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Abstract

This report investigates three pivotal areas of Ising machine technology: the Bistable
Latch Ising Machine (BLIM), the mapping of Ising problems onto King’s graph, and the
design of Oscillator Ising Machine (OIM) chips. Our study of BLIM reveals its poten-
tial in solving small-scale Ising problems, though further research is needed to enhance
its scalability. The exploration of Ising problem mapping onto King’s graph examines
the effectiveness of minor embeddings and coupling coefficient assignments. Although
the approach is methodically sound, it has shown limited success in achieving optimal
Ising Hamiltonians and raises concerns about its practicality due to increased hardware
demands. Additionally, we detail the design processes for two types of OIM chips, high-
lighting the architectural differences and operational challenges encountered during tape-
outs. Overall, while each area demonstrates significant promise, ongoing development and
validation are critical to fully realize their potential in practical applications.
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1 Introduction

An Ising machine is a piece of electronic hardware designed to find the spin configuration
with minimum Ising Hamiltonian, i.e., to solve the Ising problem. The Ising Hamiltonian is
defined as

H(s⃗) = −1

2

N∑
i,j=1

Jijsisj , (1.1)

where s⃗ are the spins, i.e., s⃗ = [s1, s2, . . . , sN ]T , with si ∈ {+1,−1}; Jij are the coupling
coefficients, with Jij = Jji and Jii = 0.

This report explores two types of Ising machines: the Bistable Latch Ising Machine (BLIM)
and the Oscillator Ising Machine (OIM), as proposed in [1] and [2] respectively. In BLIM, a
spin is implemented using a latch (bistable element), while OIM employs a nonlinear oscil-
lator. The coupling coefficients are implemented using resistors in both machines. Through
connecting these latches using coupling resistors, a system that functions as an Ising machine
is formed.

The remainder of the report is structured as follows: Section 2 outlines the research activ-
ities conducted on BLIM, including theoretical developments, simulations, and experimental
measurements. Section 3 explores the process of mapping Ising problems onto King’s graph,
providing an example of how Ising problems could potentially be implemented on hardware
platforms. Section 4 elaborates on my contributions to the design process of two OIM chips,
detailing the roles undertaken, challenges encountered, and solutions implemented. Finally,
Section 5 offers the conclusion, summarizing the key findings and contributions of this study.

2 BLIM

At the start of this section, we introduce a simplified model of the Bistable Latch Ising
Machine (BLIM) in Section 2.1, where we outline the theoretical principles supporting its
operation. Following this, Section 2.2 explores simulations to further clarify the workings
of BLIM. Finally, Section 2.3 presents practical measurements performed on a breadboard,
showcasing BLIM’s efficacy in addressing small-scale Ising problems. Through this structured
approach, we aim to highlight BLIM’s potential in computational problem-solving.

2.1 Theory

In a Bistable Latch Ising Machine (BLIM), individual spins of the Ising model are realized
through latches, with each latch corresponding to a single spin. The resistive connections
between these latches represents the coupling coefficients, thereby establishing the network of
spins in a physical form.

In this project, a latch is built using two back-to-back inverters. Following [1], a simplified
model of the latch includes one inverter capacitor, as shown in Fig. 1. Note that a typical
inverter’s voltage characteristic curve is loosely similar to tanh(·), hence we use the simple
analytical model

vo = tanh(−kvi), (2.1)

where the gain parameter k > 0 can be implemented approximately by changing VDD. We
define a parameter

Ks = VDD − VSS , (2.2)

where a high Ks corresponds to a steep slope in tanh, i.e., high k; while a low Ks corresponds
to a flat slope in tanh, i.e., low k. This Ks would be used for parameter cycling, which is
described in more detail in the next section.
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Figure 1: Simplified model of a latch built with 2 inverters, including an output
resistance and a load capacitor at one of the output of the inverters, which is v+ in the

figure.

Each coupling, implemented between 2 latches, uses a pair of coupling resistors. Depending
on the sign of Jij , there are two ways to connect the coupling resistors, as shown in Fig. 2.
For positive Jij , one of the coupling resistor connects vi+ and vj+; the other one connects
vi− and vj−. For negative Jij , one of the coupling resistor connects vi+ and vj−; the other
one connects vi− and vj+. We define vi = vi+ in the following content. The resistance of a
coupling resistor Rij corresponds to the value of a coupling coefficient, i.e.,

|Jij| = Kc

Rij
. (2.3)

Expressing Jij = sgn(Jij)|Jij | and using the definition in (2.3), we rewrite the term 1
Rij

as

1

Rij
= sgn(Jij)

Jij
Kc

=

{
Jij
Kc

, if Jij > 0,

−Jij
Kc

, if Jij < 0.
(2.4)

(a) Implementing positive
Jij .

(b) Implementing nega-
tive Jij .

Figure 2: BLIM models that implement positive and negative coupling.

For a BLIM with N coupling latches, a system of N differential equations results ([1],
Appendix A):

dvi(t)

dt
= f(vi; k)−

N∑
j=1

Jij g(vi, vj , sgn(Jij); k), i = 1, . . . , N, (2.5)
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where

f(vi; k) =
G

C
(tanh(k tanh(kvi))− vi), (2.6a)

g(vi, vj , sgn(Jij); k) =

{
1

KcC
(vi − vj) , if Jij > 0,

−1
KcC

(vi − tanh(−kvj)) , if Jij < 0.
(2.6b)

G =
1

Ro
, (2.6c)

and |Jij| = Kc

Rij
. (2.6d)

The Lyapunov function for this system is [1]

LN (v⃗; k) = −

 N∑
i=1

z(vi; k)−
N∑

i,j=1

Jijh(vi, vj ; k)

 . (2.7)

where

z(v; k) =

∫ v

0
f(x; k) dx , (2.8a)

and h(vi, vj , sgn(Jij); k) =

{
1

2KcC
[
(vi−vj)

2

2 − 1] , if Jij > 0,
−1

2KcC
[
(vi+vj)

2

2 − 1] , if Jij < 0.
(2.8b)

According to [1], the Lyapunov function, (A.3), equals a scaled/shifted Ising Hamiltonian
when k > 0 is large that the spin voltages are at the bistable values v+ and v−. The corre-
sponding spin is defined as

si =

{
1 , if vi = v+,

−1 , if vi = v−.
(2.9)

As the BLIM model with positive coupling, i.e., Jij > 0, has been proven to function as
an Ising machine in [1], the derivation of negative coupling, i.e., Jij < 0, is provided in
Appendix A.

2.2 Simulation

Transient simulations of 2/3/4/5/10/20-spin BLIM were conducted using SPECTRE. The
definition of problems we simulated on is attached in Appendix B. Moreover, bruteforce
simulations were executed on C to determine the minimum Ising Hamiltonian of each problem.
These simulations involve computing the Hamiltonian for all possible spin configurations,
providing a comprehensive distribution of Hamiltonian values.

In the transient simulations, the latches are implemented using ALD1106 (NMOS) and
ALD1107 (PMOS) as SPICE level 2 MOSFET models. Also, the latches are coupled through
resistors representing Jij in Ising problems, as defined in (2.3). A schematic of a size-4

BLIM is shown in Fig. 3 as an example.
Additionally, parameter cycling was introduced as Ising problems need parameter cycling

to achieve lower Hamiltonian values [1] 1. In this project, we use a pulse waveform for VDD

1It is not entirely clear how parameter cycling influences the Hamiltonian and the voltage of the latch in
BLIM. According to [1], it can be seen that successive parameter cyclings on Ks reduces the Hamiltonian,
particularly when Ks is low, i.e., the latch system is in analog mode. Conversely, when Ks is set high, the
system is binarized again. However, the mechanism behind this feature is not well understood yet.
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to cycle the parameter Ks. When VDD is high, the voltages of the latches will be binarized
into vi ∈ {v+, v−}; when VDD is low, the binarization is eliminated and the Hamiltonian is
reduced. Examples of transient simulation waveforms are shown in Fig. 4.

Following [1], we map vi > 0 to si = +1 and vi < 0 to si = −1. The final Ising Hamiltonian
results of transient simulation of 2/3/4/5/10/20-spin BLIM were compared with bruteforce
solution, as shown in Table 1. With the number of spin and the number of edge increase, the
value of Kc also needs to increase to achieve a better Hamiltonian. Note that BLIM finds the
minimum Hamiltonian for most of these small problems. Among them, there are 3 problems,
J20 11, J20 14, and J20 15, that the result minimum Hamiltonian is much worse even after
many trials of adjusting parameter values.

