Leveraging Zero-Shot Sim2Real Learning to Improve
Autonomous Vehicle Perception

Ashwat Chidambaram

ST NEFLELEL]

1]

h,
Y
4

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-90
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-90.html

May 10, 2024

Copyright © 2024, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Leveraging Zero-Shot Sim2Real Learning
to Improve Autonomous Vehicle Perception

by Ashwat Chidambaram

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan I1.

Approval for the Report and Comprehensive Examination:

Committee:

Wenat- drcak

Professor Murat Arcak
Research Advisor

May 10, 2024

Date

% sk ok sk ok sk ok

=

Professor Allen Y. Yang
Second Reader

May 10, 2024
Date

Leveraging Zero-Shot Sim2Real Learning to Improve Autonomous Vehicle Perception

by

Ashwat Chidambaram

A thesis submitted in partial satisfaction of the
requirements for the degree of
Master of Science
in
Electrical Engineering and Computer Sciences
in the
Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Murat Arcak, Chair
Professor Allen Y. Yang, Co-chair

Spring 2024

Leveraging Zero-Shot Sim2Real Learning to Improve Autonomous Vehicle Perception

Copyright 2024
by
Ashwat Chidambaram

Abstract
Leveraging Zero-Shot Sim2Real Learning to Improve Autonomous Vehicle Perception
by
Ashwat Chidambaram
Master of Science in Electrical Engineering and Computer Sciences
University of California, Berkeley
Professor Murat Arcak, Chair

Professor Allen Y. Yang, Co-chair

Autonomous vehicles are one of the most exciting technologies at the forefront of innovation
in the current era we live in. In particular, accurate perception of the world around the vehicle
is a key component for safe and reliable autonomy. As a result, improving autonomous
vehicle perception models to achieve peak performance is an ideal goal that has been an
active area of research, oftentimes bottlenecked by the necessity for high quality training
data. The use of simulation engines to generate data typically aims to account for this
data scarcity, but unfortunately the outputs often look visually dissimilar to the real-world
domain of images, a problem that is commonly referred to as the "reality gap”. Through
the work presented in this thesis, we aim to bridge this reality gap through the use of zero-
shot sim2real learning approaches, in order to generate realistic training data for perception
models with limited real-world baseline images to begin with. In our specific context for
this project, we demonstrate significantly improved performance for an autonomous race
car in high-speed races against other cars on a professional track, with an enhanced ability
to detect and segment these opponent vehicles in diverse scenarios compared to before.
Furthermore, our work ultimately demonstrates a versatile approach to pipeline simulation
data into sim2real outputs for training real-world models, unlocking a new level of data
generation that allows us to create practically infinite scenarios, and ultimately improve the
robustness of autonomous vehicle perception in novel unseen domains.

To my beloved father and mother, Chidambaram Kandasamy and Rajam Chidambaram,
and my amazing brother, Ashwin Chidambaram, this one’s for you.

i

Contents

Contents ii
1 Introduction 1
1.1 Competition Overview 1
1.2 Team Overview e 2
1.3 Problem Statement 3
2 System Overview 4
2.1 Software Stack 4
2.2 Hardware Stack 5)
2.3 Subteam Responsibilities 5
3 Related Works 6
4 Design Considerations 8
4.1 Data Limitations 8
4.2 Adaptability to Change 9
4.3 High-Level Model Approaches 10
4.4 Proposed Architecture Model for Sim2Real 11
5 Project Implementation 12
5.1 Data Collection 12
5.2 Sim2Real Model 14
5.3 Image Labelling 15
5.4 Post-Processing 15
5.5 Segmentation Model Training 17
6 Experimentation 19
6.1 DBaseline Real Style Image: styleroot 20
6.2 Content-Style Weight: content stylewt. 21
6.3 Number of Iterations: iter 22

6.4 Cycle Consistency Regularization: cyclewt 23

7 Results
7.1 Dataset Structure
7.2 Evaluation Setup

7.3 The Ideal Outcome to Prove Sim2Real Success

7.4 Quantitative (Numerical) Results

7.5 Qualitative (Visual) Results
8 Conclusion and Future Works

Bibliography

il

24
24
25
26
26
31

43

44

v

Acknowledgments

My journey wouldn’t have been possible without the invaluable support of so many
incredible people that I am grateful to have had in my life.

First and foremost, I would like to express my heartfelt gratitude to my research advisor
Prof. Murat Arcak and my research mentor Prof. Allen Y. Yang, for providing me with this
amazing research opportunity and invaluable support throughout my Masters.

I would also love to thank Chris Lai, Wayne Lai, Eric Berndt, C.K. Wolfe, and the rest
of the AI Racing Tech team for their contributions to my success throughout the project.
Their expertise and guidance have been paramount in helping me advance my research, and
ultimately achieving success through this project for the Indy Autonomous Challenge.

Beyond my academic mentors and colleagues, I would also like to sincerely express my
appreciation for all the friends who supported me throughout my five years at UC Berkeley.
Thank you for making college an amazing experience, and for the priceless unforgettable
memories we made along the way.

To the countless other individuals who have played an integral part in my life, every piece
of advice, every helping hand, and every moment of support, no matter how big or small,
has shaped my journey and made me who I am today.

Finally, I am forever grateful for my dad, mom, and brother, who have always encouraged
me to shoot for the stars and become the best version of myself every single day. Words can
never describe how extremely fortunate I am to have such a loving and supportive family,
and the reason I get to call myself a proud Golden Bear for the rest of my life.

Thank you to everyone who played a part in my success and growth. I hope to pass on
all your kindness and encouragement, and inspire countless future students and engineers to
strive for excellence, the same way [felt inspired and supported by all of you.

From the bottom of my heart once again, thank you. I couldn’t have done it without you
all. Here’s to an exciting journey ahead, and to the storytellers of a future yet unwritten.

-AC

Chapter 1

Introduction

1.1 Competition Overview

The field of perception for autonomous vehicles has been explored for many years. From the
initial days of the DARPA Grand Challenge, bringing together the brightest students from
the best universities around the United States, the goal was to create autonomous unmanned
vehicles to navigate hundreds of miles of desert terrain. This challenge gave birth to a whole
industry of autonomous vehicles, from which many prominent startups were spun off and
further developed. These companies became some of the pioneers of self-driving technology,
and are leading the industry today at the forefront of innovation in this field.

Recently, the concept of autonomy delved further into other aspects of driving, particu-
larly into the exhilarating thrill of racing and motorsport. The Indy Autonomous Challenge
(IAC) is organized by the Energy Systems Network (ESN), which is an Indianapolis-based
non-profit and initiative of the Central Indiana Corporate Partnership (CICP) and CICP
Foundation, Inc. Since its creation in late 2019, it grew to become a massive network of
public-private partnerships working alongside academic institutions to create the world’s
first fully autonomous race cars. The automotive platform that the IAC uses is the Dallara
AV-21/AV-24 series of vehicles, pictured below.

CHAPTER 1. INTRODUCTION 2

Y
Au TONOMOys

Figure 1.1: Indy Autonomous Challenge Dallara AV-21 Vehicle

Every year, various teams consisting of smaller groups of universities compete in different
races at tracks all around the world. These includes the Las Vegas Motor Speedway as
the Consumer Electronics Show (CES), the Indianapolis Motor Speedway in Indiana, the
Autodromo Nazionale Monza (Monza Circuit) in the city of Milan in northern Italy, and
many more.

As stated on the official competition website in 2024, the primary goal of the Indy Au-
tonomous Challenge (TAC) is ”to advance technology that can speed the commercialization of
fully autonomous vehicles and deployments of advanced driver-assistance systems (ADAS).
These enhancements will lead to increased safety and performance in all modes of motor-
sports and commercial transportation” [7]. In addition to the above, the competition also
serves as an amazing platform for students to develop their skills and excel in the field of
Science, Technology, Engineering, and Mathematics (STEM).

1.2 Team Overview

Our team, AI Racing Tech (ART), is one among many others in this competition. The
team is a joint partnership between the UC Berkeley College of Engineering, UC San Diego,
Carnegie Mellon University, and the University of Hawai‘i. Each university works across
different aspects of the tech stack, and UC Berkeley is the lead behind the entire perception
stack for our racing vehicle. This is where our team creates and innovates the next generation

CHAPTER 1. INTRODUCTION 3

of perception algorithms tailored for high-speed racing, with implications that can reach
farther into the realm of autonomous vehicle perception as a whole.

1.3 Problem Statement

The goal of this work is to find novel ways in order to augment our racecar to be prepared
for future races in unseen domains, whether that be on new tracks, with multiple vehicles,
in dangerous edge case scenarios, etc. We need to tackle this problem from the perspective
of computer vision, in particular regarding high-speed 2D vision on the race track. As we
will go over in future sections, our data is currently very limited. However, the goal of the
competition is to race with multiple race cars on the track at once, much like traditional
motor sports such as NASCAR or Formula 1 racing. Hence, we must be able to train our
autonomous race car to be capable of racing on the track alongside other vehicles, despite
having little to no prior data or experience doing so due to the novelty of the competition
and limited resources.

