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Abstract

HiLT: A Framework for Generating Human-in-the-Loop Data Transformation GUIs

by

Sora Kanosue

Master of Science, Plan II in Electrical Engineering and Computer Science

University of California, Berkeley

,

Domain experts often find themselves performing repetitive tasks restructuring large amounts
of data. General-purpose data analysis tools like Tableau can help experts accomplish these
tasks, but they have steep learning curves, and their flexibility and open-ended interaction
model can be overwhelming for users. Task-specific interfaces can circumvent this issue by
guiding users through each phase of a data transformation task, but authoring bespoke tools
for each task is time-consuming and difficult. In this paper, we present HiLT, a domain-
specific language embedded in Python which facilitates the creation of task-specific data
transformation GUIs. Programs written in HiLT generate human-in-the-loop data transfor-
mation GUIs which walk users through the process of a given data transformation task. We
conducted a formative user study with 17 participants who were tasked with constructing
data transformation interfaces using HiLT and other existing frameworks in order to explore
HiLT’s learnability and usability relative to other tools in the same space. Our findings from
the formative study suggest directions for future tools in this space.
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Introduction

Data scientists and other domain experts frequently find themselves tackling data transfor-
mation tasks which require human insight and intervention, but at scales too large to be
comfortably accomplished by purely manual means. Custom GUIs that walk users through
a particular human-in-the-loop data transformation task hold the promise of reducing the
burden of these undertakings. Especially for tasks that require human inputs at multiple
stages, the human-in-the-loop nature makes custom GUIs a more practical technological
intervention than attempts to automate them end-to-end.

Previous work has documented how domain experts in these situations resort to measures
such as delegating the tasks to spread the workload involved, engaging “surrogate user” to
perform the task instead [43], or even forgoing the task altogether [48]. The other primary
alternative is code-free data transformation software like Tableau and Google Query. How-
ever, using these tools to accomplish a given data transformation task can require a great
deal of expertise. Their open-ended nature makes them flexible, but also difficult for novices
to navigate.

Another alternative, available to practitioners who have access to experienced GUI de-
velopers, is to solicit a bespoke GUI for each task, which practitioners may use to accomplish
their data transformations. Challenges associated with this approach include (i) identifying
relevant abstractions in the tasks, so that tools do not become obsolete via software rot as
data sources and shapes evolve over time, and (ii) the high engineering cost associated with
implementing data transformation GUIs, which are typically more complex than the more
common data display GUIs. For example, an entity matching tool written by the authors
of this project using the Django web framework took over 1100 lines of code. With current
tools, writing custom human-in-the-loop data transformation GUIs is a difficult process.

1.1 Contributions

We believe there is an opportunity for a tool in this space that supports programmers in
writing custom GUIs for human-in-the-loop data transformation tasks. The GUIs produced
by such a tool must allow programmers to bring and transform their own data. We have
designed a framework for constructing this class of GUIs, centered on meeting the following
design goals:
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1. Design Goal 1: Guiding the User The output GUI must walk the user through
the process of their data transformation task, rather than leaving them to explore in
an open-ended way, as Excel or Tableau do.

2. Design Goal 2: Importing Data The system must make it possible for an output
GUI to accept different input data shapes, so users can bring their own diverse data.

3. Design Goal 3: Transforming Data The system must make it possible for an
output GUI to change the data shape based on users’ interactions with it.

In this paper, we present the initial design of HiLT, a Python-embedded domain-specific
language (DSL) designed to output GUIs which guide users through human-in-the-loop data
transformation tasks. HiLT’s abstractions allow programmers to: (i) build customized in-
terfaces by combining a variety of UI components, (ii) specify how UI interactions map to
data transformations in the underlying database, and (iii) run the generated GUI as a fully
fledged database-driven web application. Because it is implemented as a Python library,
HiLT is compatible with other Python libraries that are also useful for data transformation
tasks, such as Numpy, Pandas, and PyTorch.

We conducted a user study with 17 Python programmers in order to explore the usability
and learnability of HiLT’s initial design compared to existing alternatives. Each participant
completed a series of programming tasks in HiLT. They also completed this same series
of tasks in either Streamlit or Django. We found that participants were generally more
successful with HiLT than Django, but that Streamlit outperformed HiLT in certain aspects,
although participants did not succeed with Streamlit in two of the core goals of this work—
supporting transformation of data and guiding users through tasks. From the qualitative
results obtained from this study, we plan to iterate upon HiLT and run further user studies
to evaluate both HiLT and the GUIs its programs produce.

Overall, this work contributes:

• A set of abstractions that allow programmers to implement GUIs that display, ma-
nipulate, and transform data without knowing the physical structure of the data in
advance.

• HiLT, a Python DSL that implements these abstractions, and a framework for building
custom GUIs that guide users through human-in-the-loop data transformation tasks.

• A formative study exploring HiLT’s learnability and usability.