(a) Schematic of size4 1 problem implemented in BLIM. Each latch (green) implements a spin si in
(1.1); each resistor implements a coupling coefficient Jij .

(b) Graph of the size4 1 problem.

Figure 3: Schematic and graph of the size4 1 problem.
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(a) Simulation waveform of the problem size4 1.

(b) Simulation waveform of the problem J10 12.

(c) Simulation waveform of the problem J20 15.

Figure 4: Simulation waveforms of BLIM with a 1G Hz pulse VDD. The time step is
1.4µs and the stop time is 1.4ms. The parameter cycling of Ks happens at

t = 0.4m ∼ 1ms, when VDD is lower. The voltage vN is fixed at v+.
8



Table 1: Simulation results and their corresponding parameter settings. The count is
the number of times that the minimum simulated Ising Hamiltonian was reached in

200 runs. The period of pulse VDD is 1ms. The time step is 1.4µs and the time stop is
1.4ms.

problem name

simulation
min(H(s⃗))

{value, count}

bruteforce
min(H(s⃗))

Ks

{high, low} Kc VDD,high, VDD,low, VSS , Vn

size2 1 -1, 200 -1 4, 1.5 2k 2, -0.5, -2, 2

size2 2 -1, 200 -1 4, 1.5 2k 2, -0.5, -2, 2

size3 1 -3, 200 -3 4, 1.5 2k 2, -0.5, -2, 2

size3 2 -3, 200 -3 4, 1.5 2k 2, -0.5, -2, 2

size3 3 -1, 200 -1 4, 1.5 2k 2, -0.5, -2, 2

size4 1 -5, 200 -5 4, 1.5 2k 2, -0.5, -2, 2

size4 2 -5, 200 -5 4, 1.5 2k 2, -0.5, -2, 2

size5 1 -6, 200 -6 4, 1.5 2k 2, -0.5, -2, 2

J10 01 -9, 200 -9 4, 1.5 2k 2, -0.5, -2, 2

J10 02 -9, 200 -9 4, 1.5 2k 2, -0.5, -2, 2

J10 03 -9, 200 -9 4, 1.5 2k 2, -0.5, -2, 2

J10 04 -9, 200 -9 4, 1.5 2k 2, -0.5, -2, 2

J10 05 -9, 200 -9 4, 1.5 2k 2, -0.5, -2, 2

J10 06 -9, 200 -9 4, 1.5 2k 2, -0.5, -2, 2

J10 07 -7, 200 -7 4, 1.5 2k 2, -0.5, -2, 2

J10 08 -9, 200 -9 4, 1.5 2k 2, -0.5, -2, 2

J10 09 -9, 200 -9 4, 1.5 2k 2, -0.5, -2, 2

J10 10 -7, 200 -7 4, 1.5 2k 2, -0.5, -2, 2

J10 11 -532, 200 -532 4, 1.5 2k 2, -0.5, -2, 2

J10 12 -424, 200 -424 6, 1.5 54k 3, -1.5, -3, 2

J10 13 -604, 200 -604 4, 1.5 2k 2, -0.5, -2, 2

J10 14 -476, 200 -467 4, 1.5 2k 2, -0.5, -2, 2

J10 15 -701, 200 -701 4, 1.5 2k 2, -0.5, -2, 2

J20 01 -38, 200 -38 4, 1.5 4k 2, -0.5, -2, 2

J20 02 -38, 200 -38 4, 1.5 4k 2, -0.5, -2, 2

J20 03 -38, 200 -38 4, 1.5 4k 2, -0.5, -2, 2

J20 04 -38, 200 -38 4, 1.5 2k 2, -0.5, -2, 2

J20 05 -38, 200 -38 4, 1.5 4k 2, -0.5, -2, 2

J20 06 -24, 200 -24 4, 1.5 8k 2, -0.5, -2, 2

J20 07 -22, 200 -22 4, 1.5 10k 2, -0.5, -2, 2

J20 08 -28, 200 -28 6, 1.5 2k 3, -0.5, -3, 2

J20 09 -24, 200 -24 4, 1.5 4k 2, -0.5, -2, 2

J20 10 -26, 200 -26 4, 1.5 4k 2, -0.5, -2, 2

J20 11 -1412, 108 -1432 6, 1.5 275k 3, -1.5, -3, 2

J20 12 -1568, 200 -1568 4, 1.5 10k 2, -0.5, -2, 2

J20 13 -1226, 200 -1226 4, 1.5 20k 2, -0.5, -2, 2

J20 14 -1647, 200 -1701 6, 1.5 120k 3, -1.5, -3, 2

J20 15 -1421, 200 -1427 6, 1 150k 3, -2, -3, 2
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2.3 Measurement

A 4-spin BLIM was implemented on a breadboard, as shown in Fig. 5. Note that it can also
be configured to implement fewer-spin problems by adjusting the configuration of coupling
resistors. The latches were implemented with ALD1106 (NMOS) and ALD1107 (PMOS)
chips. Considering that all the values of |Jij | in our 4-spin problems are 1, the resistance of
the coupling resistors is implemented using resistors with fixed resistance 150Ω, i.e., we choose
Kc = 150. Voltage waveforms were measured using a four-channel oscilloscope; a photo of a
measurement result is shown in Fig. 6.

To translate from voltages to spin voltages [1], we map vi >
V DD

2 to si = +1 and vi <
V DD

2 to si = −1, then obtain the Ising Hamiltonian using (1.1). The measurement results
are compared with simulation and bruteforce solution, as shown in Table 2. Though we
haven’t implemented parameter cycling on VDD as in simulation, we still got the minimum
Ising Hamiltonian for the small size problems. To verify, we performed 10 measurements on
problems size4 1 and size4 2 respectively, and all the minimum Ising Hamiltonians were
obtained immediately without parameter cycling.

Figure 5: Photo of a size-4 BLIM implemented on breadboard. The 1st, 3rd, 4th,and
6th chips (black) from left are ALD1107 (4 PMOS/pkg); the 2nd and 5th chips (black)
are ALD1106 (4 NMOS/pkg). An inverter is built with 2 PMOS and 1 NMOS devices.

The couplings between the spins are implemented by resistors (blue).

Figure 6: Measured waveform of the size4 1 problem. VDD is turned on at t = 3s
and fixed at 4V. The final spins voltages {v1, v2, v3, v4} are {0.14, 0.06, 0.03, 4.08}V

respectively, and the corresponding spins {s1, s2, s3, s4} are {−1,−1,−1,+1},
achieving the minimum Ising Hamiltonian of problem size4 1.
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Table 2: Measurement result. VDD is fixed at 4V and the coupling resistance Rc is
150Ω. The minimum Hamiltonian was achieved in both measurement and simulation.

problem name
measurement
Hamiltonian

simulation
Hamiltonian

bruteforce
min(Hamiltonian)

Ks Kc

size2 1 -1 -1 -1 4 150

size2 2 -1 -1 -1 4 150

size3 1 -3 -3 -3 4 150

size3 2 -3 -3 -3 4 150

size3 3 -1 -1 -1 4 150

size4 1 -5 -5 -5 4 150

size4 2 -5 -5 -5 4 150

2.4 Summary

Through theory derivation, simulation, and measurement, we have demonstrated the potential
of BLIM. However, there are still avenues for further exploration to solidify its capabilities.
In theory, the derivation of the distinction between single-sided and double-sided coupling
remains unresolved. Regarding simulation, there is potential in experimenting with different
input sources, such as using pulse voltage on the fixed node, applying pulses to VDD and
VSS, or employing ladder VDD to assess the impact of varying Kc on results. In terms of
measurement, constructing larger problem sets, like the J10 problem, on a breadboard could
offer practical validation. These avenues for future investigation aim to provide additional
evidence of BLIM’s effectiveness.

3 King’s Graph Mapping

A King’s graph represents all the possible moves of a king on the chessboard. In this graph,
each vertex corresponds to a square on the chessboard, and the edges represent the king’s
possible moves between these squares in a single step. An example of 4 × 4 King’s graph,
denoted as KG4,4, is shown in Fig. 7.

Figure 7: Graph of KG4,4.

