
Autonomous Assessment of Demonstration

Sufficiency

Alina Trinh

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-89

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-89.html

May 10, 2024



Copyright © 2024, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
Thank you to my advisor Professor Stuart Russell for your insightful
discussions and mentorship throughout the years. Thank you to Professor
Daniel S. Brown for your never-ending guidance and encouragement that
have helped me grow immensely as a researcher. Thank you to all my
labmates, colleagues, and co-authors at BAIR, CHAI, and the University of
Utah for showing me the ropes and inspiring me every day. And thank you
to my family, for their unwavering love and support throughout my
academic journey are the foundations of my success today.



AUTONOMOUS ASSESSMENT OF DEMONSTRATION SUFFICIENCY

by

Tu Trinh

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Stuart J. Russell, Advisor
Professor Pieter Abbeel, Second Reader

Spring 2024



The thesis of Tu Trinh, titled AUTONOMOUS ASSESSMENT OF DEMONSTRATION
SUFFICIENCY, is approved:

Advisor Date

Second Reader Date

University of California, Berkeley

Stuart Russell
5/1/24

Pieter Abbeel
5/10/24



AUTONOMOUS ASSESSMENT OF DEMONSTRATION SUFFICIENCY

Copyright 2024
by

Tu Trinh



1

Abstract

AUTONOMOUS ASSESSMENT OF DEMONSTRATION SUFFICIENCY

by

Tu Trinh

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Stuart J. Russell, Advisor

Professor Pieter Abbeel, Second Reader

In this thesis we examine the problem of demonstration sufficiency: how can an agent self-
assess whether or not it has received enough demonstrations from an expert to ensure a desired
level of performance? To address this problem, we propose a novel self-assessment approach
based on Bayesian inverse reinforcement learning and value-at-risk, enabling learning-from-
demonstration (“LfD”) agents to compute high-confidence bounds on their performance and use
these bounds to determine when they have received a sufficient number of demonstrations. We
propose and evaluate two definitions of sufficiency: (1) normalized expected value difference,
which measures regret with respect to the human’s unobserved reward function, and (2)
percent improvement over a baseline policy. We demonstrate how to formulate high-confidence
bounds on both of these metrics. We evaluate our approach in simulation in both discrete and
continuous state-space domains and illustrate the feasibility of developing a robotic system
that can accurately evaluate demonstration sufficiency. We also show how the agent can
utilize active learning in asking for demonstrations from specific states which results in fewer
demos needed for the agent to still maintain high confidence in its policy. Finally, via a user
study, we show that our approach successfully enables agents to accomplish tasks at users’
desired performance levels, without needing too many or perfectly optimal demonstrations.
This thesis is an extended version of [49].
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1 Introduction
Imagine an agent that must learn how to navigate across uneven terrains, help scientists
conduct chemistry lab experiments, or assemble materials in a construction site. These are
all examples of safety-critical settings where it is crucial that the agent’s likelihood of failure
is near zero, but also where the environment and task may be too complex for the human to
decompose into a comprehensive reward function for use in standard (deep) reinforcement
learning techniques to steer the agent’s behavior. In such cases we turn to learning from
demonstration (LfD) [3, 43] where we can teach the agent how best to accomplish these tasks
by providing examples in action. The key question here becomes, how many demonstrations
must we provide before we can be confident that the agent has learned the task successfully?
We can try to generate as many demonstrations as possible, feed them to the agent, and cross
our fingers hoping that they will be enough. But what will happen if they are uninformative,
ambiguous, or missing important states, conditions, or trajectories? Should we resign to
closely monitoring the agent every time it attempts to perform the task, negating the benefits
of an otherwise semi-autonomous assistant?

Such considerations focus on how the human can be responsible for the agent’s learning
success, which can require much time, effort, and resources. In this thesis, we focus on
how some of this burden can be lifted from the human and placed on the AI agent instead.
Particularly, we examine the problem of demonstration sufficiency, in which the agent
can self-assess whether or not it has received enough training examples in order to achieve a
desired level of performance on a given task—even if it does not know the demonstrator’s
true, intended reward function.

Our main insight is the following: maintaining a belief distribution over the demonstrator’s
true, but unobserved, reward function, enables an agent to reason about its performance
under this distribution and determine, with high-confidence, when it has received enough
demonstrations to satisfy a desired performance threshold.

To maintain a belief distribution over reward functions, we propose a novel application
of Bayesian IRL (BIRL) [42] that uses samples from the posterior distribution over reward
functions, given demonstrations, to enable the agent to evaluate its current learned policy
and determine how confident it is that this policy has sufficiently good performance. We
propose two definitions of demonstration sufficiency: (1) whether, with high confidence, the
learned policy has low regret compared to the optimal policy under the unobserved reward
function of the demonstrator and (2) whether the learned policy will, with high confidence,
outperform a given baseline policy (e.g., a policy that is known to be safe but is suboptimal)
by a desired margin. Our approach allows an agent to self-assess when it has received enough
demonstrations to enable it to meet one of the above performance criteria.