To solve this problem, all teams currently leverage simulation engines in order to generate
practically limitless examples of racing scenarios. All onboard sensors and cameras are
simulated as well through the use of a digital twin, in order to utilize the simulation training
to apply to real world vehicles thereafter. However, there is often a clear difference between
simulation and reality, often called the "reality gap” which is a ubiquitous problem in the field
of robotics and autonomy. In particular to the application of computer vision for onboard
cameras, the visual differences between simulation engines and real-world camera images are
stark, which will be discussed in upcoming sections.

Hence, our problem statement can clearly be defined as follows. Given limited inputs
of single-vehicle real-world images and plentiful simulation images containing multiple vehi-
cles in view, we aim to produce the most realistic output data for training our models by
generating sim2real images. Since our sim2real goal intends to fill the gap due to a lack
of sufficiently large real-image training datasets for our problem, we cannot adopt intensive
pre-trained models because they would require large amounts of data to begin with. Hence,
we aim to utilize a few-shot or zero-shot approach in order to maximize the efficiency of our
model and be robust to the constraint of limited real-world baseline data.

Ultimately, we must seek a way in order to bridge this reality gap, and minimize the dif-
ferences between simulation and reality. This fundamental problem is the entire foundation
upon which this project was born. Through our work outlined in this paper, we aim to find
a solution to close this gap between our current capabilities with ideal future aspirations,
ultimately striving towards the goal of winning out other teams in future races hosted by
the Indy Autonomous Challenge. May the best team win!

Chapter 2

System Overview

At its core, our autonomous racecar is very similar to a traditional racecar that can be found
in the Formula One style of vehicles. The key difference is the lack of a driver’s cockpit,
instead fitted with a whole suite of sensors and onboard compute. Below is an image of our
specific Al Racing Tech’s vehicle, which is built off the Dallara AV-21 platform.

&

Figure 2.1: AI Racing Tech’s Dallara AV-21 Competition Vehicle

2.1 Software Stack

The software stack of our vehicle runs primarily on Ubuntu 22.04, using ROS 2 and the
Galactic Cyclone DDS middleware. Building off the base Indy Autonomous Challenge (IAC)
open source software stack, the Al Racing Tech (ART) software system involves a plethora of
moving parts, for the simulation, perception, controls, firmware, and many other subteams.

CHAPTER 2. SYSTEM OVERVIEW d

2.2 Hardware Stack

The hardware stack of our vehicle contains three Luminar Hydra LiDARs, with 64 Lines and
120 degree scanning. It further contains two Novatel GPS units with millimeter accuracy.
Regarding cameras, it contains four wide field Mako cameras and two narrow field Mako
cameras. There are also three radar sensors. Finally, there is a state-of-the art NVIDIA
RTX A6000 GPU integrated with the dSpace x86 processing system onboard.

2.3 Subteam Responsibilities

e Controls: This team handles all the low-level hardware control such as steering, brak-
ing, gear shifting, and accelerating via software model predictive control algorithms.

e Localization: This team works on GPS and IMU fusion, Kalman filtering, pose esti-
mation, and fault and failure handlers.

e Perception: This team develops software for sensor ingestion, sensor fusion, filtering,
and world-state estimation. They also cover all aspects of object detection, classifica-
tion, image segmentation, pose estimation, and prediction.

e Vehicle Dynamics & Simulation: This team handles race line design and opti-
mization, real-time vehicle dynamics, satellite perception sensor image analysis, the
development of simulated vehicle models to test software, and the creation of digital
twins.

e Planning: This team is in charge of navigation and strategy, high-level vehicle control,
and path planning and obstacle avoidance.

e Trackside Operations: This team prepares the vehicle for launch, keeps the mechan-
ical systems operational, and essentially acts as mission control for the race vehicle.

The work covered in this paper is under the perception team, which is led by the UC
Berkeley College of Engineering. In particular for the scope of this thesis, the relevant
hardware and software is a subset of the full pipeline. Regarding hardware, this project
focuses on utilizing 2D camera data streamed from the wide-field Mako cameras mounted
at the front of the vehicle. The majority of data collection and experimentation specifically
involves the front-left center mounted camera. On the software side, all coding is done
entirely in Python3, using various libraries such as TensorFlow, PyTorch, OpenCV, NumPy,
Keras, Pandas, and other relevant frameworks. The models are trained offline in our research
lab at Cory Hall using a computer equipped with the NVIDIA GeForce RTX 3080 GPU.

Chapter 3
Related Works

At its core, the sim2real problem we are aiming to solve can be viewed from a high-level
perspective as a style transfer problem, which has been tackled for many years by researchers.
A brief overview of the history, approaches, and related works are discussed below.

Classical Approaches

Style transfer has been a field in development ever since the pioneering work published by
Gatys et. al in 2016 [5]. The original traditional approaches were often optimization-based
methods, which used pretrained feature networks for feature extraction. For example, many
early papers utilized the VGG-19 network as their feature extractors, which was very popular
in the mid-2010s [11, 16]. Some of these papers built off the concept of calculating the Gram
matrix (from the original Gatys paper) in order to calculate a global overview of features
in an image, which does not take into account the spatial understanding of features within
the image. Other techniques aimed to take a different approach to solving this problem, by
aiming to match image styles based on localized image patches, which brings in the added
benefit of spatial understanding to sections of the images [1, 16].

Soon thereafter, researchers began to explore learning-based approaches to photorealistic
style transfer, compared to the traditional optimization-based approaches above. These
approaches introduced the concepts of experimenting with different loss functions, pre-
processing, and post-processing the images, and overall focused more on the data-driven
aspect of the style transfer [13, 15, 25].

Advancements on Other Fronts

Regardless of which approach was taken, these techniques were all cutting edge at the time
of their publication, and various future papers aimed to build off these works. Going beyond
merely the exact approach taken, however, two other key factors were always of importance
for improving these style transfer image generations. One group of techniques aimed to
speed up the models by increasing their computational efficiency and operations, since they

CHAPTER 3. RELATED WORKS 7

recognize speed is often a limiting factor that is valuable when it comes to the applications
of these models [8, 12]. Other approaches instead built off the existing baselines to focus on
improving the quality of image generations, even if it came at the expense of speed in some
situations [14, 22, 24]. Hence, speed and quality have always been working in parallel as two
key considerations for all innovations in this field, and striking an optimal balance between
the two is the ideal outcome that researchers seek.

Transformer-Based Models

Eventually, as the field of natural language processing evolved, an older paper introducing
the "transformer” architecture began to quickly rise in popularity and gain prominence as
a major breakthrough in the field [21]. Naturally, the model quickly found its way into
applications for computer vision, and the ”vision-transformer (ViT)” was born [4]. Some
efforts were soon made into applying ViTs towards style transfer. One of the key capabili-
ties of transformers is the ability to capture long-range dependencies within data, so some
researchers leveraged this technique to reformulate style-transfer across sequential patches
of images, using ViTs to convert these images taking advantage of this inherently linked
sequential nature [3]. Other approaches simply utilized a pretrained and fixed ViT model to
use as an external semantic prior, thereafter using these features in order to splice together
the content and style representations together [19].

Diffusion-Based Models

Most recently, diffusion models have been taking the Generative Al world by storm. They
were first introduced in 2015 at Stanford and significantly improved upon in 2020 at UC
Berkeley, serving as the backbone behind generative models that are ubiquitous across
academia and industry today [18, 6]. Recent works relevant to our project aim to apply
diffusion-based techniques in order to perform photorealistic style transfer. Some approaches
involve aiming to learn the artistic style from just one image, and thereafter using that in
order to automatically generate a learnable textual description for performing style transfer
which could be prompted for future input images [26]. Other techniques forego the textual
input description entirely, and simply use one single content and style image in order to
directly infer the style information between the images without any text-based prompts [23].

Overview and Summary

Overall, there have been a plethora of techniques that can be applied to accomplish the goal
of photorealistic style transfer, ranging from the classical traditional techniques early on,
to the most cutting-edge heavy methods in recent years. Ultimately, however, the optimal
approach we should take depends entirely on the specific use-case and problem we aim to
solve given our constraints. Hence, we proceed forth to the next section in order to discuss
these key design considerations for our project.

Chapter 4

Design Considerations

The first step to approaching the problem we are trying to solve is to understand the con-
straints of our current design and setup.

4.1 Data Limitations

A common paradigm in machine learning is that the better your dataset inherently is, the
better your model will be able to learn and perform. However, in the current tech stack for
AT Racing Tech, there have only been very few datasets collected in the real world to begin
with, as the team and competition are still relatively young. As such, we face two types of
issues that we need to address, namely the Dataset Size and the Dataset Diversity.