In this section, we explore the process of mapping an arbitrary input graph, also considered
as an Ising problem, onto the King’s graph. This mapping process involves two steps: first,
the identification of a minor embedding graph, and second, the precise assignment of weight
coefficients to establish the necessary connections.
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3.1 Finding a Minor Embedding

To translate an input graph I = (V (I), E(I)), where V (I) is a set of vertices with spin
indices i = 1, ..., N and E(I) is a set of edges (i, j) corresponding to edges with non-zero
weights Jij , into a King’s graph H = (V (H), E(H)), the concept of minor embedding must
be introduced. This process involves mapping each vertex i ∈ V (I) to one or more vertices
in the King’s graph, where those vertices forms a subset of vertex ϕ(i) ∈ V (H), called super
vertex placement. A successful mapping is achieved when all edge connectivities in E(I) are
preserved in E(H), making ϕ a minor embedding of the input graph.

Two mapping techniques have been implemented in our content: the best known complete
graph embedding method [5], and the probabilistic-swap-shift-annealing (PSSA) embedding
heuristic [4]. These techniques will be discussed further in the subsequent sections.

3.1.1 Best Known Complete Graph Embedding

The authors of [4] defined the graph pattern in [5] as the best known complete graph embed-
ding. This pattern is formed on a King’s Graph, KGL,L, with a width of L = N −1. It serves
as a minor embedding of an N-spin complete graph, KN and is considered the best due to the
fact that it is impossible to map a graph KN onto a King’s Graph KGL,L where L <= N −2.

The mapping process can be broken down into the following steps:

1. Mapping vertex 1 to ϕ(1):

• Vertex 1 of the input graph is assigned to all vertices in the first column of the
King’s Graph.

2. Mapping Vertices i to ϕ(i), i = 2, . . . , N :

• Even-indexed vertices:

– Start their path from row i− 1 in the second column.

– Move diagonally down-right until reaching the bottom boundary of the grid.

– Then, move one space to the right and continue diagonally up-right toward
the last column.

• Odd-indexed vertices:

– Start their path from row i− 1 in the second column.

– Move diagonally up-right until reaching the top boundary of the grid.

– Then, move one space to the right and continue diagonally down-right toward
the last column.

Following these rules ensures that each ϕ(i) maintains at least one edge connecting to every
ϕ(j), where j = 1, . . . , N, j ̸= i, on the King’s Graph. This guarantees that the connectivity of
the input graph are always representable within the L×L grid of the King’s Graph. Examples
illustrating the best known complete graph embedding are provided in Fig. 8. Note that any
N-spin graph can be mapped onto a KGL,L using this method, with non-existing edges in the
input graph assigned zeros weights on the output graph.

12



(a) KG4,4, the best known complete
graph embedding of 5-spin complete

graph, K5.

(b) KG6,6, the best known complete graph embedding
of 7-spin complete graph, K7.

Figure 8: Examples of best known complete graph embedding. The number on each
vertex represents the index of the vertex in the input graph that it maps to. In other
words, the vertices with the same number i are in the same subset of vertices ϕ(i) in

King’s graph.

3.1.2 PSSA Graph Embedding

The probabilistic-swap-shift-annealing (PSSA) embedding heuristic, introduced by Sugie et
al. [4], is an algorithm specifically designed to map an N-spin sparse graph onto a King’s
graph KGL,L, where L < N − 1. This method employs the principles of simulation annealing
to explore the minor embedding of the graph.

The mapping process can be divided into an initial stage followed by an iterative stage.
In the initial stage, super vertex placement is initialized based on a guiding pattern derived
from the best-known complete graph. Subsequently, the iterative stage executes, repeating
until either the minor embedding is successfully found or a predefined maximum number of
iterations is reached.

During each iterative step, the algorithm performs a movement on vertices, either a swap or
a shift, determined by sampled results. These movements involve the selection of random spin
indices and the formation of a new super vertex placement, referred to as a proposal. After
each movement, the algorithm evaluates how many vertices in E(I) have been successfully
formed in E(Hproposal). The minor embedding is considered established when all the vertices
are formed and all the edges of the input graph are properly embedded into the King’s graph.

3.2 Mapping the Weight Coefficients

A proper mapping of weight coefficient is important to ensure that the output graph maintains
a shifted version of the Ising Hamiltonian of the input graph. A mapping method outlined
in [6] employs a simple upper bound for coupler strength, which can be divided into two key
processes: mapping edge weight and determining coupling strength within subset.

13



3.2.1 Edge Weight Mapping

For each edge (i, j) in E(I) with a weight of Jij , the objective is to identify spins within ϕ(i)
and ϕ(j) that are connected. Once such spins are found, the weight value Jij is assigned to
the edge connecting them. In cases where multiple edges connect ϕ(i) and ϕ(j), Jij is assigned
to one edge, while the remaining connecting edges receive a weight coefficient of 0. Note that
there is always at least one valid edge, based on the definition of minor embedding.

3.2.2 Coupling Strength within Subset

The second component involves adding positive coupling strength between spins belonging
to the same ϕ(i) subset. This additional strength ensures consistent spin values within each
subset. To achieve this consistency, this coupling coefficient, denoted as Fii must be set to a
value that is not less than the upper bound of the sum of the absolute values of the coupling
weight acting on the spin si in the input graph. This can be expressed as:

Fii = F (i) =

{∑N
j=1 |Jij | , if ∃ j ∈ {1, . . . , N} such that Jij ̸= 0,

1 , if Jij = 0 for all j ∈ {1, . . . , N}.
(3.1)

Note that for any spin si within the input graph that has no external coupling, i.e., where
Jij = 0 for all j, a default positive value, such as 1, is assigned as its coupling coefficient within
the subset ϕ(i). This assignment ensures that the spins in the subset exhibit consistent values.
On the contrary, setting Fii = 0 for such cases would result in inconsistency among the spin
values within ϕ(i).

3.2.3 Shifted Ising Hamiltonian

The mapping process results in a shifted version of the Ising Hamiltonian of the input graph.
Given the Ising Hamiltonian of the input graph:

H(s⃗) = −1

2

N∑
i=1

N∑
j=1

Jijsisj . (3.2)

Assuming that the King’s graph is mapped using the strategy described in Section 3.1, and
that the spins in each ϕ(i) have the same spin value si due to proper assignment on edges as
introduced in Section 3.2, the Ising Hamiltonian of the King’s graph can be derived as:

H(s⃗) = −1

2

N∑
i=1

N∑
j=1

Jijsisj −
N∑
i=1

Fii(numi − 1), (3.3)

where numi is the number of vertices in the subset ϕ(i) and Fii is the positive coupling
strength between spins belonging to this subset ϕ(i). Consequently, the Ising Hamiltonian of
the King’s graph has a constant shift value compared to the one of the input graph.

3.3 Implementation and Simulation

Implementation of both the best-known complete graph embedding and the PSSA embedding,
along with weight coefficient mapping, was carried out using Python. The Python script is
designed to map an input graph provided in Rudy format onto a King’s graph, with the width
L specified as an input parameter. The resulting graph is also stored in Rudy format. The
code is available in the King’s Graph Mapping repository.
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Figure 9: Graph J10 06.

(a) Graph J10 06 in KG9,9 using the best-known complete graph
mapping.

(b) Graph J10 06 in KG4,4 using PSSA
mapping.

Figure 10: King’s graphs mapped from graph J10 06. Spins circled in the same color
belong to the same subset ϕ, as indicated in the legend. Edges sharing the same color
as the circles represent coupling edges within the same subset, with the corresponding
coupling coefficient value Fii labeled in the same color. Black-colored edges denote

connections mapped from the input graph, with the value Jij labeled.
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3.3.1 A Mapping Example

To illustrate the mapping result, we took graph J10 06 as the input graph and performed both
best-known complete graph mapping and PSSA graph mapping respectively. Graph J10 06,
as shown in Fig. 9, consists 10 spins with a 20% edge density and uniform distribution weights
in {−1, 1}. The width using best-known complete graph mapping was N − 1 = 9, while the
minimum width achieved using PSSA mapping was 4. The resulting graph are shown in
Fig. 10.

3.3.2 Simulations using SA and OIM

Simulations were conducted on three selected J10-set problems (J10 01, J10 06, and J10 11)
and their corresponding mapped King’s graphs with different widths, using simulated anneal-
ing (SA) algorithm and stochastic differential equation (SDE) model of OIM on C.

