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Abstract

Automated Tree Censusing from Aerial Imagery with Noisy Supervision

by

Sandeep Mukherjee

Master of Science in Computer Science

University of California, Berkeley

Professor Ken Golderg, Chair

Classifying trees from GPS-registered aerial imagery poses several challenges: data are low-
signal and noisy and there is a long-tailed, fine-grained class distribution. In this setting, su-
pervised classification heads trained on DINO features under-perform simple fully-supervised
classifiers. On the other hand, noise-resistant feature extraction excels but can be overly
class-indicative. We find that the Graph Attention Transformer (GAT), is well-specified
to model geo-spatial correlations present in aerial imagery, but tail class sensitivity suffers
when trained on overly class-indicative features (section 6.2). We present Softening Head
Imbalances with Effective Learning and Debiasing for Graph Neural Networks (SHIELD-
GNN), a classification method that uses temperature-softened teacher prediction penalties
and test-time debiasing for graph-aware predictions, surpassing baselines by up to 7% accu-
racy and 3% average recall.

In this thesis, we also provide a justification for why SHIELD-GNN is able to prevent tail
class smoothing with empirical evidence. Finally, we provide early results for ongoing work
in tree segmentation.
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1.1 Real and Induced Noise. Auto Arborist is a naturally noisy dataset due to
it’s data collection process. Here we demonstrate two kinds of noise: multi-object
noise (left) and null noise (no object, center left). In xView, we show induced
noise on the container crane (center right) and airplane hangar (right) categories.
On the right image, we see that a collection of planes, which is likely correlated
with airplane hangars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Examples of clean imagery. Here we visualize examples of clean imagery from
Auto Arborist: there is typically one prominent tree, the image is well lit, and
the tree typically has features that are identifiable. For example Phoenix trees
(bottom right) are distinctly palm trees. . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Graph Construction. To capture the surrounding context for images, we con-
struct a radius graph using GPS coordinates on Auto Arborist. To visualize the
full context of examples, we use Google Earth: the red box is the target tree and
the black boxes are its identified neighbors. This also shows the bias of the Auto
Arborist dataset, which only catalogs trees on public land. We also see homophily
in the graph as similar trees are often found on the same street. . . . . . . . . . 8

4.1 The SHIELD-GNN pipeline begins by constructing a radius graph. It then
leverages DivideMix for feature extraction and base prediction generation. These
elements are used to train a GATv2 model, which outputs a prediction set. Fi-
nally, this set is debiased to arrive at the final predictions. . . . . . . . . . . . . 11

4.2 Categories of noisy examples from Auto Arborist. From these examples,
we can see the wide variety of noise in the dataset, which helps motivate the need
for a noise-robust training loop. Although DivideMix was originally created for
structured noise (ie label perturbations), it can handle less structured noise (like
multiple trees) through pseudolabels. . . . . . . . . . . . . . . . . . . . . . . . . 12
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5.1 SHIELD-GNN performance visualized spatially on Los Angeles (top),
Washington DC (Middle), and Denver (Bottom). We show ℓ1 label distribu-
tion distance of test set chunks from the train set (left) and the change in chunk
accuracy from DivideMix to SHIELD-GNN (right). We often see the largest in-
creases in accuracy in sections where the distribution distance is high, suggesting
that SHIELD-GNN helps improve robustness to small geospatial shifts. We use
OpenStreetMap [50] for visualization. . . . . . . . . . . . . . . . . . . . . . . . . 21

6.1 ℓ1 distribution distance between regions (left) and cities (right). We reproduce
the figure from Beery et al . [6] showing that these large label shifts occur on the
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6.2 Visual Distribution Shift. We randomly sample 10 aerial images from Los An-
geles (top), San Francisco (middle) and New York (bottom) to show to qualitative
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6.3 Within class distribution shift is common in Auto Arborist due to the rel-
atively broad genus level labels. Platanus (Planes tree, Sycamore) trees are an
example of this as the genus encompasses are many visually distinct species [10]. 29

6.4 Class-wise LA validation accuracy. Highly ”aerially distinctive“ trees like
Phoenix and Washingtonia (both palms) have better validation accuracy than
other genera. This indicates that Beery et al . were correct and there are some
visual differences amongst genera which aid in classification. . . . . . . . . . . . 30

6.5 t-SNE visualization of the induced distribution shift between the training
and validation sets on 10 randomly selected classes from Auto Arborist LA. . . 31

6.6 Negative entropy penalty and average recall. We show class average recall
as a function of the penalty weight (left) in log-scale. Initially, as the penalty
increases and we get less class-indicative features improve AR, but then as the
penalty starts damaging the representation, we see a corresponding drop off in
performance. Class indication scores (τ = 1, right) show that the negative entropy
classifier properly regulates class-indicative features. . . . . . . . . . . . . . . . 31

6.7 Class Conditional Homophily. Here we show homophily (the node-average
proportion of neighbors which share the same label as the target node) as a
function of log class size. It’s clear that there is significant variance in homophily
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6.8 Desirable and Undesirable Behavior of SHIELD-GNN. Here we show
examples of desirable (top three) and undesirable (bottom three) behaviors of
SHIELD-GNN from the validation set. For each example, we show the average
neighbor prediction (the softmax of the average of neighbor logits), the base
DivideMix softmax prediction, the base GNN softmax prediction, and finally the
SHIELD-GNN prediction. The correct genus is highlighted in yellow. In each of
the top three examples, SHIELD-GNN produces a prediction which is significantly
closer to DivideMix resulting in a more accurate classification. We then display
two failure modes in the bottom three images, the first image shows a situation
where we correctly predict the genus even though there is clearly no tree. The
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and makes a confidently incorrect prediction in line with the neighbors, not the
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Chapter 1

Introduction

1.1 Motivation

Environmental monitoring and Earth observation from aerial imagery have the potential
to enable policymakers to make data-informed decisions to facilitate societal adaptation to
a changing climate [8, 58]. However, aerial data repositories from satellite and low-flying
aircraft are currently in the petabyte scale and growing, making extracting useful and relevant
information to support policy intractable without automation. Aerial image classification
has potential impact in humanitarian aid and disaster relief, wilderness forests, agriculture,
and urban mapping with uses in city planning, resource management, and environmental
monitoring [79, 1, 48, 31]. For example, urban ecologists need to know the location and type
of trees in cities so that they can target replanting to improve climate adaptation. Collecting
this information from ground-level tree censuses is both time consuming and expensive, thus
automated tree genus classification from Global Positioning System (GPS)-registered aerial
imagery is increasingly of interest. Datasets like Auto Arborist [6], enable the computer
vision community to investigate automated methods for tree genus classification from aerial
imagery at scale, containing images and genus labels for over 1M individual trees [6].

1.2 Core Challenges

Automated tree classification in aerial imagery is inherently difficult and is associated with
many fundamental challenges not present in typical clean, academic datasets. Among the
core challenges are the following:

1. Noisy labels. Images are commonly mislabeled: genus classification is difficult and
requires specialized expertise, GPS localization from the ground can be in error, there
are often multiple trees within a single image with only a single label, and temporal
inconsistencies can occur as trees are not imaged and labeled at the same time, leading,
e.g ., to some locations being imaged after the trees have died. We visualize sources of
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(a) Multi-Object Noise
(Auto Arborist)

(b) Null Object Noise
(Auto Arborist)

(c) Induced null-object
noise (xView)

(d) Induced correlated
category noise (xView)

Figure 1.1: Real and Induced Noise. Auto Arborist is a naturally noisy dataset due to it’s
data collection process. Here we demonstrate two kinds of noise: multi-object noise (left) and null
noise (no object, center left). In xView, we show induced noise on the container crane (center right)
and airplane hangar (right) categories. On the right image, we see that a collection of planes, which
is likely correlated with airplane hangars.

noise in Auto Arborist in fig. 1.1 (with xView) and fig. 4.2. We also visualize clean
images in fig. 1.2.