• A discussion of the formative study’s results and the connection to directions for future
work.
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Related Work

In this section, we survey both human-in-the-loop data transformation systems and pro-
gramming frameworks for building human-in-the-loop data transformation tools. To situate
HiLT in this prior work, we ground our discussion in a design space divided along two axes:

1. Guided vs. Open-Ended User Interaction. Guided human-in-the-loop systems
walk users through specific tasks, while open-ended systems provide toolkits for end-
user directed analyses. For instance, Excel [23] and Tableau [37] are popular open-
ended human-in-the-loop data transformation systems. Examples of guided systems
include survey software like Qualtrics [35] and Google Forms [10].

2. Data Display vs. Data Transformation. Many data work GUIs are designed
around data display rather than data transformation. Users can view and perhaps
slightly tweak their data, or they may be able to enter additional rows into an existing
programmer-designed table. In contrast, data work GUIs that permit data transfor-
mation allow users to: (i) insert their own tables, which may not match a previously
fixed schema, and (ii) engage in processes involving querying and changing the shape
of that data. This imposes a requirement that a data transformation GUI cannot be
hard-coded to expect, for example, a particular column with a particular name.

We are most interested in tools for building custom GUIs that support Guided User
Interaction and Data Transformation. To the best of our knowledge, there are no tools
specialized for this task, although of course we can use general-purpose tools like vanilla
web programming to author guided data transformation GUIs. Thus, we focus a majority
of this section on tools that specialize either in Guided User Interactions (but not Data
Transformation) or in Data transformation (but not Guided User Interactions), and briefly
discuss the intersection of systems featuring guided data transformation tasks.

Data Analytics Software: Open-Ended User Interaction, Support
for Data Transformation

Prior work both in academia and industry has contributed a large number of GUI-based,
exploratory data transformation and analysis systems [37, 25, 1, 24, 26, 38, 18, 16, 9]. Many
of these systems aim to (1) support flexible, open-ended data transformation and cleaning
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and (2) emphasize low- or no-code interactions with data. For example, business intelligence
(BI) tools like Tableau [37, 25], Trifacta [9], and Microsoft PowerBI [24] allow users to
filter, aggregate, and visualize data from multiple sources without programming or database
management expertise. OpenRefine [30] supports sophisticated cell-, column-, and table-
level operations on tabular datasets through GUI-based interactions. While these systems
expose small data transformation DSLs or query languages to augment GUI functionality
(e.g., Data Analysis Expressions (DAX) [22] in PowerBI and General Refine Expression
Language (GREL) [29] in OpenRefine), their core interaction models are GUI-based. Also
ubiquitous in information workplaces are spreadsheet-based technologies like Microsoft Excel
[23] and Google Sheets [11].

Another category of tool leverages programming-by-demonstration and programming-by-
example to infer and synthesize data transformations from user interactions [19, 12, 7]. For
example, Wrangler [19, 12] pairs direct manipulation with an inference engine to suggest
and preview data transformations while a user interacts with their data in a table interface.
Wrex [7] augments computational notebooks with table components allowing users to provide
input-output examples of desired transformations as a specification to a program synthesizer.
In contrast to BI-style tools—which hide program representations of data transformations
from users—these systems center the synthesized program as a primary output.

HiLT-generated tools share these systems’ focus on data transformation as the primary
task. However, while these systems orient users toward open-ended, exploratory analyses, a
user of a GUI generated by a HiLT program is guided through a specific transformation task
defined by the HiLT programmer.

GUI-Building Software: Guided User Interaction, Support for
Data Display

Web Programming Frameworks for Data Display While not explicitly designed for
data transformation, many web programming frameworks pair view-templating capabilities
with abstractions for remote data access and persistence, making them popular choices for
developing bespoke human-in-the-loop data transformation systems. Django (Python) [6],
Ruby on Rails [36] (Ruby), and Next.js (JavaScript, TypeScript) [45] are three popular
examples; each provides APIs for managing data and application state across client, server,
and database. These systems are capable of expressing a wide range of user interfaces but
recall that we expect a data transformation interface to offer users the opportunity to:

• add their own tables, with arbitrary column structures

• engage in interactions that require querying those tables, linking tables, generating
new tables, and generally transforming the shape of their data

Django or Ruby on Rails can straightforwardly support authoring interfaces in which an
end user can add a row to a fixed, programmer-designed table, but authoring interfaces that
meet the goals above requires more expertise and more complex codebases.
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Frameworks for Interface Generation A number of web frameworks trade degree of
control for ease of development in order to lower the complexity of building a functioning
web application. One such framework in this space is Streamlit [39], which pairs a library
of pre-made components with a web application engine to allow users to build simple web-
apps using Python scripts. Although libraries in this space allow for rapid development of
interfaces, the challenges around supporting data transformations in the interface backends
(rather than only data display) remain. Other entries in this space which aim at rapid
development of data visualization interfaces include Dash [33], Panel [14], and Gradio [42].

Beyond these frameworks, researchers have developed languages and libraries that aim
to lift the level of abstraction even higher to simplify the end-user programming experience.
Mavo [46] is a declarative HTML superset that adds data persistence, interactivity, and
inferred data schemas to web applications via new language constructs applied to HTML
elements. In this way, Mavo’s abstractions support complex CRUD operations and user
interactivity without requiring programmers to have JavaScript expertise or experience with
relational data modeling. Again, these tools focus on display rather than transformation.

