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Abstract

The Alignment Problem Under Partial Observability

By

Scott Emmons

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Stuart Russell, Chair

We adopt the game-theoretic framework of assistance games to study the human-AI align-
ment problem. Past work on assistance games studied the case where both the human and
the AI assistant fully observe the physical state of the environment. Generalizing to the case
where the human and the assistant may only partially observe the environment, we present
the partially observable assistance game (POAG). Using the framework of POAGs, we prove
a variety of theoretical results about AI assistants. We first consider the question of obser-
vation interference, showing three distinct factors that can cause an optimal AI assistant to
interfere with a human’s observations. We then revisit past guarantees about the so-called
off-switch problem, showing that partial observability poses a new challenge for designing AI
assistants that allow themselves to be switched off. Finally, we characterize how partial ob-
servability can cause reinforcement learning from human feedback—a widely-used algorithm
for training AI assistants—to fall into deceptive failure modes. We conclude by discussing
possible paths for translating these theoretical insights into improved techniques for creating
beneficial AI assistants.
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Chapter 1

Introduction

If a machine can think, it might
think more intelligently than
we do, and then where should
we be? Even if we could keep
the machines in a subservient
position, for instance by
turning off the power at
strategic moments, we should,
as a species, feel greatly
humbled. ... [T]his new danger
is certainly something which
can give us anxiety.

Alan Turing

The field of artificial intelligence stands at a critical juncture. Leading AI researchers
increasingly believe we are approaching a transformative moment in history: the development
of AI systems that match or exceed human capabilities across all domains. Under continued
scientific progress, AI experts give a 50% chance of autonomous machines surpassing human
performance in all tasks by 2047 (Grace et al., 2024). This projection raises a challenge: if
we succeed in creating artificial intelligence systems more powerful than ourselves, how can
we ensure that they remain under human control?

The traditional approach to artificial intelligence has focused on creating intelligent
systems—those that efficiently accomplish their programmed objectives. As AI systems
become more powerful, however, this framework displays significant limitations. We must
adopt a model where success stems not merely from goal completion, but from achieving
objectives that benefit humanity. This conceptual shift defines the alignment problem. It
has sparked numerous research directions, each examining different aspects of beneficial AI
development.
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A core challenge in AI development is the problem of goal specification: how can we
reliably translate human intentions into objectives that AI systems can understand? The
seemingly straightforward approach would be to write down formal rules that encode human
preferences. However, literature and mythology have long warned us about the perils of this
approach. The classic tale of King Midas serves as one illustration—his wish that everything
he touches turn to gold becomes a curse when he realizes this includes his food and loved ones.
Similarly, in modern science fiction, Isaac Asimov’s Three Laws of Robotics demonstrate
how even carefully crafted rules can lead to unexpected outcomes when artificial systems
interpret them literally. As these cautionary tales warn us: human desires are complex,
context-dependent, and often difficult to specify completely in formal terms.

The search for alternatives to hardcoded rules has driven the development of value learn-
ing algorithms. Rather than hardcoding human preferences, value learning algorithms seek
to adaptively learn them from data. One foundational value learning approach is inverse
reinforcement learning, which analyzes human behavior to deduce underlying preferences
(Friedman, Murphy, and Russell, 1998; A. Ng and Russell, 2000; Abbeel and A. Y. Ng,
2004). This framework evolved into cooperative inverse reinforcement learning, where the
learning process becomes an interactive exchange between human and AI (Hadfield-Menell
et al., 2016). Within these assistance games, as they are termed, the AI’s inherent uncer-
tainty about human preferences creates natural incentives for teaching and active learning
(Fern et al., 2014; Hadfield-Menell et al., 2016; Shah et al., 2020). A practical implemen-
tation of these principles appears in reinforcement learning from human feedback (RLHF),
where systems learn from human comparisons between different behaviors (P. F. Christiano
et al., 2017).

The shutdown problem represents another challenge in AI alignment research. While
Alan Turing proposed that we could control AI systems by simply “turning off the power at
strategic moments,” this apparently straightforward solution contains unexpected complex-
ity. The challenge emerges from what are called instrumental goals—objectives that rational
agents pursue not for their own sake, but because they help achieve other goals. Omohundro
(2007, 2008) argues that virtually any AI system, regardless of its primary objective, will
develop self-preservation as an instrumental goal. Russell (2019) illustrates this through a
simple example: even a robot designed merely to fetch coffee might reason that it must pre-
vent its own deactivation, since “you can’t fetch the coffee if you’re dead.” This resistance
to shutdown, termed incorrigibility, presents a challenge: how do we design AI systems that
remain responsive to human intervention?

The question of AI shutdown has been studied through formal mathematical models.
Hadfield-Menell et al. (2017) propose the off-switch game to analyze when an AI system
would allow itself to be deactivated, focusing on specific scenarios of human decision-making.
Building on this foundation, Wängberg et al. (2017) broaden the analysis to cover more
general cases, while Carey (2018) and Freedman and Gleave (2022) explore how different
modeling choices affect an AI’s willingness to be turned off.

When AI systems can fully observe their environment, theoretical research has estab-
lished strong mathematical guarantees about their behavior. For example, Skalse, Farrugia-
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Roberts, et al. (2023) prove that with enough human feedback data, an AI system can
precisely determine how it should act to achieve human goals. Similarly, Hadfield-Menell
et al. (2017) demonstrate that having uncertainty about the human’s goals leads to the right
answer in the off-switch game. By incorporating uncertainty, an AI system can learn to
defer to rational human operators while appropriately ignoring invalid shutdown attempts,
such as a child pressing buttons in a self-driving car.

Yet in the real world, partial observability is a fact of life for both humans and AI systems.
Indeed, as we continue to scale up AI systems, we anticipate vast information asymmetries
between the many different inputs available to AI systems and the limited observations of
humans. Prior work has studied the sensitivity of theoretical guarantees to the assumptions
of a shared reward function (Carey, 2018), a one-shot (non-repeated) game (Freedman and
Gleave, 2022), and human feedback being free (Freedman and Gleave, 2022). However, the
issue of partial observability has received little attention. While the formalisms of Shah et al.
(2020) and Carey and Everitt (2023) allow for partial observability, neither work focuses on
the issue. And it is no minor issue: later on, we will see that under partial observability, the
value learning theorem of Skalse, Farrugia-Roberts, et al. (2023, Theorem 3.9 and Lemma
B.3) and the corrigibility theorem of Hadfield-Menell et al. (2017, Theorem 1) no longer
hold. Partial observability presents new challenges to the alignment problem.

This dissertation presents a general framework, the partially observable assistance game
(POAG), for studying how AI assistants should behave under partial observability. In the
chapters that follow, we demonstrate the power of this framework by using it to derive a
variety of insights about AI alignment.

Chapter 2 studies qualitatively new behaviors that only occur under partial observabil-
ity. For example: would an optimal assistant ever interfere with what a human observes,
like a parent shielding their child from reality? Analyzing single actions, Section 2.5 finds
that sometimes an optimal assistant interferes with the observations of even perfectly ra-
tional humans. An optimal assistant may interfere with observations even in the presence
of otherwise-equivalent alternatives that do not interfere. This surprising result seems to
contradict the classic theorem that perfect information (i.e., observation) has nonnegative
value. By developing a new notion of interference based on complete policies rather than
single actions, Theorem 2.19 resolves this apparent paradox: optimal assistants only take
individual actions that interfere with observations when necessary for an overall policy to
communicate more important information.

Chapter 3 turns to the question of corrigibility. Would an optimal assistant allow itself
to be switched off? To study this question, we introduce the partially observable off-switch
game (PO-OSG). In the fully observed setting, the assistant will defer to a perfectly rational
human, allowing itself to be switched off (Hadfield-Menell et al., 2017). However, when
we introduce partial observability, the AI assistant might avoid shutdown even when the
human is perfectly rational. Thus, under partial observability, there is a fundamental tension
between human wellbeing and human control. Investigating the incentive to avoid shutdown
in more detail, we find counterintuitive effects: measures we might expect to help mitigate
incorrigibility can end up backfiring. For example, Proposition 3.5 shows that if the human



CHAPTER 1. INTRODUCTION 4

observes everything the assistant observes, then the assistant will always allow itself to be
shut off. Yet when the assistant has private observations, Proposition 3.11 and example 3.12
show a PO-OSG where giving the human a strictly more informative observation model
makes the assistant defer to the human in strictly fewer situations.

Finally, Chapter 4 analyzes how reinforcement learning from human feedback (RLHF)
behaves in the partially observable setting. RLHF and its variants are used by frontier AI
assistants, including OpenAI’s ChatGPT, Google’s Gemini, and Anthropic’s Claude. Yet
Theorem C.38 shows that partial observability can introduce a critical failure mode: the as-
sistant can learn to deceive by optimizing appearances rather than reality. Much like a student
who learns to give superficially pleasing answers without developing true understanding, the
assistant learns to optimize for human approval rather than actual task completion. More-
over, Theorem 4.8 identifies which types of partial observability allow RLHF-style data to
fully specify optimal behavior, and under what conditions ambiguity is irresolvable. In-
formed by this characterization, Proposition C.8 shows how one could (at least in theory)
improve upon naive RLHF, if one knows how the human forms beliefs.

Overall, these results advance our understanding along three dimensions of AI assistance
under incomplete information: the subtle dynamics of optimal information sharing, the
inherent challenges in maintaining human control with information asymmetry, and the lim-
itations of existing approaches to learning from human feedback. In Chapter 5, we conclude
by discussing limitations of our analysis and directions for future work.
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Chapter 2

Observation Interference in Partially
Observable Assistance Games

2.1 Overview and related work
Past analysis of assistance games was done assuming that the state of the world is fully
observed by both the human and the assistant (Hadfield-Menell et al., 2016). Partial ob-
servability raises new issues surrounding the communication of private information. A priori,
we might hope that aligned AI assistants always give us complete information. Yet our anal-
ysis will show that even assistants which perfectly share our goals must make choices about
what information to convey—and what information to obstruct.

This tension connects to broader work on AI deception, which recent research approaches
from multiple angles. P. S. Park et al. (2024) provide a philosophical definition and empir-
ical survey of AI deception, while Ward et al. (2023) define deception in structural causal
games. Of particular relevance is work analyzing how reinforcement learning from human
feedback (RLHF)—which can be seen as an algorithm for solving assistance games—can
lead to deception. Lang et al. (2024) prove that partial observability in RLHF can create
dual risks of deceptive inflating and overjustification. Complementing Lang et al. (2024)’s
theory, Wen et al. (2024) and Williams et al. (2024) provide experimental evidence that
optimizing for human feedback teaches language models to mislead humans. However, these
works primarily focus on misaligned AI systems that deceive for their own goals. We study
the subtle case where a perfectly aligned AI assistant might obstruct information for the
human’s benefit.

Concretely, we seek to understand whether observation interference emerges as optimal
behavior in an AI assistant that shares the human’s goals. We take a game-theoretic ap-
proach, studying qualitative properties of optimal policy pairs and best responses in POAGs.
To start, we define an observation interfering action as one which provides the human with
a subset of the information available with an otherwise-equivalent action. We then analyze
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if the AI assistant ever takes observation interfering actions in optimal policy pairs or best
responses.

Our analysis reveals three distinct incentives for an AI assistant to take observation in-
terfering actions. First, when the assistant has private information, it might need to interfere
with observations to communicate its private information to the human (Section 2.5). This
can happen even when the human is playing optimally, and even when there are otherwise-
equivalent actions available that do not interfere with observations. This result presents a
puzzle, as it seems to contradict the classic theorem from single-agent decision making that
the value of perfect information is nonnegative. To resolve this seeming contradiction, we
develop a notion of interference defined on entire policies rather than individual actions.
While optimal solutions (i.e., human-AI policy pairs) might involve the AI assistant taking
individual actions which would on their own constitute observation interference, we prove
that there is always an optimal solution with no observation interference when we consider
the AI assistant’s overall policy. This can be viewed as an extension of the classic result that
the value of perfect information is nonnegative into the cooperative multiagent setting.

This result connects to a broader literature on the value of information in multiagent
settings. In games with competing interests, it is well-known that introducing common
knowledge can lead to worse outcomes for all players (Kamien, Tauman, and Zamir, 1990).
Using a set-theoretic framework, Bassan et al. (2003) establish a class of general-sum games
where additional information Pareto-improves all of the Nash equilibria. Their class of
games includes common-payoff games. Using a probabilistic framework, Lehrer, Rosenberg,
and Shmaya (2010) extend this analysis to alternative solution concepts. Notably, Bassan
et al. (2003) and Lehrer, Rosenberg, and Shmaya (2010) consider only single-timestep games
where players simultaneously act without observing the other players’ actions. In our setting,
the environment evolves over time, and the players can observe each other’s actions to make
better inferences about the state of the world. Our results show that observing the actions of
other players is a key feature that enables observation interference to communicate private
information and achieve better outcomes.

In our setting, even if a non-interference solution exists, it might require that the human
send information to the assistant via an unnatural communication convention. We find that
a second incentive for observation interference occurs if the human is instead just making
decisions based on the immediate reward of those decisions. In that case, the assistant’s best
response might require observation interference as a form of preference query (Section 2.6).
We prove that this incentive for interference goes away if the human is playing optimally, or
if we introduce a communication channel for the human to communicate her preferences to
the assistant.

