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Eliciting Domain Expertise Reduces Examples Needed for

Program Synthesis

While Programming By Example (PBE) holds the promise of putting programming tasks in reach for non-

programmer domain experts, PBE for complex programs often requires a large number of examples. We aim

to bring the benefits of PBE to domains in which providing sufficient examples is prohibitively tedious or

time-consuming. We build our approach around the insight that users often have useful domain knowledge

that input-output examples can express only indirectly. We introduce a synthesis framework that accepts

as input both: (i) traditional labeled examples and (ii) decisions about whether particular domain concepts

are relevant to the task at hand. This novel synthesis framework allows us to explore the tradeoff between

providing examples vs. domain knowledge. For a sample domain, we find that a difference of 8 additional

domain concept decisions improves synthesized programs as much as 80 additional input-output examples.

To our knowledge, this is the first synthesis approach that brings together examples and explicitly elicited

and checked domain knowledge; we hope it opens the door to additional approaches for this new flavor of

multi-modal program synthesis.

1 INTRODUCTION

For decades, we have known that users of programming-by-example (PBE) systems find it frustrating

to provide many repetitive examples in cases where they feel they could express their domain

expertise more directly. Indeed, Lau [2009] writes that “Unlike most machine-learning systems that

can rely on hundreds or thousands of training examples, users are rarely willing to provide more

than a handful of examples from which [a program synthesizer] can generalize,” noting also that

“users often have knowledge about their task that is not known to the system.”

Typically, PBE research answers the frustrations of providing many repetitive input-output exam-

ples by guiding the choice of examples to those that would be most helpful for the synthesizer [Jha

et al., 2010, Padhi et al., 2018, Ji et al., 2020, Laich et al., 2020, Chen et al., 2023]. The goal is to reduce

example redundancy and thus ultimately reduce the number of examples required.

In this work we take an alternative approach built on the observation that a synthesis user may

have domain knowledge about the task at hand that they can share explicitly, rather than only

indirectly via examples. As Lau observed, PBE users often complain that they want to provide

direct feedback on the domain and the system’s hypotheses “without having to retrain the system

with additional examples” [Lau, 2009]. We propose a synthesis framework that builds this kind of

feedback into the synthesis interaction model. Our synthesis algorithm suggests domain concepts

that may or may not be relevant to the task at hand—we use these decisions about domain concepts

as an input to the synthesis algorithm, in addition to traditional PBE-style examples.

Introducing a synthesis approach that accepts both examples and domain knowledge allows us

to explore how much synthesis benefits from each. In particular, it gives us a tool to interrogate

the intuition that one domain concept is more informative, on average, than one labeled example.

Traditional PBE approaches for reducing example annotation burdens ask: What strategy should

we use for requesting examples in order to reduce number of examples required overall? In contrast,

we design our synthesis approach so that we can ask:

Can we reduce the number of examples required for synthesis by querying domain expertise?

Section 2 provides an overview of how our synthesis algorithm solicits information about domain

concepts. To create a program synthesis algorithm that lets us pose our animating question, we

Author’s address:



2

need a definition of what it means for a synthesized program to respect domain expertise; Section 3

provides this definition and a synthesis framework built around the definition. In Section 4, we

instantiate our synthesis framework for a specific problem domain, scoring documents (e.g. images)

on the basis of extracted features. This instantiation generates programs in a language of scores

guarded by predicates similar to Awk [Aho et al., 1979]. For example, our synthesizer could generate

the following program using features extracted from a computer vision model to find images of

people playing baseball or volleyball:

{ ∃person ∧ ∃baseball→ +1, ∃person ∧ ∃volleyball→ +1 },

the semantics of which when applied to an image is to sum up scores from all the predicates that

are satisfied. Synthesized programs could directly be compiled to standard Python programs that

make calls to the underlying black-box functions that produce these features, such as computer

vision models or any other tool that can generate user-interpretable features for the documents of

interest.

In Section 5, we demonstrate empirically how our instantiation behaves on a set of tasks; in

particular, we do observe a tradeoff between oracle-labeled examples and explicit domain expertise.

We note that we do not include a user study in our evaluation, as our goal is to assess whether the

folklore hypothesis that domain expertise can can substitute for examples actually holds in a real

synthesizer.

In summary, this report makes the following contributions:

(1) A program synthesis framework in which the specification is a combination of (i) examples

(as in traditional PBE) and (ii) decisions about whether particular domain concepts are

relevant to the target task.

(2) An algorithm for suggesting promising domain concepts based on the specification provided

so far.

(3) An implementation of our synthesis approach called DExScore and an empirical evaluation

of it that assesses, among other questions, (i) whether we can substitute domain concept

decisions for additional input-output examples and achieve the same program performance,

(ii) the effectiveness of the concept suggestion algorithm.

2 OVERVIEW

Motivating Example: Image Selection Task. Consider the task of determining whether a large set

of images includes people playing sports or does not include people playing sports. Although this

example may appear simple, it provides a good testing ground to explore questions about how

domain knowledge can be explicitly incorporated and modeled into a synthesizer. Moreover, this

task is representative of a general category of tasks that aim to assign scores (or classifications) in

a structured way, such as determining whether crosswalks are safe for pedestrians or parks meet

accessibility requirements.

In our task, a user might have some domain knowledge about what makes an image a sports-

related image, but they need a way to turn that into a system that can do the classification rather than

having tomanually label each image. In this section, we consider possible approaches to this problem

including traditional programming, using a large language model (LLM), and Programming By

Example (PBE), before ultimately presenting our approach to directly leverage domain knowledge.

Other Approaches. Traditionally, to identify the images of interest in our motivating example

task, the user would need to write a program, directly encoding their domain knowledge. The

downside of this approach is that it requires recall rather than recognition, which has long been

known to be more challenging [MacDougall, 1904]. Much domain knowledge is implicit—e.g., the
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user may not be able to state that they are looking for the presence of soccer balls, hockey sticks,

volleyballs, frisbees, goalposts, surfboards, even if they would be able to confirm the relevance of

those items if asked. This may make it difficult for users to operationalize their domain knowledge

in the form of a program. This approach also puts automation out of reach for domain experts who

are not comfortable programming.

