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Abstract

DL-ZTE: Towards Deep Learning-based Methods for Dead Time Gap Recovery in Zero TE
MRI

by

Ana Cismaru

Master of Science in Electrical Engineering Computer Science

University of California, Berkeley

Professor Michael Lustig,

Zero Echo Time (ZTE) MRI is a rapid and near-silent 3D radial MRI sequence that is based
on constant gradients incremented by small amounts between TRs. Because the readout
gradients are active during the RF excitation, the initial readout points for each radial spoke
are missed, resulting in a spherical Dead Time Gap (DTG) at the center of k -space. This
gap results in incorrect image contrast if left uncorrected. Traditional approaches to cor-
recting the inaccurate contrast from the DTG often require additional scan time or complex
hardware adjustments. This limits ZTE’s practical applicability, especially in settings such
as dynamic contrast-enhanced where image contrast changes rapidly. This work presents
multiple deep-learning frameworks designed to reconstruct large DTG solely from multi-coil
k -space data, without the need for explicit coil sensitivities or additional acquisitions. A
large ZTE dataset is simulated by applying the ZTE forward model to a Cartesian fully
sampled MRI dataset. Various learning approaches were explored to assess their abilities
to recover the missing center of k -space, including UNet, Interlacer, and Di↵usion models.
The proposed methods demonstrated strong 2D reconstruction results on simulated datasets
with the Di↵usion model performing best followed closely by the UNet approach. Due to the
significant memory and computational demands of 3D Di↵usion models, a 3D UNet model
was chosen for reconstructing in-vivo data. This 3D UNet model demonstrated strong per-
formance in reconstructing simulated 3D ZTE data. However, application to in-vivo data
revealed challenges such as the model hallucinating auras that correlate with the field of
view of the training data. This work contributes to the ongoing development of e�cient
and accurate reconstruction techniques for ZTE MRI, aiming to extend this fast and silent
sequence to applications such as DCE, where image contrast is dynamically changing.
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Chapter 1

Introduction

1.1 MRI Background

MRI o↵ers unparalleled imaging of soft tissues without harmful ionizing radiation. The
underlying technology, Nuclear Magnetic Resonance (NMR), harnesses magnetic fields to
excite the hydrogen spins of atomic nuclei within the body. MRI images are generated
by measuring the signal emitted by these spins. To acquire images, gradient fields are ap-
plied across di↵erent spatial dimensions resulting in samples in the spatial frequency domain.

MRI data are acquired in the spatial frequency domain, or k -space, by measuring the object’s
magnetization M(k). The relationship between the measured k -space data and the final
image is expressed by the Fourier transform with the equation:

M(k) =

Z 1

�1
m(r)e�2⇡ikr

dk

In most clinical scans, k -space is collected row-by-row in a Cartesian trajectory. Cartesian
trajectories are slow and ine�cient, which has led to the exploration of non-Cartesian tra-
jectories, such as Golden-Angle Radial[7], which traverse k -space in a significantly shorter
time. Even with more e�cient trajectories, not all k -space is sampled, which introduces the
need for techniques to accurately reconstruct an image from undersampled data.

One technique used to improve the acquisition of k -space and the reconstruction of the final
MRI image is parallel imaging with multi-coil arrays[5][19]. In parallel imaging, multiple
receive coils are placed around the anatomy of interest with each coil being more sensitive
to the tissue nearest to the coil. This configuration not only accelerates the MRI scan
time by allowing simultaneous data acquisition from multiple coils but also enriches the
collected data with additional spatial information. This extra information is crucial during
the reconstruction process, as it helps to accurately recreate the image from the undersampled
k -space data. Consequently, parallel imaging with multi-coil arrays significantly improves
both the e�ciency and quality of MRI scans.
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1.2 Zero Echo Time MRI

Figure 1.1: (Left) ZTE sequence characterized by constant gradients stepped by small
amounts and short RF pulses. These contribute to the appearance of a dead time gap
where the initial samples of k -space are not acquired. (Right) The ZTE k -space sampling
trajectory is simplified in a 2D representation. The initial missed samples along each radial
spoke correspond to the center of k -space where the low-frequency information of the image
resides.

Traditional MRI techniques are limited by long acquisition times and significant acoustic
noise, which stem from the inherent high sampling requirements and the Lorenz force inter-
actions exerted on the hardware during gradient switching. These limitations can compro-
mise patient comfort, increase the susceptibility to motion artifacts, and hinder the e↵ective
imaging of tissues characterized by short T2 relaxation times, where the signal decays rapidly
before it can be adequately captured.

Zero Echo Time (ZTE) is a fast and silent 3D radial sequence that aims to address these
limitations. It is characterized by the use of a low gradient slew rate and an ultra-short
radiofrequency (RF) pulse. The low slew rate minimizes the rapid changes in gradient mag-
netic fields and reduces the Lorenz force interactions that lead to vibration and noise. This
thereby can reduce acoustic noise generated during the scan from 30-40dB to 1-3 dB[16]. The
ultra-short RF pulse allows the readout gradients to be active during excitation, a technique
that facilitates the immediate commencement of data acquisition post-excitation, thereby
speeding up the overall imaging process.