Dataset Size

In total, the current size of the dataset containing real-world images taken on the race car
driving through any race track stands in the order of a few thousand images. Given this
scarcity of data, the team was thus far required to train the object detection models on all
the available data, and unable to meaningfully hold out any data for a proper test set due
to limited size. Although other teams were willing to share their image datasets with one
another, due to differences in camera calibration across every team’s vehicle, the images often
appeared visually distinct and were unable to translate to our specific race car’s cameras.

Dataset Diversity

Furthermore, even among the already limited real-world racetrack data, there were only a
few hundred images (correlating to around one to two minutes, total) which contained a
singular other vehicle in view. This means that the rest of the dataset entirely contains only
our vehicle driving on the track, and no other vehicles racing alongside or ahead in view.
The number of unique race tracks is also limited, as the data was only collected across one

CHAPTER 4. DESIGN CONSIDERATIONS 9

or two unique tracks. As a result of all these factors, the dataset diversity is extremely poor
and limited, which further limits the quality of our vision models in their current state.

Impact on Model Performance

Considering the above factors, the team is significantly bottle-necked by the dataset size
and diversity. Nonetheless, the high expectation of the vehicle is to prepare to race on new
domains and race tracks, such as the famous Monza Circuit located north of Milan, Italy.
In addition, given the current datasets available, we are unable to provide the car with the
ability to learn what it will be like to race with other vehicles concurrently on the track. At
best, we are able to include a few frames of our single-competitor data, but the expectation
of the vehicle is to race similar to other competitions, oftentimes with two or more other
race cars racing in parallel at high speeds.

Beyond the impacts of our limited dataset diversity, the most pressing concern is the
dataset size in total, which makes training models to provide high accuracy significantly
difficult. Transfer learning based approaches can be used to mitigate this issue, but given
the brand new domain of autonomous vehicle racing, nothing will truly come close to having
real-world multi-car racing data that we can train and optimize for in-house.

As such, only one clear answer stands out: using simulation data to augment the dataset.
We will unlock the ability to create infinitely many scenarios as we desire, simulating multiple
vehicles on the race track, and simulating other racetracks as well. Simulation data will be
able to solve both of our limitations above, and ultimately yield significantly more data
outnumbering the number of real-world examples. Thus, in order to perform the best in a
subsequent real-world environment, this makes it all the more paramount that the sim2real
approach implemented needs to perform as the highest photorealistic level, lying along the
same visual domain as the real-world data for our vehicle’s specific camera configuration
and appearance. In the short-term/near future, this approach will be perfect. However, not
always will this be the case, as we must be versatile to change in the likely event that our
cameras are tuned differently over time into the future. This brings up our second key design
consideration: adaptability to change.

4.2 Adaptability to Change

The current camera configuration and tuning of various parameters has been decided upon by
the team for the time being, and set in stone for the upcoming 1-2 years. However, thinking
longer term, the possibility is clear that the cameras may be upgraded, tuned differently,
and as a result the images will visually appear to be different. When this change inevitably
happens, all our prior existing real-world data and models will become instantly obsolete,
as they appear visually and inherently different than the new images from camera hardware
changes.

CHAPTER 4. DESIGN CONSIDERATIONS 10

As a result, this is another consideration that must be taken into account when deciding
the sim2real approach we take, in order to convert all our simulation data to the new real-
world domain to train our models.

4.3 High-Level Model Approaches

From a high-level, there are two key ways to tackle this problem. The first involves intensively
pretrained models, while the second involves test-time training models, in order to perform
the Sim2Real generation for our data.

Pretraining-Based Models

Pretraining-based models often involve feeding a model with plentiful examples of images,
and tuning the model to perform well on the data it is given. The benefit of this type of
model is that the majority of the time is spent in the pretraining phase, which means that
the test-time output generation is often very quick and efficient. It may take hours to train
the model, but once it is finished training, converting simulation images to sim2real images
can occur rapidly and efficiently.

However, the requirements for such types of models are that there often needs to be an
extensive amount of data in the training process, in order for the model to learn what the
simulation and real domains look like. While simulation data is plentiful in our case, the
major issue lies in the real-data domain, where the exact opposite situation is present. As
such, it will be very difficult to train an intensively pre-trained model, simply due to the
fact that there may not be enough real-world image data for the model to learn from in
the first place. In addition, using data online from ImageNet or publicly available datasets
will not help, since we specifically want the outputs to be as close as possible to the visual
appearance of our specific camera hardware.

Test-Time Training Models

On the other hand, another valuable approach lies in the concept of test-time training models.
The benefit of this approach is that there is zero effort needed in order to create a model for
a specific style, but rather it is learned directly at test-time from the style image provided.
Another added benefit of this approach is that, oftentimes, only one single baseline style
image may be needed in order to perform style transfer on infinite numbers of images, which
is extremely valuable in data-constrained environments (such as our own) where image data
may not be plentiful and is open to change.

However, the drawback of these methods is that rather than taking time for intensive
pretraining, each image needs to be generated and refined over iterations, meaning the time
cost comes on the tail end of the style transfer process. Furthermore, the style transfer

CHAPTER 4. DESIGN CONSIDERATIONS 11

output can often depend heavily on the single style image provided, meaning that there may
need more empirical testing in order to find proper images for creating optimal outputs.

4.4 Proposed Architecture Model for Sim2Real

After considering all the factors presented above, especially in regards to data limitations
and the necessity of adaptability to change, the best solution clearly lies within the test-
time training models. The reason for this decision is because we have limited training
data of real-world images, which may make certain pretraining-based models difficult to
create and train. Furthermore, even though more data is actively being collected over time,
our camera hardware team will likely make changes and tune camera parameters as the
technology, funding, and project evolves, meaning that new visual image data on future
camera configurations will essentially require us to start from scratch, and completely render
any prior sim2real models obsolete.

Diving deeper within the branch of test-time training models, there are also various
factors to consider. In particular, one of the most important considerations is the time taken
to generate images, and perform the photo-realistic sim2real style transfer. As a result of
this, we aim to find a model which can perform the fastest sim2real conversion, even if
it may be at the expense of a little image output quality. Looking at the related works,
both diffusion models and vision transformers produce the most impressive visual outputs in
regards to quality, but through empirical testing we noticed that many of these models often
require significant compute resources, or conversely significant amounts of time on limited
compute. Due to lab hardware constraints, we fall into the latter category, meaning that
both of these approaches are not suitable at this current moment of time for our team.

Through continued research, one very interesting paper came up from 2022, titled the
"Deep Translation Prior: Test-time Training for Photorealistic Style Transfer” [9]. Upon
further inspection of this paper, we realized that it perfectly addresses all the constraints
of our project. As the title implies, the model involves a test-time style transfer model.
Furthermore, through empirical testing we were able to determine that the model can run
very efficiently on a single GPU in our laboratory, within a mere minute or two. In addition,
due to the similarity of our sim and real images both involving race cars and race tracks
(unlike the vastly different content-style realms covered by the paper), we recognize that
we can likely reduce the number of iterations required to perform our sim2real transfer,
further reducing the time cost in order to generate our outputs. Finally, a publicly available
codebase allows for us to rapidly jump into implementation, modifying and customizing the
model architecture for our specific use-case in order to quickly generate, iterate, fine-tune,
and streamline our data generation process. Hence, our project will proceed forth with the
Deep Translation Prior model architecture.

12

Chapter 5

Project Implementation

5.1 Data Collection

The first step of our project implementation process is data collection, which in our case
begins with the simulation engine. The exact steps that were taken are outlined below.

Simulation Engine

For simulation, we are using the OSSDC (Open Source Self Driving Car) Simulator, which
is a self driving car simulator based of the now-deprecated LGSVL (LG Silicon Valley Lab)
Simulator. A lot of engineering work went into setting up the simulator, the computer
hardware GPUs to run the software, and generating the data. Over the course of a few
weeks, we were able to successfully simulate multiple vehicles in the simulator environment.
The sensor setup (in particular, the onboard cameras), were designed to be a digital twin
of our real-world vehicle. As such, we then logged various simulated race car runs in the
simulator, extracting data from the ”Vimba Front Left Center” camera onboard the vehicle.
To create edge case scenarios and expand our data, addressing the dataset diversity issue we
were facing, we automated the driving process for the chase vehicle, and took over manual
control for the two vehicles in view. Commands were sent to these two other cars through the
terminal, running a separate Docker instance for every single individual agent in the scene.
This allowed us to have limited manual control over the other vehicles’ speed, trajectory,
and paths that they would follow. Using a clever combination of commands perfectly timed
throughout the track recording duration, we were able to capture complex movements such
as cars interweaving paths with one another, vehicles overtaking and cutting each other off,
vehicles coming into extremely close proximity to the chase car, the chase car overtaking
other vehicles from both the left and right angles, and even a collision case scenario in which
one vehicle pit maneuvers the other vehicle off the track. Select images from these instances
we generated are visualized below.