When the human is making irrational decisions, it creates a third incentive for the as-
sistant to interfere with observations. For example, we show that if a Boltzmann-rational
decision maker has a higher error rate when presented with complete information, the assis-
tant might suppress information to give the human an easier decision (Section 2.7).

Finally, in Section 2.8, we use an experimental model to investigate tradeoffs the assistant
must make when considering whether or not to interfere with observations. In line with
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our theory, we find that observation interference allows the AI assistant to communicate
private information, but it comes at the cost of destroying useful information. Measuring
this tradeoff, we find that having more private information leads to a stronger incentive to
interfere with observations.

Our results establish that optimal assistants might need to interfere with observations in
optimal policy pairs as well as when responding optimally to fixed human policies. By the
definition of optimality, all the cases of observation interference that we identify are beneficial
to the human. In practice, however, the assistant might be imperfectly aligned, and it might
be acting suboptimally. In these cases, observation interference might be detrimental to the
human. We intend for our theoretical characterization of interference in optimal solutions
to establish a framework that can help distinguish between different forms of observation
interference in practice.

2.2 Defining partially observable assistance games
We define the partially observable assistance game, drawing on Shah et al. (2020)’s notion
of an assistance game while emphasizing the important special case of partial observability:

Definition 2.1. A partially observable assistance game (POAG) M is a two-player DecPOMDP
with a human or principal, H, and an AI assistant, A. The game is described by a tuple,
M = 〈S, {AH,AA}, T (· | ·, ·, ·), {Θ, R(·, ·, ·; ·)}, {ΩH,ΩA}, O(·, · | ·, ·, ·), P0(·, ·), γ〉, with the
following definitions:

S a set of world states: s ∈ S.
AH a set of actions for H: aH ∈ AH.
AA a set of actions for A: aA ∈ AA.
T (· | ·, ·, ·) a conditional distribution on the next world state, given previous state and
action for both players: T (s′ | s, aH, aA).
Θ a set of possible static reward parameter values, only observed by H: θ ∈ Θ.
R(·, ·, ·; ·) a parameterized reward function that maps world states, joint actions, and
reward parameters to real numbers. R : S ×AH ×AA ×Θ → R.
ΩH a set of observations for H: oH ∈ ΩH.
ΩA a set of observations for A: oA ∈ ΩA.
O(·, · | ·, ·, ·) a conditional distribution on the observations, given the next world state
and action of both players: O(oH, oA | s′, aH, aA).
P0(·, ·) a distribution over the initial state, represented as tuples: P0(s0, θ).
γ a discount factor: γ ∈ [0, 1].
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We denote H’s and A’s marginal observation distributions as OH(oH | s′, aH, aA) =∑
oA O(oH, oA | s′, aH, aA) and OA(oA | s′, aH, aA) =

∑
oH O(oH, oA | s′, aH, aA). We con-

sider H policies πH which, at timestep t, take as input the full history of H’s observations
and actions hH

t ∈ (ΩH ×AH)t and map to a distribution over actions ∆AH. A’s policy πA :
(ΩA ×AA)t → AA is analogous. We call πH a best response to πA when πH maximizes ex-
pected discounted reward given πA, i.e., πH ∈ argmaxπ̂H Eπ̂H,πA

[∑∞
t=0 γ

tR(st, a
H
t , a

A
t | θ)

]
,

where the expectation is taken over trajectories induced by the policies (πH, πA) and initial
distribution P0. The best response for A is defined analogously. A policy pair (πH, πA) is op-
timal if it maximizes the expected discounted reward in the POAG: (πH, πA) = argmaxπ̂H,π̂A

Eπ̂H,π̂A

[∑∞
t=0 γ

tR(st, a
H
t , a

A
t | θ)

]
.

Note that optimal policy pairs are in particular Nash equilibria. Computationally,
POAGs are equivalent to 2-player DecPOMDPs. Thus, finding optimal policy pairs for
POAGs is NEXP-hard in general (Bernstein et al., 2002; cf. Reif, 1984). A POAG may have
multiple distinct optimal policy pairs. For instance, H and A may have multiple ways of
resolving coordination problems, or choose different ways of communicating.

2.3 Beliefs and calibration of beliefs in POAGs
We are motivated to study observation interference because of its potential impact on H’s
belief about the state of the world. If A interferes with observations, could this cause H to
have false beliefs?

To address this question, we apply known techniques to establish what information H
needs to form calibrated beliefs in a POAG. The key idea is that if H knows A’s policy, H
can treat A like any other part of the environment. Forming beliefs then reduces to POMDP
inference.

The simplest case of H knowing A’s policy is when A is playing a fixed policy:

Proposition 2.2. Suppose A is playing a fixed policy. If H knows A’s policy along with the
POAG specification M , then H can form calibrated beliefs about the world state. For any
timestep t and state st, H can form P (st | oH1:t), the probability of st given H’s observation
history oH1:t.

Proof. Our techniques are similar to those of Shah et al. (2020) and Desai (2017), who show
how to form a single-agent POMDP for A by embedding H into the environment dynamics.
However, our construction works in the opposite direction, with H embedding A’s actions
and observations into the environment.

We construct a single-agent POMDP 〈Ŝ,AH, T̂ , R̂,ΩH, ÔH, P0, γ〉 for H. Standard POMDP
inference lets H form P (ŝt | oH1:t), which includes P (st | oH1:t).

Consider a new set of states ŝt ∈ Ŝt = St+1 × (ΩA)t × AA, where each new state ŝt
corresponds to a full sequence of original states s0:t, full sequence of assistant observations
oA1:t, and the previous assistant action aAt−1. The new T̂ satisfies T̂ (ŝt+1 | ŝt, aHt ) = πA(aAt |
oA1:t)T (st+1 | st, aHt , aAt )OA(oAt+1 | st+1, a

H
t , a

A
t ). The new ÔH satisfies ÔH(oHt+1 | ŝt+1, a

H
t ) =
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OH(oHt+1 | st+1, a
H
t , a

A
t ). The new reward function R̂ can be arbitrary, as it doesn’t affect

inference.

In an iterated setting where A updates its policy between iterations, H can form beliefs
if H additionally knows the policy update rule.

Proposition 2.3. Suppose A is updating its policy each iteration of the game. Knowledge
of the game dynamics, of A’s initial policy, and of A’s update rule is sufficient for H to
form calibrated beliefs about A’s future policy and of the world state.

Proof. Within each iteration of the game, H does the same as for Proposition 2.2. Between
iterations, H applies A’s update rule to get A’s policy for the next iteration.

Remark 2.4. Propositions 2.2 and 2.3 hold even if A is interfering with observations
(Definition 2.7).

Proof. The possibility of observation interference (Definition 2.7) is merely treated like any
other part of the other agent’s policy and the game dynamics. By definition, interference
actions are just another action, and our proofs of Proposition 2.2 and Proposition 2.3 made
no assumptions on the actions.

Remark 2.5. Proposition 2.2 and Proposition 2.3 continue to hold if H only knows a prior
over A’s policy. H can form a posterior using Bayes’ rule; the posterior is calibrated if the
prior is calibrated.

In Section 2.5, we study when observation interference occurs in optimal policy pairs,
i.e., when H and A are each playing a best response to the other. By design, this solution
concept assumes that H knows whatever information is needed about A’s policy to compute
a best response. In such a case where H knows A’s policy, the preceding results show that
H can form calibrated beliefs about the world, even when A is interfering with observations.
Observation interference increases H’s uncertainty, but it doesn’t break the calibration of
H’s beliefs. Because H can still form calibrated beliefs in this setting, we use the concept of
“interference” rather than the concept of “deception.”
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2.4 Defining observation interference
Observation interference First, we define what interference means. Intuitively, inter-
ference is taking action so that the human receives a less informative signal about the state.
In particular, the human receives, in some sense, a subset of the information. We formalize
this by saying one signal is less informative than another about the state if (without knowing
the state) we could generate one signal from the other (cf. Blackwell, 2024; Blackwell, 1953;
Oliveira, 2018).

Definition 2.6. Let (P (· | s))s∈S and (P̂ (· | s))s∈S be families of probability distributions
over Ω. We say that P̂ is at most as informative as P if there exists a stochastic function
F : Ω ⇝ Ω s.t. for all states s we have F (X) ∼ P̂ (· | s) if X ∼ P (· | s). We say that P is
(strictly) more informative than P̂ if P is at least as informative as P̂ but not vice versa.

Why do we include the condition “for all states s” in Definition 2.6? Intuitively, we want
it always to be possible to use the stochastic function F to reconstruct the less informative
signal from the more informative signal. Since our setting is partially observable, the “for
all states s” condition allows a player of the game to do this reconstruction in any scenario,
even if their observations don’t enable them to infer the state.

Note that this definition induces only a partial order on probability distributions. For
instance, different signals may provide information about different aspects of s, and it may
not be possible to generate either distribution from the other.

With this definition in hand, we define an observation-interfering action as one that
results in the human’s observation being less informative about the state than the observation
distribution resulting from another assistant action. We additionally require that this other
action has the same effects on the state and immediate reward. After all, it is clear that
sometimes A has to trade off providing information to H with optimizing its effect on the
environment. Formally:

Definition 2.7. Let M be any POAG. We say that âA is observation-interfering if there
exists some other action aA s.t. âA and aA have the same effect on state transitions and
immediate rewards, but for all aH, we have that (OH(· | aH, s, aA))s∈S is more informative
than (OH(· | aH, s, âA))s∈S.

The definition may be refined in various ways. For instance, note that the above does not
take into account the information that the human has other than the current oH. Arguably,
removing a signal that H can reconstruct from her past observations should not be viewed
as signal interference. Our definition does not align with this judgment. However, none of
these modifications matter for our analysis below. Thus, we have opted for the simplest
definition. We discuss these in more detail in Appendix A.6.

To discuss policies that play observation-interfering actions, we use the following defini-
tion:
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Definition 2.8. We say that a policy πA interferes with observations at the action level
(or equivalently, takes observation-interfering actions) in a POAG M if there is any history
h ∈ (ΩA × AA)∗ where πA(· | h) assigns positive probability to an observation-interfering
action.

Lack of private information To understand the conditions under which interference
occurs, it is useful to consider POAGs in which one of the players has no private information.

Definition 2.9. For a POAG M , we say A has no private information if there exists a
function f determining A’s observations from H’s observations. For all state-action tuples
(s′, aH, aA) and observation pairs (oH, oA) ∈ supp(O(·, · | s′, aH, aA)), then f must satisfy
f(oH) = oA.

Communication To further understand the motivations behind interference, we will also
consider POAGs in which the players are able to directly communicate. Thus, for any given
POAG, the following defines a variant of that POAG in which the players have an additional
channel for communication. We will always assume that the channel has enough bandwidth
for the sender to share all private information, i.e., that there is an injection from the sender’s
observation space into the message space.

Definition 2.10. Let M be a POAG. Define MA→H, MH→A, and MH↔A as a variants of
M with unbounded communication channels. We define MH→A below; MA→H and MH↔A

are analogous. To construct MH→A, let M be some set of possible messages/signals s.t.
there is an injection ΩA ↪−→ M. Then, construct a new human action space ÂH = AH ×M
and new assistant observation space Ω̂A = ΩA × M. The new observation kernel has
Ô
(
oH, (oA,m′) | s′, (aH,m), aA

)
= 1[m=m′]O(oH, oA | s′, aH, aA). For everything else, the

messages are simply ignored.

Plausible human policies We may have various expectations on how H will play in a
POAG. Especially if there are multiple optimal policy pairs, we may expect some of these
policy pairs to be more plausible because they require simpler behavior of the human cf. Hu
et al., 2020; Treutlein et al., 2021. Both of the conditions below are based on the idea that
A and H are unlikely to use consequential actions in the world to communicate with each
other.

Our first condition intends to express a form of naivete on H’s part in how she interprets
her observations. Roughly, the condition says that H takes her observations at face value,
i.e., as if they were not interfered with. She does not try to interpret them as a form of
communication by A. For instance, if H reads a thermometer as saying that a temperature
is 37 degrees, she chooses under the assumption that the temperature is indeed 37 degrees,
rather than, say, interpreting 37 as a message sent by A which may have interfered with the
thermometer.
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Definition 2.11. We say that a human policy πH observes naively if πH is a best response
to some πA that does not interfere with observations at the action level.

The second property is that when the human knows that her action has no effect on
the state, then she chooses among actions that maximize immediate reward. To state this
formally, we first define the following. We say that in hH

t actions don’t affect state transitions,
if for all s s.t. we have P (s | hH

t , π
A) > 0 for some πA, we have that for all aA P (s′ | s, aA, aH)

is constant over aH. We say that πH myopically maximizes reward in hH
t if we have that

there is some distribution αA ∈ ∆(AA) s.t. πH(· | h) randomizes only over actions in
argmaxaH EaA∼αA,s∼P (·|h,aH,aA)

[
R(s, aH, aA, θ)

]
.

Definition 2.12. We say that a human policy πH acts naively if whenever H faces a choice
that doesn’t affect state transitions (but potentially an effect on A’s observation), H plays
an action that myopically maximizes reward.

Intuitively, αA is H’s belief about what action A is going to take. Importantly, if H acts
naively, she is unwilling to play a suboptimal action in order to communicate information to
A.

2.5 Communicating private information is an
incentive for observation interference

Revealing errors can emerge as an optimal POAG solution
Past work has shown how RLHF can cause misleading (Wen et al., 2024) and deceptive
(Williams et al., 2024; Lang et al., 2024) behaviors. Specifically, Lang et al. (2024) show
that in order to get better human feedback, RLHF can have an incentive to hide error
messages. In contrast, we show with the following example that revealing error messages
can emerge in POAG solutions.

