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Syntactic Code Search with Sequence-to-Tree Matching
Supporting syntactic search with incomplete code fragments
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Lightweight syntactic analysis tools like Semgrep and Comby leverage the tree structure of code, making
them more expressive than string and regex search. Unlike traditional language frameworks (e.g., ESLint)
that analyze codebases via explicit syntax tree manipulations, these tools use query languages that closely
resemble the source language. However, state-of-the-art matching techniques for these tools require queries
to be complete and parsable snippets, which makes in-progress query speci�cations useless.

We propose a new search architecture that relies only on tokenizing (not parsing) a query. We introduce a
novel language and matching algorithm to support tree-aware wildcards on this architecture by building on
tree automata. We also present stsearch, a syntactic search tool leveraging our approach.

In contrast to past work, our approach supports syntactic search even for previously unparsable queries.
We show empirically that stsearch can support all tokenizable queries, while still providing results comparable
to Semgrep for existing queries. Our work o�ers evidence that lightweight syntactic code search can accept
in-progress speci�cations, potentially improving support for interactive settings.

CCS Concepts: • Software and its engineering! Formal language de�nitions; Software maintenance tools; •
Information systems! Query representation; • Theory of computation! Tree languages.
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1 INTRODUCTION
When a developer pastes a fragment of code into their IDE’s search box, why do they not start
seeing matches right away? If their search uses string search, the answer is probably that the search
query is too speci�c—too dependent on whitespace, on formatting choices. If their search uses a
syntactic search tool, the answer is probably that their code fragment is not a parsable expression.
Say a developer labors over their search query until they think it is complete, but they reach the
end and it produces no matches. Is there a logical error in the query or are there simply no relevant
results in the codebase? How can the programmer get more information to help them move towards
the correct query? As in other programming domains, live feedback during query authoring holds
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the promise of giving users (i) early feedback about their queries and (ii) information they can use
to re�ne their goal. Unfortunately, most of the query fragments en route to a programmer’s target
query may not be parsable program fragments. If our code search tools can only o�er feedback for
complete, parsable states, we deny developers important early feedback.
Lightweight syntactic analysis tools—i.e., tools that use a domain-speci�c language (DSL) that

resembles their target programming language to specify syntactic patterns—are used in a wide
variety of domains. For example, Semgrep [40] is a security-focused static analysis tool that uses
syntactic patterns to detect vulnerabilities, Comby [45] is a language-aware search and replace tool
that has been used for large-scale refactoring, and TXL [5] is a structural analysis and transformation
tool that has been used for program analysis and instrumentation. Language-speci�c examples,
like Haskell’s Retrie [37] and Go’s gofmt [11], are often used for programmatic code edits.
At their core, all these tools rely on syntactic search to accomplish their goal: given some

lightweight pattern speci�cation—a code fragment that may or may not use placeholders—they
�nd all the matching positions in the source code. Traditionally, this matching is performed by
comparing the syntax tree of the pattern speci�cation against the syntax tree of the source code.
Thus, syntactic analysis tools start by parsing the query into a tree and then rely on standard tree
matching algorithms to search the parsed source �les. Since the pattern speci�cation needs to be
parsed with this approach, syntactic analysis tools require the code fragment in the speci�cation to
be complete—that is, parsable into a syntax tree. In contrast, partial, often unparsable, queries are
useful and well-supported in textual search tools such as �nd-and-replace. Thus, we identify the
parsability constraint as a limitation of existing syntactic search tools.

To address this limitation, we observe that lightweight syntactic search queries are parsable code—
and thus the partial queries that a programmer produces en route to a complete query are usually still
tokenizable, even if they are not parsable. As with so many programming domains, the query author
creates a tokenizable fragment as they craft a complete speci�cation. As such, we present a new
architecture (Section 2) that (i) only assumes queries are tokenizable, but not necessarily complete,
and (ii) relies on minimal extensions to an existing lexer. We de�ne a query language (Section 3)
that accepts partial queries. Finally, to provide support for expression placeholders, we develop
novel matching semantics (Section 4) de�ning sequence-to-tree matching.

We implement these techniques in a new tool, stsearch (Section 5). To evaluate our approach,
we collected a benchmark suite (Section 6) of real-world search queries. We then evaluate (Section 7)
our tool against Semgrep, a current state-of-the-art, commercial lightweight syntactic search tool.
Finally, we discuss the tool’s limitations and future work (Section 8) and situate our approach
within the related work (Section 9). This work contributes:

• A search query language for expressing syntactic search queries and formal semantics
capable of accepting partial—but tokenizable—code fragments as queries.

• A matching algorithm, ()"0C2⌘, that underlies our implementation, capable of matching
a token sequence with wildcards against the syntax trees of source code.

• An open-source implementation, stsearch, of our techniques, and an evaluation showing
that it supports not only parsable, but also tokenizable but non-parsable queries.

Our evaluation shows that for existing complete queries, stsearch is comparable to Semgrep:
stsearch’s di�erent semantics only excludes 4.95% of the results that Semgrep matches in our
benchmark. Meanwhile, stsearch successfully accepts and processes all tokenizable partial queries,
often providing results comparable to the complete queries with fewer tokens.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.
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passport.authenticate( // Pattern error
passport.authenticate($NAME, // Pattern error
passport.authenticate($NAME, { // Pattern error
passport.authenticate($NAME, {..., keepSessionInfo: // Pattern error
passport.authenticate($NAME, {..., keepSessionInfo: true // Pattern error
passport.authenticate($NAME, {..., keepSessionInfo: true, ...} // Pattern error

Listing 1. Partial queries that result in a parse error and, therefore, produce no results in Semgrep.

1 /* Regex: */ /passport.authenticate\(.*,/

2 /* Semgrep: */ passport.authenticate($_, {..., keepSessionInfo: $_, ...})
3 /* stsearch: */ passport.authenticate($_, {... keepSessionInfo // 5 fewer tokens
4

5 // 1. Regex miss, Semgrep match, stsearch match
6 // a regex dot �.� doesn�t match newlines by default

7 let identity = passport.authenticate( ú
8 �openid�, // for profile info

9 { keepSessionInfo: true }

10 );

11

12 // 2. Regex match, Semgrep skip, stsearch skip
13 // due to the comma in first argument nested expression

14 router.post(�/identity/admin�,

15 passport.authenticate(selectId(isDev, �admin�)));

16

17 // 3. Regex match, Semgrep skip, stsearch skip
18 // due to the comma inside the embedded comment

19 router.get(

20 �/admin�,

21 passport.authenticate(LOCAL)); // not safe, but for now :)

22

23 // 4. Regex miss, Semgrep match, stsearch match
24 app.post(�/demo�, passport

25 .authenticate(isDemo ? LOCAL : selectID(isDev, �demo�),

26 { successRedirect: �/profile�, // failureRedirect: �/login� }

27 keepSessionInfo: true}))

Listing 2. Searching with regex, Semgrep, and stsearch for uses of passport.authenticate in a codebase.
Notice that stsearch supports partial queries, so it uses fewer tokens than Semgrep for comparable results.