CHAPTER 5. PROJECT IMPLEMENTATION 13

(a) vehicle overtake (step 1) (b) vehicle overtake (step 2) (c) vehicle overtake (step 3)

(d) vehicle weaving between (e) extremely close proximity (f) accident collision scenario

Figure 5.1: Sample images of diverse multi-car scenarios for our dataset

In addition to collecting data with various configurations and movements of the vehicle,
we also sought to generate data in unseen domains. Thus, progress has been made and is
further underway for recreating the Monza Circuit in Italy, being able to create race track
boundaries and paths, and simulating multiple vehicles in this more complex environment.
Shown below are preliminary images on the simulated Monza race track, through which we
will continue to collect more data in the future.

CHAPTER 5. PROJECT IMPLEMENTATION 14

Figure 5.2: Sample images from the simulated Monza Circuit racetrack

5.2 Sim2Real Model

Model Architecture

The Deep Translation Prior (DTP) model architecture can be broken up into two key compo-
nents, the correspondance module and generation module, shown in the architecture diagram

below:

I féemfEt+ A-mfEcs

fcl<—s

-l g i

Y

1
fe S| |2
® 9
i) =
Ak
=
— v S| |& %
o
— Rl Content loss Style loss
Iy CeS
H Joo T# U |
:IConv.+ReLU DUp-sampling
L :IMaxApooling |:|Sigmoid
L
N J o\ J

\a e
Correspondence Module Generation Module

Figure 5.3: Deep Translation Prior (DTP) Model Architecture Diagram

CHAPTER 5. PROJECT IMPLEMENTATION 15

This model essentially works by taking in one single input image for the content (a
simulation image), and one single image for the style (a real world image). Using these two
images alone, the model goes through various iterations in order to iterate and generate the
optimal output.

At its core, the network architecture consists of two sub-modules, namely the corre-
spondence module and generation module. The correspondence module essentially serves
to predict a translation hypothesis by calculating the similarities between source and target
points in the two images, and create a warped feature image off the style input. Thereafter,
the generation module takes this warped feature input and passes it through a decoding
network, in order to generate the final residual of the converted stylized image.

The Deep Translation Prior paper utilizes a clever combination of three loss functions: a
content loss Leont, a style loss Ly, and a cycle consistency loss L.,.. Thereafter, each of
these losses are weighted in order to compute the total final loss, defined by the following
formula: £ = AeLeont+(1—Ae) Lotyie +AcyeLeye (Where A, and Ay are adjustable parameters).

Using the approach above, alongside a plethora of other parameters that can be mod-
ified in the model architecture (which will be explained and explored further through the
experimentation chapter below), we can aim to achieve optimal outputs tailored for our task.

5.3 Image Labelling

In order to label the images, the easiest and most standard way to go about the process is
to draw bounding boxes around all race car vehicles visible in every frame. Although this is
a tedious task, it is unfortunately one that must be done, and as a result required manual
hand-labelling of every single individual frame across all rosbags.

In order to speed up the process, we use an open-source software called Computer Vi-
sion Annotation Tool (CVAT), which streamlines the process of loading up, labelling, and
exporting image-label pairs thereafter [2]. Some benefits of CVAT is that given bounding
box labels for two frames that are 10 timesteps apart, it is able to try its best in order to
interpolate between frames, and label intermediate frames as well. In practice, this wasn’t
always perfect and often required additional adjustment by hand, but ultimately provided
flexibility and ease of use in bounding box labelling.

5.4 Post-Processing

Once the images are labelled, we now have the outputs stored as an image-label pair of files
containing corresponding bounding boxes for each of the objects (race cars) visible in the
scene. These bounding boxes provide a precise location of the car in the scene.

CHAPTER 5. PROJECT IMPLEMENTATION 16

Converting Bounding Boxes to Segmentation Masks

However, the team’s requirement is to create a model capable of performing instance seg-
mentation on the vehicles, providing a tighter and more fine-grained outline of the car on
the track (compared to a general bounding box). As a result, we must convert from bound-
ing boxes to segmentation masks, which is a traditionally difficult task. Common classical
techniques in the past have involved everything from painstakingly hand-labelling every sin-
gle individual pixel by hand, to edge detection models that would infill between detected
boundaries. However, we live in the 21st century, and deep learning models are the boon of
our existence. Meta (formerly known as Facebook) released their groundbreaking ”Segment
Anything Model (SAM)” which has made image segmentation significantly more efficient.

Segment Anything Model (SAM) by Meta Al

The Segment Anything Model was created by Meta’s Al Research team, and was trained
on 11 million images and 1.1 billion segmentation masks [10]. From a high-level overview,
the model is composed of two components. The first is a featurization transformer module
that compresses an image into a rich 256x64x64 feature matrix. Thereafter, this matrix is
passed into a decoder head, which further takes in the model’s prompts (a general outlined
mask, specifically labelled points, or a text input), and combines them together to output
predicted instance segmentation masks. The architecture can be seen in the figure below:

} 4?— mask decoder
image
encoder I T 1 T

conv prompt encoder

image t t T T

mask points box text

embedding

valid masks

Figure 5.4: Meta’s Segment Anything Model (SAM) Architecture Diagram

Coming back to our use-case, we leverage SAM’s capabilities in order to convert our
bounding boxes into segmentation masks. The approach we took is to input the simulation
image and corresponding bounding box labels into the model, and then auto-select the
center-point of each bounding box as a keypoint for SAM, since it represents the exact
middle of the race car body in view. Thereafter, SAM automatically segments the image,
and generates instance segmentation masks for each vehicle in the frame. Later on in the
verification process, individual frames are manually parsed by hand to double-check the
results, and in a few cases the segmentation mask will undergo further modifications. This is
done by repeatedly adding more points for areas the model missed, or setting removal points
for extraneous regions that were erroneously added to the segmentation. We have visualized
some of these results below:

CHAPTER 5. PROJECT IMPLEMENTATION 17

(a) Image 1: Bounding Box Labels (b) Image 1: Instance Segmentation Masks

(c) Image 2: Bounding Box Labels (d) Image 2: Instance Segmentation Masks

Figure 5.5: Converting Bounding Boxes (Hand-Labelled) to Segmentation Masks (SAM)

5.5 Segmentation Model Training

The final stage in the pipeline is to train the object detection and instance segmentation
model itself. In our case, due to the fast-paced nature of race car driving, we opted for
one of the best real-time models, YOLOv8. YOLOVS is the 8th version of the ”"You Only
Look Once” Model first published in 2015, and the model (along with pretrained weights) is
publicly released for use by the software company Ultralytics [17, 20]. The core new capability
that it introduced over its predecessor YOLOVT is support for segmentation, breaking beyond
the standard bounding box detection it has been limited to in the past. As a result, this
model was a perfect choice for our project. To accomplish our task, we implemented a
transfer-learning based approach, utilizing the pretrained models and weights available on
the website.

CHAPTER 5. PROJECT IMPLEMENTATION

size mAP mask Speed
(pixels) 50-95 CPU ONNX

(ms)

96.1

155.7

317.0

572.4

VAVA

18

Speed params
A100 TensorRT (M)

(ms)

1.21

Figure 5.6: YOLOv8 Publicly Available Models and Weights

Looking through the options available above, we needed to decide which model would
be best to proceed forth for our vehicle. There are various factors to consider, in particular
being the clear trade-offs between inference speed, model size, and accuracy. In the case
of autonomous race cars, vehicles can reach driving speeds of up to 200 miles per hour,
which means that there will often be split-second decisions that mean the difference between
staying alive on the track vs. colliding with other vehicles (a very, very expensive mistake).
Hence, we choose to opt for the most lightweight model available, YOLOvS8n-seg, due to its
extremely quick inference time with relatively good accuracy for our use case.

19

Chapter 6

Experimentation

Now that the model architecture has been finalized to the Deep Translation Prior model,
there are a variety of experiments we need to run. Inherently, the model can be tuned based
on different parameters that are passed in as arguments to the training pipeline. Upon
further inspection through the code, the key parameters that would have the greatest visual
impact on the output are:

e style_root: the real (style) images to use as our baseline
e iter: the number of iterations for optimization
e content_style_wt: the weighting between content and style

e cycle_wt: the weight of cycle consistency regularization

The goal is to ultimately converge upon the best set of parameters, images, and tuning for
our specific use-case that will maximize the realism of our generated sim2real outputs, and
subsequently yield the highest accuracy instance segmentation models that will be deployed
onto the race car. In an ideal world, the optimal process is a purely grid search approach,
trying every combination of parameters for the factors above and training the final models
to see which outputs the highest accuracy on average. However, this approach is far too
infeasible in terms of the time and compute required to generate images and training new
models for every combination. Instead, a better approach would be to first use a set of
human visual inspections, checking how the outputs for each set of parameters appear.
Typically, it should be pretty quick to recognize when a certain set of parameters produces
poor results that look unrealistic, and we can save time by filtering out these parameters
from future experiments. As we encroach upon the final few combinations, in the chance
that the sim2real output images become visually indistinguishable to the human eye, we will
then resort to training individual models, and quantitatively compare the output accuracy
across the final selection.

