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Abstract

Advancing Robust and Aligned Measures of Semantic Similarity in Large Language Models

by

Samarth Goel

Masters of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Kannan Ramchandran, Advisor

With the increasing usage of text similarity measures in conjunction with Large Language
Models (LLMs), greater scrutiny and evaluation methodologies are needed to ensure the
correct metric choice for a given task. In this thesis, I will evaluate the ability of text simi-
larity measures to be robust and aligned with a human understanding of semantic similarity
and assess the e↵ectiveness of popular LLMs in maintaining semantic understanding. My
core contributions are as follows. I develop and introduce the Unified semantic Similarity
Metric Benchmark (USMB), a novel leaderboard for text similarity metrics composed of 10+
datasets and original tasks measuring human preference alignment, robustness, sensitivity,
and clustering performance. My next contribution is the development of an ensembled text
similarity measurement that achieves top scores in all tasks composing the USMB, beating
the previously measured best overall score by 48.2%. I also demonstrate the robustness of
this ensembled text similarity measurement on popular information retrieval tasks. Lastly,
I contribute a new LLM benchmarking task titled Semantic Elasticity, a generalization of
summarization that measures a model’s ability to compress and expand information and
quantify the performance of 6 popular LLMs on this task. I hope that through this work,
greater attention can be given to potential performance gains through proper metric treat-
ment and selection and that the field’s ability to measure semantic similarity advances as a
result.
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Chapter 1

Introduction

With the rapid advancement of large language models (LLMs) like OpenAI’s ChatGPT,
Anthropic’s Claude, and Google’s Gemini, the technology’s potential impact on society is
enormous. These tools can revolutionize information accessibility and education while aiding
complex problem-solving across diverse industries. Realizing this potential hinges signifi-
cantly on the models’ reliability and e�cacy, especially in complex and often unpredictable
industry environments, far from the controlled academic scenarios where these technologies
are typically tested. The stark contrast between idealized evaluation conditions and the
multifaceted realities of deployment creates a critical gap in measuring model capabilities.
Despite rapid advancements and frequent updates in AI technology, the practical application
of LLMs remains a challenge due to the variable quality of the data they process.

In typical academic settings, text-based data is often clean and high-quality, contrasting
the petabytes of unstructured, potentially compromised data that flood into production
systems daily. These large-scale applications demand robust, flexible text similarity measures
that can handle a broad spectrum of data types and quality, ensuring AI systems can operate
across all levels of data integrity while remaining aligned with human preferences.

This thesis explores the need for advanced, resilient text similarity measures tailored to
the complexities of real-world data. We begin by reviewing the motivation behind this thesis
and the questions we hope to answer. We then move on to an explanation of the back-
ground required to understand the scope of the problem, covering text similarity metrics,
text embedding models, and current benchmarks. Next, we propose the core contributions
of this thesis, the introduction of ensembled text similarity metrics that better reflect se-
mantic similarity and the Unified Similarity Metric Benchmark, a standardized suite of tasks
and datasets meant to asses text similarity measures on their ability to reflect a human un-
derstanding of semantic meaning. Afterwards, we introduce a new benchmarking task for
LLMs we call ”semantic elasticity”, and a corresponding dataset and set of evaluations for
this task. Finally, we conclude with a discussion of future work and broader implications.

By advancing the robust and aligned measurement of semantic similarity, this thesis aims
to enhance the dependability and practical utility of LLMs in diverse, dynamic environments,
ensuring they not only function e↵ectively but also responsibly.
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Chapter 2

Motivation

Text similarity measurements, especially within the context of LLM applications, are a crit-
ical component of production-level machine learning systems. The use cases hinging on
a proper understanding of text similarity range from consumer uses such as text summa-
rization and content creation to industry use cases spanning legal documentation, patent
similarity, and scientific writing. While modern research has typically focused on developing
domain-specific models for these tasks, the text similarity metric used in these tasks is often
overlooked and untested. For example, cosine similarity is the go-to in information retrieval
tasks [71] despite other metrics being shown to perform better [53] depending on the context
of the problem.

Historically, model-based methods that lend themselves to using cosine similarity have
used a sentence transformer [47] or word embedding architecture [2] to gauge text similarity.
There is a mismatch between the training pipelines behind these models and the document
type and length they are commonly paired with. Text embedding models are typically trained
on snippets ranging from short sentences to singular paragraphs [36], leading to their outputs
falling short when comparing longer pieces of text such as essays or formal documents. This
discrepancy between model capabilities and application requirements highlights a crucial gap
in our available text similarity metrics. Use cases of transformer-based models in the context
of longer documents have applications in information retrieval, model jailbreaking [62], the
spread of misinformation [41], data poisoning [74], plagiarism/watermarking detection [64],
retrieval-augmented generation [14], and semantic document parsing [56].

With all these use cases where measuring semantic similarity is paramount, there is a sore
lack of exploration into methods that e↵ectively and robustly encompass this broad human
concept, and a lack of data to train models themselves towards this objective. This leads us
to the core of our investigation, focused around the following central research questions:

1. Is cosine similarity the most appropriate metric for measuring similarity between multi-
paragraph documents?

2. To what extent does cosine similarity align with human preferences and perceptions of
semantic similarity?
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3. How do di↵erent models perform in tasks that involve rewriting content while preserv-
ing its original meaning?

Our motivation is to bridge the divide between current text similarity metrics and the
ever-evolving requirements of LLM applications, providing a foundation for future research
and practical advancements in these important use cases. This thesis will answer the ques-
tions above and pave the way for further exploration into our understanding of text similarity
and its desired qualities in reflecting a human perception of language.
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Chapter 3

Background

3.1 Machine-Based Text Similarity Measurements

For humans, judging the similarity between two pieces of text can be framed as a grade-
school-level task, a skill that comes naturally when learning to understand and analyze text.
This type of overarching similarity, encompassing tone, writing style, meaning, and factual
accuracy, is called semantic similarity [7] and is the core focus of this thesis.

While determining a high level of similarity is fairly straightforward for humans, quan-
tifying this is fraught with variance. Determining an overall measure of text similarity can
be incredibly subjective, and can even lead to contradictory results [8] when done by hu-
mans. In addition to these fundamental issues, human judgment isn’t scalable compared to
machine-generated scores due to its slow, scarce, and expensive nature. A human-powered
solution isn’t possible for corpora consisting of tens of thousands of documents, an extremely
pressing issue in an age where the entire internet is being indexed for use with LLMs [60].