A key consideration of ZTE imaging is that the readout gradients are on during the RF
excitation. Since MRI coils cannot transmit RF pulses and receive the resulting MR signal
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at the same time, the first samples at the center of k -space, where most of the energy is
concentrated, are missed. The absence of these central k -space samples is called the dead
time gap (DTG), the size of which increases with the duration of the RF pulse. Without the
key low-frequency components of the image, the resulting image contrast would be incorrect.

Figure 1.2: A coil combined T2 image with simulated dead time gaps of varying sizes. The
dead time gap is simulated by removing N samples from the center of k -space in each coil.
As the size of the dead time gap increases, the contrast of the final coil combined image
deviates from the ground truth.

1.3 Related Work

Most commonly, the DTG is infilled using methods like WASPI[27] or PETRA[10], which
leverage additional acquisitions to read the center of k -space. These present limitations when
the contrast of the image changes over time, such as in Dynamic Contrast-Enhanced imaging
(DCE). In DCE imaging, the contrast of the image changes over time as a contrast agent is
administered and circulates through the body. The changing contrast can pose challenges
for these infilling methods because the additional acquisitions may not sync precisely with
the peak contrast phases, potentially leading to inaccuracies in the final images. This tem-
poral mismatch can a↵ect the diagnostic utility of the MRI, especially in assessing vascular
health and tumor responses to treatments. Therefore, while methods like WASPI and PE-
TRA are e↵ective in static conditions, their application in dynamic imaging requires careful
consideration and potential adaptation to accommodate the rapidly changing contrast levels.

Other reconstruction techniques, such as PPE-ZTE[8], utilize a k -space trajectory charac-
terized by opposing spokes. This configuration allows the method to leverage the geometric
relationship between these spokes to algebraically reconstruct the missing center of k -space,
providing a unique approach to addressing data gaps. While this trajectory constraint opti-
mizes the use of available data, the technique may face challenges when dealing with larger
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dead time gaps, where the extrapolation can become more complex.

Recently, parallel imaging-based approaches have demonstrated e↵ectiveness in recovering
data from large dead time gaps without any intermediate dead time infilling[20] [26]. These
methods take advantage of the fact that the convolution of k -space with coil sensitivity ker-
nels can distribute the missing low spatial frequency information to higher frequency areas.
This technique, however, hinges on the accurate estimation of sensitivity maps. Typically,
auto-calibrating parallel imaging methods, such as ESPIRiT[24], depend on a fully-sampled
central region of k -space to accurately estimate these maps. This requirement poses a chal-
lenge in ZTE imaging, where the central k -space is often undersampled or missing, compli-
cating the generation of reliable sensitivity maps. Consequently, while these parallel imaging
strategies are promising, their e↵ectiveness in the ZTE context is limited by the feasibility
of obtaining precise sensitivity maps without the complete central k -space data.

Additionally, the aforementioned parallel imaging techniques employ classical optimization
frameworks that are often constrained by large memory requirements. This limitation be-
comes particularly significant in high-resolution imaging scenarios or when processing large
datasets.

1.4 Our Approach

We propose several deep learning approaches to reconstruct the dead time gap leveraging
multi-coil data. First, we contribute a method to simulate a large ZTE dataset that is still
compatible with operations that rely on Cartesian data. Additionally, we perform a survey
into di↵erent deep learning architectures to reconstruct ZTE data without any information
aside from the multi-coil undersampled data. The survey explores the e↵ectiveness of UNet-
based models, a joint frequency and image domain model, and di↵usion models. This work
aims to address the limitations of current Zero Echo Time reconstruction techniques by
focusing on larger dead time gaps, eliminating the need for additional acquisitions or detailed
knowledge of sensitivity maps, and improving memory and compute e�ciency through the
application of deep learning methods.
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Chapter 2

Methods

2.1 The ZTE Forward Model

MRI reconstruction relies on a forward model to describe the process by which the ob-
servable k -space data is generated from the spatial distribution of nuclear spins within a
subject. This model encapsulates the physics of MRI signal generation, including the e↵ects
of magnetic fields and coil sensitivities, and is instrumental in forming the basis for image
reconstruction. In practical terms, the forward model translates the object represented in
the spatial domain, into the data acquired in the frequency domain (k -space), using a series
of transformations such as coil sensitivity multiplication, Fourier transforms, and modeling
of system imperfections like the dead time gap.

