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Abstract

Vision-Language Representations for Zero-Shot Robotic Perception

by

Satvik Sharma

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ken Goldberg, Chair

As robotics systems enter the real world, the challenge of creating robotic perception sys-
tems that are robust to the real world still remains. The real world contains a visually and
semantically diverse set of environments filled with an even more diverse set of objects. We
can account for this diversity with large vision-language models (VLMs), which recently have
shown promise in capturing semantics at the scale of the real world as they are pretrained
on internet-scale data. We want to rely on these VLMs without any additional environment-
specific data collection as it can be expensive for many robotic domains. Thus, we seek to
integrate VLMs into the robotic perception pipeline to be used out-of-the-box or zero-shot
for different tasks. We introduce two methods that utilize VLMs zero-shot for the robotic
tasks of occluded object search and grasping, namely Semantic Mechanical Search (SMS) and
Language Embedded Radiance Fields for Task-Oriented Grasping (LERF-TOGO) respec-
tively. SMS utilizes LLMs in addition to VLMs to better semantically reason about visually
occluded objects when searching. By embedding semantic understanding into the search
process, SMS improves efficiency in locating objects across both simulated and real-world
environments. On the other hand, LERF-TOGO creates a 3D vision-language field derived
from VLMs to execute precise grasps of object parts based on natural language inputs. This
method shows high accuracy and adaptability in physical trials, effectively grasping specified
parts on a variety of objects. We conclude with the limitations of both of these works and
possible future directions.



i

To my parents and incredible sister



ii

Contents

Contents ii

List of Figures iv

List of Tables vii

1 Introduction 1

2 Related Works 3
2.1 Natural Language in Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Grounding Language with 3D representations . . . . . . . . . . . . . . . . . 4
2.3 Mechanical Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Task-Oriented Grasping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Semantic Mechanical Search 6
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Language Embedded Radiance Fields for Zero-Shot Task-Oriented Grasp-
ing 22
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Limitations and Conclusion 40
5.1 Semantic Mechanical Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 LERF-TOGO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



iii

5.4 Final Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Bibliography 43



iv

List of Figures

3.1 Overview of (SMS). SMS accepts as input a scene image and a desired target
object. It applies an object detection, or segmentation algorithm combined with
captioning as necessary when object lists are unavailable. SMS then uses an LLM
to compute affinities between detected objects to the target object, and it uses
these affinities to output a semantic occupancy distribution which can be used
for downstream mechanical search policies. . . . . . . . . . . . . . . . . . . . . 9

3.2 Generating semantic distributions in open-world environments. Four
examples from the evaluation dataset with the 2D probability distributions gen-
erated for SMS-E and CLIP. These heatmaps are red for high-probability regions
of finding the target object and blue for low probability. Top Left: An example
of a grocery store, where the target object is “incense sticks.” CLIP highlights
both near the candles and near the flowers as they are somewhat visually similar
to sticks, while SMS-E only highlights the candles. Bottom Left: An example
of an office kitchen, where the target object is “cat food.” CLIP gets distracted
by the refrigerator and only slightly highlights the cat sign. Top Right: An
example of a house, where the target object is “paddle.” CLIP incorrectly high-
lights the wooden panels along the walls, while SMS-E highlights the ping pong
table. Bottom Right: For the target word “microphone,” SMS-E highlights the
box with the speaker but CLIP struggles as the objects are not visually similar. 12

3.3 Object navigation experiment in BAIR Office Kitchen. A short horizon
navigation example where we start at position 0 and end at position 2. SMS
is able to correctly maneuver to the stack of books while CLIP fails because its
bag-of-words nature is susceptible to incorrectly assigning high probability to the
pillars in the scene as they are semantically related to “stack.” . . . . . . . . . 14

3.4 Here are 3 example scenes from the physical mechanical search experiments in
the constrained environment setting. . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Physical rollout example with the target object being the probiotics. Top: the
spatial distribution, semantic distribution and semantic spatial distribution for
step 0. Bottom: RGB observations at step 0, the action given by DAR and the
RGB observation after executing the action. . . . . . . . . . . . . . . . . . . . 18



v

3.6 There are six examples, each example has the target object and the corresponding
SMS semantic distribution and the GPT-4V comparison. The GPT-4V depicts a
red bounding box, which is a visualization of bounding box (specified by the tuple)
of the most likely place to find the target object, extracted from the corresponding
response in Figure 3.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.7 These six GPT-4V responses specify the bounding boxes that are visualized in
Figure 3.6. The prompt used for each example is an image of the scene and
what is stated in Section 3.5. These examples show that GPT-4V is good at
object identification in the image and semantic reasoning to know near which
objects in the image the target object would be. However, these bounding boxes
do not reliably encompass the objects that GPT-4V references in the responses,
indicating questionable object localization. . . . . . . . . . . . . . . . . . . . . . 21

4.1 Learning-based grasp planners primarily consider object geometry, potentially
yielding suboptimal grasps. LERF-TOGO uses natural language to select the
target object with LERF [101] (in orange), and resamples grasps towards on
object subparts using conditional LERF queries (in blue) for safe, task-oriented
grasps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Task-Oriented Grasps: LERF-TOGO grasps target objects by different parts
with different natural language queries (in quotes). Left: Crops of target objects.
Right: Top row visualizes the relevancy distribution across the object mask, and
bottom row shows top 5% of resampled grasps. . . . . . . . . . . . . . . . . . . 24

4.3 LERF-TOGO Pipeline: After reconstructing the scene with a wrist-mounted
camera, we render an object-centric point cloud around the highest LERF acti-
vation. We next extract a 3D object mask by flood-filling the DINO features in
this point cloud, condition an object part query on this object mask. Finally, we
sample grasps and re-rank them according to 3D object part relevancy. . . . . . 26

4.4 Left: Decreasing the robot scan region degrades the quality of 3D relevancy
map generated by LERF-TOGO. Right: LERF-TOGO relevancy map converges
earlier for larger objects and parts. . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5 In the case of identical objects or ambiguous object queries, LERF-TOGO picks
a single object in the scene but does not propose grasps for all the objects in the
category. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.6 Left: Select scenes used during experiments,Right: example grasps using LERF-
TOGO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.7 Comparison with LERF and ConceptFusion: ConceptFusion performs well
on object-level queries, but struggles with sub-object part queries because of its
lack of multi-scale semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



vi

4.8 Ablation and Limitations: Left : Without 3D object masking and conditional
querying, LERF cannot capture oblong object shapes. Right : CLIP can some-
times fail on generic prompt queries, like the poor activation on the box. Ad-
ditionally, LERF-TOGO struggles with groups of connected objects as the 3D
object mask groups them all together. . . . . . . . . . . . . . . . . . . . . . . . 34

4.9 Semantic Abstraction results for object and object part localization . . . . . . . 34
4.10 OWL-ViT results for object and object part localization . . . . . . . . . . . . . 38
4.11 Grasp score weighting: Varying weight between geometric grasp score and

semantic grasp score shifts the grasp distribution. A high semantic grasp weight
(w = 0.95) is required, since geometric grasps may be biased away from small
and fine-grained object parts of interest. Both geometric and semantic scores are
in the range [0, 1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



vii

List of Tables

3.1 Closed-world semantics evaluation. Percentage improvement of the gener-
ated semantic distributions in the pharmacy domain compared to a uniform prior,
measured based on the Jensen-Shannon Distance (JSD) from the ground truth
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Open-world semantics evaluation. IoU results for different methods. The
object detector-based method, OWL-ViT, performs poorly because even though
the target objects are semantically related, many have very little visual similarity.
CLIP performs worse than SMS because SMS is getting semantic similarity in
a language-only latent space which can capture more nuance than the visual-
language embedding space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 IoU results for ablated SMS-E. w/o CLIP Weighting doesn’t using CLIP to
refine the generated captions as described in Section 3.4. BLIP-IC use BLIP-IC
to get the descriptions for each crop instead of BLIP-2. w/o SAM doesn’t use
crops given by SAM and crops generated by multi-scale sliding windows are used. 13

3.4 Simulation experiment results for three domains averaged over 12, 15, 18, 21 num-
ber of objects, also reported with ∆%, the percentage reduction in the number
of actions compared to LAX-RAY. . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Simulation Experiment Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Simulation experiments results of SMS-LLM with DER for the Pharmacy domain.

We ablate the downstream policy and see that SMS-LLM outperforms LAX-RAY
with DER. We report the number of rollouts that were successful and the mean
actions to retrieve the occluded object and the standard error. . . . . . . . . . . 17

3.7 Experiment to determine the impact of object detection noise on task performance
(# of actions). For SMS-LLM, we randomly perturb the object detection (i.e.
randomly select a label from the object list) with probability P. We do 400 rollouts
over the categories of 12, 15, 18, 21 objects in the scene for the pharmacy domain.
We report the average number of actions taken to reveal the target object and
standard error. We see the general trend as object detection noise increases the
task performance decreases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.8 Physical experiment results (12 trials each). We report the average number of
actions taken to reveal the target object as well as the percentage reduction in
the number of actions over the spatial neural network. . . . . . . . . . . . . . . 18



viii

4.1 Part-Based Grasping Results: Results are reported across 49 different prompts
and 12 scenes. [25] includes a complete list of scenes and queries. . . . . . . . . 31

4.2 Single View Comparisons: Results are reported across 20 different prompts
and 5 scenes. [25] includes a complete list of scenes and queries. . . . . . . . . . 32

4.3 Task-Oriented Success: Results using an LLM to choose the object part given
a task specification. Results are reported across 49 different prompts and 12 scenes. 32



ix

Acknowledgments

As soon as I came to the Berkeley campus, I wanted to participate in undergraduate research.
I am grateful to Professor Blonder for mentoring me in machine learning fundamentals and
for giving me my first experience in research.

In my second year, I was able to join the AUTOLab, which became the most crucial
part of my undergraduate experience. I am extremely thankful to Professor Goldberg for
accepting me into the lab and giving me the opportunity to lead projects, travel to aca-
demic conferences, and collaborate with exceptional individuals at the forefront of robot
learning. Professor Goldberg has given me invaluable guidance on how to conduct scientific
research and effectively present it to an audience. In the AUTOLab, I transitioned from a
true beginner to a researcher who could contribute to and eventually lead projects. I had
amazing graduate and postdoc mentors at every stage of my research journey without whom
I wouldn’t have been able to succeed. I want to thank Daniel Brown, Ellen Novoseller, and
Ashwin Balakrishna for teaching me the foundations of reinforcement and imitation learn-
ing. I am also thankful to Ryan Hoque and Lawrence Chen for our fleet robotics excursion.
Additionally, I appreciate Raven Huang, Lawrence, and Ryan for our collaborative work on
semantic search. My thanks also go to Justin Kerr and Chung Min Kim for introducing
me to the 3D world. Lastly, I am grateful to Simeon Adebola for our shared experiences in
gardening, and to Wisdom Agboh for our joint efforts in the multi-object grasping project.
In addition to being exceptional academic mentors, more importantly, they were amazing
friends who sought to support me and made me excited to come into the lab. In addition
to collaborators within the lab, I would also like to thank Antonio Loquercio, Brian Ichter,
and Anastasios Angelopoulos for your insightful conversations and valuable advice.