For SA, simulation parameters were set as follows: the number of iteration was 100000,
and the temperature ranged from an initial value of 1 to a final value of 0.005 using a linear
schedule. For OIM, simulation parameters were set as follows: the time step was 0.01, the
stop time was 1000, Kc was fixed at 2.8, and Ks was defined as a pulse with a period of 10,
bounded between 0.0 and 1.0. Each simulation method was executed 100 times with different
random initial conditions for each graph.

The shift value of the minimum Ising Hamiltonian was determined during the mapping pro-
cess using (3.3). The simulation results presented in table Table 3 indicates how many times
the graph achieved its minimum Ising Hamiltonian. Additionally, a Python post-processing
script was designed to verify whether the spins within the same subset ϕ had matching spin
values, i.e., sk = sl for all sk, sl ∈ ϕ(i), i = 1, ..., N . It was confirmed that spin consistency
was maintained among all simulations performed. Observing the simulation results in the ta-
ble, it shows that the mapped graph achieved the minimum Ising Hamiltonian less frequently
compared to the original graph as the number of spins in the mapping graph increased.

Table 3: Simulation results of original graph and mapped King’s graph. The count is the
number of times the simulation achieved its minimum Ising Hamiltonian among 100 runs.

(a) J10 01

J10 01 original KG4,4 KG5,5 KG6,6 KG7,7

Hmin -9 -27 -43 -68 -102

SA
count(Hmin)

100 92 98 69 77

OIM
count(Hmin)

100 100 100 64 55

(b) J10 06

J10 06 original KG4,4 KG5,5 KG6,6 KG7,7

Hmin -9 -22 -39 -56 -101

SA
count(Hmin)

100 100 85 86 55

OIM
count(Hmin)

100 100 100 54 40

(c) J10 11

J10 11 original KG4,4 KG5,5 KG6,6 KG7,7

Hmin -532 -1274 -2054 -4226 -4463

SA
count(Hmin)

75 28 26 12 13

OIM
count(Hmin)

87 100 12 0 0
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4 OIM Chip Design

4.1 Introduction to OIM

Oscillator Ising Machines are networks formed with coupled self-sustaining nonlinear oscilla-
tors. With subharmonic injection locking introduced, the system naturally approaches the
Ising Hamiltonian.

Throughout the past year, our team successfully taped out two distinct OIM chips, each
featuring different architectures and applications. The first one is a 50-spin dense OIM
(DOIM) chip, which has a fully connected coupling network, where each oscillator estab-
lishes coupling connections with 49 other oscillators on the chip. Next, the second chip is a
261-spin Field-Programmable Ising Machine (FPIM), which adopts a programmable sparse
coupling network configuration, where the maximum number of coupling connections each
oscillator can establish with other oscillators is 64. The 50-spin DOIM chip is designed to
tackle MIMO-MLE problems 2, while the 261-spin FPIM chip is designed to address SAT20
problems 3.

4.2 50-spin DOIM Chip

The design of the 50-spin DOIM chip comprises two main blocks: the OIM block and the top-
level controller. The OIM block contains oscillators, capacitor banks, miscellaneous analog
blocks, and oscillator helper circuits, which collectively facilitate the functionality of the
network. Conversely, the top-level controller is responsible for interfacing with desktop/laptop
systems via a UART interface. Its primary functions include configuring the OIM coupling
network to address various problems and retrieving the state of the OIM, including frequency,
phase, and configuration register data.

The design stages of the DOIM chip encompass analog design, digital design, and mixed-
signal integration. During the tapeout process, my primary responsibilities were centered on
digital design tasks, with a specific focus on synthesis and place-and-route (PNR) activities.
My contributions primarily involved modification and optimization of the PNR script. This
entailed a comprehensive range of tasks aimed at enhancing the chip’s layout and resolving
specific design challenges.

• Technology Files Setup: Essential technology files in TSMC 28nm for synthesis and
PNR scripts include

– mmmc.tcl: Defines setup time and hold time analysis view for precise timing anal-
ysis. Required accompanying files:

∗ Liberty (.lib) files: Contains logical descriptions and timing details for standard
cells across different process, voltage, temperature (PVT) conditions.

∗ QRC techfiles: Provides necessary information for creating resistance-
capacitance (RC) corners, including interconnect models of metal layers, PVT
variations, and calibration data.

2MIMO, specifically MU-MIMO (Multi-User Multiple-Input-Multiple-Output) decoding, is a crucial prob-
lem in wireless communication. In MU-MIMO scenarios, multiple users with multiple transmit antennas share
the same resources to transmit signals to a receiver equipped with multiple receive antennas. Consequently,
each received signal comprises a noisy combination of symbols transmitted by multiple users. The aim of
MIMO-MLE (Maximum Likelihood Estimation) is to recover the most likely set of transmitted symbols from
the received signals. [7]

3SAT (Boolean Satisfiability problem) is defined as follows: given a boolean formula F(x1, ..., xn), if F can
be evaluated to 1 (true), it is considered satisfiable. The SAT problem involves finding the values of variables
(xi’s) that satisfy F. In the case of SAT20, ”20” indicates the number of variables in the formula F.
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– synthesis/pnr.tcl: Establishes synthesis/PNR options and executed synthesis/PNR
commands. Required accompanying files:

∗ Technology Library Exchange Format (.tlef) file: Contains physical properties
of all layers/vias and design rules related to their geometry.

∗ Library Exchange Format (.lef) file: Contains physical properties of standard
cells within the library.

Figure 11: Illustration of the floorplan. Red block is the analog macro, including oscillator,
capacitor bank, and miscellaneous blocks. Blue block is the digital controller, including UART
module, controller module, and configuration registers.

• Floorplan: The analog macro, comprising oscillators, capacitor banks, and miscella-
neous analog blocks, was arranged in a 1-D vertical array, while the digital top-level
controller positioned to the left of the array, as shown in Fig. 11.

– Routing Blockage: To prevent unwanted routing, routing blockages were strate-
gically placed to the right of each analog macro, allowing only power routing in
that area. Example command: createRouteBlk -layer 1 3 4 5 6 7 8 9 -box

1903.35 31.67 1909.88 61.1.

– Power Pin Placement : Power pins were added using the command createPGPin.
This step is essential for future Layout versus Schematic (LVS) comparisons. Since
the standard cells in the schematic exported from the PNR results include power
pins, integrating a global power pin is important to connect them all to the top
level. Example command: createPGPin VDD -net VDD -geom M2 3.2 10.0 3.6

10.2.

– Controller Placement : Originally, without any specified constraint, the controller
was positioned in the narrow space between the analog macros, causing crowded cell
placement and routing difficulties due to limited space. Collaborating with Shree-
sha, we addressed this issue by using the command createGuide. This command
allowed us to specify the preferred placement of the controller module to the left
side of the entire chip, away from the analog macros. This strategy eliminated
crowded placement and routing challenges. Example command: createGuide

myCtrlGroup 5 5 392.63 293.0.

• Power Planning: The power planning process was divided into two stages. The first
stage fell within the scope of PNR on Innovus, including the setup and placement of core
ring (M1 and M2), block ring (M1 and M2), power stripe (M3 to M7), and standard cell
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power rail (M1). Notably, the placement of power stripes was optimized to mitigate DRC
violations. For example, M3 stripe often caused difficulty in routing M2 or M3 wires
near standard cell pins, resulting in DRC violation. To address this issue, M3 stripes
were specifically placed on top of well taps, where no routing was present, solving the
recurring DRC violation problem. Following the power planning phase on Innovus, the
second stage involved global power routing using the topmost metal layers (M8 and M9)
on Virtuoso, which was undertaken by other team members.

• Timing Constraint: Insufficiently defined timing constraints in the early stages re-
sulted in difficulties with PNR, especially encountering stalls in the Innovus scripts
during placement or routing steps. The limited space beneath the analog macros in the
1-D array magnified these challenges. Therefore, Shreesha and I dedicated significant
effort to meticulously establish clock and pin constraints to alleviate these issues.

– Input Capacitance and Output Load : Input capacitance and output load of the
chip are set by the commands: set max capacitance cap value input pin and
set load cap value output pin.

– Delay Through a Module: To specify a desired delay through a module, i.e., the
delay passing from input signals to output signals of a module, we need to use
the command: set max delay delay value -through my module. We used this
command to specified the delay through the oscillator helper, which configures the
coupling on oscillator network.