CHAPTER 6. EXPERIMENTATION 20

6.1 Baseline Real Style Image: style root

We first test the effects of using different baseline real (style) images on the output sim2real
generated results. For our experiment, we hand select various random frames throughout a
real rosbag of our vehicle’s camera. We test on the standard model parameters, to perform
an unbiased comparison between the sim2real outputs across different baseline images. The
results are visualized below:

Real /Sim Images

Figure 6.1: Experimenting with Real Images (Rows) and Sim Images (Columns)

Starting with the 1st real image above, we can easily see very clear artifacts in the 2nd sim
image across dark patches on the fence. The 2nd real image contains the same issue as well.
The 4th real image causes unnaturally dark skies which look unrealistic. Ultimately, the 3rd
image produces the best outputs, with visually consistent track color, sky color, minimal
fence artifacts, and overall matching best to the real image style. Hence, we will proceed
forth with the 3rd real image as our baseline style image for future sim2real generations.

CHAPTER 6. EXPERIMENTATION 21

6.2 Content-Style Weight: content style wt

We next test the effects of modifying the content_style wt on the output sim2real results.
For our experiment, we iterate over values of 0.2, 0.4, 0.6, 0.8 (default), and 1.0. The reason
for testing more lower rather than higher values (compared to default) is because we want
the outputs to bias towards the style (real) image rather than content (simulation), in order
to look as visually close as possible to our onboard camera. The results are visualized below:

Weight | Sim2Real Image 1 Sim2Real Image 2 Sim2Real Image 3

0.2

0.4

0.6

0.8

1.0 - . P S|

Figure 6.2: Experimenting with Content-Style Weight Value

Right away, we can see that 1.0 produces extremely poor outputs, meaning we can discard
it. Similarly, 0.8 produces extremely unrealistic skies for certain images, either too bright
or too dark. The 0.6 value suffers as well, with some green artifacts on the middle image in
the sky. Both 0.4 and 0.2 look impressive. However, in further rigorous visual testing (not
pictured above), we found 0.4 to provide the most consistent results, with minimal visual
artifacts in diverse conditions. Hence, we will proceed with 0.4 for our content_style wt.

CHAPTER 6. EXPERIMENTATION 22

6.3 Number of Iterations: iter

Moving on, we now test the effects of number of iterations on the output sim2real generated
results. For our experiment, we iterate over iteration counts of 200, 400, 600, 800, and 1000
(default). The reason for testing the lower end of iterations is because outputs are generated
faster with lower iterations, which is a key factor to consider as previously mentioned.

Iterations | Sim2Real Image 1 Sim2Real Image 2 Sim2Real Image 3
: | ; ‘ hq -

200

400

600

800

1000

Figure 6.3: Experimenting with Number of Iterations

We can instantly see that 200 iterations is far too little to generate clean outputs, which
was to be expected. 400 similarly suffers from poor generation, especially on the 3rd simu-
lation image. 600 is slightly better, but on the 1st simulation image we can see artifacts in
the background landscape. However, looking between 800 and 1000 iterations, the outputs
seem virtually indistinguishable, which was confirmed through further visual testing as well.
Hence, 800 will save significant time at scale for image generation compared to 1000. Thus,
we will proceed forth with 800 iterations.

CHAPTER 6. EXPERIMENTATION 23

6.4 Cycle Consistency Regularization: cycle wt

For our final set of experiments below, we test the effects of modifying the cycle wt on
the output sim2real results. For our experiment, we iterate over values of 0.0 (no cycle
consistency), 0.5, 1.0 (default), and 1.5. We aim to test an even spread of values, in order to
see whether less or more regularization weight penalty will lead to better sim2real outputs.

Weight | Sim2Real Image 1 Sim2Real Image 2 Sim2Real Image 3

o~
| e &

0.0

0.5

1.0

1.5

Figure 6.4: Experimenting with Cycle Consistency Regularization Weight Value

Looking at the results, we can instantly recognize that a weight of 0.0 (effectively remov-
ing cycle consistency) creates unrealistic sim2real outputs without learning from the style
(real) image. On the other hand, the higher end of 1.5 produces visual artifacts in the 1st
image’s sky and 3rd image’s fence. The 0.5 value initially seems visually indistinguishable
from 1.0. However, upon closer inspection we see that 0.5 produces visual artifacts at the
edges of the image, which was confirmed across other visual generations as well. Hence,
ultimately it seems that the default value of 1.0 for cycle_wt provides the most consistent
results, with minimal visual artifacts in the output across diverse sets of lighting conditions,
race track textures, and more.

After completion of the above experiments, we have now finalized our parameters, and
will proceed forth with these values in our image generation and model training ahead.

24

Chapter 7

Results

The final step to evaluating the outcome of our approach is to objectively assess the results,
and see whether we receive performance gains from utilizing sim2real data.

7.1 Dataset Structure

We will be using various datasets in order to train different models, and the information
regarding each group of data is described in detail below.

Datasets Breakdown:

e Dataset A: For our simulation image training/validation dataset, we have collected
two rosbags of three race vehicles (two excluding the chase car) running various laps
around the track, adding up to a total of 1184 images.

e Dataset B: For our sim2real image training/validation dataset, we take every image
from Dataset A, and convert them through our sim2real model pipeline using the best
parameters converged upon in the previous section. As a result of this approach, every
single simulation image in Dataset A has a 1:1 pair in the sim2real Dataset B, with
identical layouts, car positions, etc. Thus, this dataset also has a matching total of
exactly 1184 images.

e Dataset C: For our real image training/validation dataset, we have collected two
rosbags of two race vehicles (one excluding the chase car) through various laps, adding
up to a total of 703 images.

e Test Dataset: For our real image test dataset, we have two rosbags of two race
vehicles (one excluding the chase car), adding up to a total of 1434 images. This test
dataset is entirely a holdout set, from a completely different day and track run than
the real images used in training/validation. This ensures there is no internal bias in the
model evaluation, and all models are fairly evaluated on an identical unseen domain.

CHAPTER 7. RESULTS 25

7.2 Evaluation Setup

As stated earlier in the paper, we will be utilizing YOLOvVS as our model of choice to perform
instance segmentation on the race track. In order to create the most objective comparison
of data improvements, a total of five models must be trained and evaluated:

YOLOv8 Models to Train:
1. YOLOVS trained on real data ONLY (Dataset C)

2. YOLOVS trained on simulation data ONLY (Dataset A)
3. YOLOVS trained on simulation + real data (Dataset A + Dataset C)
4. YOLOvVS trained on sim2real data ONLY (Dataset B)

5. YOLOvVS trained on sim2real + real data (Dataset B 4+ Dataset C)

Furthermore, in order to make the model training and evaluation as objective as possible,
we will define all other variables, parameters, and factors to be completely identical between
the experiments. As a result, all YOLOv8 models will be trained using the following set of
parameters:

YOLOvS8 Training Parameters:
e Model Architecture: YOLOvVS (from Ultralytics)

e Pre-trained Weights: yolov8n-seg.pt (from Ultralytics)
e Number of Epochs: 25

e Image Size: 512 x 384

e Batch Size: 16

e Load Best Weights: True

All other parameters not mentioned above, such as the learning rate, momentum, opti-
mizer, etc. are kept as the same standard default values across all models.

CHAPTER 7. RESULTS 26

7.3 The Ideal Outcome to Prove Sim2Real Success

In theory, the ideal expected outcome to prove the benefits of sim2real would entail that
the test detection and segmentation accuracy vary in specific ways when comparing a few
models at a time. First and foremost, we should expect Model #2 to have the least accuracy,
since it is trained purely on simulation data and thus should have the least visually similar
output to the test data distribution, causing it to generalize the least. On the other end
of the spectrum, we should expect Model #5 to have the highest accuracy, since combining
sim2real data with the original real data allows us to provide every last image we have
gathered to the model in order to train, on images that are all realistic, and thus outperform
every other model possible that can be trained on our problem.

In specific comparisons, the most objective measure of whether sim2real truly made a
difference and improvement over simulation data is if Model #4 (sim2real only) outperforms
model #2 (sim only). This is because every image between these two models is a pure 1:1
comparison with the exact same layout, viewpoint, and position of cars, but purely the visual
elements of the image have been modified to be more realistic. Hence, if Model #4 beats
Model #2, this shows that the sim2real image conversion truly made a difference, and higher
test accuracy on real-world data proves that the converted images truly brings realism into
the images, bridging the reality gap.

