arXiv preprint arXiv:1907.06616 (2019).

[103] Mohammad Norouzi et al. “Reward augmented maximum likelihood for neural struc-
tured prediction”. In: Advances In Neural Information Processing Systems. 2016,
pp. 1723–1731.

[104] Marcus Olivecrona et al. “Molecular de-novo design through deep reinforcement learn-
ing”. In: Journal of cheminformatics 9.1 (2017), p. 48.

[105] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. “Representation learning with
contrastive predictive coding”. In: arXiv preprint arXiv:1807.03748 (2018).

[106] OpenAI. GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL].

[107] OpenAI. Introducing ChatGPT. 2022. url: https : / / www . openai . com / blog /
chatgpt.

[108] Long Ouyang et al. “Training language models to follow instructions with human
feedback”. In: arXiv preprint arXiv:2203.02155 (2022).

[109] Kishore Papineni et al. “BLEU: a method for automatic evaluation of machine trans-
lation”. In: Proceedings of the 40th annual meeting of the Association for Computa-
tional Linguistics. 2002, pp. 311–318.



BIBLIOGRAPHY 89

[110] Richard E. Pattis. Karel the Robot: A Gentle Introduction to the Art of Programming.
1st. New York, NY, USA: John Wiley & Sons, Inc., 1981. isbn: 0471089281.

[111] Jonathan Pei, Kevin Yang, and Dan Klein. PREADD: Prefix-Adaptive Decoding for
Controlled Text Generation. 2023.

[112] Nanyun Peng et al. “Towards controllable story generation”. In: NAACL Story-NLP
Workshop. 2018.

[113] Jeffrey Pennington, Richard Socher, and Christopher D Manning. “Glove: Global
vectors for word representation”. In: Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP). 2014, pp. 1532–1543.

[114] Mariya Popova, Olexandr Isayev, and Alexander Tropsha. “Deep reinforcement learn-
ing for de novo drug design”. In: Science advances 4.7 (2018), eaap7885.

[115] Matt Post et al. “Improved speech-to-text translation with the Fisher and Callhome
Spanish–English speech translation corpus”. In: Proc. IWSLT. 2013.

[116] Lianhui Qin et al. “Counterfactual story reasoning and generation”. In: (2019).

[117] Alec Radford et al. “Language Models are Unsupervised Multitask Learners”. In:
(2019).

[118] Alec Radford et al. Improving language understanding by generative pre-training.
2018.

[119] Rafael Rafailov et al. “Direct preference optimization: Your language model is secretly
a reward model”. In: arXiv preprint arXiv:2305.18290 (2023).

[120] Colin Raffel et al. “Exploring the Limits of Transfer Learning with a Unified Text-to-
Text Transformer”. In: Journal of Machine Learning Research 21.140 (2020), pp. 1–
67. url: http://jmlr.org/papers/v21/20-074.html.

[121] Nazneen Rajani et al. “Can foundation models label data like humans?” In: Hugging
Face Blog (2023). https://huggingface.co/blog/llm-v-human-data.

[122] Sudha Rao and Joel Tetreault. “Dear sir or madam, may i introduce the gyafc dataset:
Corpus, benchmarks and metrics for formality style transfer”. In: arXiv preprint
arXiv:1803.06535 (2018).

[123] Hannah Rashkin et al. “PlotMachines: Outline-conditioned generation with dynamic
plot state tracking”. In: arXiv preprint arXiv:2004.14967 (2020).

[124] Nils Reimers and Iryna Gurevych. “Sentence-bert: Sentence embeddings using siamese
bert-networks”. In: arXiv preprint arXiv:1908.10084 (2019).

[125] David Rogers and Mathew Hahn. “Extended-Connectivity Fingerprints”. In: J. Chem.
Inf. Model. 50.5 (2010), pp. 742–754.

[126] Elizabeth Salesky, Matthias Sperber, and Alex Waibel. “Fluent translations from dis-
fluent speech in end-to-end speech translation”. In: arXiv preprint arXiv:1906.00556
(2019).



BIBLIOGRAPHY 90

[127] Victor Sanh et al. “Multitask prompted training enables zero-shot task generaliza-
tion”. In: arXiv preprint arXiv:2110.08207 (2021).

[128] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint
arXiv:1707.06347 (2017).

[129] Abigail See et al. “Do massively pretrained language models make better storytellers?”
In: (2019).

[130] Abigail See, Peter J Liu, and Christopher D Manning. “Get to the point: Summariza-
tion with pointer-generator networks”. In: arXiv preprint arXiv:1704.04368 (2017).