By proposing a Bayesian approach to demonstration sufficiency self-assessment, we
encourage agents to properly reason about and under uncertainty. For example, if the human
demonstrator happens to provide redundant or ambiguous demonstrations, the agent will
have a high level of uncertainty regarding the humans’ true intention, leading it to continue to
ask for additional demonstrations. Each time the agent receives a new demonstration, it can
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Figure 1: Demonstration sufficiency: Pictured is an illustrative living room in which the
demonstrator is seeking to teach the agent to reach the coffee table while avoiding the
expensive rugs. That is, the table has large positive reward and the rugs have large negative
reward. (Left) The agent receives two demonstrations (the black arrows) from the human
but, through our self-assessment method discussed below, deems them insufficient for it to be
highly confident that its learned policy has low regret–it does not yet have strong evidence
about the relative rewards of the different features in the room. (Right) The agent receives
an additional two demonstrations and, after applying our method, deems them sufficient to
guarantee with high confidence that its learned policy will have low regret if evaluated under
the unobserved, true reward function.

then reassess its uncertainty and evaluate its performance under the posterior distribution of
likely rewards. Eventually, one of two outcomes can occur:

• The agent determines that the current demonstrations have been sufficient in teaching
it the task and signals to the demonstrator that it does not require any further training
examples. It is now ready to be deployed (or transferred to subsequent training stages
or testing stages).

• The agent determines that all of the demonstrations provided are still insufficient. It
remains unconfident it can perform the task as desired and abstains from doing anything
hasty or unsafe.

Figure 1 shows an illustrative example of this process.
An important benefit of this self-assessment approach is that it removes the need for the

human to predict when the agent has had enough training data. Indeed, it is often difficult
for humans to inspect an agent’s policy or learned reward function to determine whether it is
aligned with their intent. We argue that agents should instead be able to self-assess their
performance, relative to their uncertainty over the human’s intent.

In the following pages, we formalize the problem of demonstration sufficiency assessment,
derive how an agent can self-assess its performance using the two stopping conditions proposed
above, and evaluate our approach across several domains using both simulated demonstrations
and human-provided demonstrations in a user study.
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2 Related Work
This work falls under the area of autonomous self-assessment of agents and other AI systems.
Previous work examines how an agent can assess its performance and communicate its
shortcomings to a human expert [40, 17]; however, most existing performance metrics and
studies do not involve learning from demonstration, and those that do, focus on communication
and knowledge-sharing [32, 27] rather than addressing how an AI agent can directly self-assess
whether a learned policy or reward function is above a desired safety threshold.

Another prior work [7] studies optimal stopping for agent teaching but uses information
gain from pairwise preferences instead of policy performance estimated from demonstrations.
Other works have looked at knowing when to stop collecting demonstrations for behavioral
cloning when performing sim2real transfer [45] or knowing when an agent can guarantee high
confidence itself in learning to grasp an unknown object [22], but they do not consider the
inverse reinforcement learning setting considered in this thesis.

Prior work does consider high-confidence performance bounds for inverse reinforcement
learning [1, 47]. However, the bounds obtained by these methods are generally loose and
correlate to a high number of training examples needed to show the agent. We build off more
recent work [13, 15, 14] that demonstrate tighter bounds on performance but do not consider
how these bounds can be used for autonomous assessment of demonstration sufficiency.

Finally, our work is also related to pedagogic teaching by demonstrations which studies
how to craft demonstrations that will be maximally informative [18, 16, 31, 51, 33]; however,
such prior work only considers this problem from the teacher’s perspective and assumes that
the teacher has privileged information about the student’s learning algorithm, as well as
complete knowledge of the reward function they seek to teach. By contrast, we focus on
developing algorithms from the student’s perspective, i.e., algorithms that allow the agent
to know when it has received sufficient demonstrations, without any assumptions about the
demonstrations being highly informative.

3 Preliminaries

Markov Decision Processes

We model the environments that our agent (AI system, robot, etc.) interacts with as a
Markov decision process (MDP). An MDP is a five-tuple M = ⟨S,A, T,R, γ⟩ consisting
of

• S: the set of states in the environment, following an initial state distribution S0

• A: the set of actions the agent can take from each state

• T : a transition function S × A× S → [0, 1] that denotes the probabilities of landing in
a state s′ after the agent takes action a from state s
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• R: a reward function, either S → r, the reward an agent obtains by arriving at a state
s (the definition this work uses), or S × A → r, the reward it gets by taking action a
from state s, or S ×A× S → r, the reward it gets by taking action a from state s and
landing in state s′

• γ: a discount factor ∈ (0, 1) that controls how future rewards are discounted from their
original value

Following prior work [1, 53, 13, 29, 4], we assume that the reward function R can be
defined in terms of a linear combination of features: for an MDP with features ϕ(s) ∈ Rk,
R(s) = wTϕ(s) where w ∈ Rk is a vector of feature weights.

A policy π is a mapping from states to a probability distribution over actions. Each
state has a value, defined as

V π
R (s) = Eπ

[
∞∑
t=0

γtR(st)|s0 = s

]

or the expected discounted reward to be gained by starting in that state. The total discounted
reward expected to be gained by following a particular policy π is denoted as

V π
R = Es∼S0V

π
R (s)

Values are calculated not only for states but also for state-action pairs. The Q-value
function for a state-action pair denotes expected discounted reward to be gained by starting
in a state s and taking action a. It is defined as

Qπ
R(s, a) = R(s) + γ

∑
s′∈S

T (s, a, s′)V π
R (s

′)

Given this, we can obtain the optimal policy for an MDP—the state to action distribution
mapping that will yield the highest expected reward—as

π∗(s) = argmax
a

Q(s, a)

for each state.

