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Abstract

Interactive Robot Fleet Learning from Heterogeneous Human Supervisors using Implicit
Energy-Based Models

by

Gaurav Datta

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Ken Goldberg, Chair

Imitation learning has been applied to a range of robotic tasks, but can struggle when robots
encounter edge cases that are not represented in the training data (i.e., distribution shift). In-
teractive fleet learning (IFL) mitigates distribution shift by allowing robots to access remote
human supervisors during task execution and learn from them over time, but different super-
visors may demonstrate the task in different ways. Recent work proposes Implicit Behavior
Cloning (IBC), which is able to represent multimodal demonstrations using energy-based
models (EBMs). In this work, we propose Implicit Interactive Fleet Learning (IIFL), an
algorithm that builds on IBC for interactive imitation learning from multiple heterogeneous
human supervisors. A key insight in IIFL is a novel approach for uncertainty quantification
in EBMs using Jeffreys divergence. While IIFL is more computationally expensive than
explicit methods, results suggest that IIFL achieves a 2.8× higher success rate in simulation
experiments and a 4.5× higher return on human effort in a physical block pushing task over
(Explicit) IFL, IBC, and other baselines.
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Chapter 1

Introduction

Imitation learning (IL), the paradigm of learning from human demonstrations and feedback,
has been applied to diverse tasks such as autonomous driving [44, 46, 8], robot-assisted
surgery [45, 29], and deformable object manipulation [50, 4, 23]. The most common IL
algorithm is behavior cloning (BC) [46], where the robot policy is derived via supervised
machine learning on an offline set of human task demonstrations. However, BC can suffer
from distribution shift between the states visited by the human and those visited by the
robot. Distribution shift may occur due to the compounding error of the robot policy which
leads the robot to a state not present in the training data, or due to the “long tail” problem
of states that are individually very unlikely and therefore are not all included in the training
data., leading to incorrect behavior when they occur at test time. One family of solutions
to distribution shift is interactive IL (IIL) algorithms including DAgger [47] and variants
[24, 27, 37], which iteratively improve the robot policy with corrective human interventions
during robot task execution. These algorithms are typically designed for the single-robot,
single-human setting; interactive fleet learning (IFL) [21] extends IIL to multiple robots and
multiple human supervisors. However, learning from multiple humans can be unreliable as
the data is often multimodal.

Training data is multimodal when the same state is paired with multiple (correct) action
labels: {(s, ai), (s, aj), . . . }, ai ̸= aj. Almost all robot tasks such as grasping, navigation,
motion planning, and manipulation can be performed in multiple equally correct ways; as a
result, almost all demonstration data has some degree of multimodality. Multimodality is
especially severe when learning from different human supervisors with varying preferences
and proficiency, as they demonstrate the same task in different ways [36]. Multimodality can
also occur in the demonstrations of one individual human who may make mistakes, become
more proficient at the task over time, or execute a different valid action when subsequently
encountering the same state [36, 40].

Florence et al. [15] propose Implicit Behavior Cloning (IBC), an IL algorithm that trains
an energy-based model (EBM) [31] to represent state-action mappings implicitly rather than
explicitly. While this makes model training and inference more computationally expensive
(Chapter 6), implicit models can represent multiple actions for each state. This property
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allows them to handle both single-human multimodality and multi-human heterogeneity, as
they are indistinguishable from a data-centric perspective. However, IBC suffers from the
same distribution shift as (Explicit) BC.

In this thesis we combine implicit models with interactive fleet learning to facilitate
interactive learning from multiple humans. See Figure 5.1 for intuition. As existing IFL
algorithms rely on estimates of epistemic uncertainty like the output variance among an
ensemble of networks, which are incompatible with implicit models (Chapter 4.3), we propose
a new technique for estimating the epistemic uncertainty in EBMs using Jeffreys divergence
[25].

This thesis makes the following contributions:

1. Implicit Interactive Fleet Learning (IIFL), the first IIL algorithm to use implicit poli-
cies,

2. a novel metric for estimating uncertainty in energy-based models,

3. simulation experiments with a fleet of 100 robots and 10 heterogeneous algorithmic
supervisors, and

4. physical experiments with a fleet of 4 robots and 2 heterogeneous human supervisors.

Open-source Python code is available at https://github.com/BerkeleyAutomation/IIFL.

This thesis is based on work that was presented at the 2023 Conference on Robot Learning
in Atlanta, USA:

Gaurav Datta et al. “Iifl: Implicit interactive fleet learning from heterogeneous human
supervisors”. In: Conference on Robot Learning. PMLR. 2023, pp. 2340–2356

https://github.com/BerkeleyAutomation/IIFL
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Chapter 2

Preliminaries and Related Work

2.1 Imitation Learning

Learning from an offline set of human task demonstrations is an intuitive and effective
way to train a robot control policy [2, 3]. Popular approaches include behavior cloning
(i.e., supervised learning) [46, 50, 44] and inverse reinforcement learning [1, 6, 3], which
first infers a reward function from demonstrations and then trains a reinforcement learning
agent with this reward. These demonstrations can be augmented with additional offline
information such as pairwise preferences [7] and natural language [58]. Ho and Ermon
[19] propose an alternative to inverse reinforcement learning using techniques from training
generative adversarial networks [17], and Torabi, Warnell, and Stone [57] extend this to
imitation from observation, where states are available but action labels are not. However,
imitation learning from offline demonstration data can suffer from distribution shift [47], as
compounding approximation errors and real-world data distributions (e.g., variable lighting
in a warehouse) can lead the robot to visit states that were not visited by the human.