[131] Abigail See et al. “What makes a good conversation? how controllable attributes
affect human judgments”. In: arXiv preprint arXiv:1902.08654 (2019).

[132] Marwin HS Segler et al. “Generating focussed molecule libraries for drug discovery
with recurrent neural networks”. In: arXiv preprint arXiv:1701.01329 (2017).

[133] Rico Sennrich, Barry Haddow, and Alexandra Birch. “Improving neural machine
translation models with monolingual data”. In: arXiv preprint arXiv:1511.06709 (2015).

[134] Sheng Shen et al. “Pragmatically informative text generation”. In: arXiv preprint
arXiv:1904.01301 (2019).

[135] Charlie Snell, Dan Klein, and Ruiqi Zhong. “Learning by distilling context”. In: arXiv
preprint arXiv:2209.15189 (2022).

[136] Teague Sterling and John J Irwin. “ZINC 15–ligand discovery for everyone”. In:
Journal of chemical information and modeling 55.11 (2015), pp. 2324–2337.

[137] Nisan Stiennon et al. “Learning to summarize with human feedback”. In: Advances
in Neural Information Processing Systems 33 (2020), pp. 3008–3021.

[138] Emma Strubell, Ananya Ganesh, and Andrew McCallum. “Energy and policy con-
siderations for deep learning in NLP”. In: arXiv preprint arXiv:1906.02243 (2019).

[139] Nishant Subramani, Samuel Bowman, and Kyunghyun Cho. “Can Unconditional Lan-
guage Models Recover Arbitrary Sentences?” In: Advances in Neural Information
Processing Systems. 2019, pp. 15258–15268.

[140] Fan-Yun Sun, Jordan Hoffmann, and Jian Tang. “InfoGraph: Unsupervised and Semi-
supervised Graph-Level Representation Learning via Mutual Information Maximiza-
tion”. In: arXiv preprint arXiv:1908.01000 (2019).

[141] Zhiqing Sun et al. “Principle-driven self-alignment of language models from scratch
with minimal human supervision”. In: arXiv preprint arXiv:2305.03047 (2023).

[142] Yuandong Tian. “Understanding deep contrastive learning via coordinate-wise opti-
mization”. In: Advances in Neural Information Processing Systems 35 (2022), pp. 19511–
19522.



BIBLIOGRAPHY 91

[143] Yufei Tian and Nanyun Peng. “Zero-Shot Sonnet Generation with Discourse-Level
Planning and Aesthetics Features”. In: 2022 Annual Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics (NAACL). 2022.

[144] Hugo Touvron et al. “Llama 2: Open Foundation and Fine-Tuned Chat Models”. In:
arXiv preprint arXiv:2307.09288 (2023).

[145] Hugo Touvron et al. “Llama: Open and efficient foundation language models”. In:
arXiv preprint arXiv:2302.13971 (2023).

[146] Scott R Turner. “The creative process: A computer model of storytelling and creativ-
ity.” In: (1994).

[147] Eric Wallace et al. “Automated Crossword Solving”. In: 2022.

[148] Eric Wallace, Mitchell Stern, and Dawn Song. “Imitation Attacks and Defenses for
Black-box Machine Translation Systems”. In: arXiv preprint arXiv:2004.15015 (2020).

[149] Eric Wallace et al. “Universal adversarial triggers for attacking and analyzing NLP”.
In: arXiv preprint arXiv:1908.07125 (2019).

[150] Danqing Wang et al. “Learning Personalized Story Evaluation”. In: arXiv preprint
arXiv:2310.03304 (2023).

[151] Qixin Wang et al. “Chinese song iambics generation with neural attention-based
model”. In: arXiv preprint arXiv:1604.06274 (2016).

[152] Rose E Wang et al. “Language modeling via stochastic processes”. In: (2022).

[153] Su Wang, Greg Durrett, and Katrin Erk. “Narrative interpolation for generating and
understanding stories”. In: arXiv preprint arXiv:2008.07466 (2020).

[154] Tianming Wang and Xiaojun Wan. “T-CVAE: Transformer-Based Conditioned Vari-
ational Autoencoder for Story Completion.” In: 2019.

[155] Yichen Wang et al. “Improving Pacing in Long-Form Story Planning”. In: EMNLP
Findings (2023).

[156] Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. “Neural network accept-
ability judgments”. In: Transactions of the Association for Computational Linguistics
7 (2019), pp. 625–641.

[157] Robert L Weide. “The CMU pronouncing dictionary”. In: URL: http://www. speech.
cs. cmu. edu/cgibin/cmudict (1998).