How do we frame text similarity as an algorithmic or machine-powered task? A sensi-
ble first approach would be to start with character-level or word-similarity metrics. One
important character-level metric we will use is Levenshtein distance, measured as the edit
(insertion, deletion, substitution) distance between two strings. We can frame this as a ratio
between 0 and 1 with the following formula:

Levenshtein Ratio(str1, str2) =
len(str1) + len(str2)� Levenshtein Distance(str1, str2)

len(str1) + len(str2)

Levenshtein distance and ratio are particularly e↵ective at identifying misspellings and
other surface-level di↵erences between strings but fail to capture semantic similarity due
to their granular nature. Similarly, we can measure similarity through the frequency and
occurrence of words in the text. One notable metric that does so is the Jaccard similarity
coe�cient [19], calculated as follows:

words1 = set(str1)

words2 = set(str2)
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Jaccard Similarity(str1, str2) =
|words1 \ words2|
|words1 [ words2|

Here, we calculate words1 and words2 as the set of all words in str1 and str2, respectively.
Next, to calculate the Jaccard Similarity, we divide the size of the intersection of these two
sets by the size of their union. This roughly translates to comparing two documents by the
relative overlap of their respective set of words. Jaccard similarity is most useful in contexts
where the absence of certain words is more significant than their frequency or order, such as
with keyword-based searches or document classification tasks.

BM25 [50] is another advanced text similarity metric that builds on top of TF-IDF (Term
Frequency-Inverse Document Frequency) [22] to rank documents based on a given query. The
original BM25, Okapi BM25, modifies TF-IDF by incorporating document length and the
frequency of terms in an external query [32]. BM25 is widely used for a wide range of ad-hoc
retrieval tasks [49, 51], where the query and the collection of documents are not fixed in
advance, providing a robust and flexible measure of text similarity in dynamic information
environments. BM25 can be parametrized for a document d and a query q with t representing
a term in the query, |d| as the length of the document d, avgdl as the average document
length in the corpus, and b and k1 as hyperparameters. In this thesis, we will use BM25+,
which adds a small constant � to lower bound our scoring.

TF(t, d) =
Number of times term t appears in document d

Total number of terms in document d

IDF(t,D) = log

✓
Total number of documents D

Number of documents with term t in it

◆

BM25(d, q,D) =
X

t2q
IDF(t,D)⇥ TF(t, d)⇥ (k1 + 1)

TF(t, d) + k1 ⇥
⇣
1� b+ b⇥ |d|

avgdl

⌘ + �

Finally, we will introduce ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
score [29], particularly useful for evaluating summarization tasks. ROUGE is primarily used
to assess the quality of summaries by comparing them to one or more reference summaries.
ROUGE measures the overlap of n-grams and word sequences between the target text and
the reference to quantify how much of the core content and key phrases are captured in
its summary. ROUGE focuses on recall, providing a distinct perspective that complements
precision-focused metrics like TF-IDF and BM25.

ROUGEn(str1, str2) =

P
gramn2str1

Countstr2(gramn)P
gramn2str1

Count(gramn)

As we’ve seen, there are many algorithmic ways to measure text similarity, each with its
strengths and weaknesses. There are many similarity metrics we haven’t covered for brevity
but are still important within their contexts, with some notable ones being BLUE [44],
BERTscore [67], and MAUVE score [45]. The correct choice depends heavily on the context
in which text similarity is assessed and used for downstream tasks, making this decision a
nuanced yet highly impactful consideration.
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3.2 Text Embedding Models

To move past word or character-level similarity measures, we need some way to ”learn” the
representation of text through a machine learning model. To do so, we use text embedding
models, which take a string of arbitrary length and transform it into a fixed-length vector.
This process is often referred to as ”embedding” a piece of text. Early text embedding
models such as Word2Vec [33] transform singular words into vectors, which we can then
take the average of across the length dimension of our output to achieve a length D vector.
Later models such as BERT [12] pad the input text to be a fixed length and use the vector
representation of a special [CLS] token to model the input text.

Before passing a piece of text to an embedding model, we need to ”tokenize” it. To-
kenization refers to the process of substituting a batch of characters in the input string
with integers that correspond one-to-one with the substituted characters. For example, a
character-level tokenization would convert the letter ”a” to 1, ”b” to 2, and so on until
the input string is an array of integers. In this scheme, the word ”dog” would become the
array [4, 15, 7] before being passed into our text embedding model. Today’s LLMs use a tok-
enization scheme called Byte Pair Encoding (BPE) [55], which balances character-level and
word-level tokenizations in its final mapping. Most models incorporate a BPE scheme with
a vocabulary size of 50,000, meaning that their internal mapping incorporates 50,000 unique
sets of characters capable of transforming an arbitrary string into an array of integers.

Contrastive loss is commonly used to train text embedding models [48], specifically Noise
Contrastive Estimation (NCE) loss [34]. NCE loss simplifies the model training process
into a binary classification task. This is achieved by distinguishing a target text from a set
of randomly selected ’noise’ texts. During each training step, a target text is paired with
its true context words and several irrelevant randomly chosen texts from the corpus. The
model then learns to increase the similarity between the target text and its true context
text (positive examples) while decreasing the similarity with the irrelevant texts (negative
examples).

The output of text embedding models is often interpreted as capturing the semantic
meaning of the text passed into them [54] in a high-dimensional latent space. This space,
geometrically crafted throughout the model training process, has been shown to arrange
texts with similar meanings close together, allowing nuanced relationships between words to
be discerned based on their proximity and orientation in this space. For instance, synonyms
are typically embedded near each other, while antonyms might be positioned on opposite
ends along a particular dimension. This spatial arrangement helps facilitate various Natural
Language Processing (NLP) tasks such as synonym detection [1], sentiment analysis [5],
and thematic grouping [52], as it provides a quantitative method for analyzing semantic
similarities and di↵erences within text data.
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3.3 Cosine Similarity and Common Uses of
Embedding Models

Now that we know how text is embedded, we’ll transition to discussing why these embed-
ding vectors are important. As we touched upon, most uses of text embeddings hinge on
their ability to represent meaning in a high-level geometric space. Thus, we can utilize the
implications of this assumption to use metrics that measure the distance between vectors to
”measure” the ”distance” between texts. This translates to assigning a quantitative simi-
larity measure between any two documents in the contexts we will discuss. We can measure
the distance between two vectors x and y through their dot product.