Bayesian Inverse Reinforcement Learning

In inverse reinforcement learning (IRL) [53, 4], we seek the unknown, underlying reward
function of an MDP given demonstrations [39]. We denote a set of demonstrations by D,
which we define to be a set of state-action pairs: D = {(s1, a1), . . . , (sn, an)}. Bayesian
inverse reinforcement learning (BIRL) [42] is a form of IRL that estimates the posterior
distribution over reward functions given demonstrations, P (R|D) ∝ P (D|R)P (R), where
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the demonstrator is assumed to follow a softmax policy, leading to the following likelihood
function:

P (D|R) =
∏

(s,a)∈D

P ((s, a)|R) =
∏

(s,a)∈D

eβQ
∗
R(s,a)∑

b∈A eβQ
∗
R(s,b)

(1)

where β ∈ [0,∞) represents the confidence in the demonstrator’s optimality (a higher β means
the demonstrator is more likely to give optimal demonstrations) and Q∗

R(s, a) = maxπ Q
π
R(s, a)

is the optimal Q-value for a state and action under the reward function R. Equation (1)
assigns higher likelihoods to demonstrated actions that result in higher Q-values under R
compared to alternative actions. Eq. (1) is an example of Boltzmann rationality, a model
that has found widespread utility in economics [11, 36], psychology [5, 24, 25], and AI [54, 20,
8, 21, 28, 34] as a useful model of human decision-making and can be seen as the maximum
entropy distribution over choices for a satisficing agent [28].

Markov Chain Monte Carlo Sampling

Markov chain Monte Carlo (MCMC) sampling [38] is a statistical technique used to
generate samples from a probability distribution P by constructing a Markov chain that has
P as its equilibrium distribution. The Metropolis-Hastings algorithm [26], a widely used
MCMC method, enables sampling when the form of the target distribution P is known
only up to a normalizing constant. At each iteration of the algorithm, a new sample is
drawn from a proposal distribution P̃ centered at the current sample and is accepted with
some probability dependent on the ratio of the two samples’ likelihoods under P . Most
applications of BIRL, including ours, use Metropolis-Hastings in order to sample from the
posterior P (R|D) [42], assuming a uniform prior distribution, though this distribution can
take on any form depending on the domain and can be a way for human demonstrators to
inject domain knowledge into the agent.

Value-at-Risk

Value-at-risk is a probabilistic measure of worst-case performance [30, 48]. The α-Value-
at-Risk, or α-VaR, is the α-worst-case value of a random variable Z, where α ∈ (0, 1) is the
quantile level. This is defined as

να(Z) = F−1
Z (α) = inf{z : FZ(z) ≥ α} (2)

where FZ(z) = P (Z ≤ z), the cumulative distribution function of Z. The higher the value of
α, the more risk-sensitive we are.
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4 Method

Problem Definition

Our aim is to determine whether or not an agent has received sufficient demonstrations in
order to complete a task in a way that aligns with the expert’s intended policy derived from
their unobserved reward function R∗. We first study how agents can quantify their assessment
of the goodness of their policy compared to the expert’s by using high-confidence bounds
on regret. The agent should request more demonstrations if it is not yet highly confident
that its learned policy will have low regret compared to the expert’s, and it should declare
demonstration sufficiency if it is highly confident.

Formally, given an MDP with an unobserved reward function R∗, a set of demonstrations
D, a confidence parameter α, and a performance threshold ϵ, we want the agent to be able to
determine when it is α-confident that its policy regret, if evaluated under the demonstrator’s
true reward function R∗, is no worse than ϵ. Thus, demonstration sufficiency is achieved
when

P (regret(πagent, R
∗) ≤ ϵ |D) ≥ α (3)

In this work, we use α = 0.95 and provide results for varying values of ϵ. Note that in
practice, πagent can be any agent policy. In our work, we set πagent to be πMAP, the optimal
policy corresponding to the maximum a posteriori reward estimate RMAP learned by the agent
during Bayesian IRL. This policy is retrieved using value iteration and policy extraction.

Determining Demonstration Sufficiency

We must now select a measure of regret. Prior work on IRL [42, 35, 50, 13, 15] has typically
used a measure of policy regret (also known as “policy loss”) called the expected value
difference (EVD), defined as

EVD(πagent, R
∗) = V ∗

R∗ − V
πagent
R∗ (4)

While this is a common metric for comparing different IRL algorithms, reward functions are
equivalent under positive scaling and affine shifts [39, 2], making a threshold defined in raw
reward units likely uninterpretable to human demonstrators and other stakeholders. Thus,
we propose the use of demonstration sufficiency thresholds defined in terms of normalized
expected value difference (nEVD):

regret(πagent, R
∗) := nEV D(πagent, R

∗) =
V ∗
R∗ − V

πagent
R∗

V ∗
R∗ − V πrand

R∗
(5)

where πrand is a uniform random policy. Normalizing with respect to a random uniform
policy enables the demonstrator to specify a regret threshold in terms of a more interpretable
percentage rather than in raw reward units. It also offers an additional dimension for
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comparison as it conveys how much the agent’s learned policy deviates from the optimal
policy compared to a completely random one (which should be relatively very suboptimal).

Next, because the ground-truth reward function R∗ is unknown to the agent, it is impossible
to calculate its true regret, nEV D(πagent, R

∗). Instead, to perform demonstration sufficiency
self-assessment, we propose a Bayesian approach that leverages Bayesian IRL to sample from
P (R|D), the posterior distribution of reward functions given demonstrations, then uses these
reward samples to calculate an α-Value-at-Risk (α-VaR) upper bound on regret [13, 15].
Then, the agent should declare demonstration sufficiency when

να (nEV D(πagent, R)) ≤ ϵ, for R ∼ P (R|D) (6)

Dealing with Finite Sampling Errors

As of now, our goal is to find an α-quantile worst-case bound on nEV D(πagent, R
∗) by

computing the α-VaR over P (R|D). In practice, since we do not know P (R|D) explicitly, we
must obtain samples from the posterior, R = {R ∼ P (R|D)}, via Markov chain Monte Carlo
(MCMC) methods [42]. Thus, we need to be careful about the error induced by samples and
make sure that we do not underestimate the policy regret due to merely sampling from the
posterior.