2. Non-IID data. Geospatial data also breaks the typical deep learning assumption that
data will be independent and identically distributed (IID) as spatially close examples
often contain correlations. For example, trees are often planted in groups (e.g . a row
of cherry trees along the same street). We visualize the geo-spatial distribution of
samples in fig. 3.1.

3. Fine-grained and long-tailed class distribution. Tree classification is fine-grained,
with only subtle differences between many genera, and the distribution of trees is long-
tailed, a known challenge in machine learning [80, 15, 39]. These characteristics tend
to skew classification models towards predicting predominant classes.

4. Geospatial generalization under distribution shift. Finally, to be maximally
impactful, a model must generalize geospatially as accurately categorizing trees in
areas where censuses are already available (and thus used for training data) is of less
value than generating a census in an area that has not been able to afford a ground-level
census. We visualize performance under these distribution shifts in fig. 5.1.

1.3 Contributions

Based on the intuition that geospatial similarity is inherent to many aerial object classifica-
tion problems, we choose to focus on graph neural networks (GNNs) [5] to capture and make
use of this structure by efficiently providing shared spatial context across nearby objects.
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Figure 1.2: Examples of clean imagery. Here we visualize examples of clean imagery from
Auto Arborist: there is typically one prominent tree, the image is well lit, and the tree typically
has features that are identifiable. For example Phoenix trees (bottom right) are distinctly palm
trees.

Prior applications of GNNs to aerial data either formulate large aerial image tiles as graphs
(i.e. pixels are nodes) or adopt super-pixel-based image decompositions to create nodes in
the graph [17, 4, 34]. Instead, we define cropped regions of larger image tiles corresponding
to specific objects within a geographic region as nodes in our graph, and add edges between
all pairs of cropped images within a defined Euclidean distance radius of each other (in lati-
tude/longitude coordinates). Note that this approach requires GPS location metadata to be
available for each image crop. Liang et al . [40] propose a similar object graph where they
jointly optimize GNN predictions on the object graph and convolutional neural network pre-
dictions on larger image tiles. In contrast, we extract per-crop features (explained in detail
below), and use a Graph Attention Transformer (GAT) across these features to selectively
aggregate context between relevant neighbors [9].

To address learning from noisy labels, we extract features using the DivideMix [36] frame-
work, which frames learning with noisy labels as semi- supervised learning, exploiting the
phenomenon that “neural networks learn patterns first, then memorize” [2, 24]. While Di-
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videMix is very effective in many noisy data settings, when combined näıvely with GATs,
we show that the combined approach can lead to undesirable tail class smoothing. More
specifically, we observe that features learned via the DivideMix framework end up being
highly “class-indicative,” meaning that they lead to strong predictions with a simple (e.g .
linear) model (see section 6.2 for a more formal discussion) on the train set that causes
undesirable tail-class smoothing. This is problematic in the graph setting because of ho-
mophily (the tendancy to have neighbors of the same class): if the model can usually get
a strong signal on a target node’s class from its neighbors, it will learn to trust neighbors
at the expense of direct information on the target provided by the target features. There-
fore, we propose a framework for training GNNs on highly class-indicative features using a
temperature-softened teacher penalty and test-time debiasing, achieving better performance
than baselines. We make the following contributions:

1. A novel approach to learning graph-aware predictions on overly class-indicative fea-
tures, which helps prevent GNNs from under-predicting tail classes on long-tailed clas-
sification problems.

2. Results and analysis on the relatively understudied technique of supervised feature
extraction for GNNs on two datasets: Auto Arborist and xView [35].

3. A rationale for understanding tail class smoothing using DivideMix features (and po-
tentially other supervised feature extractors), and how their overconfidence can harm
GNN performance on tail classes with empirical evidence.
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Chapter 2

Related Work

2.1 Aerial Image Classification

Neural networks have been used for Aerial Imagery and Remote Sensing as early as 1997,
when Atkinson et al ., proposed the usage of multi-layer perceptrons (MLPs) to process
remote sensing images. [3]. While earlier works studied rougher shapes such as the types of
clouds, later works extend to smaller objects such as buildings [43] and vehicles [82]. This
is a harder problem [39] not only due to the increased amount of noise from the smaller
targets of interest, but also due to greater appearance variance of the targets (the same types
of clouds may appear more homogeneous in aerial images, while buildings and vehicles may
vary based on the lighting conditions, orientation, and location).

2.2 Graph Neural Networks (GNNs)

GNNs are well suited to processing data that have some inherent relationships which can
be represented in a graph structure [78]. In particular, we are interested in modeling local
correlations between tree genera in urban forests.

GNNs have demonstrated competence in remote sensing for their ability to use ”spatio-
topological relationships” [38]. Li et. al designed a framework where a GNN was used
as a pooling operation on information gathered by trained CNNs. This framework was
evaluated on the UCM multi-label dataset and AID multi-label dataset [30], which contain
aerial remote sensing images of various objects including airplanes, buildings, cars, etc.
Experiments demonstrate that this framework outperforms baseline CNNs [38]. We adopt a
modified Graph Structure in our network that we discuss more in section 4.1.
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2.3 Object Detection

GeoGraph [47] is a framework that uses a GNN and an end-to-end learning pipeline for multi-
view object detection, re-identification, and location using only street-level images. Notably,
one of two datasets the paper uses for validating GeoGraph is the Pasadena Multi-View
ReID dataset [46], a multi-view dataset of 6,020 trees from Pasadena, California.

2.4 Feature Extraction for GNNs

Common feature extraction approaches for graph-valued data often adopt unsupervised fea-
ture extraction with large graph-agnostic models to learn a useful representation of nodes.
For example, state-of-the-art models on the Open Graph Benchmark (OGB) node-property
prediction tasks [29], use language models or other forms of unsupervised learning to ex-
tract relevant features from raw data [19, 81, 83]. Others have proposed jointly optimizing
a representation and the graph predictor e.g . Shi et al . [59]. However, incorporating graph
information into node feature extraction may impact noisy sample separation. Instead, we
use a two-staged approach: first features are extracted, then a predictor GNN is trained on
the learned representation. Hu et al explored combining GNN and CNN for classification
of hyperspectral image [17], images that contain information beyond the visible spectrum.
These images usually have many channels to produce more detailed readings. To combine
the information of each superpixel with the relative locations of superpixels, a 2D convolu-
tion was used with a 1D convolution depth wise. The features are processed by a multi-scale
CNN and a GNN that treats the image as a graph to further emphasize information pass-
ing. The two networks finally aggregate their data to produce a pixel-wise segmentation for
hyperspectral image classification.

2.5 Learning with Noisy Labels

With a dataset such as Auto Arborist, it is not sufficient to naively train a supervised classifier
on the existing labels, which may be incorrect or misleading. To address this problem, Li et
al [36] proposed DivideMix, which uses a Gaussian mixture model on a network’s per-sample
loss to isolate noisy samples. This method was shown to be a ”substantial improvement” over
all baselines over noise/method ratios ranging from 20% to 90%. DivideMix also achieved
75.7% accuracy on the real-world Clothing1M dataset, an increase of over 1% compared to
the next best method. Wei et al presented RoLT: Robust Long-Tailed Learning [74], which
improved the long-tailed performance of DivideMix. Many prior works in the space consider
the IID case, where samples are exchangeable. This assumption doesn’t hold in our setting
due to local correlations between samples, however, these approaches are still strong base
learners.
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2.6 Fine-grained Classification

Fine-grained classification is the problem of categorizing examples in classes that are sub-
categories of certain supercategories [75]. Prior approaches typically require supervision to
achieve strong results, though unsupervised pretraining can be beneficial [26]. The iNatu-
ralist dataset [28] provides a standard large-scale benchmark for fine-grained classification.
Top approaches on this dataset require supervised finetuning to achieve strong performance,
as shown by Srivastava and Sharma [61]. We adopt ImageNet [16] pretraining for each of
our models.