dot(x, y) =
nX

i

xi ⇤ yi

As an alternative, we can use Euclidean distance.

dist(x, y) =

vuut
nX

i

(xi � yi)2

The problem with these measures is that they break down in high dimensions [4], making
it hard to use them as consistent measures across various embedding models with distinct
output dimensionalities. Thus, we often use cosine similarity, which is bounded between 0
and 1 regardless of the vector length [70].

cosine(x, y) =
dot(x, y)

||x||2||y||2

How do researchers and engineers use these measures in practice? One of the most com-
mon use cases is information retrieval, also known as ”Retrieval-Augmented Generation”
(RAG) [27] in the context of LLMs. LLMs have been shown to benefit from ”in-context
learning” [63], where providing complete question-answer pairs to the LLM before giving it
a new question improves its performance. To accomplish this, we typically have an exter-
nal database of potentially related documents, which have been embedded into vectors. To
decide which documents to retrieve, we usually calculate the cosine similarity between the
prompt and every document in our vector database, selecting the top-n documents with the
highest similarity scores [25].

Classification is another application of applying text similarity measures to text embed-
dings. These tasks generally require categorizing documents into pre-specified buckets such
as genre, author, academic field, or some other distinction. Some prevalent use cases of clus-
tering are plagiarism detection [21] and LLM watermarking [18]. Classification is also useful
for tasks that demand consistency, such as maintaining the writing style, tone, or meaning
of a provided text during a rewrite, a common consumer use case of LLMs [13].
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3.4 Usages of Text Similarity Measures in
Benchmarking

With the popularity and numerous use cases for embedding models, research into improving
these models and the vector representation of text in general has skyrocketed [69]. Along
with this explosion in model development has come the problem of determining which model
performs best for a specified use case, inspiring the creation of leaderboards to measure model
performance in standardized manners. A popular example is the Massive Text Embedding
Benchmark (MTEB) [35] from Hugging Face, which utilizes 56 datasets across 8 tasks to
assign a final score to an embedding model. This leaderboard builds o↵ of previous, more
specialized benchmarks, such as the Benchmark for Zero-shot Evaluation of Information
Retrieval Models (BEIR) [58] and Unsupervised Sentence Embedding Benchmark (USEB)
[61] which encompass a smaller range of tasks. While these benchmarks are useful for model
selection, they often use cosine similarity to determine the final score of each embedding
model on a large subset of tasks, without analyzing whether or not this is the best metric to
judge performance by.

While most benchmarks test models under conditions consisting of clean data and con-
trolled selections, the robustness of a text embedding model and similarity measurement
metric are crucial considerations in the real-world usage of these technologies. One weakness
of popular benchmarks is not necessarily representing a balanced cross-section of real-world
data [42], often skewing towards particular genres or domains, such as news articles over
conversational text. These conditions suggest that today’s benchmarks may not be the best
suited for model selection in all contexts, particularly with many popular models confound-
ing their results on these public benchmarks through overfitting [65] and data leakage [66].
These factors highlight the need for benchmarks that test a model’s ability to handle a wide
range of linguistic features and contexts, and also examine how well these models perform
under varied and adversarial conditions.
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Chapter 4

Evaluating Text Similarity
Measurements on Robustness and
Alignment

We will start by defining two desirable qualities of text similarity metrics: robustness and
alignment.

Robustness refers to a metric’s resilience against irrelevant or non-semantic modifica-
tions in text, such as random capitalization, deletions, or misspellings. A robust similarity
metric consistently identifies texts that convey the same meaning, despite superficial changes,
and clearly distinguishes texts that di↵er significantly in content, intent, or meaning.

Alignment, on the other hand, describes a metric’s ability to reflect human judgments
and preferences. A similarity metric is considered aligned if it reflects human evaluations
regarding text similarity. This is especially important in applications like summarization and
content moderation, where the end-user’s perception and understanding significantly impact
the e↵ectiveness of the LLM.

By examining these qualities, we aim to shed light on the capabilities and limitations of
existing text similarity metrics and propose three new text similarity metrics. These include
two methods we labeled as linear similarity and token similarity metrics. Our last metric
is an ensembled measurement metric, which leverages the strengths of multiple metrics to
achieve superior performance.

All cosine similarity results are attained by averaging the subtask scores achieved by Ope-
nAI’s text-embedding-3-small model [37] and BAAI’s bge-large-en-v1.5 model [9] to represent
both open and closed-source embedding models in our evaluations. We noticed no significant
di↵erences when using these two models and thus chose to combine their performances for
brevity.
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4.1 Alignment with Human Preferences

To gauge the alignment of text similarity metrics with human preferences, we focus on
datasets consisting of human-based scoring systems. Specifically, we utilize two datasets
from OpenAI [57] consisting of machine-generated summaries for Reddit posts and news
articles. The first dataset contains machine-generated summaries evaluated by human crowd
workers based on overall e↵ectiveness, cohesion, factual accuracy, and tone. The second
dataset involved choosing between two machine-generated summaries for each post, with
crowd workers selecting the one they preferred based on overall quality.

We first focus on alignment with human selection. To determine the summary preferred
by a metric, we calculate the score between each post and its respective summaries, choosing
the one with the higher similarity score as favored by the metric. We then analyze how
accurately these choices reflect the choices made by the crowd workers.

Next, we use the correlation between the overall rating and the text similarity score for
each summary, article pair to measure a metric’s alignment with human scoring. While there
is work showing that models tend to favor content written by themselves [43], we believe
this isn’t a concern due to the disconnect between generative and embedding models in their
training methodology and optimization process, even when from the same research group.

Table 4.1: Alignment with Human Choice

Metric Accuracy Precision Recall F1

Cosine Similarity 0.66 0.66 0.66 0.66
Levenshtein Ratio 0.60 0.60 0.62 0.61
ROUGE Score 0.57 0.57 0.59 0.58
Jaccard Sinilarity 0.59 0.58 0.60 0.59
BM25 Score 0.57 0.56 0.58 0.57

Table 4.2: Correlation with Human Scoring

Metric Overall Accuracy Coverage Coherence

Cosine Similarity 0.57 0.48 0.55 0.51
Levenshtein Ratio 0.43 0.25 0.433 0.15
ROUGE Score 0.45 0.32 0.44 0.18
Jaccard Similarity 0.46 0.34 0.46 0.19
BM25 Score 0.44 0.35 0.43 0.20

Before we review our results, let us define precision, recall, and the F1 score.