Meanwhile regex struggles with false positives and negatives.

1.1 Motivating Example
Consider a developer using the authentication library passport [13] and trying to ensure that

the authenticate function (signature below) is used securely in their codebase.
passport.authenticate(name[, option])

Reading the documentation [12], they discover that the function provides an option called
keepSessionInfo; if keepSessionInfo is true, the application preserves information after a
user logs into their account. By default, keepSessionInfo is false, since it makes applications
vulnerable to session �xation attacks. To improve security, the developer wants to search their
large existing codebase for uses of authenticate that use keepSessionInfo option at all.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.
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String Search. The developer starts with a tool for performing string or regular expression search,
like the standard command-line utility grep or the search box of their preferred code editor. Perhaps
they start with the simple string search below.

passport.authenticate

This simple string search �nds most of the relevant authenticate uses pictured in Listing 2.
Notice that spacing of any kind around the dot between passport and authenticate will prevent
a match. For example, in Line 24 of Listing 2, a programmer has put a newline after passport.
Thus the developer’s simple string query will accidentally fail to �nd this usage.

Regular Expressions. Next, the developer wants to �lter the results to those that pass an explicit
option parameter. Since the �rst function argument name likely varies throughout the codebases,
they switch to regex and add a greedy wildcard /.*/ to match the �rst argument.

/passport\.authenticate\(.*,/

Regular expressions are notoriously hard to use [27]. For example, a wildcard /./ will not match
newlines by default in most engines, so many common uses, like in Line 7, can be hazardously
overlooked. On the �ip side, even simple cases for the �rst argument, like nested calls (Line 15)
or comments (Line 21), can lead to a vast number of false positives. Finally, even in true matches,
the character range selected is unlikely to match the relevant construct due to these same issues,
rendering the results useless for programmatic changes.

Lightweight Syntactic Analysis Tools. Programming languages are not regular languages, so
regular expressions are incapable of fully expressing them. Even if the developer painstakingly
encodes more language-speci�c syntactic information into the query, like irrelevant white space
and comment syntax, regular expressions can only express patterns in regular languages, while
modern languages are at least context-free, e.g., relying on nested parenthesis.

At this point, the developer might switch to a more expressive tool. Alternatives abound, but a
natural next step could be lightweight syntactic analysis tools. In contrast to heavyweight syntactic
analysis tools, in which users write programs that explicitly traverse and manipulate the program
abstract syntax tree (AST), lightweight syntactic analysis tools accept queries that look similar
to the programs being searched. For instance, our developer could use the lightweight syntactic
analysis tool Semgrep with the following query.

passport.authenticate($NAME, {..., keepSessionInfo: $VALUE, ...})

In contrast to our developer’s regular expression attempt, this query matches all intended cases,
even Line 24, despite the formatting, comments, and nested expressions. Note that in Semgrep
$NAME and $VALUE are interpreted as expression placeholders and ... as zero-or-more items.

Lightweight syntactic analysis tools perform matching over the parse trees of a given �le, which
means that they are capable of supporting more expressive patterns. For example, they usually
ensure placeholders respect matching delimiters and nested sub-expressions, making them capable
of expressing patterns outside of regular languages. They can also leverage a substantial amount of
information about the source language, like the precedence and associativity of operators.

Syntactic Search for Non-Parsable Queries. Nevertheless, current lightweight syntactic analysis
tools have strict requirements on the input query. Since they need a tree structure to search over a
codebase, they need to fully parse the query into a well-formed tree. For example, Semgrep uses a
parser that requires that the query is a complete JavaScript (JS) statement or expression. Therefore,
partial queries like the ones shown in Listing 1 would result in a parse error, preventing the search
with no matches surfaced to the developer.
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In contrast, our tool, stsearch, can provide results even for partial queries. In our example, while
the developer is crafting the query with existing state-of-the-art tools, most of the intermediate,
partial speci�cations are invalid and result in no useful feedback to complete the query. The
developer can instead use stsearch, which introduces support for tokenizable queries, even if they
are not parsable. The developer can write the query below, where $_ is similar to an expression
placeholder and ... is similar to a zero-or-more items placeholder.

passport.authenticate($_, {... keepSessionInfo

Our stsearch tool leverages the same insight used in syntax highlighting: many code fragments
are tokenizable but not parsable. stsearch provides results for all tokenizable states en route to a
complete query, providing feedback and context to the developer for those tokenizable fragments.
Queries in our language (Section 3) are a sequence of tokens, and we even implement stsearch
by reusing and extending an existing lexer to handle additional wildcards. Importantly, since our
queries may not be parsable, we cannot use traditional tree matching techniques.
Instead, we introduce a novel sequence-to-tree matching semantics (Section 4). Our algorithm

can take as input: (i) a token sequence and (ii) the concrete syntax tree (CST) from a source �le;
and select matching slices in the tree. Our approach matches concrete tokens to tokens in the tree,
but ensures that wildcards match a complete subtrees. This novel strategy thus handles partial,
but tokenizable queries while still leveraging the structure of the concrete syntax tree similar to
existing state-of-the-art syntactic search tools.

2 SYSTEM OVERVIEW
In this section, we describe the system architecture of stsearch. In particular, we contrast the
stsearch structure with the structure of prior lightweight syntactic tools.

Syntactic search tools take as input a query and a set of source code �les. They produce as output
a list of matches—i.e., source code �les ranges that match the provided query. We use the term
lightweight to refer speci�cally to those with query languages that resemble the syntax of the
source language, typically by reusing the source language’s existing infrastructure.

2.1 Architecture of Traditional Systems
Previous systems for lightweight syntactic search (e.g., [40]) use the pipeline pictured in Fig. 1a to
process both the search query and the source code. In particular, note that both the query and the
source code are run through a lexer and a parser. Thus this approach requires parsing the query.
We brie�y describe the two stages of traditional pipelines:

(1) The tool conducts Query Processing with a modi�ed parsing pipeline. Usually the source
language is augmented with additional syntax for placeholders or other search constraints,
so the tool typically extends the lexer and parser to support the new syntax. After processing
the query, the pipeline outputs a tree pattern that resembles the code syntax tree.