We mathematically formulate the ZTE reconstruction problem as an inverse problem to solve
for x in A(x) = y, where A is our forward model, y represents the acquired k -space with
the dead time gap, and x is the object to reconstruct. The optimization goal is to minimize
kA(x)� yk22 with the forward model defined as:

A = D ⇤ F✓ ⇤ S

where S is a multiplication with coil sensitivity maps, F is the 3D Non-Uniform Fast Fourier
Transform (NUFFT) onto the radial trajectory, andD models the dead time gap by removing
the center of k -space.

2.2 Datasets

Preliminary 2D experiments use Cartesian MRI data from NYU FastMRI[28] brain and knee
datasets. The dataset consists of Cartesian fully sampled brain MRIs obtained on 3 and 1.5
Tesla magnets and includes axial T1 weighted, T2 weighted, and FLAIR multi-coil images.
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Figure 2.1: The ZTE forward model. A 3D volume x is multiplied with the coil sensitivity
maps to generate coil images. A 3D NUFFT is applied to each coil image to generate radial
k -space. The initial N samples of the k -space data, which are a↵ected by the dead time gap,
are typically discarded.

The 3D experiments leverage the mridata.org Fully sampled 3D FSE Knees dataset[6]. The
images were acquired on 3T magnets using a Cartesian trajectory. The dataset consists of
19 volumes with 8 coils and FOV of 160 mm x 160 mm x 153.6 mm.

To address the constraints imposed by the limited size of the 3D dataset, which complicates
the training of deep learning models, we developed a 3D synthetic dataset comprising of 300
noise-like multi-coil images. This approach draws inspiration from similar methodologies,
such as those utilized in Resonet[9] and Synthmorph[12], which have shown that training on
synthetic data can significantly enhance a model’s ability to generalize. The data generation
technique follows the protocol outlined in Resonet. The synthetic images were designed to
have similar statistical properties as real MR images. The random images are produced
by applying a Fast Fourier Transform to exponentially weighted random complex data.
To create the final image, multiple random images are combined to generated edges with
various sharpness levels. To create multi-coil data, random sensitivity maps are generated
from weighted random SPIRiT[17] kernels and then applied to the final image.

2.3 Simulated Training Data Generation

The availability of large 3D radial MRI datasets, let alone ZTE datasets, is limited. This
scarcity poses significant challenges for training deep learning models that require extensive
and diverse data. To address this limitation, ZTE data was simulated by applying the for-
ward model A to the original Cartesian datasets. In our case, the radial trajectory F is the
same trajectory used to collect in-vivo data. The DTG is simulated by removing the initial
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samples from the radial data generated from the NUFFT.

Another complication of processing ZTE images arises from the radial trajectory used to
acquire data. This polar coordinate system introduces complexities in data representation
that are not inherently compatible with conventional deep learning techniques, especially
convolutional neural networks (CNNs). CNNs, which excel in extracting patterns and fea-
tures from data structured in Cartesian coordinates, struggle with the polar representation
due to their reliance on convolutions that assume a uniform, grid-like spatial organization.

To mitigate this issue, the simulated ZTE data is gridded back to Cartesian coordinates
using a density-compensated adjoint NUFFT. The same gridding process is applied during
inference on the in-vivo ZTE data. Although the adjoint NUFFT introduces minor gridding
artifacts, these are considered negligible in the broader context of the analysis, as all data –
simulated and in-vivo – undergoes this procedure. In addition to simply gridding the data,
the adjoint NUFFT is used to reduce the resolution of the image to accommodate memory
and compute limitations during training. In this instance, the resolution is reduced by a
factor of 4. The high-frequency k -space information is saved prior to performing the adjoint
NUFFT so that the full high-resolution image can be reconstructed from the low-resolution
model output.

To complete the preprocessing, the data was normalized to the 99th percentile, and the
magnitude and phase information were separated across 2 channels. For the 3D data, the
volumes were masked prior to normalization with a circular mask to create a finite structure
and field of view (FOV).

2.4 In-Vivo Acquisition

To evaluate our approach on in-vivo data, we acquired a head scan of a healthy volunteer
using a 12-channel head coil on a GE-3T MR750W (with ±31.25kHz rBW, 2.3ms TR, flip
angle 2 degrees, 24 cm FOV). We discarded the first one or two samples along each acquired
spoke to avoid e↵ects from coil ringing and ripple from the digital filter applied by the
scanner receiver unit. We retrospectively removed 3 additional readout samples per spoke
for a final dead time gap of 5 samples to demonstrate the network’s capabilities on a larger
dead time gap.
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Chapter 3

Learning Frameworks

We investigated three distinct deep learning frameworks suitable for ZTE MRI reconstruc-
tion: UNet[21][4], Interlacer[22], and Di↵usion[23][11]. Each framework o↵ers unique ap-
proaches to handling the complex data structures inherent in ZTE imaging. The UNet
model, known for its e↵ectiveness in medical image segmentation, is adapted here for im-
age reconstruction by leveraging its powerful encoder-decoder architecture. The Interlacer
model introduces a novel approach performing joint learning over the image and frequency
domains. Lastly, the Di↵usion model, typically used for generative tasks, is explored for its
potential to iteratively refine MRI reconstructions via denoising. This chapter provides the
foundational understanding necessary to understand the strengths and potential limitations
of each model in the context of ZTE reconstruction.