Precision =
TP

TP + FP
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Precision calculates the number of true positive predictions (TP) and false positives (FP)
made by our classifier, measuring the exactness of the classification.

Recall =
TP

TP + FN

Recall, or sensitivity, assesses the ability to identify all relevant instances by calculating
the proportion of true positives (TP) to false negatives (FN).

F1 Score = 2⇥ Precision⇥ Recall

Precision + Recall

The F1 Score is the harmonic mean of precision and recall, providing a balanced measure
of both.

Among the pre-existing metrics we evaluate in tables 4.1 and 4.2, cosine similarity consis-
tently outperforms all others in both tasks, with a preference alignment score of 0.66 and a
correlation score of 0.57. Jaccard similarity, Levenshtein ratio, ROUGE score, and BM25 lag
by approximately 10% in the accuracy task and 20% in the correlation task, demonstrating
lower but still significant reflections of human preference. These metrics perform similarly,
suggesting a fundamental limitation between n-gram-based methods and embedding-based
methods [17].

In our research on ensembled methods for measuring text similarity, we develop two novel
metrics, labeled “Linear Similarity” and “Token Similarity”.

Linear Similarity derives from an e↵ort to reflect the sentence-level similarity between
two longer pieces of text. This concept builds on interpretability research, demonstrating
that the geometric interpretation of an embedding vector holds semantic significance [24].
For example, embeddings for “Ferrari” and “Lamborghini” are likely to be positioned near
each other, along with embedding vectors for other vehicle brands. Another research line
delves into interpreting the embedding of multi-word or multi-concept pieces of text, arguing
that combining embeddings can represent new concepts [26]. In this context, the embedding
for ”brown dog” would be the sum of the embedding vectors for “brown” and “dog”. We
hypothesize that this summation pattern should hold when comparing the sentence embed-
dings of a document to the embedding of the document itself and that using these sentence
embeddings may yield more precise insights due to their granularity.

To test this hypothesis, we run a simple linear regression model to achieve a weighted
sum of a document’s sentence embeddings against the document embedding. We find that
our resulting prediction had an R2 > 0.8 in the vast majority of cases, suggesting that over
80% of the variance in the document’s embedding vector can be accounted for by combining
its sentence embeddings. Although our reconstruction is lossy, this result provides a basis
to use a document’s sentence representation to try and measure text similarity.

For our final functional form of Linear Similarity, we draw from insights in the ColBERT
model [23] and sum over the maximum similarity of each sentence in the reference text with
every sentence in the generated text to formulate our similarity measure. We parameterize
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the linear similarity function with R and T , where R 2 RL1⇥D and T 2 RL2⇥D, representing
the number of sentences in our reference and generated (target) texts, respectively, and D
represents the dimension of our text embedding model.

linear similarity(R, T ) = E[max(R(T T ), dim = 1)]

We will discuss our token similarity metric construction methodology later in this section.
While these metrics perform well on their own, they do not quite match the performance

of cosine similarity on our two tasks. However, we can see that many of our metrics are
fairly uncorrelated, suggesting that they can be combined to enhance performance [39]. The
correlations between each similarity metric’s scores on all measurements we made for this
task are shown in table 4.3.

Table 4.3: Metric Cross-Correlations

Cosine Levenshtein ROUGE Jaccard BM25 Linear Token

Cosine 1 - - - - - -
Levenshtein 0.52 1 - - - - -
ROUGE 0.52 0.97 1 - - - -
Jaccard 0.54 0.95 0.97 1 - - -
BM25 0.45 0.60 0.67 0.69 1 - -
Linear 0.14 0.22 0.21 0.23 0.05 1 -
Token 0.72 0.59 0.63 0.66 0.69 0.13 1

Borrowing from insights gleaned from ensembling in classical machine learning contexts,
we focus on developing an ensembled metric for each specific task. The popularity of ensem-
bled methods such as Random Forest Classifiers or XGBoost relies on the fact that when
individual metrics exhibit strong performance but low correlation with each other, they likely
capture di↵erent aspects or features of the data. By aggregating these diverse, independent
metrics into a singular measure, we’re able to use the strengths of each to achieve more robust
and accurate predictions than any single metric could achieve on its own. This integration
can reduce the variance and bias of our ensembled estimator’s final outputs.

To leverage this, we implement two statistical models: a Random Forest Classifier for
selecting the preferred summary in the binary comparison task, and a Linear Regression
model for scoring summary quality, both trained on human scores and preferences. We verify
the e↵ectiveness of these methods through standard statistical t-tests, achieving significance
levels ¡¡ 0.001 for the Linear Regression Model in 4.5 and 0.01 for our Random Forest Classifier
in 4.4 when testing whether these results improved upon the results from using just cosine
similarity as a feature.

We can see that while our ensembled method increases performance by ⇠ 4.6% overall
and generally across the board in mimicking human choice, it is simply competitive with
cosine similarity in the human scoring correlation task, yielding a 7.1% improvement to
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Table 4.4: New Metric Alignment with Human Choice

Metric Accuracy Precision Recall F1

Cosine Similarity 0.66 0.66 0.66 0.66
Linear Similarity 0.63 0.62 0.66 0.64
Token Similarity 0.59 0.58 0.60 0.59
Ensembled Similarity 0.70 0.70 0.70 0.70

Table 4.5: New Metric Correlation with Human Scoring

Metric Overall Accuracy Coverage Coherence

Cosine Similarity 0.57 0.48 0.55 0.51
Linear Similarity 0.07 0.11 0.09 0.08
Token Similarity 0.46 0.46 0.45 0.42
Ensembled Similarity 0.61 0.51 0.60 0.46

correlation on overall performance and coverage, likely following from their high pre-existing
correlation.

4.2 Robustness to Semantic and Superficial
Transformations

Next, we aim to assess text similarity metrics on alterations in a document that either
preserve or alter the underlying meaning. Our goal is to determine whether a metric can ac-
curately distinguish between texts that are semantically similar despite superficial changes,
and texts that di↵er fundamentally in meaning despite superficial similarities.

Superficial Transformations:
We categorize superficial transformations into three types:

• Random Capitalization: Randomly capitalizing letters in the text with a given proba-
bility.

• Deletion: Removing every nth letter from the text, excluding spaces.

• Numerization: Substituting specific letters with numerals (e.g., replacing ’o’ with ’0’).

