Syntactic Code Search with Sequence-to-Tree
Matching

Gabriel Matute
Wode Ni

Titus Barik
Alvin Cheung
Sarah Chasins

ST NEFLELEL]

.Il

h,
Y
4

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-93
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-93.html

May 10, 2024

Copyright © 2024, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Syntactic Code Search with Sequence-to-Tree Matching

by Gabriel Matute

Research Project
Submitted to the Department of Electrical Engineering and Computer Sciences,

University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination

Committee

i OO

Professor Sarah E. Chasins
Research Advisor

04/30/2024

% %k ok sk sk ok ok

Professor Alvin Cheung
Second Reader

04/30/2024

Syntactic Code Search with Sequence-to-Tree Matching

Supporting syntactic search with incomplete code fragments

GABRIEL MATUTE, University of California, Berkeley, USA
WODE NI, Carnegie Mellon University, USA

TITUS BARIK, Apple, USA

ALVIN CHEUNG, University of California, Berkeley, USA
SARAH E. CHASINS, University of California, Berkeley, USA

Lightweight syntactic analysis tools like Semgrep and Comby leverage the tree structure of code, making
them more expressive than string and regex search. Unlike traditional language frameworks (e.g., ESLint)
that analyze codebases via explicit syntax tree manipulations, these tools use query languages that closely
resemble the source language. However, state-of-the-art matching techniques for these tools require queries
to be complete and parsable snippets, which makes in-progress query specifications useless.

We propose a new search architecture that relies only on tokenizing (not parsing) a query. We introduce a
novel language and matching algorithm to support tree-aware wildcards on this architecture by building on
tree automata. We also present stsearch, a syntactic search tool leveraging our approach.

In contrast to past work, our approach supports syntactic search even for previously unparsable queries.
We show empirically that stsearch can support all tokenizable queries, while still providing results comparable
to Semgrep for existing queries. Our work offers evidence that lightweight syntactic code search can accept
in-progress specifications, potentially improving support for interactive settings.

CCS Concepts: » Software and its engineering — Formal language definitions; Software maintenance tools; «
Information systems — Query representation; « Theory of computation — Tree languages.

Additional Key Words and Phrases: Code Search, Syntactic Analysis, Tree Wildcards

ACM Reference Format:

Gabriel Matute, Wode Ni, Titus Barik, Alvin Cheung, and Sarah E. Chasins. 2024. Syntactic Code Search with
Sequence-to-Tree Matching: Supporting syntactic search with incomplete code fragments. Proc. ACM Program.
Lang. 8, PLDI, Article 230 (June 2024), 22 pages. https://doi.org/10.1145/3656460

1 INTRODUCTION

When a developer pastes a fragment of code into their IDE’s search box, why do they not start
seeing matches right away? If their search uses string search, the answer is probably that the search
query is too specific—too dependent on whitespace, on formatting choices. If their search uses a
syntactic search tool, the answer is probably that their code fragment is not a parsable expression.
Say a developer labors over their search query until they think it is complete, but they reach the
end and it produces no matches. Is there a logical error in the query or are there simply no relevant
results in the codebase? How can the programmer get more information to help them move towards
the correct query? As in other programming domains, live feedback during query authoring holds

Authors’ addresses: Gabriel Matute, University of California, Berkeley, Berkeley, CA, USA, gmatute@berkeley.edu; Wode
Ni, Carnegie Mellon University, Pittsburgh, PA, USA, nimo@cmu.edu; Titus Barik, Apple, Seattle, WA, USA, tbarik@apple.
com; Alvin Cheung, University of California, Berkeley, Berkeley, CA, USA, akcheung@cs.berkeley.edu; Sarah E. Chasins,
University of California, Berkeley, Berkeley, CA, USA, schasins@cs.berkeley.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART230

https://doi.org/10.1145/3656460

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.

HTTPS://ORCID.ORG/0000-0001-7785-1231
HTTPS://ORCID.ORG/0000-0002-5341-4958
HTTPS://ORCID.ORG/0000-0002-4877-0739
HTTPS://ORCID.ORG/0000-0001-6261-6263
HTTPS://ORCID.ORG/0000-0003-0557-3580
https://doi.org/10.1145/3656460
https://orcid.org/0000-0001-7785-1231
https://orcid.org/0000-0002-5341-4958
https://orcid.org/0000-0002-5341-4958
https://orcid.org/0000-0002-4877-0739
https://orcid.org/0000-0001-6261-6263
https://orcid.org/0000-0003-0557-3580
https://doi.org/10.1145/3656460

230:2 Gabriel Matute, Wode Ni, Titus Barik, Alvin Cheung, and Sarah E. Chasins

the promise of giving users (i) early feedback about their queries and (ii) information they can use
to refine their goal. Unfortunately, most of the query fragments en route to a programmer’s target
query may not be parsable program fragments. If our code search tools can only offer feedback for
complete, parsable states, we deny developers important early feedback.

Lightweight syntactic analysis tools—i.e., tools that use a domain-specific language (DSL) that
resembles their target programming language to specify syntactic patterns—are used in a wide
variety of domains. For example, Semgrep [40] is a security-focused static analysis tool that uses
syntactic patterns to detect vulnerabilities, Comby [45] is a language-aware search and replace tool
that has been used for large-scale refactoring, and TXL [5] is a structural analysis and transformation
tool that has been used for program analysis and instrumentation. Language-specific examples,
like Haskell’s Retrie [37] and Go’s gofmt [11], are often used for programmatic code edits.

At their core, all these tools rely on syntactic search to accomplish their goal: given some
lightweight pattern specification—a code fragment that may or may not use placeholders—they
find all the matching positions in the source code. Traditionally, this matching is performed by
comparing the syntax tree of the pattern specification against the syntax tree of the source code.
Thus, syntactic analysis tools start by parsing the query into a tree and then rely on standard tree
matching algorithms to search the parsed source files. Since the pattern specification needs to be
parsed with this approach, syntactic analysis tools require the code fragment in the specification to
be complete—that is, parsable into a syntax tree. In contrast, partial, often unparsable, queries are
useful and well-supported in textual search tools such as find-and-replace. Thus, we identify the
parsability constraint as a limitation of existing syntactic search tools.

To address this limitation, we observe that lightweight syntactic search queries are parsable code—
and thus the partial queries that a programmer produces en route to a complete query are usually still
tokenizable, even if they are not parsable. As with so many programming domains, the query author
creates a tokenizable fragment as they craft a complete specification. As such, we present a new
architecture (Section 2) that (i) only assumes queries are tokenizable, but not necessarily complete,
and (ii) relies on minimal extensions to an existing lexer. We define a query language (Section 3)
that accepts partial queries. Finally, to provide support for expression placeholders, we develop
novel matching semantics (Section 4) defining sequence-to-tree matching.

We implement these techniques in a new tool, stsearch (Section 5). To evaluate our approach,
we collected a benchmark suite (Section 6) of real-world search queries. We then evaluate (Section 7)
our tool against Semgrep, a current state-of-the-art, commercial lightweight syntactic search tool.
Finally, we discuss the tool’s limitations and future work (Section 8) and situate our approach
within the related work (Section 9). This work contributes:

e A search query language for expressing syntactic search queries and formal semantics
capable of accepting partial—but tokenizable—code fragments as queries.

e A matching algorithm, STMatch, that underlies our implementation, capable of matching
a token sequence with wildcards against the syntax trees of source code.

e An open-source implementation, stsearch, of our techniques, and an evaluation showing
that it supports not only parsable, but also tokenizable but non-parsable queries.

Our evaluation shows that for existing complete queries, stsearch is comparable to Semgrep:
stsearch’s different semantics only excludes 4.95 % of the results that Semgrep matches in our
benchmark. Meanwhile, stsearch successfully accepts and processes all tokenizable partial queries,
often providing results comparable to the complete queries with fewer tokens.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.

Syntactic Code Search with Sequence-to-Tree Matching 230:3

passport.authenticate(// Pattern error
passport.authenticate ($NAME, // Pattern error
passport.authenticate($NAME, { // Pattern error
passport.authenticate($NAME, {..., keepSessionInfo: // Pattern error
passport.authenticate($NAME, {..., keepSessionInfo: true // Pattern error
passport.authenticate($NAME, {..., keepSessionInfo: true, ...} // Pattern error

Listing 1. Partial queries that result in a parse error and, therefore, produce no results in Semgrep.

