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Abstract
Many abstract strategy games have a large number of positions, with a significant fraction of
games loopy in nature. Previous efforts to develop solvers in GamesmanClassic for these loopy
tier games have utilized single-threaded approaches, which does not take advantage of the
parallelism necessary to solve large games. This report provides a comprehensive overview of
the design and development of a parallelized loopy solver for generic tierable games. It
elaborates on the loopy solving algorithm, explores sources of parallelism, addresses
synchronization issues, and details optimizations that enhance the solving process.
Furthermore, it showcases the application of this algorithm in solving Quixo and endgames of
Chinese Chess, demonstrating the effectiveness of our approach.
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Chapter 1: Introduction

GamesCrafters is a computational game theory research and development group founded in
2001 by Teaching Professor Dan Garcia that has involved close to one thousand students since
its founding. The group focuses on strongly solving two-player perfect information abstract
strategy games and presenting the results through various game interfaces. For over 20 years,
the group has completed various projects for solving, analyzing, and playing games under the
GAMESMAN open-source architecture originally developed by Professor Dan Garcia in 1990
[1]. The original code base, which later became part of GamesmanClassic [2], was written in C
and has gone through a series of improvements since 2001 by the members of GamesCrafters.

With the advances in computing technology, solving games with larger state spaces has
become possible. Over the past few years, GamesCrafters have solved some of the biggest
games in the group’s history. Connect 4 was solved by Justin Yokota in 2022 [3]. Nine Men’s
Morris and Quarto were solved by Cameron Cheung in 2022 and 2023 respectively [4]. It is
worth noting that two of the largest games, Quarto and Connect 4, were individually solved
using custom parallel solvers and database systems. Connect 4, which has 4.53 trillion
reachable positions, was solved in under 6 hours using 480 CPU cores (or 960 hyperthreads)
on the Savio cluster. Quarto, which has over 11 quadrillion positions, was solved in 3.51 days
using a single 12-core CPU. Nine Men’s Morris, on the other hand, was solved on a
single-threaded tier solver for loopy games in GamesmanClassic over the period of 9.4 days. To
solve larger loopy games, parallelized loopy tier solvers needed to be created.

The research presented in this report is motivated by the growing need for parallel solvers for
generic two-player games. The report consists of two parts.

The first part focuses on the theoretical background of computational game theory and parallel
computing. In Chapter 2, we define terms that are used throughout this report, and provide the
reader with an overview of the GamesCrafters’ software infrastructure for solving and presenting
games. In Chapter 3, we present the core algorithm that is used to solve a single tier of a loopy
game in parallel. We also provide proof of the correctness of the algorithm and a scaling
efficiency analysis in the same chapter. In Chapter 4, we introduce the tier solving algorithm that
applies the single tier solving algorithm to all tiers in the game in an order that respects tier
dependencies, while allowing multiple tiers to be solved in parallel.

The second part of this report discusses the application of the algorithms in various
game-solving projects. In Chapter 5, we introduce the GamesmanOne parallel solving system
for generic two-player games which utilizes the algorithms discussed in Chapters 3 and 4. In
Chapters 6 and 7, we present the application of the algorithm on solving 6-piece Chinese chess
endgames and the full original game of 5x5 Quixo.
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Chapter 2: Background
In this chapter, we give the background of computational game theory and an overview of the
software infrastructure used by the GamesCrafters Research and Development Group.

2.1 Definitions
Cameron Cheung’s 2023 Technical Report “Techniques for Solving and Visualizing Large
Games” [4] offers comprehensive definitions of many terms that are similarly employed in this
document. Building upon his foundational work, we will only furnish definitions for terms that are
newly introduced in this report. Specifically, we will reuse the following definitions provided in his
report:

● Two-player perfect information abstract strategy games with alternating turns;
● Game as a two-tuple , where is the game graph and is the primitive value(𝐺, 𝑉) 𝐺 𝑉

function;
● Game graph as a weakly connected directed graph with position/vertex set𝐺 = (𝑃, 𝑀) 𝑃

and move/edge set ;𝑀
● Primitive positions as sink vertices in ;𝐺
● Loopy games and loop-free games;
● Child positions and parent positions;
● Value of a position, which can be one of , , , or ;𝑤𝑖𝑛 𝑙𝑜𝑠𝑒 𝑡𝑖𝑒 𝑑𝑟𝑎𝑤
● Value of a move, which can be one of winning, losing, tying, or drawing move;
● Perfect play, or optimal strategy;
● Remoteness of a position;
● Position symmetry and canonical positions;
● Tiers, tier graph, trivial and non-trivial tier definitions, and tier definition validity;
● Trivial tier definitions;
● Child tiers and parent tiers;
● Tierability of a game;
● Tier symmetry and canonical tiers.
● Color convention for position value labeling, where green represents , yellow𝑤𝑖𝑛

represents or , and red represents .𝑡𝑖𝑒 𝑑𝑟𝑎𝑤 𝑙𝑜𝑠𝑒

Here, we underscore the importance of a valid tier definition for the existence of a tier graph,
which must inherently be a directed acyclic graph (DAG). Employing the definition of a game
graph as and its corresponding tier graph , we use the example game graph as𝐺 = (𝑃, 𝑀) 𝐺' 𝐺
shown in Figure 2.1 and its tier graph in Figure 2.2 to illustrate the definitions we give in the𝐺'
following paragraphs.
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Figure 2.1: Example game graph 𝐺 Figure 2.2: Tier graph 𝐺'

We define a reverse game graph as the transpose graph of . We also define a reverse𝐺𝑅 𝐺

position graph of a tier to be a subgraph of that contains only vertices in and child tiers𝑇 𝐺𝑅 𝑇
of , and edges with one of the vertices in as head. Figure 2.3 shows the reverse game graph𝑇 𝑇
of the example game graph , and Figure 2.4 shows the reverse position graph of tier .𝐺 𝑇

1

Figure 2.3: Reverse game graph 𝐺𝑅 Figure 2.4: Reverse position graph of 𝑇
1
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We also define a reverse tier graph as the transpose graph of . An example is shown in𝐺'𝑅 𝐺'
Figure 2.5.

Figure 2.5: Reverse tier graph 𝐺'𝑅

We also define a hash function to be a bijective function with a set of abstract𝑥 ↦ ℎ(𝑥)
elements as its domain and a set of integers as its codomain. is called the hash𝑋 𝐼 ⊂ ℤ ℎ(𝑥)
value or simply hash of element . Therefore, a position hash function is a hash function with𝑥
a set of positions as its domain, and each value is called a hash value of position𝑃 ℎ(𝑝) ∈ 𝐼

. We call the position hash function for game if is the set of all positions in . We𝑝 ∈ 𝑃 ℎ 𝐺 𝑃 𝐺
call the position hash function for a tier if . In this case, we define the size of tierℎ 𝑇 𝑃 = 𝑇 𝑇
as the largest element in plus 1. That is, if the largest element in is , then the size of tier𝐼 𝐼 𝑚 𝑇
is . Unless otherwise specified, all hash functions in this report are position hash functions𝑚 + 1
for tiers. Also, we define a tier hash function as a hash function with a set of tiers as its𝑆
domain and each value is called a hash value of tier .ℎ(𝑇) ∈ 𝐼 𝑇 ∈ 𝑆

For a game , a strong solve of the game is the discovery and storage of the value and(𝐺, 𝑉)
remoteness of each position . The software used to carry out the solving process is called𝑝 ∈ 𝑃
a solver. The ensemble of values and remotenesses of all positions is called the results (or
outcome) of the solver. The solver results are typically stored in memory while the game is
being solved and flushed to disk once the solving process is complete. The data structure that is
used to store the positions in memory is called the in-memory database, and the files that are
created as copies of the solver results are called the database for the game. One commonly
used data structure for the in-memory database of tier is an array of length equal to the size of𝑇
. The array is then compressed into database files and flushed to disk. We call this database𝑇

an array database, and the in-memory database the solver outcome array. All database
implementations discussed in this report are array databases unless otherwise specified.

If the game contains symmetric positions, the solver can reduce the amount of computation
needed to solve the game by exploring only the canonical positions. We define the process of
excluding non-canonical positions when solving the game as position symmetry removal. For
an array database implementation, there are two models to achieve position symmetry removal:
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Write-Once-Read-Many (WORM), and Read-Once-Write-Many (ROWM). In the WORM
model, values and remotenesses are assigned only to the canonical positions, and spaces
reserved for non-canonical positions remain all zeros, assuming they are zero initialized at the
beginning of the solving process. The WORM model usually benefits database compression
because it replaces seemingly random data with consecutive chunks of zero in all spaces
reserved for all non-canonical positions. However, it comes at the cost of a slightly increased
database access time because all positions must be converted to the canonical version before it
is queried from the database. Figure 2.6 shows an example of first writing “win in 3” to the 0-th
index of an array database and then reading indices 0 and 2 from the same database under the
WORM model, assuming the positions that correspond to indices 0, 2, 4, and 6 are symmetric
and 0 is the canonical position. Note that the entries at the non-canonical indices 2, 4, and 6
remain unchanged when W3 is written to index 0, and how the read at index 2 is redirected to
index 0 using the Canonical function.

Figure 2.6: Writing to and reading from a database under the WORM model

On the other hand, an implementation that follows the ROWM model assigns values and
remotenesses to all positions in the game. When a canonical position is solved, a ROWM
database first generates all positions that are symmetric to the solved position, and then assign
the same value and remoteness to all of them. Figure 2.7 shows the same example operations
under the ROWM model. Note how the value written to position 0 is propagated to symmetric
positions 2, 4, and 6.
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Figure 2.7: Writing to and reading from a database under the ROWM model

For most games, the WORM model gives much smaller database sizes with an acceptable
overhead. Therefore, all databases mentioned in this report use the WORM model for symmetry
removal.

We similarly define the process of excluding non-canonical tiers when solving a game as tier
symmetry removal. When excluding the same number of positions from the array database,
tier symmetry removal usually results in a greater reduction of the aggregate database size than
position symmetry removal. This is because with tier symmetry removal, non-canonical tiers are
completely ignored, whereas space is still reserved in the array for non-canonical positions in
position symmetry removal.

2.2 Combinatorially Optimal Hash
The database that we use throughout this report is the array database. For this type of
database, the solver outcome array has an memory footprint, where is the largest𝑂(𝑚) 𝑚
defined hash value of any position in a tier. Ideally, we would have . In this case, the𝑚 = |𝐼|
hash function is called a perfect hash function. However, it is usually difficult, if at allℎ
possible, to come up with a perfect hash function. This is often due to the difficulty of filtering out
unreachable positions from the hash definition without actually solving the game. For some
board games with a constant-sized board and fixed sets of pieces, there exists an approach that
balances the size of the solver outcome array and the difficulty of defining the hash function. In
this approach, we consider the number of each type of piece on the board and map each
possible rearrangement of pieces on the board to a unique integer from 0 to the number of
rearrangements minus 1. A hash function generated with this approach is called a
combinatorially optimal hash function. In this section, we discuss a way to automatically
generate a combinatorially optimal hash function given information about the game.

Suppose we have the following knowledge of the board game:
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● The size of the board is board_size.
● The game has types of pieces, with blank slots included as a special type of “piece”.𝑘
● For each type of piece where , the minimum number of pieces on the𝑝

𝑖
𝑖 ∈ [0, 𝑘) 𝑝

𝑖

board is , and the maximum number is .𝑎
𝑖

𝑏
𝑖

Then, we can follow the following steps to come up with a combinatorially optimal hash function:
1. Define a valid piece configuration as an assignment to the number of pieces of each

type that respects the minimum and maximum numbers of each type of piece and the
size of the board. Enumerate all valid piece configurations and sort them in any fixed
order.

2. For each valid piece configuration:
a. Calculate the number of piece rearrangements on the board.𝑁
b. Set the offset of the piece configuration as plus the number of all piece𝑁

rearrangements from configurations that are in front of the current configuration
in the sorted list.

3. The hash function is then defined by mapping each position to an integer value equal to
the offset of the piece configuration that the position observes plus the index of the piece
rearrangement within that piece configuration. The indices of piece rearrangements in a
configuration is defined by first sorting all rearrangements in some fixed order and then
assigning each one to an integer between 0 and the number of rearrangements in that
configuration minus 1.

This approach was first proposed by Professor Dan Garcia and implemented by Attila Gyulassy
in GamesmanClassic as a specialized version that supports only 3 types of pieces. The
algorithm was later generalized to an arbitrary number of types of pieces and implemented as
the Generic Hash module of GamesmanClassic by Michel D’Sa. A more generalized version
that supports multiple different maximum/minimum piece number definitions for tier games was
later implemented by Scott Lindeneau. The module was recreated and further optimized in
GamesmanOne, which is discussed in Chapter 5 of this report.

2.3 GamesCrafters Projects and Infrastructure
Figure 2.8 shows the interconnections between the various servers used by GamesCrafters.

Figure 2.8: GamesCrafters servers
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GamesmanUni is a single-page web application that allows users to explore games and
puzzles solved in GamesCrafters. The application uses data fetched from the backend to render
positions and provide values and remotenesses. In between GamesmanUni and the backend is
a middleware called the GamesCraftersUWAPI server, where UWAPI stands for Universal Web
API. It is an HTTP server written in Python that provides standard API calls used by
GamesmanUni. The server contains hard-coded instructions on how to make API calls to
backend servers and information on GUI layout for all games and puzzles. UWAPI is a separate
server independent of GamesmanUni and publicly accessible. This means that people can
make their own application by making API calls to the UWAPI server.

GamesmanOne is a new system created in this study. It is a parallel C solver and game
generator system inspired by GamesmanClassic. The system is currently implemented with a
special focus on solving tierable loopy games. However, the system is designed with
extensibility in mind and has the ability to incorporate other types of solvers in the future. The
system is also studied as an application of the parallel algorithms discussed in this report. A
detailed description of the GamesmanOne system is provided in Chapter 5 of this report.
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Chapter 3: The Single-Tier Loopy Solving Algorithm

In this chapter, we present the algorithm that is used to solve one tier from a game. The
algorithm makes no assumption on the game graph and therefore can be applied to both loopy
and loop-free games. For single-tier games, applying this algorithm on the only tier solves the
entire game. For games with a valid non-trivial tier definition, we can apply the algorithm to all
tiers in any topological order of the reverse tier graph. The algorithm for tier solving is covered in
Chapter 4.

The original loopy solving algorithm was designed to solve single-tier games only and was
proposed and implemented by Professor Dan Garcia as part of GamesmanClassic [2]. The
algorithm was later improved and adapted to various different solvers by members of
GamesCrafters. The algorithm presented in this chapter is an optimized version of the algorithm
implemented by Max Delgadillo for the GamesmanClassic retrograde tier solver in 2006 [5].

The parallelized version of the algorithm described in this chapter is implemented as part of the
Tier Solver module of GamesmanOne [6].

3.1 Algorithm
The algorithm presented in this section solves a loopy tier under the following assumptions:𝑇

1. All child tiers of have been solved.𝑇
2. The maximum remoteness of the game is no more than REMOTENESS_MAX, a value that

is defined at compile time. Currently, this value is set to 1023. This assumption is safe to
make if an error is reported when a position with remoteness greater than
REMOTENESS_MAX is discovered. When it happens, the solver should be reconfigured
with a larger REMOTENESS_MAX value. The value 1023 is empirically determined and is
a valid assumption for all games that have been solved in the GamesCrafters group.1

We define a position as an illegal position if cannot be reached from the initial position of𝑝 𝑝
the game via a sequence of allowable moves. Recall from Section 2.1 that the position hash
function is usually not perfect. This implies that many hash values reserved in the in-memory
database are mapped to illegal positions. The solver is allowed to assign arbitrary values and
remotenesses to illegal positions, because these positions are never encountered in normal
play and therefore never queried from the database.

The following input is provided to the algorithm:
● : the size of tier .𝑛 𝑇
● IsLegalPosition( , ): a function that performs a weak test on the legality of a position𝑇 𝑝

in tier . It is a weak test because it may return false positives. If is a legal position in𝑝 𝑇 𝑝

1 The highest remoteness discovered by GamesCrafters so far is 264, which was found in the endgames
of Chinese chess.
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tier , the function always returns true. However, if is an illegal position in , the𝑇 𝑝 𝑇
function may return true or false. This function is only for optimization purposes and is
not meant to provide accurate legality of positions.

● Value( , ): a function that takes in a position in child tier , and returns the solved𝐶
𝑖

𝑝 𝑝 𝐶
𝑖

value of . If is an illegal position in , the function returns an arbitrary value.𝑝 𝑝 𝐶
𝑖

● Remoteness( , ): a function that takes in a position in child tier , and returns the𝐶
𝑖

𝑝 𝑝 𝐶
𝑖

solved remoteness of . If is an illegal position in , the function returns an arbitrary𝑝 𝑝 𝐶
𝑖

remoteness.
● Primitive( , ): a function that takes in a tier and a position inside , and returns𝑇 𝑝 𝑇 𝑝 𝑇

the value of position if is a primitive position, or if is not a primitive𝑝 𝑝 𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 𝑝
position.

● GetChildPositions( , ): a function that takes in a tier and a position inside , and𝑇 𝑝 𝑇 𝑝 𝑇
returns an array of ( , ) tuples.𝑐ℎ𝑖𝑙𝑑_𝑡𝑖𝑒𝑟 𝑐ℎ𝑖𝑙𝑑_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

● GetParentPositions( , , ): a function that returns an𝑐ℎ𝑖𝑙𝑑_𝑡𝑖𝑒𝑟 𝑐ℎ𝑖𝑙𝑑_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑒𝑛𝑡_𝑡𝑖𝑒𝑟
array of parent positions of ( , ) in .𝑐ℎ𝑖𝑙𝑑_𝑡𝑖𝑒𝑟 𝑐ℎ𝑖𝑙𝑑_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑒𝑛𝑡_𝑡𝑖𝑒𝑟

We make the following definitions:
1. Let { , , … } be the set of child tiers of , where .𝐶

0
𝐶

1
𝐶

𝑚−1
𝑇 𝑚 ≥ 0

2. Let the size of be , where .𝐶
𝑖

𝑛
𝑖

0 ≤ 𝑖 ≤ 𝑚

We also initialize the following data structures:
● Let be a value array of size storing the values of all positions in . is part of the𝑉 𝑛 𝑇 𝑉

in-memory database.
● Let be an unsigned integer array of size storing the remotenesses of all positions in𝑅 𝑛

. is also part of the in-memory database.𝑇 𝑅
● Let num_undecided_children be an array of unsigned integers of length storing the𝑛

number of children of each position in .𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 𝑇
● Let , , and be three 2D arrays called the winning, losing, and tying frontiers𝐹

𝑤𝑖𝑛
𝐹

𝑙𝑜𝑠𝑒
𝐹

𝑡𝑖𝑒

respectively. The first dimension of these 2D arrays is set to REMOTENESS_MAX and the
second dimension is dynamically adjusted during the execution. The frontiers are used
to temporarily hold positions that are solved but not yet used to update the status of their
parents.

The output of the algorithm is stored in the arrays and . The algorithm for solving a single𝑉 𝑅
loopy tier can be summarized as follows:

Algorithm 1: Algorithm for Solving a Single Loopy Tier
1: Load all winning, losing, and tying positions from all child tiers into the corresponding

frontiers.
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2: Scan tier for illegal positions as defined by the IsLegalPosition function, and set𝑇
their number of undecided children to .0

3: Scan tier for the number of children of each legal position, and set the corresponding𝑇
values in the num_undecided_children array.