HiLT shares many of the core ideas and philosophies of these tools. Like Mavo, HiLT
adds domain-specific constructs to a host language (Python) with abstractions for entities like
database tables. Similarly, HiLT’s Components and Processors mimic the data parameters
and view descriptors of the mage API. However, unlike these systems, HiLT tailors its
abstractions even more closely to the specific domain of data transformation GUIs, rather
than data display GUIs. For example, programs in HiLT make no assumptions about the
shape of the data which users input, allowing tools written in HiLT to be reused across
multiple contexts and by users with different data sources. Also in this space is DIG [4], which
abstracts data analysis interfaces into a formal grammar. By delineating the parameters of
data analyses, DIG can be used to outline the requirements of an interface for a given analysis
task. HiLT takes a similar approach by allowing programmers to use Components to give
users degrees of freedom over the data transformation taking place. However, whereas DIG
grammars encode that all parameters be resolved by the end users of an interface, HiLT
gives programmers explicit control over which decisions the end users will make and what
the programmers will decide for them in advance.

Augmenting Computation Notebooks with Data Displays Some prior works have
used computational notebooks as a platform to support programmers in authoring custom
notebooks which guide users through data-related tasks. For example, iPython [17] exposes
a feature called Widgets, which allows developers to augment Jupyter notebooks with ”in-
teractive browser controls” [34]. mage [20] provides a framework for developers to create
data widgets which can be represented simultaneously in code and within a GUI, facilitating
interactions like data selection and exploration. PI2 [5] synthesizes data visualization inter-
faces from queries, allowing users to explore SQL query spaces. EDAssistant [21] provides
users with an array of data visualizations and suggests code for subsequent analyses, thus
guiding developers through exploratory data analysis tasks. Although these systems support
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interactions with data within computational notebook systems, these interactions are either
limited to data visualizations or intended to support programmers within the open-ended
interface of a computational notebook.

Easing GUI Authoring Without Data Emphasis More broadly, a number of prior
works feature systems which facilitate easier authoring of GUIs. As discussed previously,
PI2 [5] synthesizes data visualization interfaces from sequences of queries. Bespoke [44]
uses programming by demonstration to wrap command-line applications in GUIs. Varv
[3] presents programs as data structures which allow for the authoring of user-extensible
interactive software systems, including interfaces. A number of systems allow for the creation
of visual programming environments, including Sandblocks, Blockly, Engraft, and livelit [2,
15, 27, 8]. Although these tools aim to make GUI authoring easier in a variety of domains,
these domains do not include data transformation tasks.

Domain-Specific Custom GUIs: Guided User Interaction, Support
for Data Transformation

Above, we describe both (i) open-ended tools that can be used for data transformation and
(ii) frameworks that can be used to generate guided-interaction tools that support data
display. We are not aware of systems that specifically target generating guided-interaction
tools that support data transformation. However, even with tools primarily designed for
other purposes, individuals and teams have created a variety of custom GUIs for walking
users through data transformation tasks in particular domains. For example, Statsplorer [47]
is a tool which walks novices through inferential statistical tests. The scope of interactions
is limited, described by its authors as ”[an] explicit, narrow, and deep decision tree,” and, as
required by our data transformation definition, the system accepts tabular data regardless
of schema. Tools in this category are examples of the kind of human-in-the-loop guided data
transformation UIs which users can author with a tool like HiLT, a category of tool that is
still difficult to author with modern GUI authoring approaches. Unlike HiLT, these tools
are not themselves aimed at generating interfaces.
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HiLT Interaction Model

In the HiLT interaction model, programmers define interfaces which can be used to capture
user inputs and perform data transformations parameterized by these inputs. The outputs
of these data transformations can also be surfaced for inspection and approval by the users
before being committed. HiLT programs can thus be used to produce human-in-the-loop
data transformation pipelines usable by non-programmers.

Figure 3.1: The resulting interface for a file
upload Stage

In this section, we provide an overview of
this interaction model by working through a
motivating example. We consider the case
of a lawyer, Marin, trying to perform entity
matching across multiple years’ of police ros-
ter data encoded in spreadsheets. Marin’s
challenge is that these spreadsheets each
contain several thousand entries and have
column names which differ across years. To
this point, Marin has tried to surface the
matches by manually inspecting the spread-
sheets, an approach which has been ineffi-
cient at best. Frustrated, Marin reaches out
to Navi, a colleague on her team with pro-
gramming experience, who chooses to use
HiLT to construct an interface which Marin
can use to accomplish this data transforma-
tion task.