1 /% Regex: */ /passport.authenticate\(.*,/
2 /* Semgrep: */ passport.authenticate($_, {..., keepSessionInfo: $_, ...})
3 /x stsearch: */ passport.authenticate($_, {... keepSessionInfo // 5 fewer tokens

5 // 1. Regex miss, Semgrep match, stsearch match

¢ // a regex dot °. doesn't match newlines by default
7 let identity = passport.authenticate(«

8 'openid', // for profile info

9 { keepSessionInfo: true }

00);

12 // 2. Regex match, Semgrep skip, stsearch skip

13 // due to the comma in first argument nested expression
14 router.post('/identity/admin’,

15 passport.authenticate(selectId(isDev, 'admin')));

17 // 3. Regex match, Semgrep skip, stsearch skip

18 // due to the comma inside the embedded comment

19 router.get(

20 '/admin',

21 passport.authenticate(LOCAL)); // not safe, but for now :)

23 // 4. Regex miss, Semgrep match, stsearch match
24 app.post('/demo', passport

25 .authenticate(isDemo ? LOCAL : selectID(isDev, 'demo'),
26 { successRedirect: '/profile', // failureRedirect: '/login' }
27 keepSessionInfo: true}))

Listing 2. Searching with regex, Semgrep, and stsearch for uses of passport.authenticate in a codebase.
Notice that stsearch supports partial queries, so it uses fewer tokens than Semgrep for comparable results.
Meanwhile regex struggles with false positives and negatives.

1.1 Motivating Example

Consider a developer using the authentication library passport [13] and trying to ensure that
the authenticate function (signature below) is used securely in their codebase.

passport.authenticate(name[, optionl])

Reading the documentation [12], they discover that the function provides an option called
keepSessionInfo; if keepSessionInfo is true, the application preserves information after a
user logs into their account. By default, keepSessionInfo is false, since it makes applications
vulnerable to session fixation attacks. To improve security, the developer wants to search their
large existing codebase for uses of authenticate that use keepSessionInfo option at all.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.

230:4 Gabriel Matute, Wode Ni, Titus Barik, Alvin Cheung, and Sarah E. Chasins

String Search. The developer starts with a tool for performing string or regular expression search,
like the standard command-line utility grep or the search box of their preferred code editor. Perhaps
they start with the simple string search below.

passport.authenticate

This simple string search finds most of the relevant authenticate uses pictured in Listing 2.
Notice that spacing of any kind around the dot between passport and authenticate will prevent
a match. For example, in Line 24 of Listing 2, a programmer has put a newline after passport.
Thus the developer’s simple string query will accidentally fail to find this usage.

Regular Expressions. Next, the developer wants to filter the results to those that pass an explicit
option parameter. Since the first function argument name likely varies throughout the codebases,
they switch to regex and add a greedy wildcard /. */ to match the first argument.

/passport\.authenticate\(.*,/

Regular expressions are notoriously hard to use [27]. For example, a wildcard /. / will not match
newlines by default in most engines, so many common uses, like in Line 7, can be hazardously
overlooked. On the flip side, even simple cases for the first argument, like nested calls (Line 15)
or comments (Line 21), can lead to a vast number of false positives. Finally, even in true matches,
the character range selected is unlikely to match the relevant construct due to these same issues,
rendering the results useless for programmatic changes.

Lightweight Syntactic Analysis Tools. Programming languages are not regular languages, so
regular expressions are incapable of fully expressing them. Even if the developer painstakingly
encodes more language-specific syntactic information into the query, like irrelevant white space
and comment syntax, regular expressions can only express patterns in regular languages, while
modern languages are at least context-free, e.g., relying on nested parenthesis.

At this point, the developer might switch to a more expressive tool. Alternatives abound, but a
natural next step could be lightweight syntactic analysis tools. In contrast to heavyweight syntactic
analysis tools, in which users write programs that explicitly traverse and manipulate the program
abstract syntax tree (AST), lightweight syntactic analysis tools accept queries that look similar
to the programs being searched. For instance, our developer could use the lightweight syntactic
analysis tool Semgrep with the following query.

passport.authenticate($NAME, {..., keepSessionInfo: $VALUE, ...3})

In contrast to our developer’s regular expression attempt, this query matches all intended cases,
even Line 24, despite the formatting, comments, and nested expressions. Note that in Semgrep
$NAME and $VALUE are interpreted as expression placeholders and . . . as zero-or-more items.

Lightweight syntactic analysis tools perform matching over the parse trees of a given file, which
means that they are capable of supporting more expressive patterns. For example, they usually
ensure placeholders respect matching delimiters and nested sub-expressions, making them capable
of expressing patterns outside of regular languages. They can also leverage a substantial amount of
information about the source language, like the precedence and associativity of operators.

Syntactic Search for Non-Parsable Queries. Nevertheless, current lightweight syntactic analysis
tools have strict requirements on the input query. Since they need a tree structure to search over a
codebase, they need to fully parse the query into a well-formed tree. For example, Semgrep uses a
parser that requires that the query is a complete JavaScript (JS) statement or expression. Therefore,
partial queries like the ones shown in Listing 1 would result in a parse error, preventing the search
with no matches surfaced to the developer.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.

Syntactic Code Search with Sequence-to-Tree Matching 230:5

In contrast, our tool, stsearch, can provide results even for partial queries. In our example, while
the developer is crafting the query with existing state-of-the-art tools, most of the intermediate,
partial specifications are invalid and result in no useful feedback to complete the query. The
developer can instead use stsearch, which introduces support for tokenizable queries, even if they
are not parsable. The developer can write the query below, where $_ is similar to an expression
placeholder and . . . is similar to a zero-or-more items placeholder.

passport.authenticate($_, {... keepSessionInfo

Our stsearch tool leverages the same insight used in syntax highlighting: many code fragments
are tokenizable but not parsable. stsearch provides results for all tokenizable states en route to a
complete query, providing feedback and context to the developer for those tokenizable fragments.
Queries in our language (Section 3) are a sequence of tokens, and we even implement stsearch
by reusing and extending an existing lexer to handle additional wildcards. Importantly, since our
queries may not be parsable, we cannot use traditional tree matching techniques.

Instead, we introduce a novel sequence-to-tree matching semantics (Section 4). Our algorithm
can take as input: (i) a token sequence and (ii) the concrete syntax tree (CST) from a source file;
and select matching slices in the tree. Our approach matches concrete tokens to tokens in the tree,
but ensures that wildcards match a complete subtrees. This novel strategy thus handles partial,
but tokenizable queries while still leveraging the structure of the concrete syntax tree similar to
existing state-of-the-art syntactic search tools.

2 SYSTEM OVERVIEW

In this section, we describe the system architecture of stsearch. In particular, we contrast the
stsearch structure with the structure of prior lightweight syntactic tools.

Syntactic search tools take as input a query and a set of source code files. They produce as output
a list of matches—i.e., source code files ranges that match the provided query. We use the term
lightweight to refer specifically to those with query languages that resemble the syntax of the
source language, typically by reusing the source language’s existing infrastructure.

2.1 Architecture of Traditional Systems

Previous systems for lightweight syntactic search (e.g., [40]) use the pipeline pictured in Fig. 1a to
process both the search query and the source code. In particular, note that both the query and the
source code are run through a lexer and a parser. Thus this approach requires parsing the query.
We briefly describe the two stages of traditional pipelines:

(1) The tool conducts Query Processing with a modified parsing pipeline. Usually the source
language is augmented with additional syntax for placeholders or other search constraints,
so the tool typically extends the lexer and parser to support the new syntax. After processing
the query, the pipeline outputs a tree pattern that resembles the code syntax tree.

(2) Next the tool conducts Tree Matching to match the pattern against the syntax tree generated
by parsing the source code. The trees usually share the same structure, since they come from
similar parsers, so matching can be performed using standard matching techniques (e.g. [14]).
Existing tools include many practical optimizations, e.g., building a search index.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.

230:6 Gabriel Matute, Wode Ni, Titus Barik, Alvin Cheung, and Sarah E. Chasins

Fig. 1. Comparison of stsearch architecture against traditional systems.