(2) Next the tool conducts TreeMatching to match the pattern against the syntax tree generated
by parsing the source code. The trees usually share the same structure, since they come from
similar parsers, so matching can be performed using standard matching techniques (e.g. [14]).
Existing tools include many practical optimizations, e.g., building a search index.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.
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Fig. 1. Comparison of stsearch architecture against traditional systems.

Lexer Parser

query

passport.authenticate

code

Lexer Parser

member

.authenticatepassport

tree

tree Tree(-to-Tree) 
Matching matches

Traditional 
Systems

(a) Diagram of traditional lightweight syntactic search tool architectures. Traditional tools use a
lexer and a parser to generate a tree pa�ern, then rely on standard tree-to-tree pa�ern matching.

Lexer Parser

query

authenticate($_,

code

Lexer

tree Sequence-to-Tree 
Matching matches

sequence

(authenticate $_,

stsearch 
Architecture

(b) Diagram of stsearch architecture. It uses a lexer—but no parser—to generate a pa�ern token
sequence, then relies on our novel ()"0C2⌘ algorithm to perform sequence-to-tree matching.

2.2 Architecture of stsearch
To handle partial, non-parsable queries, stsearch removes the parsing step from query processing.
See the stsearch pipeline in Fig. 1b. As such, our inputs are extended to include all tokenizable
queries, but we must provide a novel matching engine to support token sequences as the query.
We can no longer rely on classical tree matching techniques.

(1) stsearch performsQuery Processing using just a lexer. To support wildcards (see Section 3),
we might still need to extend the lexer to support new syntax as in traditional lightweight
syntactic search tools. However, we no longer need to update the parser to account for all
language constructs that should allow for potentially ambiguous wildcards.

(2) Sequence-to-Tree Matching is our novel technique (described in Section 4) developed to
support matching a token sequence against the syntax tree. Since the token sequence and
the leaves of the tree are created by the same lexer, stsearch can match tokens to leaves,
but our algorithm also supports tree-aware wildcards. Due to the heterogeneous types, many
known search optimizations might not be directly applicable.
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Token  k ::= $_  (subtree wildcard)
   | ... (siblings wildcard)
   | klang

Pattern  p ::= k +  (sequence)

Fig. 2. Syntax for stsearch. We introduce $_ and ... tokens to represent placeholders in search queries,
while the :;0=6 token stands in for any token allowable in the lexical specification in the source language.

Note that although we use EBNF notation for clarity, the language syntax is actually regular.

3 QUERY LANGUAGE
Since traditional lightweight syntactic query languages are de�ned as extensions to the source
language grammar, they are only able to parse and interpret patterns that correspond to a complete
grammatical production or construct, like an entire expression or statement. As such, partial
speci�cations, potentially encountered when authoring a complete query, are usually not recognized
in the language and therefore yield no results at all.

Instead, we notice that partial queries are still tokenizable. Actually, many syntax highlighting
tools rely only on tokenizing precisely to support editing incomplete code fragments. Tokenization
already encodes meaningful details about the language: dropping insigni�cant whitespace, splitting
distinct syntactic elements (e.g., names and operators), etc.. Meanwhile, it is usually a local process,
making it more resilient to incomplete code fragments than full on parsing.

Our query syntax (Section 3.1) allows the reuse of existing lexers for the source language. Similar to
the strategy of traditional systems, our tool can reuse the existing language infrastructure to process
the query. In fact, many modern languages already have separate lexing and parsing infrastructure,
making very e�cient lexers easily available.

Consequently, our query semantics (Section 4.1) speci�es results even for partial queries. Since we
no longer produce a tree, we can no longer rely on standard tree matching algorithms to de�ne
matches for our language. However, we still want to be able to match against trees to preserve the
expressivity improvements of syntactic search tools over regular expressions, e.g., to account for
arbitrarily nested expressions. As such, we �rst outline the intuition of our language (Section 3.2),
and then we give a formal speci�cation of the matching algorithm in Section 4.

3.1 Syntax
stsearch accepts a code search query using the syntax shown in Fig. 2. As with many lightweight
syntactic tools, a query is a string similar to a code fragment in the source language. In this case a
pattern is a sequence of one or more tokens, where a token can be any token in the source language
extended with the wildcards below. Note that, although we use extended Backus–Naur form (EBNF)
notation for clarity, the language syntax is actually regular, as are the underlying tokens.

Our language supports two kind of wildcards in a query:

subtree wildcard ($_) are similar to expression placeholders as found in most traditional syn-
tactic analysis tools. They ensure that an entire subtree in the concrete syntax tree is matched,
using the parse tree to properly express arbitrary nested expressions.

siblings wildcard (...) are similar to zero-or-more items placeholders in many traditional
syntactic analysis tools where they are used to match arbitrary sub-sequences in arguments,
statements, or lists. They ensure that adjacent sibling subtrees are matched.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 230. Publication date: June 2024.
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Query: authenticate($_,
✅

call

args

obj

authenticate ('openid', {} )

✅

call

member args

obj

passport.authenticate ('openid', {} )❌ call

authenticate ()

❌
call

args

authenticate ('openid')

✅
authenticate (

call

args

ter obj

isDemo? 'local' : 'openid', {} )

✅
func

params body

function authenticate (name, opts) { }

Query: {...keepSession:
❌ obj

{}

✅
obj

prop

{keepSession : true}

✅
obj

prop prop

{success:'/login', keepSession : true}

Fig. 3. Illustrative example of the semantics of stsearch. Given the query in the top le�, we want to match
trees with at least 2 arguments, like member call expressions and maybe even the function definition.

Similarly, given the query on the bo�om le�, we want all trees that include a given property.

3.2 Intuition
We now discuss the intuition behind stsearch’s query language.

De�nition 3.2.1. Let (⇤ be the set of �nite sequences over some set ( , where B ; (i.e., juxtaposition)
denotes concatenation and B | ; denotes that B is a sub-sequence of ; for B, ; 2 (⇤.

De�nition 3.2.2. Let ) (F ) be the set of �nite ordered trees over some ranked alphabet F , where
F? denotes the symbols in F with ?-arity, and F0 is the set of leaves.

De�nition 3.2.3. A concrete parse tree C 2 ) (F ) is produced by a partial function ?0AB4 (B) with
B 2 F ⇤0 and the left inverse operation ~84;3 (C) de�ned by the in-order leaves of C .