The best measure to assess actionable benefits gained from this work is to compare
Model #1 (real-only), Model #3 (sim + real), and Model #5 (sim2real + real). Model #1
represents the state of team’s efforts if no simulation engine existed at all, using only the
real-world data we have. Model #3 demonstrates the state of the team’s efforts before this
project was created, leveraging all sources of data we currently have to train our models.
Model #5 represents the future potential for our project, converting all new simulation
images through the sim2real pipeline, in order to generate and bring realism to all future
collected sim images. If sim2real truly is effective, then we would expect the accuracy to
increase from left to right, proving to us that every generational step towards improving our
models has been a step-up in efficacy as well, and most importantly that the future goals
for using sim2real to convert data produces the highest performance we have seen to date.

As previously stated, the five models we described were ultimately all trained in the exact
same way with identical parameters, and the best final model weights were saved for each
one. In evaluating the output, they were assessed both qualitatively as well as quantitatively.
A detailed analysis of all these results are discussed below:

7.4 Quantitative (Numerical) Results

To compare the performance of our models quantitatively, the best standard metric to use
in comparison of segmentation models would be the mean average precision (mAP) value.
Another key metric is the precision-recall (PR) curve, generated by running the model on

CHAPTER 7. RESULTS 27

the test dataset and comparing generated segmentation masks against the baseline ground
truth. A higher mAP value means that a specific model performs better than another.

Model #2 (Pure Sim) vs. Model #4 (Pure Sim2Real)

Comparing Model #2 to Model #4, the precision-recall curves are shown below:

Precision-Recall Curve Precision-Recall Curve

—— car 0.915 —— car 0.984
= all classes 0.915 MAP@0.5 = all classes 0.984 MAP@0.5

0.8 0.8

0.6 0.6
<

Precisio
Precisio

0.4 0.4

0.2 0.2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall Recall

(a) Model #2 Precision-Recall Curve (b) Model #4 Precision-Recall Curve

Looking at the results above, we see that Model #2 has an mAP value of 0.915, whereas
Model #4 has an mAP value of 0.984. The graphs also demonstrate that Model #4’s PR
curve is much closer to the upper-right corner compared to Model #2, meaning that it is
capable of achieving a point with both higher precision and recall values at the same time.
This significant jump clearly demonstrates that sim2real truly bridges the reality gap better
than purely simulation data, as the output test dataset is entirely run on real-world images.

However, simply looking at the PR curves doesn’t paint the full picture. In our specific
use-case, it is important to know exactly how many frames that the model correctly (or
incorrectly) identifies the race car in the scene. Hence, confusion matrices are a perfect way
of identifying exactly how many test frames were detected on the race track, shown below:

CHAPTER 7. RESULTS 28

Confusion Matrix Confusion Matrix

Predicted
Predicted

background

°
=
5
2
3
g
]
2
3

car background car background
True True

(a) Model #2 Confusion Matrix (b) Model #4 Confusion Matrix

Looking at the results above, we can see that Model #2 misses a significant number of
frames of the test data, where it correctly identifies the vehicle for 487 frames, and misses
it for the remaining 947 frames. It never misidentifies a car on the track, however. On the
other hand, Model #4 correctly detects a significantly higher value of 1355 frames of the
vehicle, with only 79 frames where it misses the car, and 14 frames where it inadvertently
detects a ghost vehicle.

Thus overall, the results above undoubtedly prove to us that sim2real outperforms pure
simulation images in their model performance, and that our sim2real model effectively bridges
the reality gap!

CHAPTER 7. RESULTS 29

Model #1 (Pure Real) vs. Model #3 (Sim + Real) vs. Model #5
(Sim2Real + Real)

Now comparing Model #1, Model #3, and Model #5, the results demonstrate the following:

10 Precision-Recall Curve 10 Precision-Recall Curve
—— car 0.961 \ —— car 0.991
= all classes 0.961 MAP@0.5 = all classes 0.991 MAP@0.5

0.8 0.8

0.6 0.6
<

Precisio
Precisio

0.4 0.4

0.2 0.2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall Recall

(a) Model #1 Precision-Recall Curve (b) Model #3 Precision-Recall Curve

10 Precision-Recall Curve

—— car 0.995
= all classes 0.995 MAP@0.5

0.8

0.6

Precision

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Recall

(c) Model #5 Precision-Recall Curve

Looking at the results above, we see that Model #1 has an mAP value of 0.961, Model
#3 has an mAP value of 0.991, and Model #5 has an mAP value of 0.995. The graphs also
demonstrate that Model #5’s PR curve is much closer to the upper-right corner compared
to Model #3 and Model #1, meaning that it is capable of achieving a point with both
higher precision and recall values at the same time. These improvements once again clearly
demonstrate that sim2real truly bridges the reality gap better than simulation data or purely
real data alone.

Going beyond the mere numbers above, it is important to further analyze exactly how
many frames the models predicted correctly or incorrectly. Every single frame can mean
the difference between continuing to race, or potentially colliding and wiping out fatally
with another vehicle, resulting in millions of dollars of damages. Hence, in such safety-

CHAPTER 7. RESULTS 30

critical domains as high-speed autonomous racing, every single frame and detection matters.
Considering this, the results comparing the three models are shown below:

Confusion Matrix Confusion Matrix

Predicted
Predicted

°
e
5
2
g-

g
-]
®

3

background car background

background

True True

(a) Model #1 Confusion Matrix (b) Model #3 Confusion Matrix

Confusion Matrix

Predicted

background

car background
True

(c) Model #5 Confusion Matrix

Analyzing the confusion matrices displayed above, we can further see that sim2real truly
provides significant boosts in performance to our models. Starting with Model #1 (trained
only on real data), it only correctly identifies 1298 of the test dataset frames, while incorrectly
missing the vehicle in 136 frames, and inadvertently labelling a ghost car for 169 frames.

CHAPTER 7. RESULTS 31

Beating this model, Model #3 (trained on simulation + real data) correctly identifies 1365
frames, while missing only 69 frames, and hallucinating a vehicle for 41 frames. Finally, the
best model which stands out significantly above the rest is Model #5 (trained on sim2real +
real data), which correctly identifies an impressive 1416 frames, while only missing a mere
18 frames, and accidentally seeing a vehicle briefly for a mere 10 frames.

Overall Quantitative Analysis

Thus, analyzing all the above results from a holistic point of view, it becomes undoubtedly
clear the advancements and benefits that sim2real brings to the table, and the significant
improvements in performance that it contributes to our models. Hence, this objectively
proves that our sim2real approach truly is a success, and the numerical evidence completely
justifies and supports this analysis.

7.5 Qualitative (Visual) Results

Going beyond numbers and statistics, it is often extremely useful to further visualize the
results directly. As a result, we conduct the same experiments above, albeit this time by
providing side-by-side tiled comparisons between the model output videos on the test dataset,
synchronized across every individual frame for an objective comparison.

Model #2 (Pure Sim) vs. Model #4 (Pure Sim2Real)
For context, the following format and convention will be used for this section:
e Left Image represents Model #2 (Pure Sim) output, referred to as M2

e Right Image represents Model #4 (Pure Sim2Real) output, referred to as M4

All images presented below will follow this exact format for consistency and comparison.
Furthermore, all frames presented below are in sequential order, increasing in time steps
from start to finish on the same test dataset previously used in the quantitative results.

CHAPTER 7. RESULTS 32

Starting off the test run, we can see right away that M4 outperforms M2 by detecting
the race car almost instantly. Furthermore, this detection has high confidence of 0.64, and
a filled out segmentation mask. M2 still doesn’t recognize the vehicle.

As the vehicles progress, M4’s confidence level fluctuates a little, and drops down to 0.52.
Nonetheless, it still outperforms M2 which still isn’t able to detect the vehicle. Furthermore,
M4’s segmentation mask is still perfectly outlined as it was before.

- .
/ r, / -

However, there are some occasional frames in which even M4 falters in the output detec-
tion, and is unable to identify the vehicle in frame. In this case, M2 continues to be unable
to detect the race car as it did in previous frames.

CHAPTER 7. RESULTS 33

Eventually, M2 is finally able to detect the vehicle, and has a well segmented mask
from far away. M4 continues to maintain its superior performance, with a similarly full
segmentation of the race car, but with an additional higher confidence level of 0.75.

car 0.56

CRE . N) .y

Soon however, M2 once again drops its ability to detect the race car ahead. Despite this,
M4 continues to detect the vehicle cleanly, albeit with a lower confidence level of 0.56. The
mask is still well segmented though in the image.

—

M2 once again is able to detect the race car. It has a very low confidence level of 0.35,
significantly lower than M4’s confidence of 0.68. Both segmentation masks fully encompass
the entire vehicle. However, we can see how M2’s performance fluctuates much more often
and is volatile compared to M4.