3.1 UNet Architecture

UNet models have been shown to be highly e↵ective at extracting features from medical
imaging data. In the following experiments, a 4-layer UNet is used to reconstruct the miss-
ing center of k -space in simulated ZTE images. This pipeline can be used with both a 2D
UNet or a 3D UNet depending on input dimensions.

Since it is di�cult to estimate sensitivity maps from coil data containing a DTG, it is di�-
cult to generate a coil-combined image that includes phase directly from ZTE coil data. To
navigate this issue, the model reconstructs the missing center of k -space for each coil individ-
ually by stacking the coil dimension with the batch dimension. The input into the network
is thus structured as (B ⇤N , 2+C, H, W , D) where B represents the batch size, N denotes
the number of coils, C signifies the channel size of additional inputs, and D is the optional
depth dimension for the 3D model. The model supports the inclusion of additional data in
the channel dimension, such as the root sum of squares (RSS) of the coils, which provides
more contextual information, including the FOV, to enhance the final reconstruction.
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Figure 3.1: The UNet model pipeline. The ZTE forward model A is applied to a fully
sampled coil-combined image to generate low-resolution coil k -space containing a dead time
gap. An adjoint NUFFT I✓ is then applied to yield gridded low-resolution coil images.
Each coil image is individually input into the UNet alongside any additional information (in
this case the RSS of all the coils from that image). The model outputs the reconstructed
low-resolution coil. H combines the saved high-frequency information of the coil with the
low-resolution reconstructed coil. The high-resolution reconstructed coils can be combined
via RSS or by estimating sensitivity maps and performing optimal coil combining[1]].

The model reconstructs the missing center of k -space of each coil individually; the output
reconstructed coil is of dimensions (B ⇤ N, 2, H,W,D). The loss is computed between the
reconstructed coil and the original coil input. This reconstructed data can then be utilized to
estimate sensitivity maps, enabling the computation of a complex-data coil-combined image
that retains both amplitude and phase information.

3.2 Interlacer Architecture

Another architecture that proved more e↵ective at reconstructing undersampled MRI data
compared to techniques that treat frequency and image domain separately is the Interlacer
model proposed by Singh et al[22]. This model consists of two networks that convolve sepa-
rately over the image and frequency domain. The information from each network is shared
with the other at each layer in an interleaving fashion.

This model learns features in both k -space and the image domain solely based on a coil
image input. Additionally, since the model performs convolutions on both k -space and the
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Figure 3.2: (reproduced from Singh et al.[22]) The Interlacer architecture depicting one layer
of the model. The model takes in a coil image u0 from which its k -space v0 is computed via
an inverse Fourier transform. Each network then calculates a weighted combination of data
from both the image and frequency domains after which it applies additional convolutions.

image, it can learn features of both domains at di↵erent resolutions. The final output can
be specified to either be the output from the image network or the k -space network.

This work leveraged a 6-layer Interlacer model with 9x9 convolution kernels and intermediary
layers consisting of 64 channels. The model was configured to output the reconstruction in
the image domain and an L2 loss was computed on the reconstructed coil image and the
input coil image.

3.3 Di↵usion Architecture

More recently, numerous works[15][2]have explored di↵usion generative models for MRI re-
construction. Di↵usion models can be thought as 2 di↵erent processes:

1. The forward process where noise is incrementally added to a sample from the data
distribution until only noise remains.

2. The reverse process which methodically removes noise to reconstruct the original image.
This reverse process is facilitated by a neural network that has learned the specifics of
how noise was added during the forward process.

The intuition of di↵usion models is that training a model to add noise to an image inher-
ently teaches it how the data transitions from a structured, meaningful state to a randomized
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noise state. In understanding this transition, the model implicitly captures the underlying
data distribution. The knowledge acquired during the forward process equips the model to
restore the original image from a noise-corrupted state e↵ectively. This approach leverages
the learned data distribution as a prior, enabling the reconstruction of high-quality images
even from significantly corrupted initial data.

The forward process can be thought of as a stochastic di↵erential equation (SDE) where
noise is progressively added to an image at each step:

dx =
s
0(t)

s(t)
x dt+ s(t)

p
2�0(t)�(t) d!

In this equation, s0(t)
s(t) is the drift coe�cient, which determines how the data x changes deter-

ministically over time. The term s(t)
p
2�0(t)�(t) represents the di↵usion coe�cient, which

scales the random fluctuations added to the data via the Wiener process d!, and d! itself
is the Brownian motion process that introduces these stochastic variations.