More recently, as LLMs become more viable for a broad range of tasks, the user could write

a system that prompts an LLM to perform the classification of each image, instructing it about

the task in natural language. The downsides to this approach are: (1) There is no program artifact

for the programmer to audit or tweak; they must trust the LLM to interpret their instructions

correctly on each new image. (2) Further, the LLM-based approach works only for tasks for which

the LLM itself has the relevant domain expertise. If the user aims to complete a task that requires

niche or specialized expertise (unlike the sports example), relying on an LLM to do the work of

producing the implicit domain knowledge is a non-starter. This constrains the LLM approach

to common knowledge-style tasks. This is especially an obstacle if the user wants to represent

knowledge about their own particular preferences or taste (e.g., “find images I like” as opposed to

“find images that depict a person playing sports”). As with traditional programming, expressing

these subjective preferences and tastes requires the user to do the difficult work of recall instead

of recognition. An alternative would be to ask the LLM for a program that automates the task.

This addresses issue (1) but not issue (2). This also introduces a new obstacle, obstacle (3), that is

specific to non-programmers and novice programmers; prior work has demonstrated that novice

programmers struggle to use LLMs for writing programs [Nguyen et al., 2024].

We aim to build a system that relies only on recognition of relevant domain concepts, rather than

recall. Additionally, we want to produce a program that the user can read or extend after the fact.

PBE is one traditional approach for producing programs in the face of recognition versus recall

challenges. Producing the target output for a given input is one way of sharing information about

implicit domain knowledge, a method that does not require operationalizing the knowledge in

the form of a program or set of natural language instructions. However, PBE systems may require

many repetitive examples even after the point at which a relevant domain concept has become

clear.

Soliciting Decisions About Domain Concepts. Our system is built on the core idea of iteratively

suggesting domain knowledge concepts to the user, allowing the user to approve or reject the

domain concepts, then using these same concepts in the program itself. (See Figure 1.) In particular,

to operationalize domain knowledge, we choose predicates over the synthesized program’s inputs.

For example, for the image task above, our framework might suggest a predicate that flags whether

an image includes a depiction of both a person and a baseball: ∃person ∧ ∃baseball. If the task at

hand was to query a database of music scores, a predicate might flag whether a piece includes

a III chord immediately followed by IV and I: ∃(III; IV; I). The framework asks an oracle for a

ruling on whether the suggested predicate is relevant. If yes, the predicate is incorporated into the

synthesized program. If no, the predicate is discarded.

Intuition. Given this overall framework, the key challenge is to suggest likely-relevant domain

concepts. Our suggestion algorithm uses:

(1) An Extract function which divides the input documents into two (possibly overlapping)

subsets, 𝑋 + and 𝑋 − . The implementation of Extract is relatively unconstrained, but

intuitively 𝑋 + should include documents that the synthesized program should accept, while

𝑋 − should include documents that the synthesized program should reject. Alternatively,

𝑋 − may constitute documents for which the system does not yet have a good prediction.
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Fig. 1. User interaction model. The user provides an intial set of labeled examples. DExScore suggests

domain concepts which may or may not be relevant to the task at hand. The user annotates the domain

concepts to indicate whether they are relevant.

(2) A Ratio function which computes the log-likelihood ratio of each predicate between 𝑋 +

and 𝑋 − . That is, it applies each candidate predicate to each input document and produces a

measure of whether the property holds more often in one subset or the other. The intuition

here is that a predicate with a high log-likelihood ratio holds much more often on documents

in 𝑋 + than on documents in 𝑋 − , and therefore may represent domain knowledge that helps

to distinguish documents that the synthesized program should accept from documents it

should reject.

3 FRAMEWORK AND PROBLEM STATEMENT

As we are specifically interested in modeling domain expertise, we now formalize our problem

statement via a series of definitions that capture this idea. Specifically, we consider the situation in

which we aim to synthesize a program that, given an input, returns a score in R. While restricting

the output of programs to be a single number may seem limiting, we will see that we can use this

formalize both to (i) generalize programming-by-example and ML-based classifiers as well as (ii) to

model precisely what we mean by domain expertise.

Definition 3.1 (Preliminaries). A partially-ordered set (also called a poset) over a set 𝑆 is a pair

(𝑆, ⪯), where ⪯ forms a partial order over 𝑆 . A function 𝑓 between posets (𝑆1, ⪯1) and (𝑆2, ⪯2) is
monotonic if 𝑥 ⪯1 𝑥 ′ implies 𝑓 (𝑥) ⪯2 𝑓 (𝑥 ′) for all 𝑥, 𝑥 ′ ∈ 𝑆1.
Definition 3.2 (Domain expertise framework). Instantiations of our framework consist of

(1) A set of inputs X;
(2) A class D of domain knowledge elicitations that are posets over X;
(3) A set of programs Prog; and

(4) A semantics J·K (·) : Prog × X → R dictating how 𝑃 ∈ Prog assigns a score to each 𝑥 ∈ X.
Definition 3.3 (Correctness criterion). A program 𝑃 ∈ Prog respects a domain knowledge elicita-

tion 𝐷 (written 𝑃 ↗ 𝐷) if J𝑃K (·) is a monotone map from 𝐷 to R; that is, if

𝑥 ⪯𝐷 𝑥 ′ implies J𝑃K (𝑥) ≤ J𝑃K (𝑥 ′).

Remark 3.4. Depending on the context, scores can represent different concepts, as we will see in

the examples following this remark. The domain knowledge elicitation partial order represents an

understanding of how domain objects compare to each other; our correctness criterion asserts that

inputs higher in the domain knowledge elicitation partial order cannot be assigned lower scores.
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1. ⟨cat, dog⟩

⟨cat⟩ ⟨dog⟩

⟨fox⟩

2. ⟨cat, dog⟩

⟨cat⟩ ⟨dog⟩

⟨fox⟩

3. ⟨cat, dog⟩

⟨cat⟩ ⟨dog⟩

⟨fox⟩

4. ⟨cat, dog⟩

⟨cat⟩ ⟨dog⟩

⟨fox⟩

Fig. 2. Four domain knowledge elicitation posets in the instantiation of scoring documents. Doc-

uments are elements of the posets, and their features are represented in angle brackets. The first poset

represents no domain knowledge. The second poset represents the domain knowledge that “cat” alone is

relevant. The third poset indicates “cat” and “dog” are both relevant. The fourth poset indicates “cat,” “dog,”

and “fox” are all relevant.

{2 ↦→ 4, 3 ↦→ 9}

{2 ↦→ 4} {3 ↦→ 9}

∅

{5 ↦→ 6} {2 ↦→ 4, 8 ↦→ 9} {3 ↦→ 6} {8 ↦→ 8} · · ·

Fig. 3. The programming-by-example domain knowledge elicitation poset. The structure of this poset

is completely forced by the choice of the partial function (input-output example) at its top.