Recall that rewards are represented by feature weights w. These weights ŵi are sampled
according to a normal proposal distribution with mean ŵi−1 and standard deviation σ. We
normalize them such that ∥ŵ∥2 = 1 to guarantee unique proposals, as there can be infinitely
many reward functions representing the same environment beliefs if one applies a scaling
factor. We implemented an adaptive version of MCMC where σ is automatically tuned during
the sampling process. If the current accept rate r is higher than a target accept rate r∗,
the step size will decrease by ∆σ; if it is lower, the step size will increase by ∆σ, where
∆σ = σ√

i+1
(r − r∗) and i is the index of the current MCMC sample or iteration.

Bayesian IRL has rapid finite-time mixing guarantees and converges to the true posterior,
making it a viable method to estimate P (R|D) [42], but we still need to deal with error and
uncertainty when estimating the value-at-risk. We do this as follows.

For each sample Ri ∼ P (R|D) ∈ R we first compute

Xi = nEV D(πagent, Ri) (7)

giving us samples from the posterior distribution of normalized expected value differences
conditioned on the human-provided demonstrations. Given n samples of X, we can obtain a
point estimate of the α-VaR by sorting X1, . . . , Xn in ascending order to get order statistics
Z, then take the α-quantile. This gives us Zk as an estimate of the α-VaR, where k = ⌈αn⌉.

However, simply setting k = ⌈αn⌉ does not incorporate our confidence in this α-VaR
point estimate. So, we follow Brown et al. [13] to do so, using a high-confidence threshold of
δ = 0.95. By definition, we have that P (Xi < να(X)) = α for any sample Xi, i ∈ 0, . . . , n.
Having sorted these samples to obtain order statistics Zj, j ∈ 0, . . . , n, we can calculate
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Algorithm 1: Demonstration Sufficiency (nEVD)

1 Calculate the α-VaR bound index k = ⌈nα + F−1
N δ

√
nα(1− α)− 1

2
⌉

2 for j = 0, 1, 2, . . . do
3 Collect a new demo and add it to D
4 Using MCMC, compute RMAP and obtain randomly sampled rewards

R1, R2, . . . , Rn

5 Run value iteration on RMAP and extract policy πMAP =: πagent

6 for i = 1, . . . , n do
7 Perform policy evaluation of πagent on reward sample Ri to obtain V agent

Ri

8 Perform policy evaluation of πrand on reward sample Ri to obtain V rand
Ri

9 Run value iteration on Ri to obtain V ∗
Ri

10 Calculate nEV Di =
V ∗
Ri

−V agent
Ri

V ∗
Ri

−V rand
Ri

11 end
12 Sort {nEV Di}ni=1 and find the α-VaR bound nEV D(k)

13 if nEVD(k) > ϵ then
14 Repeat
15 else
16 Stop
17 end
18 end

the probability for any Zj that the α-VaR is less than Zj using the binomial cumulative
distribution function (CDF):

P (να(X) < Zj) = F (j − 1;n, α) (8)

=

j−1∑
i=0

(
n

i

)
αi(1− α)n−i (9)

Note that να(X) is the 100α percentile value of X. Thus, for the order statistic Zj to be
larger than να(X), we must have that να(X) is greater than at most j − 1 samples. This
probability is given by the binomial CDF, F (j−1;n, α), which gives the probability of getting
j − 1 or fewer successes in n trials (hence Eq. (8)). In this formulation, a success is when
a sample Xi is less than να(X), making the probability of success, P (Xi < να(X)), equal
to α by definition of α-VaR; it follows that the probability of failure, P (Xi ≥ να(X)), is
1− α, hence Eq. (9). Finally, to get a δ = 95% confidence bound on να(X), we can use the
inverse binomial CDF, F−1. Thus, the order statistic Zk, where k = F−1(0.95;n, α), forms a
0.95-confidence bound on να(X). We use the above derivation to compute 95%-confidence
bounds on the α-VaR throughout this work.

Algorithm 1 above shows a succinct psuedocode of our high-confidence nEVD bounding
method. F−1

N is the inverse Gaussian distribution.
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Figure 2: The environments in which we examine demonstration sufficiency assessment.

5 Empirical Results

Experimental Design

Figure 2 shows the environments we use to test our methodology. Two have discrete state
spaces (Gridworld and Driving) and two have continuous state spaces (Lunar Lander and
Lavaworld). We generated multiple randomized MDP instances of each environment and
tested three methods on the same set of MDPs: our approach and two baselines, discussed
below.

In each environment we simulate human demonstrations by sampling states uniformly at
random and providing an optimal action for that state (discrete environments) or optimal
trajectory starting from that state (continuous environments). One demonstration is given at
each iteration the agent has not yet declared demonstration sufficiency. Our test environments
are:

• Gridworld: A discrete state space M ×N environment where each state has one of
four features, each associated with a different reward weight. One of these states is the
goal state. The agent can take one of four actions: up, down, left, and right.

• Driving: A discrete, infinite horizon environment with different road conditions and
traffic. There are two off-road patches on either side of the main roads. The end of the
road segment is connected to the beginning, simulating a continuous road. Actions are
drive straight, move to left lane, and move to right lane.

• Lunar lander [12]: A continuous state space environment from OpenAI Gym where
a craft attempts to land on a specific landing pad on the moon.

• Lavaworld [29]: A continuous state space environment where the agent must navigate
towards a goal while both avoiding a pit of lava that appears randomly in the environment
and maintaining a smooth, non-jerky trajectory.
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Baselines

To the best of our knowledge, we are the first to study demonstration sufficiency for LfD
agents. Thus, we adapt two stopping criteria from supervised learning [41] into heuristic
baselines to compare with our approach.