– Timing Information of a Blackbox : There are two ways we tried to specify the
input capacitance and output load of a blackbox, which is the analog macro in our
case. The first method was using the command set load -max/min cap value

net to overwrite the maximum or minimum capacitance on a net. More formally,
the second method was writing a LIB file for analog macro. In the LIB file, we can
provide information on every I/O pin regarding its I/O direction, normal/rise/fall
capacitance of input pin, max/min capacitance of output pin. The format would
be as follows:
pin(input pin name) {
direction:input; capacitance:cap value;

rise capacitance:cap value; fall capacitance:cap value;

}
pin(output pin name) {

direction:output;

max capacitance:cap value; min capacitance:cap value;

}.
– Verification of Constraints on Innovus: After PNR completed, some commands

were utilized to verify the capacitance and delays of the final layout were
matched with the constraints we set. Example command for reporting delay:
report timing -from net -to net -point to point. Example command
for reporting capacitance on analog macro’s pin: report property [get nets

[get property [get pins module/pin name] net name]].

4.3 261-spin FPIM Chip

The architecture of the 261-spin FPIM chip is comprised of three primary elements: the OIM
block, the FPIM architecture, and the top-level controller.

Same as the previous chip, the OIM block contains oscillators, capacitor banks, miscella-
neous analog blocks, and oscillator helper circuits.
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The FPIM architecture, proposed in [3], introduces tiles as units to form the field-
programmable fabric matrix. Each tile contains a switch block, x-direction and y-direction
connection blocks, and an Ising logic block, which corresponds to the OIM block in the
previous content. In this chip, the tiles were arranged in a 9-row by 29-column array, while
the top-level controller positioned to the left of this 2-D array.

The top-level controller’s functionality includes setting/getting the value of configuration
registers and reading frequency or phase of oscillators. These configuration registers, located
within each tile, set the state of tri-state buffers in switch block and connection blocks, as well
as the parameters of the oscillator helper. Due to the substantial number of configuration
registers (up to 40,000 per tile row), directly connecting each register in the tiles to the digital
controller would result in an excessive number of routings, which is not desirable. To address
this issue, the controller utilized a streaming method for programming/reading configuration
registers, allowing only a single routing path needed from the controller to each tile row for
configuration register-related operations.

My primary responsibility during the design process of this chip centered around the design
and verification of the digital top-level controller. The tasks I completed include:

• System Integration: Discussed with Shreesha, Pavan, and Thomas regarding signal
transmission between the tile array and the controller, handling operations such as
frequency reading, phase reading, and programming/reading of configuration registers.
Meanwhile, I maintained diagrams that illustrated implementation strategies for these
features within the tile array, as shown in Fig. 12.

• Clock Gating: The clock gating implementation flow, from RTL to synthesis and
PNR, was established. An example of RTL coding style recognizable as clock gating by
Genus, the synthesis tool, is as follows:

always @ ( posedge c l k ) begin
i f ( r s t ) Q <= 1 ’ b0 ;
e l s e begin

i f ( enable ) Q <= D;
e l s e Q <= Q;

end
end

To enable clock gating, the following commands need to be added in the synthesis script:
set db lp insert clock gating true

set lp clock gating cell [ list Gated Clock Latch Standard Cell Names ]

For PNR, no additional command is needed to establish clock gating, and clock gating
implementation can be observed in the post-PNR results using the clock tree debugger.

• Controller RTL Design: The top-level controller was designed in Verilog. Equipped
with UART interfaces, the controller receives commands from external sources and ex-
ecutes corresponding functions, such as streaming in/out the configuration bit values
into specific tile rows. The RTL code is parameterized, allowing it to adapt to tile
arrays with varying numbers of rows or columns, with all parameters read from a file
named ”defines.v” to ensure clarity and maintainability. A comprehensive documen-
tation outlining the design and functionality of the top-level controller is included in
Appendix C.

• Testbench Design: Testbenches for the top-level controller module and its submodules
were designed. The testbench for the top-level controller module integrates comprehen-
sive test cases utilizing the UART protocol to simulate real-world scenarios. These test
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(a) Illustration depicting the I/O data and control
signals on the tile array interface.

(b) Diagram showcasing the logic used in each tile for programming
and reading operations on configuration registers.

(c) Diagram demonstrating the logic implemented in each tile for
frequency and phase reading.

Figure 12: Interface and logic implementations in tile array.
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cases encompass a wide range of scenarios, including exhaustive coverage of all possible
commands or extensive testing with random inputs. During testing, the output data or
the state of the design under test (DUT) were meticulously compared to the expected
golden data to verify accuracy and functionality. For instance, when programming val-
ues into the tile array, the testbench validates the programmed configuration registers
by comparing their bit-by-bit values with the golden data after receiving confirmation
of successful programming. Examples of the testbench is provided in Appendix D.

• Simulations: Simulations were conducted at various stages, including RTL, post-
synthesis, and post-PNR simulations, utilizing VCS. Accurate timing simulation after
synthesis or PNR required properly annotated Standard Delay Format (SDF) files. This
annotation process involved two steps: (1) adding a command inside the testbench to
annotate the SDF file with hierarchical path names of the modules, for example:

i n i t i a l begin
$ sd f annota t e ( s d f f i l e , h i e r a r ch i ca l pa th name o f the modu l e ) ;
end

and (2) specifying options on the VCS command line, such as +compsdf +mindelays

or +compsdf +maxdelays.

5 Conclusion

In this study, we have delved into the Bistable Latch Ising Machine (BLIM), the mapping of
Ising problems onto King’s graph, and the design process of Oscillator Ising Machine (OIM)
chips.

In Section 2, we represented the fundamental theory of BLIM (Section 2.1), and highlighted
its efficacy in solving small-scale Ising problems through both simulations (Section 2.2) and
measurements (Section 2.3). While our findings underscore BLIM’s promise, opportunities
for refinement and validation remain, particularly in distinguishing the difference between
single-sided and double-sided coupling in theory, exploring alternative simulation inputs, and
conducting measurements on larger problem sets.

In Section 3 detailed the process of mapping Ising problems onto King’s graphs. This
process, including finding a minor embedding (Section 3.1) and edge weight mapping (Sec-
tion 3.2), has been elaborated and implemented (Section 3.3). Although the simulation results
indicate a decrease in the frequency of achieving the minimum Ising Hamiltonian for these
mapped problems, there remains a possibility for improvement. By adopting different simu-
lation setups on original graph and mapped graph, we might uncover new insights into the
performance and applicability of King’s graph mapping.

In Section 4, we focused on the design process of OIM chips. Spanning across the devel-
opment of both DOIM and FPIM chips, our efforts covered RTL design, synthesis, and PNR,
along with overcoming various challenges encountered during the development phase.

In conclusion, our exploration of BLIM, King’s graph mapping, and OIM chip design high-
lights our commitment to pushing the boundaries of unconventional computational strategies.
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A Proof of Coupling Latch Network Systems

A.1 Recapitulation of Proof for Positive Coupling Latch Network

To prove that the coupled latch networks in Section 2 function as Ising machines, we need to
derive the Lyapunov function of the network and demonstrate that it is identical to the Ising
Hamiltonian under appropriate conditions [1].

In [1], the derivation of positive coupling latch networks has been established. For a BLIM
with N coupling latches, a system of N differential equations results

dvi(t)

dt
= f(vi; k)−

N∑
j=1

Jij g(vi, vj ; k), i = 1, . . . , N, (A.1)

where

f(vi; k) =
G

C
(tanh(k tanh(kvi))− vi), (A.2a)

g(vi, vj ; k) =
vi − vj

C
, (A.2b)

G =
1

Ro
, (A.2c)

and Jij =
1

Rij
. (A.2d)

Its Lyapunov function is defined as

LN (v⃗; k) = −

 N∑
i=1

z(vi; k)−
N∑

i,j=1

Jijh(vi, vj ; k)

 . (A.3)
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where

z(v; k) =

∫ v

0
f(x; k) dx , (A.4a)

and h(vi, vj ; k) =
1

2C
[
(vi − vj)

2

2
− 1]. (A.4b)

With the following assumptions confirmed, it is proven that the Lyapunov function equals a
scaled/shifted Ising Hamiltonian at bistable values. This implies that there exists a total order
correspondence between the Hamiltonian and Lyapunov functions, and that the Hamiltonian
and Lyapunov global minima correspond under bistability.

1. f(·) is the derivative of z(·): f(vm; k) = dz(vm;k)
dvm

,m = 1, . . . , N.

2. h(·) and g(·) are related as: g(vm, vj , sgn(Jij); k) =
∂h(vm,vj ,sgn(Jij);k)

∂vm
+

∂h(vj ,vm,sgn(Jij);k)
∂vm

.