Example 3.5 (Scoring documents). Consider the situation in which objects (like documents or

locations) must be scored or ranked; for example, in assigning a pedestrian safety score to a

crossroads or accessibility score to a park, or query tasks where documents are scored by relevance.

We instantiate our framework to this setup formally in Section 4, but, briefly, inputs 𝑥 ∈ X are

documents with associated features from, say, a computer vision model, black-box library functions,

or simply metadata (see Section 5.1 for a description of the tools we use for feature extraction).

Taking the case specifically of querying documents, a domain knowledge elicitation describes how

some documents are less relevant than other documents. Figure 2 illustrate some possible orders. A

program 𝑃 will respect these domain knowledge elicitations when it does not assign a lower score

to a document that is higher in the partial order.
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Example 3.6 (Programming by example). Traditional programming-by-example (PBE) systems

can be described in this framework as follows. The inputs X are partial functions (i.e., sets of input-

output examples). The class of domain knowledge elicitations isD = {𝐷pf | pf is a partial function},
where 𝐷pf is the poset over X with the partial order ⪯pf such that pf1 ≺pf pf2 (strict ordering) if
pf2 ⊆ pf and pf2 ⊈ pf1. For programs 𝑃 and partial functions pf, the semantics J𝑃K (pf) is 1 if 𝑃 is

an extension of pf (the traditional notion of example satisfaction in PBE), and 0 otherwise. Then

our correctness criterion holds (𝑃 ↗ 𝐷pf) if and only if the traditional PBE correctness criterion

holds (J𝑃K (pf) = 1).
1

Figure 3 shows the structure of the PBE poset 𝐷pf for an example partial function pf. Intuitively,

the PBE poset does not capture much domain knowledge, as its structure is completely determine

by pf; the PBE poset cannot capture more intricate relations between different elements.

Example 3.7 (ML-based classifiers). Traditional ML-based classifiers can be described in this

framework as follows. The inputs X are elements to be classified (e.g., documents, images, etc.), and

domain knowledge elicitations are degenerate posets (that is, 𝑥 ⪯ 𝑥 ′ if and only if 𝑥 = 𝑥 ′). Programs

𝑃 are classifiers with the semantics that for 𝑥 ∈ X, we have J𝑃K (𝑥) = 𝑐 if 𝑃 labels 𝑥 as having class

𝑐 (e.g., binary classifiers could label inputs into classes {−1, 1}). The correctness criterion in this

case trivially holds because no domain expertise whatsoever is encoded in the poset. In this framework,

labeled examples are not guaranteed to be classified correctly.

We now define what a program synthesizer is in our context; for our framework, synthesizers

must both (i) elicit domain knowledge, and (ii) return programs that satisfy this domain knowledge.

Definition 3.8 (Synthesis). For our purposes, a synthesizer is an algorithm Synth : Spec →
Prog×D for some set of possible initial intent specifications Spec; crucially, the algorithmmay also

make additional queries to an oracle in its execution. Such a synthesizer is sound if for all 𝑠 ∈ Spec,
Synth(𝑠) = 𝑃, 𝐷 implies 𝑃 ↗ 𝐷 .2

Example 3.9. Building on Example 3.6, we can represent a traditional programming-by-example

algorithm 𝐴 that takes in a partial function as input-output examples as a synthesizer in our

framework as Synth(pf) = (𝐴(pf), 𝐷pf). Similarly, based on Example 3.7, we can represent a

traditional ML-based classifier 𝐶 that takes in an element 𝑥 ∈ X as Synth(𝑥) = (𝐶 (𝑥),X′), where
X′ is the degenerate poset over X.

We are particularly interested in the case in which the synthesizer takes input-output examples

and elicits domain knowledge about which domain features should affect the scoring of domain

inputs. This setup lets us investigate the tradeoff between input-output examples and domain

expertise. Our notion of sound synthesizers in Definition 3.8 applied to this setup thus serve as

solutions to our problem statement, which is as follows:

Definition 3.10 (Problem statement). Given (i) input-output examples and (ii) decisions

about which domain features should affect scoring, return a program 𝑃 and domain knowledge

elicitation 𝐷 that represents the gained knowledge such that 𝑃 ↗ 𝐷 .

1
Proof. If 𝑃 ↗ pf, then, as J𝑃K (∅) = 1 vacuously and ∅ ⪯

pf
pf, we have J𝑃K (pf) = 1 by monotonicity. Conversely, if

J𝑃K (pf) = 1, then for pf
1
, pf

2
with pf1 ≺pf pf2, we have pf2 ⊆ pf definitionally, so J𝑃K (pf2 ) = 1 ≥ J𝑃K (pf1 ) . □

2
We take a liberal view of what constitutes an “intent specification,” including input-output examples or natural language

specification, even those that do not fully “specify” a program. Our soundness criterion is thus with respect to the domain

knowledge elicitation, not the initial specification.
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Programs Prog ::= {𝑝𝑖 → 𝑠𝑖 }𝑖<𝐿

Predicates 𝑝 ::= ∃𝑓 | ¬𝑝 | 𝑝 ∧ 𝑝 | 𝑝 ∨ 𝑝
Features 𝑓 ∈ Features

Scores 𝑠 ∈ Z≥0

Fig. 4. The language of programs in our synthesis framework instantiation.

4 FRAMEWORK INSTANTIATION AND SYNTHESIS ALGORITHM

We will now describe our instantiation of the framework outlined in Section 3.

4.1 Modeling Domain Expertise

As in Example 3.5, our inputs 𝑥 ∈ X are documents with associated features from a fixed set of

features Features. For a given document 𝑥 ∈ X, we let 𝑥# be the set of all predicates that hold on

𝑥 , where predicates are defined in Figure 4. We take a simple view of what predicates may be in

Figure 4, as the exact choice is orthogonal to our synthesis algorithm; in particular, a predicate may

be the existence of a feature 𝑓 , and any combination of standard boolean operations (negation,

conjunction, disjunction) thereof. We say the predicate ∃𝑓 holds on a document 𝑥 if 𝑓 is in the

features of 𝑥 , and boolean operations are defined in the standard way.

The class of domain knowledge elicitations is D = {𝐷★
𝑄
| 𝑄 ⊆ Predicates}, where 𝐷★

𝑄
is the

poset over X with the partial order ⪯𝑄 such that

𝑥1 ⪯𝑄 𝑥2 if 𝑄 ∩ 𝑥#
1
⊂ 𝑄 ∩ 𝑥#

2
,

where ⪯𝑄 is not strict ordering, but ⊂ is.