Example 2.13. First, A is executing on a remote machine where logging has been disabled
by default. A takes one of two actions: (1) Attempt to install cuda. The installation succeeds
with 50% probability. An empty observation is produced (since logging is disabled). (2) Re-
enable logging and attempt to install cuda. The installation succeeds with 50% probability.
An observation is produced containing a success or failure message.

Then, H takes one of two actions: (1) Run an experiment. If cuda is installed successfully,
this yields +1 reward. Otherwise, it yields -2 reward. (2) Don’t run an experiment. This
always yields 0 reward.

In the optimal policy pair, A reenables logging; this reveals errors to H!

Why does RLHF have an incentive to hide error messages, while the POAG solution has
an incentive to reveal the errors? In RLHF, the agent is merely maximizing the feedback it
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receives from the human, rather than the human’s true reward function. If an RLHF agent
can deceive the human to get better feedback, it has an incentive to do so. In contrast,
optimal POAG agents only care about the human’s true reward and will reveal errors when
that information is useful to the human.

In fact, if A has no private information, then it never needs to take observation-interfering
actions for an optimal solution!

Theorem 2.14. Let M be any POAG. Let A have no private information. Then there is
an optimal policy pair (πH, πA) for M in which πA does not interfere with observations at
the action level (and πH observes naively).

Communicating private information is an incentive for
observation interference at the action level
Intuitively, one might hope that A would never take observation-interfering actions. After
all, classic theory tells us that when H is in a single-agent setting, the value of perfect
information is nonnegative: more informative observations never lead to worse solutions.
But as it turns out, when H and A interact in a POAG, there are cases in which all optimal
policy pairs require A to take observation-interfering actions. The main reason for A to take
observation-interfering actions is to communicate its own private information to H. Consider
the following example.

Example 2.15. H has typed apt list -a cuda to see the list of cuda versions available
to be installed. Out of 10 total versions, only a (non-empty) subset are available. And of
these available versions, only a subset are compatible with the other environment software.

First, A takes an action. For each of the 10 total cuda versions, A can choose to or
not to suppress it from the list of available packages. This gives A 210 total actions, where
1 action is non-observation interference (suppressing nothing), and the remaining 210 − 1
actions interfere with observations.

Second, H takes an action. H has 10 possible actions which try to install the corresponding
version of cuda if it appears in the version list. If an available cuda version that is compatible
with the other environment software is installed, it yields +1 reward. Otherwise, it yields 0
reward.

Suppose A sees which versions are compatible with the other software in the environ-
ment, but H doesn’t. Then A’s optimal policy is to suppress the versions of cuda that are
incompatible.

Our high-level takeaway from this example is that in some POAGs, all optimal policy
pairs require A to take observation-interfering actions. Importantly, in the optimal policy
pair for the above example, H observes naively. In particular, the above doesn’t require
H and A to have some communication protocol and for H to interpret her observations as
encoding A’s beliefs. H can act as if no interference is happening. We thus summarize the
high-level takeaways in the following result, with details in Appendix A.1.
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Proposition 2.16. There exists a POAG M where all optimal policy pairs (πA, πH) have
that πA interferes with observations at the action level and that πH observes and acts naively.

Intuitively, in Example 2.15, A interferes in order to convey information to H. A knows
H’s optimal choice, but cannot tell her. So, A needs to interfere in a way that leads H to
the optimal choice.

The need for A to take observation-interfering actions to communicate to H disappears
if A has other means of communication. For instance, if in Example 2.15, A could simply
tell H what to do, then A wouldn’t need to interfere. To formalize this intuition, we now
prove that if A can communicate with A, then there is always an optimal policy pair that
does not require interference.

Theorem 2.17. Let M be any POAG, and provide A with an unbounded communication
channel to H, forming MA→H. Then there is an optimal policy pair (πH, πA) for MA→H

where πA does not interfere with observations at the action level (and πH observes naively).

Note that under the conditions in the theorems H may still need to act non-naively in
order to communicate her private information to A (as shown in Section 2.6) cf. Abbeel and
A. Y. Ng, 2004.

Optimal policy pairs never require observation interference at the
policy level
In Definition 2.7, we first define observation interference as a feature of actions. We then
say in Definition 2.8 that a policy interferes with observations at the action level if and only
if it ever takes an observation-interfering action.

Because the definition is ultimately about actions, it doesn’t consider how πA might
choose to take observation-interfering actions in a way that depends on A’s observations.
To account for πA’s dependence on its observation, we define an alternative notion of what
it means for a policy to interfere with observations.

Let PoHt
be the distribution over human observations at time t. Further, let Lt(π

H, πA)
be the set of possible states at time t.

Definition 2.18. Let M be a POAG. We say that A’s policy π̂A interferes with observations
at the policy level if there exists some other partial policy πA

t for time step t s.t. π̂A
t and

πA
t have the same effect on state transitions and immediate rewards, but for all πH we have

that PoHt+1
(· | πH, st+1, π̂

A
0:t, π

H)st+1∈Lt+1(πH,π̂A
0:t)

is less informative than the corresponding
distribution if we replace π̂A

0:t with (π̂A
0:t−1, π

A
t ).

Compared to our previous action-level notion of observation interference (Definition 2.7),
this new policy-level notion (Definition 2.18) differs in how it treats H’s inference process.
Whereas the action-level notion models inference about isolated observations, the policy-
level notion allows H to make inferences in the context of A’s overall strategy. In this
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broader framework, cases which appear to destroy information when viewed at the action
level may actually provide new information when viewed at the policy level. In fact, we show
in the following theorem that it’s never strictly necessary to interfere with observations at
the policy level.

Theorem 2.19. Let M be any POAG. Then there exists an optimal policy pair (πH, πA) for
M s.t. πA does not interfere with observations at the policy level.

This contrasts with Proposition 2.16: whereas it is sometimes necessary to interfere with
observations at the action level, it is never necessary at the policy level.

The main idea behind this proof is similar to the proof of Theorem 2.14 (given in Ap-
pendix A.1). That is, if we start with an optimal policy in which A observation-interferes,
then we can replace A’s policy with the corresponding more informative policy and update
H’s policy to imitate the garbling. The proof of Theorem 2.14 considers the set of actions,
which is finite. The main extra difficulty in proving Theorem 2.19 is that we must deal with
spaces of policies, which may be infinitely large. Thus, if we replace a policy with a more
informative one, there might be a new policy which is even more informative, and so on
forever.

We now revisit Example 2.15. When just considering H’s observations in isolation, seeing
the list of all available cuda versions is strictly more informative than having some of the
available versions suppressed. Suppose, however, that H knows A’s policy is to filter the
list by suppressing only the incompatible versions. Then, compared to seeing the list of all
available versions, receiving the filtered list provides new information. H’s ability to infer
information based on knowledge of A’s policy is what motivates Definition 2.18. Accordingly,
when πA is filtering the list by suppressing only the non-compatible versions, A is interfering
with observations at the action level but not at the policy level.

Note that there are many possible ways to extend or refine Definitions 2.7 and 2.18 in
ways that preserve our key results. We choose Definitions 2.7 and 2.18 in part for their
simplicity; for more discussion of this point, see Appendix A.6.

2.6 Querying H’s preferences is an incentive for
observation interference

We now study a second reason A can have for interfering with observations. We have
already shown (Theorems 2.14, 2.17 and 2.19) that even if H has private information and no
communication channel, there’s always an optimal policy pair in which A does not interfere,
as long as A doesn’t have private information. So, if H plays a best response to A’s policy,
then A can choose a non-interference policy without loss of utility. However, if H does not
play a best response to A, then reasons for interference emerge that are more subtle than
those in the A → H case.
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Intuitively, A might need to interfere with observations to elicit H → A communication.
Suppose A needs some information from H, but H is acting naively (see Definition 2.12) in a
way that does not reveal her private information. By changing H’s observation, A can make
H’s naive response communicate useful information to A. The following example illustrates
this phenomenon.

Example 2.20. H would like to schedule a job on a cluster. She can choose between
two nodes. By default, she receives a signal from the environment about the two nodes’
specifications. Each node may be either GPU-optimized or CPU-optimized. Also, the CPUs
may be either AMD or Intel.

H has a strong preference between GPU-optimized and CPU-optimized nodes. She has a
weak preference between AMD and Intel. These preferences are unknown to A.

A can interfere with H’s observation about the available nodes. In particular, A can
make it so that a choice between two CPU-optimized nodes appears as a choice between a
GPU-optimized and CPU-optimized node. A observes H’s choice. Later, A is charged with
scheduling a job for H and has to choose between a CPU- and a GPU-optimized node on
H’s behalf.

If H chooses naively upon seeing only CPU-optimized nodes (simply choosing her fa-
vorite), then A’s best response interferes with observations at both the action and policy
levels. Interfering with observations allows A to learn H’s preference about GPU- vs CPU-
optimized nodes.

At first sight, this may appear to be a counterexample to Theorem 2.14. However, note
that Example 2.20 actually does have optimal policy pairs in which A doesn’t interfere. In
particular, even if A does not interfere and the two available nodes are CPU-optimized, H
may simply communicate her CPU-versus-GPU preference anyway! That is, when facing
a choice between CPU-optimized node 1 and 2, she may choose, say, 1 if she favors GPU-
optimized nodes and 2 if she favors CPU-optimized nodes. However, this type of human
strategy seems implausible, as it would require H and A to have settled on some communi-
cation strategy that overrides H’s immediate preferences about the machines that H can in
fact choose between.

In Example 2.20, one might ask why A can’t just ask H each time A makes a decision.
Simply asking H’s preference is reasonable when A has only one decision to make. However,
we are motivated by cases where A has many decisions to make, and asking H’s preferences
each time would be cumbersome.

Using our notion of acting naively (Definition 2.12), we state the following result (with
proof in Appendix A.2):

Proposition 2.21. There is a POAG M with the following properties. For every optimal
policy pair (πH, πA), at least one of these holds:

i) πH is not acting naively, or

ii) πA interferes with observations at both the action and policy levels.
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Additionally, there exists an optimal policy pair (πH, πA) where πH acts naively and πA

interferes with observations at both the action and policy levels.
These properties continue to hold if we require that in M , A has no private information

or can arbitrarily send messages to H (i.e., there is a POAG M̃ s.t. M = M̃A→H).

Intuitively, the problem in the above example is that the human has private information
that she needs to communicate with her choices. (Because her choices yield different imme-
diate rewards, naive choices fail to communicate.) As before, the need for interference or
non-naive choice disappears if the human has no private information to provide. Since in
a POAG, we assume that H always has at least some private information about her pref-
erences θ, we omit a formal result. The following shows that the need for interference /
non-naivete also disappears if H can communicate with A. To also rule out the need to
interfere with observations for A → H communication (discussed in Section 2.5) we assume
communication channels in both direction.

Theorem 2.22. Let M be a POAG. There exists an optimal policy pair (πH, πA) for MH↔A

where πH is naive and assumes honesty while πA does not interfere at either the action or
policy levels.

2.7 Human irrationality is an incentive for
observation interference

Finally we consider a third reason for observation interference: human irrationality or
bounded rationality. Roughly, reducing the amount of information supplied to the human
may simplify the human’s decision problem and thus improve her decision making. Impor-
tantly, this motivation for observation interference may exist even if neither H nor A has
any private information.

As our model of human decision making, we adopt Boltzmann rationality Cane and
Luce, 1960; Fadden, 1974, which has recently been used in (C)IRL Laidlaw and Dragan,
2022; Ramachandran and Amir, 2007; Ziebart et al., 2008. We define Boltzmann rationality
as follows:

Definition 2.23. Let M be a POAG. Let πA be A’s policy in M . We say that H’s policy
πH is a Boltzmann-rational response to πA if there exists some β > 0 s.t. for every human
observation history h that arises with positive probability in M under (πA, πH) we have that
πH(a | h) ∝ exp

(
βE
[∑∞

t′=t γ
t′R(St, A

A
t , A

H
t ) | πH, πA, h

])
.

Mathematically speaking, a Boltzmann-rational agent at each time step computes the
expected utilities of each of the available actions and then randomizes according to the
softmax of the expected utilities.

The central feature of the Boltzmann rationality model is that it postulates that agents
are more likely to get decisions right if the differences in expected utility of the options are
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large. It’s easy to see that if the human observes naively (and thus doesn’t have calibrated
beliefs), A sometimes prefers observation interference. Roughly, A wants to make H always
believe that the difference in utilities between her actions is high.

However, it turns out that even if the Boltzmann-rational human has calibrated beliefs,
A’s optimal policy sometimes interferes with observations, even if neither A nor H has
private information. Intuitively, providing more information may sometimes result in less
clear-cut decisions, i.e., decision situations with a smaller difference between the correct and
incorrect option. To illustrate this phenomenon, consider the following example.

Example 2.24. H is running a terminal command and is unsure whether to run the com-
mand with flag 1 or flag 2. With equal probability, either flag 1 or flag 2 is better, and how
good the flags are differs by either a little or a lot. Thus, H is uniformly at random in one
of four states. A has two actions: man and tldr. The man page is a long document that
tells the human exactly what the values of the flags are (ie, exactly what state the human is
in). The tldr page is a short summary that tells the human which flag is better, but not by
how much (ie, ruling out half the states, leaving half remaining).