3. f(v; k) is bistable if k = K, for some sufficiently large gain K > 0, i.e., for some

v+, v−, with v+ > v−, f(v+;K) = f(v−;K) = 0. Moreover, df(v;K)
dv |v=v+ < 0 and

df(v;K)
dv |v=v− < 0.

4. z(v+;K) = z(v−;K) = c3, for some value c3.

5. h(v+, v+, sgn(Jij);K) = h(v−, v−, sgn(Jij);K) = c1, h(v+, v−, sgn(Jij);K) =
h(v−, v+, sgn(Jij);K) = c2, for some values c1 and c2 > c1.

A.2 Derivation for Negative Coupling Latch Network

Now, in consideration of a more general coupling network that includes negative couplings,
we proceed to re-derive the system’s differential equation and the Lyapunov function. Sub-
sequently, we aim to validate the assumptions made earlier to demonstrate that the system,
comprising both positive and negative coupling latches, functions as an Ising machine.

A.2.1 KCL Differential Equations

Using the latch model and the positive/negative coupling configurations as defined in Fig. 1
and Fig. 2 respectively, we consider a network comprised of N coupling latches. Given a
coupling between the ith and jth latches, the KCL equation at node vi+ can be expressed as

C
dvi+(t)

dt
=

{
tanh(−kvi−)−vi+

Ro
− vi+−vj+

Rij
, if Jij > 0,

tanh(−kvi−)−vi+
Ro

− vi+−vj−
Rij

, if Jij < 0.
(A.5)

Applying the inverter model (2.2) to replace vi− and vj−, and denoting vi+ as vi, the equation
becomes

dvi(t)

dt
=


1
C

[
tanh(k tanh(kvi))−vi

Ro
− vi−vj

Rij

]
, if Jij > 0,

1
C

[
tanh(k tanh(kvi))−vi

Ro
− vi−tanh(−kvj)

Rij

]
, if Jij < 0.

(A.6)

To support both types of couplings, equations (A.2a) and (A.2c)can be reused, while equations
(A.2b) and (A.2d) are adjusted as follows.

g(vi, vj , sgn(Jij); k) =

{
1

KcC
(vi − vj) , if Jij > 0,

−1
KcC

(vi − tanh(−kvj)) , if Jij < 0,
(A.7a)

|Jij| = sgn(Jij)Jij =
Kc

Rij
. (A.7b)
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A more general form for N latches with a coupling network that is built according to a set
of Jij can thus be derived as

dvi(t)

dt
= f(vi; k)−

N∑
j=1

Jij g(vi, vj , sgn(Jij); k), i = 1, . . . , N. (A.8)

A.2.2 Lyapunov Function

As demonstrated in [1],

LN (v⃗; k) = −

 N∑
i=1

z(vi; k)−
N∑

i,j=1

Jijh(vi, vj ; k)

 (A.9)

is a Lyapunov function if the following equations hold and in case of symmetric coupling.

f(vm; k) =
dz(vm; k)

dvm
,m = 1, . . . , N, (A.10a)

g(vm, vj , sgn(Jij); k) =
∂h(vm, vj , sgn(Jij); k)

∂vm
+

∂h(vj , vm, sgn(Jij); k)

∂vm
. (A.10b)

Therefore, assuming that z(·; ·) and h(·; ·) satisfy the conditions, we have (A.9) as a Lya-
punov function for (A.8).

A.2.3 Lyapunov-Ising Hamiltonian Relation

In this section, we explore the relationship between the Lyapunov function and the Ising
Hamiltonian, ultimately leading to the conclusion that the Lyapunov function equals a
scaled/shifted Ising Hamiltonian.

Referring to [1], the (discrete) Ising Hamiltonian of a system with N spins {si} and a set
of symmetric coupling weights Jij , is defined as

H(s⃗) = −1

2

N∑
i,j=1

Jijsisj , (A.11)

where si = +1 or− 1. Moreover, it is noted that a scaled/shifted version of the Ising Hamil-
tonian maintains total order.

It has been demonstrated that the Lyapunov function equals a scaled/shifted Ising Hamil-
tonian under following assumptions [1]:

• Assumption 1. For each latch, v+ and v−, with v+ > v−, are the only stable equilibria:

We assume f(v; k) is bistable if k = K, for some sufficiently large gain K > 0, i.e., for

some v+, v−, f(v+;K) = f(v−;K) = 0, df(v;K)
dv |v=v+ < 0 and df(v;K)

dv |v=v− < 0.

• Assumption 2. At the bistable values v+ and v−, z(·; ·) and h(·; ·) have properties:

z(v+;K) = z(v−;K) = c3, (A.12a)

h(v+, v+, sgn(Jij);K) = h(v−, v−, sgn(Jij);K) = c1, (A.12b)

h(v+, v−, sgn(Jij);K) = h(v−, v+, sgn(Jij);K) = c2, (A.12c)

for some values c1, c2 > c1, and c3.
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Therefore, the Lyapunov function in (A.9) can be viewed as a scaled/shifted Ising Hamil-
tonian, if both assumptions 1 and 2 can be validated under negative coupling network. We
will now proceed to verify these assumptions.

Following [1], we choose K = 5 as the high value of gain , and define a spin as:

si =

{
1 if vi = v+,

−1 if vi = v−.
(A.13)

• Proof for Assumption 1: The function f(·) remains unchanged regardless the pres-
ence of negative coupling. Thus, as demonstrated in [1], solving f(v;K) = 0 yields

v+ ≃ +1, v− ≃ −1,
df

dv
(v+) < 0,

df

dv
(v−) < 0,

which satisfies assumption 1.

• Proof for (A.12a) in Assumption 2: Given that our function f(·) remains consistent
with that in [1], we can adopt the same definition for z(·; ·):

z(v; k) =

∫ v

0
f(x; k) dx . (A.14)

, which clearly satisfies the assumption stated in Appendix A.2.2 that equation (A.10a)
must hold. As shown in Fig. 13, since f(v; k) is odd in v, z(v; k) is even, satisfying
(A.12a).

(a) f(v; k). (b) z(v; k).

Figure 13: The waveform of the functions f(·) and z(·) in BLIM system.

• Proof for (A.12b) and (A.12c) in Assumption 2: To begin with, we want to
simplify function g(·; ·) by replacing its nonlinear element tanh(·). With a large k =
K = 5, the spin voltages vi become bistable, i.e., vi ∈ {v+, v−}, v+ ≃ +1, and v− ≃ −1.
We approximate tanh(·) at these bistable voltages using

tanh(−Kv+) = v− = −v+, tanh(−Kv−) = v+ = −v−, (A.15)

as shown in Fig. 14.
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Figure 14: The function tanh(·) with a large enough k = K = 5, v+ = +1 and v− = −1.

Therefore, (A.7a) can be rewritten as

g(vi, vj , sgn(Jij);K) =
−1

KcC
(vi − tanh(−Kvj)) =

−1

KcC
(vi + vj), if Jij < 0. (A.16)

The graphs of the function g(vi, vj , sgn(Jij) = −1; k) are shown in Fig. 15a, using both
the original tanh(·) model and the approximated models with varying values of k .
Fig. 15b shows the overlap between the tanh(·) model and the approximated model
with a large gain k = 5 from a side view. Note that the waveform overlaps when the
spin voltages are bistable. In contrast, Fig. 15c shows the overlap between the models
with a small gain k = 1, showcasing a rough match when the spin voltages are small
but lacking overlap when the voltages are bistable.

Now We define

h(vi, vj , sgn(Jij);K) =
−1

2KcC

[
(vi + vj)

2

2
− 1

]
, if Jij < 0, (A.17)

which satisfies the assumption stated in Appendix A.2.2 that equation (A.10b) hold
with

∂h(vm, vj , sgn(Jij); k)

∂vm
+

∂h(vj , vm, sgn(Jij); k)

∂vm
=

−1

2KcC
[vi + vj ] +

−1

2KcC
[vi + vj ]

=
−1

KcC
[vi + vj ]

= g(vm, vj , sgn(Jij); k), if Jij < 0.
(A.18)

Moreover, (A.12b) and (A.12c) are also satisfied with

c1 = h(v+, v+, Jij < 0;K) = h(v−, v−, Jij < 0;K)

= − 1

2KcC
(2v2+ − 1) ≃ − 1

2KcC
,

c2 = h(v+, v−, Jij < 0;K) = h(v−, v+, Jij < 0;K)

=
1

2KcC
> c1.