Traditional

passport . authenticate

passport.authenticate

code tree — Tree(-to-_Tree) — matches
Matching

(a) Diagram of traditional lightweight syntactic search tool architectures. Traditional tools use a
lexer and a parser to generate a tree pattern, then rely on standard tree-to-tree pattern matching.

stsearch

query sequence ———— Architecture

authenticate($_, [authenticate](51)

code tree __.| Sequenceto-Tree | . iopeq
Matching

(b) Diagram of stsearch architecture. It uses a lexer—but no parser—to generate a pattern token
sequence, then relies on our novel STMatch algorithm to perform sequence-to-tree matching.

2.2 Architecture of stsearch

To handle partial, non-parsable queries, stsearch removes the parsing step from query processing.
See the stsearch pipeline in Fig. 1b. As such, our inputs are extended to include all tokenizable
queries, but we must provide a novel matching engine to support token sequences as the query.
We can no longer rely on classical tree matching techniques.

(1) stsearch performs Query Processing using just a lexer. To support wildcards (see Section 3),
we might still need to extend the lexer to support new syntax as in traditional lightweight
syntactic search tools. However, we no longer need to update the parser to account for all
language constructs that should allow for potentially ambiguous wildcards.

(2) Sequence-to-Tree Matching is our novel technique (described in Section 4) developed to
support matching a token sequence against the syntax tree. Since the token sequence and
the leaves of the tree are created by the same lexer, stsearch can match tokens to leaves,
but our algorithm also supports tree-aware wildcards. Due to the heterogeneous types, many
known search optimizations might not be directly applicable.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.

Syntactic Code Search with Sequence-to-Tree Matching 230:7

Pattern p ::= k+ (sequence) Token k ::= S_ (subtree wildcard)
| ... (siblings wildcard)
| k/ang
Fig. 2. Syntax for stsearch. We introduce $_ and . .. tokens to represent placeholders in search queries,

while the kjgp token stands in for any token allowable in the lexical specification in the source language.
Note that although we use EBNF notation for clarity, the language syntax is actually regular.

3 QUERY LANGUAGE

Since traditional lightweight syntactic query languages are defined as extensions to the source
language grammar, they are only able to parse and interpret patterns that correspond to a complete
grammatical production or construct, like an entire expression or statement. As such, partial
specifications, potentially encountered when authoring a complete query, are usually not recognized
in the language and therefore yield no results at all.

Instead, we notice that partial queries are still tokenizable. Actually, many syntax highlighting
tools rely only on tokenizing precisely to support editing incomplete code fragments. Tokenization
already encodes meaningful details about the language: dropping insignificant whitespace, splitting
distinct syntactic elements (e.g., names and operators), etc.. Meanwhile, it is usually a local process,
making it more resilient to incomplete code fragments than full on parsing.

Our query syntax (Section 3.1) allows the reuse of existing lexers for the source language. Similar to
the strategy of traditional systems, our tool can reuse the existing language infrastructure to process
the query. In fact, many modern languages already have separate lexing and parsing infrastructure,
making very efficient lexers easily available.

Consequently, our query semantics (Section 4.1) specifies results even for partial queries. Since we
no longer produce a tree, we can no longer rely on standard tree matching algorithms to define
matches for our language. However, we still want to be able to match against trees to preserve the
expressivity improvements of syntactic search tools over regular expressions, e.g., to account for
arbitrarily nested expressions. As such, we first outline the intuition of our language (Section 3.2),
and then we give a formal specification of the matching algorithm in Section 4.

3.1 Syntax

stsearch accepts a code search query using the syntax shown in Fig. 2. As with many lightweight
syntactic tools, a query is a string similar to a code fragment in the source language. In this case a
pattern is a sequence of one or more fokens, where a token can be any token in the source language
extended with the wildcards below. Note that, although we use extended Backus—Naur form (EBNF)
notation for clarity, the language syntax is actually regular, as are the underlying tokens.

Our language supports two kind of wildcards in a query:

subtree wildcard ($_) are similar to expression placeholders as found in most traditional syn-
tactic analysis tools. They ensure that an entire subtree in the concrete syntax tree is matched,
using the parse tree to properly express arbitrary nested expressions.

siblings wildcard (. . .) are similar to zero-or-more items placeholders in many traditional
syntactic analysis tools where they are used to match arbitrary sub-sequences in arguments,
statements, or lists. They ensure that adjacent sibling subtrees are matched.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.

230:8 Gabriel Matute, Wode Ni, Titus Barik, Alvin Cheung, and Sarah E. Chasins

(=] [em]
Query: [authenticate|(5_])] ; !
| V] i
|
11
X authenticate ((openidl, {} passport |[AuEhenEIGaEe) (FopenaT, {})
authenticate ()
.
=)
[V f H
X |] | @ | |
e e——
authenticate (‘openid’) authenticate (TsDemo? Tocal —openid], {} function [BUEhenticaEe (Gamly opts) { }
— obj
Query: [{]- - -keepSession[;] r
% | | % |
X —_——
I {keepSession : true} {Euccess " TTogin'])] KeepSession : true}

Fig. 3. lllustrative example of the semantics of stsearch. Given the query in the top left, we want to match
trees with at least 2 arguments, like member call expressions and maybe even the function definition.
Similarly, given the query on the bottom left, we want all trees that include a given property.

3.2 Intuition

We now discuss the intuition behind stsearch’s query language.

Definition 3.2.1. Let S* be the set of finite sequences over some set S, where s [(i.e., juxtaposition)
denotes concatenation and s | [denotes that s is a sub-sequence of [for 5,1 € S*.

Definition 3.2.2. Let T(F) be the set of finite ordered trees over some ranked alphabet ¥, where
¥p denotes the symbols in ¥ with p-arity, and 7y is the set of leaves.

Definition 3.2.3. A concrete parse tree t € T(F) is produced by a partial function parse(s) with
s € ¥, and the left inverse operation yield(t) defined by the in-order leaves of .

parse(s) =t = vyield(t) =s

Given a query pattern p and a concrete parse tree t, we want to define if there is a match, i.e., if
it will be surfaced by our tool. Our goal is to ensure that a full, parsable query is guaranteed to
match at least the same results as its parse tree. Meanwhile, a partial query should include the
matches for the parse trees of all valid completions of the provided query to guarantee that
the matches for the intended query results are included.

For a query with only concrete language tokens, i.e., without wildcards, it suffices to check if
the pattern is a sub-sequence of the tree leaves, i.e., if p | yield(t). If the query is parsable, then p
trivially matches parse(p), given that yield(t) = p and p | p. Meanwhile, for partial queries, any
parsable completion with a prefix [or a suffix r would also match.

ALrst parse(lpr) =t = p | yield(t)

Once we consider queries with wildcards, defining a match becomes tricky. We want to use the
parse tree structure to match more than regular languages, so we cannot rely only on sub-sequence
matching. However, even with a full query there is no straightforward path to parsing wildcards
without introspecting into the details of a specific parse function and choosing a resolution to any
ambiguities. For example, consider a query with just 3 wildcards ($_$_$_), it can either be parsed
as two unary operators (matching -+s) or a binary operator (matching x<y).

Instead, to match the intuitive behavior of traditional systems placeholders, we want to ensure
that each wildcard matches entire subtrees (like a nested expression or statement). Meanwhile, for

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.

Syntactic Code Search with Sequence-to-Tree Matching 230:9

concrete tokens, we want to keep the previous sub-sequence semantics to match any possible parse.
In practice, this means we want match all possible valid parses given by replacing the wildcards
with some complete syntactic structure, uncovering all possible parses for a given query.

Consequently, as shown in Fig. 3, we want every concrete token to appear in order in the tree.
We want every subtree wildcard to match one subtree immediately after the last matched token.
A siblings wildcard has a similar constraint, but it can match zero or more adjacent siblings.

4 SEQUENCE-TO-TREE MATCHING

Given a pattern sequence (with wildcards), we first state the matching semantics as recognizing the
regular tree language defined by the pattern (Section 4.1). Our intuitive notion, can be formalized by
translating a pattern into a tree automaton that recognizes matching trees. We then present a novel
STMatch algorithm that takes a pattern sequence and a tree cursor, i.e., a position in a tree, and
checks directly for a match (Section 4.2). We outline the minimum requirements on the underlying
interfaces and walk through the core algorithm components.

4.1 Semantics

Definition 4.1.1. A pattern p is a sequence of tree leaves, potentially with wildcards ‘W, i.e.
p € P* where P = F U ‘W, where the wildcards ‘W might include the subtree wildcard .