2.7 Test Time Adaptation and Debiasing

One way of dealing with distribution shift is by test time adaptation which is the process
of adjusting a model ”from the source domain to unlabeled data in the target domain” [41,
63]. Types of test-time adaptation include source-free domain adaptation, test-time batch
adaptation, and online test-time adaptation [41]. In test-time domain adaptation, pseudo-
labels can be used to adapt the trained model to the new domain [55, 13, 62]. Wang et
al . [70] show that bias and class imbalance can appear in psuedo-labeling. Thus, Wang
et al . present DebiasPL, which uses counterfactual reasoning and adaptive margins to deal
with the imbalance in self-supervised and zero-shot learning. We combine these ideas by
debiasing predictions using test-time statistics.

2.8 Tree Canopy Coverage Estimation

Tolan et al . [66] recently released a high resolution map of canopy coverage across the world
using self-supervised DINO-style pretraining on aerial imagery followed by Lidar supervised
height prediction. Their approach highlights another important area of Earth observation
and less granular tree cataloging. It also shares resemblance to our approach in it’s use
of metadata like latitude and longitude to inform predictions. Canopy coverage in urban
areas also represents an interesting axis of distribution shift in the Auto Arborist dataset. In
Los Angeles, for examples, canopy coverage varies significantly geographically [14] which is
correlated with health outcomes and socioeconomics. Visually, north LA (training set) has
denser tree coverage than south LA (validation set), however, because Auto Arborist only
catalogs public trees, we see the inverse i.e. that examples in the training set have a lower
average degree than the validation set. This is likely due to smaller and more regular-shaped
blocks in south LA–an artifact of how we construct the graph between trees as described in
chapter 3.
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Chapter 3

Problem Statement

We consider classification into C possible genera on image chips: square tiles, typically only
meters in length/width, representing crops from larger aerial image tiles associated with
individual objects of interest. Specifically, we predict a class label yi ∈ {0, ..., C − 1} of a
chip vi.

We construct a radius graph (fig. 3.1) i.e. connecting images that are within a certain ℓ2
distance of each other in latitude/longitude space. Thus, we have a graph-valued problem

Figure 3.1: Graph Construction. To capture the surrounding context for images, we construct
a radius graph using GPS coordinates on Auto Arborist. To visualize the full context of examples,
we use Google Earth: the red box is the target tree and the black boxes are its identified neighbors.
This also shows the bias of the Auto Arborist dataset, which only catalogs trees on public land.
We also see homophily in the graph as similar trees are often found on the same street.
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G = (V,E) with V as the set of images (chips) in the dataset and E as the links connecting
these images. We additionally expect our dataset to exhibit the core challenges in section 1.2,
making the problem more challenging than standard node classification on a graph.

In addition, our dataset often contains missing classes in various training and testing
splits (i.e. a class exists in the train set, but not the test set or vice versa). We handle this
by having a classifier produce predictions on the set of all possible classes.
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Chapter 4

Method

Our method, Softening Head Imbalances with Effective Learning and Debiasing for Graph
Neural Networks (SHIELD-GNN) includes a noise-robust feature extraction stage followed
by a GNN fitting stage. A GNN is fit on the learned representation, regularized by pe-
nalizing prediction dissimilarity to softened predictions generated during feature extraction.
SHIELD-GNN then applies a test-time debiasing module to remove head-class bias from the
final prediction set.

4.1 Preliminaries

Learning on graphs with information-rich node features (e.g . image or text data) is often in
two stages: node feature extraction, then GNN classification [19, 81, 83].

DivideMix

DivideMix is a popular and effective algorithm to improve classification performance under
noise, but assumes that data is exchangeable and IID. SHIELD-GNN uses DivideMix to
learn a strong set of node features for classification. DivideMix trains two networks jointly,
first warming up the networks using the cross-entropy loss on all samples then uses a two-
component Gaussian Mixture Model (GMM) to split samples based on their loss. Samples
that are clustered in the Gaussian with a lower mean retain their label, while samples in
the high mean Gaussian have their labels removed. We modify this step to ensure entire
tail classes are not removed from the labeled data by having class-conditional GMMs split
samples. The networks then trade splits and are optimized using the semi-supervised Mix-
Match [7] framework. The predictions produced by DivideMix alone cannot reason about
the surrounding neighborhood of trees because of the framework’s implicit IID assumption
and therefore cannot make context-aware predictions, limiting classification performance.
We include more specific implementation details in appendix A.1.
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Figure 4.1: The SHIELD-GNN pipeline begins by constructing a radius graph. It then
leverages DivideMix for feature extraction and base prediction generation. These elements are
used to train a GATv2 model, which outputs a prediction set. Finally, this set is debiased to arrive
at the final predictions.

Graph Neural Networks

To exploit the local correlations in this class of problems, we probe node features using
a Graph Attention Transformer V2 (GATv2) [9]. GATv2s use an expressive version of
attention as their message passing function to aggregate features from nearby nodes. Brody
et al . find that GATv2s achieve strong performance on standard graph learning benchmarks
and are robust to noise, which make the architecture well-suited to our task [9]. We use
a single layer GATv2 to aggregate nearby context in the generated radius graphs. We use
a single layer network to prevent feature over-smoothing which occurs in shallow networks,
but is even more prevalent in deeper GNNs [57].

4.2 SHIELD-GNN

SHIELD-GNN combines feature extraction and GNN prediction to produce strong context-
aware predictions. A naive combination of these two components leads to undesirable tail-
class oversmoothing as confident neighbors swamp tail predictions. We use the prediction
set from the feature extraction to regularize GNN predictions. SHIELD-GNN regulates the
confidence of the non-graph predictions using temperature softening, as overconfident base
predictions can degrade performance, which we show in the supplementary material via an
ablation study. The debiasing module removes globally averaged logits from each prediction
weighted by a hyperparameter, λD. An overview of the method is shown in fig. 4.1. We
include more specific implementation details in appendix A.2.
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Figure 4.2: Categories of noisy examples from Auto Arborist. From these examples,
we can see the wide variety of noise in the dataset, which helps motivate the need for a noise-
robust training loop. Although DivideMix was originally created for structured noise (ie label
perturbations), it can handle less structured noise (like multiple trees) through pseudolabels.

Feature Extraction

DINO [11] has shown promise in other remote sensing representation learning tasks [72, 71].
However, in our setting, DINO feature extraction is ineffective as it does not extract relevant
information to make fine-grained distinctions between genera. We demonstrate this using
DINO trained on Auto Arborist and pre-trained DINOv2 without finetuning in section 5.2
(DINOv2 has shown strong generalization ability and was trained on a considerably larger
dataset than DINO v1 [51]). We, therefore, use a supervised classifier, DivideMix [36],
for feature extraction. While DivideMix achieves strong performance on noisy data, it is
prone to producing highly class-indicative features on the train set, which can harm GNN
performance.

GNN Prediction

After feature extraction, we train a GNN classification head using a modified Early-Learning
Regularization (ELR) loss [42], penalizing the GNN predictions’ dissimilarity to original
DivideMix predictions (which we refer to as teacher predictions) rather than the original
temporal ensemble of predictions. We find that without the penalty, GNN performance on
tail classes suffers. To reduce the impact of DivideMix overconfidence on GNN predictions,
we temperature soften predictions from the teacher [7].
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Let ŷb be the original predictions from feature extraction and T ≤ 1 be the temperature
softening factor. We define softened predictions as

ŷb;soft =
ŷ
1/T
b∑
ŷ
1/T
b

. (4.1)

Next, let ⟨·, ·⟩ be the standard euclidean inner product, ŷg be the softmax GAT prediction,
y be the original label. Our regularized loss is

LSHIELD−GNN(ŷb;soft, ŷg, y) = LCE(ŷg, y) + log(1− ⟨ŷb;soft, ŷg⟩). (4.2)

Debiasing Prediction Sets

We find that GATs systematically overpredict some classes, so we require increased logit
imbalance to predict those classes on an inference set.