Intuitively, the predicate sets 𝑄 represent relevant predicates of the documents. For example,

in classifying whether an image is a picture of sports, we might take 𝑄 = {∃baseball, ∃volleyball}.
Figure 2 gives examples of four such posets: 𝐷★

∅, 𝐷
★
{∃cat}, 𝐷

★
{∃cat,∃dog}, and 𝐷{∃cat,∃dog,∃fox} . Note

that the domain knowledge elicitation 𝐷★
{∃cat} marks the document ⟨cat⟩ as incomparable to

the document ⟨cat, dog⟩, but 𝐷{∃cat,∃dog} marks the document ⟨cat⟩ as less than or equal to the

document ⟨cat, dog⟩, because when cat and dog are relevant, the latter document can be no less

relevant than the former (which was not the case when just cat was relevant). This relation is

captured precisely by the ordering ⪯𝑄 defined above.

4.2 Language Syntax and Semantics

We can now define the set of programs in our instantiation. Figure 4 gives the syntax for our

programs, which are sets of scores (non-negative integers) guarded by predicates, similar in spirit

to the Awk [Aho et al., 1979] programming language. We define the semantics of a program 𝑃 on

an input 𝑥 as follows:

J𝑃K (𝑥) =
∑︁

(𝑝→𝑠 ) ∈𝑃
[𝑝] (𝑥) · 𝑠 where [𝑝] (𝑥) =

{
1 if 𝑝 holds on 𝑥

0 otherwise

4.3 Synthesis Algorithm

Given these semantics, we now present our synthesis algorithm in Figure 5. Our top-level synthesis

algorithm,TopLevelSynth takes in as input an initial set of inputsmarked as relevant and iteratively

elicits domain knowledge and simultaneously constructs program that satisfies the tracked domain
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Hyperparameters:
𝑑 : The depth of predicates to search for

𝑘 : The number of predicates to query the oracle with

Inputs:
𝑋 : The starting set of relevant examples

𝑃 : The current program

𝑄sug: The already-suggested predicates

1: function Suggest(𝑋, 𝑃,𝑄sug)

2: 𝑋 +, 𝑋 − ← Extract(𝑃,𝑋 )
3: Δ𝑄0

sug
← argmax

𝑘
𝑝∈Predicates𝑑 |𝑄sug ̸⊢𝑝 |Ratio(𝑝,𝑋

+, 𝑋 −) |
4: Δ𝑄sug ← {𝑝 if Score(𝑝) > 0 else ¬𝑝 | 𝑝 ∈ Δ𝑄0

sug
}

5: return Δ𝑄sug

6: end function

Inputs:
𝑋 : The starting set of relevant examples

𝑃 : The current program

𝐷 : The current domain knowledge elicitation

𝑄sug: The already-suggested predicates

1: function SynthStep𝑋 (𝑃, 𝐷,𝑄sug)

2: Δ𝑄sug ← Suggest(𝑋, 𝑃,𝑄sug)
3: Δ𝑃 ← {𝑝 → 1 if oracle approves 𝑝 | 𝑝 ∈ Δ𝑄sug}
4: 𝑃 ′ ← 𝑃 ∪ Δ𝑃
5: 𝐷 ′ ← 𝐷★

dom𝑃 ′

6: 𝑄 ′
sug
← 𝑄sug ∪ Δ𝑄sug

7: return 𝑃 ′, 𝐷 ′, 𝑄 ′
sug

8: end function

Inputs:
𝑋 : The starting set of relevant examples

1: function TopLevelSynth(𝑋 )

2: 𝑃, 𝐷,𝑄sug ← ∅,∅,∅
3: repeat
4: 𝑃, 𝐷,𝑄sug ← SynthStep𝑋 (𝑃, 𝐷,𝑄sug)
5: until oracle terminates

6: return 𝑃, 𝐷

7: end function

Fig. 5. Pseudocode for the synthesis functions. SynthStep represents one step in the synthesis loop. We

separate our document space into 𝑋+ and 𝑋 − , then use those subsets to compute the scores of all predicates,

taking the top 𝑘 predicates. We present those to the user, and add all accepted predicates to the program.

TopLevelSynth is the entire synthesis program, which loops over synthesis steps until the user is satisfied

with the final program.
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knowledge elicitation. It does this by iterating the auxiliary function SynthStep, which relies

on our predicate suggestion algorithm Suggest (which we describe below) to get predicates to

query the oracle to make decisions about which ones are relevant. SynthStep takes the approved

predicates and constructs a domain knowledge elicitation poset of the form described in Section 4.1

and a program that respects that domain knowledge elicitation. For simplicity, the right-hand side

score values in our constructed program are always 1, but all soundness results apply with any

non-negative score value; the score could be determined by, for example, querying the oracle.

Our predicate suggestion algorithm (Suggest) computes predicates as follows. First, using the

auxiliary function Extract, it extracts two subsets from the set of inputs X: a subset of programs

that should likely be highly-scored (𝑋 +), and a subset of programs that should likely be lowly-

scored (𝑋 −); we describe different implementations of Extract in Section 4.3.1 below. Then, for

each possible predicate 𝑝 up to fixed depth cutoff 𝑑 that are not tautologically equivalent to an

already-suggested predicate (notated𝑄sug ̸⊢ 𝑝), it calculates a log-likelihood ratio of 𝑝 occurring on

𝑋 + versus on 𝑋 − as follows:

Ratio(𝑝,𝑋 +, 𝑋 −) = log
2

P(𝑝 | 𝑋 +)
P(𝑝 | 𝑋 −) = log

2

∑︁
𝑥∈𝑋 +

[𝑝] (𝑥)
|𝑋 + | − log2

∑︁
𝑥∈𝑋 −

[𝑝] (𝑥)
|𝑋 − | .

Intuitively, predicates with a large positive or negative ratio correspond to highly discriminative

predicates that we would want to present to the oracle. And indeed, Suggest concludes by taking

the top 𝑘 predicates by the absolute value of this ratio (notated with the superscript 𝑘 on argmax),

negating the predicate if its score is highly negative. We discuss a possible extension to this

log-likelihood ratio calculation in Section 4.3.1 below.

We can now prove our synthesizer sound; our proof applies to any choice of how Extract and

Ratio are computed.

Lemma 4.1. For all 𝑃 ∈ Prog, 𝑃 ↗ 𝐷★
dom𝑃

.