2.2 Interactive Imitation Learning

To mitigate distribution shift, Ross, Gordon, and Bagnell [47] propose dataset aggregation
(DAgger), an IIL algorithm which collects online action labels on states visited by the robot
during task execution and iteratively improves the robot policy. Since DAgger can request
excessive queries to a human supervisor, several IIL algorithms seek to reduce human burden
by intermittently ceding control to the human during robot execution based on some switch-
ing criteria [27, 24, 62]. Human-gated IIL [27, 54, 33] has the human decide when to take
and cede control, while robot-gated IIL [22, 24, 37, 62] has the robot autonomously decide.
Hoque et al. [21] propose Interactive Fleet Learning (IFL), which generalizes robot-gated
IIL to multiple robots supervised by multiple humans. In this work, we consider the IFL
setting.
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Sun, Yang, and Mangharam [55] propose a method for interactive imitation learning from
heterogeneous experts, but their method is not based on implicit policies and is limited to
autonomous driving applications. Gandhi et al. [16] also interactively learn from multiple
experts and propose actively soliciting the human supervisors to provide demonstrations
that are compatible with the current data. However, this prevents the robot from learning
alternative modes and requires the human supervisors to comply with suggestions, which
may not occur due to human suboptimality, fatigue, or obstinacy [10].

2.3 Robot Learning from Multimodal Data

Learning from multimodal demonstrations is an active challenge in machine learning and
robotics. A mixture density network [5] is a popular approach that fits a (typically Gaussian)
mixture model to the data, but it requires setting a parameter for how many modes to fit,
which may not be known a priori. When actions can be represented as pixels in an image
(e.g., pick points), a Fully Convolutional Network [52] can be applied to learning pixelwise
multimodality [23, 61]. Shafiullah et al. [51] propose Behavior Transformers, a technique
that applies the multi-token prediction of Transformer neural networks [59] to imitation
learning. Other Transformer-based policies report similar benefits for multimodal data [53,
26]; however, these approaches require action discretization to cast behavior prediction as
next-token prediction. Chi et al. [9] introduce diffusion policies, an application of diffusion
models [20] to imitation learning from multimodal data. Integrating diffusion policies with
IFL is an exciting direction for future work.

Florence et al. [15] propose implicit behavior cloning, a technique that trains a condi-
tional energy-based model [31] and is found to outperform (explicit) BC and mixture density
networks in their experiments. As opposed to explicit models that take the form π : S → A,
implicit models take the form of a scalar-valued function E : S × A → R; the action is an
input rather than an output of the model. To sample an action from the policy, instead of
evaluating the explicit model â = π(s), the implicit model must perform optimization over
E conditioned on state s:

â = argmin
a∈A

E(s, a) (2.1)

In this work, we combine IBC with IFL to mitigate the effects of both distribution shift and
multimodality. To our knowledge, we are the first to extend implicit policies to interactive
IL.

2.4 Jeffreys Divergence

The Jeffreys divergence [25] is a statistical measure of the distance between two probability
distributions and is a symmetric version of the Kullback-Leibler (KL) divergence:

DJ(P∥Q) = DKL(P∥Q) +DKL(Q∥P ).
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The KL divergence is widely used in machine learning algorithms, most commonly in varia-
tional autoencoders [30] and generative adversarial networks [18]. It has also been used for
dimensionality reduction [34], information bottlenecks [56], and policy gradient methods for
reinforcement learning [49, 48]. The Jensen-Shannon divergence [32] is another symmetric
KL divergence that sums the KL divergences of both distributions against the mixture of the
two, but neither the Jensen-Shannon nor the asymmetric KL divergences have the structural
properties that make Jeffreys divergence amenable to our setting (Chapter 4.3). Nielsen [39]
derives a proposition similar to Identity 1 (Chapter 4.3) with Jeffreys divergence for ex-
ponential families but does not apply it to energy-based models. To our knowledge, IIFL
is the first algorithm to use Jeffreys divergence for uncertainty estimation in energy-based
models, exploiting its structural properties for fast computation that are not present in the
asymmetric KL divergence or the Jensen-Shannon divergence.
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Chapter 3

Problem Statement

We consider the interactive fleet learning (IFL) setting proposed by Hoque et al. [21], in
which a fleet of N robots operate in parallel independent Markov Decision Processes (MDPs)
{Mi}Ni=1 that are identical apart from their initial state distributions. Each MDP is a tuple
(S,A, p, r, γ, p0i ), with set of states S, set of actions A, transition dynamics p : S ×A×S →
[0,∞), reward function r : S×A → R, discount factor γ ∈ (0, 1), and initial state distribution
p0i : S → [0,∞). The MDPs are equipped with an indicator function c : S → {0, 1}
which takes value 1 when the robot is violating a constraint, i.e. it is in a fault state
and cannot make further progress. The N identical MDPs may be vectorized into a single
MDP

(
SN ,AN , p̃, r̃, γ, p̃0

)
, where for s = (s1, . . . , sN) ∈ SN and a = (a1, . . . , aN) ∈ AN ,

p̃(st+1|st, at) =
∏N

i=1 p(s
t+1
i |sti, ati), r̃(s, a) =

∑N
i=1 r(si, ai), and p̃0(s) =

∏N
i=1 p

0
i (si).