Given a tree t, we want to check if it belongs in the “tree language” of a pattern p, so we translate
a pattern into a tree language specification. In particular, our intuitive notion outlined in Section 3.2
can be encoded in a recognizable tree language as defined by finite tree automaton (similar to
languages over sequences or word languages). Therefore, we outline how to derive a tree automaton
from each pattern to reduce the sequence-to-tree matching problem to membership checking.

Definition 4.1.2. A pattern p matches a tree t € T(F) when ¢ is accepted by the following
top-down nondeterministic finite tree automaton [4, top-down NFTA]

Alp) = (O, F,LA) (automata)
Q ={s() suchthats | p} (all states)
I={p()} whereI CQ (initial states)
q(fo)—fo q=f
A= q(f G xn) = f e) g= (transitions)

q(f(xr, - x0)=f(qi(x1), - . qn(xn)) g=¢q1 " qn

Conceptually, a top-down tree automaton traverses a tree from the root to the leaves, associating
a state with each subtree. It starts, by associating an initial state to the entire tree. Then, at each
step, it propagates the state from the subtree root to its children, according to a set of transitions.
Finally, the automaton accepts a tree if it is able to complete a traversal of the entire tree.

In our case, we want the states to track what part of the pattern each subtree matches. As such,
we define all states to include any possible sub-sequence of the pattern p. Furthermore, we want
to ensure the full tree matches entire pattern, so the initial states only contain the full pattern p.
Finally, we specify the transitions, given a pattern state and a subtree:

o If the pattern state consists of a single leaf g = f; and the subtree is the same leaf f;, then the
pattern and the subtree match, so we finish the traversal of this branch.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.

230:10 Gabriel Matute, Wode Ni, Titus Barik, Alvin Cheung, and Sarah E. Chasins

o If the pattern state consists of a wildcard g = , then we can always match the entire
current subtree f(xy, - ,xp), so we finish the traversal of this branch.

e If the root f has n children xy, - - - , x,, we can then split the pattern state into n sub-sequences
such that ¢ = q; - - g, and continue the traversal at each child.

Example 4.1.3. Let the alphabet ¥ = {binop(,,),1,+} where binop might represent a binary

operation (with two terms and an operation). Let the pattern sequence p = 1+ , such that we
have an automaton with the following transitions.

c(fo) = fo when ¢ = f; (1)
(f(xl, woexp)) = flx e xn) forall f € 7, (2)
q1 92 q3(binop(x1, x2,x3)) — binop(qi1(x1), q2(x2) , g3(x3)) (3)

With this automaton, we can check the tree t = binop(1, +, 1) with the following trace:

p(t)= 1+[s_|(binop(1, + binop(1,4,1)))

= binop(1(1), +(+), [s_|(binop(1,+1))) by Rule 3
— binop(1, +, (binop(1,+,1))) by Rule 1 (twice)
— binop(1, +, binop(1,+,1)) by Rule 2

Since we are able to traverse the entire tree we have that p matches ¢, as we would expect.

Notice that without the second case, i.e., Rule 2 (for a), the automaton simply checks the
pattern corresponds to the leaves of the tree. This behavior matches our previous intuition for
concrete patterns in Section 3.2, namely that p | yield(t). Therefore, the automaton presented is a
generalization of those outlined semantics to account for subtree wildcards.

Extending the automaton to support more wildcards is straightforward. We can encode their
semantics, including special structural constraints, by adding rules to the transitions. For example,
for the sibling wildcard from Section 3.1, we would use the following.

q(f(xr, -+, xp)) —
f(ql(xl) s Qe (-1 ’(xji+Ki_1) o s(xji+1<,-—1) Qi1 (Xjrii) 5 Gm (x,,))

with i € [1,s], j; € [1,m] and K; = Zle k; for some k; > 0
when g = ¢; -+ g, Where g, =|:]andn=m—s+Ks

Conceptually, given an m-split of the pattern state g with s sibling wildcards on each of the
the j;-th sub-sequences, the rule continues the traversal at each child, similar to the last rule in
the original transitions. The states q; not corresponding to selected sibling wildcards are moved
as-is to in-order child nodes x;, while the selected g, states are replaced by k; subtree wildcards.
Consequently, each sibling wildcards matches k; adjacent subtrees under the parent with root f.

Similarly, although our automaton requires a pattern to match an entire tree, we can easily use
our approach to match a slice of a tree, i.e., a new tree. For example, when searching for partial
queries, intended matches are often part of a larger tree (as shown in Fig. 3), so we want more than
just recognizing a match. Instead we consider all possible slices for a tree, where a tree slice is the
range of all nodes between any two branches as a separate tree and find slices that match.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.

Syntactic Code Search with Sequence-to-Tree Matching 230:11
Table 1. Cursor interface used for the STMatch algorithm.

Pre-order Cursor overview

next_subtree(self) -> Optional[Cursor] Return a new cursor to the next subtree
in pre-order after the self node if it exists.
first_child(self) -> Optional[Cursor] Return a new cursor to the first child of
the self node if it has any children.
first_leaf(self) -> Cursor Return a new cursor to the first leaf of
the self node (itself if it has no children).
Note: can be implemented from first_child
token(self) -> Token Only for leaf nodes, return the token
located at the self leaf.

4.2 Algorithm

We now present a deterministic algorithm that implements the tree automaton from Section 4.1
using a pre-order traversal, while matching concrete tokens directly to leaves and backtracking to
resolve any ambiguity matching wildcards. The algorithm does not require any explicit tree slicing,
since it traverses the tree using a cursor, and can be slightly modified to locate the end of the match,
such that only potential starting locations need to be considered.

Our algorithm can use any sequence interface to iterate over the pattern. We only need first
and rest operators to get the first element and the rest of the list, respectively. To simplify our
presentation, we describe our algorithm in Python in Listing 3, where we use Python’s iterable
unpacking (i.e., first, *rest = seq) to access the relevant elements at each step. We also check
if the sequence is empty using Python’s collection truthiness (e.g., if seq).

Our algorithm requires a pre-order cursor to traverse the tree. We outline the expected methods
for such a cursor interface in Table 1. The first two methods, next_subtree and first_child,
restrict the tree traversal to be in pre-order, but do not require a visit to every node. Meanwhile,
first_leaf is a convenience function that skips down the left spine of the tree to the very first
leaf, and token allows the algorithm to inspect and match the leaves to concrete tokens. Notice
that all methods are also pure, they do not modify the cursor, but instead return a new cursor.

Concrete tokens are only required to define equality (a == b), specifically between a token in
the pattern and in the leaf of a tree to check for a match. Meanwhile, the subtree wildcard tokens
just needs to be different from regular tokens, in our case an instance of the Wildcard class.

STMatch (Listing 3) Outline. Conceptually, the algorithm recursively matches each token in the
pattern against the tree. If the next element in is a concrete token, then the algorithm must match
the leftmost (i.e., next) leaf in the tree. Therefore, the algorithm, starting in Line 13, traverses to the
first leaf under the cursor checks for a match and continues with the next subtree.

If the next element is a wildcard, then the algorithm must match a (i) complete subtree that
(ii) includes the leftmost leaf and that (iii) allows for a match if any exists. Therefore, starting at
Line 7, it guesses the subtree currently under cursor is a match and continues with the rest of the
pattern. If at any point the matching fails, the algorithm backtracks and retries with next subtree
rooted on the left spine (i.e., the first child) until it succeeds or runs out of candidates.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.

230:12 Gabriel Matute, Wode Ni, Titus Barik, Alvin Cheung, and Sarah E. Chasins

1 def match(pattern, cursor):

2 if not pattern or not cursor:

3 return not pattern and not cursor

4

5 tok, *rest = pattern # unpack first & rest
6

7 if isinstance(tok, Wildcard):

8 while not match(rest, cursor.next_subtree()):
9 cursor = cursor.first_child()

10 if not cursor: return False

11 return True

12

13 cursor = cursor.first_leaf()

14 return tok == cursor.token() \

15 and match(rest, cursor.next_subtree())

Listing 3. STMatch implemented in Python.

Trace | match(fauthenticatel(B] ,
(- match((8] .
(- match(1] .

': match([] ,
match([] ,

Fig. 4. Example execution trace for STMatch. On the left we have the recursive call tree, using numbered
markers to represent cursors into a tree. On the right, we have two tree slices showing the algorithm state:
first after a mismatch and then with the final match after successfully backtracking to a wildcard guess.

) Tree

® 606606

STMatch Example (Fig. 4). We demonstrate the algorithm with a trace of calls to match on a
tokenized query and a cursor (mapped by a number) to tree slices (on the right) as shown.