4: Scan tier for all primitive winning, losing, and tying positions and load them into the𝑇
corresponding frontiers at remoteness .0

5: Process [remoteness] and [remoteness] for each possible remoteness from 0 to𝐹
𝑙𝑜𝑠𝑒

𝐹
𝑤𝑖𝑛

REMOTENESS_MAX.
6: Process [remoteness] for each possible remoteness from 0 to REMOTENESS_MAX.𝐹

𝑡𝑖𝑒

7: Mark all positions that still have a positive number of undecided children as drawing.
8: Flush and to disk.𝑉 𝑅

The algorithm above can be subdivided into 5 steps:
1. Load positions from child tiers (line 1).
2. Scan tier (lines 2-4).
3. Push the frontiers up using backward induction (lines 5-6).
4. Mark all drawing positions (line 7).
5. Save solver results (line 8).

Each of the first 4 steps is described below as an algorithm.

Algorithm 1.1: Algorithm for Loading Positions from Child Tiers
1: for to do // for each child tier𝑖 = 0 𝑚 − 1
2: for to do // for each position in child tier𝑝 = 0 𝑛

𝑖
− 1 𝑖

3: if Value( , ) == then𝐶
𝑖

𝑝 𝑤𝑖𝑛

4: Push ( , ) into [Remoteness( , )].𝐶
𝑖

𝑝 𝐹
𝑤𝑖𝑛

𝐶
𝑖

𝑝

5: else if Value( , ) == then𝐶
𝑖

𝑝 𝑙𝑜𝑠𝑒

6: Push ( , ) into [Remoteness( , )].𝐶
𝑖

𝑝 𝐹
𝑙𝑜𝑠𝑒

𝐶
𝑖

𝑝

7: else if Value( , ) == then𝐶
𝑖

𝑝 𝑡𝑖𝑒

8: Push ( , ) into [Remoteness( , )].𝐶
𝑖

𝑝 𝐹
𝑡𝑖𝑒

𝐶
𝑖

𝑝

9: end if
10: end for
11: end for
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Algorithm 1.2: Algorithm for Scanning a Tier
1: for to do // for each position in the tier we are solving𝑝 = 0 𝑛 − 1 𝑝
2: . // initialize the value of to .𝑉[𝑝] ← 𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 𝑝 𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑
3: if NOT IsLegalPosition( ) then𝑇, 𝑝
4: num_undecided_children . // ensure illegal positions are skipped.[𝑝] ← 0
5: continue
6: end if
7: Let children GetChildPositions( , )← 𝑇 𝑝
8: num_undecided_children children.size.[𝑝] ←
9: if Primitive( , ) == then𝑇 𝑝 𝑤𝑖𝑛
10: .𝑉[𝑝] ← 𝑤𝑖𝑛
11: .𝑅[𝑝] ← 0
12: Push ( , ) into [0].𝑇 𝑝 𝐹

𝑤𝑖𝑛

13: else if Primitive( , ) == then𝑇 𝑝 𝑙𝑜𝑠𝑒
14: .𝑉[𝑝] ← 𝑙𝑜𝑠𝑒
15: .𝑅[𝑝] ← 0
16: Push ( , ) into [0].𝑇 𝑝 𝐹

𝑙𝑜𝑠𝑒

17: else if Primitive( , ) == then𝑇 𝑝 𝑡𝑖𝑒
18: .𝑉[𝑝] ← 𝑡𝑖𝑒
19: .𝑅[𝑝] ← 0
20: Push ( , ) into [0].𝑇 𝑝 𝐹

𝑡𝑖𝑒

21: end if
22: end for

Algorithm 1.3: Algorithm for Pushing the Frontiers Up
1: for to REMOTENESS_MAX do // for each possible remoteness𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠 = 0
2: for each position ( , ) in [ ] do // for each position of in𝑇' 𝑝' 𝐹

𝑙𝑜𝑠𝑒
𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠 𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠

the losing frontier
3: for each parent position in GetParentPositions( , , ) do𝑝 𝑇' 𝑝' 𝑇'
4: if num_undecided_children[ ] then // if the position has not been closed𝑝 > 0
5: num_undecided_children[ ]𝑝 ← 0
6: .𝑉[𝑝] ← 𝑤𝑖𝑛
7: .𝑅[𝑝] ← 𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠 + 1
8: Push ( , ) into .𝑇 𝑝 𝐹

𝑤𝑖𝑛
[𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠 + 1]

9: end if // otherwise, skip the position because it has been solved or is illegal.
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10: end for
11: end for
12: for each position ( , ) in do // for each position of in𝑇' 𝑝' 𝐹

𝑤𝑖𝑛
[𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠] 𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠

the winning frontier
13: for each parent position in GetParentPositions( , , ) do𝑝 𝑇' 𝑝' 𝑇
14: if num_undecided_children[ ] then // if the position has not been closed𝑝 > 0
15: num_undecided_children[ ] num_undecided_children[ ]𝑝 ← 𝑝 − 1
16: if num_undecided_children[ ] then𝑝 == 0
17: .𝑉[𝑝] ← 𝑙𝑜𝑠𝑒
18: .𝑅[𝑝] ← 𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠 + 1
19: Push ( , ) into .𝑇 𝑝 𝐹

𝑙𝑜𝑠𝑒
[𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠]

20: end if
21: end if
22: end for
23: end for
24: end for
25: for to REMOTENESS_MAX do // process tying positions in a similar way.𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠 = 0
26: for each position ( , ) in [ ] do𝑇' 𝑝' 𝐹

𝑡𝑖𝑒
𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠

27: for each parent position in GetParentPositions( , , ) do𝑝 𝑇' 𝑝' 𝑇
28: if num_undecided_children[ ] then𝑝 > 0
29: num_undecided_children[ ]𝑝 ← 0
30: .𝑉[𝑝] ← 𝑡𝑖𝑒
31: .𝑅[𝑝] ← 𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠 + 1
32: Push ( , ) into .𝑇 𝑝 𝐹

𝑡𝑖𝑒
[𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠 + 1]

33: end if
34: end for
35: end for
36: end for

Algorithm 1.4: Algorithm for Marking Drawing Positions
1: for to do // for each position in the tier we are solving𝑝 = 0 𝑛 − 1 𝑝
2: if num_undecided_children[ ] then𝑝 > 0
3: .𝑉[𝑝] ← 𝑑𝑟𝑎𝑤
4: end if
5: end for
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Note that in Algorithm 1.3, there exists an alternative approach that does not rely on the
assumption of the validity of REMOTENESS_MAX, which is to keep iterating until we have

a. reached remoteness at least the maximum remoteness observed from any solved child
tier positions, and

b. finished an iteration in which no new positions were pushed into the frontier.
This approach may potentially speed up the algorithm by eliminating the need to loop through
the unused remotenesses and the proof of its correctness is similar to the one we give in
Section 3.2 later. However, we did not adopt this approach to keep the implementation simple.
Empirical tests also suggest that looping through 1023 frontiers corresponding to each
remoteness takes less than a second to complete, which is negligible compared to the amount
of time spent solving positions of each remoteness level.

Also note that in Algorithm 1.4, we did not specify the value assigned to . This is because𝑅[𝑝]
drawing positions implicitly have infinite remoteness and is ignored when we query the𝑅[𝑝]
database on position . In practice, is set to zero for all drawing positions to improve𝑝 𝑅[𝑝]
compressibility of the database.

Figures 3.1.1 through 3.1.10 simulates using Algorithm 1 to solve a loopy tier. The counter array
for undecided children and output arrays and are omitted for simplicity. Instead, we label the𝑉 𝑅
assignments of value and remoteness directly on the vertices to indicate positions that are
solved. The values of positions and moves are represented using colors as defined in Section
2.1, and remotenesses are directly labeled as integers on top of the vertices. The execution is
divided into 10 steps, where each step explores one remoteness level of winning and losing
positions (Lines 1-24 of Algorithm 1.3), tying positions (Lines 25-36 of Algorithm 1.3), or drawing
positions (Algorithm 1.4). Note that the values of moves (edges) are labeled as they are
explored.
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Figure 3.1.1: Initial state with all primitive
positions scanned.

Figure 3.1.2: State after processing all winning
and losing positions of remoteness 0

Figure 3.1.3: State after processing all winning
and losing positions of remoteness 1

Figure 3.1.4: State after processing all winning
and losing positions of remoteness 2
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Figure 3.1.5: State after processing all winning
and losing positions of remoteness 3

Figure 3.1.6: State after processing all winning
and losing positions of remoteness 4

Figure 3.1.7: State after processing all tying
positions of remoteness 0

Figure 3.1.8: State after processing all tying
positions of remoteness 1
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Figure 3.1.9: State after processing all tying
positions of remoteness 2

Figure 3.1.10: State after assigning all
remaining positions to draws

3.2 Proof of the Loopy Solving Algorithm
To prove that the algorithm can be used to solve any tier of a loopy game, we need to show that

a. the algorithm terminates in a finite number of steps, and
b. the algorithm outputs the correct assignments of values and remotenesses to all

positions in . This includes𝑇
i. the assignment of values and remotenesses to all winning and losing positions,
ii. the assignment of values and remotenesses to all tying positions, and
iii. the assignment of values to all drawing positions.

Proof of Part a
All loops in Algorithms 1.1, 1.2, and 1.4 have a finite number of iterations and will therefore
terminate.

To see that Algorithm 1.3 terminates, notice that num_undecided_children[ ] is always set to 0 at𝑝
the same time when position enters one of the frontiers. Furthermore, for all in ,𝑝 𝑝 𝑇
num_undecided_children[ ] never increases throughout Algorithm 1.3. Therefore, by validating𝑝
that num_undecided_children[ ] > 0 on lines 4, 12, and 24, each in is guaranteed to enter𝑝 𝑝 𝑇
one of the frontiers no more than once. All other loops have a finite number of iterations and
therefore terminate. □

Proof of Part b
Proof of the Correctness of Illegal Position Handling
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Recall that the algorithm accepts an input function IsLegalPosition, which performs a weak
test on the legality of positions. We first need to show that the existence of illegal positions in the
solve process does not affect the outcome of legal positions.

By definition, illegal positions are not reachable from the initial position. In other words, all child
positions of any legal position are legal positions. This implies that all parent positions of any
illegal position must be illegal. Therefore, the assignment of arbitrary values and remotenesses
to illegal positions is guaranteed not to affect the outcome of legal positions because no legal
parent positions are generated on lines 3, 13, and 27 of Algorithm 1.3.

Proof of Part b (i)
We prove the correctness value and remoteness assignments using induction. Let be𝑟
remoteness, and be the maximum remoteness of any winning or losing position in tier .𝑟

𝑚𝑎𝑥
𝑇

Proving the original statement is equivalent to showing that, for all possible in and all𝑟 [0, 𝑟
𝑚𝑎𝑥

]

winning or losing position that has remoteness in , the algorithm assigns to and𝑝 𝑟 𝑇 𝑅[𝑝] 𝑟 𝑉[𝑝]
to , where is the actual value of .𝑣 𝑣 𝑝

Base case: For all winning or losing position of remoteness , the correctness of𝑝 𝑟 = 0
is guaranteed by the Primitive function, and is guaranteed by𝑉[𝑝] = 𝑣 𝑅[𝑝] = 𝑟 = 0

Algorithm 1.2.

Induction hypothesis: Assume the statement holds for all in , where .𝑟 [0, 𝑘] 𝑘 ≥ 0

Inductive step: We want to show that the statement holds for any winning or losing position of𝑝
remoteness .𝑟 = 𝑘 + 1

We first consider winning positions of remoteness . Let be any winning position of𝑘 + 1 𝑝
remoteness . By definition, must have at least one losing child position of remoteness .𝑘 + 1 𝑝 𝑘
Without loss of generality, let be the first one of them in the losing frontier on line 2 of𝑝'
Algorithm 1.3. Also by definition of a winning position, may have winning, tying, or drawing𝑝
child positions, or more than one losing child position of remoteness , but it must not have any𝑘
losing child position of remoteness less than .𝑘

Since in Algorithm 1.3, all tying and drawing positions are not processed until all winning and
losing positions are, the tying and drawing child positions of could not have affected the𝑝
assignment of and . Furthermore, the winning child positions of may have reduced𝑉[𝑝] 𝑅[𝑝] 𝑝
the number of undecided children of by 1. However, they could not have reduced𝑝
num_undecided_children[ ] to 0 because of the existence of and therefore could not have𝑝 𝑝'
affected the assignment of and either. Since Algorithm 1.3 processes positions of𝑉[𝑝] 𝑅[𝑝]
smaller remotenesses first (as seen from line 1), no losing child positions of could have been𝑝
processed when . Therefore, they could not have affected the assignment of𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠 = 𝑘

and . Finally, when , the induction hypothesis and lines 2-7 of𝑉[𝑝] 𝑅[𝑝] 𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠 = 𝑘
Algorithm 1.3 guarantee the correct assignment of and when is𝑉[𝑝] = 𝑙𝑜𝑠𝑒 𝑅[𝑝] = 𝑘 + 1 𝑝'
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processed from the losing frontier. Line 5 guarantees that the assignments to and are𝑉[𝑝] 𝑅[𝑝]
never modified again throughout the execution of Algorithm 1.

Then, we consider all losing positions of remoteness . Let be any losing position of𝑘 + 1 𝑝
remoteness . By definition, has at least one winning child position of remoteness .𝑘 + 1 𝑝 𝑘
Furthermore, can only have winning child positions of remoteness at most k. By the induction𝑝
hypothesis, all of these child positions must have been processed by lines 12-15 of Algorithm
1.3. Since num_undecided_children[ ] is reduced to 0 only when the last winning child position of𝑝
remoteness is processed, is set to lose and is set to on line 16 of Algorithm𝑘 𝑉[𝑝] 𝑅[𝑝] 𝑘 + 1
1.3. num_undecided_children[ ] = 0 guarantees that these assignments are never modified𝑝
again. □

Proof of Part b (ii)
The proof of correctness for part b (ii) is similarly done using induction as in the previous proof
for part b (i).

Base case: For all tying position of remoteness , the correctness of is𝑝 𝑟 = 0 𝑉[𝑝] = 𝑣
guaranteed by the Primitive function, and is guaranteed by Algorithm 1.2.𝑅[𝑝] = 𝑟 = 0

Induction hypothesis: Assume the statement holds for all in , where .𝑟 [0, 𝑘] 𝑘 ≥ 0

Inductive step: We want to show that the statement holds for all tying position of remoteness𝑝
. By definition of a tying position, must have at least one tying child position of𝑟 = 𝑘 + 1 𝑝

remoteness and may also have winning child positions and other tying child positions of𝑘
remotenesses greater than . The processing of all winning child positions of could not have𝑘 𝑝
assigned values to or because num_undecided_children[ ] is still greater than 0. On𝑉[𝑝] 𝑅[𝑝] 𝑝
the other hand, all tying child positions of remotenesses greater than have not been𝑘
processed when on line 25 of Algorithm 1.3. Therefore, the inductive𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠 = 𝑘
hypothesis and lines 26-31 of Algorithm 1.3 guarantees that is set to tie and is set to𝑉[𝑝] 𝑅[𝑝]

when the first tying child position of is processed from the tying frontier. Line 29𝑘 + 1 𝑝' 𝑝
guarantees that the above assignments to and are never modified again later.𝑉[𝑝] 𝑅[𝑝]

Proof of Part b (iii)
Since all winning, losing, and tying positions are correctly solved, the remaining legal positions
must be all drawing positions. Lines 1-3 of Algorithm 1.4 guarantees that for all𝑉[𝑝] = 𝑑𝑟𝑎𝑤 𝑝
that are not winning, losing, or tying. Since the remoteness of drawing positions is infinite, there
is no need to explicitly assign the values of for these positions. □𝑅[𝑝]
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3.3 Parallelization

3.3.1 Shared Memory Parallelization
The iterations of many loops in Algorithm 1 can be executed in an arbitrary order, making the
loops sources of parallelism.

The for loop on line 2 of Algorithm 1.1 can be parallelized by assigning different iterations to
different threads because the processing of positions inside each frontier does not need to
follow a particular order. Note that line 1 of Algorithm 1.1 can also be parallelized if we were to
implement the algorithm as given. However, further optimization (see Section 3.5.1) requires a
modification to the frontier structure and that the child tiers be processed in a fixed order.
Therefore, we omit the parallelization of the loop on line 1 of Algorithm 1.1.

The for loop on line 1 of Algorithm 1.2 can be parallelized by assigning different iterations to
different threads because we are writing to distinct locations of the , , and𝑉 𝑅
num_undecided_childen arrays indexed by .𝑝

Lines 2, 12, and 26 of Algorithm 1.3 can be parallelized because the proof in Section 3.2 still
holds even if the positions within each frontier are processed in an arbitrary order. The
correctness of the algorithm holds as long as the frontiers are processed in increasing
remoteness order, and the losing and winning frontiers are processed before the tying frontier.

Line 1 of Algorithm 1.4 can be parallelized in a similar way as line 1 of Algorithm 1.2.

3.3.2 Distributed Memory Parallelization
Algorithm 1 requires a shared memory space to store the values (array ) and𝑂(𝑛) 𝑉
remotenesses (array ) of all positions in the tier that is currently being solved. Since the𝑅
algorithm is applied to generic games, the access pattern of the above arrays is
game-dependent and random in the worst case. Therefore, parallelizing using distributed
memory machines may require very careful implementation of complex algorithms. Although we
have not attempted to implement such an algorithm, the algorithm may potentially allow us to
overcome the limitations imposed by the memory capacity of a single machine and solve larger
tiers. It is therefore left here as a future work.

3.4 Synchronizations
In shared memory parallel programs, threads communicate by accessing a shared memory
space. Synchronization is therefore critical to the correctness and performance of such a
program. Ideally, we want threads to communicate with each other as infrequently as possible to
minimize the communication overhead. This can be achieved by creating local copies of data
structures for each thread and delaying the gathering of results to the end of each parallel
section. However, data structures such as the output arrays and , and the undecided child𝑉 𝑅
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position counter array num_undecided_children grow linearly with the size of the tier and𝑇
therefore cannot be duplicated in a memory-efficient way. This section focuses on the
synchronization techniques employed in the implementation of Algorithm 1 to ensure
correctness and optimal performance.

3.4.1 Atomic Integers
The parallelization of Algorithm 1.2 and 1.4 described in Section 3.3.1 guarantees no race
condition on the num_undecided_children array because each position in T is processed by𝑝
exactly one thread. However, more than one thread in the parallelized version of Algorithm 1.3
may write to the same index of the num_undecided_children array at the same time. As an
example, consider the case where two threads and are processing positions ( , ) and (𝑡

1
𝑡

2
𝑇

1
' 𝑝

1
'

, ) respectively on line 12 of Algorithm 1.3 at the same time. If the two positions happen to𝑇
2
' 𝑝

2
'

share the same parent position in tier , the two threads may try to decrement𝑝 𝑇
num_undecided_children[ ] at the same time, hence creating a race condition. Therefore, we𝑝
need to make sure that all accesses to the num_undecided_children array are atomic.

In GamesmanOne, which is discussed in detail in Chapter 5, the synchronization on the
num_undecided_children array is achieved using the atomic operations library of C under the
C17 standard [7]. The num_undecided_children array is declared as an atomic_uchar array of
length . The atomic_uchar type is an alias for _Atomic unsigned char, which behaves just𝑛
like an unsigned char in C but allows atomic operations through functions in the
<stdatomic.h> library.

Lines 4-5 and 28-29 of Algorithm 1.3 are implemented as

1: unsigned char child_remaining =

atomic_exchange_explicit(&num_undecided_children[parents.array[i]],

0, memory_order_relaxed);

2: if (child_remaining == 0) continue;

The first line atomically extracts the value stored in num_undecided_children[parents.array[i]]
and replaces it with 0. If the value was 0 before it was swapped out, the parent position must
have been solved already and is therefore skipped.

Lines 14-21 of Algorithm 1.3 are implemented as

1: unsigned char child_remaining =

DecrementIfNonZero(&num_undecided_children[parents.array[i]]);

2: if (child_remaining == 1) {

3: // Process p...