The reverse process is defined by the ordinary di↵erential equation (ODE):

dx =

✓
s
0(t)

s(t)
x� s

2(t)�0(t)�(t)rx log p(x̃; �(t))

◆
dt

where x̃ = x
s(t) represents the image data being recovered. It is important to note that s(t)

and �(t) are parameters analytically defined in the forward process. Thus, the only portion
of the reverse process that needs to be learned is the score rx log p(x; �(t)) at each step.
This score function is typically learned by training a neural network D✓(x; �(ti))[25], which
is adept at capturing the complex dependencies involved in reversing the di↵usion process.

With an estimated score function, a denoised data point can be sampled from the poste-
rior distribution p(x|y). One of the key challenges in this approach is that the likelihood
p(y|x, �(0)) is only analytically known at the initial time t = 0. To address this, the method
leverages di↵usion posterior sampling techniques. These techniques assume that the inter-
mediate steps approximate the likelihood to be p(x̂; �(0)), where x̂ is an estimate of the
denoised image at time t = 0 and is given by Tweedie’s formula:

E[x(0)|x(t)] = 1

s(t)

�
x(t) + s

2(t)�2(t)rx log p(x(t); �(t))
�

In addition to denoising the image, the di↵usion model is constrained to ensure fidelity to
the original input through data consistency. When applying the forward model A to the
output of the model, the result should correspond closely with the original input data.

With this, the full inference algorithm is presented in Algorithm 1.
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Algorithm 1 Di↵usion Posterior Sampling (DPS)

1: procedure DPS(D✓(x; �(t)), �(t), s(t), ti2{0,...,N},y)
2: x(t0) ⇠ N(0, �2(t0)s2(t0)I) . Initialize the noise
3: for i 0 to N � 1 do

4: x̃ x(ti)
s(ti)

5: ⌫i  �0(ti)
�(ti)

+ s0(ti)
s(ti)

6: ⇣i  �0(ti)s(ti)
�(ti)

7: dP  ⌫ix(ti)� ⇣iD✓(x̃; �(ti))

8: x̂ 1
s(ti)

⇣
x(ti) + s(ti)2�(ti)2

D✓(x̃;�(ti))�x(ti)
�(ti)2

⌘

9: dL  rxkAx̂(x(ti))� yk22
10: x(ti+1) x(ti) + (ti+1 � ti)dP + �tdL

11: end for

12: end procedure

Di↵usion models appear to be highly suitable for ZTE reconstruction, building on their
proven e↵ectiveness in traditional MRI reconstruction tasks. The ZTE forward model es-
sentially involves a specific type of undersampling. Given this context, a di↵usion model
that is adeptly trained on a diverse array of MRI images is likely to excel in reconstructing
ZTE data. By learning from the broader MRI data distributions, these models can adapt
their reconstruction capabilities to e↵ectively address and correct the undersampling in ZTE
images.
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Chapter 4

2D Results

This chapter presents preliminary results of applying deep learning frameworks to simlutaed
2D ZTE MRI reconstruction, leveraging the greater availability of 2D data to optimize and
test these models. However, it is important to note a significant limitation: there is currently
no established in-vivo use case for 2D ZTE imaging. This gap underscores the experimental
nature of our findings and suggests a need for caution in directly extrapolating these results
to clinical scenarios.

4.1 2D UNet and Interlacer Training Details

For the following 2D data experiments, the UNet and Interlacer models were trained on
64x64 images with a batch size of 8. Training used the synthetic ZTE data with a DTG of 5
generated from the FastMRI brain dataset (see Figure 4.1). The dataset was pre-generated
to optimize memory usage and speed during training. The models were trained for 200
epochs with a learning rate of 1e-3 and using the Adam optimizer[14]. All training used
Pytorch[18] on an NVIDIA Titan Xp GPU.

4.2 2D Di↵usion Training Details

The Di↵usion model was trained on the 5000 middle slices from the FastMRI brain dataset.
The images were center cropped to be 256x256 pixels. The model adopted a UNet style
architecture as described in Karras et al.[13], configured with 2 input/output channels to
e↵ectively handle both the real and imaginary components of the MRI images. We used
a batch size of 8 for training the di↵usion model and training was done across 2 NVIDIA
GeForce RTX 3090 lasting 2 days. During inference, ZTE data with a DTG of 5 was
simulated from the FastMRI brain dataset by applying the forward model described in
Chapter 2. Inference was performed on one NVIDIA Titan Xp GPU.
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Figure 4.1: An example 2D input in its original resolution for clarity. The sensitivity map
was calculated from the ground truth coil image shown on the right.

4.3 2D Simulated Data UNet Experiments

An initial set of experiments focused on identifying what additional input data to the UNet is
necessary to yield the most accurate reconstruction results. We explored three input options:
single coils with no additional information, single coils with their sensitivity maps — which
were calculated from fully sampled ground truth data — and single coils paired with RSS
of all the coils. The incorporation of additional input data serves to provide the model with
extra contextual information about the FOV and structure of the final image, enhancing the
overall reconstruction accuracy.