(1) First call matches the first concrete token to the first_leaf, so it makes a

recursive second call with the rest of the pattern and the next_subtree.
(2) Second call matches the next concrete token | (| to the first_leaf, except this time the
cursor is already at a leaf node, so it makes a recursive third call.
(3) Third call needs to match a wildcard , so it will guess the corresponding subtree:
(a) First, it tries matching the node under the cursor and it makes a recursive call with the last
concrete token D, but that call fails to match.
(b) Next, it tries matching the first_child instead and it makes another recursive call with
the last token D which eventually succeeds.

STMatch Complexity. Overall, the algorithm has a worst-case runtime complexity of O (k - d"*!),
where k is the query length, h is the number of wildcards, and d is the maximum depth of the tree.
Conceptually, for each of the k tokens in the query, the algorithm traverses up to d nodes and then
for each wildcard it might backtrack up to d times for each node along a left spine.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.

Syntactic Code Search with Sequence-to-Tree Matching 230:13

rules:
- id: assigned-undefined

languages:
- javascript
- typescript

message: '“undefined™ is not a reserved keyword in Javascript, so this is
"valid" Javascript but highly confusing and likely to result in bugs.'

pattern-either:
- pattern: undefined = $X;

- pattern: var undefined = $X;
- pattern: let undefined = $X;

- pattern: const undefined = $X;
severity: WARNING
metadata:
category: best-practice
technology:
- javascript
license: Commons Clause License Condition v1.0Q[LGPL-2.1-only]

Listing 4. Example of a Semgrep rule, which finds variables shadowing undefined.
The underlying queries that would have been extracted for our benchmark are highlighted.

In practice we expect k, h, and d to be fairly small, since expressions tend to be short and shallow.
When processed by stsearch (see Section 5) our real-world benchmark (see Section 6) had queries
with a median length of 8 (max 31) tokens and a median of 2 (max 10) wildcards, while the corpus
syntax trees had a median depth of 15 (max 907) nodes. Our performance evaluation (Section 7.3)
also found that for these real-world uses the backtracking complexity was not an issue.

5 IMPLEMENTATION

To implement sequence-to-tree matching, we created a free-standing Rust implementation of the
algorithm (Listing 3) using traits for the sequence and cursor abstractions described in Section 4.2.
The STMatch algorithm together with the interface declarations is 76 lines of Rust.

To implement our source code parser (Section 2.2), we used the Tree-Sitter [3] Rust bindings and
tree-sitter-javascript, to generate an efficient, flexible JavaScript (JS) parser. Our syntactic
search implementation wraps the concrete syntax tree produced by the parser, to implement the
cursor interface (see Table 1) required for the presented ST Match algorithm.

Since Tree-Sitter provides error-tolerant parsing, we reuse the source code parser to generate
the query tokens by ignoring any parse errors and extract the leaf tokens. By leveraging a query
language with a compatible syntax (see Section 3.1), stsearch contains only 7 lines specific to JS.
stsearch is open-source and publicly available at plait-lab/stsearch.

6 BENCHMARK SUITE

We created a benchmark suite of queries (Section 6.1) from the existing Semgrep [40] ecosystem
and collected a corpus of source code (Section 6.2) from the npm [35].

6.1 Query Collection

Semgrep is a static analysis tool for finding bugs and vulnerabilities in source code. As such,
they have a standard repository semgrep-rules [41] of analyses covering many languages and

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.

https://github.com/plait-lab/stsearch

230:14 Gabriel Matute, Wode Ni, Titus Barik, Alvin Cheung, and Sarah E. Chasins

frameworks. Each rule (e.g., Listing 4) contains complete queries joined by conjunctions and
disjunctions, as well as other operators to specify the relative placement of matches.

Overall, we extracted 308 unique queries for a popular library: the Express [8] framework.
For each of the 52 Semgrep rules for Express, we extracted and canonicalized each query by
normalizing white space, anonymizing all placeholders, and removing syntactic sugar.

On stsearch translation. Our tool has slightly different syntax than Semgrep, so we must
translate each query. First, Semgrep placeholders start with a $ followed by an uppercase name,
while for simplicity stsearch only supports anonymous wildcards $_. Second, Semgrep needs
separators (e.g., commas for lists) when using a zero-or-more placeholder, but stsearch does not
assume token semantics and interprets them literally, expecting a corresponding node in the tree.
Our translator converted Semgrep queries into the equivalent stsearch queries.

On tokenizable prefixes. Finally, we computed 1107 unique unambiguous partial tokenizable
queries from these complete queries. To generate unique partial queries, we tokenized each complete
query with Pygments [2], a standard Python tokenizer, then took ranges of token prefixes to
construct canonicalized and, consequently, unique and unambiguous partial queries.

6.2 Corpus Collection

To create a corpus on which to run our suite of queries, we sampled a corpus of 100' repositories
of npm packages. To make sure they were relevant, we selected packages that directly depend
on Express and do not list typescript as a required dependency, since stsearch currently only
supports JavaScript (JS). Because npm is a package registry and some packages do not publish their
source code, we also required that they listed a public GitHub repository with their source.

Overall, the corpus contains 15 233 files. The average size is (10 + 190) kB (mean + std. dev.) with
99% of the files under 130 kB, but the maximum size at 5.1 MB. After inspecting a sample of the
large files, it seems that the unusually large files are the result of automatically generated outputs
committed to the repositories. Given that these files are included in source repositories, we include
them in our analysis, but they are unlikely to be relevant to developer queries.

7 EMPIRICAL EVALUATION RESULTS

We evaluate stsearch using our benchmark queries on our benchmark repositories (Section 6),
using Semgrep [40] as a baseline. Overall, we aim for our tool to offer results for partial queries,
while remaining comparable to existing tools for complete, parsable queries. Thus our evaluation
centers on the following research questions, operationalized and investigated below.

RQ1 How does stsearch semantics compare to established tools for complete queries?
RQ2 How do stsearch results for partial queries evolve as tokens are added?
RQ3 Can stsearch provide results at interactive speeds in practice?

7.1 Complete Queries

For RQ1, we compare the semantics of stsearch by inspecting the discrepancy in the results with
respect to Semgrep on complete queries in our benchmark. We call a result excluded if a particular
region of a particular source file is returned by Semgrep but not by stsearch. Conversely, a result is
included if a particular region of a particular source file is returned by stsearch but not by Semgrep.
We deliberately avoid using terms such as false positive or false negative because Semgrep’s results
are not ground truth, simply a different attempt at delimiting relevant results.

lwe excluded the polyfill-service repo, since it has 7x more files than the rest combined and would skew our results.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.

Syntactic Code Search with Sequence-to-Tree Matching 230:15

Table 2. Unique matches produced by running stsearch and Semgrep on all complete queries.

Semgrep
Matches Excludes Total
stsearch Matches 6025658 | (67.65%) 12603 448 | 18629 106
Excludes | (4.95 %) 313 836 - -
Total 6339494 -1 18315270

Fig. 5. Match disagreements per complete parsable query between stsearch and Semgrep.
The charts shows the breadth of total matches for each query and the distribution of query disagreements.
The query exclusion / inclusion rate does not appear to be correlated with the quantity of results.

$100{ ee@ @ 00 @ 1001 @ o@® o @0

% o~ © e ® query a ..*‘. ® o o query
® o

g 757 o 751 ..'.o. e

7] () IS . ()

£ ® o] e ° oo. ®

S 501 ®e o’ oo 2 501 © e@® . o

Q = . g ©

g . e ° ® = .) ‘“ ® .

2 251 2 25)

x

: ‘-"! :

R 0-00.4' -' ®® o 0 1_© omamdf 6 o ' '
3 104 105 106 103 10° 107

Semgrep unique matches # stsearch unique matches

(a) stsearch excludes 4.95 % of all Semgrep matches. (b) stsearch included 67.65 % matches over Semgrep.
Many exclusions stem from non-toggleable stsearch produces additional matches because of it
semantics-aware Semgrep features. also surfaces partial matches.

Since the current version of stsearch uses the input syntax tree as-is, we did not use Semgrep’s
toggleable syntax tree rewriting passes. For example, Semgrep offers optional constant propagation
as well as matching modulo associativity and commutativity of standard operators. Note that future
versions of stsearch could also be extended to add semantics-aware features (see Section 8).