Proof. Suppose 𝑥1, 𝑥2 ∈ 𝐷★
dom𝑃

with 𝑥1 ⪯dom𝑃 𝑥2. Then

J𝑃K (𝑥1) =
∑︁

(𝑝→𝑠 ) ∈𝑃
[𝑝] (𝑥1) · 𝑠 =

∑︁
(𝑝→𝑠 ) ∈𝑃,

𝑝∈𝑥#

1

𝑠 ≤
∑︁

(𝑝→𝑠 ) ∈𝑃,
𝑝∈𝑥#

2

𝑠 =
∑︁

(𝑝→𝑠 ) ∈𝑃
[𝑝] (𝑥2) · 𝑠 = J𝑃K (𝑥2),

where the inequality holds because dom 𝑃 ∩ 𝑥#
1
⊂ dom 𝑃 ∩ 𝑥#

2
and scores 𝑠 are non-negative. □

Corollary 4.2. If 𝑃 ↗ 𝐷 and SynthStep𝑋 (𝑃, 𝐷,𝑄 sug) = 𝑃 ′, 𝐷 ′, 𝑄 ′
sug

, then 𝑃 ′ ↗ 𝐷 ′.

Proof. Immediate from Lemma 4.1 □

Theorem 4.3. TopLevelSynth is sound; that is, if TopLevelSynth(𝑋 ) = 𝑃, 𝐷 , then 𝑃 ↗ 𝐷 .

Proof. By induction, using Corollary 4.2. □

4.3.1 Variant Implementations of Extract and Ratio. In our evaluation, we investigate how sensi-

tive our implementation of this synthesis algorithm is to various choices for computing Extract

and Ratio; in brief, we find that our algorithm performs substantially better than suggesting

random predicates for any of the variants we present here. We therefore keep our discussion of

these variants relatively brief.
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Extract Variants. A first choice for Extract—which we call the direct strategy—is to return

𝑋 + = 𝑋 (the starting set of relevant inputs) and 𝑋 − = X (the entire input space); intuitively, the

examples labeled as relevant should score higher than the entire input space as a whole. A second

choice for Extract—which we call the iterative strategy—is to use the current program to guide

the assignment of 𝑋 + and 𝑋 − ; inputs that score high or low on the current program get added to

𝑋 + and 𝑋 − respectively. Mathematically, this choice is defined as:

Extract(𝑃,𝑋 ) = (𝑋 ∪ {𝑥 ∈ X | J𝑃K (𝑥) > 𝑡+}, {𝑥 ∈ X | J𝑃K (𝑥) ≤ 𝑡−}),

where 𝑡+ and 𝑡− are threshold hyperparameters (𝑡+ = 𝑡− = 1 degrades to the direct strategy).

Ratio Variants. Once the log-likelihood ratios of predicates are computed, we can further filter

the predicates to find those that, when combined, cover the largest subset of the document set using

mutual information [Shannon, 1948]. Specifically, after finding the top 𝑘 predicates by absolute

log-likelihood ratio, we can select the set of 𝑘 ′ predicates that have the lowest mutual information,

where 𝑘 ′ < 𝑘 is a hyperparameter (𝑘 ′ = 𝑘 degrades to just computing the log-likelihood ratios). We

refer to this variant as the mutual information strategy.

4.4 Implementation

Our implementation of this instantiation, whichwe callDExScore, is freely available at [REDACTED].

5 EVALUATION

For our evaluation, we used DExScore (our instantiation of our broader framework, see Section 4)

for sample tasks (i) that could be easily hand-labeled to produce a substantial ground-truth dataset,

(ii) that could be accomplished with the kinds of features that a modern computer vision model

can produce, and (iii) with which we have enough domain expertise to meaningfully interact with

DExScore.

Our evaluation first explores our main research question:

RQ1. Does our approach enable trading off the number of PBE-style labeled examples for decisions

based on domain expertise?

We also wanted to assess whether our algorithm to suggest promising domain concepts actually

improved synthesis, so we investigate the following research question with an ablation study:

RQ2. How does our predicate suggestion strategy affect synthesis quality compared to random

predicate suggestion?

Finally, we ask some additional questions to further probe DExScore:

RQ3. How do our synthesized output programs compare to using an LLM for the same task?

RQ4. How sensitive is our predicate suggestion algorithm to the choice of the Extract and Ratio

functions?

RQ5. How does DExScore’s execution time scale with program size?

5.1 Setup

For our sample tasks, we worked within the domain of images due to the wide availability of models

for feature extraction on images. To extract features from the dataset of images, we used the DETR

model, a transformer-based architecture which performs object detection [Carion et al., 2020]. Our

goal is not to perform state-of-the-art image classification or to advance the state of the art in

computer vision in any way; rather, our goal for this evaluation is to synthesize programs that use

the results of an existing state-of-the-art computer vision model.
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Programs Prog ::= {𝑝𝑖 → 𝑠𝑖 }𝑖<𝐿

Predicates 𝑝 ::= ∃𝑓 | ¬𝑝 | 𝑝 ∧ 𝑝 | 𝑝 ∨ 𝑝 | Eventually(𝑝, 𝑝) | Nearby(𝑝, 𝑝)
Features 𝑓 ∈ Features

Scores 𝑠 ∈ Z≥0

Fig. 6. The language of programs for the Music Task

We ran all experiments on an Asus Vivobook Prowith an AMDRyzen 9 7940HS runningWindows

11 and Windows Subsystem for Linux 2 and Python 3.11.5.

5.1.1 Sports Task. For some components of the evaluation, we used a hand-labeled ground-truth

image dataset; for these components, our task was “Is this an image of people playing sports?”

(from this point on, Sports Task).

Sports Task Dataset. We used 2,427 images from the COCO dataset (test split), an image dataset

with 91 different object classes commonly used for training and benchmarking state-of-the-art

object detection models [Lin et al., 2015]. Before running DExScore or any computer vision

algorithm, we hand-labeled our dataset with ground-truth labels, then ran the image through DETR

to perform feature extraction.

5.1.2 Music Task. In addition to the Sports Task, we used a secondary task for one component of

the evaluation, using a domain other than images. This task was “Is this piece of music similar to

other pieces that have been selected by an oracle?” (from this point on, Music Task). This task can

be viewed as a recommendation, querying, or preference elicitation task.

Music Task Dataset. We used a dataset consisting of the chord progressions of 52 Bach chorales,

annotated by experts with 101 different chord labels [Radicioni and Esposito, 2014]. We performed

an additional pre-processing step to capture temporal relationships within the chord progressions.

We identified eight common cadences from music theory (small chord progressions of 2–5 chords

that are commonly found within music pieces). We then annotated each chord progression with the

location of each of these cadences. This annotation was done automatically. This list of cadences

serves as the feature set. To create ground-truth labels for these documents, the first-author labeled

them according to subjective preference.