• Convergence (Conv.): Given a “patience” hyperparameter p, the agent signals
demonstration sufficiency when its policy πMAP does not change over p consecutive
demonstrations.

• Validation set (V.S.): Every ith demonstration is added to a held-out set. If for each
(s, a) in the held-out set, πMAP(s) = a, the agent declares demonstration sufficiency.

Dependent Measures

We argue that for an agent to successfully self-assess its performance and signal to the
demonstrator when it is finished learning, it must be able to (1) correctly identify when the
current demonstrations are truly sufficient vs. when they are truly insufficient and (2) do so
in an efficient manner so as to minimize human burden, effort, and supervision during the
training phase while still maintaining utmost safety and alignment. As such, we focus on the
following two dependent measures when evaluating the three stopping condition approaches
above:

• Identification accuracy: We use F1 score to represent identification accuracy, defined
as

F1 =
TP

TP + 1
2
(FP + FN)

(10)

True positive (TP) means that regret(πagent, R
∗) ≤ ϵ when the agent declares demonstra-

tion sufficiency; that is, the agent’s current learned policy at the time of demonstration
sufficiency truly has low regret with respect to the expert’s reward function. A false posi-
tive (FP) is when the agent declares demonstration sufficiency but regret(πagent, R

∗) > ϵ.
A false negative (FN) is when the agent does not declare demonstration sufficiency but
regret(πagent, R

∗) is actually already less than ϵ.

• Sample efficiency: While having good accuracy is important, practicality in terms of
human interaction burden is also crucial. More specifically, we do not want the human to
have to give too many demonstrations to the agent before it can learn a high-performing
policy. As such, we measure the proportion of demonstrations needed before the agent
determines it can stop receiving demonstrations. For discrete environments this is
the number of unique states where a demonstrator action is provided. For continuous
environments we use the number of demonstrated trajectories.
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Figure 3: nEVD method compared to baseline methods for determining demonstration suffi-
ciency: The x-axis across all subfigures denote the nEVD bound threshold the agent was
using to assess demonstration sufficiency with our method. “Conv.” denotes the convergence
baseline with a patience hyperparameter of p. “V.S.” is the validation set baseline with
an interval hyperparameter of i. Subfigures (a) and (b) show the sample efficiency and
identification accuracy measures, respectively, for the discrete domain (gridworld and driving).
Subfigures (c) and (d) show the sample efficiency and identification accuracy measures,
respectively, for the continuous domain (lander and lavaworld). Bands around the lines
denote standard error.

Analysis

For our nEVD stopping condition, we tested five different thresholds, or ϵ values: 0.1, 0.2,
0.3, 0.4, 0.5. We stop at 0.5 as, by definition of nEVD, this denotes a regret that is exactly
half that of a random policy; any larger regret we deemed unreasonable. For the convergence
baseline, we tested five different patience hyperparameters, p = 1, 2, 3, 4, 5, denoting the
number of iterations for which the agent’s policy must remain unchanged. For the validation
set baseline, we also tested five different interval hyperparameters, i = 3, 4, 5, 6, 7, denoting
how often a demonstration is saved into a validation set instead of being used for BIRL. All
of these values were determined based on common early stopping parameters and training
set split sizes from supervised learning. After running experiments on hyperparameters for
both baselines, we selected the best hyperparameter (one that gave the best sample efficiency
vs. identification accuracy tradeoff) for each baseline in order to compare with our regret
confidence bounding method1.

We tested the following hypotheses:

H1. Our method achieves higher F1 scores than baseline methods.
1Note that both the convergence and validation set baselines do not rely on the nEVD thresholds to

assess demonstration sufficiency. We overlay the best baseline performances simply to show how our method
compares to them across all nEVD thresholds; the F1 score plots additionally show that we are better at
achieving true low regret regardless of nEVD threshold.
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H2. Our method requires fewer demonstrations to be given to the agent before it declares
demonstration sufficiency, compared to baseline methods.

The results in Figure 3 show that the nEVD bounding method generally outperforms
both baseline stopping conditions. In the discrete domains ((a) and (b)), our method achieves
a higher F1 score, near 1.00 for all thresholds, than the validation set baseline (V.S.), while
requiring at least 25% fewer demonstrations. This can be attributed to the fact that V.S.
needs to set aside usable demonstrations for its held-out set, and on top of that requires an
exact match between πMAP states and held-out states. The convergence baseline (Conv.) has
high sample efficiency, but this comes at the cost of a much lower F1 score, a consistent trend
across both the discrete and continuous domains. This can be attributed to the fact that
Conv. depends on the stability of πMAP, not its actual performance.

In the continuous domains (Figure 3(c) and (d)), our sample efficiency over the baseline
methods becomes much clearer. We believe the difference is so stark because in environments
with a continuous state space, there is more ambiguity regarding the demonstrator’s true
reward R∗. This ambiguity causes RMAP to vary widely, which means that the baselines end
up requesting many demonstrations. This results in V.S. achieving a high F1-score due to
exact matching with the optimal policy, but it comes with the aforementioned sacrifice in
sample efficiency.

Our method maintains high F1 scores and high sample efficiency in both domains because
it takes into account how well the agent’s current policy πagent will perform under the ground-
truth reward function compared to an expert using our high-confidence bounds. It does
not require that πagent converges to or matches any singular policy so long as the agent is
confident that πagent achieves low regret; after all, we argue, after determining confidence in
low regret, there is minimal benefit in waiting for more demonstrations to try and get the
policy to be an exact function, especially since there can be multiple different policies that all
achieve a similar low level of regret under the true reward function. Moreover, a converged
policy does not necessarily mean it will generalize well to the expert’s true intended reward
function. It may just mean that consecutive demonstrations convey very similar information.