?0AB4 (B) = C =) ~84;3 (C) = B
Given a query pattern ? and a concrete parse tree C , we want to de�ne if there is a match, i.e., if

it will be surfaced by our tool. Our goal is to ensure that a full, parsable query is guaranteed to
match at least the same results as its parse tree. Meanwhile, a partial query should include the
matches for the parse trees of all valid completions of the provided query to guarantee that
the matches for the intended query results are included.
For a query with only concrete language tokens, i.e., without wildcards, it su�ces to check if

the pattern is a sub-sequence of the tree leaves, i.e., if ? | ~84;3 (C). If the query is parsable, then ?
trivially matches ?0AB4 (?), given that ~84;3 (C) = ? and ? | ? . Meanwhile, for partial queries, any
parsable completion with a pre�x ; or a su�x A would also match.

9 ;, A s.t. ?0AB4 (; ? A ) = C =) ? | ~84;3 (C)
Once we consider queries with wildcards, de�ning a match becomes tricky. We want to use the

parse tree structure to match more than regular languages, so we cannot rely only on sub-sequence
matching. However, even with a full query there is no straightforward path to parsing wildcards
without introspecting into the details of a speci�c ?0AB4 function and choosing a resolution to any
ambiguities. For example, consider a query with just 3 wildcards ($_$_$_), it can either be parsed
as two unary operators (matching -+s) or a binary operator (matching x<y).

Instead, to match the intuitive behavior of traditional systems placeholders, we want to ensure
that each wildcard matches entire subtrees (like a nested expression or statement). Meanwhile, for
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concrete tokens, we want to keep the previous sub-sequence semantics to match any possible parse.
In practice, this means we want match all possible valid parses given by replacing the wildcards
with some complete syntactic structure, uncovering all possible parses for a given query.

Consequently, as shown in Fig. 3, we want every concrete token to appear in order in the tree.
We want every subtree wildcard to match one subtree immediately after the last matched token.
A siblings wildcard has a similar constraint, but it can match zero or more adjacent siblings.

4 SEQUENCE-TO-TREE MATCHING
Given a pattern sequence (with wildcards), we �rst state the matching semantics as recognizing the
regular tree language de�ned by the pattern (Section 4.1). Our intuitive notion, can be formalized by
translating a pattern into a tree automaton that recognizes matching trees. We then present a novel
()"0C2⌘ algorithm that takes a pattern sequence and a tree cursor, i.e., a position in a tree, and
checks directly for a match (Section 4.2). We outline the minimum requirements on the underlying
interfaces and walk through the core algorithm components.

4.1 Semantics
De�nition 4.1.1. A pattern ? is a sequence of tree leaves, potentially with wildcards W, i.e.

? 2 %⇤ where % = F0 [W, where the wildcards W might include the subtree wildcard $_ .

Given a tree C , we want to check if it belongs in the “tree language” of a pattern ? , so we translate
a pattern into a tree language speci�cation. In particular, our intuitive notion outlined in Section 3.2
can be encoded in a recognizable tree language as de�ned by �nite tree automaton (similar to
languages over sequences or word languages). Therefore, we outline how to derive a tree automaton
from each pattern to reduce the sequence-to-tree matching problem to membership checking.

De�nition 4.1.2. A pattern ? matches a tree C 2 ) (F ) when C is accepted by the following
top-down nondeterministic �nite tree automaton [4, top-down NFTA]

A(?) = (&, F , � ,�) (automata)

& = {B () such that B | ?} (all states)

� = {? ()} where � ✓ & (initial states)

� =

8>><
>>:

@(50)!50 @ = 50
@(5 (G1, · · · , G=))!5 (G1, · · · , G=) @ = $_

@(5 (G1, · · · , G=))!5 (@1 (G1) , · · · ,@= (G=)) @ = @1 · · · @=

9>>=
>>;

(transitions)

Conceptually, a top-down tree automaton traverses a tree from the root to the leaves, associating
a state with each subtree. It starts, by associating an initial state to the entire tree. Then, at each
step, it propagates the state from the subtree root to its children, according to a set of transitions.
Finally, the automaton accepts a tree if it is able to complete a traversal of the entire tree.

In our case, we want the states to track what part of the pattern each subtree matches. As such,
we de�ne all states to include any possible sub-sequence of the pattern ? . Furthermore, we want
to ensure the full tree matches entire pattern, so the initial states only contain the full pattern ? .
Finally, we specify the transitions, given a pattern state and a subtree:

• If the pattern state consists of a single leaf @ = 50 and the subtree is the same leaf 50, then the
pattern and the subtree match, so we �nish the traversal of this branch.
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• If the pattern state consists of a wildcard @ = $_ , then we can always match the entire
current subtree 5 (G1, · · · , G=), so we �nish the traversal of this branch.

• If the root 5 has = children G1, · · · , G= we can then split the pattern state into = sub-sequences
such that @ = @1 · · · @= and continue the traversal at each child.

Example 4.1.3. Let the alphabet F = {18=>? (, , ) , 1, +} where 18=>? might represent a binary
operation (with two terms and an operation). Let the pattern sequence ? = 1 + $_ , such that we
have an automaton with the following transitions.

2 (50) ! 50 when 2 = 50 (1)

$_ (5 (G1, · · · , G=)) ! 5 (G1, · · · , G=) for all 5 2 F= (2)
@1 @2 @3 (18=>? (G1, G2, G3)) ! 18=>? (@1 (G1) ,@2 (G2) ,@3 (G3)) (3)

With this automaton, we can check the tree C = 18=>? (1, +, 1) with the following trace:

? (C) = 1 + $_ (18=>? ( 1, +, 18=>? (1,+,1)))
! 18=>? ( 1(1), +(+), $_ (18=>? (1,+,1))) by Rule 3

! 18=>? ( 1, +, $_ (18=>? (1,+,1))) by Rule 1 (twice)
! 18=>? ( 1, +, 18=>? (1,+,1)) by Rule 2

Since we are able to traverse the entire tree we have that ? matches C , as we would expect.

Notice that without the second case, i.e., Rule 2 (for a $_ ), the automaton simply checks the
pattern corresponds to the leaves of the tree. This behavior matches our previous intuition for
concrete patterns in Section 3.2, namely that ? | ~84;3 (C). Therefore, the automaton presented is a
generalization of those outlined semantics to account for subtree wildcards.
Extending the automaton to support more wildcards is straightforward. We can encode their

semantics, including special structural constraints, by adding rules to the transitions. For example,
for the sibling wildcard from Section 3.1, we would use the following.

@(5 (G1, · · · , G=)) !