I would like to thank all the amazing collaborators I’ve had as my work would not have
been possible without you: Adam Rashid, Kaushik Shivakumar, Vainavi Viswanath, Rishi
Parikh, Karthik Dharmarajan, Kishore Srinivas, Mallika Parulekar, Gaurav Datta, Zaynah
Javed, Jerry Zhu, Tianshuang Qiu, William Wong, Mark Presten, Mark Theis, Shrey Aeron,
Ananth Rao, Sandeep Mukherjee, Tomson Qu, Anna Deza. Some of my best friends at
Berkeley are from the lab and our friendship made my research experience all the more
enjoyable.

I want to emphasize that the work I will present in my thesis is not entirely my own.
I want to thank all my co-authors for writing different sections of the paper and multiple
portions of the code. Specifically for SMS, I want to acknowledge Kaushik’s work in running
simulation experiments, ideating on how to formalize semantic distributions, and comparing
our method to numerous baselines. I also want to acknowledge Raven for her work to set
up the physical experiments, her essential ideas for the entire SMS framework, and her
perseverance during the CoRL rebuttal. I want to thank Lawrence for his unparalleled
literature reviews and his essential contributions to the framing of the SMS paper. For
LERF-TOGO, I want to thank Adam for being an amazing partner and acknowledge his
work in setting up the robot capture, developing the NeRF regularizations, comparing our
method to baselines, and for the endless hours we sat through physical experiments. I



x

also want to thank Justin and Chung Min for their pivotal ideas, for making immaculate
figures, and for not only developing our grasp execution pipeline but also streamlining our
experiments with Viser. I again emphasize the work I present would not have been possible
without my amazing collaborators.

I want to thank all my friends at Berkeley who made these last five years truly unforget-
table. I want to thank my friends from home for all the memories we made during holiday
breaks and group calls. I also want to thank Meghana for always being a phone call away.
Lastly, I want to thank my family without whom I would not be at Berkeley. I want to thank
my parents for all their sacrifices, my aunts and uncles for their support, and my sister for
her unwavering optimism.



1

Chapter 1

Introduction

The robotics dream is to have a general-purpose robot that can accomplish a list of tasks as
well as a human would. However, a prerequisite for this type of robot is a robust perception
system that can tackle the diversity of the real-world. Developing this perception system
is a challenge. Even when isolated to a single robotic task, the robot has to interact with
visually and semantically different environments and objects, many of which are uncommon
and thus less likely to have been seen by the system (i.e. long-tail). Recent progress in large
vision-language models (VLMs and LLMs) show promise for handling real-world diversity
as they are pretrained on internet-scale data which empirically captures the diverse distri-
bution of semantics and more importantly the distribution’s tail (i.e. rare instances). A
large body of prior work has shown that these models can provide good visual representa-
tions [1]–[5], ground language instructions [6]–[12], and serve as planners out of the box [13]–
[18]. CLIP [19] is a commonly-used interface to associate vision and language, and many
works [20]–[23] use it to build semantic scene representations and show improved performance
on object query and navigation tasks. Fine-tuning these models with environment-specific
data can be expensive, especially in real-world robotics domains, so the goal should be to
use these models zero-shot. Thus, in this thesis, we build on existing work and tackle the
question: how do we use VLMs zero-shot to create useful state representations for robotic
tasks, specifically occluded object search and grasping?

In Chapter 2, we first go through existing work that has used natural language in robotics.
Then, we delve into how natural language can be grounded within 3D state representations,
especially for downstream robotic tasks. Lastly, we go through prior work on both robotic
tasks: occluded object search (i.e. mechanical search) and task-oriented grasping.

In Chapter 3, we discuss Semantic Mechanical Search (SMS) [24], which uses VLMs
zero-shot to create a semantic occupancy distribution that can be used to better search for
occluded objects. Moving objects to find a fully-occluded target object, known as mechani-
cal search, is a challenging problem in robotics. As objects are often organized semantically,
we conjecture that semantic information about object relationships can facilitate mechan-
ical search and reduce search time. VLMs and LLMs have shown promise in generalizing
to uncommon objects and previously unseen real-world environments. SMS conducts scene
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understanding and generates a semantic occupancy distribution explicitly using LLMs. Com-
pared to methods that rely on visual similarities offered by CLIP embeddings, SMS leverages
the deep reasoning capabilities of LLMs. Unlike prior work that uses VLMs and LLMs as
end-to-end planners, which may not integrate well with specialized geometric planners, SMS
can serve as a plug-in semantic module for downstream manipulation or navigation policies.
For mechanical search in closed-world settings such as shelves, we compare with a geometric-
based planner and show that SMS improves mechanical search performance by 24% across
the pharmacy, kitchen, and office domains in simulation and 47.1% in physical experiments.
For open-world real environments, SMS can produce better semantic distributions compared
to CLIP-based methods, with the potential to be integrated with more downstream search
policies.

In Chapter 4, we discuss Language Embedded Radiance Fields for Zero-Shot Task-
Oriented Grasping (LERF-TOGO)[25], which uses VLMs zero-shot to create a 3D repre-
sentation used for task-oriented grasping. Grasping objects by a specific subpart is often
crucial for safety and for executing downstream tasks. LERF-TOGO outputs a grasp distri-
bution over an object given a natural language query. To accomplish this, we first construct
a LERF of the scene, which distills CLIP embeddings into a multi-scale 3D language field
queryable with text. However, LERF has no sense of object boundaries, so its relevancy
outputs often return incomplete activations over an object which are insufficient for grasp-
ing. LERF-TOGO mitigates this lack of spatial grouping by extracting a 3D object mask
via DINO features and then conditionally querying LERF on this mask to obtain a semantic
distribution over the object to rank grasps from an off-the-shelf grasp planner. We evaluate
LERF-TOGO’s ability to grasp task-oriented object parts on 31 physical objects, and find
it selects grasps on the correct part in 81% of trials and grasps successfully in 69%.

In Chapter 5, we conclude with the limitations of both algorithms, a discussion of future
work, and parting words for my time at Berkeley.
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Chapter 2

Related Works

2.1 Natural Language in Robotics

Grounding natural language instructions is a widely-studied problem in robot navigation [26]–
[37], human-robot interaction [38], [39], and is increasingly studied in the manipulation lit-
erature [40]–[43]. While classical methods commonly rely on semantic parsing and factor
graphs [31], [35], [38], end-to-end learning and leveraging pretrained models are now the
most popular paradigms thanks to advances in deep learning and LLMs. Examples in-
clude language-conditioned imitation learning [8], [10]–[12], [44], [45], language-conditioned
reinforcement learning [6], [46], [47], and online correction of robot policies through lan-
guage feedback [48], [49]. In particular, pretrained image encoders and open-vocabulary
object detectors have enabled generalization to novel object queries at test time [5], [16],
[17]. LERF-TOGO and Semantic Mechanical Search (SMS) also take in novel object targets
specified using natural language. However, in SMS, since the target objects are not visible in
the scene, the robot instead needs to detect and localize other objects and reason about their
relationships. This is particularly challenging in an open-world environment when the set of
possible objects is unknown, making object detectors significantly less accurate. SMS shares
similarity with HOLM [50], which uses an LLM to hallucinate nearby objects in partially
observable scenes based on semantics computed from affinity scores. However, it relies on
an object list and only considers camera adjustment actions in simulation. We relax this
assumption of accessing object lists [20], [50], [51], propose a pipeline for generating object
labels without access to any object lists, and generate semantic distributions for open-world
environments.

Many studies have also used LLMs as a planner by letting them break down tasks through
step-by-step reasoning [14]–[17], [52], [53] or directly write code [13], [18]. While these end-to-
end planning paradigms benefit from the deep reasoning abilities of LLMs, it’s not straight-
forward to incorporate additional non-language information and integration with domain-
specific policies. The latter is particularly valuable when the task is more complex and a
flexible generalist LLM can benefit from specialized searching and planning algorithms de-
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veloped by the robotics community. In SMS, we propose decoupling semantic reasoning and
geometric planning; rather than directly output primitive instructions from image observa-
tions, SMS uses LLMs’ semantic reasoning from its feature space into a semantic distribution
that specialized planning and manipulation policies can use.

2.2 Grounding Language with 3D representations

With the advent of large pretrained language and vision-language models, several works have
explored building 3D map representations to guide robot navigation. VL-Maps [54] and
OpenScene [51] build a 3D language embedding from pretrained open-vocab detectors [55],
[56], which can be used to navigate to target queries. CLIP-Fields [57], ConceptFusion [58],
and NLMaps-SayCan [59] take more of a region-proposal based approach, querying CLIP
on the outputs of some region proposal methods and fusing them into 3D point clouds for
downstream navigation tasks. Region-based zero-shot methods retain more language un-
derstanding than fine-tuned features but run the risk of missing objects by insufficiently
masking input images. Semantic Abstraction [60] avoids this by extracting relevancy from
vision-language models using [61] and uses these for composing multiple language queries
with spatial relationships. Language has also been studied in the context of robot manipu-
lation. [43] use the MAttNet [62] vision-language model for object rearrangement, and CLI-
Port [63] uses language understanding from CLIP to train a language-conditioned pick and
place module from demonstrations. PerAct [64] uses language-conditioned demonstrations
with a 3D scene transformer to learn diverse tasks, MOO [5] uses the outputs from OWL-
ViT to condition a manipulation policy for grasping objects, and large-scale demonstration
datasets like RT-1 [45] train on massive language-conditioned demonstration trajectories. In
contrast to many other language-conditioned approaches, LERF-TOGO uses internet-scale
vision models purely zero-shot and does not require fine-tuning on demonstrations or robot
exploration.

2.3 Mechanical Search

Mechanical search [65], [66] refers to a broad class of robotics problems on searching for
occluded and out-of-view objects via manipulation and navigation. In the former case, bin
[65] and shelf environments [67]–[71] are widely studied, where intelligent estimation and
manipulation planning based on possible locations of the hidden target object significantly
affects the search efficiency. Many prior work uses only geometric priors [65], [72]–[75].
A number of authors have also explored using semantic context object information [76].
Kollar and Roy [77] obtain co-occurrence statistics from web-based ontologies and Wong
et al. [78] extend the approaches to occluded target objects. [66] propose a hierarchical
model to integrate semantic and geometric information and learn in simulation. However,
they manually craft semantic categories, which are also sparse and can not accurately and
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scalably reflect real-world distributions. Instead, in SMS, we harness large pretrained models
to extract open-vocabulary semantic information zero-shot.

There are many types of navigation tasks, such as point goals [79]–[81], image goals [82],
[83], and object goals [84], [85]. Finding out-of-view objects is an object goal navigation
task, and the problem is also known as active visual search [86], [87]. Classical geometry-
based methods typically first build a map [88], [89] and then perform planning [90], [91].
Learning-based methods typically use reinforcement learning trained in simulation [80], [84],
[92]–[98], through YouTube videos [85], or by querying the Internet [99] to learn semantics
and efficient exploration strategies. Recently, many works have explored using LLMs and
VLMs out-of-the-box for semantic scene understanding [100] and zero-shot object navigation,
which this work belongs to. The most common strategy is to use CLIP features [19] obtained
from pretrained open-vocab detectors [55], [56] as in VL-Maps [20] and OpenScene [51] or
from region proposals models as in CLIP-Fields [57], ConceptFusion [58], and NLMaps-
SayCan [59] and fuse them into 3D point clouds or implicit representations [101]. The
constructed representations can then be used for open-vocabulary target queries to locate
the object and perform navigation. [21] propose a family of methods to adapt CLIP and
open-vocabulary models to localize target objects. Through a systematic comparison, they
find OWL-ViT detector [102] works best, followed by patchifying images to obtain separate
CLIP embeddings and compute similarity with text embeddings. In SMS, instead of using
the similarity of CLIP embeddings to construct relevancy maps [103], we use the LLM feature
space to explicitly reason about the object’s semantic relationships.