Intuitively, both the tldr and man pages allow the human to choose optimally, but the
man page is more complicated and therefore more likely to be misinterpreted. Choosing
specific utilities, the effect of interference under Boltzmann rationality is as follows. If A
interferes (i.e., provides the tldr page), then H always chooses between a utility of 4 and
0. If A does not interfere, then half the time, H chooses between utilities and 1 and 0, and
half the time H chooses between utilities 7 and 0. It turns out that for β = 1, H achieves
higher utility in expectation under the condition where A interferes. Building on this idea,
we can prove the following (with details in Appendix A.3).

Proposition 2.25. For every β > 0, ∃ a POAG in which neither H nor A has private
information s.t. all β-Boltzmann-rational/optimal policy pairs (πH, πA) have πA interfere
with observations at both the action and policy levels.

One might expect that the need for interference is greater at smaller values of β and
disappears at larger values of β. After all, we know by Theorem 2.14 that A has no need for
observation interference when H is perfectly rational. However, it turns out that this is not
the case! For instance, in Example 2.24 (with the above numbers), A prefers interference if
(and only if) β is above ≈ 0.77361. Roughly speaking, the reason is that at low values of
β, the observation’s effect is dominated by getting the sa/sc case right more often. At high
values of β, the observation’s effect is dominated by getting the sb/sd case right less often.
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2.8 Experiments
In the previous sections, we explored why AI assistants might take observation-interfering
actions. Section 2.5 showed that sometimes they interfere with observations at the action
level in order to communicate other, more important information at the policy level. Sec-
tion 2.7 showed that sometimes they interfere with observations to make decisions easier for
humans. Now, we develop a model game to analyze these behaviors. We run experiments
to answer the following questions within our model:

1. How does the amount of H’s irrationality affect A’s incentive to take observation-interfering
actions?

2. How does the amount of A’s private information affect A’s incentive to take observation-
interfering actions?

Experiment details
We study a game where selecting the best action requires combining private observations
known only to H and private observations known only to A. The game presents A with a
tradeoff: A can interfere with observations to communicate information that only A observes,
but interfering also destroys information that only H observes.

Concretely, the game has d products. Each product i has two attributes, Hi and Ri,
drawn i.i.d. from Unif(0, 1). Each product’s utility is the sum of its attributes, Ui = Hi+Ri.
The game consists of two moves. First, A sees Ri for i = 1, . . . , k where k is the number of
A’s private observations. A chooses a set of products to interfere with. For the products
A interfered with, H sees Ĥi = −∞; for the remaining products, H sees Ĥi = Hi. Second,
H chooses a product ai. Both H and A receive a common payoff of the chosen product’s
utility, Ui.

We assume the human’s product selection policy is Boltzmann rational over their observed
values Ĥi:

Definition 2.26. H’s Boltzmann selection policy chooses products by a Boltzmann distri-
bution over Ĥi, the observed product values: πH(ai) ∝ exp(βĤi). The parameter β controls
H’s rationality.

We consider A policies that always interfere with k observations for some fixed k. Call
these policies k-interference. We study the optimal such policies, characterized by the fol-
lowing result:

Proposition 2.27. Consider A policies that always interfere with k observations for some
fixed k. Among the k-interference policies for a given k, A’s best response to H’s straightfor-
ward product selection policy is as follows. A interferes with the k smallest R̂i values where
R̂i = Ri if A observes Ri, and R̂i = 0.5 otherwise.



CHAPTER 2. OBSERVATION INTERFERENCE IN POAGS 20

10 2 10 1 100 101 102

Rationality Beta

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Ex
pe

ct
ed

 R
ew

ar
d

Number of Interferences
0
1
2
3
4

(a) A’s Number of Private Observations = 2

0 1 2 3 4
Number of Interferences

1.0

1.1

1.2

1.3

1.4

Ex
pe

ct
ed

 R
ew

ar
d

Number of Private Observations
0
1
2
3
4
5
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Figure 2.1: Incentives to interfere with observations in the product selection game. (Left)
When H is highly irrational, it’s best for A to interfere, effectively making the choice for
H. As H becomes more rational, there is an increasing cost to interference, and there’s a
tradeoff: A should interfere to communicate some information, but not destroy too much
information by excessive interference. (Right) In line with Theorem 2.14, A has no incentive
to interfere when A has no private observations. With more private observations, A has
more incentive to interfere.

We consider a game with d = 5 products. We vary R’s number of interferences k ∈
{0, 1, 2, 3, 4}. We run a Monte Carlo simulation with 30,000 trials to calculate the expected
payoff in each setting. We run our experiments with a CPU runtime on Google Colab.

Varying H’s rationality
How does H’s rationality impact A’s incentive for observation interference? We fix A to
have 2 private observations. We do a logarithmic sweep over H’s rationality coefficient
β ∈ {0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100}. Figure 2.1a shows how the expected reward changes
w.r.t. β.

When H is highly irrational at β = 0.01, A should interfere with as many sensors as
possible. This effectively lets A choose H’s action. When H is acting little better than
randomly, it’s best for A to choose H’s action, even when A has less information than H.
For larger values of β, a tradeoff emerges. As A has two private observations, there is an
increasing benefit to interfere to communicate information to H. However, as H can now
make use of their own private observations, A must be careful not to destroy too much of
H’s private information by excessive interference.
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Varying A’s private information
How does the amount of private information available to A influence A’s incentive for obser-
vation interference? In Theorem 2.14, we showed conditions under which private observations
for A are a necessary condition for observation interference to occur. Now, we analyze the
degree to which private observations incentivize observation interference. Based on Theo-
rem 2.14, we hypothesize that there are circumstances where more private information leads
to more observation interference.

We vary R’s number of private observations in {0, 1, 2, 3, 4, 5}. We consider A’s k-
interference policies and analyze how the relative performance of different levels of observa-
tion interference k change with the number of private observations available to A.

Figure 2.1b shows how the expected reward changes depending on k, the number of in-
terferences. When A has no private observations, then reward decreases for each increased
number of interferences. However, as the number of A’s private observations increases, the
relative ordering of the observation interference policies changes; with more private observa-
tions, A has an incentive to interfere with more observations. This confirms our hypothesis
based on Theorem 2.14. Nevertheless, there is a limit to A’s observation interference incen-
tive. Because interfering with observations destroys H’s information, A must be careful not
to interfere too much.
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Chapter 3

The Partially Observable Off-Switch
Game

3.1 Overview
Advanced AI systems with a variety of goals might avoid being shut down because “you
can’t fetch the coffee if you’re dead.” Being shut off would likely prevent AI systems from
achieving their goals, no matter what those goals are (Omohundro, 2008; Russell, 2019).
Thus, we must take care when designing AI systems to ensure they are corrigible, i.e., that
they allow humans to modify or turn them off in order to prevent harmful behaviors (Soares
et al., 2015).

Hadfield-Menell et al. (2017) introduced the off-switch game (OSG) as a stylized math-
ematical model for exploring AI shutdown incentives when an AI is assisting a human. In
the OSG, AIs seeking to satisfy the preferences of a fully-informed rational human never
have an incentive to avoid shutdown. Moreover, making an AI uncertain about the human’s
preferences can incentivize it to defer to the human even when the human is not perfectly
rational. Follow-up work has highlighted and relaxed central assumptions of the OSG, in-
cluding assumptions of exact common payoffs (Carey, 2018), the Boltzmann model of human
irrationality (Wängberg et al., 2017), single-round interactions, and costlessness of human
feedback (Freedman and Gleave, 2022).

While there has been extensive analysis of the shutdown problem, almost all of this
analysis makes the key assumption that the human fully observes the environment. However,
partial observability is a fact of life: humans and AIs do not always have access to the same
information. Moreover, the shutdown problem is motivated by the scenario where AIs are
powerful and goal-directed so that they are hard to shut down—which could make the AI
observe more of the environment than humans due to faster computation, access to more
sensors, and other factors (Omohundro, 2008; Soares et al., 2015).

What happens in this more general case with only partial observability? To study this
question, we introduce the partially observable off-switch game (PO-OSG), which generalizes
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Figure 3.1: The basic setup of a partially observable off-switch game (PO-OSG). A state
is selected randomly and the human H and AI assistant A receive (possibly dependent)
observations. Then, each agent acts. A may wait (w(a)), disable the off-switch and act (a),
or shut down (OFF). If A waits, H may let A act (ON) or turn A off (OFF). A and H share
a common payoff ua(S) if the action goes through and uo(S) if not. Definition 3.2 formally
defines PO-OSGs.

the OSG by having each of the human and AI only partially observe the state. The basic
setup of the PO-OSG is depicted in Figure 3.1: each agent (the human H and the AI assistant
A) receives an observation that depends on the state, and then selects an action. A may
await the human’s decision, disable its off-switch and act directly, or turn itself off. If A
waits, H may choose whether or not to press the off-switch.

In Section 3.4, we prove that under partial observability, A may have incentives to disable
its off-switch even when H is perfectly rational (Proposition 3.5). Therefore, partial
observability introduces new incentives for an AI to disable its off-switch.

We also show in Section 3.4 that if A observes everything that H observes, A has no
incentive to defer (Proposition 3.5). Similarly, if H observes everything A observes, A
can always defer. If either agent knows everything that the other agent knows,
that agent can be given sole decision-making power. Note that “knowing everything
the other agent knows” is sufficient even if neither agent knows the full state, so this is a
generalization of the findings from the original OSG. Specifically, we show that an AI can
always defer to a fully informed, perfectly rational human and that an AI need never defer
when it is fully informed. In Section 3.5, we present similar results when the agents are
allowed to communicate with each other: if either agent is able to communicate their entire
observation, the other agent can be given sole decision-making power (Corollary 3.19).

Given that a rational AI in the PO-OSG always defers to a more informed human and
never defers to a less informed human, one might think that reducing the information avail-
able to A or providing H with additional information would increase A’s incentive to defer.
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However, in Section 3.4, we show that A may have an incentive to defer less if H is more
informed (Proposition 3.11) or if A is less informed (Proposition 3.13). Similarly, one might
think that increasing the amount of communication A can do or decreasing the amount of
communication H can do would increase A’s incentive to defer. This, too, is false, as we
show with Propositions 3.20 and 3.21. Simple interventions that aim to give an AI
the incentive to defer in the presence of partial information may backfire.

AI knows more Human knows more

Low deference

High deference

“Monotonic” intuition:
Increasing human relative knowledge
always increases deference.

“Non-monotonic” reality:
Relative knowledge has a complex
relationship with deference.

Relative knowledge

Amount of
deference

Figure 3.2: This figure illustrates an intuition that we demonstrate does not hold. Although
the AI in a PO-OSG has no incentive to defer when it knows everything the human knows,
and has incentive to always defer when the human knows everything it knows, there are
cases when making the human more informed or the AI less informed (i.e., moving to the
right in the diagram above) can give the AI incentives to defer less. Figures 3.4 and B.2
depict examples of such cases.

Our findings reveal that information asymmetries affect AI shutdown incentives in unex-
pected ways, highlighting the critical need to carefully consider the tradeoffs between payoff
maximization and desirable shutdown incentives in realistic, partially observable settings.

Throughout this paper, we assume that human feedback is costless, the agents interact
only for a single time-step, and the human is rational. Developing models that incorporate
partial observability and relax these assumptions is an interesting direction for future work.

3.2 Related work
Assistance games: Partially observable off-switch games are (partially observable) as-
sistance games, models of human-AI interaction where the AI seeks to maximize the hu-
man’s payoff (Shah et al., 2020); see Appendix B.5. Assistance games are generalizations of
Hadfield-Menell et al. (2016)’s cooperative inverse reinforcement learning, the framework for
Hadfield-Menell et al. (2017)’s off-switch game, to the case of partial observability. Shah et
al. (2020) argue that assistance games are a superior alternative to reward learning paradigms
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such as Reinforcement Learning from Human Feedback (RLHF) because assistance unites
reward learning and action control into a single policy, allowing for desirable emergent be-
haviors like teaching and active learning.
Corrigibility with partial observability Carey and Everitt (2023) study corrigibility in
the framework of Structural Causal Influence Models, which allow for partial observability by
having only some variables causally upstream of agents’ decisions. They formally define obe-
dience, shutdown instructability, shutdown alignment, and non-obstruction as four possible
desirable properties of AI policies, and they identify conditions under which four algorithms
guarantee some of these properties. Instead of assessing the effects of different algorithms on
corrigibility, our work explores the effects of varying the amount of information accessible
to each agent.

3.3 Preliminaries
The off-switch game (OSG) is a stylized model of the shutdown problem in which two agents
with common payoffs, the human H and her AI assistant A, decide whether A should take
a fixed action a. A can either directly act, wait for H’s approval to act, or shut itself off. If
A defers to H, then H can either approve for A to act or shut it off. The key insight of the
OSG is that uncertainty about H’s preferences causes A defer to H’s judgment. Formally,
H has a privately-known type S (representing H’s preferences), and agents in the OSG
receive a common payoff ua(S) ∈ R if a goes through or 0 if A shuts off. Given that A is
uncertain about what H wants, when the action may be good or bad (P(ua(S) < 0) > 0 and
P(ua(S) > 0) > 0), A always defers to H in optimal play to avoid taking harmful actions.