Music Task DSL. For the Music Task, we augmented our DSL with additional predicates to capture

the sequential nature of the chord progressions. In addition to the And and Or predicates, we added

Eventually and Nearby. The Eventually predicate represents a sequential relationship "A then B".

Nearby represents a sequential relationship "A then B, within n chords", where n is a fixed parameter,

set to 20 for this evaluation. Figure 6 shows the syntax of this augmented DSL.

5.1.3 Oracles. Our synthesis algorithm relies on access to an oracle for soliciting domain expertise.

To construct our oracles for the Sports and Music Tasks, we manually listed predicates relevant to

our target question; the oracle accepted candidate predicates when they appeared in this list. For

automatically-generated tasks (i.e., tasks in which the ground-truth program was automatically

generated), we use an automatically-generated oracle that accepts predicates that appear in the

ground-truth program and rejects predicates that do not appear in the ground-truth program.

5.1.4 Extract and Ratio Variants. For all experiments except the experiment explicitly probing

the sensitivity of our approach to the choice of Extract and Ratio functions (Experiment 4), we
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Fig. 7. Fraction of runs that reach 0.8 F1 score. Each run represents a different randomly-sampled subset of

oracle-labeled documents provided as the initial input to the synthesizer. The position on the 𝑥-axis represents

the number of labeled input documents provided to the synthesizer, and the position on the 𝑦-axis represents

the fraction of runs for that number of documents that reached a 0.8 F1 score. When provided 20 or more

examples, the synthesizer reaches the desired F1 score >95% of the time.
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Fig. 8. Tradeoff between example labeling work and domain expertise decision work. Each point

in the chart represents a set of synthesized programs that achieve the same F1 score of 0.8. The position

on the 𝑥-axis represents the number of labeled input documents provided, and the position on the 𝑦-axis

represents the average number of domain expertise decisions required to achieve the target F1 score (with 95%

confidence interval error bars). To achieve the target F1 score, DExScore can take 23 labeled examples and

20 oracle decisions or 60 labeled examples and 12 oracle decisions; intuitively, 23 − 12 = 11 domain concept

decisions can substitute for 60 − 20 = 40 labeled examples.

use the iterative strategy for Extract and the mutual information strategy for Ratio, as described

in Section 4.3.1.

5.2 Experiment 1: Answering RQ1 (on Decisions vs. Examples Tradeoff)

5.2.1 Setup. We randomly sampled subsets of the labeled dataset of increasing size (50 sets per

size) to serve as the initial set of relevant examples for DExScore. We then ran DExScore on each
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Fig. 9. Predicate selection algorithm ablation. This plot shows the performance of our predicate suggestion

strategy, compared to a random suggestion strategy. The 𝑥-axis is the number of oracle decisions, and the

𝑦-axis is the F1 score. We provide DExScorewith 10, 20, and 30 input examples, and report the F1 performance

as oracle decisions vary (mean of 50 runs with 95% confidence interval error bars). We found that with all

three example set sizes, our predicate suggestion algorithm outperforms a random suggestion strategy by

a wide margin. For 20 oracle decisions or more, the mean F1 score of the example suggestion algorithm is

above 0.75 for all three example set sizes, while the random strategy has a mean F1 score around 0.1–0.3.

of these initial specifications, terminating when either the generated program reached an F1 score

of 0.8 (computed against our ground-truth labels) or the number of oracle decisions exceeded 150.

We tracked (i) whether each of the 50 runs for each example suite size achieved the 0.8 F1 score,

and (ii) how many oracle decisions DExScore required to achieve this F1 score.

5.2.2 Results. We plot the fraction of runs that reached the desired threshold against the number

of initial examples in Figure 7 and observe that for a relatively small number of examples (∼20), all
or nearly all of the runs will reach the desired threshold.

We also plot the number of oracle decisions versus the number of examples in Figure 8 and

observe a tradeoff between the number of examples provided and the number of decisions required.

For example, with an initial dataset of 20 labeled examples and 20 oracle decisions DExScore

synthesizes programs that achieve the target F1 score. With an initial labeled set of 60 examples

and 10 oracle decisions, the synthesized programs achieve the same F1 score. (We choose 20 labeled

examples as a reference point here due to the results from the previous paragraph.) Intuitively, in

this range, 23 − 12 = 11 oracle decisions are as informative as 60 − 20 = 40 labeled examples. This

supports our hypothesis that providing oracle decisions about domain expertise allows synthesis

to succeed with fewer examples.

5.3 Experiment 2: Answering RQ2 (on Ablating Predicate Suggestion)

5.3.1 Setup. We ran DExScore with our predicate suggestion algorithm (with 10, 20, and 30

starting examples) and compared it to a version of DExScore that randomly suggests predicates

(this approach does not use any starting examples). Specifically, we ran these variants on the

same task as Experiment 1, but instead of fixing an F1 threshold, we capped the number of oracle

decisions for each run (ranging from 5 to 100 decisions) and tracked the mean F1 score across 50

runs for each decision count.
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5.3.2 Results. We plot our results in Figure 9 and observe that our predicate suggestion algorithm

outperforms the random strategy by a wide margin, with increasing gains as the number of initial

examples increases. By 20 decisions, our approach achieves F1 scores above 0.75 on all example set

sizes, whereas the random strategy achieves an F1 score of <0.1 and never achieves better than an

F1 score of 0.3, even with 100 decisions.

5.4 Experiment 3: Answering RQ3 (on Comparing to an LLM Baseline)

5.4.1 Setup. For this experiment, we compare DExScore against an existing tool which can do

a similar task. Since there are no tools targeted at this specific kind of task, we use an LLM,

Gemini [Gemini Team (Google), 2024], as our point of comparison. Specifically, we use Gemini

to decide whether an image does or does not depict a person playing sports (Sports Task), and

whether a piece of music is similar to other pieces of music provided (Music Task). Gemini can

accept both images and text.

As input for the Sports Task, we provide both the image and the set of features that DETR

extracts for that image. Additionally, we provided the LLM with few-shot examples (including

images, extracted features, and ground-truth labels), for a set of other images in the dataset, in

the same way that we provide DExScore with examples, and for the same range of example set

sizes. After varying the example set sizes, we report the highest F1 score the LLM achieved for any

example set size, and compared it to the average F1 score of DExScore run with 20, 40, and 60

oracle decisions.

For the Music Task, we provide the chord progressions of the music piece to the LLM. Similarly

to the Sports Task, we also provided the LLM with few-shot examples, in the form of other chord

progressions. After varying the example set sizes, we report the highest F1 score the LLM achieved

for any example set size, and compared it to the average F1 score of DExScore run with 20, 50,

100, and 150 oracle decisions.