2.4 Task-Oriented Grasping

Task oriented grasping studies how to grasp objects by specific parts based on a use case.
It has been studied by probabilistically modeling human grasps [104], extracting geomet-
ric features from labeled object parts [105], training on part-affordance datasets in simu-
lation [106], or transferring category-specific part grasps to new instances [107]. Recent
works [108], [109] train object-part grasp networks by leveraging object part and manip-
ulation affordance datasets for a range of household objects. [110] use videos of humans
interacting with objects to guide grasps towards the same part. Decomposing objects into
parts has also long been studied as a co-segmentation task in vision [111], [112]. Recent ap-
proaches use pretrained vision features to discover common parts within sets of objects [113].
This technique has been applied at scale to segment parts of objects based on a canonical
object [114] or detect object affordances from example images of human usage [115]. Though
effective, it assumes access to a canonical image of each object and pre-existing part labels or
demonstrations, which are restrictive in real-world applications. In contrast, LERF-TOGO
uses off-the-shelf vision-language models trained at scale, so it captures long-tail object and
parts more easily without the use of affordance datasets.
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Chapter 3

Semantic Mechanical Search

3.1 Background

Mechanical search, where a robot manipulates objects and/or navigates to find a fully oc-
cluded target object [65], [66], is a challenging robotics problem. Prior work has shown
success in revealing the desired object by manipulating the occluding objects [72]–[74], ob-
taining new observations after rotating the camera [50], or navigating to new locations [20],
[21]. However, generalization to unseen environments remains challenging due to the numer-
ous long-tail objects present in the real world.

Environments are often organized semantically, for example, toothpaste is often stored in
a home bathroom near toothbrushes. Here, we explore how LLMs can provide such semantic
relationships to facilitate mechanical search. Prior work has shown that VLMs and LLMs
can capture these semantic relationships relatively well, commonly using CLIP to interface
between language and image observations. These existing approaches that use CLIP to create
state representations, while informative, the dot product of CLIP text and image embeddings
lacks deep reasoning capabilities and sometimes behaves as a bag-of-words [101]. As such,
CLIP is most useful for localizing objects that are already visible somewhere in the scene or
map [5], [21], a property that many open-vocabulary object detectors build on [116]–[118].
When the target object is fully occluded, CLIP alone may not provide enough clues about
potential target object locations.

LLMs demonstrate advanced reasoning and planning capabilities [119]. Many prior
works [17], [20], [52] use VLMs and LLMs as end-to-end planners for both perception and
planning. While such paradigms benefit from the semantic reasoning abilities of LLMs, they
do not handle additional information that cannot be easily expressed through language and
may not integrate well with other domain-specific policies. For example, for mechanical
search on shelves, the geometric properties of objects provide valuable cues for identifying
potential target object positions, and various algorithms have been proposed for handling
uncertainty and planning ahead [72]–[74]. Likewise, for object navigation, prior research has
explored exploration and navigation strategies that are independent of semantic understand-
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ing [120]–[123]. As such, decoupling semantic reasoning and geometric planning may allow
flexible integration with task-specific modules for various downstream settings.

We propose SMS, which generates an explicit intermediate representation, a semantic
occupancy distribution, as a plug-in semantic module for existing mechanical search algo-
rithms. This distinguishes it from prior work where VLMs and LLMs serve as end-to-end
planners doing both semantic reasoning and action planning. With the goal of adding se-
mantic reasoning to existing search policies, we study two questions: (1) Can a semantic
distribution facilitate mechanical search? (2) What is the best way to generate this semantic
distribution? For the second question, we hypothesize that translating image features into
language features (with VLMs) first and then extracting semantic distributions from only
language features (with LLMs) can outperform VLM-only methods that most current works
use. We show that, rather than burdening VLMs (e.g. CLIP) with both object detection
and reasoning, decoupling these two tasks leads to better results as the LLM language fea-
ture space is better at capturing semantic relations. For the first question, we show SMS
can be easily integrated with a geometric shelf searching algorithm [74] to improve perfor-
mance for closed-world environments such as pharmacy shelves with known object lists. In
closed-world settings where object lists are available, SMS uses an open vocabulary object
detection model [124] refined with Optical Character Recognition (OCR) to identify objects.
In open-world settings where object lists are unavailable, SMS combines segmentation [125]
and image captioning [126] to generate object mask descriptions.

3.2 Preliminaries

LAX-RAY

LAX-RAY[72] is a mechanical search policy for shelf environments. LAX-RAY utilizes geo-
metric information by considering object geometries and camera perspective (e.g., tall target
objects cannot be occluded by short objects and objects in the center of an image occlude
more areas) to facilitate the search. It consists of a perception module and a greedy ac-
tion selection module. The perception module takes the depth observation and predicts the
geometric/spatial occupancy distribution to encode the geometric information. LAX-RAY
learns this module on a simulation dataset, with the ground-truth occupancy distribution
calculated using Minkowski sum. A greedy action selection module called Distribution Area
Reduction (DAR) selects robot actions to greedily reduce the overlap between objects and
the distribution. Another search policy, Distribution Entropy Reduction (DER), selects the
action that would reduce the entropy of the distribution the most after taking the action.

Occupancy Distribution

An occupancy distribution indicates the probability of each pixel in the image containing
the target object’s amodal segmentation mask [65]. Prior works [65], [72]–[74] have utilized
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geometric information to generate spatial occupancy distributions by considering object ge-
ometries and camera perspective (e.g., tall target objects cannot be occluded by short objects
and objects in the center of an image occlude more areas) to facilitate the search. [72] pro-
pose the LAX-RAY system, which uses a neural network to predict the spatial occupancy
distribution. SMS generates the occupancy distribution using semantic information, which
can then be combined with the LAX-RAY spatial distribution for downstream search as now
it can be used in larger environments where the geometric information is more subtle.

3.3 Problem Statement

We consider a partially observable environment that contains a target OT and N other ob-
jects {O1, ...,ON}. We assume the scenes in the environment are semantically organized,
meaning that the starting state of the environment is sampled proportionally to their ap-
proximate likelihood of occurrence in the real world. With this assumption of semantically
organized scenes, the target object location probability is proportional to object pair affini-
ties. States st ∈ S consist of the full geometries, poses, and names of the objects in the scene
at timestep t, and observations yt ∈ Y = RH×W×3 are RGB images from a robot-mounted
RGB camera at timestep t. Given the name of the target object and the observation yt,
the goal is to generate a useful dense occupancy distribution that encodes semantic affinities
(with respect to the target object).

3.4 Algorithm

We propose SMS, a framework using VLMs and LLMs to create a dense semantic distribution
between a scene and the target object to be used for downstream tasks. Fig. 3.1 visualizes
the pipeline. SMS first uses VLMs to perform scene understanding by creating mask-label
pairs to densely describe all image portions. It then uses an LLM to generate affinity scores
between the labels and the target object. We spatially ground these affinities using the
labels’ corresponding masks. In this way, we densely represent the affinities between a target
object and all parts of a scene using an LLM. SMS can be applied to two common situations:
1) a closed world where all objects in the scene are a subset of a known list and 2) an open
world where some objects in the scene are previously unseen.

Scene Understanding

The goal of scene understanding is to generate mask-label pairs that characterize the scene.

Object Detection + OCR

When an object list is available, we use an open vocabulary object detection model, specifi-
cally ViLD [124], to obtain object segmentation masks and labels from an RGB image. We
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Figure 3.1: Overview of (SMS). SMS accepts as input a scene image and a desired target
object. It applies an object detection, or segmentation algorithm combined with captioning
as necessary when object lists are unavailable. SMS then uses an LLM to compute affinities
between detected objects to the target object, and it uses these affinities to output a semantic
occupancy distribution which can be used for downstream mechanical search policies.

also find using Keras Optical Character Recognition (OCR) [127] can improve the quality
of the ViLD object detection.

Crop Generation + Image Captioning

When an object list is not available, many open vocabulary detectors such as ViLD cannot be
used. We instead create image crops and use a VLM for crop captioning, specifically BLIP-2
[126], to convert object crops to their text descriptions. We ask for the dominant objects
in each crop for less noisy captions. We generate crops that are both object-centric (using
Segment-Anything (SAM) [125]) for better object boundaries in the semantic distribution
and general multiscale, overlapping crops that help encode large-scale semantic information.

Creating the Semantic Distribution

We consider two ways to use a language model to generate affinity scores for the semantic
distribution. (1) SMS-LLM: We iterate over all the mask-label pairs and query the LLM
with a specific prompt: “I see the following in a room: {label}. This is likely to be the
closest object to {target object}”. This prompt directly represents the probability of the
target object given we see the label. Since object labels are contained within the prompt, we
do not need to normalize to account for the prior. A similar prompt with the label and the
target object switched would also provide affinity scores between objects but would then have
to be normalized to account for that object’s prior. The affinity score for the target object
with each label is the completion probability for the tokens that represent the target object.
We generate a semantic distribution from these affinity scores and detected objects. The
semantic distribution models the probability of the target object occupying each location,
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which we approximate to be proportional to the affinity score between the target and the
object closest to that location. To account for noise, we apply spatial smoothing using a
Gaussian kernel with std σ. (2) SMS-E: An alternative method we explore is to use a
language embedding model (e.g. OpenAI Embedding Model [128]) to get embeddings for all
labels and the target object, and obtain an affinity score between each label and the target
object through the dot product between these vectors.

When there are no object lists, the Crop Generation + Image Captioning pipeline de-
scribed in Section 3.4 can contain many incorrect or hallucinated labels, making the distri-
bution noisy. To mitigate this, we use CLIP to verify the captions and not for any semantic
reasoning. Specifically, we compute the CLIP dot products between the image crops and
the generated labels and weight the affinity scores by these relevance scores. To produce the
final semantic distribution, each pixel receives the average of the weighted affinity scores of
all the masks it belongs to. We find that averaging across multiple overlapping masks also
helps reduce noises in the absence of object lists.

Combining with Mechanical Search Policies

We consider both closed-world and open-world environments.

Closed-World Environments

We consider semantically organized shelves with objects from a known list. For mechanical
search on shelves, the robot needs to manipulate objects in the shelves to reveal the occluded
target object using pushing and pick-and-place actions. The goal is to minimize the number
of actions taken to reveal the target object. Thus, we use SMS as a plug-in semantic module
for an existing search algorithm, LAX-RAY [72], by multiplying the semantic occupancy
distribution with a learned spatial distribution that LAX-RAY generates based on geometry.