5
⇣
@1 (G1) , · · · ,@ 98�1

�
G 98�1+ 8�1

�
, $_

�
G 98+ 8�1

�
, · · · , $_

�
G 98+ 8�1

�
,@ 98+1

�
G 98+ 8

�
, · · · ,@< (G=)

⌘
with 8 2 [1, B], 98 2 [1,<] and  8 =

Õ8
;=1 :; for some :8 � 0

when @ = @1 · · · @< where @ 98 = ... and = =< � B +  B
Conceptually, given an <-split of the pattern state @ with B sibling wildcards on each of the

the 98-th sub-sequences, the rule continues the traversal at each child, similar to the last rule in
the original transitions. The states @; not corresponding to selected sibling wildcards are moved
as-is to in-order child nodes G; , while the selected @ 98 states are replaced by :8 subtree wildcards.
Consequently, each sibling wildcards matches :8 adjacent subtrees under the parent with root 5 .
Similarly, although our automaton requires a pattern to match an entire tree, we can easily use

our approach to match a slice of a tree, i.e., a new tree. For example, when searching for partial
queries, intended matches are often part of a larger tree (as shown in Fig. 3), so we want more than
just recognizing a match. Instead we consider all possible slices for a tree, where a tree slice is the
range of all nodes between any two branches as a separate tree and �nd slices that match.
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Table 1. Cursor interface used for the ()"0C2⌘ algorithm.

Pre-order Cursor overview

next_subtree(self) -> Optional[Cursor] Return a new cursor to the next subtree
in pre-order after the self node if it exists.

first_child(self) -> Optional[Cursor] Return a new cursor to the �rst child of
the self node if it has any children.

first_leaf(self) -> Cursor Return a new cursor to the �rst leaf of
the self node (itself if it has no children).
Note: can be implemented from first_child

token(self) -> Token Only for leaf nodes, return the token
located at the self leaf.

4.2 Algorithm
We now present a deterministic algorithm that implements the tree automaton from Section 4.1
using a pre-order traversal, while matching concrete tokens directly to leaves and backtracking to
resolve any ambiguity matching wildcards. The algorithm does not require any explicit tree slicing,
since it traverses the tree using a cursor, and can be slightly modi�ed to locate the end of the match,
such that only potential starting locations need to be considered.
Our algorithm can use any sequence interface to iterate over the pattern. We only need first

and rest operators to get the �rst element and the rest of the list, respectively. To simplify our
presentation, we describe our algorithm in Python in Listing 3, where we use Python’s iterable
unpacking (i.e., first, *rest = seq) to access the relevant elements at each step. We also check
if the sequence is empty using Python’s collection truthiness (e.g., if seq).

Our algorithm requires a pre-order cursor to traverse the tree. We outline the expected methods
for such a cursor interface in Table 1. The �rst two methods, next_subtree and first_child,
restrict the tree traversal to be in pre-order, but do not require a visit to every node. Meanwhile,
first_leaf is a convenience function that skips down the left spine of the tree to the very �rst
leaf, and token allows the algorithm to inspect and match the leaves to concrete tokens. Notice
that all methods are also pure, they do not modify the cursor, but instead return a new cursor.
Concrete tokens are only required to de�ne equality (a == b), speci�cally between a token in

the pattern and in the leaf of a tree to check for a match. Meanwhile, the subtree wildcard tokens
just needs to be di�erent from regular tokens, in our case an instance of the Wildcard class.

()"0C2⌘ (Listing 3) Outline. Conceptually, the algorithm recursively matches each token in the
pattern against the tree. If the next element in is a concrete token, then the algorithm must match
the leftmost (i.e., next) leaf in the tree. Therefore, the algorithm, starting in Line 13, traverses to the
�rst leaf under the cursor checks for a match and continues with the next subtree.
If the next element is a wildcard, then the algorithm must match a (i) complete subtree that

(ii) includes the leftmost leaf and that (iii) allows for a match if any exists. Therefore, starting at
Line 7, it guesses the subtree currently under cursor is a match and continues with the rest of the
pattern. If at any point the matching fails, the algorithm backtracks and retries with next subtree
rooted on the left spine (i.e., the �rst child) until it succeeds or runs out of candidates.
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1 def match(pattern, cursor):

2 if not pattern or not cursor:

3 return not pattern and not cursor

4

5 tok, *rest = pattern # unpack first & rest

6

7 if isinstance(tok, Wildcard):

8 while not match(rest, cursor.next_subtree()):

9 cursor = cursor.first_child()

10 if not cursor: return False
11 return True
12

13 cursor = cursor.first_leaf()

14 return tok == cursor.token() \

15 and match(rest, cursor.next_subtree())

Listing 3. ()"0C2⌘ implemented in Python.

Trace match(                  ,     )authenticate($_, 1

match(             ,     )($_, 2

match(        ,     )$_, 3

match(   ,     ), 4a

match(   ,     ), 4b

Tree 1

2 3 4a

call

call

member args

authenticate

(

...

,

) 3

4b 

args

call

...

,

Fig. 4. Example execution trace for ()"0C2⌘. On the le� we have the recursive call tree, using numbered
markers to represent cursors into a tree. On the right, we have two tree slices showing the algorithm state:
first a�er a mismatch and then with the final match a�er successfully backtracking to a wildcard guess.

()"0C2⌘ Example (Fig. 4). We demonstrate the algorithm with a trace of calls to match on a
tokenized query and a cursor (mapped by a number) to tree slices (on the right) as shown.

(1) First call matches the �rst concrete token authenticate to the first_leaf, so it makes a
recursive second call with the rest of the pattern and the next_subtree.

(2) Second call matches the next concrete token ( to the first_leaf, except this time the
cursor is already at a leaf node, so it makes a recursive third call.

(3) Third call needs to match a wildcard $_ , so it will guess the corresponding subtree:
(a) First, it tries matching the node under the cursor and it makes a recursive call with the last

concrete token , , but that call fails to match.
(b) Next, it tries matching the first_child instead and it makes another recursive call with

the last token , , which eventually succeeds.

()"0C2⌘ Complexity. Overall, the algorithm has a worst-case runtime complexity of$
�
: · 3⌘+1

�
,

where : is the query length, ⌘ is the number of wildcards, and 3 is the maximum depth of the tree.
Conceptually, for each of the : tokens in the query, the algorithm traverses up to 3 nodes and then
for each wildcard it might backtrack up to 3 times for each node along a left spine.
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rules:
- id: assigned-undefined

languages:
- javascript

- typescript

message: ��undefined� is not a reserved keyword in Javascript, so this is

�valid� Javascript but highly confusing and likely to result in bugs.�

pattern-either:
- pattern: undefined = $X;

- pattern: var undefined = $X;

- pattern: let undefined = $X;

- pattern: const undefined = $X;

severity: WARNING

metadata:
category: best-practice

technology:
- javascript

license: Commons Clause License Condition v1.0[LGPL-2.1-only]

Listing 4. Example of a Semgrep rule, which finds variables shadowing undefined.
The underlying queries that would have been extracted for our benchmark are highlighted.