3.1 Programming in HiLT

Navi begins by instantiating a HiLT Tool. Each program in HiLT defines a Tool, which
is composed of Stages that guide users through the different steps of a human-in-the-loop
data transformation task. Each Tool has an underlying database, which allows its Stages
to read and modify a shared set of datasets.
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1 tool = Tool('demo')

2

3 def csv_upload_and_name():

4 table_name = UserInputComponent(str, label="Enter table name:")

5 csv_file = FileUploadComponent('csv', label="Upload a csv file:")

6

7 def create_table():

8 return create_table_from_csv(table_name, csv_file, get_user_approvals=True)

9

10 created_table = LambdaProcessor(create_table).result

11 results.show_results([results.Result(created_table, "Created table: ")])

12 approvals.get_user_approvals()

13

14 tool.add_stage('csv_upload_and_name', csv_upload_and_name)

15

16 tool.run()

Figure 3.2: Code for a file upload Stage

Having instantiated the Tool, Navi now begins constructing the first Stage, which Marin
will use to upload the datasets of interest. To define a Stage, Navi needs to specify a stage-
defining function (SDF) which specifies:

1. The Components that comprise the user interface which Marin will use to upload the
datasets,

2. The Processors that will run on Marin’s inputs,

3. The Results to show to Marin once she finished providing input.

In HiLT, programmers define the interface of each Stage using one or more Components,
each of which specifies a separate interface element. Navi chooses to use a
UserInputComponent and a FileUploadComponent to populate the interface for the dataset
upload Stage (Figure 3.2), which render as a text entry box and a file upload input (Figure
3.1).

Having defined the user interface for the Stage, Navi moves on to defining a Processor

in order to specify how to handle Marin’s inputs. The main Processor class available is
LambdaProcessor, which is instantiated using a Python function. To programatically access
the Components she just defined, Navi can pass a function nested in the SDF and use it to
instantiate a LambdaProcessor, as seen in lines 7-10 Figure 3.2. She has the function passed
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to the Processor return the created table, so that it can be accessed via the Processor’s
result attribute.

Before committing Marin’s uploaded data to the Tool’s underlying database, Navi may
want Marin to inspect the uploaded data to give her the opportunity to filter out any
malformed data. Navi can achieves this using the get_user_approvals argument of the
create_table_from_csv, which caches the changes await approval. Then, the call she makes
to the approvals module’s get_user_approvals function surfaces these cached changes for
inspection by Marin.

All that remains now is for Navi to specify what Marin should see after the Processor

has run and the approved changes have been committed. To do this, Navi can use the
show_results function available in HiLT’s results library. As seen in Figure 3.2, Navi
chooses to display the table created from the dataset uploaded by Marin, along with a label
describing the displayed results.
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(a) The approvals interface (b) Interface for a table Result

Figure 3.3: The approvals and results interface for the file upload Stage

3.2 Using a HiLT-programmed Tool

To begin interacting with the Tool defined by Navi, Marin begins by navigating to the
Tool’s landing page. To upload a new dataset, she navigates to the csv upload and name

Stage, which presents her with the interface shown in Figure 3.2. Upon uploading a dataset,
Marin sees the approvals interface, which allows her to approve and reject various rows of the
uploaded table, as seen in Figure Since Navi has directed the committed table to be shown
as a Result, Marin sees exactly that after clicking the Submit button, as seen in Figure
3.3b.
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HiLT API Description

. In this section, we describe the core APIs available to HiLT programmers for constructing
Tools. Specifically, we provide the Python type-annotated signatures for the methods and
fields of:

• the Tool class,

• a sample of Component classes (FileUploadComponent, TableSelectorComponent,
and
ColumnSelectorComponent),

• and the LambdaProcessor sub-class of Processor.

We also describe a few key components of HiLT’s standard library, including the modules
that handle database creation and modification (db_utils), user approval of modifications
(approvals), and displaying results (results).

4.1 Tool

HiLT programmers construct Tools by progressively adding Stages to them using the
add_stage method. (See Table 4.1.) Using a Tool object’s run method creates the ini-
tial webpage. Additional webpages are generated throughout the Tool’s run based on the
combination of (i) the end user’s interactions with webpages and (ii) each Stage’s SDF.

Table 4.1: The Tool Class

Method/Field Signature Description
add stage(stage name: str,

stage func: Callable)

Method to add a Stage to this Tool. stage func

is expected to be a function which defines a Stage.

run()
Runs this Tool as a local web server, allowing users
to access interfaces through a browser.
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Table 4.2: The FileUploadComponent Class

Method/Field Signature Description

expected_ext: str
The expected file extension for uploaded files, used to validate
user input.

value: str The local path to the uploaded file.

4.2 Components

Components form the building blocks of each Stage’s associated web page. HiLT provides a
Component class, and a number of subclasses which define a number of pre-specified inter-
face elements which HiLT programmers can use to build interfaces. Currently, HiLT provides
seven pre-defined Component subclasses (ColumnSelectorComponent,
FileUploadComponent, SelectorComponent, SubmitComponent, TableSelectorComponent,
TextComponent, and UserInputComponent). Most Component classes are InputComponents,
which are designed to capture some form of user input. InputComponents provide a label

attribute, to allow programmers to prompt users for input, and a value attribute, which
can be used to programatically access the provided input later, such as in a Processor.
InputComponents also provide overloading for Python’s magic methods where appropriate,
allowing each to be programmatically treated like its value. We provide details for three of
the Component sub-classes in the following paragraphs.