For some queries, both tools produced no results. Some analyses in the semgrep-rules [41]
apply extremely rarely, so no relevant code snippets appeared in our corpus. Since these queries
offered no information about the behavior of either tool, we dropped these queries. Furthermore,
Semgrep was unable to correctly process 356 files due to internal errors. Thus, our discussion only
details results for the 162 queries that produced matches and files with no errors.

We aggregate the results for complete queries in Table 2. The differences per query are in Fig. 5.
We aggregate matches across tools by checking if the character ranges of the program are identical,
i.e., if they start at the same character and end at the same character.

7.1.1 Exclusions. For 30.25 % of queries, stsearch included all results produced by Semgrep.
Overall, across the benchmark suite, stsearch excluded 4.95 % of the matches identified by Semgrep.
Semgrep leverages a semantic understanding of JavaScript (JS), while stsearch currently operates
over the unaltered input CST using purely our language-agnostic approach. Below we include a
brief description of a few resulting categories of exclusions.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.

230:16 Gabriel Matute, Wode Ni, Titus Barik, Alvin Cheung, and Sarah E. Chasins

Semgrep leverages knowledge of source language semantics, e.g.

e In Semgrep, the query 'express' matches "express", since in JS there is no semantic
difference between them. However, stsearch expects a literal match of every token, so a
single quote ' will not match a double quote ".

e Semgrep ignores trailing commas and semicolons when matching, so the code fragments
[a,] and [a] would match each other, but stsearch requires a literal match.

e Semgrep disregards the order of the keys in an object literal, but stsearch requires code
snippets to match the order specified in the query. Note that JS defines the evaluation order
inside object literals, so in this case stsearch is simply more conservative when matching,
e.g., when matching {a: (), b: g()J}, Semgrep will also a match a reordering of the keys,
even if it might change the semantics of the program due to side-effects.

Semgrep special handling of imports, e.g.

e Given the query $VM.run(...), Semgrep will surface the snippet below as a result, despite
it not having a member call expression. This behavior is not toggleable.
const {run} = require('sandbox");
run('1 + 1', (res) => console.log(res));

7.1.2 Inclusions. stsearch produces more results than Semgrep, generating 67.65 % additional
matches for the benchmark suite. Recall that stsearch operates as though every query may be
partial, and thus offers partial matches even for these parsable queries. For example, if we write

a query to match assignments: given the query‘ $_ = require('express') | stsearch would

produce a partial match for the code below, identifying the highlighted match below.
const express = require('express') ;

Since Semgrep must match an entire tree, and since this line of code both declares and assigns
to express, Semgrep does not include this match. With the vardef_assign setting on, Semgrep
could match the entire declaration. No setting would allow Semgrep’s result to exactly match
stsearch’s (yellow-highlighted) match range with a single query.

7.2 Partial Queries

To answer RQ2, we measured how many results are filtered by each token prefix for each complete
query and how that process converges to the final set of results. Throughout Fig. 6, each row
represents one completed benchmark query, and each cell in the row represents an intermediate,
tokenizable query en route to the complete query, with a token added per column. Note that Fig. 6
also includes a distribution of token lengths for complete queries in our benchmark suite.

Recall that by construction stsearch ensures that a tokenizable query results always includes all
matches for any potential token completion (see Section 3.2). Thus, the results for each intermediate
query necessarily include all results associated with the corresponding final, complete query.
Therefore our main questions here are: (i) what is the impact of each token, and (ii) how many
additional results stsearch includes, beyond those for the complete query.

Overall, in Fig. 6a the first few concrete tokens (the first is usually a wildcard) do the filtering,
while in Fig. 6b most queries converge on the final results long before the last token. An interesting

exception occurs for a group of queries with 6 tokens; starting with E that search

for specific library imports. We see these tokens are effective at filtering matches; however, basically
all imports contain this prefix. Therefore, they not converge on the final results until the specific

library is included in the query (e.g.), but the last |) | is then redundant.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.

Syntactic Code Search with Sequence-to-Tree Matching 230:17

Fig. 6. stsearch results progression for each token prefix en route to a complete benchmark query.
We investigate how results are filtered by each additional token and how they converge towards the final set.
Recall that by construction (Section 3.2) adding a token can only result in a subset of the previous matches.
For both charts, each row corresponds to complete benchmark query, while each cell represents the
hypothetical partial query resulting from the n-token prefix of the corresponding complete query.

1 1 T
0% 20% 40% 60% 80% 100%

each query, sorted by tokens

9 00 11 12 13 14 15 16 17 18 19
searched prefix token length

(a) Selectivity of each additional token. We graph the results filtered by each new token (in violet) to
identify key tokens for each of the complete queries. For the first column (since there are no previous results)
we use the query with a single sibling wildcard (i.e. the one with most matches) as the set of previous results.

Notice that the first few concrete tokens (the first is usually a wildcard) do most of the match filtering.

' ' i
0% 20% 40% 60% 80% 100%

each query, sorted by tokens

1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19
searched prefix token length

(b) Convergence into completed query. We graph the in-progress results ultimately included (in green) in

the final results for the completed query (in blue), i.e., the precision of results for a query prefix search.
Notice that the results often converge towards the results for the full query before the last token.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.

230:18 Gabriel Matute, Wode Ni, Titus Barik, Alvin Cheung, and Sarah E. Chasins

Table 3. stsearch execution time per file, for all files in our code dataset and all queries in our query dataset.
We separate the parsing time, since the former should only have to be performed once per file.

Phase Average + SD | Median | 99th Percentile
Tree-Sitter [3] parsing (3+31)ms 660 s 29 ms
stsearch searching (10 + 480) ms 270 us 24 ms

7.3 Performance

To answer RQ3, we measured stsearch’s execution time for the 308 complete and 1107 partial
queries in our query suite, on each of the 15 233 files in our code suite. We used a server with an
Intel Xeon CPU E5-1680 v2 and report the parsing and searching execution times in Table 3. Notice
that for 99% of searches, stsearch takes less than 24 ms to find all matches, while the maximum
search time was 230 s for a large, automatically generated file (see Section 6.2).

We conclude our non-optimized prototype is already performant enough to provide live feedback
at interactive speeds. Assuming we have parse trees of all the files in a repository, we could complete
a search in under one second for 91.10 % of the repos in our benchmark. Note that this assumes a
naive single-threaded approach, searching each file in sequence rather than in parallel. In addition
to being trivially parallelizable, we anticipate many other opportunities for effective optimizations,
e.g., via a search index or incrementalizing results.

8 DISCUSSION

We now discuss the practical benefits and limitations of our approach. We also propose interesting
directions for future work on stsearch.

Supported Languages. Our approach can support any language for which we can generate a
syntactic tree, including all deterministic context-free languages. Implementing our technique does
not require modifications to the grammar or parser implementation; so (i) the language and parser
can evolve without requiring modifications to our tool and (ii) we can support new languages in
stsearch without engineering custom parsers. In contrast, previous systems (see Section 2.1) must
modify both the grammar and the parser to account for placeholders.

Furthermore, we expect error-tolerant parsers, capable of producing meaningful trees in the
presence of syntax errors, to enable our approach to support in-progress codebases. Our benchmark
already includes files that Semgrep [40] was unable to parse (and therefore search), while stsearch
was able to process every file using the standard error recovery in Tree-Sitter [3]. The specific error
handling strategy will have an impact on the matches for ill-formed code; e.g., a panic strategy that
discards tokens might unintentionally exclude matches.

Grammar and Usability. Although our technique does not require modifications to a language’s
parser, the behaviors of all lightweight syntactic approaches are ultimately affected by grammar
and parser design. In particular, two grammars for the same language may group tokens differently.
For example, to avoid left recursion, a parser might parse an infix operation like a+b as the tree
infix(a, op(+, b)), such that our subtree wildcard could unexpectedly match +b.

For stsearch, we used a Tree-Sitter grammar, which aims to have an “intuitive structure’
Semgrep uses the same grammar as the starting point for its custom grammar, so we matched the
matching behavior of Semgrep for our evaluation. A different grammar will affect the matches
for a given lightweight syntactic search tool results, potentially diverging from user expectations.
Future work should explore the usability of lightweight syntactic tools.

>

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.

Syntactic Code Search with Sequence-to-Tree Matching 230:19

Supporting Semantic Analyses. Although stsearch currently does not use language semantics,
our technique can be extended to leverage semantics knowledge by manipulating the search tree
rather than the query. This allows us to maintain the core insight of our approach, i.e., only
tokenizing potentially incomplete queries to search over complete, parsable source code.