The robots can query a set ofM < N human supervisors with action spaceAH = A∪{R},
where a ∈ A is teleoperation in the action space of the robots and R is a “hard reset” that
physically resets a robot in a failure state (e.g., a delivery robot tipped over on its side).
Like Hoque et al. [21], we assume that (1) the robots share policy πθt : S → A, (2) the MDP
timesteps are synchronous across robots, and (3) each human can only help one robot at a
time. However, unlike the original IFL formulation [21], we do not assume that the human
supervisors are homogeneous; instead, each human i may have a unique policy πi

H : S → AH .
Furthermore, each πi

H may itself be nondeterministic and multimodal, but is assumed to be
optimal or nearly optimal.

An IFL supervisor allocation algorithm is a policy ω that determines the assignment αt

of humans to robots at time t, with no more than one human per robot and one robot per
human at a time:

ω : (st, πθt , ·) 7→ αt ∈ {0, 1}N×M s.t.
M∑
j=1

αt
ij ≤ 1 and

N∑
i=1

αt
ij ≤ 1 ∀i, j. (3.1)

Here, st are the current states of each of the robots, αt is an N ×M binary matrix that
indicates which robot will receive assistance from which human at the current timestep t,
and πθt is the shared robot control policy at time t.
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The allocation policy ω in IFL must be autonomously determined with robot-gated cri-
teria [24, 37] rather than human-gated criteria [27, 54, 33] in order to scale to large ratios of
N to M . The IFL objective is to find an ω that maximizes return on human effort (ROHE),
defined as the average performance of the robot fleet normalized by the amount of human
effort required [21]:

max
ω∈Ω

Eτ∼pω,θ0
(τ)

[
M

N
·

∑T
t=0 r̄(s

t, at)

1 +
∑T

t=0 ∥ω(st, πθt ,α
t−1,xt)∥2F

]
(3.2)

where ∥ · ∥F is the Frobenius norm, T is the amount of time the fleet operates (rather
than an individual episode horizon), and θ0 are the initial parameters of πθt .
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Chapter 4

Approach

4.1 Preliminaries: Implicit Models

We build on Implicit Behavior Cloning [15]. IBC seeks to learn a conditional energy-based
model E : S ×A → R, where E(s, a) is the scalar “energy” for action a conditioned on state
s. Lower energy indicates a higher correspondence between s and a. The energy function
defines a multimodal probability distribution π of action a conditioned on state s:

π(a|s) = e−E(s,a)

Z(s)
(4.1)

where Z(s) is a normalization factor known as the “partition function.” In practice, we
estimate E with a learned neural network function approximator Eθ parameterized by θ.

Implicit BC trains an energy-based model Eθ on samples {si, ai} collected from the
expert policies πH . After generating a set of counter-examples {ãji} for each si, Implicit BC
minimizes the following InfoNCE [42] loss function:

L =
N∑
i=1

− log p̂θ(ai|si, {ãji}), p̂θ(ai|si, {ãji}) :=
e−Eθ(si,ai)

e−Eθ(si,ai) +
∑

j e
−Eθ(si,ã

j
i )
. (4.2)

This loss is equivalent to the negative log likelihood of the training data, where the
partition function Z(s) is estimated with the counter-examples. Florence et al. [15] propose
three techniques for generating these counter-examples {ãji} and performing inference over
the learned model Eθ; we choose gradient-based Langevin sampling [60] with an additional
gradient penalty loss for training in this work as Florence et al. [15] demonstrate that it
scales with action dimensionality better than the alternate methods. This is a Markov
Chain Monte Carlo (MCMC) method with stochastic gradient Langevin dynamics. More
details are available in Appendix B.3 of Florence et al. [15].
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4.2 Implicit Interactive Dataset Aggregation

Behavior cloning is prone to distribution shift due to compounding approximation errors
[47], and any data-driven robot policy may encounter edge cases during execution that are
not represented in the training data [21]. We extend IBC to interactive imitation learning
using dataset aggregation of online human data, and iteratively update the shared robot
policy with the aggregate dataset at a fixed interval 1 ≤ t̂ ≤ T via supervised learning, as
in DAgger [47] and variants [27, 21]:{

Dt+1 ← Dt ∪Dt
H , where Dt

H := {(sti, π
j
H(s

t
i)) : π

j
H(s

t
i) ̸= R and

∑M
j=1 α

t
ij = 1}

πθt ← argminθ L(πθ, D
t), if t ≡ 0 (mod t̂)

where πj
H(s

t
i) is the teleoperation action from human j for robot i at time t, and αt

ij is the
assignment of human j to robot i at time t, as in Equation 3.1. Ross, Gordon, and Bagnell
[47] show that such a policy incurs approximation error that is linear in the time horizon
rather than quadratic, as in behavior cloning.

4.3 Uncertainty Estimation for EBMs

While prior work computes the output variance among a bootstrapped ensemble of neural
networks to estimate epistemic uncertainty [11, 37, 24], this approach is not applicable to
implicit policies because multimodality results in a false positive: different ensemble members
may select equally optimal actions from different modes, resulting in high variance despite
high certainty. Furthermore, training and inference in EBMs are much more computationally
expensive than in explicit models (Chapter 6), making ensembles of 5+ models impractical.
Finally, inference in implicit models is nondeterministic, creating an additional source of
variance that is not due to uncertainty.