Our final prediction set ŷg;f on the inference graph Gtest = (Vtest, Etest) is regulated by
debiasing strength hyperparameter λD. Debiasing is performed on output logits, rather than
softmax probabilities.

ŷg;f = ŷg −
λD

|Vtest|

|Vtest|∑
i

ŷg;i. (4.3)
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Chapter 5

Experimental Design and Results

5.1 Experimental Setup

We benchmark SHIELD-GNN on two datasets: Auto Arborist [6], and xView [35]. We
modify xView to be a classification dataset, similar to Singhal et al . [60].

Auto Arborist

The Auto Arborist dataset, is a multi-view, fine-grained visual tree categorization dataset
containing images of over 1 million public zone trees from 300 genus-level categories across
23 major cities in the US and Canada (We note that the dataset represents only a portion of
the total tree population). From Auto Arborist [6], we focus on identifying tree genera using
aerial imagery. Specifically, each tree record in the dataset is associated with a 15m×15m,
300×300 pixel RGB aerial image, including latitude and longitude. The method for labeling
the tree genus class in the dataset varies across cities, utilizing a combination of volunteer
citizen scientists and expert labelers.

The aerial imagery component of the dataset contains many noise sources, such as inac-
curacies in labeling due to human error, potentially outdated tree records, inconsistent image
quality across different cities, and occlusion of targets. We conduct two sets of experiments
to assess our methodology’s performance on a larger benchmark and its robustness to large
distribution shifts.

We first run experiments on the top 100 genera from the canonical Los Angeles (LA) train-
ing set to demonstrate the effectiveness of each component of our method and to benchmark
the method’s effectiveness against relevant baselines. We use the canonical LA test set for
validation and all of the Santa Monica for testing, both on the same 100 classes. We run
larger scale experiments on the East-Central-West splits defined by Beery et al . [6]. We enu-
merate the constituent cities in the supplementary material. The goal of these experiments
is to show that our method doesn’t simply overfit to structural noise in the training split
but still outperforms baselines under large distribution shifts. We report statistics on the
intersection of genera from the regions.
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Dataset #Examples #Classes Imb. Ratio Homophily Avg. Degree

AA - LA 100 167k 100 102 .44 15.2
AA - West 573k 261 2.7k .34 23.0
AA - East 382k 93 4.3k .34 19.0
AA - Central 179k 82 2.2k .37 18.7

xView - all 602k 60 17.6k .69 45.7
xView - head only 528k 2 1.5k .79 43.7
xView - tail only 74k 58 1.2k .57 17.8

Table 5.1: Dataset statistics of Auto Arborist (AA) splits and xView. We use the definition of
node homophily defined by Pei et al . [53] and imbalance (imb.) ratio: the ratio of the largest class
size to max(smallest class size, 10). We also include statistics on xView with subgraphs of only the
top 2 (head-only) and bottom 58 classes (tail-only).

xView

The xView dataset [35], released in 2018, represents a collection of aerial images (we focus
on the RGB bands), encompassing more than 1 million object instances across 60 distinct
classes, spanning over 1,400 square kilometers. This dataset was curated from WorldView-3
satellite images, captured with a ground sample distance of 0.3 meters. The classes of objects
within the xView dataset includes different vehicle types, structure names, and locations
significant to vehicle activity. The data annotation process for the xView dataset involves
a manual examination of satellite images to accurately identify, label, and delineate each
object with bounding boxes of varying sizes. We augmented the dataset with latitude and
longitude features, representing the centroids of each object’s bounding box. We divided the
dataset into training, validation, and test sets (approx. 70-15-15) by assigning image tiles
to each set.

We use xView to assess the impact of increased noise on the efficacy of our method and
show its generality. We perturb the dataset with 30% and 60% noise. To generate object
image chips, we begin by inflating bounding boxes by 20 pixels and increasing the minor
axis to make the bounding box a square. Then if a sample is noisy (which we determine
with IID draws of a uniform random variable), we shift the chip’s image frame in a random
direction such that it omits the entire bounding box. This enables us simulate real-world
examples of noise: inflating the bounding boxes naturally captures surrounding context and
other potentially in-vocabulary objects, shifting the bounding box can mislabel examples
and also create null examples.

Baseline: Fixed Top-5 Classifier

As a baseline, we use the Fixed Top-5 classifier, which predicts the top-5 classes from the
train set with 100% accuracy and precision and all other classes incorrectly.
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Method Acc AR AP Parameters

DINO 34.0 13.2 13.8 22.2M
DINO + GATv2 39.2 16.9 15.8 22.2M
DINO V2 22.9 7.9 7.9 86M
DINO V2 + GATv2 23.7 9.4 8.7 86M
Cross-Entropy 45.3 18.8 19.8 20.3M

Table 5.2: DINO trained on Auto Arborist LA and DINO V2 without finetuning on the top 100
classes of Auto Arborist LA (validation set).

Metrics

We assess model performance through three main metrics: mean accuracy (Acc.), class-
average recall (AR), class-average precision (AP). Given the significant class imbalance in
both Auto Arborist and xView, relying solely on accuracy can misleadingly favor models
that overpredict the majority classes. We interpret AR and AP jointly: an increase in both
corresponds to a stronger prediction rule, but an increase in AP can be easily achieved at
the expense of AR by not predicting tail classes unless the model is extremely confident
and vice-versa with AR. Because inflated AP is easier to achieve, we primarily look to AR
to assess long-tailed performance following [6]. We also report top-5 class accuracy for the
Auto Arborist distribution shifts which allows us to assess model performance more clearly
in a challenging setting.

Specifically for xView, we emphasize average recall (AR), recognizing that models main-
taining reasonably high accuracy while boosting average recall are better equipped to nav-
igate class imbalances and distributional variations. In xView, a model predicting only the
two head classes (neither of which are fine-grained categories: small car, building) can easily
achieve high accuracy (∼ 88%), which says little about the performance of the model on
fine-grained classes. We include these head classes, as a model should be able to handle the
extreme but realistic class imbalances exibited in both datasets.

5.2 Results

In all experiments, we use the same hyperparameters: r = .001 (the radius for connecting
nodes in latitude/longitude coordinates), T = .5, and λD = .5. For xView, we use a two-
thirds inverse class-frequency weighted sampler.

Auto Arborist Los Angeles: Top 100 Classes

We conduct two primary sets of experiments on Auto Arborist LA. The first tests unsuper-
vised feature extraction to evaluate if supervised feature extraction is required in our setting.
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Category Method Val Test Parameters

Acc AR AP Acc AR AP

Baseline Fixed Top-5 8.2 5.0 5.0 3.4 5.0 5.0 -
Cross-Entropy 47.7 20.5 21.4 48.7 16.0 20.6 40.6M

Noisy Label (NL) DivideMix 49.9 23.4 20.8 55.8 18.6 21.9 40.6M
RoLT 42.2 21.9 20.0 44.8 17.4 20.4 40.6M

Graph-Aware DMix + GATv2 55.6 22.3 26.1 58.7 16.3 25.7 40.8M
DMix + SHIELD 55.0 23.8 22.5 62.7 19.4 24.6 40.8M

Table 5.3: Comparison of methods on the top 100 genera from Auto Arborist LA. We also include
the Top-5 Classifier (section 5.1).

Method (Test Set) West-trained East-trained Central-trained

Acc AP AR Top-5 Acc AP AR Top-5 Acc AP AR Top-5

DivideMix (West) 47.5 17.3 20.6 62.5 15.7 6.4 6.7 32.0 13.5 4.2 4.8 30.2
+SHIELD-GNN (West) 51.7 19.9 20.6 69.0 17.8 7.9 7.3 39.2 14.4 5.4 5.1 35.3

DivideMix (East) 13.9 3.1 2.2 30.1 38.0 16.3 16.4 58.6 17.9 5.9 5.9 37.8
+SHIELD-GNN (East) 16.1 3.4 2.4 35.0 40.4 19.8 15.8 64.8 18.6 8.3 6.4 42.3

DivideMix (Central) 9.7 2.8 2.0 21.7 19.8 7.1 6.5 40.3 46.3 18.0 13.9 65.5
+SHIELD-GNN (Central) 10.1 2.8 2.1 26.3 20.7 8.4 6.5 47.1 47.1 20.8 14.1 71.5

Table 5.4: Comparison of methods on robustness to distribution shifts in Auto Arborist. The
diagonal blocks correspond to validation accuracies (i.e. West-trained and West-tested).