We then use the DAR policy [72] to perform mechanical search. Since the search in
cluttered environments requires manipulating other objects, once the search begins, the shelf
may become semantically disorganized. As such, at each step in a rollout, SMS computes
the semantic distribution using the object locations where each object was first discovered.

Open-World Environments

We consider large room spaces, with semantic diversity (rooms of an office, home, aisles
in a grocery store, etc.). We do not perform any manipulation in this setting and explore
a downstream heuristic navigation policy that terminates when the object is within view.
Given a starting position, the policy moves a fixed distance towards the highest affinity
region in the image. Afterward, it takes four new images by rotating in place. We first
select the desired view direction amongst the four by choosing the one that has the highest
90-percentile affinity score to ensure we are more robust to outlier affinities that may result
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from not having an object list. Then, after selecting the view, we again select the highest
affinity point and move to that location.

3.5 Experiments
We investigate two questions: with a given downstream search policy, (1) can a semantic
distribution improve search performance? and (2) what is the best way to generate a semantic
distribution?

Evaluation of Semantic Distributions Quality

We investigate the second question first to obtain a semantic distribution for the downstream
policy. We evaluate semantic distribution generation both in closed-world and open-world
environments. In close-world environments, we evaluate the affinity matrix quality where
the semantic distribution is generated, for the given object list. In open-world environments,
we evaluate the semantic distribution quality on a dataset of real-life scenes.

Closed-World Environments

We discuss the experimental setup and the results.
Experimental Setup: With an object list, the semantic distributions are directly gen-

erated from semantic affinity matrices, with rows and columns as objects from the list and
the entries representing the affinities scores between objects calculated in Section 3.4. We
use an object list of 27 objects in the pharmacy domain (included in [24]). We directly com-
pare the affinity matrix quality. We approximate a ground truth affinity matrix with Google
Taxonomy. The Google taxonomy provides semantic information for evaluation purposes to
avoid human bias. Since it has limited categories, it cannot be used directly for objects that
do not appear in the taxonomy.

Results: We compare the quality of the affinity matrix for the given object list generated
by SMS and a CLIP-based baseline proposed by CoW [21], which uses the dot products of
CLIP text embedding as the affinity scores. We compute the reduction of Jensen-Shannon
Distance (JSD) [129] between the generated affinity matrix and the ground truth affinity
matrix compared to the JSD between a uniform matrix and the ground truth. This quanti-
fies the benefit SMS provides over a uniform distribution. From Table 3.1, we see that SMS
significantly outperforms the CLIP-based method, while the SMS-LLM variant slightly out-
performs the SMS-E. This suggests the reasoning capability of LLM models is more valuable
for capturing semantics than CLIP embeddings.

Open-World Environments

Now, we discuss the experimental setup and the results for the open-world environments.
Experimental Setup: For the open-world environment, we evaluate the semantic dis-

tribution generation on a static image dataset consisting of 30 real scenes taken from 4
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Metric CLIP SMS-E SMS-LLM
∆% JSD ↑ 20.0% 33.8% 44.6%

Table 3.1: Closed-world seman-
tics evaluation. Percentage im-
provement of the generated se-
mantic distributions in the phar-
macy domain compared to a uni-
form prior, measured based on the
Jensen-Shannon Distance (JSD)
from the ground truth distribution.

Method OWL-ViT CLIP SMS-LLM SMS-E
IoU 0.138 ± 0.031 0.221 ± 0.034 0.345 ± 0.039 0.391 ± 0.039

Table 3.2: Open-world semantics evaluation. IoU
results for different methods. The object detector-
based method, OWL-ViT, performs poorly because
even though the target objects are semantically related,
many have very little visual similarity. CLIP performs
worse than SMS because SMS is getting semantic simi-
larity in a language-only latent space which can capture
more nuance than the visual-language embedding space.

Figure 3.2: Generating semantic distributions in open-world environments. Four
examples from the evaluation dataset with the 2D probability distributions generated for
SMS-E and CLIP. These heatmaps are red for high-probability regions of finding the target
object and blue for low probability. Top Left: An example of a grocery store, where the
target object is “incense sticks.” CLIP highlights both near the candles and near the flowers
as they are somewhat visually similar to sticks, while SMS-E only highlights the candles.
Bottom Left: An example of an office kitchen, where the target object is “cat food.” CLIP
gets distracted by the refrigerator and only slightly highlights the cat sign. Top Right:
An example of a house, where the target object is “paddle.” CLIP incorrectly highlights
the wooden panels along the walls, while SMS-E highlights the ping pong table. Bottom
Right: For the target word “microphone,” SMS-E highlights the box with the speaker but
CLIP struggles as the objects are not visually similar.

houses, 4 office buildings, and 3 local grocery stores. We sampled 90 objects across the three
domains and chose those scenes based on our accessibility to those places. In all scenes, the
objects’ numbers and placements are set by their management. All scenes and the target
object list are in included in [24]. Since these scenes are large, we are interested in quanti-
fying the accuracy of the semantic distribution along both the x- and y-axes. We annotate
the ground truth search area based on the real scene and use Intersection over Union (IoU)
to quantitatively evaluate the accuracy of each method.
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Results: We evaluate the following VLM-only baselines: CLIP and OWL-ViT, the two
best-performing methods found by [21]. For CLIP, it uses the same crop-label pairs as SMS to
generate a semantic distribution as described in Section 3.5 but with further augmentations
(jittering and horizontal flipping) on those crops for better performance [100]. We threshold
this distribution and create a mask to calculate IoU with the ground truth. OWL-ViT
gives bounding boxes for its labels and we directly use them to calculate the IoU. We find
that OWL-ViT performs better if the best bounding box is selected rather than weighting
all bounding boxes by their score and thresholding that distribution. Table 3.2 shows the
results. SMS generates semantic distributions within 35 to 45 seconds. We see that SMS
outperforms the VLM-only methods including both CLIP and OWL-ViT. We hypothesize
that this is because CLIP focuses more on the visual appearance of the objects rather than
semantic relations. This would be less of a problem for searching visible objects but is not
ideal for searching objects that are outside the field of view or occluded. For example, CLIP
would associate incense sticks with sticks used for gardening while LLMs would associate
the incense sticks with the candles. In addition, CLIP has a “bag of words” behaviour [101],
causing it to incorrectly relate “cat food” with a fridge instead of a cat sign. In contrast,
LLMs have better semantic reasoning as shown in Figure 3.2, where “cat food” highlights
the cat sign as the highest region but also highlights the gray bag because cat food could
be occluded inside of a bag. Since LLMs are trained on large corpora of human language,
we hypothesize that they effectively encode the semantics of both common and rare objects
and are also capable of semantic reasoning (e.g. cat food can be inside the bag) beyond
just creating class categories and thus are better suited for searching fully-occluded objects.
SMS-E slightly outperforms SMS-LLM as they are both bottlenecked by the quality of labels
from BLIP-2.

We also conduct an ablation study for each module of SMS on semantic distribution
quality with results in Table 3.3, indicating the effectiveness of cropping with SAM and
CLIP weighting, and the impact of image captioning model choice. As mentioned previously
that image captioning can be noisy, we use CLIP to verify the captions. We refer this as
CLIP weighting. Without this, the performance drops by 21%. When we use BLIP-IC
instead of BLIP-2 for image captioning, the performance drops by 21%. Finally, without
cropping using SAM to get object-centered crops, the performance drops by 27%.

Ablations w/o CLIP Weighting BLIP-IC w/o SAM SMS-E
IoU 0.307± 0.038 0.310 ± 0.043 0.286± 0.038 0.391± 0.039

Table 3.3: IoU results for ablated SMS-E. w/o CLIP Weighting doesn’t using CLIP to
refine the generated captions as described in Section 3.4. BLIP-IC use BLIP-IC to get the
descriptions for each crop instead of BLIP-2. w/o SAM doesn’t use crops given by SAM
and crops generated by multi-scale sliding windows are used.

BLIP-IC is the large image captioning model of BLIP.

https://huggingface.co/Salesforce/blip-image-captioning-large
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Figure 3.3: Object navigation experiment in BAIR Office Kitchen. A short horizon
navigation example where we start at position 0 and end at position 2. SMS is able to
correctly maneuver to the stack of books while CLIP fails because its bag-of-words nature
is susceptible to incorrectly assigning high probability to the pillars in the scene as they are
semantically related to “stack.”

We also conduct a preliminary navigation experiment where a mobile robot follows the
downstream navigation policy described in Section 3.4 and selects the physical location to
move to based on the semantic distribution from CLIP and SMS-E. As shown in Figure 3.3,
CLIP makes an incorrect turn (at position 1 it continues in the direction of the view with
the red box) because of its bag-of-words behavior and attributes “stack of books” to having
higher semantic similarity to concrete pillars in the scene rather than the area with office
desks and chairs. SMS-E continues towards the office (green box in position 1) and finds a
stack of books on a desk successfully.

Semantic Distribution Effect on Mechanical Search Performance

Given a semantic distribution, we investigate the first question by conducting simulation and
real experiments in close-world environments to evaluate search performance improvement
brought by the semantic distribution. We combine the semantic distribution with an existing
mechanical search policy LAX-RAY as in Section 3.4.
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Experimental Setup

For simulation, we consider a pharmacy, a kitchen, and an office domain. In addition to
the 27 objects for the pharmacy domain, we consider 24 and 40 representative objects for
the kitchen and office domains from the Google Product Taxonomy [130]. The taxonomy
defines a tree where each category is a node and each object name is a leaf node. To create a
scene with N objects in a given domain, we begin by uniformly sampling N objects without
replacement from the total objects available in that domain. We then generate scenes in a
top-down recursive manner using the taxonomy tree. At the root, we start with the whole
shelf available to us. At each node, we split the shelf in half either horizontally or vertically
with 50% probability each and recursively continue scene generation in these sub-shelves.
If a node has more than 8 descendants, however, we always split the scene horizontally to
avoid overcrowding resulting from the aspect ratio of the shelf. At each level of recursion,
we accumulate random noise to the eventual placement of each object in the current branch,
uniformly sampled from -2 cm to 2 cm. At the last non-leaf node, we place all leaves in
random positions within the current level’s sub-shelf. We resolve collisions by iteratively
moving objects along the displacement vector between colliding objects and discard scenes
where such a procedure takes longer than 1 second to run. We also discard scenes where
there is no potential target object that is invisible from the camera’s perspective at the start
of the rollout. We reiterate that the taxonomy is independent of the language models used
to generate affinities. The LLMs are applicable beyond manual semantic categorizations like
the Google Taxonomy, but we use this resource for evaluation purposes. The scenes for all
simulation, physical, and object detection experiments are generated by this procedure.

We use approximate sizes of these items to generate collision-free scenes. In simulation,
we also scale these objects down in order to be able to run experiments on the same-sized
shelf, which has an effect similar to running experiments in a larger shelf where more items
could originally fit. The scaling factors for the pharmacy and kitchen domains are 0.7, but
0.4 in the office domain due to overall larger objects unable to easily fit and move within
a small shelf. The simulation and real experiments take place within a 0.8m × 0.35m ×
0.57m shelf environment.

Simulation Experiments

We run extensive experiments using the First Order Shelf Simulator (FOSS) from [74].
In simulation experiments, we assume perfect object detection but consider geometry for
occlusion. For each domain, we generate semantically organized scenes (details in Section
3.5) with various numbers of objects N=12, 15, 18, 21 with 200 scenes for each. Termination
occurs when the target object becomes visible or reaches maximum action number 2N .