From the qualitative results presented in Figure 4.2, it is evident that the UNet trained
with both coil data and additional RSS input performed best. Models trained solely on coil
data, or on coil data combined with sensitivity maps, exhibited errors across both low and
high-frequency ranges. Notably, the errors in the first two models were more pronounced
and varied, a↵ecting the depiction of anatomical details and resulting in higher overall er-
ror rates. In contrast, the model trained with coil data and RSS input demonstrated more
uniform errors that were predominantly confined to the lower frequencies of the image. This
suggests a more stable and reliable reconstruction.

To further confirm these qualitative results, the Normalized Root Mean Squared Error
(NRMSE) and Peak Signal to Noise Ratio (PSNR) of the RSS of the model outputs were
measured across 100 samples. Table 4.1 shows the mean and standard deviation of the
NRMSE and PSNR across the 3 experiments.

Reconstruction using coil data only is a more di�cult task since the coil sensitivity maps
weigh the structure of the anatomy non-uniformly. Consequently, the full structure of the



CHAPTER 4. 2D RESULTS 15

Figure 4.2: Reconstruction results on 3 UNet models trained with di↵erent inputs. Instead
of presenting the raw multi-coil data, the images in this figure show the RSS of the multi-coil
data. The model trained on coil images alone has the highest reconstruction error while the
model trained on coil images with the RSS of all the coil inputs performs best.

UNet Input NRMSE (↓) PSNR (↑)

Coil Only 0.0168± 0.0084 36.02± 3.15
Coil + Sensitivities 0.0169± 0.0091 36.74± 3.31
Coil + RSS 0.0087± 0.0040 42.29± 3.11

Table 4.1: Performance comparison of various UNet inputs on validation set. NRMSE and
PSNR were computed on 100 validation samples. The Coil + RSS UNet yielded the lowest
NRMSE and highest PSNR which indicates the best performance.

coil input image often appears unclear, especially in the presence of larger dead time gaps
as shown in Figure 4.1. Additionally, the fact that coils are input individually complicates
the reconstruction task, as each coil’s data must be integrated accurately to form a cohe-
sive image. More unexpectedly, the model trained on coil data and respective sensitivity
maps also exhibited higher errors. Initially, the inclusion of the coil sensitivity map in the
training input was intended to provide additional information about how the coil images are
weighted, potentially enhancing the model’s ability to accurately reconstruct the anatomy.
However, if the image a↵ected by the DTG lacks substantial information about parts of the
anatomy distant from the respective receiver coils, then merely adding information on how
the image is weighted does not substantially aid the reconstruction process. This suggests
that the e↵ectiveness of sensitivity maps may be limited in scenarios where the underlying
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coil data are inherently sparse or incomplete, which aligns with the observed increase in
reconstruction errors.

Incorporating the RSS of the coils into the model input proved beneficial, as it provided
critical information that enhanced the model’s performance. This result is beneficial in
practice as the RSS model does not rely on additional information which is harder to acquire
such as sensitivity maps. The inclusion of RSS data gives the model a clear understanding of
the FOV of the image, which is crucial for accurate image reconstruction. Additionally, the
RSS allows the model to better infer the final contrast from the coil image. Even though some
low-frequency information may be missing due to the DTG, the sensitivity maps distribute
this information across the other coils. By integrating the RSS, which includes information
from all coils, the model can leverage these distributed low frequencies, leading to a more
accurate and complete reconstruction of the image.

4.4 2D Comparison of Learning Frameworks

Figure 4.3: Reconstruction results across the 3 learning frameworks presented. Instead of
presenting the raw multi-coil data, the images in this figure show the RSS of the multi-
coil data. Only the best UNet model trained on coil + RSS data is shown as the other
experiments are compared in Figure 5. The Interlacer model qualitatively shows the worst
reconstruction error and the Di↵usion model shows the best reconstruction error.

With the best UNet result established, we performed a comparison across the three learn-
ing frameworks discussed in Chapter 3. The key NRMSE and PSNR metrics were again
computed across 100 data points and their means and standard deviations are presented in
Table 4.2. The Di↵usion and UNet frameworks exhibited very similar results quantitatively,
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Method NRMSE (↓) PSNR (↑)

UNet (Coil + RSS) 0.0087± 0.0040 42.29± 3.11

Interlacer 0.0225± 0.0114 34.23± 3.45
Di↵usion 0.0075± 0.0025 42.13± 2.33

Table 4.2: Performance comparison of the three learning frameworks on the validation set.
The table shows the mean and standard deviation of the NRMSE and PSNR computed on
100 validation samples. The Di↵usion model had the best NRMSE and the UNet model had
the best PSNR

but the qualitative analysis in Figure 4.3 shows that the error from the Di↵usion model
resembled noise and is less biased than the error from the UNet model.