FileUploadComponent

FileUploadComponents provide an interface element for users to upload files. These can be
used to solicit input datasets like CSV files being stored locally by users.
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1 def column_selector():

2 table = TableSelectorComponent("Pick a table")

3 col = ColumnSelectorComponent("Pick a column from the same table")

4

5 def select_col():

6 col_names = col.value

7 col_name = col_names[0]

8 values = []

9 for row in table:

10 value = row[col_name]

11 values.append(value)

12 return values

13 processor = LambdaProcessor(iterate_over_table, num_return_vals=1)

14 results.show_results([results.Result(processor.result, "Values in column: ")])

15

16 tool.add_stage("column_selector", column_selector)

Figure 4.1: A simple Stage to demonstrate how a table selected via a
TableSelectorComponent can be iterated over and its rows indexed into. The
column selector function is used to define a Stage via the add stage function.
The Stage uses a TableSelectorComponent and ColumnSelectorComponent to solicit a
choice of table and column from the user. The Stage uses a LambdaProcessor to process
the user’s choice of table and column. The iterate over table function iterates over each
row of the selected table to accumulate a list of values that appear in the user-selected
column. Note that the HiLT standard library offers a simpler way of selecting column
values; this example is for demonstration purposes.

TableSelectorComponent

TableSelectorComponents provide an interface element which allow users to preview and
select a table from the database underlying the associated Tool. The
TableSelectorComponent’s value attribute contains a representation of the selected ta-
ble (Table 4.3). It implements Python’s __iter__ interface, facilitating iteration over the
rows of the selected table. These rows can additionally be indexed into using column
names or iterated over to retrieve cell values. An example of TableSelectorComponent
and ColumnSelectorComponent usage appears in Figure 4.1.
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Table 4.3: The TableSelectorComponent Class

Method/Field Signature Description

value: Table
A programmatic representation of the
selected table.

append(other: dict,

get user approvals: bool = False)

Method to append a row to the selected table.
The new row is specified by a dictionary
mapping column names to cell values.
get user approvals specifies whether the
user should be asked to verify the append
before committing the change.

Table 4.4: The ColumnSelectorComponent Class

Method/Field Signature Description
num_columns: int The number of columns the user is expected to select.
value: list[str] A list of the names of the user-selected columns.
table_name: str The name of the table from which columns were selected.

Table 4.5: The LambdaProcessor Class

Method/Field Signature Description
func: Callable The function to be run to handle user input.
num_return_vals: int The number of values expected to be returned from func.
result The value, or tuple of values, returned by func.

ColumnSelectorComponent

The ColumnSelectorComponent provides an interface element which allows users to to select
a predetermined number of columns from that table (Table 4.4).

4.3 Processors

Once users have provided input, a Processor controls how the input is used to transform data
in the Tool’s backend. The main Processor sub-class provided is the LambdaProcessor.
LambdaProcessors (Table 4.5) allow HiLT programmers to handle user input by passing
a Python function that will be run when the associated Stage receives user input. HiLT
requires that the passed function does not accept arguments. By defining a Processor within
a Stage-defining function, programmers can keep variable-bound Components in scope, as
demonstrated in Figure 4.1. Specifically, note that the iterate_over_table function is
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Table 4.6: The db utils module

Function Signature Description

create_table_from_csv(csv_file: FileUploadComponent)

Parses the uploaded file
and creates a new table
in the underlying
database.

create_table_from_lists(data: list[list])

Creates a new table
populated with the
passed data.

get_table_from_table_name(table_name: str)

Returns an iterable
representation of the
queried table.

Table 4.7: The approvals module

Function Signature Description

get_user_approvals()
Collects changes requiring user approval and presents them in
a single view to the user.

defined within the table_iterator SDF. Since iterate_over_table is defined within the
table_iterator Stage function, it has access to table and col, which it uses to make a
list of the values that appear in the user-selected column of the table.

4.4 db utils

The db_utils module, included in HiLT’s standard library, provides programmers with a
number of utility functions to interact with a Tool’s underlying database. Three of these
functions are described in Table 4.6.

4.5 approvals

HiLT also contains an approvals module, which allows programmers to solicit user con-
firmation for changes being made to the database backing a Tool. HILT API calls which
make stateful changes expose a get_user_approvals option, allowing programmers to cache
changes they would like users to confirm. Programmers must then call the approvals mod-
ule’s get_user_approvals function in order to confirm that they would like to seek user
confirmation, and direct HiLT to display the approvals interface. An example of this flow
can be seen in lines 7-12 of Figure 3.2.
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Table 4.8: The results module

Function Signature Description

show results(results: list[Result],

results title: str = ’’)

Displays a list of Results, after
Processors have been run and
approvals handled.

Result(value: Any, label: str = '')
Instantiates a new Result object to be
passed to show results

4.6 results

The results module allows programmers to specify the view to be shown to the user af-
ter input processing has taken place. This is done by passing a list of Result objects to
the module’s show_results function. E.g., after creating a new table, a programmer may
provide the created table as input to show_results, as in line 13 of Figure 3.2, which will
produce a web page that displays the created table.
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System Implementation Key Insights

Figure 5.1: An example of a Tool’s landing
page, accessed via the Arc web browser

While running ,Tools switch back and forth
between two operating modes: interface-
construction and handling-POST. At a
high level, a Tool running in interface-
construction mode is in the process of syn-
thesizing the web page comprising the inter-
face of a Stage. SDF calls to Processors,
the approvalsmodule, or the resultsmod-
ule are ignored while in this mode. A Tool

running in handling-POST mode is in the
process of handling user input and SDF calls
to Processors, the approvals module, or
the results module are live and capable of
modifying state.