Despite these changes, the semantic content of the text remains intact. For example,
numerization might transform the phrase ”The brown fox jumps over the lazy dog” into ”Th3
br0wn f0x jumps 0v3r th3 l4zy d0g”. Although these may appear di↵erent at first glance,
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humans would recognize them as the same sentences. A robust text similarity metric should
rate such altered texts as highly similar to the original, aligning with human perception of
semantic similarity. These transformations test the metric’s ability to disregard non-semantic
variations, focusing on meaning rather than form.
Semantically Altering Transformations:
Conversely, we explore transformations that significantly alter the meaning of the text:

• Negation: Changing a�rmative statements to negative (e.g., changing ”is” to ”is not”).

• Shu✏e Sentences: Randomly rearranging the order of sentences.

• Shu✏e Words: Scrambling the order of words within the text.

These changes disrupt the original semantic structure. For example, negation reverses
the intended meaning, while shu✏ing sentences or words can render the text nonsensical or
disjointed. An example of word shu✏ing would be transforming the phrase ”The brown fox
jumps over the lazy dog” into ”brown jumps dog The over the fox lazy”. Although these
strings contain the same words, the latter holds no coherent meaning, and this e↵ect worsens
in longer documents. A reliable similarity metric should reflect these substantial changes by
assigning low similarity scores to texts with these alterations when compared to the original.

To empirically test the e↵ect of these changes on our similarity measures, we utilize a
dataset of PubMed publications [11] separated into their abstracts and main texts, which we
will refer to as articles. We compare the articles and abstracts against each other, and also
against both superficially and semantically altered versions of themselves. We hypothesize
that:

• Texts with superficial changes should exhibit higher similarity scores compared to their
original counterparts than texts with semantically altering changes.

• Semantically altered texts should receive lower similarity scores compared to the orig-
inal text than their counterparts (article to abstract) in the same paper.

To quantify how well a text similarity measure performs on these metrics, we introduce
a scoring function, assigning values between 0 and 1 to measure the e↵ectiveness of the
measures under our defined ablations.

S1 = E[f(article, abstract) > f(article, shu✏e word(article))]

S2 = E[f(article, deletion(article)) > f(article, abstract)]

S3 = E[f(article, numerization(article)) > f(article, shu✏e word(article))]

score =
S1 + S2 + S3

3
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Here, we aim to evaluate whether our text similarity metric, denoted by f , is robust
under each condition we have established. We average the scores over each condition to
determine our final score.

Our findings, presented in Table 4.6, are quite surprising, particularly with respect to
cosine similarity. We discovered that cosine similarity often rates texts with their words
completely shu✏ed—which typically renders the content nonsensical—as more similar to
the original than texts with only 25% of letters randomly capitalized. This counterintu-
itive outcome highlights a significant challenge: traditional similarity metrics may prioritize
structural similarity over semantic coherence, failing to adequately penalize the loss of logi-
cal narrative that results from word shu✏ing. This phenomenon could be attributed to the
inherent design of these metrics, which do not inherently distinguish between syntactic rear-
rangement and semantic alteration [16]. Additionally, we find that numerization is the most
detrimental transformation to cosine similarity, possibly due to di↵erences in tokenization
between numbers and alphabetic characters. This suggests a limitation in cosine similarity’s
ability to capture the true semantic essence of a text. Conversely, metrics that focus on
word or character-level similarities demonstrate greater resilience to superficial changes but
struggle to accurately reflect the semantic similarity between full texts and their abstracts.

Table 4.6: Performance on Robustness Tests

Metric S1 S2 S3 overall

Cosine 0.55 0.61 0 0.38
Levenshtein 0.02 1.00 0.88 0.63
ROUGE 0.01 0.98 0 0.33
Jaccard 0 0.96 0 0.32
BM25 0.47 0.67 0.93 0.69
Token 0 0.79 0 0.26
Ensembled 0.35 0.97 0.94 0.75

When using a simple linear weighting of similarity metrics to develop an ensembled scor-
ing measurement, we achieve our highest overall score on this task by a large margin. Our
ensembled metric beats all others when scoring semantically similar changes over semanti-
cally altering changes, largely due to its dependence on Levenshtein similarity and BM25
score. While it doesn’t score higher than BM25 and cosine similarity on the task of scor-
ing a semantically similar piece of text over a semantically altering transformation and lags
slightly behind Levenshtein and ROUGE score on the last task of ranking superficial changes
over semantically altering changes, its dependence on multiple metrics helps it achieve a 20%
improvement over the next metric, Levenshtein, in terms of overall score.
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4.3 Sensitivity of Measurements to Unrelated Text

Continuing, we examine how the insertion of irrelevant text a↵ects the e↵ectiveness of text
similarity metrics. This test is intended to assess the robustness of these methods against
unrelated content that does not contribute meaningfully to the document. To facilitate this
analysis, we develop a function to insert a ’needle’ into a text at a specified location.

insertion(needle, location, text) = text[: location] + needle + text[location :]

We control the e↵ect of various needles by using Lorem Ipsum text and variants/extensions
of the popular needle ”The best thing to do in San Francisco is eat a sandwich and sit in
Dolores Park on a sunny day.” [31]. We hypothesize that an ideal similarity score should
decrease linearly as the size of the needle being used increases and that this change should
be mostly invariant to the location of the needle.

Surprisingly, our findings, plotted below in figures 4.1 and 4.2, reveal a strong dependency
on the location of the needle when using cosine similarity as our text similarity measurement.
Specifically, inserting the needle at the start of the text decreased the similarity between the
resulting and original text the most, with a slightly lower but still pronounced e↵ect when
inserting the needle into the back of the text. This e↵ect is fairly negligible when the
needle is inserted into the middle of the text, a placement location with the least variance
in similarity scores. These e↵ects persist when changing the needle size, and become even
more pronounced as the needle size increases.

Figure 4.1: E↵ect of 16 Token Needle Figure 4.2: E↵ect of 64 Token Needle

This result suggests that the first and last sentences carry more weight than sentences
in the middle when determining the embedding vector for a document. There are several
potential explanations for this, such as this being the way humans naturally write, dataset
bias, or an architectural e↵ect of embedding models. Isolating the cause and downstream
e↵ects of this finding is an interesting direction for future work.
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Diving deeper into the e↵ects of the needle on text similarity, we next explore how the
cosine similarity changes as a function of the size of the needle as a fraction of the overall
text. We find that while the cosine similarity decreases as the size of the needle increases, as
expected, it drops at a much lower rate than the proportion of the needle to the original text,
with a high dependence on position. In figures 4.3 and 4.4, we can see that even when the
needle is well over the length of the original text and accounts for over 70% of the entirety
of the new text, the cosine similarity is still between 0.5 and 0.85, indicating a surprisingly
high degree of similarity. The dropo↵ in cosine similarity high depends on positioning, with
the figure in 4.3 decreasing much more evenly than in 4.4, where even with 50% of the text
as a needle the average similarity score is above 0.9.