[158] David Weininger. “SMILES, A Chemical Language and Information System. 1. Intro-
duction to Methodology and Encoding Rules”. In: J. Chem. Inf. Model. 28.1 (1988),
pp. 31–36.



BIBLIOGRAPHY 92

[159] Adina Williams, Nikita Nangia, and Samuel Bowman. “A Broad-Coverage Challenge
Corpus for Sentence Understanding through Inference”. In: Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers). New Orleans,
Louisiana: Association for Computational Linguistics, 2018, pp. 1112–1122. url:
http://aclweb.org/anthology/N18-1101.

[160] Yuhuai Wu et al. “Autoformalization with large language models”. In: arXiv preprint
arXiv:2205.12615 (2022).

[161] Qizhe Xie et al. “Unsupervised data augmentation”. In: arXiv preprint arXiv:1904.12848
(2019).

[162] Peng Xu et al. “MEGATRON-CNTRL: Controllable story generation with external
knowledge using large-scale language models”. In: (2020).

[163] Kevin Yang et al. “Addressing Resource and Privacy Constraints in Semantic Parsing
Through Data Augmentation”. In: 2022.

[164] Kevin Yang and Dan Klein. “FUDGE: Controlled text generation with future dis-
criminators”. In: NAACL (2021).

[165] Kevin Yang et al. “Analyzing Learned Molecular Representations for Property Pre-
diction”. In: Journal of chemical information and modeling (2019).

[166] Kevin Yang et al. “Doc: Improving long story coherence with detailed outline control”.
In: ACL (2023).

[167] Kevin Yang et al. “Improving Molecular Design by Stochastic Iterative Target Aug-
mentation”. In: ICML (2020).

[168] Kevin Yang et al. “Re3: Generating longer stories with recursive reprompting and
revision”. In: EMNLP (2022).

[169] Kevin Yang et al. “Rlcd: Reinforcement learning from contrast distillation for lan-
guage model alignment”. In: arXiv preprint arXiv:2307.12950 (2023).

[170] Zichao Yang et al. “Hierarchical attention networks for document classification”. In:
Proceedings of the 2016 conference of the North American chapter of the association
for computational linguistics: human language technologies. 2016, pp. 1480–1489.

[171] Lili Yao et al. “Plan-and-write: Towards better automatic storytelling”. In: 2019.

[172] Jiaxuan You et al. “Graph convolutional policy network for goal-directed molecular
graph generation”. In: Advances in Neural Information Processing Systems. 2018,
pp. 6410–6421.

[173] Lantao Yu et al. “Seqgan: Sequence generative adversarial nets with policy gradient”.
In: Thirty-first AAAI conference on artificial intelligence. 2017.

[174] Meng-Hsuan Yu et al. “Draft and edit: Automatic storytelling through multi-pass
hierarchical conditional variational autoencoder”. In: Proceedings of the AAAI Con-
ference on Artificial Intelligence. Vol. 34. 02. 2020, pp. 1741–1748.



BIBLIOGRAPHY 93

[175] Manzil Zaheer et al. “Big bird: Transformers for longer sequences”. In: arXiv preprint
arXiv:2007.14062 (2020).

[176] Lisa Zhang et al. “Leveraging Constraint Logic Programming for Neural Guided Pro-
gram Synthesis”. In: (2018).

[177] Susan Zhang et al. “Opt: Open pre-trained transformer language models”. In: arXiv
preprint arXiv:2205.01068 (2022).

[178] Xingxing Zhang and Mirella Lapata. “Chinese poetry generation with recurrent neural
networks”. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). 2014, pp. 670–680.

[179] Ruiqi Zhong et al. “Adapting language models for zero-shot learning by meta-tuning
on dataset and prompt collections”. In: arXiv preprint arXiv:2104.04670 (2021).

[180] Zhi-Hua Zhou and Ming Li. “Tri-training: Exploiting unlabeled data using three clas-
sifiers”. In: IEEE Transactions on Knowledge & Data Engineering 11 (2005), pp. 1529–
1541.

[181] Banghua Zhu, Jiantao Jiao, and Michael I Jordan. “Principled Reinforcement Learn-
ing with Human Feedback from Pairwise or K-wise Comparisons”. In: arXiv preprint
arXiv:2301.11270 (2023).

[182] Hanlin Zhu et al. “End-to-end Story Plot Generator”. In: arXiv preprint arXiv:2310.08796
(2023).

[183] Daniel M Ziegler et al. “Fine-tuning language models from human preferences”. In:
arXiv preprint arXiv:1909.08593 (2019).