For each scene, we evaluate whether SMS improves the performance of LAX-RAY [74],
which only uses geometric models. We consider both SMS-E and SMS-LLM for augmenting
the geometric distribution from LAX-RAY. We report two metrics: Success rates: The
ratio of trials where the target object is found within the maximum action limit to the total
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number of trials. Number of actions: The mean and standard error of the number of
actions required to reveal the target object.

Pharmacy Domain Kitchen Domain Office Domain
Successes # Actions ∆% Successes # Actions ∆% Successes # Actions ∆%

LAX-RAY 576/741 5.56± 0.20 N/A 703/770 3.32± 0.14 N/A 575/753 4.14± 0.19 N/A
SMS-E 591/741 4.18± 0.17 24.8 725/770 2.43± 0.10 26.8 580/753 4.10± 0.18 0.9

SMS-LLM 606/741 3.76± 0.14 32.4 710/770 2.42± 0.10 27.1 598/753 3.63± 0.16 12.3

Table 3.4: Simulation experiment results for three domains averaged over 12, 15, 18, 21
number of objects, also reported with ∆%, the percentage reduction in the number of actions
compared to LAX-RAY.

Table 3.5: Simulation Experiment Results.

Pharmacy Domain
12 objects 15 objects 18 objects 21 objects

Successes # Actions Successes # Actions Successes # Actions Successes # Actions
LAX-RAY 168/190 4.06± 0.23 160/186 5.17± 0.28 144/188 5.78± 0.44 104/177 8.24± 0.67
SMS-E 176/190 2.90± 0.18 159/186 3.77± 0.26 146/188 5.05± 0.42 110/177 5.69± 0.54

SMS-LLM 176/190 2.66± 0.14 162/186 3.26± 0.19 150/188 4.25± 0.34 118/177 5.47± 0.43

Kitchen Domain
12 objects 15 objects 18 objects 21 objects

Successes # Actions Successes # Actions Successes # Actions Successes # Actions
LAX-RAY 185/192 2.15± 0.14 182/194 2.97± 0.23 177/193 3.99± 0.29 159/191 4.36± 0.38
SMS-E 186/192 1.56± 0.08 188/194 2.15± 0.15 184/193 3.00± 0.27 167/191 3.07± 0.25

SMS-LLM 184/192 1.60± 0.10 184/194 2.04± 0.13 179/193 2.97± 0.26 163/191 3.17± 0.28

Office Domain
12 objects 15 objects 18 objects 21 objects

Successes # Actions Successes # Actions Successes # Actions Successes # Actions
LAX-RAY 172/194 2.60± 0.18 152/188 4.15± 0.38 136/190 4.64± 0.37 115/181 5.86± 0.56
SMS-E 173/194 3.01± 0.22 152/188 3.80± 0.31 140/190 4.78± 0.44 115/181 5.33± 0.50

SMS-LLM 172/194 2.33± 0.13 161/188 3.50± 0.31 142/190 3.75± 0.32 123/181 5.50± 0.49

We report results for all numbers of objects N in Table 3.5 and the results averaged
across all values of N in Table 3.4. In all domains, SMS-LLM and SMS-E improve LAX-
RAY performances with higher success rates and fewer search actions. In the pharmacy and
office domain, SMS-LLM outperforms SMS-E, while in the kitchen domain, they perform
comparably. For the office experiments, the performance improvement is relatively small. We
hypothesize that this is due to a majority of the office environment consisting of generic office
supplies that do not have a clear semantic categorization, making semantic prior less effective.
Overall, the results suggest that SMS-LLM can serve as a semantic plug-in module and
improve LAX-RAY performance in semantically arranged environments by 32.4%, 27.1%,
and 12.3% in the pharmacy, kitchen, and office domains respectively while improving success
rates. SMS-LLM outperforms SMS-E, indicating the quality of the affinity matrix is directly
correlated with the task performance.
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In addition, we show SMS is effective on different downstream policies by using SMS as
the plug-in module for Distribution Entropy Reduction (DER) from [74]. We multiply the
semantic distribution with the geometric distribution as the input to DER. DER selects the
action minimizing the distribution entropy after taking the action. We use the same setup
and scenes as before. We report the results for 100 scenes with 12 objects in Pharmacy
domain in Table 3.6.

Policy 12 objects 15 objects 18 objects 21 objects
Success # Actions Success # Actions Success # Actions Success # Actions

LAX-RAY (DER) 84% 5.79±0.38 74% 7.69±0.54 62% 8.08±0.64 42% 9.52±0.72
SMS-LLM 90% 4.42 ± 0.39 81% 5.06±0.43 71% 7.11±0.60 45% 6.87±0.67

Table 3.6: Simulation experiments results of SMS-LLM with DER for the Pharmacy domain.
We ablate the downstream policy and see that SMS-LLM outperforms LAX-RAY with DER.
We report the number of rollouts that were successful and the mean actions to retrieve the
occluded object and the standard error.

Method No noise 10% Noise 50% Noise 90% Noise LAX-RAY
# of Actions 3.81 ± 0.31 4.20 ± 0.38 4.44 ± 0.41 4.83 ± 0.47 5.12± 0.43

Table 3.7: Experiment to determine the impact of object detection noise on task performance
(# of actions). For SMS-LLM, we randomly perturb the object detection (i.e. randomly
select a label from the object list) with probability P. We do 400 rollouts over the categories
of 12, 15, 18, 21 objects in the scene for the pharmacy domain. We report the average
number of actions taken to reveal the target object and standard error. We see the general
trend as object detection noise increases the task performance decreases.

Lastly, we also show a strong positive correlation between object detection accuracy and
task performance with Table 3.7, indicating the benefits of SMS using OCR. We randomly
change the object labels with a probability P . The results are shown in Table 3.7, where
P = 0.1, 0.5, 0.9. The number of actions needed to find the occluded object increases as
P increases. This is because random perturbations can cause the semantic distribution to
approach a uniform distribution thus not modifying the existing action of the downstream
policy. Therefore, Table 3.7 indicates there is also a strong positive correlation between
object detection accuracy and task performance.

Physical Experiments

We conduct experiments on a physical pharmacy shelf. We use the Kinova Gen2 robot with
a 3D-printed blade and suction tool [72]. An Intel RealSense depth camera mounted on the
tool provides RGBD observations. We use 3 scenes each of N = 7, 8, 9, and 10 objects for a
total of 12 scenes and a threshold visibility of 50% for determining success.
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Method # Actions ∆% Method # Actions ∆%

LAX-RAY 4.25± 0.64 N/A SMS-LLM 2.25± 0.46 47.1

Table 3.8: Physical experiment results (12 trials each). We report the average number of
actions taken to reveal the target object as well as the percentage reduction in the number
of actions over the spatial neural network.

As simulation results from Table 3.4 suggest SMS-LLM outperforms SMS-E, we evaluate
SMS-LLM in physical experiments. An identical set of 12 semantically arranged scenes
(starting configurations) is used for each method. Results are shown in Table 3.8. We observe
that SMS significantly accelerates mechanical search on shelves, reducing the average number
of actions by 47.1%. In physical experiments, the noises in the depth images result in worse
spatial distribution than in simulation, making the semantic distribution more critical in
identifying where a target object may lie.

Figure 3.4: Here are 3 example scenes from the physical mechanical search experiments in
the constrained environment setting.

Figure 3.5: Physical rollout example with the target object being the probiotics. Top:
the spatial distribution, semantic distribution and semantic spatial distribution for step 0.
Bottom: RGB observations at step 0, the action given by DAR and the RGB observation
after executing the action.

We show a physical experiment rollout with the target object being the probiotics as in
Figure 3.5. In this rollout, the spatial distribution generated based on geometric information
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by LAX-RAY indicates the left side of the shelf occludes more area. However, the semantic
distribution generated by SMS indicates the target object is more likely to be on the right.
This is because other objects from the supplements category where the target object probi-
otics belongs to are visible on the right. Combining the spatial distribution and semantic
distribution into the semantic spatial distribution takes into account both the geometry and
semantic information and results in a more accurate distribution.

Preliminary Comparisons to GPT-4V

With the recent development of GPT-4V, we conduct a preliminary exploration to see if
VLMs with strong reasoning abilities can create an explicit semantic distribution over an
image of the scene. We use the following prompt with an image of the scene to extract a
location within the image that should correspond to the highest activation. Since explicitly
creating heatmaps is currently nontrivial, we ask GPT-4V to identify bounding boxes as it
is an easier task. We use the prompt:

In this image, where are the couple most likely places in the

image I would find TARGET_OBJECT? List the places in decreasing

order of likelihood and explain why this place was chosen

(for example considering objects in that place). Explicitly

write one bounding box (written as a tuple) per place and code

with opencv2 to place the bounding boxes on the image. Fit the

bounding boxes to the object. The image has a width of WIDTH

pixels and a height of HEIGHT pixels.

where we substitute TARGET_OBJECT, WIDTH, HEIGHT for the target object, width of the
image, and height of the image respectively. We design the prompt so the model has to
explain its reasoning and write code, both of which have been shown to increase model
performance [13].

We compare six examples where Figure 3.7 contains the responses of GPT-4V for each
example and Figure 3.6 contains the visualization of the highest likelihood bounding box
mentioned in the corresponding response and a comparison with SMS. We note that GPT-4V
is very good at identifying objects in the image and semantically reasoning where the target
object should be with respect to the objects it has identified in the image. Going through
the examples, in example 1, it was able to correctly identify the stationary materials in the
image and correspond the scotch tape to associated with that region. In example 2, it was
able to perform OCR and identify the ‘PATHFINDER 280’ box and correctly reason that
the microphone would be near that electronic packaging. However, the bounding box is not
accurate as it only partially includes the ‘PATHFINDER 280’ box. In example 3, GPT-4V
correctly identifies a trash can in the scene and that is the most likely location for an empty
bottle, but fails to place an accurate bounding box around the trash can. A similar story
happens in example 4 where GPT-4V identifies the ping pong table and reasons the paddle
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SMS

GPT-4V

Target Object 1. “scotch tape” 2. “microphone” 3. “empty bottle”

4. “paddle” 5. “paint roller”

SMS

GPT-4V

Target Object 6. “cat food”

Figure 3.6: There are six examples, each example has the target object and the correspond-
ing SMS semantic distribution and the GPT-4V comparison. The GPT-4V depicts a red
bounding box, which is a visualization of bounding box (specified by the tuple) of the most
likely place to find the target object, extracted from the corresponding response in Figure
3.7.

should be near the table but isn’t able to place a tight bounding box around the table.
In example 5, GPT-4V is able to reason the paint roller would be near the paint cans but
the bounding box is predominantly encompassing the bicycles. Lastly for example 6, the
bounding box primarily contains a desk and the floor rather than the cat sign.

This initial exploration suggests that GPT-4V is able to correctly reason about the objects
in the image to determine what highly correlates to the target object, but GPT-4V is not
able to reliably identify those regions in the image. The comparisons to SMS indicate that
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1.

3.

2.

4.

5. 6.