Figure 4.3: Needle insertion at Beginning Figure 4.4: Needle insertion at Middle

When a user is trying to retrieve documents where relevant information is surrounded
by noise, this characteristic of cosine similarity can be highly desirable. On the flip side,
when we’re trying to achieve a pure understanding of the semantic similarity between two
documents, this result can be worrying. This result does not dissuade the use of cosine
similarity in document retrieval or text understanding but instead characterizes that the
context of its usage has an outsized e↵ect on its e�cacy as a metric.

Lastly, it’s interesting to note the relation between our observations and the “Lost in the
Middle” e↵ect [30] observed in needle-in-the-haystack tests conducted on decoder models.
Here, information at the beginning and end of a model’s context has been shown to receive
more weighting and is more heavily attended to than content in the middle of the provided
context [28]. Further research into this e↵ect could yield a parallel approach to popular
“re-ranking” models, often used to re-order pieces of context after retrieval [15] to place the
most important context at the beginning of the prompt.
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4.4 Investigating Token Frequency’s Relationship
with Cosine Similarity

While investigating the e↵ect of superficial and semantically altering changes on the mea-
surement of cosine similarity between texts, we noticed an interesting trend. Shu✏ing the
sentences or words of the original text consistently yielded surprisingly high similarity scores,
despite the significant loss of semantic meaning. These transformations consistently resulted
in higher similarity scores compared to those obtained when comparing an article to its ab-
stract or vice versa. This was also true when applying superficial transformations such as
randomly capitalizing portions of the text or substituting some letters with numbers. The
impact of each transformation on cosine similarity score is detailed in Tables 4.7 and 4.8.

Table 4.7: Similarity with Original Article

Similarity

Article 1
Cleaned Article 0.97
Sentences Shu✏ed 0.93
Random Deletion (10%) 0.85
Words Shu✏ed 0.83
All Caps 0.83
Abstract 0.82
Random Capitalization 0.73
Random Deletion (20%) 0.67
Numerization 0.34

Table 4.8: Similarity with Original Abstract

Similarity

Abstract 1
Cleaned Abstract 0.97
Sentences Shu✏ed 0.94
All Caps 0.89
Random Deletion (10%) 0.85
Words Shu✏ed 0.85
Article 0.82
Random Capitalization 0.82
Random Deletion (20%) 0.66
Numerization 0.35

These results led us to hypothesize that cosine similarity was correlated with some
functional representation of token frequency, as the shu✏ing sentences and shu✏ing words
wouldn’t heavily alter the input tokens distribution, but numerization and capitalization
would. To test this hypothesis, we constructed a token similarity metric that captured the
frequency of each term in the reference and target texts.

terms = [(set(tokens(text1)), set(tokens(text2)))

freqi =
token freq(texti)

1 + log(1 + token freq(texti))

token similarity(freq1, freq2) = dot(
freq1

||freq1||2
,

freq2
||freq2||2

)

Here, token freq buckets the frequency of each token in texti into an index of a vector with
length equivalent to the number of unique tokens in all texts. Each index of this vector
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represents a specific token. After constructing these vectors for both texts, we take their
normalized dot product to achieve our final score.

We took two approaches to determine how e↵ectively our new metric represented cosine
similarity. One was observing how well the trends in using this metric reflected the trends
shown by cosine similarity, and the other was directly calculating its correlation with cosine
similarity under various transformations, as shown in table 4.9.

Table 4.9: Correlation of Token Similarity with Cosine Similarity

Article Cleaned Shu✏ed Abstract (Abs) CleanedAbs Shu✏edAbs

Article 1 - - - - -
Cleaned 0.66 1 - - - -
Shu✏ed 0.23 0.25 1 - - -
Abstract 079 0.80 0.76 1 - -
CleanedAbs 0.82 0.82 0.80 0.48 1 -
Shu✏edAbs 0.81 0.80 0.82 0.47 0.56 1

In most scenarios, our token similarity metric correlates highly with cosine similarity.
On the upper end, we see correlations of 0.8 between the similarity measures comparing our
abstract and article, suggesting that we can represent a large fraction of cosine similarity in
an untransformed setting. While this correlation goes lower for certain transforms, only being
0.21 when comparing scores for an article under a sentence shu✏ing transformation, the high
correlation for untransformed settings suggests a potentially inexpensive way of realizing the
benefits of cosine similarity with having to use a larger model. It’s clear, however, that
cosine similarity captures some semantic meaning in its output that can’t be represented by
a permutation invariant function of the text’s tokens.

4.5 Introducing the Unified semantic Similarity
Metric Benchmark

Now that we’ve thoroughly investigated the strengths and weaknesses of multiple text simi-
larity measures, with a focus on cosine similarity, it is time to measure performance on each
of our subtasks to determine an overall leaderboard quantitatively combining robustness and
alignment. We propose the Unified semantic Similarity Metric Benchmark (USMB), a suite
of tests, tasks, and datasets to measure the ability of text similarity metrics to adhere to a
human understanding of semantic similarity and meaning. The USMB leaderboard is com-
posed of four tasks: preference alignment, semantic transformation robustness, information
sensitivity, and clustering/classification. We assign a numerical score bounded between 0
and 1 for each metric’s performance in each category and compute an overall score as the
mean of the category scores.
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For the human preference task, we take the average of a metric’s performance on the
scoring and preference tasks. For the robustness task, we use the scoring system detailed
earlier in its respective section. For the sensitivity task, we assume an ideal behavior as
an inverse 1:1 relationship with the size of the needle as a percentage of the overall text,
invariant to needle position. Thus, we calculate the overall error as the Mean Absolute Error
(MAE) between a metric’s score and the ideal behavior, bounded between 0 and 1 due to all
predictors being within this range. To transform this into a measure where higher is better,
we subtract this bounded error from 1.