In practice we expect : , ⌘, and 3 to be fairly small, since expressions tend to be short and shallow.
When processed by stsearch (see Section 5) our real-world benchmark (see Section 6) had queries
with a median length of 8 (max 31) tokens and a median of 2 (max 10) wildcards, while the corpus
syntax trees had a median depth of 15 (max 907) nodes. Our performance evaluation (Section 7.3)
also found that for these real-world uses the backtracking complexity was not an issue.

5 IMPLEMENTATION
To implement sequence-to-tree matching, we created a free-standing Rust implementation of the
algorithm (Listing 3) using traits for the sequence and cursor abstractions described in Section 4.2.
The ()"0C2⌘ algorithm together with the interface declarations is 76 lines of Rust.

To implement our source code parser (Section 2.2), we used the Tree-Sitter [3] Rust bindings and
tree-sitter-javascript, to generate an e�cient, �exible JavaScript (JS) parser. Our syntactic
search implementation wraps the concrete syntax tree produced by the parser, to implement the
cursor interface (see Table 1) required for the presented ()"0C2⌘ algorithm.
Since Tree-Sitter provides error-tolerant parsing, we reuse the source code parser to generate

the query tokens by ignoring any parse errors and extract the leaf tokens. By leveraging a query
language with a compatible syntax (see Section 3.1), stsearch contains only 7 lines speci�c to JS.
stsearch is open-source and publicly available at plait-lab/stsearch.

6 BENCHMARK SUITE
We created a benchmark suite of queries (Section 6.1) from the existing Semgrep [40] ecosystem
and collected a corpus of source code (Section 6.2) from the npm [35].

6.1 �ery Collection
Semgrep is a static analysis tool for �nding bugs and vulnerabilities in source code. As such,

they have a standard repository semgrep-rules [41] of analyses covering many languages and
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frameworks. Each rule (e.g., Listing 4) contains complete queries joined by conjunctions and
disjunctions, as well as other operators to specify the relative placement of matches.
Overall, we extracted 308 unique queries for a popular library: the Express [8] framework.

For each of the 52 Semgrep rules for Express, we extracted and canonicalized each query by
normalizing white space, anonymizing all placeholders, and removing syntactic sugar.

On stsearch translation. Our tool has slightly di�erent syntax than Semgrep, so we must
translate each query. First, Semgrep placeholders start with a $ followed by an uppercase name,
while for simplicity stsearch only supports anonymous wildcards $_. Second, Semgrep needs
separators (e.g., commas for lists) when using a zero-or-more placeholder, but stsearch does not
assume token semantics and interprets them literally, expecting a corresponding node in the tree.
Our translator converted Semgrep queries into the equivalent stsearch queries.

On tokenizable pre�xes. Finally, we computed 1107 unique unambiguous partial tokenizable
queries from these complete queries. To generate unique partial queries, we tokenized each complete
query with Pygments [2], a standard Python tokenizer, then took ranges of token pre�xes to
construct canonicalized and, consequently, unique and unambiguous partial queries.

6.2 Corpus Collection
To create a corpus on which to run our suite of queries, we sampled a corpus of 1001 repositories
of npm packages. To make sure they were relevant, we selected packages that directly depend
on Express and do not list typescript as a required dependency, since stsearch currently only
supports JavaScript (JS). Because npm is a package registry and some packages do not publish their
source code, we also required that they listed a public GitHub repository with their source.

Overall, the corpus contains 15 233 �les. The average size is (10± 190) kB (mean ± std. dev.) with
99% of the �les under 130 kB, but the maximum size at 5.1MB. After inspecting a sample of the
large �les, it seems that the unusually large �les are the result of automatically generated outputs
committed to the repositories. Given that these �les are included in source repositories, we include
them in our analysis, but they are unlikely to be relevant to developer queries.

7 EMPIRICAL EVALUATION RESULTS
We evaluate stsearch using our benchmark queries on our benchmark repositories (Section 6),
using Semgrep [40] as a baseline. Overall, we aim for our tool to o�er results for partial queries,
while remaining comparable to existing tools for complete, parsable queries. Thus our evaluation
centers on the following research questions, operationalized and investigated below.

RQ1 How does stsearch semantics compare to established tools for complete queries?
RQ2 How do stsearch results for partial queries evolve as tokens are added?
RQ3 Can stsearch provide results at interactive speeds in practice?

7.1 Complete �eries
For RQ1, we compare the semantics of stsearch by inspecting the discrepancy in the results with
respect to Semgrep on complete queries in our benchmark. We call a result excluded if a particular
region of a particular source �le is returned by Semgrep but not by stsearch. Conversely, a result is
included if a particular region of a particular source �le is returned by stsearch but not by Semgrep.
We deliberately avoid using terms such as false positive or false negative because Semgrep’s results
are not ground truth, simply a di�erent attempt at delimiting relevant results.

1we excluded the polyfill-service repo, since it has 7x more �les than the rest combined and would skew our results.
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Table 2. Unique matches produced by running stsearch and Semgrep on all complete queries.

Semgrep
Matches Excludes Total

stsearch
Matches 6 025 658 (67.65 %) 12 603 448 18 629 106
Excludes (4.95 %) 313 836 - -
Total 6 339 494 - 18 315 270

Fig. 5. Match disagreements per complete parsable query between stsearch and Semgrep.
The charts shows the breadth of total matches for each query and the distribution of query disagreements.

The query exclusion / inclusion rate does not appear to be correlated with the quantity of results.
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(a) stsearch excludes 4.95 % of all Semgrep matches.
Many exclusions stem from non-toggleable

semantics-aware Semgrep features.
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(b) stsearch included 67.65 % matches over Semgrep.
stsearch produces additional matches because of it

also surfaces partial matches.

Since the current version of stsearch uses the input syntax tree as-is, we did not use Semgrep’s
toggleable syntax tree rewriting passes. For example, Semgrep o�ers optional constant propagation
as well as matching modulo associativity and commutativity of standard operators. Note that future
versions of stsearch could also be extended to add semantics-aware features (see Section 8).

For some queries, both tools produced no results. Some analyses in the semgrep-rules [41]
apply extremely rarely, so no relevant code snippets appeared in our corpus. Since these queries
o�ered no information about the behavior of either tool, we dropped these queries. Furthermore,
Semgrep was unable to correctly process 356 �les due to internal errors. Thus, our discussion only
details results for the 162 queries that produced matches and �les with no errors.

We aggregate the results for complete queries in Table 2. The di�erences per query are in Fig. 5.
We aggregate matches across tools by checking if the character ranges of the program are identical,
i.e., if they start at the same character and end at the same character.