Given that our matching semantics (see Section 4) are defined over trees, we can support many
analyses that can be encoded as tree modifications. Consider the examples in Section 7.1: tokens
with equivalent semantics (e.g., ' ' and "") can be canonicalized before matching; insignificant
tokens (e.g., trailing ,) can be dropped from the tree so they are disregarded. More complex analyses
(e.g., constant propagation) could be supported by matching the query against a tree encoding the
transformed source program (e.g., replacing a subtree with an inferred constant).

Going further, one could perform matching modulo associativity and commutativity, by consid-
ering all possible trees for an expression, or match type information by using a type-annotated tree.
We expect the complexity and performance costs of these approaches to vary wildly, and some may
be irreconcilable with the goal of maintaining interactive speeds. Echoing the discussion above, we
expect future research may need to assess the need for and usability of such features.

9 RELATED WORK

Prior work has studied developers’ code search strategies [39] and existing techniques [25] to
support them. Our approach provides an alternative to traditional tree pattern matching techniques
by leveraging prior work on tree languages. We extend this work to create lightweight tools for
program analysis and source-to-source transformations.

9.1 Program Analysis and Transformation

Lightweight Syntactic Tools. Existing tools leverage lightweight specifications for analysis and
transformations. They aim to hide AST details behind a declarative syntax that leverages the source
language (see Section 2.1). Throughout this paper we compare against Semgrep, but TXL [5] and
Comby [45] (which also powers [43]) also have a lightweight query syntax and include support for
multiple languages. More narrowly scoped tools exist, with Coccinelle [24] as a notable mention
for its successful deployment for API evolutions in Linux [23].

However, every one of these tools require that the input query be parsable as a tree structure.
We contribute a reusable technique to handle partial queries to the existing techniques.

Heavyweight Language Frameworks. Many languages have frameworks to analyze and transform
source code programmatically. For example, for JavaScript (JS) the extensible ESLint [7] linter,
jscodeshift [18] “codemod” toolkit, and the recast [33] library provide direct access to parse, analyze,
and manipulate the AST for a Javascript program. These frameworks tend to be more powerful
than their lightweight syntactic counter parts, since they can express arbitrary constraints.

Cubix [19] (introduced by [20]) even extends this approach to support multiple languages
with a single query. Recently, YOGO [36] was built using this framework, such that it is capa-
ble of performing a semantic search over multiple languages. Other work like [30], which uses
island grammars [29], aims instead to be easily extensible to new and ad-hoc languages.

There are many tools whose focus is to collect and query source code information, like [21] and
[10]. Some have an increased focus on their query language, like CodeQL [6] and [44]. There are
even tools that rely only on tokenizing the source code to avoid parse errors, like Cobra [16].

However, these tools require significantly longer specifications, which often include large
amounts of boilerplate. Furthermore, their DSLs are usually embedded in languages without
any support for partial programs or even program sketches.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.

230:20 Gabriel Matute, Wode Ni, Titus Barik, Alvin Cheung, and Sarah E. Chasins

API Exploration. Another interesting direction explored in the literature is the search needs
specific for API exploration. For example, Strathcona [15] automatically assists developers to find
relevant examples, SSI [1] supports inspecting entities based on their API usages. Meanwhile,
Examplore [9] provides an interactive interface to learn APIs through existing usages.

9.2 Tree Search and Matching

Regular Tree Languages. Regular trees and their properties have been studied in the prior literature.
We leverage existing work (see [4]) to describe and characterize our technique in Section 4.1.

Similar to regular languages, each tree automaton recognizes a tree language that can also be
encoded by a regular tree expression. Therefore, queries for stsearch can also be directly expressed
using a regex-like notation designed for tree languages. However, this notation must also encode a
tree, such that the query must still be parsed and cannot be incomplete.

Tree Pattern Matching. Searching and matching a tree pattern in a larger tree is a common
problem in a variety of domains, including automated reasoning, compiler optimizations, and
syntactic search. Although technically it constitutes a subset of the general regular tree expression
matching problem, it has been separately studied and optimized [14]. However, as described earlier,
solutions to this problem presume we can parse a tree from a query specification.

Tree Query Languages. Many tools exist that provide a query language to search over tree-like
structures. For example [32, 31] and [22] provide a DSL to search over syntax trees. Meanwhile,
the Rosie Pattern Language [17] aims to be a reusable pattern language more powerful than regex.
However, the languages differ from their target, so they are not as lightweight.

9.3 Program Transformations Synthesis

Identifying Edit Locations. Several tools have explored automatically synthesizing program
transformations. For example, LASE [26] and Refazer [38] are able to generalize from examples to
automatically produce an edit script. In general, the synthesized program must include a way to
identify the relevant locations to edit or a syntactic match specification.

By construction, these tools produce trees to specify the edit locations and even the rewrites,
since partial specifications were not supported. We hope our work opens the opportunity to operate
and surface partial specifications as targets for synthesis.

Interactive Transformations. A variety of interactive tools have leveraged program synthesis to
deal with the challenges of authoring program transformations specifications. In particular, Blue-
Pencil [28] and Overwatch [46] leverage the interactive history to automatically suggest rewrites
to the developer. Meanwhile, reCode [34] uses the find and replace interaction for specification. On
the other hand, ALICE [42] focuses on search through an interactive specification.

However, these tools have the same limitations as the underlying synthesis engines and are
unable to produce or operate on incomplete queries. Therefore, we hope that supporting partial
queries is a step in and of itself to make program transformations more accessible.

10 CONCLUSION

In this paper, we introduced a new architecture to support lightweight syntactic search with partial,
but tokenizable queries. We formalize a query language and present stsearch, an implementation of
these techniques evaluated on a real-world benchmark. We found that our approach can effectively
support in-progress queries, while providing state-of-the-art results for completed queries.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.

Syntactic Code Search with Sequence-to-Tree Matching 230:21

ACKNOWLEDGMENTS

The authors would like to thank Federico Mora Rocha and Justin Lubin for their suggestions and
discussions regarding the theoretical contributions in the paper.

This work is supported by NSF grants FW-HTF 2129008, and CA-HDR 2033558 as well as by gifts
from Google and EPIC Lab sponsors G-Research, Adobe, Google, Microsoft, and Sigma Computing.
Sarah E. Chasins is a Chan Zuckerberg Biohub Investigator.

REFERENCES

(1]

—
S~
—_

Sushil K. Bajracharya, Joel Ossher, and Cristina V. Lopes. “Leveraging Usage Similarity for
Effective Retrieval of Examples in Code Repositories”. In: Proceedings of the Eighteenth ACM
SIGSOFT International Symposium on Foundations of Software Engineering. FSE °10. 2010. por:
10.1145/1882291.1882316.

Georg Brandl. Pygments. Version 2.14.0. Jan. 1, 2023. URL: https://pygments.org.

Max Brunsfeld. Tree-sitter. Version 0.20.9. Sept. 2, 2022. URL: https://tree-sitter.github.io.
Hubert Comon-Lundh et al. Tree Automata Techniques and Applications. Oct. 12, 2007. URL:
http://tata.gforge.inria.fr/.

James R. Cordy. Txl. UrL: https://txl.ca.

Oege de Moor et al. “Keynote Address: .QL for Source Code Analysis”. In: Seventh IEEE
International Working Conference on Source Code Analysis and Manipulation (SCAM 2007).
DoI: 10.1109/SCAM.2007.31.

ESLint. Open]S Foundation. URL: https://eslint.org.

Express. Open]S Foundation. URL: https://expressjs.com.

Elena L. Glassman et al. “Visualizing API Usage Examples at Scale”. In: Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems. CHI "18. Apr. 21, 2018. DoI:
10.1145/3173574.3174154.

Glean. UrL: https://glean.software/.

gofmt. specifically, the -r rule flag. Google. URL: https://pkg.go.dev/cmd/gofmit.

Jared Hanson. Fixing Session Fixation. May 20, 2022. URL: https://medium.com/passportjs/
fixing-session-fixation-b2b68619c51d.

Jared Hanson. Passport. May 20, 2022. URL: https://passportjs.org/.

Christoph M. Hoffmann and Michael J. O’Donnell. “Pattern Matching in Trees”. In: . ACM
(Jan. 1982). por: 10.1145/322290.322295.