This experiment uses DINO [11] finetuned on Auto Arborist and DINOv2 [51] without fine-
tuning. Results are shown in section 5.2. From this experiment, it’s clear the DINO features
are ill-suited for this problem, as with GNN probing they don’t match naive cross-entropy
performance.

In the second set of experiments (section 5.2), we explore methods to handle the long-
tailed and noisy nature of the dataset to find the most effective base model, and add graph
network prediction on extracted features to compare naive probing with SHIELD-GNN. We
outperform baselines and can generalize under smaller geospatial distribution shifts present
in the canonical train-test splits from Auto Arborist. We visualize validation performance
spatially in fig. 5.1.

Auto Arborist: Full Dataset

We conduct two types of experiments on the entire Auto Arborist dataset: (1) in-distribution
evaluations of SHIELD-GNN and the baseline method it was trained on, (2) we also test the
model on a different region’s evaluation sets. The goal of assessing model robustness under
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Method 30% 60%

Acc AR AP Acc AR AP

Fixed Top-5 90.7 8.3 8.3 90.7 8.3 8.3
Cross Entropy 89.7 30.9 37.5 88.5 29.1 37.9
DivideMix 84.7 38.0 32.4 82.7 34.2 27.8
DMix + SHIELD-GNN 85.5 39.0 33.9 83.5 34.9 27.2

Table 5.5: Comparison of noisy-data methods on xView with noise perturbation. We include the
baseline Top-5 Fixed classifier (section 5.1) to emphasize that accuracy is a relatively uninformative
metric when class imbalance is so extreme.

distribution shift is two-fold: first to assess robustness, but also to verify that SHIELD-GNN
has not simply overfit to structural noise. For example, a GNN may learn structural patterns
in a neighborhood enabling it to better predict noisy samples (which are present in test sets).
This performance gain is undesirable, but by subjecting the model to large distribution
shifts, we can show that the model is likely learning a general signal. In section 5.2 we show
that SHIELD-GNN both achieves strong performance on the canonical test distribution and
exceeds the baseline out of distribution, suggesting that SHIELD-GNN is not overfitting to
a region-specific type of noise.

xView

On xView, we present experiments with 30% and 60% injected training noise (section 5.2).
In both experiments, SHIELD-GNN is able to achieve higher accuracy and AR than naive
DivideMix, though in the 60% noise setting AP is degraded. This is a failure mode of the
debiasing module. Increasing the number of tail predictions often affects precision negatively
as the classifier’s debiased predictions are less likely to be accurate than very confident prior
tail predictions.

The cross-entropy classifier performs quite well in terms of accuracy and AP on both
dataset versions. This is an artifact of xView’s extreme imbalance, where two classes make
up roughly 88% of the dataset and so a classifier can achieve high accuracy and AP by
selectively predicting tail classes, as can be seen from their significantly lower AR. We show
this using the Top-5 guessing classifier.

5.3 Ablation Studies

We present a study on the backbone architecture we used for SHIELD-GNN and an ablation
study on each component of the pipeline.

In section 5.3 we test backbone architectures on Auto Arborist - LA. From this study, we
see that although scale does help, these improvements are generally smaller than gains from
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Val Test

Method Acc AR AP Acc AR AP Params

ViT-b-16 44.1 19.3 18.0 46.4 14.3 17.5 86M
ViT-b-32 40.1 16.0 15.8 40.1 12.4 15.9 86M
EfficientNetV2-S 45.3 18.8 19.8 49.0 15.1 19.1 20.3M
EfficientNetV2-L 47.1 20.0 20.1 50.6 15.5 19.5 117M
ResNet50 41.9 16.8 17.5 44.8 12.9 18.1 23M

Table 5.6: Comparison of architectures on Auto Arborist LA using the cross-entropy loss. We
adopt the EfficientNet V2-S as our backbone because of it’s small size and relatively strong perfor-
mance.

Method Val Test

Acc AR AP Acc AR AP

Baseline 49.9 23.4 20.8 55.8 18.6 21.9
GATv2 55.6 22.3 26.1 58.7 16.3 25.7
+Debiasing 55.6 23.3 23.8 61.4 18.3 25.7
+Teacher 55.4 23.1 23.0 61.6 18.8 25.3
+ Both 55.0 23.8 22.5 62.7 19.4 24.6

Table 5.7: We ablate each component of the SHIELD-GNN pipeline on Auto Arborist LA. Baseline
refers to the predictions produced by DivideMix, GATv2 refers to a GATv2 trained with the cross-
entropy loss, +Debiasing refers a GATv2 with test-time debiasing only, +Teacher refers to a GATv2
with the teacher penalized loss only, and +Both refers to the full SHIELD-GNN pipeline.

a robust training loop like DivideMix. Next, we ablate each portion of the SHIELD-GNN
pipeline (section 5.3). From the ablation study, we show that each portion of the pipeline
improves average recall, though there is a trade-off between validation accuracy and average
recall. However, on unseen data, SHIELD-GNN improves both average recall and accuracy,
showing that the trade-off is likely useful in this domain.

Hyperparameter Sensitivity

We evaluate the SHIELD-GNN’s hyperparameter sensitivity on Santa Monica, the test set
from Auto Arborist LA experiments (table 5.8, table 5.9). The model’s performance is
qualitatively smooth across the searched space and the selected hyperparameters achieve a
reasonable trade-off of accuracy and average recall on test data. This indicates that SHIELD-
GNN is likely not very sensitive to small hyperparameter perturbations.



CHAPTER 5. EXPERIMENTAL DESIGN AND RESULTS 20

Debias λ
Temperature (T) 0 0.25 0.5 0.75 1.0

4 16.4 17.6 18.4 18.8 19.2
2 17.1 18.0 18.9 19.5 19.5
1 18.3 18.9 19.2 19.6 19.7
0.5 18.8 19.3 19.4 19.6 20.7
0.25 18.7 19.1 19.3 19.5 20.6

Table 5.8: Class-average recall on the Auto Arborist LA test set (Santa Monica), computed over
a grid of possible debias λ and temperature T .

Debias λ
Temperature (T) 0 0.25 0.5 0.75 1.0

4 58.8 60.3 61.5 61.8 60.5
2 59.4 60.9 61.9 62.3 61.1
1 60.6 61.4 62.0 62.3 61.5
0.5 61.6 62.3 62.7 62.7 62.1
0.25 61.5 62.1 62.7 62.5 62.1

Table 5.9: Accuracy on the Auto Arborist LA test set (Santa Monica), computed over a grid of
possible debias λ and temperature T .
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(a) Los Angeles

(b) Washington DC

(c) Denver

Figure 5.1: SHIELD-GNN performance visualized spatially on Los Angeles (top), Wash-
ington DC (Middle), and Denver (Bottom). We show ℓ1 label distribution distance of test set
chunks from the train set (left) and the change in chunk accuracy from DivideMix to SHIELD-
GNN (right). We often see the largest increases in accuracy in sections where the distribution
distance is high, suggesting that SHIELD-GNN helps improve robustness to small geospatial shifts.
We use OpenStreetMap [50] for visualization.
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Chapter 6

Discussion

6.1 Distribution Shift in Auto Arborist

As Auto Arborist Dataset is a large catalog trees across various cities, there is considerable
distribution shift and bias in the dataset. Beery et al . [6] consider the label distribution
shift in their initial work. We reproduce this on the public subset of the dataset in fig. 6.1.
However, they note there are other sources of distribution. For example, in fig. 6.3, we
can qualitatively see that cities can have visually distinct aerial appearances. Similarly, even
within a genus there can be significant visual differences amongst species, which can fall along
geographic lines. For example, the Platanus genus has many visually distinct species in North
America [10], including the California Sycamore (Platanus racemosa) found primarily in the
American Southwest [18] and the American Sycamore, which is found along the Atlantic
Coast [77]. Variation like this helps explain the relatively poor model generalization over
large geospatial variations in section 5.2.