The notion of ensemble disagreement can still be applied to EBMs by considering the
action distributions at a given state rather than the single predicted actions. At states within
the distribution of the human data, a bootstrapped EBM will predict action distributions
that are concentrated around the human actions. However, outside of the human data
distribution, the models have no reference behavior to imitate, and will likely predict different
conditional action distributions due to random initialization, stochastic optimization, and
bootstrapping. Accordingly, we propose bootstrapping 2 implicit policies and calculating
the Jeffreys divergence DJ [25] between them as a measure of how their conditional action
distributions differ at a given state. Jeffreys divergence in this setting has two key properties:
(1) it is symmetric, which is useful as neither bootstrapped policy is more correct than the
other, and (2) it is computationally tractable for EBMs as it does not require estimating the
partition function Z(s) (Equation 4.1). To show (2), we derive the following novel identity:
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State

Jeffreys Divergence

State

Energy Functions
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Figure 4.1: Consider a pair of isotropic Gaussian energy functions E1(s, a) and E2(s, a) in green
and purple respectively, where each function is a negated Gaussian probability density function and
E1 adds a uniform offset of Z = −100 to all values (Left). Using numerical integration to directly
compute the expectations in the Jeffreys divergence identity (Identity 1), at each state we calculate
the distance between the implicit policies defined by the two energy functions (Right). As intuition
suggests, the divergence peaks at the mean of each Gaussian (where one energy function is highest
and the other is near zero) and approaches zero where the energy functions are the same (at the
center and edges of the state space). Note the symmetric structure of the Jeffreys curve, which
produces identical values regardless of the offset Z.

Identity 1. Let E1 and E2 be two energy-based models that respectively define distributions
π1 and π2 according to Equation 4.1. Then,

DJ (π1(·|s)∥π2(·|s)) = Ea∼π1(·|s) [E2(s, a)− E1(s, a)] + Ea∼π2(·|s) [E1(s, a)− E2(s, a)] .

Proof. The proof follows from applying the definition of Jeffreys divergence to EBMs:

DJ (π1(·|s)∥π2(·|s)) = DKL (π1(·|s)∥π2(·|s)) +DKL (π2(·|s)∥π1(·|s))

= Ea∼π1(·|s)

[
log

π1(a|s)
π2(a|s)

]
+ Ea∼π2(·|s)

[
log

π2(a|s)
π1(a|s)

]
= Ea∼π1(·|s) [E2(s, a)− E1(s, a)]− logZ1(s) + logZ2(s)

+ Ea∼π2(·|s) [E1(s, a)− E2(s, a)]− logZ2(s) + logZ1(s)

= Ea∼π1(·|s) [E2(s, a)− E1(s, a)] + Ea∼π2(·|s) [E1(s, a)− E2(s, a)] .

Crucially, the intractable partition functions do not appear in the expression due to the
symmetry of Jeffreys divergence. We estimate the expectations in Identity 1 using Langevin
sampling. Note that this method is not limited to the interactive IL setting and may have
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broad applications for any algorithms or systems that use energy-based models. To provide
more intuition on this identity, we plot the Jeffreys divergence for a pair of isotropic Gaussian
energy functions in Figure 4.1. In Appendix 8.2, we consider how this method may be
generalized to a greater number of models in Appendix 8.2.

4.4 Energy-Based Allocation

To extend IBC to the IFL setting, we synthesize the Jeffreys uncertainty estimate with Fleet-
DAgger [21]. Fleet-DAgger allocates robots according to a priority function p̂ : (s, πθt) →
[0,∞), where a higher value indicates a higher priority robot. Specifically, we set the Fleet-
DAgger priority function to prioritize robots with high uncertainty as quantified by our
Jeffreys divergence estimate, followed by robots that require a hard reset R (i.e. they are
in a state s with c(s) = 1). This produces a supervisor allocation policy ω with Fleet-
EnsembleDAgger, the U.C. (Uncertainty-Constraint) allocation scheme proposed by Hoque
et al. [21]. We refer to the composite approach as IIFL.
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Chapter 5

Experiments

5.1 Simulation Experiments: 2D Navigation

To evaluate the correctness of our implementation and provide visual intuition, we first
run experiments in a 2D pointbot navigation environment. See Figure 5.1 for the maze
environment, representative trajectories, and energy distribution plots. We consider discrete
2D states s = (x, y) ∈ N2 (the Cartesian pose of the robot) and continuous 2D actions
a = (∆x,∆y) ∈ [−1, 1]2 (relative changes in Cartesian pose). The maze has a fixed start and
goal location and consists of a forked path around a large obstacle followed by a long corridor.
An algorithmic supervisor provides 100 demonstrations of the task, randomly choosing to
go upward or downward at the fork with equal probability. Since a model can simply overfit
to the demonstrations in this low-dimensional environment, to induce distribution shift we
add “wind” at execution time to a segment of the right corridor with magnitude 0.75 in the
+y direction.

In 100 trials, (explicit) BC achieves a 0% success rate, IBC achieves a 0% success rate,
and IIFL achieves a 100% autonomous success rate (i.e., robot-only trajectories without
human interventions, after interactive training). In Figure 5.1 we observe that BC cannot
pass the fork due to averaging the two modes to zero. Meanwhile, IBC is not robust to the
distribution shift: once the wind pushes the robot to the top of the corridor, it does not
know how to return to the center. We also observe that the IIFL energy distributions in
Figure 5.1(B) reflect the desired behavior in accordance with intuition.