(A.19)

With all the assumptions satisfied, the Lyapunov function of a BLIM with both positive
and negative couplings can be viewed as a scaled/shifted Ising Hamiltonian.
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(a) g(v1, v2; k) using the approximated model, tanh(·) model with k=1, and tanh(·) model with k=5,
arranged from left to right.

(b) A side-view comparison between the
approximated model and the tanh(·) model

with k = 5.

(c) A side-view comparison between the
approximated model and the tanh(·) model

with k = 1.

Figure 15: Graph of g(·; ·) when Jij < 0.

B Ising Problems used in this report

The 2/3/4/5-spin problems used in Section 2 are defined in Table 4, while J-10/20 problems
are generated using rudy generator (http://web.stanford.edu/ yyye/yyye/Gset/). The density
of all J-set problem is set as 20% and the randseed is 10000+ suffix, while the suffix of the
problem name is corresponding to the following parameter setup:

• J* 01 to J* 05: weight (Jij) = 1.

• J* 06 to J* 10: weight (Jij) = {−1, 1}.

• J* 11 to J* 15: weight (Jij) = {−100,−99, ..., 0, ..., 99, 100}.
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Table 4: List of Ising problem used in this document.

problem name {i, j, Jij} bruteforce
min(Hamiltonian)

spin value for min(H)
s⃗i = {s1, s2, ..., sn}

size2 1 {1, 2, +1} -1 {+1, +1}
size2 2 {1, 2, -1} -1 {-1, +1}

size3 1

{1, 2, +1},
{1, 3, +1},
{2, 3, +1}

-3 {+1, +1, +1}

size3 2

{1, 2, -1},
{1, 3, +1},
{2, 3, -1}

-3 {+1, -1, +1}

size3 3

{1, 2, +1},
{1, 3, -1},
{2, 3, +1}

-1
{+1, +1, +1}
or {-1, +1, +1}
or {-1, -1, +1}

size4 1

{1, 2, +1},
{1, 3, +1},
{2, 3, +1},
{2, 4, -1},
{3, 4, -1}

-5 {-1, -1, -1, +1}

size4 2

{1, 2, +1},
{1, 3, -1},
{1, 4, +1},
{2, 4, +1},
{3, 4, -1}

-5 {+1, +1, -1, +1}

size5 1

{1, 2, +1},
{1, 3, -1},
{1, 5, -1},
{2, 3, +1},
{2, 4, -1},
{2, 5, +1},
{3, 4, -1},
{4, 5, -1}

-6 {-1, +1, +1, -1, +1}

C Documentation of FPIM Controller

C.1 Commands List

1. Init UART CLK CYCLES PER BIT: Initializes UART clock cycles per bit rate.
This command is sent only once at the beginning.

2. Read Frequency: Reads the frequency of an oscillator.

3. Read Phase: Reads the phase of all oscillators.

4. Program Config Bit: Programs configuration bit into a row.

5. Read Config Bit: Reads configuration bit from a row.

6. Enable Config Bit: Enables configuration bit of all tiles.

7. Disable Config Bit: Disables configuration bit of all tiles.
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8. Reset All: Resets configuration bits of all tiles.

C.2 How to Use the Controller

To interact with the controller via UART, follow these steps:

1. Connect to the Controller: Establish a UART connection with the controller.

2. Initialize the Controller: Before sending any commands, the user needs to update the
UART clock cycles per bit rate. The controller initially uses a value of 5000000/19200 =
260. Even if the desired value matches the default value, the user still needs to send the
value to the controller.

3. Select Command: Choose the desired command from the list provided above.

4. Format the Command: Construct the command according to the specified format
detailed below.

5. Send Command: Transmit the formatted command to the controller.

6. Receive Response: Await the response from the controller.

7. Process Response: Interpret the response received from the controller based on the
expected format and content.

8. Repeat Steps 3 to 7: Continue interacting with the controller by repeating steps 3
to 7 as needed for additional commands or operations.

C.3 Command Format and Expected Response

This section provides a parametric representation of the command format and expected re-
sponse using parameter names in defines.v attached in the end.

1. Init UART CLK CYCLES PER BIT:

• Send Command:

– Command Length: BYTE UART CLK CYCLES PER BIT * 8 bits =
W UART CLK CYCLES PER BIT fill up to byte.

– Command Format:

∗ command[W UART CLK CYCLES PER BIT-1:0] = UART clock cycles
per bit

• Receive Response:

– Response Length: same as its command length

– Response Format:

∗ response[W UART CLK CYCLES PER BIT-1:0] = UART clock cycles
per bit. This value should be the same as what was previously sent.

2. Read Frequency:

• Send Command:

– Command Length: 24 bits

– Command Format:

∗ command[FLD CMD TYPE] = CMD READ FREQ
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∗ command[FLD FRQ CAL] = Frequency calculation granularity

∗ command[FLD OSC COL ID] = Oscillator/tile column index

∗ command[FLD OSC ROW ID] = Oscillator/tile row index

• Receive Response:

– Response Length: BYTE FREQ COUNTER * 8 bits =W FREQ COUNTER
fill up to byte

– Response Format:

∗ response[W FREQ COUNTER-1:0] = Frequency calibration counts. This
count represents the number of cycles of the selected oscillator signal during
when the input clock of the chip had 2F̂requency calculation granularity
cycles.

3. Read Phase:

• Send Command:

– Command Length: 8 bits

– Command Format:

∗ command[FLD CMD TYPE] = CMD READ PHASE

• Receive Response:

– Response Length: BYTE OSC ONE HOT * 8 bits = NUM OSC fill up to
byte

– Response Format:

∗ response[NUM OSC-1:0] = Phase detection output of each oscillator. The
ith bit stands for the phase of the ith oscillator.

4. Program Config Bit:

• Send Command:

– Command Length: 8 bits

– Command Format:

∗ command[FLD CMD TYPE] = CMD PRGM CONFIG

∗ command[FLD CONFIG ROW IDX] = Oscillator/tile row index

• Send Config Bit Values:

– For normal rows:

∗ Data Length: NUM CONFIG BITS PER ROW fill up to byte

∗ Data Format:

· data[NUM CONFIG BITS PER ROW-1:0] = {config bit tile col 0, ...,
config bit tile col last, config bit east tile}

· config bit tile col i = {sbox 0, ... sbox last, cbox x in 0, ...,
cbox x in last,cbox y in 0, ..., cbox y in last, cbox x out 0, ...,
cbox x out last, analog 0, ..., analog last} corresponding to the
tile in the ith column starting from the left

· config bit east tile = {sbox 0, ... sbox last, cbox y 0, ... c box y last}
– For the north normal:

∗ Data Length: NUM CONFIG BITS PER NORTH ROW fill up to byte

∗ Data Format:
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· data[NUM CONFIG BITS PER NORTH ROW-1:0] = {config bit north tile col 0,
..., config bit north tile col last, config bit northeast tile}

· config bit northtile col i = {sbox 0, ... sbox last, cbox x in 0, ...,
cbox x in last} corresponding to the tile in the ith column starting from
the left

· config bit northeast tile = {sbox 0, ... sbox last}
• Receive Response:

– Response Length: 8 bits

– Response Format:

∗ response[7:0] = 0. The response is used to indicate the operation is com-
pleted.

5. Read Config Bit:

• Send Command:

– Command Length: 8 bits

– Command Format:

∗ command[FLD CMD TYPE] = CMD READ CONFIG

∗ command[FLD CONFIG ROW IDX] = Oscillator/tile row index

• Receive Response:

– The response here is the config bits read out of the row.

– For normal rows:

∗ Response Length: NUM CONFIG BITS PER ROW fill up to byte

∗ Response Format:

· response[NUM CONFIG BITS PER ROW-1:0] = {config bit tile col 0,
..., config bit tile col last, config bit east tile}

· config bit tile col i = {sbox 0, ... sbox last, cbox x in 0, ...,
cbox x in last,cbox y in 0, ..., cbox y in last, cbox x out 0, ...,
cbox x out last, analog 0, ..., analog last} corresponding to the
tile in the ith column starting from the left

· config bit east tile = {sbox 0, ... sbox last, cbox y 0, ... c box y last}
– For the north row:

∗ Response Length: NUM CONFIG BITS PER NORTH ROW fill up to
byte

∗ Response Format:

· response[NUM CONFIG BITS PER NORTH ROW-1:0] = {config bit north tile col 0,
..., config bit north tile col last, config bit northeast tile}

· config bit northtile col i = {sbox 0, ... sbox last, cbox x in 0, ...,
cbox x in last} corresponding to the tile in the ith column starting from
the left

· config bit northeast tile = {sbox 0, ... sbox last}
– Note: After reading config, the config enable would be turned off. Another

enable command needs to be sent to re-enable the config enable.