Beery et al . [6] also introduce a notion of ”aerially distinctive“ classes i.e. trees which are
easier to recognise from aerial images and consequently are easy for a model to recognise.
We demonstrate this phenomenon coarsely using class accuracies in LA in fig. 6.4.

6.2 “Class-Indicative” Features

We propose the concept of “class-indicative” features to help explain DivideMix’s tail-
smoothing on graph-valued data. We define class indicative features as having a significant
(>∼ 60%) proportion of zero or near-zero of linear softmax regression loss, LCE(ŷ, y) =
−
∑C

c yc log ŷc, for some class assignment y. Given a loss threshold τ, let xi be an embedding
of a dataset with labels y and fi(xi) be a softmax regressor of xi on y. Let the class-indication
score be defined as

Si =
1

|V |

|V |∑
j

(LCE(fi(xi)j, yj) < τ). (6.1)
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Figure 6.1: ℓ1 distribution distance between regions (left) and cities (right). We reproduce
the figure from Beery et al . [6] showing that these large label shifts occur on the public subset, but
only represents one axis of distribution shift present in the data.

We say that x1 is more class-indicative than x2 if S1 > S2. This ordering of feature sets
shows how easy it is for a linear model to fit to y and consequently how easily a graph neural
network could use neighbor features for a target node.

6.3 Motivating SHIELD-GNN

An Interesing Observation

In section 5.2, we show that the DivideMix base predictor (at the same model complexity)
performs better than the baseline cross entropy predictor on both accuracy and average recall.
Particularly, focusing on AR, we see that there is a difference in tail-class performance of
these two methods. Therefore when applying the GNN to this base set of features, we’d
expect to see the DivideMix features continue to outperform the cross-entropy features,
hopefully by a considerable margin.

However, what we actually observe is that accuracy increases significantly for both models
(53.4 validation accuracy for cross entropy), but AR shows a divergence, cross entropy AR
goes up to about 22.5%, but DivideMix AR goes down to 22.3%, which is even lower than
cross entropy features. This is counter-intuitive: the base features are more sensitive to
tail classes (and predicts them more often), and yet the GNN is unable to maintain this
sensitivity out of the box and instead smooths over those tail predictions.
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The Effects of Regularizers on the GNN

The root cause of the poor performance of the GNN on DivideMix features likely involves
the network optimization process, so a reasonable first place to check would be regularizing
the GNN. We try three different regularizers: label smoothing, weight decay, and dropout.
Each swept over a reasonable set of values, yet none seem effective at handling this effect
and over-regularization degrades performance (table 6.1). This suggests that the solution to
tail oversmoothing is not as simply as applying regularizers.

Noisy Labels Again

The next reasonable hypothesis could be that our network could suffering from the same
issue that plagued our base model: noisy labels. We can effectively test this hypothesis
in two ways. We can either bootstrap the GNN using DivideMix, or we can the ELR loss
without modification.

Consider two remedies that involve the original DivideMix psuedolabels and features:
first treating the pseudolabels as the target and second weighting examples by the base
models’ predicted probability of the given label. The first remedy doesn’t effectively solve
the issue, perhaps because it is easy for the model to simply recover something similar to
the original linear predictor as the GATv2 an expressive model [9]. The second remedy also
fails to improve the fail performance of the network and in effect discards a large portion
of our datapoints. Next, we can use the ELR loss naively on the GNN to try to isolate the
mitigate the impact of the noisy labels. This is also ineffective and the tail class performance
still decreases.

We show the performance of each of these potential remedies in table 6.2.

Class Indicative Features

We’ve now covered two portions of the optimization process: the weights and the labels.
We therefore look to the other component of the optimization process: the learned repre-
sentation. Specifically, we may worry that the learning objective in-sample is becoming too
easy because the features are a simple linear transformation away from a low risk set of
predictions for many examples. See section 6.2 for a full definition.

Risk Minimization on Class Indicative Features

Broadly, DivideMix (and many learning-with-noisy-labels frameworks [42, 36, 12]) create two
cases: predicted clean label and predicted noisy label. In the case where the label is clean,
it’s easy for the GNN to recover a low loss prediction as it can just mimic a linear model.
However, for psuedolabeled examples (which are on average much higher entropy 0.07 vs
0.77) the network can’t as easily recover a low loss prediction and therefore it must begin
attending more to it’s neighbors to achieve low loss–leveraging class-indicative neighbors to
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Val Test

AR Acc AR Acc
Method Value

Dropout 0.0 22.3 55.5 16.2 58.5
0.1 22.3 55.6 16.2 58.3
0.2 22.4 55.7 16.3 58.8
0.3 22.3 55.6 16.2 58.3
0.4 22.3 55.7 16.1 58.0
0.5 21.9 55.7 16.2 58.2
0.6 22.4 55.8 16.0 58.4
0.7 22.4 55.8 16.1 58.3

Label Smoothing 0.0 22.3 55.5 16.2 58.5
0.1 22.3 55.7 16.3 58.4
0.2 22.4 55.9 16.3 58.7
0.3 22.3 55.9 16.6 59.1
0.4 22.3 56.0 16.5 59.1
0.5 22.2 56.1 16.5 59.1
0.6 22.0 56.0 16.6 58.0
0.7 21.8 56.0 16.5 58.8

Weight Decay 0.0 22.3 55.5 16.2 58.5
5e-5 22.3 55.6 16.2 58.4
1e-4 22.3 55.6 16.2 58.4
5e-4 22.1 55.8 16.2 58.1
1e-3 22.2 56.1 16.4 58.4
5e-3 22.3 56.3 16.3 58.7
1e-2 21.8 56.3 16.0 58.2
5e-2 17.4 52.9 13.0 54.6

DivideMix - 23.4 49.9 18.6 55.8
SHIELD-GNN - 23.8 55.0 19.4 62.7

Table 6.1: We sweep various regularizers (Dropout, Label Smoothing, and Weight Decay) over
and report validation and test average recall and accuracy. Note that while the regularizers are able
to improve accuracy (by about 1% over not using them), they are unable to meaningfully improve
AR, which harms performance out of distribution, on the test set.
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Val Test

AR Acc AR Acc
DMix Pseudo Labels 20.5 51.5 16.0 57.1
DMix Weighting 20.0 51.7 15.2 56.2
ELR Loss 22.4 55.7 16.4 58.6
DivideMix 23.4 49.9 18.6 55.8
SHIELD-GNN 23.8 55.0 19.4 62.7

Table 6.2: We try three potential remedies for noisy labels impacting the GAT’s training: first
fitting to DivideMix pseudolabels, next weighting loss by the DivideMix probability of the labe,
and finally using the ELR loss.

do so. The model is able to attend to it’s neighbors of the target class and therefore learn a
bad prior: to over-rely on neighbors for higher entropy predictions.

Finally, we hypothesize that when the network is taken out of sample, the features are
naturally higher entropy and less class-indicative, leading to the network defaulting on relying
more on using neighbor predictions. This harms tail classes because of class conditional
homophily–i.e. that some classes (and tail classes in particular) may be less homophilic that
others. We can justify that homophily can be a class-conditional property in our data by
plotting node homophily on the Auto Arborist LA (all sets combined) and xView (all sets
combined) in fig. 6.7. Let Vi be the set of nodes of class i, N (v) be the neighbors of a node
v, and yw is the class label of a node w. Class i node homophily is defined as

1

|Vi|
∑
v∈Vi

|{(w, v) : w ∈ N (v) ∧ yv = yw}|
|N (v)|

. (6.2)

From fig. 6.7, we see that homophily can vary by class with a positive correlation with
log class size.