CHAPTER 7. RESULTS 34

M4 is successfully able to identify and segment the race car. The segmentation mask is
a little degraded in a few pixels on the top right, but nonetheless it detects the vehicle with
average confidence of 0.57, while M2 is unable to detect the vehicle entirely.

Once again, we can see the M4 model trained purely on sim2real isn’t perfect, and misses
detection of the vehicle. However, in this frame, M2 isn’t able to detect the vehicle as well,
so neither model is able to see the race car ahead.

As the second half of the test dataset run begins, we can see M4 once again is the first
model to detect the race car ahead, with a confidence level of 0.57. The segmentation mask
is a little degraded on the top of the vehicle, but overall looks pretty good, and surpasses
M2 which is still unable to detect the vehicle entirely.

CHAPTER 7. RESULTS 35

Soon after, both models M2 and M4 are able to successfully detect the race car in view
ahead. However, M2 has a very low confidence level of 0.26, while M4 has a significantly
higher confidence of 0.76. Nonetheless, both models have very clean segmented masks of the
race car, and perform well in this regard.

Finally as the test dataset video comes near the end, the race car approaches much closer
to the chase vehicle. Unsurprisingly, M2 is unable to detect the car once again, while M4 is
able to detect with an extremely high confidence of 0.89. However, the segmentation mask
is extremely poor, and has major gaps and deterioration spreading from the center of the
vehicle towards the top-right.

CHAPTER 7. RESULTS 36

Model #1 (Real) vs. Model #3 (Sim + Real) vs. Model #5
(Sim2Real + Real)

For context, the following format and convention will be used for this section:
e Left Image represents Model #1 (Pure Real) output, referred to as M1
e Middle Image represents Model #3 (Sim + Real) output, referred to as M3

e Right Image represents Model #5 (Sim2Real + Real) output, referred to as M5

All images presented below will follow this exact format for consistency and comparison.
Furthermore, all frames presented below are in sequential order, increasing in time steps
from start to finish on the same test dataset previously used in the quantitative results.

Starting off the run in the test dataset, we can see that all three models M1, M3, and M5
successfully detect the vehicle, which is a great start! However, it stands out that M5 has the
highest confidence level of 0.91, while M3 and M1 trail behind at 0.87 and 0.86 respectively.
All three masks are perfectly segmented and cover the entire vehicle.

Very soon after, however, both M1 and M3 lose their ability to detect the race car ahead
in view. Considering this, M5 shines above the rest and truly stands out, as it not only
continues to detect the vehicle ahead, but further does so with a very high confidence of
0.85, and a perfect segmentation mask fully encompassing the entire vehicle.

CHAPTER 7. RESULTS 37

A few frames later, M1 regains detection of the vehicle in view, but does so with a
very poor confidence level of 0.46. M3 still remains unable to detect the vehicle as it did
before. M5 continues to stay on top, maintaining a very high confidence of 0.83 and perfect
segmentation mask as well.

Thereafter, M1 once again fluctuates and loses identification of the race car. M3 however
is now able to detect the vehicle, albeit with an extremely poor confidence of only mere
0.28. M5 yet again outperforms both models, maintaining a high confidence level of 0.78
and perfect segmentation.

Soon after, both M1 and M3 once again demonstrate the ability to recognize the race
car, while M5 continues to detect it as before. Nonetheless despite all three vehicles being
able to identify the car, they do so in very different confidence levels. M1 has extremely poor
confidence of 0.26, M3 is slightly better with a subpar confidence of 0.47, and M5 outshines
the rest with a high confidence of 0.75. All three segmentation masks are well-defined and
cover the vehicle.

CHAPTER 7. RESULTS 38

y v y

’_:' 1 - g ’ -] - =
- j S — X L3

car 0.80

. B>
= > S
- - .~

Unsurprisingly, both M1 and M3 are yet again unable to detect the race car in view,
while M5 remains completely unfazed. Furthermore, it has a very high confidence of 0.80,
and maintains its perfect segmentation mask as it has done consistently throughout the run
thus far.

e — e

car 0.92 -/ car 0.92
i

-
|, kY

As we jump further into the race, the vehicle ahead comes much closer to the chase vehicle.
In this close-up detection, all three models are able to successfully detect and segment the
vehicle in identical ways, with identical confidence levels of 0.92 as well.

car 0.92 — I car 0.94 . car 0.95

o Y S ' .

While the perfect segmentation masks are maintained across all three models, soon after
we can see that M5 still edges out on top with an exceptionally high confidence of 0.95, while
M3 and M1 have slightly lower confidence levels of 0.94 and 0.92.

CHAPTER 7. RESULTS 39

In this frame, all three models continue to identify and segment the vehicle. However,
M1 incorrectly segments and loses the upper half of the race car. It additionally also has a
false detection on the bottom right of the image. M3 and M5 still have good detection and
confidence, but M5 is still the highest with an exceptional 0.94.

carcar 0.41

As the frames progress, M1 has the lowest confidence of 0.86, but at least properly
segments the race car. Both M3 and M5 perfectly segment and maintain a high confidence
of 0.90, but a key difference is that M3 now appears to have a false detection on the bottom
right of the image. M5 remains clean and consistent in its performance.

|

car 0.90

f—mt 0:%, = %

In a very rare few frames, we can see that occasionally M1 outperforms the other models
with a confidence of 0.92, followed shortly behind by M3 with 0.90 and M5 with 0.88.
However, these frames are extremely rare, demonstrating that M5 still performs significantly
better than the rest across the test run thusfar.

CHAPTER 7. RESULTS 40

car 0.89 car 0.94
— 5 . =

=y

A few frames later, we can confirm that the previously mentioned statement is true. M5
maintains the highest confidence of 0.94 over the other two models. It also has a perfect
segmentation, while M3 has a missing degraded segmentation patch in the center of the car,
and M1 has lower confidence.

car 0.70

R—

i‘?

As the race car approaches very close to the chase vehicle, we can yet again see another
benefit of M5’s performance over the other models. M1 has poor detection and segmentation,
missing a major part of the left side of the vehicle, and erroneously segmenting some of the
background as the race car. M3 is slightly better, but still has a few degraded pixels in the
segmentation. M5 remains unfazed, with the highest confidence of 0.74, and a near-perfect
segmentation of the entire race car in view.

As we enter the second half of the test data, we can see all three models performing well
and segmenting the race car ahead. M) has the highest confidence of 0.85, followed by M3
and M1 with 0.83 and 0.75 respectively. Although the differences may seem slight, in the
full context of the run, M5 demonstrates consistent superior performance overall.

CHAPTER 7. RESULTS 41

0.74 . car 0.83
car ¢

M1 has more false detections, erroneously identifying some of the background track as a
race car. Nonetheless, when observing the real vehicle ahead, all three models successfully
segment the full shape, and M5 has the highest confidence of 0.83, much higher than the
other two models of 0.73 and 0.74.

As the run continues, we can see all three models performing well together. Despite this,
M5 never ceases to lose its edge over the other models, with a confidence level 0.01 over both
other models. Although slight, it still demonstrates superior performance nonetheless.

As the run continues, we can see M5 widen the confidence gap, with an exceptional
confidence level of 0.93, trailing the other two models with confidence of 0.90 and 0.89 for
M3 and M1 respectively. Furthermore, we can observe that M1’s segmentation mask is a
little less refined with fuzzy edges bleeding off the sides of the race car. M3 is slightly better,
but still has a few pixels on the top right where it goes over the edge. M5 objectively stands
out with the best segmentation, and a perfect outline of the race car in view.

CHAPTER 7. RESULTS 42

\car 0.87 .

Finally in the last frame from the run, we can see M1 have yet another false detection on
the bottom-right corner of the image, which diminishes the value of the model despite a 0.86
confidence detection of the actual car. M3 has no false detection, but a lower confidence of
0.82. Finally, M5 unsurprisingly stands out above the rest, with the highest confidence of
0.87, a perfect segmentation mask, and no false detections in the frame.

Overall Qualitative Analysis

Ultimately, looking at the visual results above, there exists no doubt that sim2real has proven
its capabilities and benefits. Throughout the comparisons, sim2real has demonstrated its
ability to bridge the reality gap and improve performance compared to simulation data,
and this increased accuracy of detection and segmentation demonstrates that the sim2real
converted images in training can realistically match real-world images for the model. Fur-
thermore, sim2real demonstrates the greatest amount of consistency in performance as well,
with less fluctuations and volatility compared to the other models. This is especially use-
ful and essential for our autonomous racing use-case, as consistency in our detection and
segmentation outputs will provide the most stable information for other teams to utilize for
smooth path planning and crucial decision making during the race.

Hence, the overall results look amazing and demonstrate meaningful improvements, and
we have thus proven that our zero-shot sim2real approach is a success!