4: }

where DecrementIfNonZero is defined as follows:
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1: static unsigned char DecrementIfNonZero(atomic_uchar *obj) {

2: unsigned char current_value = atomic_load_explicit(obj, memory_order_relaxed);

3: while (current_value != 0) {

4: bool success = atomic_compare_exchange_strong_explicit(

obj, &current_value, current_value - 1, memory_order_relaxed,

memory_order_relaxed);

5: if (success) return current_value;

6: }

7: return 0;

8: }

We first need to make sure that each losing position is pushed into the losing frontier only once.
This is ensured by the DecrementIfNonZero function, which atomically decrements
num_undecided_children[parents.array[i]] and returns its original value if it was greater than 0, or
does nothing and returns 0 otherwise.

To achieve the desired behavior of DecrementIfNonZero, we first atomically load the value and
then test if the value is non-zero. If the value we loaded is 0, we return 0 immediately.
Otherwise, we repeatedly attempt to exchange the value of obj with the value we previously
held (stored as current_value) minus 1. The atomic_compare_exchange_strong_explicit function
first tests if the value in obj is still equal to current_value. If so, we claim that the exchange is
safe to be carried out because current_value is still valid and current_value - 1 is the new value
we want obj to have. In this case, the success flag is set to true, and we return the previous value
of obj. If, for example, another thread modified the value of obj before the exchange operation,
the test will fail and false will be stored in the success flag. In this case,
atomic_compare_exchange_strong_explicit updates current_value to the new value of obj and the
test and exchange process is repeated until obj is successfully updated or becomes 0.

3.4.2 Thread-Local Frontiers
Algorithm 1 describes an approach using 3 global arrays , , and (called the frontiers)𝐹

𝑤𝑖𝑛
𝐹

𝑙𝑜𝑠𝑒
𝐹

𝑡𝑖𝑒

to store the positions that are solved but not yet processed. This approach is logically correct
but requires explicit synchronization of all “push” operations in Algorithms 1.2 and 1.3 because
multiple threads may be pushing new positions into the same frontier at the same time.

We proved in Section 3.2 that the algorithm does not rely on the order in which the positions of
the same remoteness are pushed into the frontiers. Therefore, we come up with the following
new design for the frontiers:

● Let num_threads be the maximum number of threads used to process any parallel
section in the algorithm.

● Redefine , , and to be three 3D arrays. The first dimension of these 3D𝐹
𝑤𝑖𝑛

𝐹
𝑙𝑜𝑠𝑒

𝐹
𝑡𝑖𝑒

arrays is set to num_threads, which is determined at runtime. The second dimension and
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the third dimensions are set to REMOTENESS_MAX and dynamically expanding
respectively, as in the original design.

With the new design of the frontiers, each thread only pushes new positions into the frontiers
that are reserved for it. For example, the thread with thread ID equal to 3 would push a new
lose-in-4 position into .𝐹

𝑙𝑜𝑠𝑒
[3][4]

To read positions inside each frontier as we previously did on lines 2, 12, and 26 of Algorithm
1.3, we now need to read from all frontiers for all threads. Some additional steps would also be
required to evenly redistribute the positions in all frontier arrays for each thread. However, the
implementation of these steps is not logically complicated. With the new design, we effectively
avoided communication and synchronization between threads while positions are processed
from the frontiers, hence improving the performance of parallel execution.

3.4.3 Synchronizing Access to Solver Outcome Arrays
In Algorithm 1, we abstracted away the implementation complexity of the arrays storing the
solver outcomes and simply referred to them as two arrays and . However, the actual𝑉 𝑅
implementation of such arrays depends on the implementation of the in-memory database.

A simple yet memory-expensive implementation of an in-memory database is to store the and𝑉
as integer arrays. This approach is time-efficient as it requires no explicit synchronization for𝑅

in-memory database accesses throughout the entire execution of Algorithm 1. This is because
each position is guaranteed to have its value and remoteness assigned no more than once in
Algorithm 1, and the values are never read from the in-memory database during the execution.

GamesmanOne employs a more optimized in-memory database implementation, which involves
bit-level operations and maintaining a look-up table for all value-remoteness pairs that have
appeared during the solving process. Since the value and remoteness records of each position
are not stored in a byte-aligned fashion, the writing of one record may create a race condition
with another access to a neighboring position in the in-memory database. The current
implementation serializes all in-memory database operations using a single OpenMP lock.

3.5 Optimizations

3.5.1 Frontier Storage Optimization
In Algorithm 1, we described the frontiers as storing ( , ) tuples. For each position pushed into𝑇 𝑝
the frontiers, this approach requires us to store the hash value of the tier that the position is
associated with. In actual implementation, the hash of each tier is stored as a 64-bit integer, as
is the hash of a position.
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However, we observe that the positions in each child tier of are pushed into the frontiers in𝐶
𝑖

𝑇

increasing order in Algorithm 1.1. This implies that the positions from each child tier are in𝑖
consecutive chunks in each frontier. As we move on to the following subparts of the algorithm,
all new positions pushed into the frontiers are from tier . This suggests that if we know the𝑇
number of positions pushed into the frontiers from each child tier, we can infer the tier of a
position from its index. This allows us to store only the positions inside each frontier, reducing
the memory usage by half.

3.5.2 The GetParentPositions Function
We abstracted away the implementation of the GetParentPositions function and simply
referred to it as an input to Algorithm 1. In reality, this function needs to be generated at runtime
using other functions that encode the rules of the game or implemented by the game developer
according to the rules of the game.

The first way we can obtain this function is to dynamically generate it at runtime by constructing
a reverse position graph of the tier we are solving. The advantage of this approach is that it
shifts the logical burden away from the game developers as they now only need to implement
logic for moves in the forward direction, which are typically well-defined by the game rules.
However, this approach significantly increases the memory overhead due to the storage of the
reverse position graph, which is of size , where is the number of all possible moves𝑂(𝑛 + 𝑚) 𝑚
from all positions in .𝑇

The second way is to implement the GetParentPositions function as part of the game. The
GetParentPositions function, assuming correctly implemented, implicitly defines the reverse
position graph of any tier in the game, hence eliminating the need to store the reverse graph𝑇
in memory. The disadvantage of this approach is that the implementation of such a function
often requires very careful reasoning of all possible moves that could lead to the current
position. The implementation of the GetParentPositions function must be thoroughly tested in
the following way to make sure that it matches the implementation of functions that define
moves in the forward direction:

Suppose the forward moves are defined by a function GetChildPositions which takes in a
tier and a position and returns an array of child positions of . Then, we must have that𝑇 𝑝 𝑝
for all positions and ,𝑝 𝑐

● if GetParentPositions returns as a parent of , then GetChildPositions must𝑝 𝑐
return as a child of , and𝑐 𝑝

● if GetChildPositions returns as a child of , then GetParentPositions must𝑐 𝑝
return as a parent of .𝑝 𝑐

In GamesmanOne, both options are available for implementing the GetParentPositions

function, and the design choice is up to the game developer. A number of tests to validate the
above conditions for some randomly chosen game positions are also provided as part of the
user interface.
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3.5.3 Position Symmetry Removal
Many games have positions symmetric to each other. We can reduce the runtime of the
algorithm by exploring only the canonical positions. To achieve this, we introduce the following
new input to the algorithm

● GetCanonicalPosition( , ): a function that takes in a position in tier and returns𝑇 𝑝 𝑝 𝑇
the canonical position in .𝑝' 𝑇

Recall from Section 2.1 that the WORM model is preferred. The following modifications to
Algorithms 1.2 and 1.3 implements position symmetry removal under the WORM database
model:

Algorithm 1.2.1: Algorithm for Scanning a Tier w/ Position Symmetry Removal
1. for to do𝑝 = 0 𝑛 − 1
2. .𝑉[𝑝] ← 𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑
3. if is not a legal position OR if GetCananicalPosition( , ) then // also𝑝 𝑇 𝑝 ! = 𝑝

skipping non-canonical positions as their values can be determined when their canonical
counterparts are solved.

4. num_undecided_children .[𝑝] ← 0
5. continue
6. end if
7. Let GetChildPositions( , )𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑇 𝑝
8. Let be an empty set of (tier, position) tuples. // for deduplication𝑆
9. for each ( , c) in do𝑇' 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛
10. Let GetCanonicalPosition( , c)𝑐' ← 𝑇'
11. if is not in then𝑐' 𝑆
12. Add to𝑐' 𝑆
13. end if
14. end for
15. num_undecided_childen .size. // number of unique canonical child positions[𝑝] ← 𝑆
16. if Primitive( , ) == win then𝑇 𝑝
17. .𝑉[𝑝] ← 𝑤𝑖𝑛
18. .𝑅[𝑝] ← 0
19. Push ( , ) into [0].𝑇 𝑝 𝐹

𝑤𝑖𝑛

20. else if Primitive( , ) == lose then𝑇 𝑝
21. .𝑉[𝑝] ← 𝑙𝑜𝑠𝑒
22. .𝑅[𝑝] ← 0
23. Push ( , ) into [0].𝑇 𝑝 𝐹

𝑙𝑜𝑠𝑒

24. else if Primitive( , ) == tie then𝑇 𝑝
25. .𝑉[𝑝] ← 𝑡𝑖𝑒
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26. .𝑅[𝑝] ← 0
27. Push ( , ) into [0].𝑇 𝑝 𝐹

𝑡𝑖𝑒

28. end if
29. end for

Algorithm 1.3.1: Algorithm for Pushing the Frontiers Up w/ Position Symmetry Removal
1. for to REMOTENESS_MAX do𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠 = 0
2. for each position ( , ) in do𝑇' 𝑝' 𝐹

𝑙𝑜𝑠𝑒
[𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠]

3. Let be an empty position set.𝑆
4. for each parent position in GetParentPositions( , , ) do𝑝 𝑇' 𝑝' 𝑇
5. GetCanonicalPosition( , ).𝑝 ← 𝑇' 𝑝
6. if is not in AND num_undecided_children[ ] > 0 then𝑝 𝑆 𝑝
7. add to .𝑝 𝑆
8. num_undecided_children .[𝑝] ← 0
9. .𝑉[𝑝] ← 𝑤𝑖𝑛
10. .𝑅[𝑝] ← 𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠 + 1
11. Push ( , ) into .𝑇 𝑝 𝐹

𝑤𝑖𝑛
[𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠 + 1]

12. end if
13. end for
14. end for
15. for each position ( , ) in do𝑇' 𝑝' 𝐹

𝑤𝑖𝑛
[𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠]

16. Let be an empty position set.𝑆
17. for each parent position in GetParentPositions( , , ) do𝑝 𝑇' 𝑝' 𝑇
18. GetCanonicalPosition( , ).𝑝 ← 𝑇 𝑝
19. if is not in AND num_undecided_children[ ] > 0 then𝑝 𝑆 𝑝
20. add to .𝑝 𝑆
21. num_undecided_children num_undecided_children[ ] - 1[𝑝] ← 𝑝
22. if num_undecided_children then[𝑝] == 0
23. .𝑉[𝑝] ← 𝑙𝑜𝑠𝑒
24. .𝑅[𝑝] ← 𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠 + 1
25. Push ( , ) into .𝑇 𝑝 𝐹

𝑙𝑜𝑠𝑒
[𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠 + 1]

26. end if
27. end if
28. end for
29. end for
30. end for
31. for to REMOTENESS_MAX do𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠 = 0
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32. for each position ( , ) in do𝑇' 𝑝' 𝐹
𝑡𝑖𝑒

[𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠]

33. Let be an empty position set.𝑆
34. for each parent position in GetParentPositions( , , ) do𝑝 𝑇' 𝑝' 𝑇
35. GetCanonicalPosition( , ).𝑝 ← 𝑇 𝑝
36. if is not in AND num_undecided_children[ ] > 0 then𝑝 𝑆 𝑝
37. add to .𝑝 𝑆
38. num_undecided_children .[𝑝] ← 0
39. .𝑉[𝑝] ← 𝑡𝑖𝑒
40. .𝑅[𝑝] ← 𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠 + 1
41. Push ( , ) into .𝑇 𝑝 𝐹

𝑡𝑖𝑒
[𝑟𝑒𝑚𝑜𝑡𝑒𝑛𝑒𝑠𝑠 + 1]

42. end if
43. end for
44. end for
45. end for

The added/modified lines of the two algorithms are highlighted in red in Algorithms 1.2.1 and
1.3.1 above.

With the new algorithm design, the num_undecided_children array now stores the number of
undecided canonical positions instead. In addition, one can conclude that a position is losing𝑝
as soon as all canonical child positions of have been solved and evaluated to .𝑝 𝑤𝑖𝑛

Note that a set is used each time we generate an array of canonical child or parent positions.
This is necessary because it is possible that two different child (or parent) positions of the same
position are symmetric to each other.

3.5.4 Workload Balancing
In the shared memory parallelization model, a necessary condition for achieving scalability is to
ensure that each thread is allocated an approximately equal amount of work. Since all
parallelization in this section is achieved by parallelizing the iterations of loops, we will only
focus on the redistribution of loop iterations in this subsection. Furthermore, since the above
algorithm is implemented in C and parallelized using the OpenMP library, we will only discuss
workload balancing techniques that are available in OpenMP.

Loops with a relatively simple body can usually be handled well by a static scheduling policy.
This is because under a static scheduling policy, each thread is assigned with the same number
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of iterations of a parallel for loop (with some exceptions2). If each iteration takes about the same
amount of time to complete, the workload will almost be evenly distributed.

On the other hand, if each iteration of a loop takes a different amount of time to complete, a
static scheduling policy may not work very well because some threads may finish early and stay
idle until all other threads finish their work. In this case, using a dynamic or guided scheduling
policy can lead to better performance. The OpenMP dynamic scheduling policy splits the
number of iterations of a for loop into chunks of chunk_size and then distributes the chunks to
threads on a first-come-first-serve basis. A large chunk_size is more suitable if cache locality is
better utilized by processing many consecutive iterations in a row, whereas a small chunk_size
improves workload balancing. Enabling dynamic scheduling also incurs a scheduler overhead at
runtime, which may be reduced by using a larger chunk_size. Therefore, the optimal
chunk_size depends on the implementation of the game and requires benchmarking. The
OpenMP guided scheduling policy, on the other hand, first splits the number of iterations to large
chunks and gradually decreases the chunk_size as it approaches the end of the loop
execution.

The scheduling policies for the parallel for loops mentioned in Section 3.3 are listed below:
a. Line 2 of Algorithm 1.1 uses a guided scheduling policy. The most expensive operation

in this loop involves loading positions into the frontier. The workload may become
imbalanced if some threads receive a large number of consecutive drawing or illegal
positions that are not loaded into the frontiers while other threads receive a large number
of winning, losing, and tying positions. This is especially true if we enable position
symmetry removal as described in Subsection 3.5.3. However, the loading of positions
from child tiers involves reading data from disk, whose latency can be hidden only if we
read data in large enough chunks. Therefore, the guided scheduling policy is chosen.3

b. The for loop on line 1 of Algorithm 1.2 uses a dynamic scheduling policy because of a
similar reason as in the previous part. With position symmetry removal enabled, more
canonical positions can be found in ranges of smaller position hashes than ranges of
larger position hashes, therefore causing workload imbalance under a static scheduling
policy.

c. Lines 2, 12, and 26 of Algorithm 1.3 all use the dynamic scheduling policy. The actual
behavior of these parallel for loops are much harder to predict and are game-dependent.
However, the dynamic scheduling policy with a reasonable chunk_size4 generally
results in better performance than a static scheduling policy.

d. Line 1 of Algorithm 1.4 similarly suffers from imbalanced workload for the same reasons
as in part a. However, unlike part a, there are no disk operations involved when labeling

4 The current implementation of GamesmanOne uses a hard-coded chunk_size of 1024.

3 Empirically, using a dynamic scheduling policy with a reasonably large chunk size (e.g., 4096) yielded a
similar performance.

2 If no chunk size is specified for the static scheduling policy, the last thread may receive fewer iterations if
the number of threads does not divide the total number of iterations. If a chunk size is specified, the
workload distribution depends on the number of threads, iterations, and the chunk size, and more than
one thread may receive fewer iterations.
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draw positions. Therefore, a dynamic scheduling policy with a reasonable chunk_size is
more appropriate as it provides slightly better load balancing.

3.6 Scaling Efficiency
To get an insight into how effectively the algorithm can handle increasing workloads and how it
scales when additional computing resources are added, we need to measure the strong and
weak scaling efficiencies of the algorithm. The scaling tests were conducted on the fully
optimized implementation of Algorithm 1 in GamesmanOne’s tier solver using a single CPU
node of the Perlmutter supercomputer. Each CPU node uses 2x AMD EPYC 7763, 64 cores per
socket, and 512 GiB memory [8].

3.6.1 Strong Scaling
The strong scaling tests were done by solving a single tier (5, 5, 6) of 4x4 Quixo, which is one
of the largest tiers of this game variant. The rules of the game and definitions for the tiers are
given in Chapter 7 of this report.
The size of tier (5, 5, 6) is 4036032 positions. The test is conducted by solving the same tier
multiple times using different numbers of OpenMP threads. We tested the program using 1, 2, 4,
8, 16, 32, and 64 threads. The number of threads are chosen to be no greater than the number
of cores per socket to minimize the effect of hyperthreading and/or inter-socket communication
on performance. The number of OpenMP threads is manually adjusted before each test run
using the command

export OMP_NUM_THREADS=<n>

where is the number of threads to use. The execution time is measured by taking the𝑛
difference between the finish and the start time returned from the OpenMP omp_get_wtime

function. The results are shown in Table 3.1.

Number of threads Ideal (s) Actual (s)
1 29.248698 29.248698
2 14.624349 15.3226
4 7.3121745 7.808866
8 3.65608725 4.009482
16 1.828043625 2.142348
32 0.9140218125 1.224848
64 0.4570109063 0.730756
128 0.2285054531 0.583174

Table 3.1: Strong scaling execution time of Algorithm 1

Under the assumption of perfect scaling, the speedup should be equal to the number of threads
used. However, this is almost never achievable due to scheduling and synchronization
overhead. The actual speed up of the program is plotted as Figure 3.1.
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Figure 3.1: Strong scaling speedup of Algorithm 1

The algorithm demonstrates good scalability with the utilization of up to 32 threads. A potential
explanation for this behavior is that Algorithm 1.3 incorporates a sequential process that
handles each remoteness level from 0 to REMOTENESS_MAX in series. When the size of each
tier is substantial, the impact of this sequential component is less significant, as the processing
time for each remoteness level becomes the dominant factor.

3.6.2 Weak Scaling
Weak scaling is not quite applicable to game solving because the ultimate goal is to solve a
particular game whose size remains constant regardless of the amount of resource being used.
It is also difficult to perform the test by giving each thread the same workload because the total
workload of solving a game depends on the number of edges in the game graph, which is
unknown until the game is solved. Nevertheless, we include the result of weak scaling
measurements for completeness. We also make the assumption that the total workload for each
test run is linear to the number of positions.

The weak scaling tests were done by solving tiers (2, 11, 3), (1, 9, 6), (2, 10, 4), (2, 9, 5), (6, 8,
2), (5, 8, 3), (5, 7, 4), and (5, 5, 6) of 4x4 Quixo. The size of these tiers are 87360, 160160,
240240, 480480, 720720, 1441440, 2882880, and 4036032 positions respectively, and the ratio
of their sizes roughly matches 1:2:3:6:9:18:36:50, which correspond the numbers of threads we
used to conduct the tests. All tests are carried out using the same hardware as in Subsection
3.6.1. The results are shown in Table 3.2.
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number of threads Ideal (s) Actual (s)
1 0.348333 0.348333
2 0.348333 0.418242
3 0.348333 0.386318
6 0.348333 0.46231
9 0.348333 0.603022
18 0.348333 0.658355
36 0.348333 0.800556
50 0.348333 0.907884

Table 3.2: Weak scaling execution time of Algorithm 1

The results are plotted in Figure 3.2.