7.1.1 Exclusions. For 30.25% of queries, stsearch included all results produced by Semgrep.
Overall, across the benchmark suite, stsearch excluded 4.95 % of the matches identi�ed by Semgrep.
Semgrep leverages a semantic understanding of JavaScript (JS), while stsearch currently operates
over the unaltered input CST using purely our language-agnostic approach. Below we include a
brief description of a few resulting categories of exclusions.
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Semgrep leverages knowledge of source language semantics, e.g.

• In Semgrep, the query �express� matches �express�, since in JS there is no semantic
di�erence between them. However, stsearch expects a literal match of every token, so a
single quote � will not match a double quote �.

• Semgrep ignores trailing commas and semicolons when matching, so the code fragments
[a,] and [a] would match each other, but stsearch requires a literal match.

• Semgrep disregards the order of the keys in an object literal, but stsearch requires code
snippets to match the order speci�ed in the query. Note that JS de�nes the evaluation order
inside object literals, so in this case stsearch is simply more conservative when matching,
e.g., when matching {a: f(), b: g()}, Semgrep will also a match a reordering of the keys,
even if it might change the semantics of the program due to side-e�ects.

Semgrep special handling of imports, e.g.

• Given the query $VM.run(...), Semgrep will surface the snippet below as a result, despite
it not having a member call expression. This behavior is not toggleable.

const {run} = require(�sandbox�);

run(�1 + 1�, (res) => console.log(res));

7.1.2 Inclusions. stsearch produces more results than Semgrep, generating 67.65% additional
matches for the benchmark suite. Recall that stsearch operates as though every query may be
partial, and thus o�ers partial matches even for these parsable queries. For example, if we write
a query to match assignments: given the query $_ = require(�express�) , stsearch would
produce a partial match for the code below, identifying the highlighted match below.
const express = require(�express�) ;

Since Semgrep must match an entire tree, and since this line of code both declares and assigns
to express, Semgrep does not include this match. With the vardef_assign setting on, Semgrep
could match the entire declaration. No setting would allow Semgrep’s result to exactly match
stsearch’s (yellow-highlighted) match range with a single query.

7.2 Partial�eries
To answer RQ2, we measured how many results are �ltered by each token pre�x for each complete
query and how that process converges to the �nal set of results. Throughout Fig. 6, each row
represents one completed benchmark query, and each cell in the row represents an intermediate,
tokenizable query en route to the complete query, with a token added per column. Note that Fig. 6
also includes a distribution of token lengths for complete queries in our benchmark suite.

Recall that by construction stsearch ensures that a tokenizable query results always includes all
matches for any potential token completion (see Section 3.2). Thus, the results for each intermediate
query necessarily include all results associated with the corresponding �nal, complete query.
Therefore our main questions here are: (i) what is the impact of each token, and (ii) how many
additional results stsearch includes, beyond those for the complete query.
Overall, in Fig. 6a the �rst few concrete tokens (the �rst is usually a wildcard) do the �ltering,

while in Fig. 6b most queries converge on the �nal results long before the last token. An interesting
exception occurs for a group of queries with 6 tokens; starting with $_ = require ( that search
for speci�c library imports. We see these tokens are e�ective at �ltering matches; however, basically
all imports contain this pre�x. Therefore, they not converge on the �nal results until the speci�c
library is included in the query (e.g. �express� ), but the last ) is then redundant.
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Fig. 6. stsearch results progression for each token prefix en route to a complete benchmark query.
We investigate how results are filtered by each additional token and how they converge towards the final set.
Recall that by construction (Section 3.2) adding a token can only result in a subset of the previous matches.

For both charts, each row corresponds to complete benchmark query, while each cell represents the
hypothetical partial query resulting from the =-token prefix of the corresponding complete query.
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(a) Selectivity of each additional token.We graph the results filtered by each new token (in violet) to
identify key tokens for each of the complete queries. For the first column (since there are no previous results)
we use the query with a single sibling wildcard (i.e. the one with most matches) as the set of previous results.
Notice that the first few concrete tokens (the first is usually a wildcard) do most of the match filtering.
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(b) Convergence into completed query. We graph the in-progress results ultimately included (in green) in
the final results for the completed query (in blue), i.e., the precision of results for a query prefix search.

Notice that the results o�en converge towards the results for the full query before the last token.
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Table 3. stsearch execution time per file, for all files in our code dataset and all queries in our query dataset.
We separate the parsing time, since the former should only have to be performed once per file.

Phase Average ± SD Median 99th Percentile
Tree-Sitter [3] parsing (3 ± 31)ms 660 �s 29ms
stsearch searching (10 ± 480)ms 270 �s 24ms

7.3 Performance
To answer RQ3, we measured stsearch’s execution time for the 308 complete and 1107 partial
queries in our query suite, on each of the 15 233 �les in our code suite. We used a server with an
Intel Xeon CPU E5-1680 v2 and report the parsing and searching execution times in Table 3. Notice
that for 99% of searches, stsearch takes less than 24ms to �nd all matches, while the maximum
search time was 230 s for a large, automatically generated �le (see Section 6.2).

We conclude our non-optimized prototype is already performant enough to provide live feedback
at interactive speeds. Assuming we have parse trees of all the �les in a repository, we could complete
a search in under one second for 91.10 % of the repos in our benchmark. Note that this assumes a
naive single-threaded approach, searching each �le in sequence rather than in parallel. In addition
to being trivially parallelizable, we anticipate many other opportunities for e�ective optimizations,
e.g., via a search index or incrementalizing results.

8 DISCUSSION
We now discuss the practical bene�ts and limitations of our approach. We also propose interesting
directions for future work on stsearch.

Supported Languages. Our approach can support any language for which we can generate a
syntactic tree, including all deterministic context-free languages. Implementing our technique does
not require modi�cations to the grammar or parser implementation; so (i) the language and parser
can evolve without requiring modi�cations to our tool and (ii) we can support new languages in
stsearch without engineering custom parsers. In contrast, previous systems (see Section 2.1) must
modify both the grammar and the parser to account for placeholders.
Furthermore, we expect error-tolerant parsers, capable of producing meaningful trees in the

presence of syntax errors, to enable our approach to support in-progress codebases. Our benchmark
already includes �les that Semgrep [40] was unable to parse (and therefore search), while stsearch
was able to process every �le using the standard error recovery in Tree-Sitter [3]. The speci�c error
handling strategy will have an impact on the matches for ill-formed code; e.g., a panic strategy that
discards tokens might unintentionally exclude matches.