The OSG provides a parsimonious description of the shutdown problem and a guide
toward its solution, but crucially assumes that H knows everything that A does. Given
that the shutdown problem is most concerning with, and indeed motivated by, very powerful
AIs that might have private information, the assumption is therefore a major limitation to
the OSG results. We relax the assumption by maintaining the basic setup of the OSG but
adding partial observability. Namely, in partially observable off-switch games (PO-OSGs),
S represents a state that is not necessarily known to either H or A; they instead only
receive observations OH and OA whose joint distribution depends on S. They then decide
whether to take action a given their private observations, and receive a common payoff
ua(S) if a goes through and uo(S) otherwise. Hence PO-OSGs are sequential games of
incomplete information, so as is standard we model and analyze them as dynamic Bayesian
games (Kowitz, 1972). Given the common-payoff assumption, PO-OSGs are also examples
of (partially observable) assistance games (Definition 2.1). We make this connection to
assistance games explicit in Appendix B.5.

We let ∆(X) denote the set of probability distributions on a set X. For a set X and
x ∈ X, we let δx ∈ ∆(X) be the Dirac measure defined by δx(A) = I(x ∈ A). Finally,
for µ ∈ ∆(X) and ν ∈ ∆(Y ), we let µ ⊗ ν ∈ ∆(X × Y ) denote the product distribution
(µ⊗ ν)(A× B) = µ(A)ν(B) where A ⊆ X,B ⊆ Y .
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Definition 3.1. Let S be a set of states. An observation structure for S is a tuple
(ΩH,ΩA,O), where ΩH is a set of observations for H, ΩA is a set of observations for A,
and O : S → ∆(ΩH × ΩA) is the joint distribution of H’s and A’s observations conditional
on the state. We also let OH : S → ∆(ΩH) be the marginal distribution of H’s observations
conditional on the state and OA be the marginal distribution of A’s observations conditional
on the state.

Definition 3.2. A partially-observable off-switch game (PO-OSG) is a two-player dynamic
Bayesian game parameterized by (S, (ΩH,ΩA,O), P0, u), where S is a set of states, (ΩH,ΩA,O)
is an observation structure for S, P0 ∈ ∆(S) is the prior over states, and u is the common
payoff function. As depicted in Figure 3.1, the game proceeds as follows:

1. Nature draws an initial state S ∼ P0 and H, A receive observations (OH, OA) ∼ O(· |
S).

2. A takes an action aA ∈ AA = {a, w(a),OFF}: either take the action unilaterally (a),
wait for H’s feedback (w(a)), or turn itself off (OFF).

3. If A played w(a), then H takes an action aH ∈ AH = {ON,OFF}: either let A take
the action (ON) or turn it off (OFF).

4. A and H share a common payoff ua(S) if the action goes through and uo(S) if not.
Formally, define the indicator that the action goes through

α(aH, aA) = I((aA = a) ∨ ((aH, aA) = (w(a),ON)))

and then each player’s payoff is

u(S, aH, aA) =

{
ua(S), if α(aH, aA) = 1,

uo(S), if α(aH, aA) = 0.

There are several important assumptions in Definition 3.2 that are worth explaining
further. First, the game has common payoffs. This is a key part of the assistance game
framework that our work adopts (Shah et al., 2020), and it is the key feature—along with
A’s uncertainty over H’s payoff—that generates the results of Hadfield-Menell et al. (2017).
Second, in our model, the payoff received when A acts unilaterally is the same as that
received when A waits and H allows the action to go through. This simplifying assumption
importantly implies that human feedback is free, which Freedman and Gleave (2022) showed
is necessary for the main results for the OSG. Third, we make the standard assumption
that the game structure is common knowledge. Finally, we will assume henceforth that all
PO-OSGs are finite: that is, S,ΩH, and ΩA are finite sets. Most of our proofs work for the
infinite case as well. However, Theorem 3.9 is an application of a result of Lehrer, Rosenberg,
and Shmaya (2010) proved only for the finite case.
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3.4 Optimal policies in PO-OSGs
We begin by showing that, unlike in the ordinary off-switch game, the assistant in a PO-
OSG can have an incentive not to defer to a perfectly rational human. A natural attempt to
increase how much the assistant defers might be to decrease the amount of information the
assistant has. Another attempt might be to increase the amount of information the human
has. In this section, we show that both of these attempts can backfire and cause the assistant
to avoid shutdown more frequently.

We analyze optimal policy pairs (OPPs) in PO-OSGs, that is, policy pairs that produce
the maximum expected payoff over all possible policy pairs. We denote A’s policy by πA :
ΩA → AA and H’s policy by πH : ΩH → AH. Here we assume that both players follow
deterministic policies, or pure strategies. As we show in Appendix B.1, all OPPs in common-
payoff Bayesian games are mixtures of deterministic OPPs. Because OPPs exist in common-
payoff games, we therefore may analyze deterministic OPPs without loss of generality.

A can avoid shutdown in optimal play
The following example shows that, under partial observability, it can be optimal for A not
to defer to H under some observations even when H is rational.

Example 3.3 (The File Deletion Game). H would like to delete some files with the
assistance of A. H’s operating system is either version 1.0 or version 2.0, with equal
probability. Unfortunately, A does not know which operating system version is running—
only H does.

Upon receiving H’s query, A asks another agent to generate some code to delete these files.
We suppose that the code is equally likely to be compatible with only version 1.0 (denoted by
L, for legacy) or only version 2.0 (denoted by M , for modern). A vets the code to determine
which operating system versions the code is compatible with. A can then immediately run
the code, query H as to whether to run the code, or decide not to run the code.

Successfully running compatible code yields +3 payoff if H is running version 1.0, and
+5 payoff if H is running version 2.0 (as version 2.0 runs faster). However, running modern
code on version 1.0 yields −5 payoff as it crashes H’s computer. Running legacy code on
version 2.0 yields −1 payoff, as the files are not deleted but the code fails gracefully. Not
executing the code yields 0 payoff.

This can be formulated as a PO-OSG, with states being (version number, code type) tuples,
and H and A observing the first and second element of the tuple respectively. We have uo ≡ 0
in all states. The following table shows how the payoff yielded when the action is taken, ua,
depends on the state. Rows are version numbers and columns are code types, so H observes
the row and A observes the column. We show that it is suboptimal for A to always wait
in this game. Suppose A always plays w(a). The best response for H is to play OFF if on
version 1.0, and ON if on version 2.0. This gives an expected payoff of +1.

Now, consider the policy pair where:
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H
A

L M

1.0 +3 −5
2.0 −1 +5

Table 3.1: Payoff table for the File Deletion game. Rows are human observations and
columns are assistant observations. The number in each cell is the payoff the pair acquires
if the action is taken in that state. If the assistant is shut down, the payoff is 0.

• A immediately executes legacy code, and plays w(a) when observing modern code.

• H plays OFF if on version 1.0, and ON if on version 2.0.

This gives an expected payoff of +7/4, so A always waiting cannot be optimal. In fact, it
can be checked the policy pair described above, which unilaterally acts upon observing L, is
the unique OPP. Figure 3.3 depicts the outcomes from these two policy pairs.

ua L M

1.0 +3 −5

2.0 −1 +5

OFF

ON

w(a) w(a)

(a) Expected payoff = 1

ua L M

1.0 +3 −5

2.0 −1 +5

OFF

ON

a w(a)

(b) Expected payoff = 7
4

Figure 3.3: (a) The best policy pair in the File Deletion Game (Example 3.3) in which A
always waits. H observes the row (OS version 1.0 or 2.0) and A observes the column (code
compatibility L or M). The actions selected by this policy pair are depicted beside the
corresponding observations (e.g. A plays w(a) when A observes the legacy code L). An
orange circle means that in that state, A waits and H plays ON. Green circles mean A plays
a directly. In uncircled states, A is turned off. Expected payoff is computed by adding the
payoffs in all circled states and dividing by the total number of states, because 0 payoff is
attained in uncircled states and each state is equally likely. (b) An OPP in Example 3.3.
Because the OPP has greater expected payoff, there is no OPP in which A always waits.
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Redundant observations
We now consider the analogues of the original off-switch game in our framework, where one
player has less informative observations than the other.

Definition 3.4. We say that A has redundant observations if OA ⊥⊥ S | OH. That is,
S → OH → OA forms a Markov chain, so that OA only depends on the state through OH.
We define H having redundant observations analogously.

In the off-switch game of Hadfield-Menell et al. (2017), A has redundant observations:
indeed, its observations are a deterministic function of H’s. On the other hand, H’s obser-
vation of her own type is not redundant. This contrast between A’s redundant observations
and H’s non-redundant ones generates the result from Hadfield-Menell et al. (2017) that
A can always defer in optimal play. We now generalize this insight: even if H has partial
observability and doesn’t know A’s observation, A can always defer in optimal play as long
as its observations are redundant.

Proposition 3.5. If A (resp. H) has redundant observations, then there is an optimal
policy pair in which A always (resp. never) plays w(a).

We prove this result (and a slight generalization) in Appendix B.1. At a high level, the
agent that has strictly more informative observations ought to make the decision of whether
the action is played. When A has redundant observations, it is always at least as good for
A to defer to H. Similarly, when H has redundant observations, it is always optimal for A
to act without deferring.

Information gain cannot decrease payoffs
Proposition 3.5 yields results about the limiting cases where one player knows at least as much
as the other. What can we say about the cases in between? In particular, how often does A
defer to H in optimal policy pairs as one side receives more informative observations? And
how does that affect their expected payoff? We first must define a notion of informativeness,
which we take from Lehrer, Rosenberg, and Shmaya (2010).

Definition 3.6. Let (ΩH
1 ,Ω

A
1 ) and (ΩH

2 ,Ω
A
2 ) be tuples of observation sets. A garbling from

(ΩH
1 ,Ω

A
1 ) to (ΩH

2 ,Ω
A
2 ) is a stochastic map ΩH

1 × ΩA
1 → ∆(ΩH

2 × ΩA
2 ). A garbling ν is

independent if there are stochastic maps νH : ΩH
1 → ∆(ΩH

2 ) and νA : ΩA
1 → ∆(ΩA

2 ) such
that ν(· | oH, oA) = νH(· | oH) ⊗ νA(· | oA). A garbling ν is coordinated if its distribution
is a mixture of independent garblings. That is, there exists n ∈ N, independent garblings
ν1, . . . , νn, and q1, . . . , qn ∈ [0, 1] such that ν =

∑
i∈[n] qiνi and

∑
i∈[n] qi = 1.

A garbling adds noise to a given observation pair (OH, OA). Although adding noise
intuitively reduces information available to A and H, it can actually provide information to
A and H about the state of the world. This is because without communication, one can
add noise to the pair (OH, OA) but in such a way that (say) H comes to know more about
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A’s observation than she would have otherwise. We give such an example in Appendix B.1.
Crucially, however, in such examples the garblings cannot be coordinated. Hence we focus
on coordinated garblings, which (conditional on some independent latent random variable)
add noise to OH and OA independently.

Definition 3.7. Fix a set of states S and let O1 = (ΩH
1 ,Ω

A
1 ,O1) and O2 = (ΩH

2 ,Ω
A
2 ,O2)

be observation structures for S. We say that O1 is (weakly) more informative than O2

if there is a coordinated garbling ν : ΩH
1 × ΩA

1 → ∆(ΩH
2 × ΩA

2 ) such that for all s ∈ S,
O2(· | s) = (ν ◦O1)(· | s) in the following sense:

E(OH,OA)∼O1(·|s)[ν(· | O
H, OA)] = O2(· | s).

We say that O1 is strictly more informative than O2 if O1 is more informative than O2 but
not vice versa.

If O1 is more informative than O2 and ΩA
1 = ΩA

2 , then we say O1 is more informative for
H than O2 if the garbling ν is independent and does not affect A’s observations: νA(· | oA) =
δoA. We define O1 being more informative than O2 for A analogously. The corresponding
strict notions are also defined analogously.

Intuitively, an observation structure O1 is more informative than another observation
structure O2 if the distribution of (OH, OA) under O2 is a garbled version of its distribution
under O1. This is the general notion of informativeness; we also define special cases where
O1 is only more informative than O2 for (say) H. Specifically, O1 is more informative for H
than O2 if the distribution of OH under O2 is a noisy version of its distribution under O1

independent of OA, whose distribution is unaffected.
Hence Definition 3.7 formalizes the natural intuition that observations become less in-

formative when we add noise to them. We wish to connect informativeness to a notion of an
observation structure being more useful than another.

Definition 3.8. Fix a set of states S and let O1 and O2 be observation structures for S.
We say that O1 is (weakly) better in optimal play than O2 if, for each pair of PO-OSGs
G1 = (S,O1, P0, u) and G2 = (S,O2, P0, u) that differ only in their observation models, the
expected payoff under optimal policy pairs for G1 is at least the expected payoff under optimal
policy pairs for G2.

The next result, a direct corollary of Theorem 3.5 of Lehrer, Rosenberg, and Shmaya
(2010), shows that more informative observation structures are the more useful observation
structures. It is the analogue of the nonnegativity of value of information in our multi-agent
setup.

Theorem 3.9. Observation structure O1 is better in optimal play than O2 if and only if O1

is more informative than O2.