One final, major benefit of determining demonstration sufficiency based on high-confidence
bounds on nEVD is that it allows human demonstrators to control the agent’s performance
directly according to desired confidence levels (α, δ) and performance thresholds (ϵ) without
relying on proxies such as iterations or exact demonstrations as in the baselines.

To more rigorously compare the methods’ identification accuracy, we conducted a hy-
pothesis test for H1. Since the distribution of F1 scores across all methods and their
corresponding thresholds did not meet normality or variance homogeneity assumptions, we
used a Kruskal-Wallis test, which yielded statistically significant results for both the discrete
(H = 71, p ≈ 0) and continuous (H = 83, p ≈ 0) domains. Subsequent Dunn post-hoc tests
with the Bonferroni correction and median comparisons revealed that there was a statistically
significant difference between our method’s F1 scores and Conv.’s (p ≈ 0), but no significant
difference between our method’s scores and V.S.’s. (p ≈ 1). Thus, our results partially
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support H1 (though results for H2 below show that our method is statistically significantly
more sample-efficient than V.S., suggesting it is still better overall).

We ran the same set of statistical tests to compare each method’s sample efficiency across
thresholds. Kruskal-Wallis yielded statistically significant results for both the discrete domain
(H = 358, p ≈ 0) and continuous domain (H = 601, p ≈ 0). Dunn and median comparisons
revealed that our method required fewer demonstrations for the continuous domain (p ≈ 0)
compared to the convergence baseline and fewer demonstrations for both domains (p ≈ 0 for
both) compared to the validation set baseline. While Conv. required fewer demonstrations
for the discrete domain than our method, the median difference was only 12%. Our results
provide decisive evidence for H2, especially since most environments agents encounter in the
real world will have continuous state spaces.

Comparison to Prior Theoretical Bounds

In this section we examine the efficiency at which our method obtains confidence bounds
compared to prior work [1, 47] in IRL that uses Hoeffding bounds. While these works were
also focused on determining the optimal number of demonstrations to achieve a policy regret
bound, their bounds depend on loose concentration inequalities regarding the demonstrator’s
state occupancy frequencies. As a result, these bounds are highly impractical for determining
real-world demonstration sufficiency. To showcase this, we averaged results across a common
set of gridworld MDPs with α = 0.95 for our method and a 95% confidence level for the other
two methods. Table 1 shows how many demonstrations the latter require to reach each of our
policy loss thresholds. When compared with Figure 3, the results in Table 1 show that our
approach provides a dramatic improvement in practicality over prior high-confidence bounds
for agents that learn from demonstrations. The implications of this is that if demonstrations
happen to be redundant or ambiguous, agents using our confidence bounding approach
can adapt and be able to identify that there still is a high level of uncertainty about the
demonstrator’s intent and thus request additional demonstrations. Meanwhile, Hoeffding-

Threshold Abbeel and Ng [1] Syed and Schapire [47]

0.1 1,624,056 3,654,126
0.2 406,014 913,532
0.3 180,451 406,014
0.4 101,504 228,383
0.5 64,963 146,166

Table 1: Number of demonstrations required under a 95% confidence Hoeffding-based bound
to reach each nEVD threshold. Our method (showcased in Figure 3) requires orders of
magnitude fewer demonstrations to reach the same bounds.



14

based methods would incorrectly declare demonstration sufficiency, because they are focused
on demonstration quantity rather than quality.

Noisy Demonstrations Ablation

Finally, we studied how our method performs given noisy, or suboptimal, demonstrations. We
ran a small experiment that varied the percentage of noisy demonstrations and assessed how
identification accuracy and sample efficiency changed as noise increased. On average, we found
that identification accuracy decreases slowly with noise, remaining above 95% until more
than about 30% of demonstrations are suboptimal. The same trend could be found for the
true positive rate, indicating that even with noisy demonstrations, an agent using our nEVD
bounds is still able to correctly pinpoint at which point it can safely stop receiving training
data. On the other hand, the false positive rate increases faster but still remains below
5% until around 20% of demonstrations are suboptimal. This trend is expected since the
agent will be misled towards an incorrect reward and policy given very noisy demonstrations.
Meanwhile, we found that there was no clear trend in relation to noise when it came to sample
efficiency; across all noise levels, sample efficiency datapoints remained roughly within ±6%
of each other. Overall, this experiment provides some evidence that our methods are decently
robust to noise—20% to 30% of demonstrations can be suboptimal, which is promising for
real-world applications.

6 Methodology Extensions

Percent Improvement over a Baseline Policy

Our framework of using high-confidence bounds to help agents reason under uncertainty re-
garding their policy performance can be applied to another flavor of demonstration sufficiency,
one based on performance gain rather than loss.

There can be many situations where a baseline policy already exists, e.g., a robot comes
pre-deployed with a default policy, or the demonstrator has previously trained a safe policy
for one task and now wants to teach the agent a related task. In such scenarios, a stopping
condition based on bounds on improvement over the baseline policy would allow the agent to
learn a policy that performs better under the true reward function, with high confidence. We
define this as Percent Improvement Over a Baseline (PIOB):

PIOB(πagent, πbase, R) =
V

πagent
R − V πbase

R

V πbase
R

(11)

Using the same approach as before, we sample reward functions from the Bayesian
posterior given demonstrations and use these samples to create a bound on performance gain
at a given confidence level. The agent signals demonstration sufficiency when its estimated
lower bound on PIOB surpasses the user-provided improvement threshold. Since the agent is
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Discrete Continuous
PIOB Bound Threshold F1 Score F1 Score

20% 1.00 ± 0.00 0.99 ± 0.00
40% 0.97 ± 0.00 0.99 ± 0.00
60% 0.95 ± 0.00 0.99 ± 0.00

Table 2: PIOB method: F1 scores for the two domains, for (a subset of) each percent
improvement bound threshold used.

trying to obtain a lower bound on policy improvement rather than an upper bound on policy
loss, the agent uses a (1− α)-worst-case value:

ν1−α(Z) = F−1
Z (1− α) = sup{z : FZ(z) ≤ (1− α)} (12)

Given a set of demonstrations D, a baseline policy πbase, and an improvement threshold ϵ,
demonstration sufficiency is now determined by whether the agent policy sufficiently improves
over the baseline with high confidence.