5.2 Simulation Experiments: IFL Benchmark

Environments: Evaluating IIFL in simulation is uniquely challenging as it requires all of
the following, precluding the use of most existing benchmarks in similar papers: (1) efficient
simulation of large robot fleets, (2) simulation of multiple algorithmic humans, (3) interactive
human control, and (4) heterogeneous human control, which is difficult to specify in joint
space. To accommodate these requirements, following prior work [21] we evaluate with Isaac
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(A) Robot 
Paths

(B) IIFL 
Energy

BC IIFL

x xxxx x

Junction Hallway Wind

IBC

Figure 5.1: In the 2D navigation experiments, the robot must navigate from the blue X marker
on the left to the green X marker on the right, where the robot can go either above or below
the rectangular grey obstacle and continue through a section subject to upward wind forces (blue
arrows) that shift commanded motions upward. (A) Robot Trajectories: After training on 100
demonstrations of the two paths around the obstacle, pure behavior cloning cannot make progress
past the fork due to multimodal demonstrations, while Implicit Behavior Cloning cannot overcome
the distribution shift due to wind in the +y direction at execution time (denoted in light blue). IIFL
reaches the goal by handling both multimodality and distribution shift. (B) Implicit Interactive
Fleet Learning Energy: We display normalized IIFL energy distributions from representative
states in the trajectory. Lower energy (darker) indicates a more optimal action, and the x and y
axes are the 2D action deltas â that the robot can execute (which can be mapped directly onto the
corresponding 1×1 cell in the maze). At the junction point, both upward and downward actions
attain low energy; in a straight hallway, the rightmost actions attain low energy; in the windy area,
actions toward the lower right corner (making progress toward the goal while fighting the wind)
attain low energy.

Gym [35] and the IFL Benchmark [21]. We separate these experiments into two domains: (1)
homogeneous human control in 3 environments (Ball Balance, Ant, Anymal) to compare with
prior IFL algorithms that assume unimodal supervision; (2) heterogeneous human control
in FrankaCubeStack, the only Isaac Gym environment with Cartesian space control. More
details are available in Appendix 8.3.

Metrics: Following prior work [21], we measure the total successful task completions
across the fleet and the total number of hard resets. For interactive algorithms, we also
measure the return on human effort (Equation 3.2) where reward is a sparse r ∈ {0, 1} for
task completion. Task execution is deemed successful if the robot completes its trajectory
without a hard reset and reaches 95% of expert human reward.

Baselines: We compare IIFL to the following baselines: (explicit) BC, IBC, (explicit)
IFL (specifically, Fleet-EnsembleDAgger [21]), and IIFL-Random (IIFL-R), which is an ab-
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IFLBC IBC IIFLIIFL-R

Figure 5.2: IFL Benchmark simulation experiment results. Despite unimodal supervision, IIFL is
competitive with or outperforms IFL and other baselines across 3 environments, suggesting benefits
of implicit policies beyond robustness to multimodality. Shading represents ±1 standard deviation.

Algorithm Avg. Reward Task Successes ROHE
BC 29.27± 14.05 0.3± 0.5 N/A
IBC 24.96± 0.83 0.0± 0.0 N/A
IFL 230.39± 53.41 7.0± 2.2 2.30± 0.53

IIFL-R 166.24± 28.63 0.0± 0.0 1.66± 0.29
IIFL 784.26± 122.41 26.7± 4.5 7.84± 1.22

Table 5.1: Execution results from the FrankaCubeStack Isaac Gym environment with 4 heteroge-
neous expert policies. IIFL significantly outperforms the baselines in average reward, task successes,
and return on human effort.

lation of IIFL that allocates humans to robots randomly instead of using the Jeffreys un-
certainty estimate. Human supervisors for BC and IBC perform only hard resets (i.e., no
teleoperation) during execution.

Experimental Setup: We run experiments with a fleet of N = 100 robots and M = 10
algorithmic supervisors, where the supervisors are reinforcement learning agents trained with
Isaac Gym’s reference implementation of PPO [48]. All training runs have hard reset time
tR = 5 timesteps, minimum intervention time tT = 5 timesteps, and fleet operation time
T = 10, 000 timesteps [21], and are averaged over 3 random seeds. The initial robot policy πθ0
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Algorithm Avg. Reward Task Successes ROHE
BC 23.45± 0.99 0.0± 0.0 N/A
IBC 30.32± 2.78 0.0± 0.0 N/A
IFL 307.87± 118.59 9.3± 4.7 3.08± 1.19

IIFL-R 244.98± 32.58 0.0± 0.0 2.45± 0.33
IIFL 604.17± 263.06 17.7± 11.1 6.04± 2.63

Table 5.2: Execution results from the FrankaCubeStack Isaac Gym environment with 2 heteroge-
neous supervisor policies (rather than 4).

for all algorithms is initialized with behavior cloning on 10 full task demonstrations. While
IFL trains at every timestep following prior work [21], the implicit interactive algorithms
train at intervals of 1000 timesteps with an equivalent total amount of gradient steps for
increased stability of EBM training.

FrankaCubeStack, in which a Franka arm grasps a cube and stacks it on another, has
several differences from the other 3 environments. First, since it allows Cartesian space
control, we can script 4 heterogeneous supervisor policies with grasps corresponding to each
face of the cube; the M = 10 supervisors are split into 4 groups, each of which has a unique
policy. Second, due to the difficulty of scripting interactive experts, the online interventions
take place at execution-time (i.e., the robot policy is frozen). Third, since there is no notion
of catastrophic failure in the cube stacking environment, we do not report hard resets as
there are none.