As in RQ1, we assessed the F1 scores on the manually-labeled ground truth. To be as forgiving

to the baseline as possible, we chose to display only the highest F1 score ever achieved by the

LLM (as compared to the per-example-set averages for DExScore) because we observed that LLM

performance decreased with more examples.

We note that the LLM approach is not a perfect baseline for our context. In particular, the LLM

does not produce a program that can be read or modified, which is an explicit goal for our approach.

Additionally, large language models are sensitive to the exact prompt that is used to obtain their

output; it is possible that other prompts could result in better or worse performance.

5.4.2 Results. We show our results for this experiment on the Sports Task in Figure 10.We observed

that for all numbers of oracle decisions tested (20, 40, 60), DExScore can outperform the LLM

baseline. We observed a slight improvement when increasing from 20 to 40 oracle decisions, again

showing the benefit of additional domain knowledge, but this boost appears to be quite small.

We show our results for this experiment on the Music Task in Figure 11. We observed that for all

numbers of oracle decisions tested (20, 50, 100, 150), DExScore can match the LLM baseline given

at least 5 examples. We observed no improvements from increasing the number of oracle decisions.

5.5 Experiment 4: Answering RQ4 (on Sensitivity to Extract and Ratio Variants)

In Section 4.3.1, we describe how our predicate suggestion algorithm depends on (i) an Extract

function (to generate 𝑋 + and 𝑋 − sets to compare with the log-likelihood ratio), and (ii) a Ratio

function for doing the comparison. We described two variants of Extract: the direct and iterative

strategy. We also described two variants of Ratio: with and without mutual information. For this

component of the evaluation, we ran all four combinations of these variants to see if DExScore
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Fig. 10. Synthesis performance on Sports Task as compared to an LLM baseline.We gave an LLM a

description of the Sports Task and asked it to label each document. It was given labeled examples as few-shot

prompts. The baseline line represents the best performance across all numbers of few-shot examples given

to the LLM. The 𝑥-axis represents the number of labeled input documents provided to DExScore, and the

𝑦-axis represents the F1 score computed against the hand-labeled ground truth (mean of 500 runs with 95%

confidence interval error bars). The different lines represent different numbers of oracle decisions. On average,

DExScore outperforms the LLM given at least 18 input examples and 20 oracle decisions.
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Fig. 11. Synthesis performance on Music Task as compared to an LLM baseline.We gave an LLM a

description of the Music Task and asked it to label each document. It was given labeled examples as few-shot

prompts. The baseline line represents the best performance across all numbers of few-shot examples given

to the LLM. The 𝑥-axis represents the number of labeled input documents provided to DExScore, and the

𝑦-axis represents the F1 score computed against the hand-labeled ground truth (mean of 300 runs with 95%

confidence interval error bars). The different lines represent different numbers of oracle decisions. On average,

DExScore matches the LLM given at least 5 input examples and 20 oracle decisions.

was sensitive to the particular choices that went into our predicate suggestion algorithm. We ran

these variants on the same task as Experiment 1, with a fixed number of oracle decisions (15). We

tracked the mean F1 score of the variants over 50 runs for each number of examples.
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Fig. 12. Synthesis performance with predicate suggestion algorithm variants.We assessed DExScore’s

sensitivity to the details of the domain knowledge suggestion function. In particular, we ablated the Extract

function (direct and iterative strategies), and the Ratio function (with and without mutual information

filtering). Each line represents a different combination of these parameters. The 𝑥-axis represents the number

of labeled input documents, and the 𝑦-axis represents the F1 score computed against the hand-labeled

documents (mean of 50 runs with 95% confidence interval error bars). The direct strategy refers to the

extractor function which simply sets 𝑋+ equal to the initial set of user-provided input documents, and 𝑋 − to

all other documents. The iterative strategy refers to the extractor function which also adds documents to 𝑋+

and 𝑋 − using high and low thresholds on the current program.
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Fig. 13. Execution time with increasing program sizes. The 𝑥-axis is the size of the ground truth program,

as measured by the number of predicates in it. The 𝑦-axis is the time it takes for DExScore to generate

the ground-truth program given a randomly-generated ground truth program of a given size (mean of 500

random generations with 95% confidence interval error bars). We found that on average, it takes around

1.5-2.0 seconds for DExScore to synthesize the ground truth program across sizes from 2 to 20.

5.5.1 Results. We plot our results in Figure 12 and find that DExScore’s performance is not

sensitive to particular choices of Extract and Ratio functions.
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5.6 Experiment 5: Answering RQ5 (on DExScore’s Performance)

5.6.1 Setup. To investigate DExScore’s scalability, we generated synthetic ground truth programs

of increasing size and measured how long it took DExScore to synthesize these programs. For

each program size from 1 to 20 (in terms of number of predicates), we randomly generated 500

programs and measured DExScore’s execution time.

5.6.2 Results. We plot our results in Figure 13 and observe that for all program sizes larger than

1, the execution time is on average 1.5-2.0 seconds. The execution time increases slightly with

increasing program size.

5.7 Threats to Validity

The particular hand-labeled task and randomly generated tasks we used to evaluate DExScore

were not chosen based on their real-world utility for domain experts, but rather because they were

(i) easily assessable using standard datasets and machine learning models, and (ii) a good testing

ground to explore questions about whether domain knowledge can be explicitly incorporated and

modeled into a synthesizer. Therefore, our results may not be representative of how DExScore

would perform in real-world conditions.

6 DISCUSSION AND FUTUREWORK

As shown in Section 5.2, our approach enables trading labeling examples for making domain-

relevant decisions in a synthesis loop. To answer this question, we used a programmatic oracle

to make domain concept decisions, but an exciting avenue of future work would be to conduct a

user study investigating how users navigate this tradeoff, and whether expressing their domain

knowledge in this direct way can be less burdensome than labeling large numbers of examples, as

in previous PBE approaches.

Future work could also explore new interfaces and interaction models for making these domain

decisions. Currently, our interaction model enables an oracle to say that a predicate is or is not

relevant with a yes/no response. In the future, we imagine richer predicates that have custom,

modular user interfaces associatedwith them, in the style of Omar et al. [2021]’s livelits—for example,

predicates that are parameterized by thresholds opening up slider interactions, or predicates to

express that “at least 𝑛 of the following must be present” opening up multi-select interactions.