When a programmer runs a Tool, it
launches a locally running web server, al-
lowing users to interact with the Tool via a
web browser. By default, Tools show users a
landing page linking them to each available
Stage; an example landing page appears in
Figure 5.1.

When a user clicks on the link to a Stage, the Tool enters interface-construction mode
and runs the Stage’s SDF associated with the Tool (Section 3.1). When an SDF run is
triggered in this way, HiLT dynamically generates the user interface for that Stage and
serves it as the response to the GET request generated by the user’s click.

5.1 How API calls produce output UIs

Stage interfaces are generated dynamically each time a user clicks on the link for a particular
Stage from a Tool’s landing page. When this happens, HiLT issues a GET request to the
locally running web server, causing the Tool to run the Stage’s SDF in interface-construction
mode. While in this mode, the SDF constructs the set of Components that will ultimately
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1 def csv_upload_and_name():

2 if len(db_utils.get_table_names_from_tool(tool)) == 0:

3 table_name = UserInputComponent(str, label="Enter table name:")

4 csv_file = FileUploadComponent('csv', label="Upload a csv file:")

5

6 tool.add_stage('csv_upload_and_name', csv_upload_and_name)

Figure 5.2: Code demonstrating how Component rendering can be controlled dynamically
based on Tool state

be rendered in the user interface. Note that the set of Components associated with a Stage

is not fixed pre-deployment. Rather, the SDF constructs the appropriate set dynamically
at run-time; as a result, the programmer can design the HiLT-generated interface to vary
based on prior user inputs. See Figure 5.2 for a simple example of varying the rendered
Components based on prior user inputs.

While in interface-construction mode, HiLT ignores any Processor instantiations or API
calls to the results or approvals modules which are made in the SDF being run.

Once the SDF has terminated, HiLT renders each Component instantiated in the SDF by
converting it into an HTML snippet using the Jinja templating system [31]. Programmers
can modify Component object attributes to alter the rendered Components’ appearances and
functionality—e.g., the programmer can provide a string to use as a label for a Component,
or specify that user input to a UserInputComponent must have a given type. HiLT collates
these HTML snippets into a single HTML document, again using a Jinja template. The
resulting document comprises the output user interface for the Stage.

In total, there may be up to three web pages associated with a single Stage: the initial
web page, created through the Component accumulation process described above; optionally,
an approvals web page, if the programmer wants to give the user an additional opportunity
for feedback as to which data transformations are propagated to the backend; and finally,
again optionally, a results web page, which displays the results of the data transformations
by showing part of the backend data. Figure 5.3 summarizes this topology.

5.2 How API calls and user interactions shape

database interactions

When the user finishes providing inputs to the interface and clicks the submit button, HiLT
issues a POST request to the running web server. This puts the Tool in handling-POST
mode, and re-runs the SDF, which in turn re-instantiates each Component. While in handling-
POST mode, Components that capture user input parse the relevant input from the POST
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Figure 5.3: How users may move between different interfaces for a single Stage. Dashed
lines indicate possible moves, and solid lines indicate moves that always happen from a given
interface.

1 def adder():

2 input1 = UserInputComponent(int, "Enter the first addend:")

3 input2 = UserInputComponent(int, "Enter the second addend:")

4

5 def add_inputs():

6 return input1 + input2

7 processor = LambdaProcessor(add_inputs, num_return_vals=1)

8 result = processor.result

9 results.show_results([results.Result(result, "Result of addition")], "Results: ")

Figure 5.4: SDF for a Stage adding user inputs

request, thus facilitating programmatic access to these values. Although these values are
available in each Component’s value field, one goal we had when designing Components was
to reduce boilerplate by allowing programmers to programatically treat Component variables
as if they were the values themselves. In order to accomplish this, we overloaded many of
Python’s magic methods for various Component classes, allowing programmers to do things
like iterate over the rows of a table (Figure 4.1) or add the values of two user inputs together
(Figure 5.4).

When Processors are instantiated on the second run of the SDF, HiLT executes any
associated transformations. In the case of LambdaProcessors, this amounts to running asso-
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ciated programmer-defined function. Within these functions, programmers can manipulate
the inputs associated with the Stage’s Components, and propagate changes to the Tool’s
backing database. Each time a programmer defines and instantiates a new Tool, a fresh
SQLite [41] database is created and wrapped inside the SQLAlchemy Python library [40].
Programmers can manipulate the state of these databases using functions from the db_utils
module (Table 4.6). For example, a programmer can call the create_table_from_csv func-
tion to create a new table in the backing database. They can also modify existing tables
via a number of Component methods (e.g., using the TableSelectorComponent’s append

method to add new rows to a table).
By default, once the SDF terminates in handling-POST mode, the system redirects the

user to the Tool’s landing page. If a call to the results module’s show_results function
is made while in handling-POST mode, then the passed Result objects are translated into
HTML snippets and collated into a Jinja template in a process similar to interface construc-
tion during the initial run of the SDF. This result view is shown to the user once the SDF
has terminated in handling-POST mode.