Using known pose information and Cartesian space control, the supervisor policy does
the following, where Cube A is to be stacked on Cube B: (1) move the end effector to a
position above Cube A; (2) rotate into a pre-grasp pose; (3) descend to Cube A; (4) lift
Cube A; (5) translate to a position above Cube B; (6) place Cube A on Cube B; and (7)
release the gripper. Heterogeneity is concentrated in Step 2: while one supervisor rotates to
an angle θ ∈ [0, π

2
] that corresponds to a pair of antipodal faces of the cube, the others rotate

to θ−π, θ− π
2
, and θ+ π

2
. See Figure 5.3 for intuition. We also consider an experiment with

only 2 hetereogeneous policies (θ and θ − π
2
).

Results: The results are shown in Figure 5.2 and Table 5.1. In the homogeneous control
experiments, we observe that IIFL rivals or outperforms all baselines across all metrics, with
the exception of hard resets in the Anymal environment. We hypothesize that the latter
results from learning more “aggressive” locomotion that makes greater progress on average
but is more prone to failure. These results suggest that implicit policies may have desirable
properties over explicit policies such as improved data efficiency and generalization even
when multimodality is not present in the data, as suggested by prior work [15]. The sever-
ity of distribution shift due to compounding approximation error [47] in the homogeneous
experiments roughly corresponds to the performance gap between BC and IFL (or IBC and
IIFL). Surprisingly, (explicit) IFL underperforms BC in Ball Balance; we hypothesize that
this is due to its frequent policy updates on a shifting low-dimensional data distribution.
In the FrankaCubeStack environment (with 4 hetereogeneous policies), IIFL significantly
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Figure 5.3: The scripted heterogeneous supervisors for the FrankaCubeStack Isaac Gym environ-
ment pick different faces of the cube for the same cube pose.

outperforms the baselines across all metrics, indicating the value of implicit policies for het-
erogeneous supervision. The 74% performance gap between IFL and IIFL corresponds to the
severity of multimodality in this environment. Only IFL and IIFL attain nontrivial success
rates; while IIFL-R makes progress, it is not able to successfully stack the cube, suggesting
that IIFL allocates human attention more judiciously. Table 5.2 shows the results for the
FrankaCubeStack environment with 2 heterogeneous policies, which (in conjunction with
Table 5.1) suggest that relative performance of IIFL over baselines remains approximately
consistent as the number of modes varies and can improve as multimodality increases.

5.3 Physical Experiments: Pushing Block to Target

Point amid Obstacle

Experimental Setup: To evaluate IIFL in experiments with real-world human multimodal-
ity and high-dimensional state spaces, we run an image-based block-pushing task with a fleet
of N = 4 ABB YuMi robot arms operating simultaneously and M = 2 human supervisors,
similar to Hoque et al. [21]. See Figure 5.4 for the physical setup. Each robot has an identical
square workspace with a small blue cube and rectangular pusher as an end effector. Unlike
Hoque et al. [21], we add a square obstacle to the center of each workspace. The task for
each robot is to push the cube to a goal region diametrically opposite the cube’s initial po-
sition without colliding with the walls or the obstacle. Once this is achieved, the goal region
is procedurally reset based on the new cube position. As described in Chapter 3, the role
of human superivsion is to (1) teleoperate when requested and (2) provide a physical hard
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Figure 5.4: Physical experiment setup with 2 ABB YuMi robots for a total of 4 independent arms.

Algorithm Successes (↑) Hard Resets (↓) ROHE (↑)
BC 2.0± 0.8 51.0± 0.8 N/A
IBC 20.3± 4.1 35.3± 6.8 N/A
IFL 7.0± 0.8 47.3± 0.5 0.13± 0.01
IIFL 36.3± 1.2 37.0± 2.2 0.71± 0.01

Table 5.3: Physical block pushing experiment results. IIFL outperforms all baselines in number of
task successes and ROHE and explicit methods in hard resets. Implicit BC and IIFL incur similar
amounts of hard resets.

reset when requested. When both paths to the goal are equidistant, Human 1 pushes the
cube clockwise around the obstacle while Human 2 pushes the cube counterclockwise; if one
path is closer, the human takes that path. Hard resets R are defined to be collisions of the
cube with the obstacle or the boundaries of the workspace. Furthermore, unlike the discrete
action space in Hoque et al. [21], we use a continuous 2D action space of a = (∆x,∆y) that
corresponds to the vector along which to push the block, starting from the block’s center.
We run 3 trials of each algorithm in Table 5.3 for T = 150 timesteps; see Appendix 8.3 for
more details.

Results: The results are shown in Table 5.3. We observe that implicit policies are crucial
for success, as the explicit methods rarely reach the goal and incur many hard resets. Results
suggest that IIFL improves the success rate by 80% over IBC and improves ROHE by 4.5×
over IFL. However, IIFL incurs a similar number of hard resets to IBC. We hypothesize
that the duration of the physical experiment, difficult to extend due to the significant robot
and human time required, is insufficient to learn subtle collision avoidance behaviors that
noticeably reduce the number of hard resets.
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Chapter 6

Limitations

Since IIFL extends IBC, it inherits some of its limitations. First, Florence et al. [15] find
that IBC performance falls on some tasks when the action space dimensionality is very high
(|A| > 16); we do not observe this in our experiments as |A| ≤ 12 but IIFL likely incurs this
property with higher-dimensional actions.