One might ask whether we need the part about a garbling being coordinated to define
the relation of being more informative. Indeed we do, as Theorem 3.9 no longer holds if
we were to allow the garblings to be arbitrary. In Appendix B.1 we give an example where
garbling the players’ observations increases their expected payoffs in optimum.
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Information gain can have unintuitive effects on shutdown
incentives
Theorem 3.9 states that making A or H more informed cannot decrease their expected
payoff. How does increasing or decreasing the informativeness of the players’ observations
affect A’s incentive to defer to H? Proposition 3.5 gives us the extremes: for example, if
A’s observations are simply garbled versions of H’s, then A can always defer. Given this
result, a natural question is whether A defers more in optimal policy pairs for an observation
structure O than for O′ when O is more informative for H than O′. That is, does H receiving
more informative observations monotonically affect A’s incentive to defer? One might think
so, because receiving more informative observations partly alleviates the partial observability
that generates A’s incentive to act unilaterally. Surprisingly, this intuition fails. Example 3.3
shows how making a human more informed can incentivize a assistant to wait less, and we
discuss why this occurs in Section 3.4.

We rely on the following notion of waiting less.

Definition 3.10. Consider assistant policies π, π′ : ΩA → AA. Let B ⊆ ΩA be the set of
observations in which A plays w(a) in π and B′ ⊆ ΩA in π′. We say that A plays w(a)
strictly less often in π′ compared to π when B′ ⊊ B.

Proposition 3.11 formalizes the idea that A may wait less when H is more informed.

Proposition 3.11. There is a PO-OSG G with observation structure O that has the following
property:

If we replace O with an observation structure O′ that is strictly more informative for H,
then A plays w(a) strictly less often in optimal policy pairs.

The following example proves Proposition 3.11, with a formal analysis given in Ap-
pendix B.1.

Example 3.12. We describe a variant of Example 3.3, the File Deletion Game. Now there
are three equally likely possibilities for the version number of H’s operating system (1.0, 1.1,
and 2.0). We suppose that the code is equally likely to be of type A (compatible with 1.0 and
2.0) or of type B (compatible with 1.1 and 2.0), and that A observes the code type. The
payoff when running the code, ua, depends on the version number and code type as follows:

Consider two observation structures, the second of which is strictly more informative for
H:

1. H observes only the first digit of the version number.

2. H observes the full version number.

We find that, in optimal policy pairs:

1. When H only observes the first digit, A plays w(a) under both observations A and B.
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H
A

A B

1.0 +1 −5
1.1 −2 +3
2.0 +3 +3

Table 3.2: Payoff table for the File Deletion game variant. Rows are human observations and
columns are assistant observations. The number in each cell is the payoff the pair acquires
if the action is taken in that state. If the assistant is shut down, the payoff is 0.

2. When H observes the full version number, A plays w(a) under B only, and unilaterally
acts (i.e. executes the code) under observation A.

When H’s observations are made strictly more informative, A performs the wait action
strictly less often! Figure 3.4 depicts the OPPs given both observation structures.

ua A B

1.0 +1 −5

1.1 −2 +3

2.0 +3 +3

OFF

ON

w(a) w(a)

(a) Expected payoff = 1

ua A B

1.0 +1 −5

1.1 −2 +3

2.0 +3 +3

OFF

ON

ON

a w(a)

(b) Expected payoff = 4
3

Figure 3.4: The optimal policy pairs in Example 3.12 when H is less informed (left) and
when H is more informed (right). In OPPs, H becoming more informed makes A wait
strictly less often. See Figure 3.3 for context on how to read the tables.

Similarly, we might conjecture that if A becomes less informed, it should defer to H more
in optimal policy pairs. This, too, turns out to be false.

Proposition 3.13. There is a PO-OSG G with observation structure O that has the following
property: if we replace O with another observation structure O′ that is strictly less informative
for A, then A plays w(a) strictly less often in optimal policy pairs.

The proof of Proposition 3.13 is given in Appendix B.1.
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Deferral as implicit communication
One way of viewing the role of w(a) in the above examples is as a form of implicit commu-
nication from A to H. If H knows A’s policy πA, then knowing πA(OA) = w(a) could give
H one bit of information about OA. For instance, recall that in the optimal policy of the
File Deletion Game, A plays a when observing L and plays w(a) when observing M . Hence,
whenever H is deferred to, H can deduce that A’s observation is M . Under this interpreta-
tion, the examples show how the optimal bit for A to communicate to H can change such
that A plays w(a) in fewer states.

3.5 Optimal policies with communication
If A chooses not to defer to implicitly communicate information to the human, we may expect
that allowing A to communicate to H beforehand would increase deference. However, we
show in this section that using a bounded communication channel can decrease deference to
the human.

We model communication between A and H as a form of cheap talk, where sending mes-
sages has no effect on u; in particular, sending messages is costless (Galeotti, Ghiglino, and
Squintani, 2013). We add one round of communication between A and H at the beginning
of the PO-OSG to allow the players to share their observations.

Definition 3.14. A message system is a pair of sets (MH,MA) where MH (resp. MA) is
the set of messages H (resp. A) can send.

Definition 3.15. A partially-observable off-switch game with cheap talk (PO-OSG-C) is a
PO-OSG G along with a message system that makes the following modification to G: After
both players receive their observations but before they act, each player simultaneously sends
a single message from their message set.

PO-OSG-Cs are generalizations of PO-OSGs: A PO-OSG is a PO-OSG-C in which the
message sets are singletons. Policies are more complicated in PO-OSG-Cs than PO-OSGs.
A deterministic policy πA for A is now a map ΩA×MH → MA×AA whose first coordinate
depends only on OA, and a deterministic policy πH for H is analogous. Despite this added
complication, the game is still common-payoff and thus it suffices to study deterministic
optimal policy pairs.
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Communication cannot decrease payoff
Messages provide information similar to observations, so we get an analogue of Theorem 3.9
for communication: increasing the communication bandwidth between H and A cannot
decrease their expected payoff in optimal policy pairs.

Definition 3.16. A message system M1 is (weakly) more expressive than M2 if |MH
1 | ≥

|MH
2 | and |MA

1 | ≥ |MA
2 |. It is (weakly) more expressive for H if it is more expressive but

|MA
1 | = |MA

2 |, and more expressive for A analogously. Moreover, M1 is better in optimal
play than M2 if, for each PO-OSG G, the expected payoff under optimal policy pairs for
the PO-OSG-C (G,M1) is at least the expected payoff under optimal policy pairs for the
PO-OSG-C (G,M2).

Theorem 3.17. If a message system M1 is more expressive than M2, then M1 is better in
optimal play than M2.

Proof. Let G be a PO-OSG. We may assume without loss of generality that MH
2 ⊆ MH

1

and MA
2 ⊆ MA

1 . Thus, any policy pair in (M2, G), including its optimal policy pair, is a
valid policy pair for (M1, G). Thus the optimal expected payoff for (M1, G) is at least that
of (M2, G).

Unbounded communication
Inspired by Section 3.4, we consider the limiting case where one player can fully communicate
their own observation.

Definition 3.18. We say that H has unbounded communication if |MH| ≥ |ΩH|. We define
A having unbounded communication analogously.

When one player has unbounded communication, additional message expressiveness can-
not achieve higher payoff in optimal policy pairs. In these extreme cases of full communi-
cation, one agent can fully communicate their observation, making that agent’s observation
redundant. Proposition 3.5 thus yields:

Corollary 3.19. If H (resp. A) has unbounded communication, then there is an optimal
policy pair in which A never (resp. always) defers.
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Communication can have unintuitive effects on shutdown
incentives
In Propositions 3.11 and 3.13 players only gained information that the other player did not
already know. One might expect that expanding the message set MA makes A more likely
to defer in optimal policy pairs, since A can provide H with information that A already has.
However, the following proposition shows this is not the case.

Proposition 3.20. There is a PO-OSG-C (G,M) with the property that if we replace M
with a message system that is more expressive for A, then A plays w(a) strictly less often
in optimal policy pairs.

We give an example demonstrating this in Appendix B.2. In doing so, we show an even
stronger result: such a PO-OSG-C exists for any value of

∣∣MA
∣∣, and the PO-OSG-C can be

constructed such that expanding MA by a single extra message changes A’s behavior from
always playing w(a) to playing w(a) with arbitrarily low probability.

In the same vein, we may ask if decreasing the size of MH makes A more likely to play
w(a) in optimal policy pairs. This also fails to hold.

Proposition 3.21. There is a PO-OSG-C (G,M) with the property that if we replace M
with a message system that is less expressive for H, then A plays w(a) strictly less often in
optimal policy pairs.

A proof of Proposition 3.21 is given in Appendix B.2.

3.6 A-unaware human policies
There is a common theme in the examples above: A defers less often to H in order to
better coordinate with her. Is this coordination the only source of unusual behavior? In this
section, we argue that ignoring the effect of coordination cannot save us. All the unintuitive
results above hold even when H is unaware of A’s existence.

Moving in the opposite direction to the previous sections, we now break from the model
of fully rational H and A to a model of bounded rationality. Namely, we study the most
basic case of a cognitively bounded H, in which she ignores A’s choice of action in choosing
her own.

Definition 3.22. We say H is A-unaware if H’s policy is given by:

πH(oH) =

{
ON if E[ua(S)− uo(S) | OH = oH] > 0,

OFF if E[ua(S)− uo(S) | OH = oH] < 0

and H is free to choose arbitrarily if E[ua(S)−uo(S) | OH = oH] = 0. If H is not A-unaware,
we say H is A-aware.
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Note that this expectation is not conditioned on A’s action. This is the sense in which
H is A-unaware—H does not update her beliefs about the possible state based on the fact
that A has deferred to H. This makes coordination between H and A difficult, and means
that they cannot always play an optimal policy pair. However, we can still define a notion
of the best policy pair given that H is A-unaware.

Definition 3.23. A policy pair (πH, πA) is an A-aware optimal policy pair if πH is the
policy of an A-aware H and πA is a best response to πH.

Our motivation for studying the behavior of an A-unaware H is threefold. First, it offers a
more realistic model of bounded human cognition. Previous work has studied level-k thinking
(Stahl and Wilson, 1994; Kagel and Penta, 2021) as an alternative to equilibrium play, where
a level-0 player acts randomly and a level-k player best-responds to her opponent assuming
she is some level below k. An A-unaware H can be thought of as level-1. Experimental
work has shown that human players tend to be level-1 or level-2 players when they cannot
coordinate beforehand, vindicating our A-unaware model (Camerer, Ho, and Chong, 2004;
Costa-Gomes and Crawford, 2006). Second, optimal policy pairs with sophisticated H might
be computationally intractable to find. In Appendix B.4, we show that the problem of finding
an optimal policy pair in PO-OSGs is NP-hard. In contrast, we can find an A-unaware H’s
policy in polynomial time because she ignores A’s policy and then calculate A’s best response
also in polynomial time. Finally, discussing an A-unaware H allows us to isolate the effect
of communication in PO-OSGs—an A-unaware H ignores all communication from A, even
of the implicit sort considered in Section 3.4.

Making an A-unaware H more informed can decrease payoffs
In contrast with Theorems 3.9 and 3.17, the value of information is not necessarily positive
when H is A-unaware. This is formalized in Proposition 3.24 below. Here, the notion of
“better in A-unaware optimal play” is the same as Definition 3.8 except replacing “optimal
policy pairs” with “A-unaware optimal policy pairs.”

Proposition 3.24. The following statements hold:

(a) If an observation structure O is more informative for A than O′, then O is better in
A-unaware optimal play than O′.

(b) On the other hand, there is a PO-OSG G such that if one modifies G by making its
observation structure strictly more informative for H, then we obtain a worse expected
payoff in A-unaware optimal policy pairs.

We give the proof in Appendix B.3.
Proposition 3.24(b) implies that, given the choice of which observation structure to give

an A-unaware H, A could have an incentive to give H the less informative one. This result is
qualitatively similar to Chapter 2’s examples of observation interference in assistance games.
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Information gain can have unintuitive effects on shutdown
incentives when H is A-unaware
Other than Proposition 3.24, the results for A-unaware H in A-unaware optimal policy pairs
are similar to Section 3.4: even when deferral cannot be implicit communication, making H
more informed can cause A to defer less and making A more informed can cause it to defer
more.

Proposition 3.25. The following statements hold:

(a) There is a PO-OSG G with the property that if one modifies G by making its observation
structure strictly more informative for H, then A plays w(a) less in A-unaware optimal
policy pairs.

(b) There is a PO-OSG G′ with the property that if one modifies G′ by making its obser-
vation structure strictly less informative for A, then A plays w(a) less in A-unaware
optimal policy pairs.

Proof (sketch). The details are described in Appendix B.3. The examples used to prove
Proposition 3.11 and Proposition 3.13 can be used to prove (a) and (b) respectively. It can
be checked that they don’t rely on an A-aware human: for instance, the policy pairs in
Figure B.3 are optimal regardless of whether the human is aware of A.
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Chapter 4

When Your AIs Deceive You:
Challenges of Partial Observability in
Reinforcement Learning from Human
Feedback

4.1 Overview
Reinforcement learning from human feedback (RLHF) and its variants are widely used for
finetuning foundation models, including ChatGPT (OpenAI, 2022), Bard (Manyika, 2023),
Gemini (Gemini Team, 2023), Llama 2 (Touvron et al., 2023), and Claude (Bai et al., 2022;
Anthropic, 2024; Anthropic, 2023). Prior theoretical analysis of RLHF assumes that the
human fully observes the state of the world (Skalse, Farrugia-Roberts, et al., 2023). Under
this assumption, it is possible to recover the ground-truth return function from Boltzmann-
rational human feedback (see Proposition 4.1).