Figure 3.2: Weak scaling execution time of algorithm 1

This result is expected as our assumption on the linear relationship between workload and the
number of positions is inaccurate. As we increase the number of positions, the average
branching factor also increases because those tiers contain mostly middle-game positions
where more moves are available for each player.

37



Chapter 4: The Tier Solving Algorithm and MPI
In Chapter 3, we discussed an algorithm that allows us to solve one tier. To solve a full tier
game, we need to solve all tiers. Doing so requires that tiers be solved in such an order that
each tier has all of its child tiers solved before it. In this chapter, we discuss an algorithm that
allows us to create a reverse tier graph and then solve tiers in any valid topological order of the
graph, hence maximizing the number of tiers that can be solved in parallel.

All algorithms in this chapter are implemented as part of the Tier Solver module of
GamesmanOne in tier_manager.c and tier_worker.c.

4.1 Creating the Reverse Tier Graph
For all games with a valid non-trivial tier definition, the following functions are implemented as
part of the game module:

1. GetInitialTier(): returns the initial tier of the game.
2. GetChildTiers( ): returns an array of child tiers of tier , assuming is a valid tier.𝑇 𝑇 𝑇
3. GetTierSize( ): returns the size of tier , assuming is a valid tier in the game.𝑇 𝑇 𝑇

The first two functions implicitly define a tier graph: GetInitialTier defines the root of the tier
graph, whereas GetChildTiers defines the outgoing edges of any vertex in the tier graph.
Therefore, we can perform a depth-first search starting from the root tier to create a reverse tier
graph while we visit all vertices in the tier graph.

We create the following data structures for the algorithm:
● Let fringe be an initially empty tier stack.
● Let closed be an initially empty tier set.
● Let be an initially empty map from tiers to tier arrays. is used to store the reverse tier𝐺 𝐺

graph and is also the output of the algorithm.

The algorithm is shown summarized as Algorithm 2 below.

Algorithm 2: Algorithm for Creating the Reverse Tier Graph
1: Let GetInitialTier()𝑇

𝑟
←

2: Push into fringe.𝑇
𝑟

3: repeat
4: Pop out one tier from fringe and store it as .𝑇
5: if is not in closed then𝑇
6: Let GetChildTiers( )𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑇
7: for each in do𝑐ℎ𝑖𝑙𝑑 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛
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8: Push into fringe𝑐ℎ𝑖𝑙𝑑
9: Append to .𝑇 𝐺[𝑐ℎ𝑖𝑙𝑑]
10: end for
11: Add to closed.𝑇
12: end if
13: until fringe is empty

4.2 Solving the Reverse Tier Graph
Algorithm 2 provides us with a reverse tier graph for the game that we are looking to solve. To𝐺
solve the game, we need to apply algorithm 1 to each tier in in a topological order. We𝐺
introduce the following algorithm to achieve this.

Define the following data structures:
1. Let be an initially empty tier queue.𝑄
2. Let num_child_tiers be an integer array of length equal to the number of tiers in .𝐺

Algorithm 3: Algorithm for Solving All Tiers
1: for each tier in do𝑇 𝐺
2: Let GetChildTiers( ).𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑇
3: num_child_tiers[ ] .size.𝑇 ← 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛
4: if .size then𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 == 0
5: Add to𝑇 𝑄
6: end if
7: end for
8: repeat
9: Pop the tier at the front of and store it as .𝑄 𝑇
10: Let GetTierSize( ).𝑛 ← 𝑇
11: Call Algorithm 1 on with as input for tier size.𝑇 𝑛
12: for each in do𝑇' 𝐺[𝑇]
13: num_child_tiers num_child_tiers .[𝑇'] ← [𝑇'] − 1
14: if num_child_tiers then[𝑇'] == 0
15: Add to .𝑇' 𝑄
16: end if
17: end for
18: until is empty𝑄
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To see that Algorithm 3 calls Algorithm 1 on all tiers in in a topological order, notice that each𝐺
tier only enters once throughout the entire execution when num_child_tiers[ ] is set to 0.𝑇 𝑄 𝑇

4.3 Parallelization

4.3.1 Distributed Memory Parallelization Using MPI
The key observation in Algorithm 3 is that all tiers in can be solved in parallel. This is because𝑄
the solving of each tier using Algorithm 1 only requires that the child tiers of have been𝑇 𝑇
solved. Since Algorithm 3 guarantees that all tiers in have all their child tiers solved, we are𝑄
safe to invoke Algorithm 1 on any number of them at the same time. Furthermore, we observe
that each invocation of Algorithm 1 never communicates with another. This allows us to
efficiently allocate each tier in to a separate process as a task, which may reside on a different𝑄
machine connected through a network layer. Therefore, one idea of parallelization is to use
multiprocessing implemented by the Message Passing Interface (MPI) and employ a
manager-worker model [3] for task delegation.

A group of MPI processes working under the manager-worker model is divided into two
subgroups:

1. The manager process: a single process that is responsible for creating the reverse tier
graph, maintaining the queue of tiers ready to be solved, and delegating tiers in the
queue to the worker processes.

2. The worker processes: all other processes that are not the manager; responsible for
receiving tasks from the manager, solving individual tiers, and reporting back to the
manager.

We parallelize Algorithm 3 by combining the following two algorithms5 using the MPI and the
manager-worker model.

Algorithm 4.1: Algorithm for the Manager Process
1: Let task_list be an initially empty tier array of length equal to the total number of

processes including the manager.
2: repeat
3: Block until a message is received from any one of the workers.
4: Let be the rank of the worker process from which message was received.𝑟𝑎𝑛𝑘
5: if message is “solved” then
6: mark the allocated to process rank as solved.𝑡𝑖𝑒𝑟
7: update the number of unsolved child tiers of all parents of task_list[ ].𝑟𝑎𝑛𝑘
8: end if

5 For simplicity, all error checkings have been omitted from the algorithms.
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9: if there currently are tiers that can be solved then
10: Pop the next from the front of .𝑡𝑖𝑒𝑟 𝑄
11: Send to the worker process of rank equal to .𝑡𝑖𝑒𝑟 𝑟𝑎𝑛𝑘
12: task_list .[𝑟𝑎𝑛𝑘] ← 𝑡𝑖𝑒𝑟
13: else
14: Send a “sleep” message to the worker process of rank equal to .𝑟𝑎𝑛𝑘
15: end if
16: until all tiers have been solved
17: Send a “terminate” message to all worker processes.

Algorithm 4.2: Algorithm for a Worker Process
1: Send a “check” message to the manager process.
2: while TRUE do
3: Block until a message is received from the manager process.
4: if message is “terminate” then
5: break
6: else if message is “sleep” then
7: Sleep for 1 second.
8: Send a “check” message to the manager process.
9: else
10: Let GetTierSize( )𝑛 ← 𝑇
11: Call Algorithm 1 on with as input for tier size.𝑇 𝑛
12: Send a “solved” message to the manager process.
13: end if
14: end while

In summary, the manager process remains in a worker-dispatching loop until all tiers are solved.
On the other hand, all worker processes remain in a serving loop to solve tiers delegated by the
manager until a “terminate” message is received.

Figures 4.1.1 through 4.1.8 show an example of solving the tier graph as shown in Figure 2.2 in
parallel using two worker processes under the manager-worker model.
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Figure 4.1.1: Initial state of the tier solver with
both workers idle

Figure 4.1.2: State of the tier solver after the
manager assigning to worker 1 and to𝑇

5
𝑇
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worker 2

Figure 4.1.3: State of the tier solver after
worker 2 finishes solving 𝑇

6

Figure 4.1.4: State of the tier solver after
worker 1 finishes solving and receiving𝑇

5
𝑇

4
from the manager

Figure 4.1.5: State of the tier solver after
worker 1 finishes solving . The manager𝑇

4
then assigns and to the workers𝑇
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Figure 4.1.6: State of the tier solver after
worker 1 finishes solving 𝑇

2
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Figure 4.1.7: State of the tier solver after
worker 2 finishes solving and receiving𝑇

3
𝑇

1
from the manager

Figure 4.1.8: Final state of the tier solver after
worker 2 finishes solving . The manager𝑇

1
then signals “terminate” to all workers

4.3.2 Shared Memory Parallelization
It is possible to generalize algorithm 4.1 and 4.2 to shared memory parallelization by replacing
all processes with threads. Message passing can then be achieved between threads by
accessing shared global memory. However, we did not implement tier-level parallelism using the
shared memory model for the following reasons:

a. Each machine has a limited amount of memory. Solving multiple tiers on the same
machine may limit the maximum size of the largest tier that we can solve.

b. Algorithm 1 scales reasonably well with the number of threads. Solving multiple tiers on
the same machine at the same time may not significantly improve overall performance.

c. We can achieve the same goal of solving multiple tiers on the same machine using MPI
with a slightly bigger communication overhead.

4.4 Synchronizations
One significant benefit of tier-solving is that tiers being solved at the same time do not need to
communicate. Hence no synchronization is needed besides messages sent to and from the
manager.

In Algorithms 4.1 and 4.2, all sends and receives are blocking, meaning that the function calls to
send and receive will not return until the messages have actually gone through.
Implementation-wise, the send and receive operations are achieved using the MPI standard
MPI_Send and MPI_Recv functions that allow the caller to specify the target rank of the sender
and receiver process. Therefore, all synchronizations are handled internally by MPI and no
explicit synchronization is required.

4.5 The Tier Symmetry Removal Optimization
Similar to position symmetry removal, one can also leverage symmetry of tiers to reduce the
number of positions explored during solve. Suppose two tiers are symmetric to each other, then
solving either one of them allows one to infer the evaluations of all positions in the other.

To implement tier symmetry removal, we require two additional inputs for the new algorithm:
● GetCanonicalTier( ): a function that takes in a tier and returns the canonical tier in𝑇 𝑇

the set of tiers symmetric to .𝑇
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● GetPositionInSymmetricTier( , , ): a function that takes in a position in tier ,𝑇 𝑝 𝑇' 𝑝 𝑇
and returns the position in tier that is symmetric to , assuming is symmetric to .𝑝' 𝑇' 𝑝 𝑇' 𝑇

The first function, GetCanonicalTier, allows us to find the canonical tier and ignore the
non-canonical tiers during solve. The second function, GetPositionInSymmetricTier, allows
us to read the evaluations of positions of a non-canonical tier from the database of its canonical
counterpart as if we have solved the non-canonical tier.

Then, we can modify Algorithm 3 to achieve tier symmetry removal in a similar way as we
modified Algorithm 1.2 and 1.3 for position symmetry removal. The key modifications include the
following points:

a. Instead of counting the number of child tiers of each tier, count the number of unique
canonical child tiers. The uniqueness of child tiers can be guaranteed using a tier set for
deduplication.

b. For each tier popped out of the queue of pending tiers , skip the solving of if is𝑇 𝑄 𝑇 𝑇
not a canonical tier.
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Chapter 5: GamesmanOne
The algorithms discussed in the Chapters 3 and 4 laid the groundwork for the implementation of
a parallel loopy tier game solver. In this chapter we introduce GamesmanOne, a parallel solver
and analyzer system for generic two-player abstract strategy games. In Section 5.1, we give an
overview of the system and discuss various design choices that were made to modularize the
system. In Sections 5.1 and 5.2, we introduce the various APIs that a game module must
implement for it to be recognized by GamesmanOne. Section 5.4 explains the integration of
game modules with GamesCrafters Universal Web API, which then allows the game to be
presented on the web frontend provided by GamesmanUni. Section 5.5 discusses an
optimization implemented for the Bit-Perfect Database, which is a database implementation in
GamesmanClassic. Section 5.6 discusses the steps to compile GamesmanOne on a HPC
platform that supports the Message Passing Interface (MPI). Finally, Section 5.7 summarizes all
possible future work.

5.1 Overview
GamesmanOne is a parallel solver, analyzer, and game-playing system for generic two-player
abstract strategy games written in C. It is implemented with special emphasis on parallelization
and modularization. The system uses the OpenMP library for shared memory parallelization,
and MPI for distributed memory parallelization. The components of the system are designed to
be as self-contained as possible so that the implementation of new components, such as new
solvers and databases, will not interfere with any existing component or game.

Figure 5.1 shows an overview of GamesmanOne’s component structure.

Figure 5.1: System overview of GamesmanOne
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The system builds into a single gamesman binary capable of solving and analyzing all
implemented games and has the ability to query the database of a game if it has been solved.
The program has a single entry point, but can be used in two different ways depending on the
number of command line arguments passed in.

The most common way to use gamesman is to use it as an interactive command line program.
This can be done by launching the binary without any arguments; i.e. by running bin/gamesman

under the root project directory, assuming by default the binary is compiled and stored in a
subdirectory named bin. This mode provides the user with a command-line interface that allows
the user to interactively switch games, specify game options, solve the game, analyze the
game, and play the game with or without solving it. Since no system can catch errors in the
implementation of game rules, it is important to have the ability to play the game before solving
it to make sure that the game rules are correctly implemented.

If any option is passed to the program at launch time, the program will launch in headless mode.
This mode accepts various commands such as solve, analyze, query, and getstart. The
program then executes the command, typically with parameters that specify the name and
variant of the game, generates an output, and exits. For position queries, a third parameter for
the position string must also be specified. The default output path for databases and game
statistics is data under the working directory in which the gamesman binary is invoked. For all
commands above, the user can optionally change the output path by specifying the

--data-path=<path>

option. This is useful when the command is invoked from a different directory as the one
containing data. The examples in Table 5.1 demonstrate the typical usage of each command
above.

Command Effect

bin/gamesman solve quixo 0

Solve variant 0 of Quixo (internally named “quixo”)
and store the results in the default data path,
assuming the current working directory is the root
project directory and the gamesman binary is in bin.

bin/gamesman -f -v solve quixo 0
Force re-solve (and overwrite existing database of)
variant 0 of Quixo with verbose output.

bin/gamesman analyze quixo 0

--data-path=~/data

Analyze variant 0 of Quixo, assuming the existing
database is in ~/data.
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bin/gamesman query -- mtttier 0

--x----o-6

Get a UWAPI-compliant JSON response containing
detailed position information on position formally
encoded7 as “--x----o-” in variant 0 of the tiered
tic-tac-toe game (internally named “mtttier”).

bin/gamesman getstart mtttier 0
Get a UWAPI-compliant JSON response containing
information about the starting position for the tiered
tic-tac-toe game.

bin/gamesman --help
Print help message on how to use the gamesman

binary.

Table 5.1: Example GamesmanOne commands

The headless mode can be used in two different ways. Users can skip the interactive interface
and solve or analyze a game directly if they already know the name and variant index of the
target game. This is especially helpful for wrapping the solve/analyze command as part of
another command. For example, the user can time the solve of the default variant (variant 0) of
the tic-tac-toe game (internally named “mttt”) using the following command:

/usr/bin/time bin/gamesman solve mttt 0

This behavior also allows us to submit a solving task to the Slurm scheduler of an HPC platform
such as the Berkeley Savio Cluster using the srun command. The following example command
submits a solving task to the Slurm scheduler, informing it to solve variant 0 of Quixo by
spawning 6 processes with 28 CPUs assigned to each process:

srun -n 6 -c 28 --cpu_bind=cores bin/gamesman solve quixo 0

This enables us to solve Quixo with 6 MPI processes, assuming the gamesman binary was built
with MPI. The details about building GamesmanOne are given in Section 5.2 of this chapter.

The headless mode of GamesmanOne is also used by the GamesmanOne Server, which is a
simple Python HTTP server that can provide raw JSON responses for position queries
implemented using the Flask framework.

The description of each component is given in the list below:
● Entry Point (main.c), Gamesman Headless, and Gamesman Interactive: these

components together serve as the core of the system. GamesmanOne will run in
different modes and perform different actions depending on the number of arguments
provided when the binary is launched.

○ Solver Manager: a unified abstraction layer to invoke different solvers. Each
solver must implement a standard set of required functions to qualify as a solver
and be recognized by the solver manager. When a game is loaded, the core

7 Definition for a formal position string is given in subsection 5.3.4.

6 The double dash (“--”) after the query command signifies the end of options. It is not optional in this
case and in many other cases because the formal position string may contain dashes (‘-’) that confuses
the command line argument parser.
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system informs the Solver manager to check and load the solver specified by the
game.

■ Regular Solver: solver for single-tier games.
■ Tier Solver: solver for tier games.

● DB Manager: a unified abstraction layer to invoke different
database implementations. Each database must implement a
standard set of required functions to qualify as a database and be
recognized by the DB manager. Solvers that require permanent
storage of solver results in the format of databases will inform the
Database manager to check and load the database
implementation it needs.

○ Bit-Perfect DB: a database implementation that uses a
minimal number of bits to represent the value and
remoteness of each position.

○ Naive DB: a naive database implementation using integer
arrays.

● Analysis Manager: responsible for saving and loading analysis
results of games.

○ Game Manager: responsible for loading games. GamesmanOne makes the
assumption that no more than one game can be loaded at a time. To solve,
analyze, or play multiple games at the same time, the user should invoke multiple
instances of the gamesman binary.

■ Tic-Tac-Toe: the Tic-tac-toe game.
■ Quixo: the Quixo game.
■ All Queens Chess: the All Queens Chess game.

● Generic Hash: an optional helper module for game developers to easily manage
position hashing for their games.

● Server (Python): an HTTP server to generate JSON responses for position queries.

5.2 Building and Running GamesmanOne
The current implementation allows the user specify the following options while compiling
GamesmanOne:

● Compiler flags including compiler optimization level, debugging symbols, and level for
output of warning messages.

● OpenMP support.
● MPI support.

The user can use different configurations for different use cases. Some typical use cases are as
follows:

1. Debugging on a single thread without OpenMP by turning off compiler optimizations and
including debugging symbols and all warning messages. This includes

a. running a debugger on the program, and
b. playing the game through a command-line interface without solving the game.
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2. Debugging with OpenMP by using the same configuration as in 1 but with OpenMP
enabled.

3. Solving on a single thread without OpenMP by using the maximum compiler optimization
level.

4. Solving with OpenMP support by using the same configuration as in 3 but with OpenMP
enabled.

5. Solving with MPI enabled by manually specifying the compiler using CC=mpicc.
6. Playing the game with a database available after the game is solved. This can be

achieved under any configuration so long as MPI is not enabled.

Users can find detailed instructions on how to configure and compile the project in the
README.md file under the root project directory.

The most common use case is to compile GamesmanOne for solving games with OpenMP
support. A bash script gamesman_install.sh for this purpose is provided at the users’
convenience. Running ./gamesman_install.sh under the root project directory automatically
installs all dependencies and compiles GamesmanOne for use case 4.

GamesmanOne also has MPI support, which allows the user to parallelize the solving of their
game using distributed memory machines as long as the solver of their choice supports it.
Currently, the tier solver is the only solver that supports MPI. To configure and compile
GamesmanOne with MPI support, the user should supply CC=mpicc to the configure script
and then recompile their project by running make clean and make.

5.3 Implementing Games in GamesmanOne
The implementation of a new game in GamesmanOne can be divided into five steps:

1. Create a Game instance and choose a solver for the game based on game properties.
2. Implement the API for the chosen solver.
3. Implement the Gameplay API.
4. Implement the GamesCrafters Universal Web API (UWAPI). This step is optional and

only required if the user wants to publish the game on GamesmanUni.
5. Add the game to the global list of games in src/games/game_list.c.

Instructions for each step are detailed in a subsection below.

5.3.1 Creating a New Game Instance
The process of adding a new game to the system is abstracted as implementing a new instance
of the Game type and providing all the necessary information that defines a game.