During interface-construction mode, a call to get_user_approvals sets a get_approvals
flag on the running Tool. This flag remains active during handling-POST mode, and causes
any API calls with their get_user_approvals option set to cache any changes they make,
rather than propagating them to the underlying database. Then, when the SDF returns
while in handling-POST mode, an interface prompting the user for confirmations is gen-
erated based on the cached changes. Once the user submits their inputs, the Tool goes
into a handling_approvals mode, during which it propagates the confirmed changes, and
afterwards returns the results view or landing page to the user.
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Figure 5.5: HiLT’s system architecture
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Formative User Study

To evaluate HiLT’s usability and effectiveness in its stated design goals and to identify
directions for future improvements to HiLT, we conducted a within-subjects user study with
17 participants. As comparison baselines, we used Django [6] (n = 9), and Streamlit [39] (n
= 8). Each participant used HiLT and either Django or Streamlit.

6.1 Participants

We recruited participants with at least a basic level of prior experience with Python (the
host language for HiLT, Django, and Streamlit). In all, we recruited 17 participants via UC
Berkeley’s Experimental Social Science Laboratory and by word of mouth. 12 participants
had between two and six years of programming experience, two participants had at least
six years of programming experience, and three participants had less than two years of
programming experience. As compensation, each participant received $20 for each hour of
participation, in the form of an Amazon gift card.

6.2 Tasks

We asked each participant to complete three tasks with each of two frameworks. Specifically,
we asked participants to make a custom GUI for exploring information about recipients
of the National Science Foundation’s Graduate Research Fellowship Program (GRFP), by
completing the following three tasks:

Task 1: File Upload: Let users upload a CSV file, give the uploaded dataset a name,
and view the table represented in the CSV. Users should be able to view the datasets without
having to re-upload them.

Task 2: Entity Matching: Let users create a table of applicants who were offered
awards in both years. Users should be able to specify what criteria to match by; for example,
by choosing the column containing names from each table and returning all applicants whose
names appeared in both years. Users should also be able to specify which datasets they want
to match. The matched data should be persisted in the underlying data store.

Task 3: Dataset Filtering: Let users filter a previously uploaded table by a value from
a given column. For instance, if users select a table, a column from that containing school
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names, and enter the name of a school, they should see a list and count of all applicants who
attended that school for that year.

6.3 Protocols

We began each user session with an introduction and the informed consent process. Then,
we assigned the participant two frameworks with which to complete the tasks: HiLT, and
one of either Django or Streamlit. To mitigate learning effects, we balanced the order in
which they used each framework across participants (i.e., half saw HiLT first, and half saw
the alternative tool first). We then asked them to complete the three tasks using each
framework. Each participant was given an hour total for each framework, during which
we asked them to spend the first 15 minutes familiarizing themselves with the framework’s
documentation and tutorials. Throughout all parts of the sessions, participants were free
to consult external resources like search engines or large language models (LLMs) to assist
them.

After the hour they spent with each tool, each participant filled out a post-task survey.
This survey asked them what they did and did not like about the framework they had
just used. The survey also included a set of Likert-scale questions asking them to rate the
framework’s usability and learnability, as well as six NASA Task Load Index questions [13].
After attempting the tasks with both frameworks, they completed a final survey which asked
which framework they preferred and collected demographic information.
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Formative Study Results

In order to evaluate each user’s success at each task, we divided them into 12 total subtasks
each with their own criteria, described in Table 7.1. Subtasks 1 through 3 form the criteria
for Task 1, subtasks 4 through 8 the criteria for Task 2, and the remaining subtasks the
criteria for Task 3.

7.1 Can users build real tools with HILT?

In general, participants struggled to use HiLT to complete all the tasks within the 45 min-
utes they were given (Figure 7.1). Only one user completed all three tasks in the allotted
time. Overall, we observed that many participants were unaware of the existence of HiLT’s
db_utils module. Instead, these participants spent much of their time trying to wire up
their own backend for their HiLT programs using libraries such as pandas [32]. See Section
8 for more discussion.

Table 7.1: Subtask Criteria

Subtask No. Description
1 Can a user upload a CSV file?
2 Can a user name the CSV file they’re uploading?
3 Can a user select and view a CSV file they’re previously uploaded?
4 Can a user view matches across two datasets?
5 Are the matches correct?
6 Can a user specify what two datasets to match?

7
Does a user have some degree of control over the criteria used to match
across two datasets?

8 Are the matches persisted in the underlying data store?
9 Can a user view the result of filtering over a single dataset?
10 Is the result correct?
11 Can a user specify what dataset to filter over?

12
Does a user have some degree of control over the criteria used to filter
over a dataset?
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(a) The completion rate for each task for HiLT
users.

(b) The completion rate for each subtask for
HiLT users.

Figure 7.1: Participants did not usually complete the first task, and those who did often
did not have the time to complete the second and third tasks (Subfigure 7.1a). Only one
user completed all three, while two users completed Task 1 and only one of Tasks 2 or 3.
Most participants were able to complete subtask 1, but subsequently struggled to complete
subtask 3, which entailed saving uploaded datasets to the Tool’s underlying state (Subfigure
7.1b).