Lastly, we average accuracy across all constituent datasets for the clustering tasks, sourc-
ing our datasets and scoring methodology from the MTEB benchmark [35].

Table 4.10: Unified semantic Similarity Metric Benchmark

Metric Human Pref. Robustness Sensitivity Clustering Overall

Cosine 0.612 0.385 0.200 0.420 0.404
Levenshtein 0.515 0.632 0.134 0.177 0.365
Jaccard 0.525 0.320 0.064 0.187 0.274
ROUGE 0.510 0.330 0.124 0.182 0.287
BM25 0.501 0.691 0.314 0.187 0.423
Ensembled 0.657 0.753 0.511 0.585 0.627

According to the constructed USMB in table 4.10, our task-specific ensembled methods
perform better than a stand-alone metric across the board, with an overall score of 0.627
being 48.2% higher than the second-best metric, BM25. Of the individual metrics, cosine
similarity and BM25 similarity score the highest, corroborating their stance as the most
popular measures for text similarity and retrieval tasks but highlighting the potential for
ensembled methods to increase performance in their respective use cases. While Levenshtein
ratio, Jaccard Similarity, and ROUGE score lag on overall scoring, they contribute their
strengths and weaknesses to form a much stronger ensembled metric, hinting that these
measures should not be overlooked in today’s text similarity research and measurement.

We see the biggest gain from Ensembling in the robustness and sensitivity subtasks, where
measuring semantic similarity is both the most subjective and the most di�cult to discern
for automated text similarity metrics. Clustering also sees a 39.2% gain from ensembling
over cosine similarity, which already scores over double that of the next best metric’s score.
Our findings in the clustering subtask underscore the e↵ectiveness of cosine similarity in text
similarity compared to other traditionally used methods but continue the theme of simple
ensembling performing significantly better.
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4.6 Ensembling Performance as a Measure of
Training Data

Given that our ensembled methods reflected human preference more closely than a stand-
alone method after fitting a task-specific statistical model, we wanted to measure the e↵ect
of the number of data points used to fit these models with their resulting performance. To
test this, we varied the size of our training set from 10% to 90% of our dataset and measured
performance on the resulting test set, with results shown in figures 4.5 and 4.6. To ensure
fairness, we ran the same test with the same models but used only cosine similarity scores as
features. We then fit each model 1000 times at each level of train-test split, each time with
a di↵erent random seed, and averaged the results. We then used a standard t-test to verify
the statistical significance of the results, which follows from the theoretically and empirically
normal distribution of scores in each category. Here, our null hypothesis was the mean of
cosine similarity-based scores.

Figure 4.5: Scoring Task Performance Figure 4.6: Preference Task Performance

As expected, our model performance increases with the size of the training set. There’s
no clear saturation point in the preference task, and a saturation point of 0.7 in the scoring
task, making it di�cult to pinpoint an ideal split size. On the other hand, cosine similarity
stays constant in the preference task and saturates at 0.3 in the scoring task, suggesting that
the data’s cosine representation is fairly homogeneous [46].

Balancing the dual considerations of performance and the di�culty of labeling data, we
recommend using 40% of the data to fit an ensembled text similarity metric. This improves
over existing model-based approaches [10], where a typical training set is at least 60% of
the original dataset and is much more expensive and time-consuming to fit compared to our
regression and tree-based models.
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Chapter 5

Ensembled Metric Performance on
Information Retrieval Tasks

Before moving on, it’s worth exploring the practical ramifications of our findings from the
USMB, namely in testing the performance of our proposed text similarity metrics in a real-
world scenario. The most applicable use case is in Information Retrieval (IR). IR benchmarks
measure the ability of a model or metric to retrieve the most relevant documents to a given
query, with applications in search, synthesis, and Retrieval-Augmented Generation (RAG)
[73].

To measure the performance of our text metrics on IR tasks, we borrow our datasets and
scoring methodology from BIER [58], an IR benchmark with 18 diverse datasets representing
varied tasks and domains. Again, we use both OpenAI’s text-embedding-3-small model [37]
and BAAI’s bge-large-en-v1.5 model [9] and average the final results for the two models due
to their similar performance.
We mimicked a typical IR pipeline, which consists of the following steps:

1. Embed all documents into vectors and add them to a vector database.

2. Embed the query (search term) into a vector.

3. Return the top-n documents with the highest similarity scores with the query.

After retrieving our top-n documents, we determined how many matched our provided
”ideal” documents to determine the metric’s score as a percentage of the highest possible
score as shown in figure 5.1. While our Ensembled metric performed well, pure cosine
similarity achieved a score that was 2.6% higher. Levenshtein, which performed well on our
robustness tasks, fails significantly here due to the distribution mismatch between the query
and the documents. In general, Levenshtein, ROUGE, and Jaccard are meant to compare
text to text and not query to documents [68], indicating a fundamental divide in their ability
to perform well in IR tasks.
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Figure 5.1: Metric Performance on IR Tasks

While the IR tasks in BIER are meant to mimic real-world data, the datasets are con-
structed from high-quality documents, such as Wikipedia articles, news articles, and PubMed
papers. Thus, there is a potential distribution mismatch between our evaluative measures
and machine learning systems that handle large-scale data that can often be nonsensical,
riddled with typos, or poisoned [6]. We want to use this information to construct new
datasets to measure our metrics abilities to stay aligned and robust with human preferences
in unclean and noisy environments mimicking real-world machine learning systems.

To accomplish this, we create 6 copies of each original dataset in the BIER benchmark
and apply the following transformations: shu✏ing the sentences, shu✏ing the words, random
capitalization, random deletion, adversarial needle insertion, and original (no transforma-
tion). We then concatenate these 6 transformations to create a new dataset, 6 times the
length of the original, and repeat for all 18 datasets in the original benchmark. Since the
original documents are still in this ”augmented” dataset, our text similarity metrics can score
similarly to their previous performance on the original dataset. Since random capitalization
and random deletion are superficial changes, we de-duplicate them from our scoring if our
metric retrieves the same document multiple times under these transformations. To quantify
the ability of our metrics to remain robust to these changes, we measure their performance
retention as a percentage of their original scores pre-augmentation as shown in 5.2.

Now we see a similar trend where cosine similarity and our ensembled metrics perform
best but with the flipped result of ensembling performing 4.4% better. Levenshtein, Rouge,
Jaccard, and BM25 still score significantly lower, demonstrating their inability to achieve
high initial retrieval scores, and their lack of robustness to data augmentation in IR tasks.
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Figure 5.2: Performance Retention after Data Augmentation

These metrics are still valuable, however, as they contribute to the improved performance of
our ensembled metric in overall robustness.