Using the same four environments, we found that sample efficiency was similar to what
was achieved with the nEVD bound method (67% ± 2% of states for discrete, 6.12 ± 0.22
states for continuous) and, as expected, decreased with increasing threshold values, especially
if the original baseline policy was already high-performing. Table 2 highlights the resulting
F1 scores using the PIOB bound method: while they start out high, similar to those achieved
with nEVD bounds, they decrease as the threshold increases because the agent accrues more
false negatives—due to the conservative nature of our high-confidence performance bounds.
We do not see this as a large concern because these bounds are designed to be lower bounds
on policy gain. That is, the agent may underestimate the quality of its learned policy, which
in reality can turn out to be better than expected.

Active Learning

Our previous empirical experiments used demonstrations that were given in a “passive”
manner, where demonstrations were randomly chosen by the (simulated) human. In this
section, we investigate the benefits of applying prior work on risk-aware active queries [15]
to allow the agent to actively query for demonstrations, which can achieve better sample
efficiency while still maintaining high identification accuracy.

For the two discrete environments where there are a finite set of states to select from, we
conducted experiments using the same MDPs and dependent measures for both nEVD and
PIOB bounding methods, with a key difference being that the agent is able to actively query
a specific state where it wants an additional demonstration. At each iteration, the agent
calculates which state has the highest α-VaR bound on expected value difference (EVD),
then requests a demonstration from this state to be added to the demo set D for the next
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Reduction
Stopping Condition Mean StdDev

nEVD 12.95% 1.62%
Percent improvement 13.24% 0.65%

Table 3: Passive vs. active demonstration selection: The mean and standard deviation of
reduction in proportion of states needed between active and passive demonstration selection.

iteration. Note that we use unnormalized state EVD here (similar to Eq. (4) but for a single
state instead of the whole policy). This is because the normalization factor helps quantify
the performance of a policy but is unnecessary computation if we are merely comparing
the EVDs of different states with each other. Formally, the agent will select a state, s∗, for
requesting a new demonstration according to

s∗ = argmax
s∈S

να(EVD(s, R)) = argmax
s∈S

να(V
∗
R(s)− V

πagent
R (s)) (13)

where R are the reward functions sampled from the Bayesian posterior and V ∗
R(s) and

V
πagent
R (s) are the values of state s under R for the respective policies.

Note that both the nEVD bound and PIOB bound stopping conditions use EVD in
selecting a state to actively query. While in practice the demonstrator can set the selection
metric to be any measure he or she prefers (e.g. percent improvement in any one state’s
value), we believe that it is best for the agent to select states based on which one currently
results in the most policy regret compared to an expert, to ensure as high-performing a policy
as possible.

We find that active demonstration selection results in significantly fewer state-action pairs
required for the agent to signal demonstration sufficiency, compared to passive demonstration
selection, with no compromise in identification accuracy. When actively querying, the agent
is able to pinpoint exactly what information it needs before it can be confident in learning a
high-performing policy, instead of the demonstrator having to guess what information would
be most useful. This reduction in the percentage of states needed is showcased in Table 3.

7 User Study
We designed a user study in order to evaluate our approach with demonstrations provided by
real humans, focusing on our first proposed stopping condition of high-confidence bounds on
nEVD. We recruited 11 participants from the university campus, aged 18-55, 64% male, 36%
female.
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Figure 4: User study. The waiting screen as the agent is calculating on a gridworld environ-
ment.

Experimental Design

To keep the user study session within a reasonable amount of time, we designed six rounds
of experiments for our participants to execute via an online interface: two environments
× three demonstration sufficiency methods. The study was blind in that users did not
know which round used which method. We designed instances of the gridworld and driving
environments which would be both easy enough for users to handle during the study, and, like
in the real world, difficult enough where users could provide good, but not always optimal,
demonstrations [37]. The three methods used were nEVD bounds (ours), convergence, and
validation set. We used α = 0.95 and a threshold of 0.3 for our method, p = 3 for convergence,
and i = 5 for validation set (the median hyperparameter values for each method).

For each round, users were presented with either a gridworld or driving environment
to teach the agent in. They were instructed to sequentially provide demonstrations, which
were (state, action) pairs, via the online interface, until the robot declared demonstration
sufficiency.

For gridworld, users were shown a reward function as a weight vector, where each reward
value was color-coded to match a feature. They were told to guide the robot towards the goal
as fast as possible while avoiding low-reward features (see example in Figure 4). For driving,
we described the relevant features (three lanes, collision, and dirt patch) and requested users
create their own reward function as a weighted combination of those features. We provided
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Figure 5: User study. The agent requests another demonstration in the driving environment.

examples to help, such as, “If you want to drive towards the right as much as possible and
avoid accidents, your reward function could be 1, 2, 3, -10, -5.” Their reward function was
then normalized to have an L2 norm of 1 to be consistent with our methodology. Users were
then told to give demonstrations according to this custom reward function (see example in
Figure 5).

At the end of each of the six rounds, users were shown a visual display of the robot’s
learned policy and asked, “On a scale of 1 (worst) to 5 (best), how well did the agent’s learned
policy match your intended policy or reward function?” See Figure 6.