Figure 3.7: These six GPT-4V responses specify the bounding boxes that are visualized in
Figure 3.6. The prompt used for each example is an image of the scene and what is stated in
Section 3.5. These examples show that GPT-4V is good at object identification in the image
and semantic reasoning to know near which objects in the image the target object would
be. However, these bounding boxes do not reliably encompass the objects that GPT-4V
references in the responses, indicating questionable object localization.

SMS is more reliable for creating explicit semantic distributions. Since the high performing
closed-source VLMs (e.g. GPT-4V) can only be interacted through their language output,
there is no current nontrivial method to extract accurate distributions from these models
as the token probabilities are not available and the weights are not available to fine-tune
the model for object localization. Future work could explore further prompt engineering,
iterative adjustments with chain-of-thought prompting, and semantic distribution generation
with diffusion.
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Chapter 4

Language Embedded Radiance Fields
for Zero-Shot Task-Oriented Grasping

4.1 Background

Many common objects must be grasped appropriately to avoid damage or facilitate per-
forming a task: a knife by its handle, a flower by its stem, or sunglasses by their frame.
Learning-based grasping systems exhibit impressive robustness on grasping arbitrary ob-
jects [131]–[139], but these systems typically measure grasp success based on whether the
object was lifted [140]–[144]. Critically, these methods ignore an object’s semantic proper-
ties: even if a robot could locate your favorite sunglasses, rather than safely grasp at the
frame it may shatter the lenses. This ability to grasp an object part based on a desired task
and constraints is called task-oriented grasping, and while well-studied [104], [105], [109],
[110], [115], [145], previous methods collect specific object affordance datasets and struggle
to scale to a diverse set of objects. Instead, the flexibility of natural language has the po-
tential for specifying what and where to grasp. Thus, LERF for Task-Oriented Grasping on
Objects (LERF-TOGO) enables task-oriented grasping through natural language by using
large vision-language models in a zero-shot manner.

LERF-TOGO takes as input an object and a task-oriented object part name in natural
language (i.e. “flower; stem”), and outputs a ranking over viable grasps on this object
from which the robot should grasp. We build on recent work Language Embedded Radiance
Fields (LERF) [101], which takes in calibrated RGB images and trains a standard NeRF in
tandem with a scale-conditioned CLIP [146] feature field. Given a sentence prompt query,
it outputs a 3D relevancy heatmap representing similarity to the query. However, these
heatmaps may fail to highlight the full object (e.g., highlight only the bristles of a brush),
which may cause issues when directly deployed to a task-oriented grasping task (grasp the
“handle” of a brush). LERF-TOGO improves upon LERF’s capabilities by predicting a
3D object mask using 3D DINO [147] features explicitly during inference. We propose
a method of conditional LERF querying which restricts an object sub-part query to the



CHAPTER 4. LANGUAGE EMBEDDED RADIANCE FIELDS FOR ZERO-SHOT
TASK-ORIENTED GRASPING 23

Figure 4.1: Learning-based grasp planners primarily consider object geometry, potentially
yielding suboptimal grasps. LERF-TOGO uses natural language to select the target ob-
ject with LERF [101] (in orange), and resamples grasps towards on object subparts using
conditional LERF queries (in blue) for safe, task-oriented grasps.

object mask, leveraging the multi-scale nature of LERF to isolate specific regions within an
object. LERF-TOGO then uses GraspNet [144] to generate grasps, re-ranking them based
on the geometric and semantic distributions. We implemented a system with appropriate
regularizations which allows LERF-TOGO to operate on a physical robot and evaluate on
39 common household objects. In experiments, 96% of grasps are on the correct object,
82% on the correct object part, and 69% result in a successful grasp. We design a robotic
system that integrates LERF-TOGO on a physical robot to reconstruct a LERF of a scene,
then execute task-oriented grasps through natural language to grasp semantically meaningful
object parts.
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Figure 4.2: Task-Oriented Grasps: LERF-TOGO grasps target objects by different parts
with different natural language queries (in quotes). Left: Crops of target objects. Right:
Top row visualizes the relevancy distribution across the object mask, and bottom row shows
top 5% of resampled grasps.

4.2 Preliminaries

Neural Radiance Fields (NeRF)

Neural Radiance Fields (NeRF) [148] are an attractive representation for high quality scene
reconstruction from pose RGB images, with an explosion of recent work on visual qual-
ity [149]–[155], large-scale scenes [156]–[158], optimization speed [159]–[162], dynamic scenes [163]–
[165], and more. Because of its high-quality reconstruction and differentiable properties,
NeRF has been widely explored in robotics for navigation and mapping [149], [166]–[168],
manipulation [169]–[172], and for synthetic data generation [173]. This work is most similar
to works such as Evo-NeRF [171] which use NeRF as a real-time scene reconstruction to
grasp objects. However, in contrast to previous works which only use RGB information, in
this work we must include additional semantic information in 3D to select grasps falling on
relevant target objects.

Several prior works explore using semantic outputs inside NeRF. Semantic-NeRF [174],
Panoptic Lifting [175], and Panoptic Neural Fields [176] distill semantic categories from
semantic segmentation networks into 3D to improve the 3D consistency of labels, particularly
noting the denoising effect of averaging multiple views. Other works such as Distilled Feature
Fields [177] or Neural Feature Fusion Fields [178] distill feature vectors from DINO and
LSeg [56], and show they can be used for editing and scene segmentation. We build off of
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LERF [101], which is described in the next section.

LERF Preliminaries

Language Embedded Radiance Fields (LERF) [101] is a recent representation that distills
CLIP features into a NeRF. LERF inputs RGB images with camera poses and outputs a 3D
field of DINO embeddings as well as a scale-conditioned CLIP field. This supports querying
points in 3D for CLIP embeddings at different physical scales, capturing different semantics
given different amounts of context. Given a text query, a relevancy value (from 0 to 1) can
be generated at any 3D point by calculating the cosine similarity between LERF-queried em-
beddings and the CLIP embedding of query text. During this query process, a grid search on
the scale parameter retrieves the scale with the highest activation. LERF is particularly at-
tractive for task-oriented grasping because 1) its multi-scale parameterization allows queries
at both object-level and part-level scales 2) LERF uses outputs from a pre-trained CLIP
model without fine-tuning, which supports a variety of long-tail object queries not included
in object or part segmentation datasets. LERF, however, tends to produce nonuniform ac-
tivations on object queries because it lacks spatial grouping as shown in Fig. 4.8. In this
work we show how to explicitly use the DINO feature field to obtain object masks to enable
down-stream object part queries related to task-oriented grasping.

4.3 Problem Statement

Given a planar surface (table or workbench) containing a set of objects, the objective is
for a robot to grasp and lift a target object specified using natural language. This query
(e.g., “sunglasses; ear hooks.”) includes both the object query (“sunglasses”) and the object
part query, which specifies the part to grasp the object by (“ear hooks”). We experiment
with lifting this assumption in Sec. 4.5 by leveraging an LLM for providing part queries.
We assume access to a robot manipulator with a parallel jaw gripper and calibrated wrist-
mounted RGB camera, and the objects in the scene are graspable by the robot. We also
assume the object query specifies a present single object.

4.4 Algorithm

Given an object and object part query, LERF-TOGO outputs a ranking of viable grasps
on the object part. To accomplish this, it first performs a robot capture of the scene and
reconstructs a LERF (Sec. 4.4). Given a text query, LERF can generate a 3D relevancy
map that highlights the relevant parts of the scene (Sec. 4.2). Second, a 3D object mask is
generated using the LERF relevancy for the object query and DINO-based semantic grouping
(Sec. 4.4). Third, a 3D part relevancy map is generated with a conditional LERF query over
the object part query and the 3D object mask (Sec. 4.4). The part relevancy map is used to
produce a semantic grasp distribution.
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Figure 4.3: LERF-TOGO Pipeline: After reconstructing the scene with a wrist-mounted
camera, we render an object-centric point cloud around the highest LERF activation. We
next extract a 3D object mask by flood-filling the DINO features in this point cloud, condition
an object part query on this object mask. Finally, we sample grasps and re-rank them
according to 3D object part relevancy.

Robot Capture

Scene Reconstruction

The robot uses a wrist-mounted camera to capture the scene with a hemispherical trajectory
centered at the workspace, similar to Evo-NeRF [171]. The capture has a radius of 45 cm and
arcs from ±100◦ around the workspace horizontally and an inclination range of 30◦ to 75◦.
We capture images while the arm moves at 15 cm/sec at a rate of 3 hz, resulting in around
60 images per capture. We discard blurry images by analyzing the variance of the image
Laplacian, ensuring the images are high quality. While the robot moves, we pre-process
each image to extract DINO features, multi-scale CLIP, and ZoeDepth [179], which are used
during LERF training.

Robot Capture Region Size

The robot captures the scene along a hemispherical trajectory arcing ±100◦ around the
workspace horizontally (“1/2 hemisphere” in Fig. 4.4.) When this horizontal sweep angle is
reduced to a fraction of the range, the quality of the 3D object mask degrades, sometimes
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selecting the incorrect object altogether. LERF’s semantic field is supervised on features
of the scene images, thus the quality is heavily correlated with the distribution of images
viewing the object. This lowers the quality of the 3D DINO embeddings used for the mask
generation.

LERF Training Steps

In our experiments the LERF scene representation is trained to 2k steps. As shown in
Fig. 4.4, objects/object parts (e.g., “spray nozzle”, “bottle”) can be detected in steps as
low as 1k, but more fine-grained or smaller parts (e.g., “handle”) may take longer (2-3k
steps). This is consistent with what LERF reports: ”fine-grained features take more steps
[to emerge]”.

3D Object Extraction

Given the initial 3D point with the highest LERF activation, we create an object-centric
point cloud by rendering six different views looking at the 3D coordinate. The views are
±90◦ around the upwards vector through the 3D point. For DINO floodfill, the threshold
DINO similarity is defined as first projecting the current DINO embedding onto the first
PCA component of the top-down image, then taking the L2 norm of the difference between
the current embedding and the DINO embedding at the initial 3D point.

NeRF Regularization

NeRF encounters difficulties in reconstructing texture-less planar surfaces, especially in the
presence of specularities. This limitation is prominent in our table-top scenes, where the
glossy surface and metallic objects can result in depth renderings with jagged missing regions.
These missing regions can cause LERF renderings to spuriously activate and degrade the
performance of grasp networks, so we apply depth regularization to mitigate this issue. We
adopt the local depth ranking loss proposed in SparseNeRF [180] and use ZoeDepth [179] as
the underlying depth model. We found this performs better than smoothness priors [162],
[181] because it retains more fine-grained geometry. Additionally, we use the gradient scaling
approach from [155], which significantly reduces the number of near-camera floaters and
enables more robust grasping directly from point clouds rendered from the NeRF.

Poses obtained from cameras in motion are slightly inaccurate, which we found could
result in oversmoothed geometry with depth regularization. To overcome this, we optimize
the NeRF for the first 500 steps without any regularization to allow the camera poses to
settle, then anneal the depth regularization loss term from 0 to 100% over the next 1500
steps. Interestingly, we find staged training not only preserves thin features better but
also speeds LERF optimization. We hypothesize this is because supervising the language
field on un-converged density in free space results in a poor network initialization, while
beginning LERF optimization after geometry has been largely removed from free space
allows a smoother learning signal.
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Figure 4.4: Left: Decreasing the robot scan region degrades the quality of 3D relevancy map
generated by LERF-TOGO. Right: LERF-TOGO relevancy map converges earlier for larger
objects and parts.