This distribution shift occurs in DivideMix because the algorithm relies on extensively
optimizing predictions for “clean” samples and pseudo-labeled “unclean” samples. This
naturally leads to highly class-indicative features in-sample. We visualize the difference
between excessively class-indicative features in fig. 6.5, showing that class-indicative features’
clean clusters in-sample do not necessarily persist out-of-sample.

Moderating Selective Attention: Negative Entropy

The simplest way to moderate the effects of class-indicative features is to encourage the
features to be more dispersed i.e. make the objective harder on average. We demonstrate
this in fig. 6.6 using negative entropy penalized classifiers: a set of toy models trained on the
objective LCE + β

∑
i ŷi log ŷi, which allow us to easily regulate the level of class-indication

in the feature set via the entropy weight β.
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From fig. 6.6, it’s clear that moderating class-indication using the negative entropy
penalty is effective and achieves strong AR (fig. 6.6), however this model is not able to
achieve competitive performance on accuracy and does not handle the noise in the samples.

Moderating Selective Attention: Teacher Penalty

We turn to another way of forcing the GNN to attend to the target features in all cases–by
having the GNN reproduce the base model’s predictions using a teacher penalty.

We now conceptually re-analyze the two cases induced by DivideMix. In the first case
where DivideMix retained the original label, we see mostly the same behaviour because we
can achieve low risk for both the teacher and label loss components just using the target
node. However, in the second case, the model must look to it’s neighbors to help predict
the original label, but is still forced to attend to the target node in order to satisfy the
teacher loss. This is shown qualitatively in fig. 6.8, where SHIELD-GNN is typically more
consistent with the baseline model, especially in cases of high neighborhood certainty. This
approach is able to take advantage of noise robust feature extraction as we do not assume a
modification on the features (like the negative entropy penalty) and can proceed to use the
robust features.
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(a) Los Angeles

(b) San Francisco

(c) New York

Figure 6.2: Visual Distribution Shift. We randomly sample 10 aerial images from Los Angeles
(top), San Francisco (middle) and New York (bottom) to show to qualitative differences between
sets of images from each city.
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(a) Platanus in Los Angeles

(b) Platanus in New York

Figure 6.3: Within class distribution shift is common in Auto Arborist due to the relatively
broad genus level labels. Platanus (Planes tree, Sycamore) trees are an example of this as the genus
encompasses are many visually distinct species [10].
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(a) DivideMix Features
(Train)

(b) DivideMix Features
(Validation)

(c) Negative Entropy
Features (Train)

(d) Negative Entropy
Features (Validation)

Figure 6.5: t-SNE visualization of the induced distribution shift between the training and
validation sets on 10 randomly selected classes from Auto Arborist LA.

Figure 6.6: Negative entropy penalty and average recall. We show class average recall as a
function of the penalty weight (left) in log-scale. Initially, as the penalty increases and we get less
class-indicative features improve AR, but then as the penalty starts damaging the representation,
we see a corresponding drop off in performance. Class indication scores (τ = 1, right) show that
the negative entropy classifier properly regulates class-indicative features.
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Figure 6.7: Class Conditional Homophily. Here we show homophily (the node-average pro-
portion of neighbors which share the same label as the target node) as a function of log class size.
It’s clear that there is significant variance in homophily amongst classes which is correlated with
class size. In the case of xView with extreme imbalance, the top two classes are considerably more
homophilic than other classes.
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Figure 6.8: Desirable and Undesirable Behavior of SHIELD-GNN. Here we show ex-
amples of desirable (top three) and undesirable (bottom three) behaviors of SHIELD-GNN from
the validation set. For each example, we show the average neighbor prediction (the softmax of
the average of neighbor logits), the base DivideMix softmax prediction, the base GNN softmax
prediction, and finally the SHIELD-GNN prediction. The correct genus is highlighted in yellow. In
each of the top three examples, SHIELD-GNN produces a prediction which is significantly closer
to DivideMix resulting in a more accurate classification. We then display two failure modes in the
bottom three images, the first image shows a situation where we correctly predict the genus even
though there is clearly no tree. The second failure mode is when SHIELD-GNN does not overcome
the neighbor sway and makes a confidently incorrect prediction in line with the neighbors, not the
base prediction.
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Chapter 7

Limitations

While our approach does achieve good results on Auto Arborist, it’s important to acknowl-
edge limitations. We introduced three hyperparameters: edge radius: r, softening tempera-
ture: T , and debiasing weight: λD in addition to the hyperparameters included in the feature
extraction pipeline. To assess the impact of these hyperparameters, we perform a sensitivity
study on Auto Arborist LA in section 5.3.

We also assume object region proposal has been performed to collect candidate chips. In
practice, this assumption may be justified by our method’s noise robustness and existing two-
stage object detection algorithms, which decouple region proposal and object recognition [25,
56, 22, 23]. Along this same line, the model does not have a null class. However, Vaze et
al . [67] assert that a strong closed-set classifier is potentially robust in open-set circumstances
where a null class may be useful. In addition, the debiasing module and graph structure
rely on geospatially clustered inference sets, which can be an unrealistic assumption in some
tasks.

Finally, Auto Arborist is a biased dataset–it only catalogs trees that are both on public
land and are street-view visible. Consequently, testing the model’s generalization to private
land trees will likely prove challenging as existing datasets primarily focus on public land
trees [6] or denser non-urban forestry [44]. In chapter 8, we further discuss the challenges
and opportunities in this area.



35

Chapter 8

Extension: Unsupervised Object
Discovery

8.1 Motivation

Here, we present the first steps and an evaluation protocol for extending work presented in
this thesis into fully automated tree censusing.

The Auto Arborist dataset represents the largest tree census of it’s kind, but still suffers
from unique biases due to its data collection and filtering method [6]. As a result, SHIELD-
GNN relies on trees being detected and cropped from high-quality aerial imagery. One
such justification for this limitation is existing methods like DeepForest from Weinstein et
al . [76] or more general instance segmentation foundation models like SAM [33]. However,
DeepForest wasn’t trained on urban forestry and as such can often miss trees. Similarly,
SAM doesn’t have a good representation for individual trees and can miss less qualitatively
standard-looking trees (fig. 8.1).

We, therefore, look to unsupervised segmentation on Auto Arborist to help domain adapt
SAM to tree detection. Wang et al . [69] presented CutLER and MaskCut, which use DINO
features to perform instance segmentation without supervision. Adapting SAM can be cast
as an unsupervised domain adaptation problem [21, 64, 27], where we use the self-supervised
representations learned by DINO to adapt SAM to tree crown segmentation.

8.2 Evaluation Protocol Proposal

In their introduction of CutLER, Wang et al . show that models trained on these unsupervised
MaskCut and DINO generated masks can self-improve over several iterations of training on
a prior checkpoint’s pseudolabels using a modified loss function to prioritize predictions
on under-explored regions. However, in their paper, Wang et al . train on YFCC [65] and
ImageNet, which may not have the same structural biases as Auto Arborist. This therefore
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(a) Aerial tile (Left), DeepForest run on this tile (Center), and SAM run on the tile (right)

(b) Aerial crop (Left), SAM run on the crop (Center), and MaskCut [69] run on the tile (right)

Figure 8.1: Failure Modes of Existing Tree Detection. Here we visualize the failure modes
of DeepForest and SAM for tree detection. (a) We show that DeepForest often misses trees and is
relative sensitive to image quality, whereas SAM can generate more masks, but sometimes groups
crowns together. (b) However, SAM is also unable to recognize some trees (particularly deciduous
trees) and single objects. MaskCut is able to address this, but doesn’t produce as robust segmen-
tations as SAM.

suggests an experiment to see a model could overcome the biases of it’s training dataset,
where we train a model on Auto Arborist and evaluate detections on non-public land trees.