The Interlacer approach, which performs reconstruction based on only coil data as input,
presents high errors in both the high and low frequencies of the output. Qualitatively and
quantitatively, the results from the Interlacer are the least favorable, performing even worse
than the UNet trained solely with coil data. Unlike the other methods, the Interlacer out-
puts present errors both within the anatomy and in the surrounding areas. This is due to
the method’s use of convolutions in both the image and frequency domains. Consequently,
this biases the quantitative metrics and suggests that a method to compute error only in the
anatomy region might provide a more accurate comparison of the di↵erent frameworks.

The Di↵usion approach demonstrated the best results, which is impressive given that the
input is not in distribution with the training data, since the model was trained to denoise
fully sampled data. Despite this mismatch, the observed error is minimal and predominantly
noise-like, likely a residual e↵ect from the denoising di↵usion process. Overall, the errors
are uniformly minimal across the image contrast, indicating that the model has e�ciently
learned to reconstruct images from coil data with a DTG. This achievement underscores
the model’s robustness and adaptability in handling complex imaging scenarios beyond its
initial training conditions. The limitation of this method is that it relies on knowledge of
the sensitivity maps for data consistency. This introduces the need for a calibration scan to
compute sensitivity maps from the auto-calibrating signal.
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Chapter 5

3D Results

This chapter focuses on 3D ZTE reconstruction, which represents the real use case in clinical
practice. A significant challenge encountered in this chapter is the limited availability of 3D
data. For instance, the 3D dataset explored in this study comprised only 20 volumes—a
stark contrast to the 4470 scans available in the 2D brain dataset. Additionally, while it
might be tempting to consider using a stack of 2D slices to augment 3D data, this approach is
flawed for ZTE imaging. The continuity of the signal cannot be guaranteed across slices due
to variations in slice thickness, which can a↵ect the homogeneity of the reconstructed vol-
ume. Moreover, slicing through 3D radial data does not translate e↵ectively into 2D planes,
as the non-Cartesian nature of radial sampling complicates any straightforward slice-based
reconstruction, disrupting the integrity and accuracy of the resulting images.

In the 2D experiments, the Di↵usion model yielded the best results, followed closely by the
UNet with RSS. Considering the complexities involved in training a 3D di↵usion model, such
as data and memory availability, a 3D UNet with RSS was selected for initial trials due to
its comparatively straightforward and faster training process. This approach facilitated the
e�cient creation of a reliable performance baseline, setting the stage for further investigation
into the more sophisticated 3D di↵usion models.

5.1 3D Training Details

For the following 3D data experiments, a UNet model was trained on 64x64x64 images with
a batch size of 4. The model received as input a coil image along with the RSS of all coils.
One experiment used the synthetic ZTE data with a DTG of 5 generated from the Stanford
Fullysampled 3D FSE Knees dataset. The other used random noise-like images generated by
the method described in De Goyeneche et al.[9] The dataset was pre-generated to optimize
memory usage and speed during training. The models were trained for 200 epochs with
a learning rate of 1e-3 and using the Adam optimizer. All training used Pytorch on an
NVIDIA Titan Xp GPU.
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5.2 3D Simulated UNet Experiments

When comparing the results of the 3D UNets trained on knee data and noise, as presented
in Figure 5.1 and 5.2, it is evident that the model trained on knee data exhibits superior re-
construction capabilities within the targeted area. The model trained on noise demonstrates
a compromised ability to reconstruct the knee, and shows errors in both the high and low
frequencies of the image. Errors are more pronounced in anatomical regions characterized
by complex structures and significant variations in contrast. This highlights the advantage
of task-specific training in deep learning models for medical image reconstruction.

An additional observation from the experiments is the model’s limitation due to the use
of a circular mask, which inherently restricts the full view of the knee’s structure. Despite
this, a notable advantage is that the reconstruction process did not introduce artifacts or
alterations to the regions outside the masked area. This characteristic suggests that the
model’s learning is well-contained within the region of interest and preserves the integrity
of surrounding tissues, ensuring that only the area within the mask is subjected to the
reconstruction process.