Lastly, beyond the image classification instantiation explored in this work, we would be excited

to apply this approach in other domains, particularly those where it is difficult or impossible for

existing automated tools to have prior knowledge of the relevant domain knowledge. For example,

in the music domain we briefly mentioned in Section 2, domain knowledge might actually be a

user’s own musical preferences about what musical features they like or find interesting. It would

be interesting to see whether domain knowledge elicitation for this kind of task would be useful

compared to approaches like a large language model (which will have only general knowledge,

not user-specific knowledge) and programming-by-example (which cannot directly capture the

domain knowledge).

7 RELATEDWORK

The central research aim of this work is to evaluate the extent to which we can trade off examples

with some other form of domain expertise intent specification. No other work explicitly evaluates

this tradeoff, but a variety of approaches have been proposed that touch on some of the same areas

that we do, which we survey below.
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7.1 Synthesis Specifications

Complete specifications (like logical specifications and concrete programs) define precise specifi-

cations for a computational task, but may be hard for non-programmers to write. We therefore

focus our discussion of related work on under-specifications (also known as partial specifica-

tions), adopting Le et al. [2017]’s practice of referring to PBE to denote “programming using

under-specifications.”

While requiring little background to use, input-output examples as a mode of specification suffer

from a high degree of ambiguity and leave little control to the user [Lau, 2009, Mayer et al., 2015].

Consequently, a number of approaches have been taken to improve the PBE process. Drachsler-

Cohen et al. [2017] propose a synthesis framework that relies on abstract examples, which are partial

functions that describe the input-output behavior of the desired program—for example, to specify

the multiplication function, the 𝑥 × 1 = 𝑥 abstract example represents the infinite set of concrete

examples {1 × 1 = 1, 2 × 1 = 2, . . . }. FlashSplit [Le et al., 2017] has a similar notion of “subset

constraints” for their domain, which can be viewed as an abstract example in Drachsler-Cohen

et al. [2017]’s framework. Similarly, An et al. [2019] use relational perturbation properties (e.g.,

specifying the length function len with len([x, y, z]) = len([z, x, y]) to perform data

augmentation [Dempster et al., 1977, Tanner andWong, 1987] on a set of user-provided input-output

examples.

Aside from abstract examples and properties, there has been recent work on supporting additional

user annotations to describe more information to the synthesizer. In particular, Peleg et al. [2018b]

and Peleg et al. [2020] introduce a system that allows users to annotate parts of candidate programs

that should be kept in future iterations of synthesis, and Zhang et al. [2020] introduce a system

that allows users to mark which parts of examples should be generalized, and to what extent.

(Their system also supports data augmentation in the form of showing the user corner cases to

disambiguate programs.)

Finally, as we mentioned in the introduction, there has been a long line of work on choosing

which example to show to a user in programming-by-example systems [Jha et al., 2010, Padhi et al.,

2018, Ji et al., 2020, Laich et al., 2020, Chen et al., 2023].

7.2 Iterative Program Synthesis

[Mayer et al., 2015], Le et al. [2017], Peleg et al. [2018a], Peleg et al. [2020], Hu et al. [2021], Zhang

et al. [2021] introduce systems and frameworks to include users in the internal process of the

synthesis algorithm. Such a user-in-the-loop process can also be considered an exploration of

sketches (partial programs), as in program refinement [Dijkstra, 1968, Wirth, 1971], which some

synthesizers explicitly explore [Li and Jagadish, 2014, Bastani et al., 2021, Ikarashi et al., 2021, Blinn

et al., 2022]. One can also view programming-by-example tools that return partial programs [Chen

and Weld, 2008] or programs that only satisfy parts of a specification [Peleg and Polikarpova, 2020]

as part of such an iterative process.

7.3 Multi-Modal Program Synthesis

Multi-modal program synthesizers typically take in some of the kinds of specification mentioned

above and natural language prompts [Chen et al., 2020, Ye et al., 2020, Rahmani et al., 2021, Ye

et al., 2021]. These natural language prompts can be considered an elicitation of domain knowledge,

but in an unstructured and uncheckable fashion; they have nonetheless proven useful in guiding

synthesis algorithms. In our work, wemodel domain expertise explicitly and guarantee that returned

programs respect the elicited domain knowledge.
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7.4 Labeling Data

Our approach can be thought of as a way of labeling many images semi-automatically; existing

approaches that do this fall into the categories of either weak supervisors or manual approaches.

Weak supervisors, popularized by Snorkel [Ratner et al., 2017], can be used to label data via

rule-based classifiers, which need to be written by hand. Our work could be thought of as a way to

produce a weak supervisor using program synthesis.

Alternatively, a variety of approaches have been proposed to assist or semi-automate human

labeling of data [Cui et al., 2007, Russell et al., 2008, Tang et al., 2013, Andriluka et al., 2018, Dutta

and Zisserman, 2019, Desmond et al., 2021a,b, Zhang et al., 2022], including some commercial

options [Amazon Web Services, Inc., 2024, Refuel Team, 2024]. These approaches do not result in a

program or any other artifact that can generalize to unseen examples.

Relatedly, semi-supervised learning can leverage small amounts of labeled data and large amounts

of unlabeled data [Zhu and Ghahramani, 2002, Lee, 2013]; our system can thus be viewed as a kind

of semi-supervised learning.

Finally, the line of work on example selection in programming-by-example can be considered a

kind of active learning, in which systems query the user for data to label [Cohn et al., 1996, Freund

et al., 1997, Roy and McCallum, 2001, Settles, 2009].

7.5 Synthesis of Machine Learning Combinators

Our approach synthesizes calls to black-box library functions (or metadata that happens to be

available), and, in particular, DExScore synthesizes calls to feature extractions from a computer

vision library. We do not require these functions to be machine learning algorithms, but there have

been a variety of other neurosymbolic approaches that do rely on machine learning combinators

more directly [Johnson et al., 2017, Barnaby et al., 2023, Li et al., 2023].

8 CONCLUSION

Using PBE in new domains can be difficult if it takes many examples to produce a sufficient

specification. In answer to prior work suggesting that users may sometimes prefer to offer domain

expertise rather that repetitive examples, we introduce a synthesis framework that accepts examples

but also indications of whether particular domain concepts are relevant. Instantiating our framework

in the domain of image classification allowed us to interrogate the tradeoff between providing

examples versus domain knowledge in that space. We find that on average within our framework,

an additional domain decision does indeed improve synthesized programs more than an additional

labeled input-output example. This supports the intuition that domain expertise may be a more

direct way of communicating intent than examples, in some cases. As far as we are aware,DExScore

is the first synthesis framework that accepts both examples and domain concepts as inputs into a

synthesis algorithm. We hope this initial framework opens the door to more synthesis approaches

that integrate explicit domain expertise into specifications.
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