Reid Holmes, Robert J. Walker, and Gail C. Murphy. “Strathcona Example Recommendation
Tool”. In: SIGSOFT Softw. Eng. Notes. ESEC/FSE-13 (Sept. 2005). Dor: 10.1145/1095430.1081744.
Gerard J. Holzmann. “Cobra: a light-weight tool for static and dynamic program analysis”.
In: Innovations in Systems and Software Engineering (Mar. 1, 2017). por: 10.1007/s11334-016-
0282-x.

Jamie A. Jennings. Rosie Pattern Language. URL: https://rosie-lang.org/.

Jjscodeshift. Meta. URL: https://github.com/facebook/jscodeshift.

James Koppel. Cubix Framework. URL: http://www.cubix-framework.com.

James Koppel, Varot Premtoon, and Armando Solar-Lezama. “One Tool, Many Languages:
Language-Parametric Transformation with Incremental Parametric Syntax”. In: Proc. ACM
Program. Lang. OOPSLA (Oct. 24, 2018). por: 10.1145/3276492.

Kythe. URL: https://kythe.io/.

D.A. Ladd and J.C. Ramming. “A*: a language for implementing language processors”. In:
1994. por: 10.1109/ICCL.1994.288398.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.

https://doi.org/10.1145/1882291.1882316
https://pygments.org
https://tree-sitter.github.io
http://tata.gforge.inria.fr/
https://txl.ca
https://doi.org/10.1109/SCAM.2007.31
https://eslint.org
https://expressjs.com
https://doi.org/10.1145/3173574.3174154
https://glean.software/
https://pkg.go.dev/cmd/gofmt
https://medium.com/passportjs/fixing-session-fixation-b2b68619c51d
https://medium.com/passportjs/fixing-session-fixation-b2b68619c51d
https://passportjs.org/
https://doi.org/10.1145/322290.322295
https://doi.org/10.1145/1095430.1081744
https://doi.org/10.1007/s11334-016-0282-x
https://doi.org/10.1007/s11334-016-0282-x
https://rosie-lang.org/
https://github.com/facebook/jscodeshift
http://www.cubix-framework.com
https://doi.org/10.1145/3276492
https://kythe.io/
https://doi.org/10.1109/ICCL.1994.288398

230:22 Gabriel Matute, Wode Ni, Titus Barik, Alvin Cheung, and Sarah E. Chasins

[23] Julia L. Lawall and Gilles Muller. “Coccinelle: 10 Years of Automated Evolution in the Linux
Kernel”. In: 2018 USENIX Annual Technical Conference. USENIX ATC ’18. July 2018. URL:
https://www.usenix.org/conference/atc18/presentation/lawall.

[24]]Julia L. Lawall et al. Coccinelle. urL: https://coccinelle.lip6.fr/.

[25] Chao Liu et al. “Opportunities and Challenges in Code Search Tools”. In: ACM Comput. Surv.
(Oct. 2021). por: 10.1145/3480027.

[26] NaMeng, Miryung Kim, and Kathryn S. McKinley. “LASE: Locating and Applying Systematic
Edits by Learning from Examples”. In: Proceedings of the 2013 International Conference on
Software Engineering. ICSE ’13. May 18, 2013. por: 10.1109/ICSE.2013.6606596.

[27] Louis G. Michael et al. “Regexes are Hard: Decision-Making, Difficulties, and Risks in Program-
ming Regular Expressions”. In: 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). Nov. 15, 2019. po1: 10.1109/ASE.2019.00047.

[28] Anders Miltner et al. “On the Fly Synthesis of Edit Suggestions”. In: Proc. ACM Program.
Lang. OOPSLA (Oct. 10, 2019). por: 10.1145/3360569.

[29] Leon Moonen. “Generating robust parsers using island grammars”. In: Proceedings Eighth
Working Conference on Reverse Engineering. 2001. por: 10.1109/WCRE.2001.957806.

[30] Leon Moonen. “Lightweight impact analysis using island grammars”. In: Proceedings 10th
International Workshop on Program Comprehension. 2002. por: 10.1109/WPC.2002.1021343.

[31] Gail C. Murphy. “Lightweight structural summarization as an aid to software evolution”.
University of Washington, 1996. URL: http://hdl.handle.net/1773/6976.

[32] Gail C. Murphy and David Notkin. “Lightweight Lexical Source Model Extraction”. In: ACM
Trans. Softw. Eng. Methodol. (July 1996). por: 10.1145/234426.234441.

[33] Ben Newman. recast. URL: https://github.com/benjamn/recast.

[34] Wode Ni et al. “ReCode: A Lightweight Find-and-Replace Interaction in the IDE for Trans-
forming Code by Example”. In: The 34th Annual ACM Symposium on User Interface Software
and Technology. UIST °21. Oct. 12, 2021. poI: 10.1145/3472749.3474748.

[35] npm Registry. npm. Mar. 15, 2023. URL: https://www.npmjs.com/.

[36] Varot Premtoon, James Koppel, and Armando Solar-Lezama. “Semantic Code Search via
Equational Reasoning”. In: Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI 2020. June 11, 2020. por1: 10.1145/3385412.3386001.

[37] Retrie. Meta. URL: https://github.com/facebookincubator/retrie.

[38] Reudismam Rolim et al. “Learning Syntactic Program Transformations from Examples”. In:
Proceedings of the 39th International Conference on Software Engineering. ICSE 17. May 20,
2017. por: 10.1109/ICSE.2017.44.

[39] Caitlin Sadowski, Kathryn T. Stolee, and Sebastian Elbaum. “How Developers Search for
Code: A Case Study”. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ESEC/FSE 2015. 2015. po1: 10.1145/2786805.2786855.

[40] Semgrep. Version 1.15. r2c, Mar. 15, 2023. URL: https://semgrep.dev.

[41] semgrep-rules. Semgrep. Mar. 15, 2023. URL: https://github.com/semgrep/semgrep-rules.

[42] Aishwarya Sivaraman et al. “Active Inductive Logic Programming for Code Search”. In:

Proceedings of the 41st International Conference on Software Engineering. ICSE *19. 2019. por:

10.1109/ICSE.2019.00044.

[43] Source Graph: Batch Changes. URL: https://docs.sourcegraph.com/batch_changes.

[44] Source Graph: Code Search. URL: https://docs.sourcegraph.com/code_search.

[45] Rijnard van Tonder. Comby. URL: https://comby.dev.

[46] Yuhao Zhang et al. “Overwatch: Learning Patterns in Code Edit Sequences”. In: Proc. ACM

Program. Lang. OOPSLA2 (Oct. 31, 2022). por1: 10.1145/3563302.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.

https://www.usenix.org/conference/atc18/presentation/lawall
https://coccinelle.lip6.fr/
https://doi.org/10.1145/3480027
https://doi.org/10.1109/ICSE.2013.6606596
https://doi.org/10.1109/ASE.2019.00047
https://doi.org/10.1145/3360569
https://doi.org/10.1109/WCRE.2001.957806
https://doi.org/10.1109/WPC.2002.1021343
http://hdl.handle.net/1773/6976
https://doi.org/10.1145/234426.234441
https://github.com/benjamn/recast
https://doi.org/10.1145/3472749.3474748
https://www.npmjs.com/
https://doi.org/10.1145/3385412.3386001
https://github.com/facebookincubator/retrie
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1145/2786805.2786855
https://semgrep.dev
https://github.com/semgrep/semgrep-rules
https://doi.org/10.1109/ICSE.2019.00044
https://docs.sourcegraph.com/batch_changes
https://docs.sourcegraph.com/code_search
https://comby.dev
https://doi.org/10.1145/3563302

	Abstract
	1 Introduction
	1.1 Motivating Example

	2 System Overview
	2.1 Architecture of Traditional Systems
	2.2 Architecture of stsearch

	3 Query Language
	3.1 Syntax
	3.2 Intuition

	4 Sequence-to-Tree Matching
	4.1 Semantics
	4.2 Algorithm

	5 Implementation
	6 Benchmark Suite
	6.1 Query Collection
	6.2 Corpus Collection

	7 Empirical Evaluation Results
	7.1 Complete Queries
	7.2 Partial Queries
	7.3 Performance

	8 Discussion
	9 Related Work
	9.1 Program Analysis and Transformation
	9.2 Tree Search and Matching
	9.3 Program Transformations Synthesis

	10 Conclusion
	Acknowledgments