The following code block defines the abstract Game type. In-line documentation for each field is
provided in src/core/types/game/game.h but is omitted here for brevity.

typedef struct Game {

char name[kGameNameLengthMax + 1];
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char formal_name[kGameFormalNameLengthMax + 1];

const Solver *solver;

const void *solver_api;

const GameplayApi *gameplay_api;

const Uwapi *uwapi;

int (*Init)(void *aux);

int (*Finalize)(void);

const GameVariant *(*GetCurrentVariant)(void);

int (*SetVariantOption)(int option, int selection);

} Game;

As the name of each field suggests, all games should have a name for internally representation
in GamesmanOne, a formal name that is presented to the user of the system, a solver that the
game developer wish to use to solve the game, an implementation of the solver API that
matches the solver chosen, an implementation of the Gameplay API which enables gameplay
through the command line interface, and several other functions for setting up the game. The
initialization, finalization8, and variant selection functions are provided as function pointers that
need to be implemented. In addition, game developers may implement the optional UWAPI if
they want to make the game available through the web frontend provided by GamesmanUni.

The following code block shows the implementation of the tiered version of the Tic-tac-toe game
as an example. The source code can be found in src/games/mtttier/mtttier.c.

const Game kMtttier = {

.name = "mtttier",

.formal_name = "Tic-Tac-Tier",

.solver = &kTierSolver,

.solver_api = (const void *)&kSolverApi,

.gameplay_api = (const GameplayApi *)&kMtttierGameplayApi,

.uwapi = &kMtttierUwapi,

.Init = &MtttierInit,

.Finalize = &MtttierFinalize,

.GetCurrentVariant = &MtttierGetCurrentVariant,

.SetVariantOption = &MtttierSetVariantOption,

};

The goal of implementing a game in GamesmanOne is to have the game solved using one of
the existing solvers. Therefore, the next step in game implementation is to get familiar with the
solvers available in the system and pick the one that best suits the game that we wish to solve.
As of this writing (May 2024), two solvers are available in the system:

1. Tier Solver: The solver for tier games. It is capable of leveraging tier parallelism and
supports multi-process solving using MPI.

2. Regular Solver: The solver for single-tier games. It uses the same algorithm for
single-tier solving and abstracts away the tier concept from the game developer.

8 Memory needs to be manually managed in C. A finalization step makes sure that all heap memory is
properly deallocated.
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To use a solver, the game must first include the header file in which the solver is declared. Here
we choose the tier solver, and make the following include statement at the beginning of the
source file:

#include "core/solvers/tier_solver/tier_solver.h"

5.3.2 Implementing a Solver API
The solvers in GamesmanOne are modularized and self-contained. Each one of them provides
an application programming interface (API) for the game developer to implement. A solver API
usually includes a standard set of functions that defines the game graph. The solver can then
use the functions provided by the game to understand and solve the game.

The API of a solver is provided to the game developer as a collection of C function pointers. The
following code block shows the API of the tier solver. In-line documentation for each function is
provided in tier_solver.h but is omitted here for brevity.

typedef struct TierSolverApi {

Tier (*GetInitialTier)(void);

Position (*GetInitialPosition)(void);

int64_t (*GetTierSize)(Tier tier);

MoveArray (*GenerateMoves)(TierPosition tier_position);

Value (*Primitive)(TierPosition tier_position);

TierPosition (*DoMove)(TierPosition tier_position, Move move);

bool (*IsLegalPosition)(TierPosition tier_position);

Position (*GetCanonicalPosition)(TierPosition tier_position);

int (*GetNumberOfCanonicalChildPositions)(TierPosition tier_position);

TierPositionArray (*GetCanonicalChildPositions)(TierPosition tier_position);

PositionArray (*GetCanonicalParentPositions)(TierPosition child, Tier parent_tier);

Position (*GetPositionInSymmetricTier)(TierPosition tier_position, Tier symmetric);

TierArray (*GetChildTiers)(Tier tier);

Tier (*GetCanonicalTier)(Tier tier);

int (*GetTierName)(char *name, Tier tier);

} TierSolverApi;

To implement a function, the game developer should first define a function in the game’s source
file that matches the function pointer signature, and then pass the address of that function to a
solver API instance. The address of the solver API instance is then included as part of the
Game instance to make the implementation visible to the solver.

5.3.3 Implementing the Gameplay API
Being able to play the game through the command line interface is important for testing the
game and querying positions once the game is solved. The Gameplay API defines a set of
functions that each game must implement to allow the system to generate an interactive play
loop. Since the database querying process for single-tier games and tier games are slightly
different, the Gameplay API is split into three parts as follows:

typedef struct GameplayApi {
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const GameplayApiCommon *common; /**< Common API collection. */

const GameplayApiRegular *regular; /**< API for single-tier games. */

const GameplayApiTier *tier; /**< API for tier games. */

} GameplayApi;

where GameplayApiCommon is defined as
typedef struct GameplayApiCommon {

Position (*GetInitialPosition)(void);

int position_string_length_max;

int move_string_length_max;

int (*MoveToString)(Move move, char *buffer);

bool (*IsValidMoveString)(ReadOnlyString move_string);

Move (*StringToMove)(ReadOnlyString move_string);

} GameplayApiCommon;

GameplayApiRegular is defined as
typedef struct GameplayApiRegular {

int (*PositionToString)(Position position, char *buffer);

MoveArray (*GenerateMoves)(Position position);

Position (*DoMove)(Position position, Move move);

Value (*Primitive)(Position position);

} GameplayApiRegular;

and GameplayApiTier is defined as
typedef struct GameplayApiTier {

Tier (*GetInitialTier)(void);

int (*TierPositionToString)(TierPosition tier_position, char *buffer);

MoveArray (*GenerateMoves)(TierPosition tier_position);

TierPosition (*DoMove)(TierPosition tier_position, Move move);

Value (*Primitive)(TierPosition tier_position);

} GameplayApiTier;

Again, most in-line documentation is omitted here for brevity, but the game developer should
read it in the header files and use it as guidelines for function implementation.

All games should implement GameplayApiCommon, which defines the set of gameplay functions
that is common to both single-tier and tier games. Then, depending on the game type, the game
developer should implement either GameplayApiRegular or GameplayApiTier and set the
other API to NULL.

Some functions, such as GetInitialPosition and GenerateMoves, of the Gameplay API may
also be found in the solver API for some solvers. In this case, the game developer can pass the
addresses of those functions to both APIs. In fact, they should always do so to ensure the logic
used during gameplay is consistent with the logic used to solve the game. The system is
designed in this way to decouple the solvers from the gameplay logic and to allow solvers to
provide unconventional interfaces. For example, a solver may directly ask the game to provide a
function GetChildPositions that returns a list of child positions of any valid position in the
game, instead of relying on first generating moves and then performing each possible move at
the given position.
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5.3.4 Implementing the GamesCrafters Universal Web API
This is an optional step that bridges the gap between the backend database querying system in
GamesmanOne and the GamesmanUni web frontend. As earlier mentioned in Chapter 2, the
connection between the two systems is established through a middleware separately
maintained as the GamesCraftersUWAPI project. As the name suggests, it provides a standard
API that all backend game-hosting servers (e.g., the server for GamesmanClassic) must
implement to serve value and remoteness information in the format that GamesmanUni
understands. The current standard uses the JSON format.

GamesmanOne has built-in JSON response formatting functionality and a Python server that is
capable of handling HTTP GET requests from the UWAPI server. The game developer is only
responsible for implementing the following structure that contains the functions needed for
converting positions (or tier positions for tier games) and moves from the internal hash
representations to the AutoGUI string representations:

typedef struct Uwapi {

const UwapiRegular *regular; /**< API for regular (non-tier) games. */

const UwapiTier *tier; /**< API for tier games. */

} Uwapi;

where UwapiRegular is defined as
typedef struct UwapiRegular {

MoveArray (*GenerateMoves)(Position position);

Position (*DoMove)(Position position, Move move);

Value (*Primitive)(Position position);

bool (*IsLegalFormalPosition)(ReadOnlyString formal_position);

Position (*FormalPositionToPosition)(ReadOnlyString formal_position);

CString (*PositionToFormalPosition)(Position position);

CString (*PositionToAutoGuiPosition)(Position position);

CString (*MoveToFormalMove)(Position position, Move move);

CString (*MoveToAutoGuiMove)(Position position, Move move);

Position (*GetInitialPosition)(void);

Position (*GetRandomLegalPosition)(void);

} UwapiRegular;

and UwapiTier is defined as
typedef struct UwapiTier {

Tier (*GetInitialTier)(void);

Position (*GetInitialPosition)(void);

TierPosition (*GetRandomLegalTierPosition)(void);

MoveArray (*GenerateMoves)(TierPosition tier_position);

TierPosition (*DoMove)(TierPosition tier_position, Move move);

Value (*Primitive)(TierPosition tier_position);

bool (*IsLegalFormalPosition)(ReadOnlyString formal_position);

TierPosition (*FormalPositionToTierPosition)(ReadOnlyString formal_position);

CString (*TierPositionToFormalPosition)(TierPosition tier_position);

CString (*TierPositionToAutoGuiPosition)(TierPosition tier_position);

CString (*MoveToFormalMove)(TierPosition tier_position, Move move);
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CString (*MoveToAutoGuiMove)(TierPosition tier_position, Move move);

} UwapiTier;

Similar to the Gameplay API, the functions required for UWAPI are also separated for single-tier
games and tier games. The game developer should implement exactly one of the two APIs in
their game-specific Uwapi instance and set the other one to NULL.

We provide definitions to some of the terms in the above API function names:
● A formal position string is a string that unambiguously describes a position that is easy

to read or construct by a human being. This string is used by GamesmanUni to query
positions values from the web frontend. It also allows users to specify a custom starting
position for their game by entering the formal position string of the position from which
they wish to start playing. Therefore, it is important to use a format that facilitates typing.
Note that there is no common standard for formal position strings as long as they are
self-consistent. As an example, if chess were to be implemented in GamesmanOne with
UWAPI support, the game developer can use the FEN notation [9] as the formal position
string for the game.

● An AutoGUI position string is a position-describing string that follows the AutoGUI
standard of GamesmanUni. As of the time of this report, the standard format of an
AutoGUI position string is “<turn>_<board><extra>”, where turn is either ‘1’ or ‘2’
indicating whose turn it is at the current position, board is a one-dimensional
representation of the game board, and extra contains optional extra information that
facilitates the creation of image AutoGUI. A full explanation of the standard is outside the
scope of this report. The reader is encouraged to read the documented source code of
the GamesmanUni project [10].

● A formal move string is a string that unambiguously describes a move in a
human-readable way. The GamesmanUni web frontend uses this string to record the
move history of a match.

● An AutoGUI move string is the internal move representation used by GamesmanUni’s
AutoGUI system. Under the current standard, two of the most commonly used AutoGUI
move string formats are “A_<char>_<center>_<soundChar>” and
“M_<center1>_<center2>_<soundChar>”. They correspond to moves with a
destination but without a source and moves with a source and a destination,
respectively. The char substring consists of a single character used to map piece
character tokens in the board string to images. A center substring is a numerical string
that indicates the source or destination of the move. The soundChar substring is
optionally used to bind sound effects to the move. Again, the reader is encouraged to
read the full documentation from the GamesmanUni project on the latest standard
specifications.

Some functions such as GetInitialTier and GenerateMoves may also be found as part of the
solver API, but are reproduced here for the same reason as mentioned in Subsection 5.3.3.
Definitions to the same functions can again be reused by passing the same function pointers to
them.
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As an important note on security, the game developer should pay close attention to the
implementation of the UwapiRegular::IsLegalFormalPosition (or the
UwapiTier::IsLegalFormalPosition for tier games) function. This function serves as the
security check for external formal position inputs that come from unsanitized user input. The
minimum requirement for this function is that ill-formed formal position strings should not cause
any of the other string conversion functions or position querying functions including
GenerateMoves and DoMove to crash. For instance, consider an implementation of the
Tic-tac-toe game where the formal position string is formatted as a flattened array of the 2D
board. Then, this function should check if the input string size is of length 9 and only contains
characters in {‘-’, ‘x’, ‘o’}.

In addition, the developer may incorporate the logic from the IsLegalPosition function as
discussed in Section 3.1 to filter out as many illegal positions as possible. Accurately filtering out
as many illegal positions as possible can help the frontend generate error messages that are
more informative. However, it is very difficult to implement a position validation function that
filters out all illegal positions. To see why this is the case, consider the game of Tic-tac-toe,
which is one of the games with the simplest set of rules. To filter out all positions that are illegal,
one needs to verify that:

1. The number of X’s on the board is either equal to the number of O’s, or one greater than
the number of O’s when no player has 3 pieces in a row;

2. The number of X’s on the board is equal to the number of O’s if O has at least one
3-in-a-row;

3. The number of X’s on the board is one greater than the number of O’s if X has at least
one 3-in-a-row; and

4. There cannot be two types of 3-in-a-rows on the board.
For games with more complex rule sets, it is almost impossible to enumerate all the
requirements for a position to be legal. Recall from Chapter 3 that we allow arbitrary value and
remoteness assignments to illegal positions in our database. Therefore, the response one gets
from querying an illegal position is currently dependent on the implementation of the
IsLegalFormalPosition function.

5.3.5 Adding a Game to the List of All Games
The last step in adding a new game to GamesmanOne is to include the game in the global list of
all implemented games. The list is defined in src/games/game_list.c as

const Game *const kAllGames[] = {...};

The file contains instructions on how to include the header file for the new game and how to add
the game to the list by providing a pointer to the game object.

Whenever new source files are added, the project environment needs to be updated and the
binaries must be recompiled. The instructions on how to do so can be found in the README at
the root directory of the GamesmanOne repository.
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5.4 From GamesmanClassic to GamesmanOne
GamesmanOne drew significant inspiration from GamesmanClassic. Initially conceived as an
enhancement to GamesmanClassic, it evolved into a standalone project due to the extensive
modifications required across all games and solvers linked to previous design decisions that
GamesmanOne aimed to supersede. Designed with future maintenance and upgrades in mind,
GamesmanOne incorporates a modular architecture with thoroughly documented module
header files. While preserving many of GamesmanClassic’s features, we maintained a similar
programming interface to facilitate a smooth transition for users already familiar with
GamesmanClassic. This section details the modifications and considerations implemented in
GamesmanOne relative to GamesmanClassic.

5.4.1 Adjustments in System Structure
Both GamesmanClassic and GamesmanOne consist of two components: the core system and
the games. In GamesmanClassic, each game module implements a standardized set of global
variables and API functions, which the core system utilizes to select the appropriate solver
automatically. Each game module is then compiled into its own binary, linked with the same core
system. This design ensures uniformity across APIs and eliminates the need for game
developers to manually select solvers. However, a significant drawback is that modifications to
the core system can disrupt existing games that depend on older versions. For instance, a
redesign of the GenerateMoves function might require the addition of a new API function (e.g.,
GenerateMovesAlt), or require rewriting the old GenerateMove function definitions across over
100 games.

GamesmanOne addresses these challenges by modularizing solvers and requiring each solver
to declare its API function requirements within its module. This approach facilitates the future
replacement or addition of solvers simply by integrating a new solver module. Consequently,
game developers must specify which solver they intend to use during game development. This
is to ensure that they implement the correct set of API functions. Although this demands more
upfront clarity from developers about the solvers they use, we view this as a beneficial tradeoff.
For example, if a game employs a CUDA-based GPU solver, the API function signatures will
indicate that the functions are called on the GPU device-side, prompting developers to minimize
branching in their code. Even under the old system in GamesmanClassic, developers needed to
be aware of the required API functions and possess some understanding of their chosen solver
such as defining optional API functions for tier management. Given the absence of fully
automatic solver selection at this stage, we believe these design choices are well-founded.

5.4.2 Data Structure Optimizations
The most computationally demanding step of game solving is the traversal of the game graph.
The functions responsible for generating parent and child positions are invoked most frequently.
Therefore, the efficiency of these functions is critical to solver performance.
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In GamesmanClassic’s shared solver API, a linked list is used to store the moves returned by
the GenerateMoves function, defined in src/core/gamesman.h as follows:

MOVELIST* GenerateMoves (POSITION position);

These moves are subsequently used to generate child positions via the DoMove function.
Likewise, the retrograde tier solver in GamesmanClassic employs a linked list to manage "undo
moves9," which are then used to generate parent positions. The function pointer's declaration is
located in src/core/globals.h:

extern UNDOMOVELIST* (*gGenerateUndoMovesToTierFunPtr)(POSITION, TIER);

A key drawback of using linked lists is the requirement to allocate heap memory for each new
entry, potentially leading to memory fragmentation and decreased cache locality. As there is no
need to insert in the middle of these move lists, using arrays would be more efficient.

Two design alternatives are proposed. The first is employing a dynamic array to store the
moves. This method is both flexible and straightforward, and is currently implemented by the tier
solver in GamesmanOne (refer to subsection 5.3.2). The second approach, suggested by
Professor Dan Garcia, involves delegating the responsibility of space allocation to the function
caller. The caller would then provide a buffer sufficiently large to accommodate all possible
moves through a pointer to the buffer's start. The modified API function prototype would be:

int (*GenerateMoves)(Move *moves, TierPosition tier_position);

where the first parameter is an output buffer supplied by the caller, and the output size (or an
error code) can be returned as an integer value. This method could be more efficient if the
output buffers are small enough to remain on stack memory. This is a reasonable assumption
for most games since the number of available moves at any position generally does not exceed
a few hundred, equating to no more than 8 KiB of stack memory if each move is represented as
a 64-bit integer. This approach significantly reduces heap memory allocations and deallocations
throughout the solving process. However, if a game position exceeds the maximum number of
specified moves, the solver would require reprogramming.

We conducted timing tests on both solutions using an Intel Core i9-12900K CPU with 16 cores
and 24 threads. In our experiment, we solved 4x4 Quixo using the two different solutions and
recorded the completion times using all 24 threads. The first solution completed in 44.3
seconds, while the second finished in 43.8 seconds, marking a performance improvement of
1.1%. Given the marginal gain, we opted to retain the first implementation. Nonetheless, the
second solution could be advantageous for GPU solving in the future, where memory allocation
is typically more costly.

9 Moves that can lead to the current position. The tier solver in GamesmanOne does not utilize this
concept, instead requiring game modules to supply a function that directly yields parent positions. This
approach is adopted because it is generally more efficient and undo moves are not employed elsewhere
in the system.
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5.5 Future Work

5.5.1 Adding Endgame Solving to the Tier Solver
The existing tier solver implementation can be slightly modified to enable endgame solving.
Since endgame positions are usually defined as positions with a smaller set of pieces on the
board, one way to make the modification is to solve only those tiers that fit the endgame
definition. This idea is proven possible in the creation of a 6-piece endgame tablebase for
Chinese chess in a separate project discussed in Chapter 6.

5.5.2 Implementing Specialized Solvers
The main focus of this report is on solving loopy games. The loopy game solving algorithm is
the most generalized algorithm for solving two-player abstract strategy games and can be
applied to loop-free games as well. However, there exist algorithms that solve loop-free games
in a much more efficient way. For example, if tiers in a loop-free game are defined in such a way
that every move in the game leads to a child position in one of the child tiers, then we can
simplify the algorithm by solving all positions in a given tier in one pass without generating
parent positions in the same tier. This algorithm was implemented as part of the Retrograde Tier
Solver in GamesmanClassic but has not been adapted to GamesmanOne.

In addition, the solution of games such as “10 to 0 by 1 or 2”10 are simple enough to be encoded
as a function that describes the best strategy. These games can be categorized as “games with
closed-form solutions” that require no database storage for the solver result.

GamesmanOne is designed to allow developers to implement any number of new solvers in the
system. Hence an open-ended future project could be to implement specialized solvers for
games with special properties.