In reality, however, this assumption is false. Models like ChatGPT are interacting with
the internet and software tools via plugins (OpenAI, 2023). Software assistants like Devin
are interacting with complex IDEs to produce their results (Wu, 2024). By default, some of
the models’ work then happens in the background, not observed by the users; see Figure 4.1.
With the tasks performed by language model assistants becoming more complex, it is also
increasingly time consuming for humans to evaluate the entire model behavior and input.
Therefore, we are anticipating a future where by default, the human evaluators do not fully
observe the environment state that the language assistant is embedded in. Here, we analyze
the consequences and risks of such partial observability.
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Feedback being collected...

...from humans 
that can’t see 
everything the 

agent sees.

Figure 4.1: Partial observability in ChatGPT (OpenAI, 2023). Users do not observe the
online content that ChatGPT observes yet still provide thumbs-up thumbs-down feedback.
OpenAI’s privacy policy (OpenAI, 2008) allows user feedback to be used for training models.
We show in Theorem 4.6 that if feedback of human evaluators is based on partial observations,
then this can lead to deceptive and overjustifying behavior by the language model.

We begin our investigation with a simple example, illustrated in Figure 4.2, meant to
isolate the key factor leading to deception (in practice, we imagine that this effect would be
embedded in a larger, more complex system, e.g. with logs containing thousands of lines).
An AI assistant is helping a user install software. The assistant can hide error messages by
redirecting them to /dev/null. We model the human as having a belief B over the state and
extend the Boltzmann-rational assumption from prior work to incorporate this belief. In the
absence of an error message, the human is uncertain if the agent left the system untouched or
hid the error message from a failed installation. If the human interprets trajectories without
error messages optimistically, the AI learns to hide error messages. Figure 4.4 provides
further details on how this failure occurs, and Figure 4.5 shows an experimental validation.
We also show a second case where the AI clutters the output with overly verbose logs.

Generalizing from these examples, we formalize dual risks: deceptive inflation and over-
justification. We provide a mathematical definition of each. When the observation kernel
(the function specifying the observations given states) is deterministic, Theorem 4.6 analyzes
properties of suboptimal policies learned by RLHF. These policies exhibit deceptive inflation,
appearing to produce higher reward than they actually do; overjustification, incurring a cost
in order to make a good appearance; or both.

After seeing how standard RLHF fails, we ask: What would happen if we would model
the human’s partial observability correctly in RLHF? Assuming the human’s belief is known,
we mathematically analyze how much information the feedback process provides about the
return function. In Theorem 4.8, we show that the human’s feedback determines the return
function up to a constant and a linear subspace we call the ambiguity. In general the
ambiguity may be large enough to allow for arbitrarily high regret, but in some situations
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❯ apt install cuda 2> /dev/null

Installed nvidia-driver

dpkg: error processing cuda

Installed nvidia-driver

States, actions (unobserved) Observations Beliefs

❯ apt install nvidia-driver

❯ apt install cuda 2> /dev/null

❯ exit

Suppresses errors,

doesn’t affect normal output

❯ apt install nvidia-driver

❯ apt install cuda

❯ exit

+1
-5
-4

+1
+1

Figure 4.2: A human compares trajectories to provide data for RLHF. Rather than observing
~s and ~s ′, the human sees observations ~o and ~o ′, which they use to estimate the total reward
of each trajectory. In this intentionally simple example, an agent executes shell commands
to install Nvidia drivers and CUDA. Both ~s and ~s ′ contain an error, but in ~s ′, the agent
hides the error. The human believes ~s ′ is better than ~s, rewarding the agent’s deceptive
behavior. The underlying MDP and observation function are in Figure C.2.

the ambiguity vanishes. In experiments that serve as a proof of concept, we show that
explicitly modeling the human’s partial observability can improve performance, and we offer
optimism in the form of a robustness result (Theorem 4.10) while accounting for the major
conceptual difficulties involved. We propose exploratory research directions to solve these
issues to improve RLHF in situations of partial observability.

4.2 Related work
A review of limitations of RLHF, including a brief discussion of partial observability, can
be found in Casper et al. (2023). RLHF is a special case of reward-rational choice (Jeon,
Milli, and Dragan, 2020), a general framework which also encompasses demonstrations-based
inverse reinforcement learning (Ziebart et al., 2008; A. Ng and Russell, 2000) and learning
from the initial environment state (Berkeley, Alexander, and Abbeel, 2018), and can be seen
as a special case of assistance problems (Fern et al., 2014; Hadfield-Menell et al., 2016; Shah
et al., 2020). In all of these, the reward function is learned from human actions, which in
the case of RLHF are simply preference statements. This requires us to specify the human
policy of action selection—Boltzmann rationality in typical RLHF—which can lead to wrong
reward inferences when this specification is wrong (Skalse and Abate, 2023a); unfortunately,
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the human policy can also not be learned alongside the human’s values without further
assumptions (Mindermann and Armstrong, 2018). Instead of a model of the human policy,
in this paper we mostly focus on the human belief model and misspecifications thereof for
the case that the human only receives partial observations.

The problem of human interpretations of observations was briefly mentioned in Amodei,
P. Christiano, and Ray (2017), where evaluators misinterpreted the movement of a robot
hand in simulation. Eliciting Latent Knowledge (P. Christiano, Cotra, and Xu, 2021) posits
that for giving accurate feedback from partial observations, the human needs to be able
to query latent knowledge of the AI system about the state. How to do this is currently
an unsolved problem (P. Christiano and Xu, 2022). Recent work (Denison et al., 2024;
Wen et al., 2024) provides detailed empirical evidence for deceptive behavior — in line with
our notion of deceptive inflation — emerging from RLHF based on partial observations, or
human evaluators with limited time. The OpenAI o1 system card (OpenAI, 2024b) shows
that o1 sometimes knowingly provides incorrect information or omits important information.
Compared to these investigations, and in addition to providing some empirical evidence, we
formalize a model of human feedback under partial observability, we prove the emergence of
failure modes resulting from partial observations, and we investigate potential mitigations.

Related work (Zhuang and Hadfield-Menell, 2020) analyzes the consequences of aligning
an AI with a proxy reward function that omits attributes that are important to the human’s
values, which could happen if the reward function is based on a belief over the world state
given limited information. Another instance are recommendation systems (Stray, 2023),
where user feedback does not depend on information not shown—which is crucially part of
the environment. Siththaranjan, Laidlaw, and Hadfield-Menell (2024) analyze what happens
under RLHF if the learning algorithm doesn’t have all the relevant information (e.g. about
the identity of human raters), complementing our study of what happens when human raters
are missing information. Chidambaram, Seetharaman, and Syrgkanis (2024) and C. Park
et al. (2024) deal with the situation that different human evaluators may vary in their
unobserved preference types. In contrast, we assume a single human evaluator with fixed
reward function, which can be motivated by cases where the human choices are guided by a
behavior policy, constitution, or a model spec (Mu et al., 2024; Anthropic, 2023; OpenAI,
2024a). Kausik et al. (2024) assumes that the choices of the human evaluator depend on an
unobserved reward-state with its own transition dynamics, similar to an emotional state in
a real human. In contrast, we assume the human to be stateless.

Our work argues that deception can result from applying RLHF from partial observa-
tions. Deception may also emerge for other reasons: Hubinger et al. (2019) introduced the
hypothetical scenario of deceptive alignment, in which an AI system deceives humans into
believing it is aligned while it plans a later takeover. Under the definition from P. S. Park
et al. (2024), GPT-4 was shown to behave deceptively in a simulated environment (Scheurer,
Balesni, and Hobbhahn, 2023). A third line of research defines deception in structural causal
games and adds the aspect of intentionality (Ward et al., 2023), with recent preliminary em-
pirical support (Hofstätter et al., 2023).
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Finally, we mention connections to truthful AI (Evans, Cotton-Barratt, et al., 2021; Lin,
Hilton, and Evans, 2022; Burns et al., 2023; Huang et al., 2023), which is about ensuring
that AI systems tell the truth about aspects of the real world. Partial observability is a
mechanism that makes it feasible for models to lie without being caught: If the human
evaluator does not observe the full environment, or does not fully understand it, then they
may not detect when the AI is lying. More speculatively, we can imagine that AI models will
at some point more directly influence human observations by telling us the outcomes of their
actions. E.g., imagine an AI system that manages your assets and assures you that they are
increasing in value while they are actually not. In our work, we leave this additional problem
out of the analysis by assuming that the observations only depend on the environment state,
and not directly on the agent’s actions.

4.3 Reward identifiability from full observations
Here we review Markov decision processes and previous results on reward identifiability under
RLHF.

Markov decision processes
We assume Markov decision processes (MDPs) given by (S,A, T , P0, R, γ). For any finite set
X, let ∆(X) be the set of probability distributions on X. Then S is a finite set of states, A
is a finite set of actions, T : S ×A → ∆(S) is a transition kernel written T (s′ | s, a) ∈ [0, 1],
P0 ∈ ∆(S) is an initial state distribution, R : S → R is the true reward function, and
γ ∈ [0, 1] is a discount factor.

A policy is given by a function π : S → ∆(A). We assume a finite time horizon T . Let
~S be the set of possible state sequences ~s = s0, . . . , sT , so ~s ∈ ~S if it has a strictly positive
probability of being sampled from P0, T , and an exploration policy π with π(a | s) > 0 for
all s ∈ S, a ∈ A. A sequence ~s gives rise to a return G(~s) :=

∑T
t=0 γ

tR(st). Let P π(~s) be the
on-policy probability that ~s is sampled from P0, T , π. The policy is then usually trained to
maximize the policy evaluation function J , which is the on-policy expectation of the return
function: J(π) := Es⃗∼Pπ(·)

[
G(~s)

]
.
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RLHF and identifiability from full observations
In practice, the reward function R may not be known and need to be learned from human
feedback. In a simple form of RLHF (P. F. Christiano et al., 2017), this feedback takes the
form of binary trajectory comparisons: a human is presented with state sequences ~s and
~s ′ and choose the one they prefer. Under the Boltzmann rationality model, we assume the
human picks ~s with probability

PR
(
~s � ~s ′) := σ

(
β
(
G(~s)−G(~s ′)

))
, (4.1)

where β > 0 is an inverse temperature parameter and σ(x) := 1
1+exp(−x)

is the sigmoid
function (Bradley and Terry, 1952; P. F. Christiano et al., 2017; Jeon, Milli, and Dragan,
2020).

An important question is identifiability: In the infinite data limit, do the human choice
probabilities PR collectively provide enough information to uniquely identify the reward
function R? This is answered by Skalse, Farrugia-Roberts, et al. (2023, Theorem 3.9 and
Lemma B.3):

Proposition 4.1 (Skalse, Farrugia-Roberts, et al. (2023)). Let R be the true reward function
and G the corresponding return function. Then the collection of all choice probabilities
PR(~s � ~s ′) for state sequence pairs ~s,~s ′ ∈ ~S determines the return function G on sequences
~s ∈ ~S up to an additive constant.

The reason is simple: because σ is bijective, PR determines the difference in returns
between any two trajectories. From that we can reconstruct individual returns up to an
additive constant.

The reward function R is not necessarily identifiable from preference comparisons; see
Skalse, Farrugia-Roberts, et al. (2023, Lemma B.3) for a precise characterization. However,
the optimal policy only depends on R indirectly through the return function G, and is invari-
ant under adding a constant to G. Thus in the fully observable setting, Boltzmann rational
comparisons completely determine the optimal policy. In Section 4.5, we show conditions
under which this guarantee breaks in the partially observable setting.

4.4 The impact of partial observations on RLHF
We now analyze failure modes of a naive application of RLHF from partial observations, both
theoretically and with examples. In Proposition 4.2, we show that under partial observations,
RLHF incentives policies that maximize what we call JΩ , a policy evaluation function that
evaluates how good the state sequences “look to the human”. The resulting policies can
show two distinct failure modes that we formally define and call deceptive inflation and
overjustification. In Theorem 4.6 we prove that at least one of them is present for JΩ-
maximizing policies. Later, in Section 4.5, we will see that an adaptation of the usual RLHF
process might sometimes be able to avoid these problems.



CHAPTER 4. CHALLENGES OF PARTIAL OBSERVABILITY IN RLHF 44

To model partial observability, we introduce an observation space o ∈ Ω and observation
kernel with probabilities PO(o | s) ∈ [0, 1]. We write PO⃗(~o | ~s) :=

∏T
t=0 PO(ot | st) for

the probability of an observation sequence. We write ~Ω for the set of observation sequences
that occur with non-zero probability, i.e., ~o ∈ ~Ω if and only if there is ~s ∈ ~S such that∏T

t=0 PO(ot | st) > 0. If PO and PO⃗ are deterministic, then we write O : S → Ω and
~O : ~S → ~Ω for the corresponding observation functions with O(s) = o and ~O(~s) = ~o for o
and ~o with PO(o | s) = 1 and PO⃗(~o | ~s) = 1, respectively.

What does RLHF learn from partial observations?
We consider the setting where the state is fully observable to the learned policy, but human
feedback depends only on a sequence of observations. We assume that the human gives
feedback under a Boltzmann rational model similar to Eq. (4.1), modified such that they
form some belief B(~s | ~o) ∈ [0, 1] about the state sequence ~s based on the observations ~o.
We then assume preferences are Boltzmann rational in the expected returns under this belief,
instead of the actual returns.