While our methodology aims to reflect the realities of unclean environments, our pipeline
can still be significantly improved. For example, we would like to mimic the distribution
of typos, poor structure, and poisoned data in real-world systems [72]. Without datasets
to draw these numbers from, however, an accurate reflection of real-world data may be
impossible to attain. Another potential improvement would be the exploration of di↵erent
IR pipelines, such as document chunking or sampling as a replacement for top-n selection.
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Chapter 6

Benchmarking Model Capabilities
with Semantic Elasticity

To conclude the contributions of this thesis, we introduce a benchmark and dataset to
compare LLMs in their ability to maintain the semantic meaning of a reference text under
a rewriting operation. We evaluate our criteria on popular closed and open-source models,
including LLaMa 3 [59], Claude 3 Haiku [3], GPT-4 [38], GPT 3.5 Turbo [40], and Mixtral
[20].

Specifically, our benchmark supersets summarization tasks to include information com-
pression and expansion. Each model was tasked with rewriting a reference text to be 50%
shorter, 25% shorter, 25% longer, 50% longer, 100% longer while maintaining the original
tone, style, and meaning. Our dataset contains over 300 long-form essays/data points from
thought leaders Paul Graham and Sam Altman, chosen for their rich language and com-
plex ideas, which we hypothesize would pose significant challenges for models in maintaining
semantic integrity.

To assess the ability of each model to adhere to our specified rewriting criteria, we employ
a multifaceted scoring system that combines cosine similarity, Levenshtein ratio, ROUGE
score, Jaccard similarity, BM25 score, and a new metric we call word count score. The
word count score measures how well the model achieved the target percentage change in the
reference text’s word count.

expected = word count(reference)

actual = word count(target)

word count score(expected, actual) = 1� |expected� actual|
expected+ actual

This formula measures the relative error between the expected and actual word counts,
normalized to a scale of 0 to 1, where a 1 represents perfect adherence to the target word count
and a 0 represents maximum deviation. This metric is particularly insightful as it quantifies
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the precision with which models can control output length given the task requirement, a
critical aspect of semantic elasticity.

With all of our constituent scores being bounded between 0 and 1, we calculate the overall
score for each model as the average of its performance over each metric considered.

Figure 6.1: Subtask and Overall Scores on Semantic Elasticity Task

Our findings, shown in figure 6.1, reveal meaningful di↵erences in model capabilities based
on our scoring methodology. From a high-level overall score perspective, LLaMa 3 70B and
Claude 3 Haiku perform the best, closely followed by LLaMa 3 8B and Mixtral. Surprisingly,
GPT-4 and GPT 3.5 Turbo have the worst scores, with another clear gap between the two.
All the models perform well in cosine similarity and are equally weak when measuring the
BM25 and ROUGE similarity. The Jaccard and Levenshtein scores exhibit similar patterns
and variance as the overall score. The greatest factor to overall variance comes from the
word count score, with some models such as Claude 3 performing close to perfect and the
GPT family notably struggling on this metric.

The specific struggles of the GPT family highlight potential limitations in their training
regimes or inherent architectural biases that may not prioritize precise length control as
e↵ectively as models like Claude 3. This likely stems from innovations since their release
and the year of work done between the release of all other models and GPT-4.



27

Chapter 7

Future Steps

Follow-up work to this thesis can explore many distinct and equally important directions.
Augmenting my findings can take the form of developing more sophisticated and e↵ective
text similarity metrics, expanding the USMB framework with a greater number of datasets
and challenging tasks, and exploring new architectural modifications to LLMs to enhance
their performance in semantic elasticity. Equally impactful would be assessing a broader
range of models from classical machine learning on their ability to best combine existing
text similarity metrics into even stronger ensembled measures. One last major follow-up
would entail training a novel embedding model to perform well on the tasks we laid out,
further increasing potential performance gains. The innovation here would mainly lie in
the training methodology, where we could include our superficial and semantically altering
transformations from both the robustness and sensitivity tasks in the model’s training data.
By comparing and contrasting these transformations with the original text, there is high
potential to imbue a stronger sense of semantic similarity into the model’s outputs.

As an additional branch, I hope to delve deeper into the interpretation and impact of text
position within a document’s final embedding vector. While this thesis explored the e↵ect
of placing a variable-sized needle into various document positions, a more robust set of tests
must be created to understand our findings. This can take the form of further analysis of
the e↵ects of sentence removal, shu✏ing, and addition on the document’s embedding vector.
Lastly, we can use the ideas behind our linear similarity metric to quantify each document
component’s e↵ect on the overall vector representation.

Finally, the practical ramifications of this thesis warrant further investigation. Our tests
and findings have implications in information retrieval, data poisoning, model jailbreaking,
and beyond. Future steps should involve utilizing well-known benchmarks in these fields
to evaluate the e↵ects of unclean or poisoned data on information retrieval tasks, the most
significant application of our findings to industrial-scale databases and machine learning
systems. Additionally, our sensitivity results can be applied to assess an attacker’s ability
to corrupt an information retrieval database with misleading and undesirable inputs. Here,
we can explore the ensuing consequences for downstream system usage.
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Chapter 8

Conclusion

In this thesis, we explored and decomposed semantic similarity, a uniquely human concept,
and the ability of existing text similarity metrics to measure this concept. We discovered
that every metric exhibits di↵ering strengths and weaknesses depending on which aspect
of semantic similarity it’s measured on. Using these findings, we developed task-specific
ensembled methods that perform better than a stand-alone metric in every task we set
out, demonstrating the potential to combine classical statistical modeling methods with
modern neural embedding models. We proposed the Unified semantic Similarity Measure
Benchmark (USMB) to rank text similarity metrics on all our proposed measures. Lastly,
we introduced semantic elasticity, a new task encompassing information compression and
expansion, quantifying the ability of existing models on this challenging task.

I hope this thesis catalyzes a greater examination of the text similarity methods used to
perform various tasks involving LLMs. Research has focused heavily on model development,
overlooking performance gains from developing novel semantic similarity measurements. In
addition, I hope that the variety of failures induced by the use of cosine similarity in non-
standard environments puts greater scrutiny on the ubiquitous popularity of this measure in
critical tasks encompassing the vast majority of LLMs in industry settings.
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