43

Chapter 8

Conclusion and Future Works

In summary, the work that was conducted through this project ultimately serves to improve
our self-driving race car’s performance on the race track in the real world. Through the latest
advancements and techniques in photorealistic style transfer, we carefully considered various
approaches, and ultimately modified, implemented, and tailored a model to our specific use-
case. The results demonstrate significantly meaningful and tangible improvements to our
instance segmentation perception algorithms, and have been accepted and commended by
the entire team. This novel sim2real image generation pipeline will be used in all future
upcoming races for AI Racing Tech’s vehicle, and will be presented as an open resource to
the Indy Autonomous Challenge racing community through future workshops, presentations,
and more.

The invaluable contribution of this project lies in the ability to confidently state that the
sim2real model truly generates realistic outputs to train our vehicles on. Furthermore, the
key benefit comes from achieving this through a zero-shot approach, due to the ability to use
real-world images even if they differ from simulation inputs by the number of vehicles in view,
race track trained on, lighting conditions, etc. As a result, we have unlocked the potential
to generate and train on thousands of images of simulated racing scenarios, covering all the
edge cases of collisions, crashes, high density races with multiple vehicles, racing in brand
new race tracks regardless of location around the world, etc.

In the future, the team aims to continue developing this project further, experimenting
and modifying the techniques in order to generate even better sim2real generated outputs,
and improve our data quality to maximize our instance segmentation models. In addition,
this project further helped set up the full end-to-end pipeline from simulation to real-world
vehicle, and as a result of the modular design and codebase, will allow immense flexibility
to swap out future novel sim2real techniques as they become released and are optimized to
run feasibly on our hardware.

The future potential for this project is truly limitless, and we are excited to see how
the AT Racing Tech team continues to evolve alongside the Indy Autonomous Challenge for
decades to come. When it comes to racing, the track may be the limit in a practical sense,
but only the sky is truly the limit for innovation.

44

Bibliography

[1] Kfir Aberman et al. “Neural Best-Buddies: Sparse Cross-Domain Correspondence”.
In: ACM Transactions on Graphics 37.4 (Aug. 31, 2018), pp. 1-14. arXiv: 1805 .
04140 [cs].

[2] CVAT. URL: https://wuw.cvat.ai/.

[3] Yingying Deng et al. StyTr$ 23: Image Style Transfer with Transformers. Apr. 1, 2022.
arXiv: 2105.14576[cs, eess].

[4] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. June 3, 2021. arXiv: 2010.11929[cs].

[5] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. “Image Style Transfer Using
Convolutional Neural Networks”. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). ISSN: 1063-6919. June 2016, pp. 2414-2423.

[6] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models.
Dec. 16, 2020. arXiv: 2006.11239[cs, stat].

(7] Indy Autonomous Challenge. Indy Autonomous Challenge. URL: https://www.indyautonomouschal.
com/challenge-about.

[8] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual Losses for Real-Time Style
Transfer and Super-Resolution. Mar. 26, 2016. arXiv: 1603.08155[cs].

9] Sunwoo Kim, Soohyun Kim, and Seungryong Kim. Deep Translation Prior: Test-time
Training for Photorealistic Style Transfer. Jan. 17, 2022. arXiv: 2112.06150 [cs].

[10] Alexander Kirillov et al. Segment Anything. Apr. 5, 2023. arXiv: 2304.02643[cs].

[11] Chuan Li and Michael Wand. Combining Markov Random Fields and Convolutional
Neural Networks for Image Synthesis. Jan. 18, 2016. arXiv: 1601.04589 [cs].

[12] Xueting Li et al. Learning Linear Transformations for Fast Arbitrary Style Transfer.
Aug. 14, 2018. arXiv: 1808.04537 [cs].

[13] Yijun Li et al. A Closed-form Solution to Photorealistic Image Stylization. July 26,
2018. arXiv: 1802.06474 [cs].

[14] Tianwei Lin et al. Drafting and Revision: Laplacian Pyramid Network for Fast High-
Quality Artistic Style Transfer. Apr. 17, 2021. arXiv: 2104.05376[cs, eess].

https://arxiv.org/abs/1805.04140%2520%5Bcs%5D
https://arxiv.org/abs/1805.04140%2520%5Bcs%5D
https://www.cvat.ai/
https://arxiv.org/abs/2105.14576%2520%5Bcs,%2520eess%5D
https://arxiv.org/abs/2010.11929%2520%5Bcs%5D
https://arxiv.org/abs/2006.11239%2520%5Bcs,%2520stat%5D
https://www.indyautonomouschallenge.com/challenge-about
https://www.indyautonomouschallenge.com/challenge-about
https://arxiv.org/abs/1603.08155%2520%5Bcs%5D
https://arxiv.org/abs/2112.06150%2520%5Bcs%5D
https://arxiv.org/abs/2304.02643%2520%5Bcs%5D
https://arxiv.org/abs/1601.04589%2520%5Bcs%5D
https://arxiv.org/abs/1808.04537%2520%5Bcs%5D
https://arxiv.org/abs/1802.06474%2520%5Bcs%5D
https://arxiv.org/abs/2104.05376%2520%5Bcs,%2520eess%5D

BIBLIOGRAPHY 45

[15] Songhua Liu et al. AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style
Transfer. Aug. 11, 2021. arXiv: 2108.03647 [cs].

[16] Fujun Luan et al. Deep Photo Style Transfer. Apr. 10, 2017. arXiv: 1703.07511 [cs].

[17] Joseph Redmon et al. You Only Look Once: Unified, Real-Time Object Detection.
May 9, 2016. arXiv: 1506.02640 [cs].

[18] Jascha Sohl-Dickstein et al. Deep Unsupervised Learning using Nonequilibrium Ther-
modynamics. Nov. 18, 2015. arXiv: 1503.03585 [cond-mat,g-bio,stat].

[19] Narek Tumanyan et al. Splicing ViT Features for Semantic Appearance Transfer.
Jan. 2, 2022. arXiv: 2201.00424 [cs].

0] Ultralytics. Home. URL: https://docs.ultralytics.com/.
1] Ashish Vaswani et al. Attention Is All You Need. Aug. 1,2023. arXiv: 1706.03762[cs].

2] Pei Wang, Yijun Li, and Nuno Vasconcelos. Rethinking and Improving the Robustness
of Image Style Transfer. Apr. 7, 2021. arXiv: 2104.05623[cs, eess].

[23] Zhizhong Wang, Lei Zhao, and Wei Xing. StyleDiffusion: Controllable Disentangled
Style Transfer via Diffusion Models. Aug. 15, 2023. arXiv: 2308.07863[cs].

[24] Zhizhong Wang et al. “GLStyleNet: exquisite style transfer combining global and local
pyramid features”. In: IET Computer Vision 14.8 (2020). _eprint: https://onlinelibrary.wiley.com/doi
cvi.2019.0844, pp. 575-586.

[25] Jaejun Yoo et al. Photorealistic Style Transfer via Wavelet Transforms. Sept. 29, 2019.
arXiv: 1903.09760 [cs].

[26] Yuxin Zhang et al. Inversion-Based Style Transfer with Diffusion Models. Mar. 20,
2023. arXiv: 2211.13203[cs].

https://arxiv.org/abs/2108.03647%2520%5Bcs%5D
https://arxiv.org/abs/1703.07511%2520%5Bcs%5D
https://arxiv.org/abs/1506.02640%2520%5Bcs%5D
https://arxiv.org/abs/1503.03585%2520%5Bcond-mat,%2520q-bio,%2520stat%5D
https://arxiv.org/abs/2201.00424%2520%5Bcs%5D
https://docs.ultralytics.com/
https://arxiv.org/abs/1706.03762%2520%5Bcs%5D
https://arxiv.org/abs/2104.05623%2520%5Bcs,%2520eess%5D
https://arxiv.org/abs/2308.07863%2520%5Bcs%5D
https://arxiv.org/abs/1903.09760%2520%5Bcs%5D
https://arxiv.org/abs/2211.13203%2520%5Bcs%5D

	Contents
	Introduction
	Competition Overview
	Team Overview
	Problem Statement

	System Overview
	Software Stack
	Hardware Stack
	Subteam Responsibilities

	Related Works
	Design Considerations
	Data Limitations
	Adaptability to Change
	High-Level Model Approaches
	Proposed Architecture Model for Sim2Real

	Project Implementation
	Data Collection
	Sim2Real Model
	Image Labelling
	Post-Processing
	Segmentation Model Training

	Experimentation
	Baseline Real Style Image: style_root
	Content-Style Weight: content_style_wt
	Number of Iterations: iter
	Cycle Consistency Regularization: cycle_wt

	Results
	Dataset Structure
	Evaluation Setup
	The Ideal Outcome to Prove Sim2Real Success
	Quantitative (Numerical) Results
	Qualitative (Visual) Results

	Conclusion and Future Works
	Bibliography