5.5.3 Implementing Specialized Analyzers
The current design requires each solver to provide its own analyzer. The reason for this design
is that different solvers may take different approaches to analyze the game. For example, the
current implementation of the Tier Solver analyzes the game by traversing the game graph from
the initial position after the game is solved. It is designed this way to make sure that illegal
positions introduced by the imperfect IsLegalPosition function (see Section 3.1) are not
included in the value-remoteness statistics. However, suppose another solver performs a full
traversal of the game graph before the game is solved (called a discovery phase), it is possible,
and perhaps more efficient, for the solver to analyze the game while the game is being solved.
Then, the solver may simply return the information collected in the solving phase when the user
passes in the “analyze” command.

10 10 to 0 by 1 or 2 is a simple combinatorial game in which two players take turns taking either 1 or 2
items from a pile of 10. The player who takes the last item wins. Under the perfect strategy, the first player
can win by taking 1 item first and then leaving a multiple of 3 items for the second player each turn.
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In addition to the examples above, games with closed-form solutions may alternatively calculate
the number of positions at each remoteness level without having to traverse the full game
graph. For combinatorial games, a specialized analyzer might be capable of providing more
information about positions in the game then a simple value-remoteness count.

5.5.4 Exploring Puzzles
Puzzles are single-player games where the objective is to reach a specific set of terminal
positions known as the solved states. Prior research within the GamesCrafters group has
explored systems for both solving and presenting puzzles. Notably, GamesmanPuzzles, created
by Anthony Ling in 2021 [11], stands out as the sole system capable of solving and presenting
puzzles via the GamesmanUni web interface at the time of this document. This Python-based
framework facilitates the implementation of puzzles, and provides single-threaded puzzle
solvers. However, due to the inherent limitations of the Python language, the system can only
handle puzzles with no more than a few million positions. Additionally, ongoing research in
puzzle solving is being conducted under the GamesmanNova project, led by Max Fierro.

Puzzle solvers differ significantly from game solvers in that they do not operate within the
conventional framework of winning and losing. Instead, they categorize puzzles as either
solvable in a certain number of moves or unsolvable. Additionally, because puzzles are
inherently single-player, the concept of alternating turns, an assumption made throughout this
report, does not apply. It is feasible to incorporate puzzle solvers into the existing
GamesmanOne framework to allow fast parallel solving of puzzles. However, this would require
a careful revision of many existing modules within the system to address the issues outlined
above.
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Chapter 6: Solving Chinese Chess Endgames
Chinese chess, also known as Xiangqi, has a rich history spanning over a millennium, making it
one of the oldest board games still widely played today. The game reflects Chinese military
strategy and philosophy, with each piece representing different units in an army, such as
generals, advisors, elephants, horses, chariots, cannons, and soldiers. The game is played on a
board that symbolizes a battlefield divided by a river, which adds a unique strategic element to
the game.

The rules of Chinese chess are surprisingly similar to those of Western chess. However,
Chinese chess is played on the 10 by 9 intersections of a 9 by 8 grid, making the state space of
the game even larger than chess [12]. In this chapter, we discuss an approach that allowed us
to solve all 6-piece endgames of Chinese chess.

All 6-piece endgames of Chinese chess were solved as part of the GamesmanXiangqi project11.
A Chinese chess interactive gameplay interface is also available through GamesmanUni12.

6.1 Rules

6.1.1 Game Board
The game is played on a board as shown in Figure 6.1. All pieces are placed on the
intersections of the squares, forming a 10 by 9 grid. Since the pieces are always placed on the
intersections, all mentions of m-by-n grids later in this chapter refer to grids of intersections.

On either side of the board, there is a 3 by 3 “palace” signified by the two diagonal lines for each
player. The palace restricts the move of the kings (generals) and the advisors. A river spans
horizontally across the middle of the board. The movements of two types of pieces are restricted
by the river: a. the bishops (elephants) cannot cross the river, and b. the pawns (soldiers)
cannot make horizontal moves before they cross the river. There are also 14 alignment marks
on the board that signifies the initial positions of the pawns and cannons, but have no additional
meanings once the game starts.

12 https://nyc.cs.berkeley.edu/uni/games/chinesechess/variants/regular.
11 https://github.com/GamesCrafters/GamesmanXiangqi.
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Figure 6.1: Chinese chess board

6.1.2 Pieces
The rules and pieces of Chinese chess share a lot of similarities with those of Western chess.
Since there is no official translation for the names of the pieces, we prefer the use of terms that
appear in chess when similar rules are available. They are also consistent with the naming
conventions we used in the endgame tablebases. For each type of piece, we also include its
alternative translations in parenthesis, and the single-character representations for both colors
inside the square brackets.

Figure 6.2: Chinese chess red and black kings (generals)
Kings (or generals, Red:帥 [K]; Black:將 [k]): the most important piece of each player. The goal
of the game is to checkmate or stalemate the opponent’s king. The kings may move one step
horizontally or vertically inside the palace but may not move diagonally. The rule also forbids
any moves that place play-to-move’s king under immediate attack of any opponent pieces.
Furthermore, the two kings are not allowed to be in the same column without any pieces in
between. Therefore, any moves that make the two kings “see” each other are also forbidden.
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Figure 6.3: Chinese chess red and black advisors
Advisors (Red:仕 [A]; Black:士 [a]): each player owns two of these defensive pieces. The
advisors may move one step along one of the four diagonal lines inside the palace. As a result,
the advisors also cannot leave the palace.

Figure 6.4: Chinese chess red and black bishops (elephants)
Bishops (or elephants, Red:相 [B]; Black:象 [b]): each player owns two of these defensive
pieces. The bishops can move two spaces diagonally in a 3x3 grid. However, they are not
allowed to jump over any pieces. If there is any piece in the next diagonal space of the bishop,
the bishop cannot move in that direction. In addition, the bishops are not allowed to cross the
river. As a result, each bishop can only ever appear in 7 different spaces on one side of the
river.

Figure 6.5: Chinese chess red and black knights (horses)
Knights (or horses, Red:馬 [N]13, Black:馬 [n]): each player owns two of these attack pieces.
The knights may move one space horizontally or vertically and another space diagonally to
either forward direction. The knights’ moves are similar to those from Western chess but with an
additional rule that forbids them to jump over a piece if they are blocked in the horizontal or
vertical direction.

13 We use the character “N” here to distinguish knights from the kings.
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Figure 6.6: Chinese chess red and black cannons
Cannons (Red:炮 [C]; Black:砲 [c]): each player owns two of these attack pieces. The cannons
have two types of moves: sliding and jump-capturing. By sliding, a cannon may move any
number of spaces horizontally or vertically without capturing. In jump-capturing, a cannon must
first jump over a piece and land on an opponent’s piece and capture it. The piece jumped over
may belong to either side. The cannons are not allowed to capture with sliding and they cannot
jump without capturing.

Figure 6.7: Chinese chess red and black rooks (chariots)
Rooks (or chariots, Red:車 [R], Black:車 [r]): each player owns two of these attack pieces. The
rooks may move any number of spaces horizontally or vertically, and may capture the piece they
encounter along the way if it’s an opponent’s piece. Their moves are exactly the same as the
rooks in Western chess, except they move along the grid lines like all other pieces in Chinese
chess.

Figure 6.8: Chinese chess red and black pawns (soldiers)
Pawns (or Soldiers, Red:兵 [P]; Black:卒 [p]): each player owns five of these attack pieces. The
pawns may only move one space forward horizontally in each turn before they cross the river.
After crossing the river, they may also move one space horizontally in either direction. However,
they are never allowed to move backwards. Unlike in Western chess, pawns in Chinese chess
are never promoted, and they can only move horizontally once they reach the last row on the
opponent’s side.
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6.1.3 Goal of the Game
The game starts at the position as shown in Figure 6.9 with red being the first player to move.
The goal of the game is to checkmate or stalemate the opponent’s king, and the first player to
do so wins the game immediately.

Figure 6.9: Initial position of Chinese chess

A checkmate position is defined as a position at which the player-to-move’s king is under direct
attack of at least one opponent’s piece and there are no available moves that can help the king
escape. Hence, a checkmate position is always a primitive losing position for the player whose
turn it is.

A stalemate position is defined as a position at which the player-to-move’s king is not under
direct attack of any opponent’s pieces, but all moves that are otherwise legal will place the king
under attack. Note that unlike the rules of Western chess in which stalemates are defined as tie
games, the rules of Chinese chess defines stalemates also as losing for the player who runs out
of moves. Therefore, all stalemate positions are also primitive losing positions.

Note that the game ends as soon as the game reaches a checkmate or stalemate position.
Therefore, no valid moves can lead to the capturing of kings. Additionally, players are not
allowed to capture their own pieces, move pieces off the board, or skip their turn.
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6.1.4 Move Restrictions
The rules outlined in sections 6.1.1 to 6.1.3 are universal across all variants of Chinese chess
rulesets. These sections collectively define what we refer to as the simplified ruleset of
Chinese chess. In formal Chinese chess competitions, a more complex ruleset is typically
used. This advanced ruleset includes additional regulations designed to prevent perpetual
checks and/or chasing of unprotected pieces. Moreover, a match is declared a draw if neither
player captures any pieces within 60 moves. Various competitions may implement different
rulesets, with many held in Mainland China adopting the most stringent version. This
comprehensive ruleset includes prohibitions on tactics such as "perpetual threatening", where a
threatening move is defined as one that could result in checkmate if the player were allowed to
move again immediately. For the purposes of this project, we have chosen to use only the
simplified ruleset for clarity and ease of implementation.

6.2 Tier Definition
Chinese chess has two types of irreversible moves: capturing and forward pawn moves. This is
evident from the fact that captured pieces are never placed back onto the board, and pawns can
never make a backward move.

Capturing moves affect the number of remaining pieces on the board. Since the number of each
type of piece is fixed at the beginning of the game, one valid tier definition is to have each tier
include all positions that share the same set of pieces on the board. For example, {K, R, k}

can be defined as a tier that contains all positions with a red king (represented by capital K), a
red rook (represented as capital letter R), and a black king (represented by lowercase k).

Forward pawn moves affect the number of pawns on each row. Another valid tier definition is to
have each tier include all positions that have the same pawn configuration. We defined the
indices of the pawn rows as follows: for red pawns, the rows are indexed from 0, which
corresponds to the bottom row of black’s side, to 6, which corresponds to the initial row where
red pawns are placed at the beginning of the game. For both colors, three additional rows are
not labeled because the pawns are not allowed to move backwards and therefore can never
appear on those rows. The definition for black pawn rows are defined in a similar way. The
definitions are illustrated in Figure 6.10.
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Figure 6.10: Chinese chess palaces and pawn row definitions

Then, an example tier using the second tier definition would be “{4,2,2}_{5,3}”, with the first
set of digits representing the indices of the rows where the red pawns are and the second set of
digits digits representing the rows on which the black pawns are placed. Hence, the tier
“{4,2,2}_{5,3}” includes all positions with 1 red pawn on row 4, 2 red pawns on row 2, one
black pawn on row 5, and one black pawn on row 3. Note that all row indices here refer to pawn
rows for either red or black.

Both tier definitions above are valid. However, we can combine the two definitions to get even
finer granularity of tier parallelism. We define a tier of Chinese chess to be the set of all
positions that has the same set of pieces on the board, supplemented by two sets of row indices
for red and black pawns.

To show that this is a valid tier definition, one needs to show that (a) every position in the game
is contained by one and only one tier, and (b) the resulting tier graph is a directed acyclic graph.

As a proof of part (a), notice that the set of remaining pieces and the pawns of both colors must
fit the definition of one of the tiers defined. Suppose we pick any position in any defined tier, it
must be a valid position because all tiers are valid by the game rules. Furthermore, tiers do not
overlap because any two positions having different sets of pieces or the same set of pieces but
different rows for the pawns are guaranteed to be different.

As a proof of part (b), notice that moves from one tier to another are either capturing moves or
forward pawn moves, which are irreversible according to the game's rules. Suppose there exists
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a cycle in the tier graph. Recall from Chapter 2 that cannot have an𝑇
𝐴

→ 𝑇
𝐵

→ 𝑇
𝐶

→ ···→ 𝑇
𝐴

𝑇
𝐴

edge to itself. Therefore, the sequence of moves required to traverse this cycle to and from 𝑇
𝐴

would necessarily have to be reversible, contradicting the tier definition.

We can uniquely represent each tier using a variable-length string consisting of 3 parts:
1. A substring of length 12 consisting of digits that represent the number of remaining

pieces of each type. We represent it as “{A}{a}{B}{b}{P}{p}{N}{n}{C}{c}{R}{r}”,
where each letter is a placeholder for a single numeric character. Since the remaining
number of each type of piece is no more than 5, we can safely use one character to
represent each number. Note that we are not including the count for kings because they
cannot be legally captured.

2. A variable-length substring consisting of the row indices for red pawns sorted in
descending order. We represent it as {red_pawn_rows}, which consists of at least 0 and
at most 5 numerical characters ranging from 0 to 6. The string is empty if no red pawns
remain on the board.

3. A variable-length substring consisting of the row indices for black pawns sorted in
descending order. We represent it as {black_pawn_rows}, which consists of at least 0
and at most 5 numerical characters ranging from 0 to 6. The string is empty if no black
pawns remain on the board.

In addition, we must also exclude the tiers which has all 10 pawns on the same row. Also note
that for parts 2 and 3, the descending order of pawn rows must be enforced to avoid giving two
equivalent definitions to the same tier by rearranging the pawn rows.

Following this definition, we can uniquely represent each tier using the following string format:
{A}{a}{B}{b}{P}{p}{N}{n}{C}{c}{R}{r}_{red_pawn_rows}_{black_pawn_rows}

For example,
● the initial position of the game is in tier “222255222222_66666_66666”, which is also by

definition the initial tier of the game;
● any position with only two kings on the board is in tier “000000000000__”;
● any position with two kings, two red pawns on the 3rd and the 4th red pawn row, and a

black rook is in tier “000010000001_43_”.
Note that the custom solver in the GamesmanXiangqi project did not use tier hashes. Instead,
the tiers are directly represented using the strings above.

6.3 Hashing
In this section, we introduce the hashing algorithm that was used to calculate the hash values
for Chinese chess endgame positions. Implementation-wise, the hash values are represented
as 64-bit unsigned integers. Note that an assumption made by the algorithm is that no integer
overflow can happen for all positions in the given tier. This is guaranteed by a tier-enumeration
algorithm that only lists tiers that contain no more than 6 pieces.
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6.3.1 Hashing Overview
To come up with a position hash definition for each tier, we can apply the idea of a
combinatorially optimal hash as we discussed in Chapter 2 by rearranging the set of pieces
remaining on the board. However, a naive implementation that allows all types of pieces to be
rearranged on all 10x9 intersections may result in an inefficient use of memory if we are solving
the game using a hash-indexed in-memory database. This is because many pieces can only
reach a certain number of locations on the board due to the restrictions on their moves. For
example, the kings and the advisors can never be outside of the palace, and a bishop can only
appear in one of the 7 intersections on its side of the river. As a result, many hash values are
mapped to invalid positions under this position hash definition.

We make the following observations:
1. The two kings are always on the board.
2. The kings are confined to their palaces and can only reach 9 intersections on the board.
3. The advisors are confined to the palaces and can only reach 5 intersections on the

board.
4. The bishops cannot cross the river and can only reach 7 intersections.
5. The pawns cannot go backwards, which means that they can never appear in any of the

three rows behind their initial row.
6. The pawns cannot move horizontally before crossing the river, and therefore cannot

reach 8 additional intersections.
7. Knights, cannons, and rooks can reach any intersection on the board.

A combinatorially optimal hash for Chinese chess would therefore take into account all
observations above and rearrange each type of pieces only within the set of locations they can
reach.

We hence define the 16-step hash for any position within a tier as follows:
1. Hash the red king and red advisors.
2. Hash the black king and black advisors.
3. Hash the red bishops.
4. Hash the black bishops.
5. Hash the pawns on row 0.
6. Hash the pawns on row 1.
7. Hash the pawns on row 2.
8. Hash the pawns on row 3.
9. Hash the pawns on row 4.
10. Hash the pawns on row 5
11. Hash the pawns on row 6.
12. Hash the pawns on row 7.
13. Hash the pawns on row 8.
14. Hash the pawns on row 9.
15. Hash all remaining pieces.
16. Append a turn bit as the least significant bit of the hash value.
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Note that the row indices here do not refer to pawn rows and are labeled for the entire board
from 0 to 9 starting from the bottom-most row of black’s side (see Figure 6.11 for an illustration
of this definition). Without loss of generality, we also define the board to have the black pieces
occupy the top half of the board and red pieces occupy the bottom half so that we follow a
consistent execution sequence for all hashes. A description of each hashing step is detailed in
the next subsection.

Figure 6.11: Chinese chess row definitions

6.3.2 Hashing Steps
In this subsection we introduce the hashing of each step in the above algorithm either by
counting the number of rearrangements N for each possible piece configuration, or deferring the
counting to the Generic Hash algorithm if the calculation is straightforward. The actual hashing
algorithm also involves mapping each rearrangement of the pieces on the board to an integer
between 0 and N-1. For brevity, we omit the description of this process. A high-level description
of the algorithm can be found in Section 7.3 of the next Chapter.

Steps 1-2: Kings and Advisors
There are three possible combinations of the numbers of remaining kings and advisors:

1. One king + zero advisor: 9 possible rearrangements by moving the king inside the
palace.

2. One king + one advisor: 40 possible rearrangements in total consisting of the following
two possible cases:
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a. King does not occupy any of the 5 advisor intersections (illustrated by Figure
6.12): .4 × 5 = 20

b. King occupies one of the advisor intersections: .5 × 4 = 20
3. One king + two advisors: 70 possible rearrangements in total consisting of the following

three possible cases:
a. King does not occupy any of the 5 advisor intersections: .4 × 𝑛𝐶𝑟(5, 2) = 40
b. King occupies one of the advisor intersections: 5 × 𝑛𝐶𝑟(4, 2) = 30

Figure 6.12: Chinese chess palace with possible advisor locations highlighted

Steps 3-4: Bishops
There are three possible numbers of remaining bishops on the board:

1. Zero bishop: 1 possible rearrangement with no pieces rearranged.
2. One bishop: 7 possible rearrangements of bishops: .𝑛𝐶𝑟(7, 1) = 7
3. Two bishops: 21 possible rearrangements of bishops: .𝑛𝐶𝑟(7, 2) = 21

Figure 6.13 shows the 7 reachable intersections of a red bishop.

Figure 6.13: Chinese chess half board with possible bishop locations highlighted

Steps 5-7: Red pawns on rows 0-2
We know from the rules that only red pawns can ever reach these rows. Therefore, the hash is
the rearrangement of red pawns over blank spaces.
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Figure 6.14: Rows hashed in steps 5-7

Steps 8-9: Red and black pawns on rows 3-4
We know from the rules that a black pawn on these two rows can only reach one of the 10
intersections marked with a black dot in Figure 6.15. Since the black pawns are more restricted,
we locate them first in the rearrangement process. We then rearrange the red pawns over the
remainder of the blank spaces.

Figure 6.15: Rows hashed in steps 8-9 with possible black pawn locations highlighted

Steps 10-11: Red and black pawns on rows 5-6
We know from the rules that a red pawn on these two rows can only reach one of the 10
intersections marked with a red dot in Figure 6.16. Since the red pawns are more restricted, we
locate them first in the rearrangement process. We then rearrange the black pawns over the
remainder of the blank spaces.
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Figure 6.16: Rows hashed in steps 10-11 with possible red pawn locations highlighted

Steps 12-14: Black pawns on rows 7-9
We know from the rules that only red pawns can ever reach these rows. Therefore, the hash is
the rearrangement of black pawns over blank spaces.

Figure 6.17: Rows hashed in steps 12-14

Step 15: Knights, cannons, and rooks
We first count the number of blank spaces left on the board by subtracting the pieces that we
have placed so far in all previous steps. We then rearrange the remaining pieces over these
blank spaces to get the hash for this step.