6. Enable Config Bit:

• Send Command:
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– Command Length: 8 bits

– Command Format:

∗ command[FLD CMD TYPE] = CMD ENABLE CONFIG

∗ command[FLD ENABLE DISABLE CONFIG] = 1

• Receive Response:

– Response Length: 8 bits

– Response Format:

∗ response[7:0] = 0. The response is used to indicate the operation is com-
pleted.

7. Disable Config Bit:

• Send Command:

– Command Length: 8 bits

– Command Format:

∗ command[FLD CMD TYPE] = CMD ENABLE CONFIG

∗ command[FLD ENABLE DISABLE CONFIG] = 0

• Receive Response:

– Response Length: 8 bits

– Response Format:

∗ response[7:0] = 0. The response is used to indicate the operation is com-
pleted.

8. Reset All:

• Send Command:

– Command Length: 8 bits

– Command Format:

∗ command[FLD CMD TYPE] = CMD RESET

• Receive Response:

– Response Length: 8 bits

– Response Format:

∗ response[7:0] = 0. The response is used to indicate the operation is com-
pleted.

Listing 1: defines.v

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// GLOBAL DEFINITIONS
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// ======== UART CLK CYCLES PER BIT DEFAULT ========
‘ de f i n e UART CLK CYCLES PER BIT DEFAULT 260 // = 5000000/19200
‘ d e f i n e W UART CLK CYCLES PER BIT 9
‘ d e f i n e BYTE UART CLK CYCLES PER BIT 2
‘ d e f i n e W BYTE UART CLK CYCLES PER BIT 2
‘ d e f i n e NUM BITS TO FIT BYTE FOR UART CLK CYCLES PER BIT 16
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// O s c i l l a t o r Ar ch i t e c tu r a l Constants
‘ d e f i n e NUMROWS 30
‘ d e f i n e NUMCOLS 10
‘ d e f i n e NUMOSC PERROW 9
‘ d e f i n e NUM OSC PER COL 29
‘ d e f i n e NUMOSC 261

‘ d e f i n e BYTE OSC ONE HOT 33
‘ d e f i n e W BYTE OSC ONE HOT 6

‘ d e f i n e WNUMCOLS 4

// Frequency Ca l i b ra t i on Constants
‘ d e f i n e WFREQCOUNTER 20
‘ d e f i n e W FREQ DIV 14
‘ d e f i n e WMUX SEL 9
‘ d e f i n e WCOUNTNUMCOL 4

‘ d e f i n e BYTE FREQCOUNTER 3
‘ d e f i n e WBYTE FREQCOUNTER 2

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// LOCAL OSCILLATOR COMMANDS
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// Config b i t s
‘ d e f i n e NUM CONFIG BITS PER TILE 4422
‘ d e f i n e NUM CONFIG BITS PER EAST TILE 1200
‘ d e f i n e NUM CONFIG BITS PER NORTH TILE 1200
‘ d e f i n e NUM CONFIG BITS PER EAST NORTH TILE 480
‘ d e f i n e NUM CONFIG BITS PER ROW 40998
‘ d e f i n e NUM CONFIG BITS PER NORTH ROW 11280

‘ d e f i n e W CONFIG BYTE COUNTER 13

‘ d e f i n e BYTE NUM CONFIG BITS PER ROW ONE HOT 5125
‘ d e f i n e BYTE NUM CONFIG BITS PER NORTH ROW ONE HOT 1410

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// GLOBAL COMMANDS
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// I n s t r u c t i o n F i e ld Widths
‘ d e f i n e WCMD 24
‘ d e f i n e BYTECMD 3
‘ d e f i n e WCMDTYPE 3
‘ d e f i n e W OSC COL ID 4
‘ d e f i n e W OSC ROW ID 5
‘ d e f i n e W FREQ CAL 5
‘ d e f i n e W CONFIG ROW IDX 5
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‘ d e f i n e W ENABLE DISABLE CONFIG 1

// In s t r u c t i o n F i e l d s
‘ d e f i n e FLD CMD TYPE 2:0
‘ d e f i n e FLD CONFIG ROW IDX 7:3
‘ d e f i n e FLD FRQ CAL 7 :3
‘ d e f i n e FLD OSC COL ID 11 :8
‘ d e f i n e FLD OSC ROW ID 20:16
‘ d e f i n e FLD ENABLE DISABLE CONFIG 3 // 1 : enable , 0 : d i s a b l e

// Command Types
‘ d e f i n e CMDNOP ‘WCMDTYPE’ b000
‘ d e f i n e CMDREADFREQ ‘WCMDTYPE’ b001
‘ d e f i n e CMDREAD PHASE ‘WCMDTYPE’ b010
‘ d e f i n e CMDPRGMCONFIG ‘WCMDTYPE’ b101
‘ d e f i n e CMD ENABLE CONFIG ‘WCMDTYPE’ b100
‘ d e f i n e CMDREAD CONFIG ‘WCMDTYPE’ b110
‘ d e f i n e CMDRESET ‘WCMDTYPE’ b111

// UART Command/Response Bytes Counts
‘ d e f i n e MAX NUM BITS TO FIT BYTE FOR UART DATA 264
‘ d e f i n e WUARTDATABTYECOUNTER 13
‘ d e f i n e WRESPONSE 65536

D Testbench Example of BLIM Controller

This section provides examples of the testbench for the BLIM top-level controller. Due to the
length of the original Verilog code, a simplified representation illustrating the test flow and
structure is presented below.

Listing 2: Testbench Example

// ==== I n i t i a l i z a t i o n ====
in i t t e s tbench env i r onment ( ) ;
// I n i t i a l i z e t e s t environment and parameters
i n i t u a r t c l o c k c y c l e p e r b i t ( ) ;
// I n i t i a l i z e UART c lock c y c l e s per b i t in the c o n t r o l l e r

// ==== Test Frequency Reading ====
fo r ( o s c i l l a t o r i n d e x in num os c i l l a t o r s )

f o r c e d i f f e r e n t f r e q u e n c y o n o s c i l l a t o r ( o s c i l l a t o r i n d e x ) ;
send read frequency command ( o s c i l l a t o r i n d e x ) ;
check re sponse ( ) ;
// Compare the returned frequency value with the f o r c ed f requency

// ==== Test Phase Reading ====
whi le ( i t e r a t i o n < max i t e r a t i on s )

f o r c e r andom pha s e s on ev e r y o s c i l l a t o r ( ) ;
send read phase command ( ) ;
check re sponse ( ) ;
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// Compare the returned phase va lue with the f o r c ed phase
i t e r a t i o n++;

// ==== Test Conf igurat ion Bit Programming/Reading ====
gene ra t e go lden data ( ) ;
// Generate random va lue s as the golden data f o r a l l c on f i gu r a t i on r e g i s t e r s
f o r ( t i l e r ow i nd e x in num t i l e rows )

send program con f ig b i t command on t i l e row ( t i l e r ow i nd e x ) ;
c h e c k c o n f i g b i t v a l u e o n t i l e r ow ( t i l e r ow i nd e x ) ;
// Compare the r e g i s t e r va lue s in the t i l e row with the golden data

f o r ( t i l e r ow i nd e x in num t i l e rows )
s end read con f i g b i t command on t i l e r ow ( t i l e r ow i nd e x ) ;
check re sponse ( ) ;
// Compare the returned con f i g b i t va lue s with the golden data

// ==== Test Enable/Disab le /Reset Conf igurat ion Bi t s ====
send enable command ( ) ;
c h e c k e n a b l e i n t i l e a r r a y ( ) ;
// Ver i fy that every enable s i g n a l in the t i l e array i s on
send disable command ( ) ;
c h e c k d i s a b l e i n t i l e a r r a y ( ) ;
// Ver i fy that every enable s i g n a l in the t i l e array i s o f f
send reset command ( ) ;
c h e c k c o n f i g b i t v a l u e o n t i l e a r r a y ( ) ;
// Ver i fy that a l l r e g i s t e r va lue s in the t i l e array are zero
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