Figure 4.5: In the case of identical objects or ambiguous object queries, LERF-TOGO picks
a single object in the scene but does not propose grasps for all the objects in the category.

3D Object Extraction

An important limitation of LERF is its lack of spatial grouping within objects: for example
given “can opener”, LERF tends to highlight regions of the object that most obviously
identify that object (e.g. the metal cogs on the can opener as shown by the orange star
in Fig. 4.3). However, since the region that visually identifies the object and the desired
grasp location (e.g. handle) can differ significantly, this is problematic. LERF inherently
exhibits such local behavior because it trains on local crops of input images, causing CLIP
embeddings surrounding the handle to be unaware if it belongs to a can opener. LERF-
TOGO overcomes this by finding a 3D object mask given a language query, which groups the
object part together with the LERF activation. To create the object mask, we leverage the
3D DINO embeddings [147] (self-DIstillation with NO labels) present within LERF during
inference, because DINO embeddings have been shown to exhibit strong object awareness
and foreground-background distinction [113], [147], [182].

First, we obtain a coarse object localization from LERF by rendering a top-down view
of the scene and querying the object. We produce a foreground mask by thresholding the
first principal component of the top-down rendered DINO embeddings, and constrain the
relevancy query to this mask to find the most relevant 3D point. We then refine this single-
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point localization into a complete object mask. We render an object-centric point cloud
around this 3D point by deprojecting NeRF depth from multiple views, and then iteratively
grow the object mask by including neighboring points to the frontier which lie within a
threshold DINO similarity (similar to floodfill). The output of this process is a set of 3D
points lying on the target object.

Conditional LERF Queries

Another important challenge of using CLIP is its tendency to behave as a bag-of-words [146]:
the activation for “mug” behaves very similarly to “mug handle” because CLIP latches onto
individual words, not the grammatical structure of sentences. To mitigate this phenomenon,
LERF-TOGO introduces a conditional method of querying LERF relevancy by composing
two related queries, similarly to how composing prompts has shown promise in generative
modeling for guiding specific properties [183]. Because LERF is scale-conditioned, during
inference it searches over scales for a given query and returns the relevancy at the scale
with the highest activation. To condition a LERF query, LERF-TOGO searches only on the
points within the 3D object mask. Intuitively, this results in a distribution over the object’s
3D geometry representing the likelihood that a given point is the desired object part, which
can be used for biasing grasps towards this region.

Grasping

Grasp Sampling

Ensuring complete coverage of grasps on objects is critical to avoid missing specific object
parts. We use GraspNet [144], which can generate 6-DOF parallel jaw grasps from a monoc-
ular RGBD point cloud, but from a single view it often misses key grasps on target object
parts. To mitigate this, and to leverage the full 3D geometry available within NeRF, we
create a hemisphere of virtual cameras oriented towards the scene’s center. For every virtual
camera, we convert the scene’s point cloud to the camera coordinate frames before providing
it as input to the pretrained GraspNet model. To obtain the final set of grasps for the scene,
we combine the generated grasps from the virtual cameras using non-maximum suppression
to remove duplicates.

Grasp Ranking

Given the grasps in the previous step (the geometric distribution), we now combine it with
the semantic distribution across an object obtained from LERF-TOGO. The semantic score
ssem for a given grasp is computed as the median LERF relevancy of points within the grasp
volume. The geometric score sgeom is the confidence output from GraspNet, indicating grasp
quality based on geometric cues. To balance relevance and success likelihood, we combine
the grasp score s = 0.95ssem +0.05sgeom to ensure that we consider the most relevant grasps
while slightly biasing towards confident grasps.
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Figure 4.6: Left: Select scenes used during experiments, Right: example grasps using
LERF-TOGO.

Motion Planning

A grasp is considered feasible if the robot can perform a collision-free trajectory with the
following poses: the pre-grasp, grasp, and post-grasp configurations. The pre-grasp pose is
positioned 5cm along the z-axis of the robot end effector, which allows the gripper to approach
the target grasp pose with minimal additional motion. The post-grasp pose is located 10cm
above the grasp pose, along the z-axis of the world frame. The UR5’s IK solver calculates
the set of viable joint configurations at these poses, and we calculate the trajectory as a
linear interpolation between them. We additionally allow for a 180 degree rotation at the
last wrist joint, as parallel-jaw grasps are rotationally symmetric. This facilitates the motion
planning process, as the robot’s camera mount is prone to colliding with the robot arm.

4.5 Experiments

Part-Oriented Grasping

We evaluate LERF-TOGO on a wide variety of 31 different objects and 49 total object parts
to grasp (Fig. 4.6). For each object, we select an object query by describing it sufficiently to
unambiguously differentiate between other objects in the scene. We use semantic descriptions
when possible, and add visual descriptions only when such descriptions are ambiguous (i.e
using color to differentiate multiple mugs in a scene). We provide a part query for each object
by describing a natural place for a robot to grasp and lift (i.e. “handle”, “plant stem”, “ear
hook”, “frame”). In addition, several objects include different grasp locations. A grasp is
successful if it lifts the correct object using the appropriate subpart at least 10cm vertically,
and the object remains securely within the gripper jaws throughout. For each query, we
measure 1) whether the selected grasp was on the correct object, 2) whether the selected
grasp was on the correct object part, and 3) whether the grasp successfuly lifted the object
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ConceptFusion LERF-TOGO

Correct Object 77% 96%
Correct Part 39% 82%
Successfuly Lifted – 69%

Table 4.1: Part-Based Grasping Results: Results are reported across 49 different
prompts and 12 scenes. [25] includes a complete list of scenes and queries.

from the table. Every scene is reconstructed once in the beginning, after which the objects
are removed sequentially (i.e., objects are removed one-by-one) with no updates in the scene
representation.

LERF-TOGO overall achieves a 69% success rate for physically grasping and lifting
objects by the correct part. The selected grasp was located around the correct object part
82% of the time, with the remaining failures being grasp execution failures. For context, the
highest confidence geometric grasp on an object mask only lies on the correct part 18% of the
time, suggesting LERF-TOGO meaningfully biases the grasp distribution to the object part.
Selected task-oriented queries are visualized in Fig. 4.2: the distribution of grasps drastically
shifts based on the given part query, and can focus task-oriented grasps on multiple different
regions per object based on the language prompt. LERF-TOGO shows strong language
understanding performance for object selection (96%), able to differentiate between very
fine-grained language queries like color, appearance (“matte” vs “shiny”), or semantically
similar categories (“popsicle” vs “lollipop”). It also can recognize long-tail object queries
like “ethernet dongle”, “cork”, or “martini glass”, owing to its usage of CLIP zero-shot.

Task-Oriented Grasping

LERF-TOGO accepts a natural language part query as input, allowing it to be used alongside
large language models (LLMs) to generate parts based on the task. To investigate if the LLM
can also generate the object part, we use an LLM (ChatGPT) to generate the object and
part query automatically via few-shot prompting. Results are shown in Table 4.3. The
prompt and all tasks are included in [25]. Given the task and the list of objects in the scene,
the LLM is tasked with generating the correct object and object part pair (object, part).
We used a majority voting scheme to query the LLM. Given the task, the LLM provides
seven candidates that we use to select the pair (object, part) that appears in a majority of
the responses. We also mention details to integrate with an LLM planner in Section 4.5.

Combining few-shot LLM prompting with LERF-TOGO identifies the correct primitive
with 92% success and produces grasps on the correct object with 71% success across 49
tasks on 39 different objects. The LLM could identify the object in the scene with the same
success rate as the human, giving the correct object and part pairs for tasks like “scrub the
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dishes” and “cut the steak”. However, the LLM had a lower success rate (71%) compared to
the human (82%) for object part selection. This is because CLIP, and by extension LERF-
TOGO, can be sensitive to subtle variations in wording like “body” vs. “base” resulting in
different LERF activations and thus grasps.

Baselines

SemAbs OWL-ViT

Correct Object 80% 85%
Correct Part 35% 50%

Table 4.2: Single View Comparisons:
Results are reported across 20 different
prompts and 5 scenes. [25] includes a com-
plete list of scenes and queries.

Human-Query LLM-Query

Correct Object 96% 96%
Correct Part 82% 71%

Table 4.3: Task-Oriented Success: Re-
sults using an LLM to choose the object
part given a task specification. Results are
reported across 49 different prompts and 12
scenes.

ConceptFusion [184]

ConceptFusion generates a multimodal point cloud of a scene by fusing RGBD images and
their extracted features together. To query ConceptFusion, we provide it with the concate-
nated object and part prompt (i.e. “mug handle”) and rank grasps via the highest similarity.
We report the object and part success without physical evaluation. We provide Concept-
Fusion with depth generated from the NeRF, which results in high-quality point clouds for
grasping. To represent the paper, we use the OpenCLIP ViT-H/14 model, which is larger
than the ViT-B/16 model for LERF-TOGO.

LERF-TOGO out-performs ConceptFusion by 43% (Table 4.1) at task-oriented grasping
because it can capture multi-scale semantics, while ConceptFusion is limited to one CLIP
embedding per point. This makes hierarchical querying difficult, and is reflected by the fact
that ConceptFusion performs similarly to LERF-TOGO at selecting the correct object, but
suffers at selecting the right object part. Due to its lack of scale-conditioning, ConceptFusion
frequently emphasizes sections of the table due to the inclusion of both the objects and the
table itself in the mask proposals (Fig. 4.7).

Semantic Abstraction [60]

Semantic Abstraction takes a single RGBD frame as input and a text query and outputs
a relevancy heat map over the image. A query is a success if the majority of the heatmap
overlaps with the object part. In instances where activations are detected on other objects,
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Figure 4.7: Comparison with LERF and ConceptFusion: ConceptFusion performs
well on object-level queries, but struggles with sub-object part queries because of its lack of
multi-scale semantics.

it is considered successful if the highest activation is on the desired object part. Detailed
results can be found in Table 4.2. Since the method takes a single image, we provide the
method with an input image observing all object parts for a fair comparison. We provide
it with part queries 2 ways and take the best performance: 1) the concatenated object and
part prompt (i.e. “mug handle”), and 2) the object and part as separate queries.

Semantic Abstraction achieves an overall object detection rate of 80% and part detection
of 35%. The method tends to produce empty relevancy responses when queried for specific
object parts, potentially owing to its averaging across multiple scales which drowns out
smaller part features. When presented with the object and part, the method highlights all
of the object, owing to CLIP’s bag of words behavior, a characteristic addressed by LERF-
TOGO’s compositional queries. (Fig. 4.9).

OWL-ViT [102]

OWL-ViT is an open-vocab detector which takes in an RGB image and text prompts and
outputs segmentation maps. We provide OWL-ViT a single input image that encompasses
all object parts for a fair comparison. To obtain an object mask, we use the object prompt to
establish an initial bounding box. This box serves as a region to identify the highest-scoring
part within the region. In order to deem the part box as successful, we visually confirm that
it aligns with the object part. Results can be found in Table 4.2.