Second, model training and inference require 18× and 82× more computation time than
explicit methods. In Table 6.1 we report the mean and standard deviation of various com-
putation time metrics. All timing experiments were performed with N = 100 robots and
averaged across T = 100 timesteps in the Ant environment on a single NVIDIA Tesla V100
GPU with 32 GB RAM. Training time is reported for a single gradient step with a batch
size of 512. Note that with default hyperparameters, IFL trains an ensemble of 5 (explicit)
models and IIFL trains an ensemble of 2 (implicit) models; hence, we also report the training
time per individual model. IFL inference consists of a single forward pass through each of
the 5 models, while IIFL inference performs 100 iterations of stochastic gradient Langevin
dynamics; both of these are vectorized across all 100 robots at once. While IIFL can provide
policy performance benefits over IFL, we observe that it comes with a tradeoff of computa-
tion time, which may be mitigated with parallelization across additional GPUs. We measure
implicit training to take an additional 0.34 seconds per gradient step and implicit inference
to take an additional 0.49 seconds in the Ant environment. For the two implicit models
that IIFL requires for energy-based switching, training takes an additional 0.66 seconds of
computation time per training step.

Third, while it is 7× faster than alternate methods for implicit models and has sub-
second latency for a fleet of 100 robots, IIFL uncertainty estimation is nevertheless 340×
slower than its highly efficient explicit counterpart. IFL uncertainty estimation consists of
a single forward pass through each of the 5 models while IIFL performs both Langevin
iterations and 2 forward passes through each of the 2 models. However, while uncertainty
estimation is the bottleneck in IIFL, it is performed with sub-second latency for the entire
fleet. This is significantly faster than alternatives such as directly estimating the partition
function, which is both less accurate and slower; we measure it to take an average of 7.10
seconds per step using annealed importance sampling [38].
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Time IFL IIFL
Training step (s) 0.0385± 0.0205 0.694± 0.207
Training step per model (s) 0.0077± 0.0041 0.347± 0.104
Inference (s) 0.0060± 0.0395 0.494± 0.045
Uncertainty estimation (s) 0.0029± 0.0008 0.988± 0.008

Table 6.1: Computation times for training, inference, and uncertainty estimation for IFL and IIFL.

Finally, the real-world evaluation of IIFL is limited to block pushing with fixed block
properties; more comprehensive evaluation of IIFL in a wider range of physical domains is
required to assess its full applicability.
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Chapter 7

Conclusion

This thesis presents IIFL, an interactive imitation learning algorithm that uses implicit
energy-based models to learn multimodal policies from heterogeneous human supervisors.
We propose a novel method for uncertainty quantification in energy-based models that uses
the Jeffreys Divergence between a pair of bootstrapped models, and show how this can be
estimated efficiently. We note that this technique does not rely on any IFL assumptions,
and may be broadly useful beyond this setting to any applications involving Boltzmann
distributions and energy-based models. Our simulated and physical experiments suggest
that this method can efficiently allocate human supervisors to robot fleets, at the cost of
increased computation time. However, the physical evaluation of IIFL is limited, and a
more comprehensive study in additional physical environments to assess the effectiveness of
the methods proposed here and of other IFL algorithms would be a valuable contribution.
Additionally, there are many other approaches for handling multimodality, such as such as
Behavior Transformers [51] and Diffusion Policies [9]. Extending these works to the IFL
setting is also an exciting direction for future work, especially as Diffusion Policy removes
many of the limitations of energy-based models regarding training stability, but requires
some new form of uncertainty quantification. Another possible extension of this work would
be to lift the assumption that all human supervisors are nearly optimal at the task and
allowing the possibility of suboptimal demonstrations.

On a broader note, the past few years have seen attempts at scaling up data to train
large models for robotics in a similar fashion to what has been successful for many tasks
in computer vision and natural language processing [43, 14, 12, 28, 41]. Though these
results are impressive, I conjecture that distribution shift will remain a problem for these
approaches that train on an offline dataset and are frozen by the time they interact with the
environment. It may be that the collection of ever larger datasets will be enough to mitigate
this, but perhaps the long tail problem will preclude this. Therefore, algorithms that make
use of interventions and continual learning, such as DAgger [47], may be necessary. As robots
are more widely deployed, they must judiciously choose when to ask for help so as to not
overwhelm their human supervisors, making it crucial that they know when it is that they
do not know what to do. I look forward to seeing how the research community grapples with
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these challenges.
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Chapter 8

Appendix

8.1 Additional Details on Implicit Models

We use the following hyperparameters for implicit model training and inference:

Hyperparameter Value
learning rate 0.0005
learning rate decay 0.99
learning rate decay steps 100
train counter-examples 8
langevin iterations 100
langevin learning rate init. 0.1
langevin learning rate final 1e-5
langevin polynomial decay power 2
inference counter-examples 512

Table 8.1: Implicit model hyperparameters.

8.2 Uncertainty Estimation with Larger Ensembles

Prior works using ensembles of explicit models to estimate epistemic uncertainty [11, 37,
24] typically employ larger ensembles of n ≥ 5 models, whereas IIFL uses n = 2. We wish
to evaluate the impact of this smaller number of models. However, the Jeffreys divergence
is only defined for two distributions, and while other divergence measures (e.g. Jensen-
Shannon) can be generalized to an arbitrary number of distributions, they typically require
knowledge of the intractable partition functions of the distributions. Accordingly, we consider
estimating the uncertainty of n = 5 implicit models by computing the average of the Jeffreys
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divergences between every pairwise combination of models. Figure 8.1 provides intuition on
this measure.