Step 16: The turn bit
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Without loss of generality, we may define red’s turn to be represented by binary value 0 and
black’s turn to be represented by 1. Then, we return for this step 0 if the current position is red’s
turn, or 1 if it is black’s turn.

6.3.3 Combining Hash Values From Each Step
Since we need a single integral hash value for each position, we must combine the hash values
we get from each step in the previous subsection. We first introduce a way of combining multiple
hash values given their upper bounds. Here, we define hash upper bounds as the number of
unique hash values defined. For example, the upper bound of the hash for step 1 is 9 if there is
only one king and no advisors in the palace.

Suppose we have two hash values and , where the hash upper bound of isℎ
1

= 3 ℎ
2

= 2 ℎ
1

, and the upper bound of is . The total number of combined hash values𝑁
1

= 6 ℎ
2

𝑁
2

= 5

is . This suggests that we can label the combined hash values from 0 to 29 in the𝑁
1

× 𝑁
2

= 30

combinatorially optimal way. Furthermore, we can take the cartesian product of the two sets of
hash values and create a grid of dimensions by , and use one hash as row index and the𝑁

1
𝑁

2

other as column index to find the value for the combined hash. Figure 6.18 illustrates this
process using the above example.

Figure 6.18: Combining two hash values

The combined hash value can be calculated as .ℎ
1

× 𝑁
2

+ ℎ
2

= 17

Now, suppose we want to combine more than two hash values. In this case, we can first
perform the procedure above for an arbitrary pair of hash values, and then apply the same
algorithm again to bring in yet another hash value. For example, suppose we want to combine
the value 17 we got in the above example with another hash with upper bound .ℎ

3
= 4 𝑁

3
= 7
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To do that, we simply flatten the first 2D matrix into a 1D array of length 30 and apply the same
algorithm as shown in Figure 6.19.

Figure 6.19: Combining the result of two hash values with a third one

Using the method above, we can combine the 16 hash values from each step into a single hash
value. Given the hash value and upper bound for each step , we have the followingℎ

1
𝑁

𝑖
𝑖

formula for the combined hash of the position:𝐻
𝐻 = ((((0 · 𝑁

1
+ ℎ

1
) · 𝑁

2
+ ℎ

2
) · 𝑁

3
+ ℎ

3
) ···) · 𝑁

16
+ ℎ

16

6.4 Optimizations

6.4.1 Tier Symmetry Removal
From the tier definition given in Section 6.2, we observe that any two tiers with piece colors
swapped are symmetric to each other. For example, a tier with two kings and a red pawn is
symmetric to a tier with two kings and a black pawn. Formally, we have that the tier
“AaBbPpNnCcRr_rows1_rows2” is symmetric to the tier “aAbBpPnNcCrR_rows2_rows1”. This
allows us to only solve for one of the two tiers from each symmetric pair of tiers.

Without loss of generality, we define the canonical tier to be the one with a larger tier string
value in any pair of symmetric tiers. For example, tier “200200000000__” is the canonical tier of
the pair of symmetric tiers {“022000000000__”, “200200000000__”}.

6.4.2 Encoding Value-Remoteness Records
Chinese chess has no tying positions because the only way to end a game is for one player to
run out of moves. Therefore, the only possible values of positions are win, lose, and draw. This
allows us to encode the value and remoteness of a position as a single integer using the
following mapping:

0: RESERVED – UNREACHEABLE POSITION
1: lose in 0
2: lose in 1
3: lose in 2
…
32767: lose in 32766
32768: draw
32769: win in 32766
32770: win in 32765
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32771: win in 32764
…
65535: win in 0

Note that the values are assigned in a way that a higher encoded value is always preferred to a
lower value, allowing a database querying algorithm to make faster decisions on which move
gives the best anticipated result.

6.5 Results
All tiers with less than or equal to 6 pieces have been solved under the simplified ruleset that
allows any number of repetitions of the same position and any number of moves without
captures. The total size of the database for all 6-piece endgames is 98.49 GB.

There are a total of 1,148,364,635,860 6-piece endgame positions defined under the position
hash definition we gave in Section 6.3. 715,160,403,432 of them appears to be legal under the
rules described in Section 6.1 and were solved either explicitly if they belong to a canonical tier
or implicitly if they belong to a non-canonical tier. The hash efficiency is therefore 0.6227642. A
This efficiency is not surprising as we did not exclude illegal positions (such as those with two
generals in the same column without pieces in between and those with one general overlapping
with a bishop) from our hash definition. Excluding those illegal positions might be extremely
difficult and computationally expensive.

We also scanned the database for a value-remoteness count for all positions in the endgames
that we solved. Figure 6.20 shows one of the positions with the largest remoteness discovered
in all 6-piece endgames. It is player red’s turn and it is a loss for the red player in 264 moves.

Figure 6.20: A position with the largest remoteness in all 6-piece Chinese chess endgames
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Figure 6.21 shows one of the positions with the largest remoteness discovered in all 5-piece
endgames. It is player black’s turn and it is a loss for the black player in 154 moves.

Figure 6.21: A position with the largest remoteness in all 5-piece Chinese chess endgames

The value-remoteness count of all positions in 6-piece and 5-piece endgames is summarized in
Tables A.1 and A.2 respectively in Appendix A. It is worth noting that the statistics also count
positions that appear to be legal but are in fact unreachable from the initial position of the game.
Unfortunately, these positions could not be filtered out because doing so would require finding a
path from each position to the initial position in the reverse position graph, and the amount of
time it takes to do so is linear to the size of the full game graph. Figure 6.22 shows an example
of a position that appears to be rule-abiding but is actually not reachable because all of its
parent positions are illegal.
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Figure 6.22: An unreachable position in Chinese chess that cannot be easily tested

It is currently red’s turn, and the position appears to be a losing position in 2 moves for red.
However, the only possible moves that black could have made in the previous turn are
horizontal rook moves, because otherwise red would have made an illegal move and placed the
red general under the attack of the black rook two moves ago. But even if the previous move
was a horizontal rook move, the move that red made two moves ago is still illegal because the
two generals would be in the same column with no pieces between them.
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Chapter 7: Solving Quixo
Quixo is a board game designed by Thierry Chapeau and published by Gigamic [13]. The game
shares some similar rules with tic-tac-toe but is played on a 5x5 board and is loopy. The game
can be played by either 2 or 4 players with slightly different rules. In this Chapter, we only
discuss the 2-player version of the game.

Quixo has previously been solved by Tanaka et al [14]. The initial position was shown to be a
drawing position for the original 5x5 version. The paper also discussed other variants of the
game including those played on 4x4 and 3x3 boards with four or three pieces in a row wins,
respectively. The paper shows that the initial position is a win for the first player in 21 moves for
the “4x4 four-in-a-row wins” variant, or win for the first player in 7 moves for the “3x3
three-in-a-row wins” variant. We successfully reproduced the results with an alternative solving
approach detailed in Chapters 3 and 4 of this report. The total size of the database for the
original “5x5 five-in-a-row” game is 79.9 GiB.

The game is implemented in GamesmanOne and solved with the built-in Tier Solver. The source
code for Quixo is located under the src/games/quixo/ directory. The results of the game are
published as an interactive gameplay interface on GamesmanUni.14

7.1 Rules
In this section and all subsequent sections, all definitions are given for the original “5x5
five-in-a-row” version of the game unless otherwise specified.

The game is played on a 5x5 grid of pieces with the blank side of all pieces initially facing up.
Player one controls the X pieces, and player two controls the O pieces. Player one goes first. At
each turn, the player can make two different types of moves:

1. Flip a piece on the border with the blank side facing up to their own symbol and move it
to one of the ends of the same row or column, sliding all pieces in between to fill up the
gap.

2. Move a piece on the border with their own symbol facing up to one of the ends of the
same row or column, and slide all pieces in between to fill up the gap.

For both of the two cases, the player is not allowed to keep the piece in place by claiming to
have moved it towards the direction of the border. For example, suppose it is O’s turn to make
the next move at the position as shown in Figure 7.1, the player is not allowed to move the only
piece with the O symbol facing up upwards.

14 https://nyc.cs.berkeley.edu/uni/games/quixo/variants.
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Figure 7.1: An example position in Quixo with O being the player to make the next move

The game is over once a five-in-a-row of the same symbol is formed. If only one type of
five-in-a-row is formed, then it is a win for the player who controls that symbol. If both types of
five-in-a-row are formed at the same time, it is a loss for the player who made the last move. For
example, consider the position shown Figure 7.2.1. Suppose it is now X’s turn to make the next
move. If X moves the red X piece to the right, O would win the game because a column of X
and a column of O are formed at the same time as shown in Figure 7.2.2.

Figure 7.2.1: Position before player X moving
the red X piece to the right

Figure 7.2.2: Position after the move - a winning
position for player O

Note that the rules guarantee that players will never run out of moves unless the game is over.
This is because the only way for a player to run out of moves is to have all pieces on the border
owned by the opponent. But if that is the case, the game must have come to an end in the
previous turn due to the formation of at least one five-in-a-row of the opponents pieces on the
border.
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7.2 Tier and Position Hash Definitions
The only type of irreversible moves in Quixo is the flipping of pieces. The rules state that pieces
with either an X or an O symbol facing up can never be flipped again. As a result, the number of
blank pieces cannot increase, and the number of X and O pieces can only go up throughout a
game.

A natural tier definition is to have each tier contain all positions that share the same set of
pieces on the board. Each tier can therefore be uniquely represented as a 3-tuple (blank, x,

o), where blank, x, and o are the number of blanks pieces, X’s, and O’s on the board,
respectively. As an example, the position shown in Figure 7.3 is in tier (6, 10, 9) because
there are 6 blanks, 10 X’s, and 9 O’s on the board.

Figure 7.3: An example position in tier (6, 10, 9) of 5x5 Quixo

The initial tier of the game is (25, 0, 0). The largest tiers of the game are (8, 8, 9), (8, 9,

8), and (9, 8, 8). Each one of these tiers has
𝑛𝐶𝑟(25, 9) × 𝑛𝐶𝑟(16, 8) × 𝑛𝐶𝑟(8, 8) = 26, 293, 088, 250

positions defined by rearranging the pieces.

Given the above tier definition, we can apply the combinatorially optimal hash algorithm to
obtain a position hash definition. The hash space for positions within a tier is therefore defined
to be all possible rearrangements of the pieces specified by the tier. Using the same example
above, tier (9, 8, 8) would have 26,293,088,250 hash values defined. Every integer between
0 and 26,293,088,249 is uniquely mapped to a possible rearrangement of 9 blanks, 8 X’s, and 8
O’s. Implementation-wise, the hashing of positions is handled automatically by the Generic
Hash module adapted from GamesmanClassic and reimplemented for GamesmanOne. An
overview of the combinatorially optimal hash algorithm is given in Chapter 2.
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7.3 Optimizations
Since the game uses a square board, symmetric positions can be found by rotating the board
90, 180, and 270 degrees, or mirroring the board along the central row or column and then
applying the same rotations above. There are at most 8 positions in a set of symmetric
positions. For some positions such as the initial position with all pieces’ blank side facing up, the
number of unique symmetric positions may be fewer than 8. The 8 positions shown in Figures
7.4.1 through 7.4.8 form a set of symmetric positions.

Figure 7.4.1: Original
position

Figure 7.4.2: Rotated
90° clockwise

Figure 7.4.3: Rotated
180°

Figure 7.4.4: Rotated
270° clockwise

Figure 7.4.5: Mirrored Figure 7.4.6: Mirrored
and rotated 90°

clockwise

Figure 7.4.7: Mirrored
and rotated 180°

Figure 7.4.8: Mirrored
and rotated 270°

clockwise

Unfortunately, tier symmetry removal is not possible for Quixo. As a counter-example, consider
the following two positions shown in Figures 7.5.1 and 7.5.2:
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Figure 7.5.1: A reachable position in tier (22,
2, 1), player O’s turn

Figure 7.5.2: An unreachable position in tier
(22, 1, 2), player X’s turn

The position in Figure 7.5.1 on the left is a reachable position in tier (22, 2, 1) with O being
the player to make the next move. By tier symmetry, this position is symmetric to the position in
Figure 7.5.2 in tier (22, 1, 2) with X being the player to make the next move. However, the
position on the right is not reachable via any valid sequence of moves from the initial position.
This shows that the two tiers (22, 2, 1) and (22, 1, 2) are not symmetric to each other by
the definition of tier symmetry.

Further analysis shows that most of the tiers with more symbols facing up are symmetric to each
other. However, we found no simple and verifiable way of identifying them without solving them.
Hence the solve for all Quixo variants in this report was carried out without tier symmetry
removal.

7.4 Results
We solved three different variants of the game: 5x5, 4x4, and 3x3, in which the number of
pieces in a row to win the game is adjusted to 5, 4, and 3 respectively. The 3x3 variant takes
less than a second to solve whereas the 4x4 variant is solved in 43 seconds with an Intel
i9-12900K. The 5x5 variant was mostly solved on the Savio cluster and partially on the
Perlmutter Supercomputer. Approximately 16,500 core hours were spent on the savio4_htc

partition of the Savio cluster, and approximately 24 hours were spent on Perlmutter using 4
compute nodes. At the time this report is written, the cost of each core hour on the savio4_htc

partition is 3.67 service units. An approximate total of 60,555 Savio service units were spent
solving the 5x5 variant of Quixo. Both the 4x4 and the 3x3 variants were then analyzed using
the built-in tier game analyzer in GamesmanOne, which performs a breadth-first traversal of the
game graph from the initial position. The output of the analyzer includes a value-remoteness
count of all positions, canonical positions, and one example position with the largest remoteness
discovered.
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7.4.1 5x5 Five-In-A-Row
5x5 is the original version of the game. The solver results show that the initial position is a
drawing position, which means that both players have a strategy not to lose the game. The total
database size is 85.8 GB.

The number of positions defined by the hash function is 1,694,577,218,886 (1.69 trillion). A
detailed analysis of game positions is still being constructed by the time this report is written.

7.4.2 4x4 Four-In-A-Row
A total of 82,497,861 positions were discovered in 4x4 Quixo, which gives a total database size
of 3.9 MB. The game is a win for the first player in 21 moves.

One of the longest wins is from the initial position (blank board), which has a remoteness of 21.
One longest loss is from the position shown in Figure 7.6 with O being the player to make the
next move. This position has a remoteness of 22, which means that player two will lose in 22
moves if both players follow their optimal strategies.

Figure 7.6: A position with the largest remoteness in 4x4 Quixo

The value-remoteness count of all positions and canonical positions of 4x4 Quixo is
summarized in Tables A.3 and A.4 respectively in Appendix A.

7.4.3 3x3 Three-In-A-Row
A total of 32,027 positions were discovered in 3x3 Quixo, and the total database size is 8.6 KB.
This variant is a win for the first player in 7 moves. One of the longest wins is the initial position
(blank board), which has a remoteness of 7. One of the longest losses is the position shown in
Figure 7.7 with O being the player to make the next move. This position has a remoteness of 8.
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Figure 7.7: A position with the largest remoteness in 3x3 Quixo

The value-remoteness count of all positions and canonical positions of 3x3 Quixo is
summarized in Tables A.5 and A.6 respectively in Appendix A.
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Chapter 8: Conclusion
In this report, we introduced an algorithm for solving loopy tier games, demonstrating its
application in various games and endgames. We successfully applied this algorithm to all
6-piece Chinese chess endgames and three distinct variants of Quixo, including the original 5x5
version. The games that we solved are summarized in Table 8.1.

Game No. Reachable Positions Database Size Approx. Solve Time
Chinese chess (6-piece

endgames) < 715,160,403,432 98.5 GB 5,500 core hours

Chinese chess (5-piece
endgames) < 4,738,622,370 515 MB 21.3 core hours

Quixo (5x5) < 1,694,577,218,886 85.8 GB 16,500 core hours
Quixo (4x4) 82,497,861 3.9 MB 0.191 core hour
Quixo (3x3) 32,027 8.6 KB < 0.001 core hour

Table 8.1: Summary of solved games

Notably, we unveiled GamesmanOne, a new parallel game-solving system designed for generic
two-player abstract strategy games. Featuring the parallel tier solver, GamesmanOne leverages
modern features of the C programming language, offering a system architecture that is both
easy to maintain and akin to the design of the original GamesmanClassic. This marks the first
instance within GamesCrafters of creating a scalable, parallel solving system capable of solving
both loopy and loop-free games at the level of high-performance computing. Game developers
acquainted with GamesmanClassic can now effortlessly transition to programming within
GamesmanOne, utilizing the Berkeley Savio computing cluster to solve games that previously
required custom solvers to finish in a reasonable amount of time.

While GamesmanOne has significantly enhanced solver performance and maintenance
efficiency, it is still in the process of incorporating some of the robust features available in
GamesmanClassic. In particular, specialized solving features such asWinBy15 and Grundy
numbers for combinatorial games are yet to be adapted. Currently, as discussed in Section 5.4,
GamesmanOne primarily utilizes the generic loopy tier solver, which has not yet harnessed the
unique properties of loop-free games. We are excited about the potential to integrate more of
GamesmanClassic’s features into GamesmanOne in upcoming developments.