OWL-ViT achieves 85% accuracy for object localization, struggling on very long-tail
objects that were not encountered within the detection datasets. This behavior is amplified
for object part queries, where queries tend to be long-tail such as “measuring tape” and
“ethernet dongle”. Example queries are shown in Figure 4.10.
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Figure 4.8: Ablation and Limitations: Left : Without 3D object masking and conditional
querying, LERF cannot capture oblong object shapes. Right : CLIP can sometimes fail on
generic prompt queries, like the poor activation on the box. Additionally, LERF-TOGO
struggles with groups of connected objects as the 3D object mask groups them all together.

Figure 4.9: Semantic Abstraction results for object and object part localization
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Ablations and Failure Modes

We ablate object extraction by removing 3D object masking and conditional querying, and
found that LERF-TOGO suffers with oblong objects, as shown in Fig. 4.8. We compare
against querying LERF individually for the object and part, and multiplying their results
together. This produces fragmented results which can ignore relevant parts of the object
for part queries. We also ablate the grasp weighting in Figure 4.11 to see a w = 0.95 is
needed to heavily skew grasps to the semantic distribution, allowing for grasps on the plug
and stem. We also ablate robot capture hemisphere and LERF training steps to see how
LERF quality degrades with smaller hemispheres and lower training steps.

The primary failure modes of LERF-TOGO are mistaking visually similar object parts for
one another (eg teapot spout for a handle), missing subtle geometries like the small teacup
handle or spray trigger, or confusing very close categories like steak and bread knives. We
also observe prompt sensitivity with part queries: for example “bottle neck” more strongly
localizes grasps than “neck”, and without more prompt tuning “body” sometimes fails to
highlight the bases of bottles.

Integration with an LLM Planner

LERF-TOGO can integrate as a module with an LLM planner to combine task-oriented
grasps for robotic manipulation tasks. We define a set of robotic manipulation primitives
(grasp, press, twist, pick&place, pour) and prompt the LLM to output the correct primitive
for a given task. We use the same majority voting scheme in the previous section to select
both the correct robotic primitive and the pair (object, part). Now, given a task (e.g. ‘uncork
the wine’), an LLM can specify the action to accomplish the task (‘grasp’) and the pair of
object and object part (e.g. ‘wine’ and ‘cork’).

We provide the full prompt to the LLM below. For any given task and scene the OB-
JECT LIST is replaced with a list of objects within the scene and TASK is replaced with
the desired task:

Answer the question as if you are a robot with a parallel jaw gripper

that has access to only the objects in the object list. Follow the

exact format. First line should describe what basic action is needed

to do the task from the following set of actions: press, grasp, twist,

pick & place. The second line should only be an object from the object

list followed by 1 object part that the robot would touch to do this

task. VERY IMPORTANT: If the basic action is pick & place, only then

have a third line with ’Place: ’ to specify the object to place on. \

Object list: [’pot’, ’knife’, ’spoon’, ’black pan’] \

Q: How can I safely pick up a pan? \

Basic Action: grasp \

Sequence: 1. black pan 2. handle \

\
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Object list: [’mechanical keyboard’, ’knife’, ’TV’, ’camera’] \

Q: How can I safely hit the spacebar on a keyboard? \

Basic action: press \

Sequence: 1. mechanical keyboard 2. spacebar\

\

Object list: [’green mug’, ’blue spoon’, ’fork’, ’knife’] \

Q: How can I cut a block of cheese? \

Basic action: grasp \

Sequence: 1. knife 2. handle \

\

Object list: [’salt shaker’, ’knife’, ’fork’, ’white pan’] \

Q: How can I safely lift a salt shaker? \

Basic Action: grasp \

Sequence: 1. salt shaker 2. base \

\

Object list: [’red cup’, ’blue cup’, ’mug’, ’bowl’] \

Q: How do I stack the red cup on the blue cup? \

Basic action: pick & place \

Sequence: 1. red cup 2. rim \

Place: blue cup \

\

Object list: [’door knob’, ’black mug’, ’green dish brush’, ’shiny knife’] \

Q: How do I open a door knob? \

Basic action: twist \

Sequence: 1. door knob 2. rim \

\

Object list: [’dryer’, ’washing machine’, ’sunglasses’] \

Q: How do I turn on the washing machine? \

Basic action: twist \

Sequence: 1. washing machine 2. dial \

\

Object list: [’paper towel roll’, ’mug’, ’teacup’, ’headphones’, ’pen’] \

Q: How do I grab a paper towel? \

Basic action: grasp \

Sequence: 1. paper towel roll 2. paper towel \

\

Object list: [’magnifying glass’, ’blue spoon’, ’fork’, ’knife’] \

Q: How do I pick up a magnifying glass? \

Basic action: grasp \

Sequence: 1. magnifying glass 2. handle \

\

Object list: [’teddy bear’, ’toy block’, ’mouse’, ’saucepan’, ’hammer’] \
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Q: How do I grab a teddy bear? \

Basic action: grasp \

Sequence: 1. teddy bear 2. head \

\

Object list: [’green mug’, ’blue spoon’, ’fork’, ’knife’] \

Q: How do I put the mug in the cabinet? \

Basic action: pick & place \

Sequence: 1. green mug 2. handle \

Place: cabinet \

\

Object list: {OBJECT_LIST} \

Q: How can I safely {TASK}? \

Basic action: "
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Figure 4.10: OWL-ViT results for object and object part localization
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Figure 4.11: Grasp score weighting: Varying weight between geometric grasp score and
semantic grasp score shifts the grasp distribution. A high semantic grasp weight (w = 0.95)
is required, since geometric grasps may be biased away from small and fine-grained object
parts of interest. Both geometric and semantic scores are in the range [0, 1].
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Chapter 5

Limitations and Conclusion

5.1 Semantic Mechanical Search

We first presented Semantic Mechanical Search (SMS), an algorithm for semantic distribu-
tion generation using VLMs zero-shot for a fully-occluded target object. SMS facilitates
mechanical search in closed-world environments and improves semantic distribution qual-
ity for open-world environments. SMS has several limitations, which open up possibilities
for future work: (1) We only evaluate open-world semantic distribution quality on a static
dataset; (2) While SMS, which operates in the LLM feature space, generates better seman-
tic distributions than CLIP-based method, we have not compared to other VLMs such as
GPT-4 [185] or LLaVa [186] due to their inaccessibility to obtain affinity scores. VLMs with
strong reasoning abilities, such as GPT-4V [187], have the potential to directly generate
high-quality semantic distributions. Further applying GPT-4V in object search would be
an interesting future direction. We conduct an initial exploration in Section 3.5. (3) SMS
for closed-world relies on creating an offline affinity matrix which can take a few minutes
with large object lists, while SMS for open-world takes 35 to 45 seconds for each semantic
distribution (4) The performance of SMS is sensitive to the quality of each module in the
framework.

5.2 LERF-TOGO

Then, we presented LERF-TOGO, a method for using VLMs zero-shot with Language Em-
bedded Radiance Fields to grasp objects and their parts via language. By improving the
spatial grouping of LERF relevancy outputs, LERF-TOGO can support hierarchical part
queries conditioned on the full object. Results indicate it performs strongly at language-
guided grasping, with grasps landing on the correct object 96% of the time, and furthermore
can direct grasps to the correct object parts 81% of the time. The main limitation of
LERF-TOGO is speed: the entire end-to-end the process takes a few minutes which can be
impractical for time-sensitive applications. Future work on additional regularizations and
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optimizations to LERF training may reduce computation time. Another key limitation of
LERF-TOGO is with groups of connected foreground objects, as the DINO flood-fill mask
will include the whole foreground group instead of isolating the individual components. Sup-
porting hierarchy within foreground groups is critical to enable such cases. If the object query
matches multiple objects in the scene (identical objects, or generic query like ”mug” in the
mugs scene), the system will arbitrarily choose only one of them. LERF-TOGO does not
consider referring/comparative expressions (e.g., “mug next to the plate”, “biggest mug”).
In addition, though we present a method for obtaining object part queries from input task
descriptions via LLMs, in future work we will evaluate its performance on a diverse set of
tasks.

5.3 Conclusion

With both of these projects, we attempt to address the underlying question of how can we
use VLMs zero-shot to create useful state representations for robotic tasks. SMS creates a
2D semantic distribution relatively quickly but with less precision as that is sufficient for the
task of occluded object search. On the other hand, LERF-TOGO offers more precision as is
necessary for dexterous manipulation but is slower and only works for static scenes. Thus, the
characteristics of the robotic task that we are trying to solve dictate the inductive biases for
our visual-language state representation. In LERF-TOGO, since the task is grasping, we use
3D representations for precise, denoised semantic embeddings. In SMS, the task is occluded
object search, so we explicitly use LLMs with VLMs to better semantically reason about
visually occluded objects. Both of these projects have robotic perception modules leverage
VLMs but with different inductive biases depending on the task. Thus, these methods
further generality along a particular axis, namely being able to handle diverse environments
and long-tail objects. These methods offer an improvement over previous perception modules
that rely on an intricate system of trained classifiers and traditional vision techniques as they
do not scale well along this axis. Now, the goal we should aim for is to have generality along
a different axis: across different robotic tasks. In my work, I largely focus on developing a
general perception module for individual robot tasks, but the goal remains to have a single
robot perception module that is task-agnostic and can be used with any robotic system. This
module should ideally create a real-time 3D state representation that can incorporate new
visual and semantic information at every timestep. Recent work in real-time 3D rendering
[188] indicates promise for the near future.

However, let’s take a step back and consider if we should be using VLMs to create explicit
state representations, thereby incorporating some potentially suboptimal inductive bias into
the perception modules. Explicit representations provide numerous advantages; they are
interpretable and necessitate the development of modular algorithms, making them suitable
for safe integration in any existing robotic system. However, are explicit representations the
correct way to approach robot perception? Recently, roboticists have entertained building
vision-language-action (VLA) models [189] trained with scaled-up robotic datasets collected
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with robots in the real world [190]. This approach incorporates minimal inductive bias for
robotic perception as it goes directly from images (or other sensor measurements) to actions.
The obvious drawback of this approach is the lack of interpretability as we do not know how
the model is reasoning about the scene to influence its predicted action. However, this
approach has seen some promise as these VLA models seem to be learning a task-agnostic
robotic perception system simultaneously while learning a general policy to output actions
conditioned on a particular task. Here there is no explicit state representation that captures
semantics, rather the model implicitly reasons about semantics and directly influences the
action for the task accordingly. More generally, the use of explicit 3D representations is
beginning to be questioned as video generation models like Sora from OpenAI [191] can
generate realistic, 3D consistent videos without explicitly adding specific inductive biases
for 3D reasoning. More generally than robotic perception, there remains an open research
question in robotic learning: should we create modular systems with intermediate explicit
representations or train end-to-end models that go from images to actions? As roboticists,
we are now starting to tackle this fundamental question in hopes of creating general, useful
robots for people.

5.4 Final Notes

I am incredibly fortunate that I had an amazing research environment in the AUTOLab
where I had exceptional mentors and great friends. I am forever grateful to Professor Gold-
berg for helping me to develop my research skills and for starting me on my research journey.
In the fall, I will start as a PhD student at Stanford where I will continue research in robot
learning.
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