We evaluate the effect of adding more models by comparing the estimate of the Jeffreys
divergence with n = 2 models and the averaged estimate with n = 5 models to the L2
distance between the robot policy’s proposed action and the expert policy’s action at the
same state. While ground truth epistemic uncertainty is intractable to calculate, the ground
truth action discrepancy between the human and robot can provide a correlate of uncertainty:
higher discrepancy corresponds to higher uncertainty. The results are shown in Figure 8.2.
We observe that both ensemble sizes are positively correlated with action discrepancy, and
that the ensemble with n = 5 models has a higher correlation (r = 0.804) than the ensemble
with n = 2 models (r = 0.688). We also observe that the n = 5 ensemble has lower variance
than n = 2: the standard deviation is 0.176 compared to 0.220. These results suggest that
larger ensembles can improve the uncertainty estimation at the cost of increased computation
time (2.6×, requiring 2.599± 0.002s). While the time complexity should grow as quadratic
in n, in practice we observe that for small values of n the growth is closer to linear as the
latency is dominated by the O(n) sampling process rather than the O(n2) forward passes.

8.3 Additional Experimental Details

IFL Benchmark Hyperparameters

Implementations of Implicit Interactive Fleet Learning and baselines are available in the
code supplement and are configured to run with the same hyperparameters we used in the
experiments. To compute the uncertainty thresholds û for Explicit IFL and IIFL (see Section
8.3.1 in [21] for definition), we run Explicit BC and Implicit BC respectively with N = 100
robots for T = 1000 timesteps and choose the 99th percentile value among all 100 × 1000
uncertainty values. The FrankaCubeStack environment sets these thresholds to zero since
there are no constraint violations (i.e., this sorts robot priority by uncertainty alone). See
Table 8.2 for these values, state and action space dimensionality, and other hyperparameters.
The batch size is 512 and all algorithms pretrain the policy for N/2 gradient steps, where N
is the number of data points in the 10 offline task demonstrations. Finally, as in prior work
[21], the Random IIFL baseline is given a human action budget that approximately equals
the average amount of human supervision solicited by IIFL. See the code for more details.

Environment |S| |A| Explicit û Implicit û
BallBalance 24 3 0.1179 0.1206
Ant 60 8 0.0304 0.9062
Anymal 48 12 0.0703 2.2845
FrankaCubeStack 19 7 0.0 0.0

Table 8.2: Simulation environment hyperparameters.
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(a) Consider 5 isotropic Gaussian energy functions, each a negative Gaussian proba-
bility density function with some offset.

(b) We use numerical integration to calculate at each state the Jeffreys divergences
between each of the

(
5
2

)
= 10 unique pairs of models, and report the average value. As

intuition suggests, the calculated uncertainty is highest at states −2 and 2, where two
of the Gaussians have means that are far apart, meaning that they strongly prefer very
different actions. At state 0, the uncertainty is lower as one model strongly prefers
the action 0, and the others are closer to uniform. Far from state 0, the uncertainty is
lowest as all the energy functions are approximately flat.

Figure 8.1
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Figure 8.2: We plot the Jeffreys divergence estimates and the ground truth action discrepancies
at the first 1000 states visited by a robot with a unimodal policy. Both variants of the Jeffreys
divergence calculation are positively correlated with the L2 distance between the robot policy’s
and expert policy’s actions. In the n = 2 case, the correlation coefficient is r = 0.688; in the
n = 5 case, the correlation coefficient is r = 0.804, indicating that additional models can make the
ensemble more predictive of when the agent will deviate from the expert (at the cost of increased
computation time).

Physical Experiment Protocol

We largely follow the physical experiment protocol in Hoque et al. [21] but introduce some
modifications to human supervision. We execute 3 trials of each of 4 algorithms (Explicit
BC, Implicit BC, Explicit IFL, Implicit IFL) on the fleet of 4 robot arms. Each trial lasts
150 timesteps (synchronous across the fleet) for a total of 3 × 4 × 4 × 150 = 7200 individual
pushing actions. The authors provide human teleoperation and hard resets, which differ from
prior work due to the continuous action space and the square obstacle in the center of the
workspace. Teleoperation is done using an OpenCV (https://opencv.org/) GUI by clicking
on the desired end point of the end-effector in the overhead camera view. Hard resets are
physical adjustments of the cube to a randomly chosen side of the obstacle. IIFL is trained
online with updated data at t = 50 and t = 100 while IFL is updated at every timestep
(with an equivalent total amount of gradient steps) to follow prior work [21].
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The rest of the experiment protocol matches Hoque et al. [21]. The 2 ABB YuMi robots
are located about 1 km apart; a driver program uses the Secure Shell Protocol (SSH) to
connect to a machine that is connected to the robot via Ethernet, sending actions and
receiving camera observations. Pushing actions are executed concurrently by all 4 arms
using multiprocessing. We set minimum intervention time tT = 3 and hard reset time
tR = 5. All policies are initialized with an offline dataset of 3360 image-action pairs (336
samples collected by the authors with 10× data augmentation). 10× data augmentation on
the initial offline dataset as well as the online data collected during execution applies the
following transformations:

• Linear contrast uniformly sampled between 85% and 115%

• Add values uniformly sampled between -10 and 10 to each pixel value per channel

• Gamma contrast uniformly sampled between 90% and 110%

• Gaussian blur with σ uniformly sampled between 0.0 and 0.3

• Saturation uniformly sampled between 95% and 105%

• Additive Gaussian noise with σ uniformly sampled between 0 and 1
80
× 255
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