Analysis

We tested the following hypotheses:

H3. Users liked the policies that our method learned more than those that the baseline
methods learned.

H4. The proportion of demonstrated states our method required in the user study is less
than what the baseline methods required.
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Figure 6: User study. The agent’s final learned policy is displayed in white and the user is
asked for a ranking.

Gridworld Driving
Metric Ours Conv. V.S. Ours Conv. V.S.

Prop. states 0.22 ± 0.05 0.45 ± 0.03 0.64 ± 0.01 0.25 ± 0.06 0.69 ± 0.07 0.60 ± 0.03
User eval. 4.31 ± 0.40 3.47 ± 0.32 4.00 ± 0.53 4.15 ± 0.28 3.00 ± 0.71 4.00 ± 0.39

Table 4: User study results: The three methods’ performances in our user study. We still
use proportion of states to assess sample efficiency. However, instead of using F1 score for
identification accuracy, we use user evaluation: now that we have real humans, this gives a
better sense of whether or not the agent’s policy is actually aligned with the human’s intent.

Results from our user study are shown in Table 4. For each hypothesis we ran Kruskal-
Wallis tests and Dunn post-hoc tests with median comparisons for each environment. For
H3, Kruskal-Wallis did not yield statistically significant results for either gridworld or driving
(0.05 < p < 0.1). Table 4 does show that our method achieves a higher mean user evaluation
than the baselines; thus the lack of statistical significance could be due to a non-standardized
evaluation scale (i.e. users may have different internal assessments of what a, say, 3 vs. 4
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means). For H4, Kruskal-Wallis yielded statistically significant results for both environments
(H = 19, p < 0.0001 for gridworld; H = 14, p < 0.001 for driving). Dunn further revealed
that our method required a lower proportion of demonstrated states for gridworld (p < 0.05
for both baselines) and for driving (p < 0.05 for both baselines).

Our user study revealed two more interesting outcomes. First, we found that our
method was much more sample efficient in the user study than in our empirical experiments.
Comparing with the empirical results for an nEVD bound threshold of 0.3, our method
required over 60% fewer demonstrations to be shown in the user study. We hypothesize that
this is because the actual human demonstrators were more likely to choose highly informative
demonstrations instead of random ones, enabling faster learning2. Second, unlike in our
empirical experiments, the user-provided demonstrations were indeed suboptimal at times;
on average, 14% of user demos were suboptimal for gridworld, 8% for driving. The noise for
driving shows that users aren’t perfect at following even their own specified reward function,
an interesting area future work can explore. Nevertheless, our approach still was able to
efficiently and accurately determine demonstration sufficiency, indicating its robustness to
noisy, real-world data.

8 Discussion

Pathway to Deployment

Deploying our demonstration sufficiency methods onto a physical agent or other AI system
is a matter of integrating the algorithms into or extending the agent or system’s existing
software and then having a human available to provide demonstrations. Demonstrations
for physical agents are often provided through teleoperation, kinesthetic teaching, or even
videos. Our methods assume that the agent shares the same capabilities as the demonstrator,
can correctly map demonstrated states and actions into its own state and action spaces,
and can perform policy optimization (either model-based or model-free). While these are
strong assumptions, they are common in HRI and are not unrealistic given recent advances in
feature alignment [9, 10], cross-embodiment IRL [52], and offline reward and policy learning
[46]. The nEVD stopping condition can be used when no baseline policy exists or is able to
be provided, or when the demonstrator wants to ensure confidence in minimizing policy loss
itself. Meanwhile, the percent improvement stopping condition can be used in situations in
which a baseline policy can be provided and the demonstrator is focused on improving this
existing policy. Selecting the thresholds for the stopping conditions and other parameters
will depend on the risk-sensitivity of the environment and user discretion, though α = 0.95 is
most commonly used. Finetuning these values will enable the demonstrator to adjust the
agent’s performance and conservativeness to their liking.

2Future work should investigate how close these human demonstrations are to optimally pedagogic
demonstrations [18, 16].
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Limitations and Future Work

One of the limitations in our experiments is the repeated running of MCMC in the BIRL
algorithm, which is time- and resource-intensive, especially as the number of samples increases.
Implementing successor features could optimize transfer learning between different RMAP

reward functions [6], improving MCMC efficiency. Alternatively, merging our Bayesian
approach with [19] to estimate the reward function without requiring the inner-loop MDP
solver can also be an interesting area of future work. In addition, future work should explore
the benefits of active queries in continuous-state domains.

Furthermore, while our empirical experiments and user study provide some evidence that
our methodologies are compatible with suboptimal demonstrations, future work could make
this application more robust by running a calibration stage before demonstration collection to
estimate the suboptimality of the demonstrator [44, 23] and tune β in the Bayesian inference
algorithm. Finally, it will be interesting to study whether mutual information or posterior
entropy could be used for estimating demonstration sufficiency.

Conclusion

In this work, we formalized the problem of demonstration sufficiency and proposed several
methods which an agent can use to determine whether it has received enough demonstration
data. Our empirical and user study results provide promising evidence that our methods
allow agents to self-assess their performance in cases where the reward function is unobserved
by first estimating this reward from human demonstrations then bounding their performance
under it. Rather than simply giving agents as many demonstrations as possible and hoping
that they will eventually learn the correct policy, our work takes the onus off the demonstrator
by enabling intelligent AI systems to detect themselves when they are highly confident that
they can use the existing demonstrations to learn a high-performing policy. It is our hope
that researchers and practitioners using our methods will be able to partake in safer, more
efficient, and more personalized training and deployment of LfD systems.
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