7.2 Can users complete more tasks and subtasks with

HILT versus with a competitor tool like Django

or Streamlit?

All participants who were assigned Django as an alternative baseline framework struggled to
complete tasks. None of this subset of participants were able to complete any of the subtasks
using Django (Figure 7.2). Participants using Streamlit were markedly more successful with
it, with 2 of the 8 participants completing the tasks in full. We discuss the differences in
their processes with HiLT and Streamlit in depth in Section 8.

7.3 What is the workload (TLX) of HILT vs. Django?

Figure 7.3 shows the average TLX responses grouped by Tool. Across all indices but Effort,
the reported subjective workload was highest for participants using Django. In general,
participants gave lower responses for Streamlit than HiLT, indicating that they felt that
Streamlit was lower-workload than HiLT.
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(a) Completion rate for each task, grouped by
framework used

(b) Completion rate for each subtask, grouped
by framework used

Figure 7.2: Across the board, participants did not complete any subtasks using Django
in the time allotted. As seen in Subfigure 7.2a, more participants completed Task 3 with
Streamlit than Task 1, as one participant did not allow users to name their uploaded datasets.
No participants completed Task 2 with Streamlit, as none of them persisted the results of
matches. This is also reflected in Subfigure 7.2b, under Subtask 8.

Figure 7.3: Average TLX Responses by Tool. Error bars show 95% confidence intervals.
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Discussion

In this section, we reflect on the patterns we observed in the formative study, and suggest
directions for how HiLT might be improved for the future. We plan to conduct a qualitative
analysis of the data collected during the user study in order to more thoroughly explore
potential areas of improvement.

8.1 LLM Support

Throughout the user study, we observed almost all participants at some point querying an
LLM for assistance. Streamlit was first introduced in 2019, which gave it a marked advantage
in this regard, as LLMs like ChatGPT [28] were able to output functional programs when
prompted by participants. Indeed, one participant using Streamlit finished most subtasks in
20 minutes after copying the task prompt into ChatGPT and using the resulting program. As
a side note, we observed that participants were unable to prompt LLMs to output functional
Django programs, most likely due to the extensive boilerplate the framework requires. They
were also unable to output functional HiLT programs, despite even the best efforts of one
participant who copied the entirety of the HiLT documentation into ChatGPT.

8.2 Reasoning About First-Class Functions

To author HiLT programs, programmers must pass functions as arguments to other func-
tions; for example, they author separate SDFs for each Stage, and pass functions nested
in SDFs to LambdaProcessors. First-class functions may be a fairly sophisticated concept,
especially for participants with limited programming experience, and we believe that this
posed a conceptual hurdle to many of our participants. We observed in particular that
participants with limited Python experience struggled to reason about Python’s use of in-
dentations for function scopes. In contrast, Streamlit allows interfaces to be generated and
backend processing defined through function calls to Streamlit’s API, without the use of
first-class functions. Indeed, programmers can use Streamlit without defining any functions
themselves.
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8.3 Generalizing Programs Beyond Fixed Data Files

Another possible differentiating factor between Streamlit and HiLT is that HiLT is intended
to author interfaces which can accomplish data transformation tasks in which users bring
their own data. However, we gave participants only two sample datasets for testing their pro-
grams. As a possible consequence, 6 of the 8 participants who authored Streamlit programs
hard-coded for those datasets in some way—e.g., asking users to upload exactly two datasets
or hardcoding the expectation that they would receive a dataset named “dataset2022” and
another “dataset2023”. In contrast, participant-authored HiLT programs that successfully
completed at least one task were always agnostic to the shape of user-uploaded data.

8.4 Data Transformation

More broadly, no Streamlit participants persisted data about matches (Task 2 of the for-
mative study). Rather, they completed the tasks that could be completed via data display
alone. Although our formative study has suggested important pathways for improvement of
HiLT, the fact that the Streamlit participants did not in fact produce data transformation
GUIs but rather data display GUIs suggests that any future evaluative study will need fresh
task design to effect a head-to-head comparison with HiLT specifically in the space of custom
data transformation GUIs.
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Conclusion

Domain experts performing data transformation tasks and lacking programming experience
often have their needs unmet by the current ecosystem of open-ended data analysis tools.
At the same time authoring bespoke, guided data transformation tools for them to use on a
case-by-case basis is difficult in the current landscape of tools. Only 3 of the 17 participants
successfully produced HiLT GUIs which persisted the outputs of users’ data transformations,
and 0 of 16 participants achieved this using non-HiLT alternatives. This suggests an open
need for improved tools for authoring custom human-in-the-loop data transformation GUIs.

This paper presents the preliminary design of HiLT, a domain-specific language for au-
thoring data transformation GUIs which aims to fill this gap. We conducted a formative
user study with 17 participants in order to identify directions for future development. For
future work, we plan to conduct a qualitative data analysis of our user sessions, and iterate
on HiLT before conducting evaluative user studies of programmers using HiLT and end users
using the output GUIs.
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