5.3 In-vivo Experiments

To assess the usability of this model in a clinical setting, inference was performed on in-
vivo data, as depicted in Figure 5.3, using the model trained on synthetic noise data. The
model reconstructed images with enhanced brightness, o↵ering a clearer visualization of
brain structures such as the temporal lobes, respective glands, thalamus, hypothalamus, and
ventricles. However, the brightness of the region outside the anatomy presented an aura-like
artifact; this phenomenon was also present in the input data, suggesting that the model has
not fully corrected this issue. Moreover, the model displayed incorrect contrast in the sinus,
pharynx, and other orifices, which appear darkened yet not with the same fidelity as shown
in the ground truth images. These areas of concern are highlighted in the figure, where the
anatomy’s contrast di↵ers notably from the expected results, indicating a need for further
model refinement to enhance clinical applicability.
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Figure 5.1: 3D Reconstruction of Simulated ZTE Knee Data with a 5-Sample Dead Time
Gap using a UNet trained on 3D knee data. The reconstruction was individually performed
on each coil image using a 3D UNet model, which received as input the individual coils and
the RSS of all coils. Displayed from top to bottom are the axial, coronal, and sagittal views
of the RSS from the reconstructed coil images, demonstrating accurate reconstruction across
all orientations. The rightmost column illustrates the reconstruction error relative to the
ground truth, amplified by a factor of 5 for clearer visualization. For this experiment, the
reconstruction error is minimal.
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Figure 5.2: 3D Reconstruction of Simulated ZTE Knee Data with a 5-Sample Dead Time
Gap using a UNet trained on 3D noise. The reconstruction was individually performed on
each coil image using a 3D UNet model, which received as input the individual coils and the
RSS of all coils. Displayed from top to bottom are the axial, coronal, and sagittal views of
the RSS from the reconstructed coil images, demonstrating consistent reconstruction across
all orientations. The rightmost column illustrates the reconstruction error relative to the
ground truth, amplified by a factor of 5 for clearer visualization. For this experiment, errors
are visible in both the higher and lower frequencies of the image, as evidenced by the visible
anatomical details of the knee in the error plot.
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Figure 5.3: In-vivo ZTE Reconstruction using the 3D UNet model trained on synthetic
data. A head scan was acquired using a 12-channel head coil on a GE-3T MR750W (with
±31.25kHz rBW, 2.3ms TR, flip angle 2 degrees, 24 cm FOV). The ground truth was recon-
structed using additional acquisitions and WASPI. The region highlighted by the red box
shows a failure point of the model where the reconstructed image is significantly brighter
than the ground truth.
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Chapter 6

Conclusion

6.1 Discussion

In exploring the 3D UNet methods for reconstructing ZTE data, the primary challenge faced
was the model’s tendency to ”brighten” the entire field of view. This artifact was due to
the divergence between the distribution of in-vivo data and the simulated data used for
training, highlighting a critical limitation in the model’s ability to generalize to new, unseen
data types. A first future study should explore the 3D UNet model’s e↵ectiveness on in-vivo
data that matches the training data exactly, meaning the same anatomy, FOV, resolution,
number of coils, and ideally as close of a matching contrast as possible to the training set.

To enhance model robustness further, a next step involves implementing 3D di↵usion tech-
niques, building upon the success of 2D Di↵usion models, which have demonstrated less bias
in reconstruction results. One promising approach, as described by Chung et al. [3], recon-
structs 3D volumes by processing each slice individually using a 2D Di↵usion model. This
strategy is necessitated by the high memory and computational demands of fully 3D Dif-
fusion models. To ensure consistency across slices, the method incorporates a model-based
prior in the z-direction during testing. This augmentation aims to align all 2D-generated
slices accurately, ensuring they stack correctly to form a coherent 3D volume.

Another important analysis involves reconstructing outlier data, such as a ZTE scan of a
brain with a tumor. While existing methods may accurately reconstruct in-vivo scans of
healthy anatomy, they must also prove robust when dealing with such outliers, which could
significantly a↵ect contrast.

Lastly, leveraging the premise of convolutional spread can aid the model in recovering the
low-frequency energy that gets spread to higher frequencies in the coil data, thus reducing
reconstruction errors. If not limited by memory requirements, a more e�cient strategy to
process multi-coil data would be to input all coil data together rather than separating it
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across the batch dimension. This unified approach could enhance the model’s ability to
learn from the complex spatial relationships inherent in multi-coil MRI data. Additionally,
training the model to apply the inverse of the sensitivity maps to the coil k -space, in order to
recover the original k -space data, presents a promising direction. However, this approach is
limited by the need for precise sensitivity maps, which typically require additional calibration
scans.

6.2 Conclusion

This thesis investigated the application of deep learning techniques for reconstructing ZTE
MRI data, which is crucial for enhancing the practical applicability of ZTE in clinical set-
tings. By not relying on additional acquisitions or extensive knowledge of sensitivity maps,
our approach simplifies the ZTE reconstruction process, thus reducing scan times and en-
hancing patient comfort without sacrificing image quality.

Our experiments with simulated data have demonstrated e↵ective results, suggesting that
the proposed models can robustly estimate the missing center of k -space, thereby recover-
ing high-quality images. This capability is instrumental in advancing ZTE MRI technology,
making it a more viable option for rapid, dynamic contrast-enhanced imaging used in various
medical scenarios.

In conclusion, this work not only enhances our understanding of the capabilities and lim-
itations of deep learning in medical imaging reconstruction but also takes a pivotal step
towards making advanced MRI techniques more accessible in everyday clinical practice.
Future research will build on these foundations, further integrating deep learning to meet
clinical demands, thus realizing the potential of ZTE MRI as a faster, quieter, and more
patient-friendly imaging modality.
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