Grammar and Usability. Although our technique does not require modi�cations to a language’s
parser, the behaviors of all lightweight syntactic approaches are ultimately a�ected by grammar
and parser design. In particular, two grammars for the same language may group tokens di�erently.
For example, to avoid left recursion, a parser might parse an in�x operation like a+b as the tree
8=5 8G (0,>? (+,1)), such that our subtree wildcard could unexpectedly match +b.

For stsearch, we used a Tree-Sitter grammar, which aims to have an “intuitive structure.”
Semgrep uses the same grammar as the starting point for its custom grammar, so we matched the
matching behavior of Semgrep for our evaluation. A di�erent grammar will a�ect the matches
for a given lightweight syntactic search tool results, potentially diverging from user expectations.
Future work should explore the usability of lightweight syntactic tools.
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Supporting Semantic Analyses. Although stsearch currently does not use language semantics,
our technique can be extended to leverage semantics knowledge by manipulating the search tree
rather than the query. This allows us to maintain the core insight of our approach, i.e., only
tokenizing potentially incomplete queries to search over complete, parsable source code.

Given that our matching semantics (see Section 4) are de�ned over trees, we can support many
analyses that can be encoded as tree modi�cations. Consider the examples in Section 7.1: tokens
with equivalent semantics (e.g., �� and ��) can be canonicalized before matching; insigni�cant
tokens (e.g., trailing ,) can be dropped from the tree so they are disregarded. More complex analyses
(e.g., constant propagation) could be supported by matching the query against a tree encoding the
transformed source program (e.g., replacing a subtree with an inferred constant).

Going further, one could perform matching modulo associativity and commutativity, by consid-
ering all possible trees for an expression, or match type information by using a type-annotated tree.
We expect the complexity and performance costs of these approaches to vary wildly, and some may
be irreconcilable with the goal of maintaining interactive speeds. Echoing the discussion above, we
expect future research may need to assess the need for and usability of such features.

9 RELATEDWORK
Prior work has studied developers’ code search strategies [39] and existing techniques [25] to
support them. Our approach provides an alternative to traditional tree pattern matching techniques
by leveraging prior work on tree languages. We extend this work to create lightweight tools for
program analysis and source-to-source transformations.

9.1 Program Analysis and Transformation
Lightweight Syntactic Tools. Existing tools leverage lightweight speci�cations for analysis and

transformations. They aim to hide AST details behind a declarative syntax that leverages the source
language (see Section 2.1). Throughout this paper we compare against Semgrep, but TXL [5] and
Comby [45] (which also powers [43]) also have a lightweight query syntax and include support for
multiple languages. More narrowly scoped tools exist, with Coccinelle [24] as a notable mention
for its successful deployment for API evolutions in Linux [23].
However, every one of these tools require that the input query be parsable as a tree structure.

We contribute a reusable technique to handle partial queries to the existing techniques.

Heavyweight Language Frameworks. Many languages have frameworks to analyze and transform
source code programmatically. For example, for JavaScript (JS) the extensible ESLint [7] linter,
jscodeshift [18] “codemod” toolkit, and the recast [33] library provide direct access to parse, analyze,
and manipulate the AST for a Javascript program. These frameworks tend to be more powerful
than their lightweight syntactic counter parts, since they can express arbitrary constraints.
Cubix [19] (introduced by [20]) even extends this approach to support multiple languages

with a single query. Recently, YOGO [36] was built using this framework, such that it is capa-
ble of performing a semantic search over multiple languages. Other work like [30], which uses
island grammars [29], aims instead to be easily extensible to new and ad-hoc languages.

There are many tools whose focus is to collect and query source code information, like [21] and
[10]. Some have an increased focus on their query language, like CodeQL [6] and [44]. There are
even tools that rely only on tokenizing the source code to avoid parse errors, like Cobra [16].
However, these tools require signi�cantly longer speci�cations, which often include large

amounts of boilerplate. Furthermore, their DSLs are usually embedded in languages without
any support for partial programs or even program sketches.
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API Exploration. Another interesting direction explored in the literature is the search needs
speci�c for API exploration. For example, Strathcona [15] automatically assists developers to �nd
relevant examples, SSI [1] supports inspecting entities based on their API usages. Meanwhile,
Examplore [9] provides an interactive interface to learn APIs through existing usages.

9.2 Tree Search and Matching
Regular Tree Languages. Regular trees and their properties have been studied in the prior literature.

We leverage existing work (see [4]) to describe and characterize our technique in Section 4.1.
Similar to regular languages, each tree automaton recognizes a tree language that can also be

encoded by a regular tree expression. Therefore, queries for stsearch can also be directly expressed
using a regex-like notation designed for tree languages. However, this notation must also encode a
tree, such that the query must still be parsed and cannot be incomplete.

Tree Pattern Matching. Searching and matching a tree pattern in a larger tree is a common
problem in a variety of domains, including automated reasoning, compiler optimizations, and
syntactic search. Although technically it constitutes a subset of the general regular tree expression
matching problem, it has been separately studied and optimized [14]. However, as described earlier,
solutions to this problem presume we can parse a tree from a query speci�cation.

Tree Query Languages. Many tools exist that provide a query language to search over tree-like
structures. For example [32, 31] and [22] provide a DSL to search over syntax trees. Meanwhile,
the Rosie Pattern Language [17] aims to be a reusable pattern language more powerful than regex.
However, the languages di�er from their target, so they are not as lightweight.

9.3 Program Transformations Synthesis
Identifying Edit Locations. Several tools have explored automatically synthesizing program

transformations. For example, LASE [26] and Refazer [38] are able to generalize from examples to
automatically produce an edit script. In general, the synthesized program must include a way to
identify the relevant locations to edit or a syntactic match speci�cation.
By construction, these tools produce trees to specify the edit locations and even the rewrites,

since partial speci�cations were not supported. We hope our work opens the opportunity to operate
and surface partial speci�cations as targets for synthesis.

Interactive Transformations. A variety of interactive tools have leveraged program synthesis to
deal with the challenges of authoring program transformations speci�cations. In particular, Blue-
Pencil [28] and Overwatch [46] leverage the interactive history to automatically suggest rewrites
to the developer. Meanwhile, reCode [34] uses the �nd and replace interaction for speci�cation. On
the other hand, ALICE [42] focuses on search through an interactive speci�cation.
However, these tools have the same limitations as the underlying synthesis engines and are

unable to produce or operate on incomplete queries. Therefore, we hope that supporting partial
queries is a step in and of itself to make program transformations more accessible.

10 CONCLUSION
In this paper, we introduced a new architecture to support lightweight syntactic search with partial,
but tokenizable queries.We formalize a query language and present stsearch, an implementation of
these techniques evaluated on a real-world benchmark. We found that our approach can e�ectively
support in-progress queries, while providing state-of-the-art results for completed queries.
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