Finally, we presented the results of solving Chinese chess endgames and Quixo. We
implemented a custom endgame solver for Chinese chess as part of the GamesmanXiangqi
project. The position with the largest remoteness that we discovered in all 6-piece Chinese
chess endgames under a simplified ruleset without move restrictions is 264. Quixo was
implemented as part of GamesmanOne and was solved using the built-in tier solver. The

15 An alternative measure of player utility. Following a perfect strategy defined by maximizing WinBy at a
winning position, players would choose the path that allows them to win by as much as possible as
opposed to as quickly as possible. A perfect strategy at losing positions is similarly defined.
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original Quixo game is a draw game at the starting position, whereas the 4x4 and 3x3 variants
are both wins for the first player in 21 and 7 moves, respectively.
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Appendix A: Game Statistics

A.1 Value-Remoteness Counts for 6-Piece Endgames of Chinese chess16

Remoteness Win Lose Draw Total
Inf 0 0 108,689,963,230 108,689,963,230
264 0 4 0 4
263 4 0 0 4
262 0 16 0 16
261 4 0 0 4
260 0 116 0 116
259 64 0 0 64
258 0 192 0 192
257 244 0 0 244
256 0 828 0 828
255 644 0 0 644
254 0 1,716 0 1,716
253 1,348 0 0 1,348
252 0 3,980 0 3,980
251 2,792 0 0 2,792
250 0 9,188 0 9,188
249 6,660 0 0 6,660
248 0 17,936 0 17,936
247 11,464 0 0 11,464
246 0 27,376 0 27,376
245 16,652 0 0 16,652
244 0 34,568 0 34,568
243 20,864 0 0 20,864
242 0 32,844 0 32,844
241 18,372 0 0 18,372
240 0 32,148 0 32,148
239 19,632 0 0 19,632
238 0 34,952 0 34,952
237 21,552 0 0 21,552
236 0 45,920 0 45,920
235 28,116 0 0 28,116
234 0 66,112 0 66,112
233 38,384 0 0 38,384
232 0 80,672 0 80,672

16 Under a simplified ruleset that allows any number of repetitions of the same position; also contains
unreachable positions that appear to be legal.
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231 50,472 0 0 50,472
230 0 96,688 0 96,688
229 63,144 0 0 63,144
228 0 100,064 0 100,064
227 67,240 0 0 67,240
226 0 99,996 0 99,996
225 70,900 0 0 70,900
224 0 113,340 0 113,340
223 82,052 0 0 82,052
222 0 132,060 0 132,060
221 98,676 0 0 98,676
220 0 153,976 0 153,976
219 116,132 0 0 116,132
218 0 195,980 0 195,980
217 150,740 0 0 150,740
216 0 239,324 0 239,324
215 187,708 0 0 187,708
214 0 285,024 0 285,024
213 216,480 0 0 216,480
212 0 324,368 0 324,368
211 243,300 0 0 243,300
210 0 370,772 0 370,772
209 274,612 0 0 274,612
208 0 426,592 0 426,592
207 315,620 0 0 315,620
206 0 513,520 0 513,520
205 388,446 0 0 388,446
204 0 654,980 0 654,980
203 486,904 0 0 486,904
202 0 818,084 0 818,084
201 598,230 0 0 598,230
200 0 991,444 0 991,444
199 693,576 0 0 693,576
198 0 1,124,206 0 1,124,206
197 776,014 0 0 776,014
196 0 1,315,632 0 1,315,632
195 882,928 0 0 882,928
194 0 1,498,450 0 1,498,450
193 995,278 0 0 995,278
192 0 1,658,692 0 1,658,692
191 1,091,232 0 0 1,091,232
190 0 1,786,442 0 1,786,442
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189 1,159,692 0 0 1,159,692
188 0 1,941,452 0 1,941,452
187 1,240,686 0 0 1,240,686
186 0 2,101,014 0 2,101,014
185 1,347,910 0 0 1,347,910
184 0 2,359,042 0 2,359,042
183 1,511,536 0 0 1,511,536
182 0 2,735,008 0 2,735,008
181 1,729,150 0 0 1,729,150
180 0 3,118,920 0 3,118,920
179 1,923,044 0 0 1,923,044
178 0 3,529,848 0 3,529,848
177 2,128,568 0 0 2,128,568
176 0 3,868,438 0 3,868,438
175 2,347,128 0 0 2,347,128
174 0 4,247,086 0 4,247,086
173 2,576,306 0 0 2,576,306
172 0 4,634,856 0 4,634,856
171 2,838,146 0 0 2,838,146
170 0 5,156,476 0 5,156,476
169 3,171,098 0 0 3,171,098
168 0 5,695,920 0 5,695,920
167 3,503,888 0 0 3,503,888
166 0 6,442,086 0 6,442,086
165 3,929,008 0 0 3,929,008
164 0 7,384,988 0 7,384,988
163 4,456,958 0 0 4,456,958
162 0 8,474,580 0 8,474,580
161 5,093,372 0 0 5,093,372
160 0 9,725,758 0 9,725,758
159 5,833,100 0 0 5,833,100
158 0 10,986,328 0 10,986,328
157 6,581,028 0 0 6,581,028
156 0 12,163,310 0 12,163,310
155 7,384,092 0 0 7,384,092
154 0 13,326,196 0 13,326,196
153 8,146,742 0 0 8,146,742
152 0 14,457,668 0 14,457,668
151 8,919,718 0 0 8,919,718
150 0 15,599,050 0 15,599,050
149 9,842,842 0 0 9,842,842
148 0 16,586,928 0 16,586,928
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147 10,644,244 0 0 10,644,244
146 0 17,310,602 0 17,310,602
145 11,197,984 0 0 11,197,984
144 0 17,696,728 0 17,696,728
143 11,421,890 0 0 11,421,890
142 0 17,869,814 0 17,869,814
141 11,502,352 0 0 11,502,352
140 0 17,970,150 0 17,970,150
139 11,584,104 0 0 11,584,104
138 0 18,046,788 0 18,046,788
137 11,627,768 0 0 11,627,768
136 0 17,992,772 0 17,992,772
135 11,641,504 0 0 11,641,504
134 0 17,881,132 0 17,881,132
133 11,771,920 0 0 11,771,920
132 0 18,201,142 0 18,201,142
131 12,132,676 0 0 12,132,676
130 0 18,809,138 0 18,809,138
129 12,736,104 0 0 12,736,104
128 0 19,493,014 0 19,493,014
127 13,412,532 0 0 13,412,532
126 0 20,676,294 0 20,676,294
125 14,397,412 0 0 14,397,412
124 0 22,060,596 0 22,060,596
123 15,413,704 0 0 15,413,704
122 0 23,724,326 0 23,724,326
121 16,738,974 0 0 16,738,974
120 0 25,490,194 0 25,490,194
119 17,975,716 0 0 17,975,716
118 0 27,573,008 0 27,573,008
117 19,566,968 0 0 19,566,968
116 0 29,972,052 0 29,972,052
115 21,495,676 0 0 21,495,676
114 0 32,508,920 0 32,508,920
113 23,568,544 0 0 23,568,544
112 0 34,921,768 0 34,921,768
111 25,435,204 0 0 25,435,204
110 0 37,437,406 0 37,437,406
109 27,238,716 0 0 27,238,716
108 0 40,245,740 0 40,245,740
107 29,613,626 0 0 29,613,626
106 0 44,265,818 0 44,265,818
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105 32,838,878 0 0 32,838,878
104 0 49,411,034 0 49,411,034
103 36,897,676 0 0 36,897,676
102 0 55,585,880 0 55,585,880
101 41,154,282 0 0 41,154,282
100 0 63,343,666 0 63,343,666
99 46,566,832 0 0 46,566,832
98 0 74,798,992 0 74,798,992
97 53,933,866 0 0 53,933,866
96 0 88,683,668 0 88,683,668
95 62,965,472 0 0 62,965,472
94 0 100,012,026 0 100,012,026
93 71,267,244 0 0 71,267,244
92 0 107,597,220 0 107,597,220
91 78,330,972 0 0 78,330,972
90 0 113,994,258 0 113,994,258
89 85,170,562 0 0 85,170,562
88 0 117,876,972 0 117,876,972
87 89,178,770 0 0 89,178,770
86 0 121,701,982 0 121,701,982
85 93,086,600 0 0 93,086,600
84 0 126,473,708 0 126,473,708
83 96,952,940 0 0 96,952,940
82 0 134,342,064 0 134,342,064
81 102,219,848 0 0 102,219,848
80 0 144,431,998 0 144,431,998
79 108,380,054 0 0 108,380,054
78 0 154,413,924 0 154,413,924
77 115,812,224 0 0 115,812,224
76 0 164,193,532 0 164,193,532
75 124,586,918 0 0 124,586,918
74 0 172,506,448 0 172,506,448
73 132,008,814 0 0 132,008,814
72 0 182,777,102 0 182,777,102
71 139,792,294 0 0 139,792,294
70 0 199,487,938 0 199,487,938
69 154,463,678 0 0 154,463,678
68 0 224,437,022 0 224,437,022
67 174,638,152 0 0 174,638,152
66 0 249,715,562 0 249,715,562
65 197,323,438 0 0 197,323,438
64 0 273,327,158 0 273,327,158
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63 221,660,100 0 0 221,660,100
62 0 300,142,220 0 300,142,220
61 248,529,722 0 0 248,529,722
60 0 337,201,984 0 337,201,984
59 283,830,126 0 0 283,830,126
58 0 395,259,138 0 395,259,138
57 333,647,650 0 0 333,647,650
56 0 478,024,514 0 478,024,514
55 397,966,918 0 0 397,966,918
54 0 584,591,368 0 584,591,368
53 489,322,908 0 0 489,322,908
52 0 702,590,774 0 702,590,774
51 601,359,198 0 0 601,359,198
50 0 808,985,936 0 808,985,936
49 731,576,742 0 0 731,576,742
48 0 901,628,934 0 901,628,934
47 880,141,000 0 0 880,141,000
46 0 986,631,852 0 986,631,852
45 1,015,942,558 0 0 1,015,942,558
44 0 1,082,386,540 0 1,082,386,540
43 1,155,081,690 0 0 1,155,081,690
42 0 1,207,944,708 0 1,207,944,708
41 1,302,644,356 0 0 1,302,644,356
40 0 1,366,999,344 0 1,366,999,344
39 1,467,214,384 0 0 1,467,214,384
38 0 1,570,792,616 0 1,570,792,616
37 1,688,516,138 0 0 1,688,516,138
36 0 1,823,655,036 0 1,823,655,036
35 1,991,580,846 0 0 1,991,580,846
34 0 2,131,897,642 0 2,131,897,642
33 2,453,266,140 0 0 2,453,266,140
32 0 2,611,323,006 0 2,611,323,006
31 2,963,492,588 0 0 2,963,492,588
30 0 3,268,554,492 0 3,268,554,492
29 3,419,605,054 0 0 3,419,605,054
28 0 4,064,915,646 0 4,064,915,646
27 3,938,085,710 0 0 3,938,085,710
26 0 5,059,776,454 0 5,059,776,454
25 4,594,868,340 0 0 4,594,868,340
24 0 6,395,869,382 0 6,395,869,382
23 5,579,815,464 0 0 5,579,815,464
22 0 7,903,021,218 0 7,903,021,218
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21 6,842,575,510 0 0 6,842,575,510
20 0 9,502,322,114 0 9,502,322,114
19 8,277,998,474 0 0 8,277,998,474
18 0 11,459,528,160 0 11,459,528,160
17 10,023,031,346 0 0 10,023,031,346
16 0 13,602,205,976 0 13,602,205,976
15 12,216,063,394 0 0 12,216,063,394
14 0 15,846,000,568 0 15,846,000,568
13 15,211,528,586 0 0 15,211,528,586
12 0 19,445,656,352 0 19,445,656,352
11 18,730,750,170 0 0 18,730,750,170
10 0 24,267,860,064 0 24,267,860,064
9 21,829,205,722 0 0 21,829,205,722
8 0 28,912,963,268 0 28,912,963,268
7 27,928,089,414 0 0 27,928,089,414
6 0 36,355,592,446 0 36,355,592,446
5 41,597,868,224 0 0 41,597,868,224
4 0 45,783,130,992 0 45,783,130,992
3 53,457,032,748 0 0 53,457,032,748
2 0 32,355,827,704 0 32,355,827,704
1 54,891,584,468 0 0 54,891,584,468
0 0 12,113,813,732 0 12,113,813,732

Totals 309,236,263,312 297,234,176,890 108,689,963,230 715,160,403,432
Total size of database: 98.49 GB

Table A.1: Value-remoteness counts for 6-piece endgames of Chinese chess

Figure A.1: Number of positions vs. remoteness in Chinese chess 6-piece endgames
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A.2 Value-Remoteness Counts for 5-Piece Endgames of Chinese chess17

Remoteness Win Lose Draw Total
Inf 0 0 821,847,928 821,847,928
154 0 32 0 32
153 8 0 0 8
152 0 156 0 156
151 40 0 0 40
150 0 372 0 372
149 100 0 0 100
148 0 1,296 0 1,296
147 368 0 0 368
146 0 1,864 0 1,864
145 616 0 0 616
144 0 4,236 0 4,236
143 1,452 0 0 1,452
142 0 5,952 0 5,952
141 2,076 0 0 2,076
140 0 7,448 0 7,448
139 2,700 0 0 2,700
138 0 8,368 0 8,368
137 2,924 0 0 2,924
136 0 9,004 0 9,004
135 3,256 0 0 3,256
134 0 9,112 0 9,112
133 3,120 0 0 3,120
132 0 9,536 0 9,536
131 3,672 0 0 3,672
130 0 10,784 0 10,784
129 4,184 0 0 4,184
128 0 13,472 0 13,472
127 4,648 0 0 4,648
126 0 13,728 0 13,728
125 4,768 0 0 4,768
124 0 16,632 0 16,632
123 5,880 0 0 5,880
122 0 18,500 0 18,500
121 7,052 0 0 7,052
120 0 25,432 0 25,432
119 9,372 0 0 9,372

17 Under a simplified ruleset that allows any number of repetitions of the same position; also contains
unreachable positions that appear to be legal.
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118 0 27,016 0 27,016
117 11,144 0 0 11,144
116 0 31,476 0 31,476
115 14,168 0 0 14,168
114 0 37,108 0 37,108
113 16,856 0 0 16,856
112 0 43,664 0 43,664
111 20,564 0 0 20,564
110 0 47,940 0 47,940
109 21,852 0 0 21,852
108 0 50,936 0 50,936
107 24,056 0 0 24,056
106 0 59,432 0 59,432
105 29,188 0 0 29,188
104 0 70,018 0 70,018
103 38,332 0 0 38,332
102 0 88,014 0 88,014
101 47,360 0 0 47,360
100 0 103,576 0 103,576
99 53,212 0 0 53,212
98 0 121,380 0 121,380
97 61,662 0 0 61,662
96 0 170,128 0 170,128
95 73,830 0 0 73,830
94 0 229,770 0 229,770
93 87,020 0 0 87,020
92 0 274,860 0 274,860
91 98,848 0 0 98,848
90 0 294,396 0 294,396
89 109,376 0 0 109,376
88 0 331,964 0 331,964
87 124,342 0 0 124,342
86 0 320,472 0 320,472
85 130,692 0 0 130,692
84 0 320,268 0 320,268
83 142,952 0 0 142,952
82 0 309,528 0 309,528
81 152,894 0 0 152,894
80 0 319,844 0 319,844
79 161,882 0 0 161,882
78 0 303,588 0 303,588
77 157,344 0 0 157,344

97



76 0 258,782 0 258,782
75 152,842 0 0 152,842
74 0 259,338 0 259,338
73 143,824 0 0 143,824
72 0 246,400 0 246,400
71 140,520 0 0 140,520
70 0 233,220 0 233,220
69 140,990 0 0 140,990
68 0 296,254 0 296,254
67 156,988 0 0 156,988
66 0 374,200 0 374,200
65 179,474 0 0 179,474
64 0 393,624 0 393,624
63 201,862 0 0 201,862
62 0 449,190 0 449,190
61 234,218 0 0 234,218
60 0 522,176 0 522,176
59 294,384 0 0 294,384
58 0 595,954 0 595,954
57 391,082 0 0 391,082
56 0 816,184 0 816,184
55 519,498 0 0 519,498
54 0 963,814 0 963,814
53 651,674 0 0 651,674
52 0 1,330,654 0 1,330,654
51 824,804 0 0 824,804
50 0 1,972,266 0 1,972,266
49 1,127,634 0 0 1,127,634
48 0 2,998,068 0 2,998,068
47 1,627,882 0 0 1,627,882
46 0 5,424,882 0 5,424,882
45 2,671,364 0 0 2,671,364
44 0 7,972,312 0 7,972,312
43 4,147,626 0 0 4,147,626
42 0 9,975,044 0 9,975,044
41 5,784,408 0 0 5,784,408
40 0 11,219,758 0 11,219,758
39 7,180,862 0 0 7,180,862
38 0 12,690,314 0 12,690,314
37 8,837,370 0 0 8,837,370
36 0 14,961,618 0 14,961,618
35 10,726,440 0 0 10,726,440
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34 0 18,684,216 0 18,684,216
33 13,070,356 0 0 13,070,356
32 0 26,971,560 0 26,971,560
31 17,324,788 0 0 17,324,788
30 0 33,907,268 0 33,907,268
29 22,051,058 0 0 22,051,058
28 0 35,868,820 0 35,868,820
27 26,069,168 0 0 26,069,168
26 0 37,581,648 0 37,581,648
25 30,516,104 0 0 30,516,104
24 0 40,065,274 0 40,065,274
23 36,320,024 0 0 36,320,024
22 0 45,316,598 0 45,316,598
21 42,680,326 0 0 42,680,326
20 0 51,206,758 0 51,206,758
19 46,104,728 0 0 46,104,728
18 0 55,464,432 0 55,464,432
17 50,343,052 0 0 50,343,052
16 0 61,542,590 0 61,542,590
15 59,856,364 0 0 59,856,364
14 0 76,010,992 0 76,010,992
13 77,140,512 0 0 77,140,512
12 0 123,191,232 0 123,191,232
11 111,418,058 0 0 111,418,058
10 0 163,020,926 0 163,020,926
9 142,284,216 0 0 142,284,216
8 0 189,893,024 0 189,893,024
7 191,681,308 0 0 191,681,308
6 0 233,470,974 0 233,470,974
5 284,042,826 0 0 284,042,826
4 0 373,476,452 0 373,476,452
3 386,924,158 0 0 386,924,158
2 0 249,568,120 0 249,568,120
1 362,490,704 0 0 362,490,704
0 0 75,780,898 0 75,780,898

Totals 1,948,087,306 1,968,687,136 821,847,928 4,738,622,370
Total size of database: 515.4 MB

Table A.2: Value-remoteness counts for 5-piece endgames of Chinese chess
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Figure A.2: Number of positions vs. remoteness in Chinese chess 5-piece endgames

A.3 Value-Remoteness Counts for All Positions in 4x4 Quixo
Remoteness Win Lose Draw Total

Inf 0 0 3,213,236 3,213,236
22 0 16 0 16
21 113 0 0 113
20 0 900 0 900
19 1,960 0 0 1,960
18 0 7,648 0 7,648
17 13,096 0 0 13,096
16 0 35,196 0 35,196
15 57,480 0 0 57,480
14 0 130,128 0 130,128
13 198,104 0 0 198,104
12 0 362,596 0 362,596
11 570,664 0 0 570,664
10 0 870,196 0 870,196
9 1,306,060 0 0 1,306,060
8 0 2,053,168 0 2,053,168
7 2,406,956 0 0 2,406,956
6 0 3,937,940 0 3,937,940
5 3,449,514 0 0 3,449,514
4 0 5,897,464 0 5,897,464
3 4,771,444 0 0 4,771,444
2 0 7,474,656 0 7,474,656
1 29,911,388 972 0 29,912,360
0 7,267,200 8,559,766 0 15,826,966

Totals 49,953,979 29,330,646 3,213,236 82,497,861
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Hash space: 86093442 Hash efficiency: 0.958236
Total size of database: 3.9 MB

Table A.3: Value-remoteness counts for all positions in 4x4 Quixo

Figure A.3: Number of positions vs. remoteness in 4x4 Quixo

A.4 Value-Remoteness Counts for Canonical Positions in 4x4 Quixo
Remoteness Win Lose Draw Total

Inf 0 0 402,690 402,690
22 0 2 0 2
21 15 0 0 15
20 0 115 0 115
19 248 0 0 248
18 0 961 0 961
17 1,654 0 0 1,654
16 0 4,422 0 4,422
15 7,227 0 0 7,227
14 0 16,314 0 16,314
13 24,859 0 0 24,859
12 0 45,457 0 45,457
11 71,575 0 0 71,575
10 0 109,142 0 109,142
9 163,717 0 0 163,717
8 0 257,248 0 257,248
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7 301,729 0 0 301,729
6 0 493,344 0 493,344
5 432,297 0 0 432,297
4 0 738,742 0 738,742
3 599,421 0 0 599,421
2 0 938,430 0 938,430
1 3,743,934 168 0 3,744,102
0 911,576 1,073,957 0 1,985,533

Totals 6,258,252 3,678,302 402,690 10,339,244
Table A.4: Value-remoteness counts for canonical positions in 4x4 Quixo

A.5 Value-Remoteness Counts for All Positions in 3x3 Quixo
Remoteness Win Lose Draw Total

Inf 0 0 1,532 1,532
8 0 16 0 16
7 37 0 0 37
6 0 98 0 98
5 294 0 0 294
4 0 868 0 868
3 1,038 0 0 1,038
2 0 3,376 0 3,376
1 12,978 20 0 12,998
0 5,080 6,690 0 11,770

Totals 19,427 11,068 1,532 32,027
Hash space: 39366 Hash efficiency: 0.813570

Total size of database: 8.6 KB
Table A.5: Value-remoteness counts for all positions in 3x3 Quixo
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Figure A.4: Number of positions vs. remoteness in 3x3 Quixo

A.6 Value-Remoteness Counts for Canonical Positions in 3x3 Quixo
Remoteness Win Lose Draw Total

Inf 0 0 218 218
8 0 3 0 3
7 7 0 0 7
6 0 14 0 14
5 41 0 0 41
4 0 121 0 121
3 152 0 0 152
2 0 482 0 482
1 1,745 6 0 1,751
0 706 938 0 1,644

Totals 2,651 1,564 218 4,433
Table A.6: Value-remoteness counts for canonical positions in 3x3 Quixo
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