We propose an evaluation protocol for such an experiment below.
Evaluation for this task is challenging as ground-truth data is relatively sparse, however,

Ventura et al . manually label points on tree crowns in Southern California [68] and Auto
Arborist coordinates can provide additional weak supervision. Prior work in this domain
often involves evaluation on existing segmentation datasets [54], which doesn’t translate to
our domain.

Our evaluation protocol begins by collect candidate segmentations on an overhead tile.
Then use human-labeled points from Ventura et al . to match masks to points by mapping
masks to points within their boundaries. We then perform hungarian matching to match
points to masks using mask centroids to handle the overlapping masks and many points
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issues. However, this scheme could be gamed by very large masks, therefore we add a mask
occlusion score, where we penalize overlap between masks and masks generated via uniform
grid prompting from SAM. The intuition here is that SAM is good at segmentation common
objects in urban areas, so intersecting with it’s masks is a sign of inflated masks. However, in
a case like fig. 8.1 (b), this would unfairly penalize masks of trees which SAM cannot detect.
Precision and recall can then be computed on your set of masks and along with occlusion
statistics with other masks. However, this does not test the full pipeline of object detection
to classification. In order to test this, we propose using Auto Arborist tree (which have
coordinates) and trees from city park surveys to test the algorithms full-pipeline accuracy.
An example of such a dataset is Boston’s urban tree data.



38

Chapter 9

Conclusion and Future Work

9.1 Conclusion

Classifying objects in aerial imagery is valuable to a diverse set of Earth observation appli-
cations, including ecological monitoring, humanitarian aid and disaster response, and urban
planning. However, these applications are challenging for computer vision: objects of in-
terest are often fine-grained, the distribution of these objects is often long-tailed, there are
significant geospatial distribution shifts, and training and inference data are frequently noisy
as ground truth is often captured using ground-level measurements, at a specific point in
time, which do not always match what is visible from the air at the time of aerial data
acquisition.

In this work, we seek to produce accurate classification of objects in GPS-registered
aerial imagery despite these challenges. Prior and related work in both graph structured
classification and aerial image classification typically use unsupervised feature extractors,
which are not robust to label noise, and do not take advantage of local structure similarities
on the graph [73, 49, 19, 15, 45]. We propose SHIELD-GNN, which outperforms baselines
by making use of (1) robust initial feature extraction, (2) exploitation of local geospatial
structure by using a GNN, and (3) improvement on GNN tail-class performance by reducing
the negative impact of class-indicative features for non-homophilic connected components of
the graph. We demonstrate the gains of our method on two diverse aerial object classification
benchmarks, Auto Arborist which focuses on fine-grained tree genus classification in cities,
and xView which focuses on more coarse grained aerial object classification. Our method
outperforms DivideMix by up to 7% and standard cross-entropy by 14%, which, in the case
of Auto Arborist, corresponds to thousands of trees that would not need to be human-
categorized with expensive ground-level surveys, a significant gain for resource-constrained
urban planners and arborists.
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9.2 Future Work

Broadly, there are three branches of future work which could be motivated by work presented
in this thesis. First, there still is much that needs to be done to turn SHIELD-GNN into a
usable system for automated tree censusing, for example, tree detection from aerial imagery
which is then classified. Next, we have shown that the tail swamping with noise-robust
features occurs on Auto Arborist and xView, but we should verify that the phenomenon
occurs on other datasets that meet the long-tailed, noisy, and graph-valued criterion outlined
in chapter 3. Finally, Auto Arborist is the largest collection of imagery around trees and
therefore could serve as an ImageNet-like [16] pretraining scheme for downstream tasks.

Further Validation

We validated the tail class swamping and correction hypothesis on two datasets: Auto Ar-
borist and xView. However, it would be helpful to understand how SHIELD-GNN performs
on more standard benchmark datasets. For example, Paper100M [29], a large scale citation
graph could help show that this effect occurs at scale. This could help us further analyze
the exact conditions required for tail class smoothing in graph-network classification.

Tree Detection

We detail current progress towards tree detection in chapter 8. The goal of this work is to
be able to extend the Auto Arborist dataset into a semi-supervised dataset on both public
and private land. From this work and with powerful classifiers, urban planners and arborists
can get a fine-grained breakdown of complete tree populations in their locale.

Tree Detection Pretraining

To aid in the goal of using Auto Arborist as large-scale pretraining, we have released the
weights of models trained on each of the three regions of the dataset and will be releasing
weights trained on the entire dataset. The weights and an example of running inference can
be found here.
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Appendix A

Implementation Details

We implement our backbone algorithms in PyTorch [52] and use PyTorch Geometric [20] for
GNN implementation. We based our implementation off of code released by Li et al . [36].
We detail the hyperparameter settings in more detail in table A.1 for Auto Arborist and
table A.2 for xView (we borrow the table format from Li et al . [37]). Our backbone networks
use PyTorch ImageNet pretraining with a linear head to predict the correct number of classes.
This classification head is warmed up for an epoch before full finetuning.

A.1 Noise Robust Feature Extraction

We detail our modifications to DivideMix in algorithm 1. Our primary modification involves
using class conditional gaussian mixture models to split samples as we found that some
classes would retain no labels leading to them never being predicted.

A.2 SHIELD-GNN

We describe the SHIELD-GNN training loop in algorithm 2. We use a learning rate of 1e-3,
batch size of 5000, and weight decay of 1e-5 in the training.
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Algorithm 1: Our modification of DivideMix. See Li et al . [36] for more detailed

psuedocode.

Input: θ(1) and θ(2), training dataset (X ,Y), clean probability threshold τ , class
conditional epochs ξ

while e < MaxEpoch do
if e < ξ then

// Fit class conditional GMMs to losses of class c

W(1)
c = GMM(Xc, c, θ

(2)),∀c ∈ Y
W(2)

c = GMM(Xc, c, θ
(1)),∀c ∈ Y

else
// Fit unconditional GMMs

W(1) = GMM(X ,Y, θ(2))
W(2) = GMM(X ,Y, θ(1))

end
for k = 1, 2 do

if e < ξ then
// Split samples class-conditionally

X (k)
e = {(xi, yi, wi)|wi ≥ τ,∀(xi, yi, wi) ∈ (Xc, c,W(k)

c ), ∀c ∈ Y }
U (k)
e = {xi|wi < τ, ∀(xi, wi) ∈ (Xc,W(k)

c ),∀c ∈ Y }
else

X (k)
e = {(xi, yi, wi)|wi ≥ τ,∀(xi, yi, wi) ∈ (X ,Y,W(k))}

U (k)
e = {xi|wi < τ, ∀(xi, wi) ∈ (X ,W(k))}

end
// Continue DivideMix...

end

end

Algorithm 2: SHIELD-GNN psuedocode.

Input: θ(1) and θ(2), training dataset with edges (X ,Y, E), GNN θG, Temperature T
Xe, Ŷ = concat(θ(1)(X), θ(2)(X))
Ŷ= Soften(Ŷ, T )
while e < MaxEpoch do

ℓ =LSHIELD−GNN (θG(Xe, E),Y, Ŷ)
SGD(ℓ, θG)

end
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config value
architecture efficientnet-v2-s
#params 2*20.3M + 0.2M
optimizer Adam [32]
learning rate 5e-4
weight decay 1e-5
optimizer momentum β1, β2 = 0.9, 0.999
batch size 128
learning rate schedule backbone: constant

GNN: Decrease on plateau
T 0.5
τ 0.5
class conditional epochs 20
warmup epochs 5

Table A.1: Auto Arborist SHIELD-GNN implementation details.

config value
architecture efficientnet-v2-s
#params 2*20.3M + 0.2M
optimizer Adam
learning rate 5e-4
weight decay 1e-5
optimizer momentum β1, β2 = 0.9, 0.999
batch size 64
learning rate schedule backbone: constant

GNN: Decrease on plateau
T 0.5
τ 0.5
class conditional epochs 20
warmup epochs 5

Table A.2: xView SHIELD-GNN implementation details.
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