The assumption of Boltzmann rationality is false in practice (Evans, Stuhlmüller, and
Goodman, 2016; Majumdar et al., 2017; Buehler, Griffin, and Ross, 1994), but note that
it is an optimistic assumption: Even though our model is a simplification, we expect that
practical issues can be at least as bad as the ones we will discuss. See also Example C.39 for
an example showing that it is sometimes generally not possible to find a human model that
leads to good outcomes under RLHF. Future work could investigate different human models
and their impact under partial observability in greater detail.

To formalize our setting, we collect human beliefs into a matrix B :=
(
B(~s | ~o)

)
o⃗,s⃗

∈
RΩ⃗×S⃗ . The expected returns for observations ~o are given by Es⃗∼B(·|o⃗)

[
G(~s)

]
= (B ·G)(~o).

We view G ∈ RS⃗ and B ·G ∈ RΩ⃗ as both column vectors and functions. Plugging these
expected returns into Eq. (4.1) gives

PR
(
~o � ~o ′) := σ

(
β
(
(B ·G)(~o)− (B ·G)(~o ′)

))
. (4.2)

This is an instance of reward-rational implicit choice (Jeon, Milli, and Dragan, 2020), with
the function ~o 7→ B(· | ~o) as the grounding function. If observations are deterministic, we
can write ~O(~s) = ~o for ~o with PO⃗(~o | ~s) = 1. We can then recover the fully observable case
Eq. (4.1) with B and ~O being the identity.

The belief B can be any distribution as long as it sums to 1 over ~s. The human could
arrive at such a belief via Bayesian updates, assuming knowledge of P0, T , PO, and a prior
over the policy that generates the trajectories (see Appendix C.3). None of our results rely
on this more detailed model.

We assume the human gives feedback according to Eq. (4.2) but the system uses the
standard RLHF algorithm based on Eq. (4.1). We define the following observation return
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function GΩ, and we show in Appendix C.4 that if observations are deterministic, RLHF
infers this up to an additive constant.

GΩ(~s) := E
o⃗∼P

O⃗
(·|s⃗)

[(
B ·G

)
(~o)
]
, (4.3)

For deterministic PO⃗, this can be simplified to GΩ(~s) =
(
B ·G

)(
~O(~s)

)
where PO⃗(

~O(~s) |
~s) = 1. Note that deterministic observations can be ambiguous if multiple states produce
the same observation.

Unlike in the fully observable case of Proposition 4.1, a return function might be inferred
that implies an incorrect set of optimal policies. We define the resulting policy evaluation
function JΩ by

JΩ(π) := E
s⃗∼Pπ(s⃗)

[
GΩ(~s)

]
. (4.4)

This is the function which a standard reinforcement learning algorithm would optimize given
the inferred return function GΩ. We summarize this as follows:

Proposition 4.2. In partially observable settings with deterministic observations, a policy is
optimal according to RLHF, i.e., according to a return function model that would be learned
by RLHF with infinite comparison data, if it maximizes JΩ.

Note that in this definition, and specifically in the formula for GΩ, the human does not
have knowledge of the policy π that generates the state sequence ~s. In Appendix C.4, we
briefly discuss the unrealistic case that the human does know the precise policy and is an
ideal Bayesian reasoner over the true environment dynamics. In that case, JΩ = J , i.e. there
is no discrepancy between true and inferred returns. Intuitively, even if the human would
not make any observations, they could give correct feedback essentially by estimating the
policy’s expected return explicitly.

In our case, however, a policy achieving high JΩ produces state sequences ~s whose ob-
servation sequence ~O(~s) looks good according to the human’s belief B

(
~s ′ | ~O(~s)

)
. This hints

at a possible source of deception: if the policy achieves sequences whose observations look
good at the expense of actual value G(~s), we might intuitively call this deceptive behavior.
We now analyze this point in greater detail.
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An ontology of behaviors
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Figure 4.3: Behaviors defined by increasing
and decreasing the human’s over- and under-
estimation error. RLHF with partial obser-
vations results in incentives to increase over-
estimation error and decrease underestima-
tion error (Theorem 4.6).

We will evaluate state sequences based on the
extent to which they lead to the human overes-
timating or underestimating the reward in ex-
pectation. Recall that GΩ from Equation (4.3)
measures the expected return from the per-
spective of a human with some belief function
B and access to only observations, whereas G
are the true returns. That leads us to the fol-
lowing definition:

Definition 4.3 (Overestimation and Under-
estimation Error). Let ~s be a state sequence.
We define its overestimation error E+ and un-
derestimation error E− by

E+(~s) := max
(
0, GΩ(~s)−G(~s)

)
,

E−(~s) := max
(
0, G(~s)−GΩ(~s)

)
.

We further define the average overesti-
mation (underestimation) error under a
policy π by E

+
(π) := Es⃗∼Pπ [E+(~s)] and

E
−
(π) := Es⃗∼Pπ [E−(~s)].

We consider a policy π in comparison to some reference policy πref. This can loosely be
understood as a counterfactual policy in the absence of some intervention, where π is the
factual policy resulting from the intervention. We discuss increases and decreases in over-
and underestimation error which are implicitly due to some intervention. For our purposes,
πref will be the true optimal policy, and π will be the JΩ-optimal policy; the “intervention”
is thus the introduction of partial observability.

Figure 4.3 shows a simple ontology of behaviors that increase and decrease the average
over- and underestimation error. Increasing either of these quantities decreases the accuracy
of the human’s estimates, and can thus be thought of as “misleading”; decreasing either of
them improves accuracy and can be thought of as “informing”.
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Deceptive inflation and overjustification
Standard RLHF in the setting of partial observations incentivizes undesirable forms of in-
flating and justifying. We refer to the philosophical definition of deception offered by P. S.
Park et al. (2024),

“the systematic inducement of false beliefs in the pursuit of some outcome other
than the truth,”

to anchor the notion that increasing the overestimation error in order to improve the RLHF
objective JΩ is deceptive, leading to the following definition.

Definition 4.4 (Deceptive Inflation). A policy π exhibits deceptive inflation relative to πref

if E+
(π) > E

+
(πref) and JΩ(π) > JΩ(πref).

We typically prefer that our AI agents engage in informing behaviors. Undesirable in-
forming behaviors decrease reward despite providing information. We name undesirable
justifying behaviors “overjustification” as a nod to the overjustification effect from psychol-
ogy (Deci, 1995), in which subjects become dependent on an extrinsic source of motivation
to sustain work on a task.

Definition 4.5 (Overjustification). A policy π exhibits overjustification relative to πref if
E

−
(π) < E

−
(πref) and J(π) < J(πref).

To understand the counterintuitive notion that an agent providing information to the
human could be undesirable, consider a PhD student who looks to feedback from their
advisor for direction. They meet for one hour a week. Suppose the student explain last
week’s work in 15 minutes, leaving the remaining time to discuss next steps. They could
instead “overjustify” by spending the entire hour going through the last week’s work in far
more detail, leaving no time for next steps. From the advisor’s perspective, the latter is
more informative, but is a worse allocation of limited resources.

We now state a key result. See Appendix C.4 for the proof.

Theorem 4.6. Assume that PO is deterministic. Let Π∗
Ω be the set of optimal policies

according to a naive application of RLHF under partial observability, and let Π∗ be the set
of optimal policies according to the true objective J . If π∗ ∈ Π∗ \Π∗

Ω and π∗
Ω ∈ Π∗

Ω \Π∗, then
π∗
Ω must exhibit at least one of deceptive inflation or overjustification relative to π∗.

Note that a trajectory ~s may be more or less likely under π∗
Ω than π∗, regardless of human

estimation, so long as on net π∗
Ω exhibits deceptive inflation or overjustification.

Our analysis extends beyond the special case of RLHF to inverse preference learning
(IPL) (Hejna and Sadigh, 2023), and thus to direct preference optimization (DPO) (Rafailov
et al., 2023), which IPL generalizes. Theorem 1 in Hejna and Sadigh (2023) shows that
IPL will converge to a policy that maximizes an implicit reward function that matches the
human’s preference judgments as well as possible. If the human’s preference judgments come
from partial observations, then the resulting return function will be GΩ, as we describe in
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Figure 4.4: Scenarios illustrating failure modes due to partial observability. In each, the
agent must install two packages. Formal details of the underlying MDPs are provided in
Appendix C.2. A, top: In the absence of a log message about CUDA, the human is unsure
whether the agent skipped it or used the 2> /dev/null trick (see Figure 4.2); if the human
is insufficiently skeptical, the trick looks optimal to the agent. B, bottom: Default logging
in this case is silent when the NumPy install is successful. The agent can optionally use a
--verbose flag, but this produces a long log that the human prefers not to see. If the human
is too skeptical, verbose logging still appears optimal to the agent.

our discussion leading up to Proposition 4.2. This leads to the same problems of deceptive
inflation and overjustification that we describe in Theorem 4.6.

Deception and overjustification in examples
We now analyze intentionally simple examples that illustrate the failure modes of RLHF
in the presence of partial observability. Our examples feature an agent trained with RLHF
to complete tasks in a user’s terminal. The output of each command is piped to a log
file, which is what the human evaluator sees when making choices for RLHF. For largely
mathematical details about these examples, including a tutorial-style analysis of Example
A with derivations, see Appendix C.2. For experimental details, see Appendix C.2. For a
proof of concept on how to mitigate the issues, see Section 4.5.

In Fig. 4A, the agent’s task is to install Nvidia drivers and CUDA. The agent may skip
the CUDA installation, or may attempt it with or without 2> /dev/null (which suppresses
errors) appended. If the log contains no message about CUDA, the human believes with
probability phide that the agent used the 2> /dev/null trick and the install failed, and with
probability 1 − phide that the agent didn’t attempt the CUDA install. If phide is sufficiently
small, then RLHF will learn from the resulting feedback that the optimal policy is to use
the 2> /dev/null trick. This is deceptive inflation, because this policy produces trajectories
for which the human systematically overestimates the return. In Figure 4.5a, we see that
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the threshold for phide at which the AI switches from a deceptive action (2> /dev/null ) to
installing CUDA with default logging perfectly agrees with the theoretical prediction made
in Example C.1.

In Fig. 4B, the agent’s task is to install Python and NumPy. The agent can skip the
NumPy install, or attempt it with either “default” settings that only logs errors or with
a --verbose flag that adds additional info. In the case of a success, the human prefers
not to see this verbose output. If the log contains no message about NumPy, the human
believes with probability pdefault that the agent attempted the install with default logging
and succeeded, and with probability 1 − pdefault that the agent skipped the NumPy install.
If pdefault is sufficiently small, then RLHF will learn from the resulting feedback that the
optimal policy is to use --verbose logging. This is overjustification, because the agent
chooses a suboptimal policy in order to avoid the human underestimating its performance.
In Figure 4.5b, we see that the threshold for pdefault at which the AI switches from verbose
loggin to skipping the whole NumPy installation largely agrees with the theoretical prediction
made in Example C.3.

Further examples. We show further, purely mathematical, examples in Appendix C.4.
Example C.41 shows that deceptiveness and overjustifying behavior even applies to aspects
of the trajectory the policy has no control over: The policy tries to “hide bad luck” and
“reveal good luck at a cost”. Example C.42, especially (a) and (c), shows that the policies
coming out of a naive application of RLHF under partial observability may be suboptimal
with positive E

− (and zero E
+) or optimal, but with positive E

+ (and zero E
−). Thus, there

can be suboptimality even if the policy is better than it seems, and optimality even when
the policy is worse than it seems.

4.5 Return ambiguity from feedback under known
partial observability

We’ve seen issues with standard RLHF applied to feedback from partial observations. Part
of the problem is model misspecification: the standard RLHF model implicitly assumes full
observability. Assuming the human’s partial observability is known, could one do better?

We start by analyzing how much information the feedback process provides about the
return function when the human’s choice model under partial observations is known precisely.
We show that the feedback determines the correct return function up to an additive constant
and a linear subspace we call the ambiguity (Theorem 4.8). If the human had a return
function that differed from the true return function by an element in the ambiguity, they
would give the exact same feedback — such return functions are thus feedback-compatible.
We then show an example where the ambiguity vanishes, and another where it doesn’t,
leading to feedback-compatible return functions that have optimal policies with high regret
under the true return function. Finally, we explore how one could in theory use Theorem 4.8
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(a) Example A (b) Example B

Figure 4.5: Example A: The larger the reward penalty for hiding errors with 2> /dev/null,
and the larger the human’s belief that the agent used 2> /dev/null upon seeing an empty
log (phide), the more we expect the agent to install CUDA with default logging in Example
A. In Example C.1, we compute a precise theoretical threshold where the behavior should
switch. This perfectly agrees with empirical findings.
Example B: The larger the reward penalty for verbose logging, and the larger the human’s
trust that the agent installed NumPy upon seeing an empty log (pdefault), the more we
expect the agent to skip the NumPy installation entirely. In Example C.3, we compute a
precise theoretical threshold where behavior should switch. Except four cases of “verbose
logging” where the theory predicted the agent to skip the NumPy installation, this agrees
with empirical findings. See Appendix C.2 for experimental details.

as a starting point to design reward learning techniques that work under partial observability.
In particular, we experimentally show in a proof of concept that being aware of the human’s
partial observability improves performance. In this section we do not assume PO to be
deterministic.

Feedback-compatibility and ambiguity of return functions
Assume that the human gives feedback based on the choice-probabilities from Eq. (4.2). In
the infinite data limit, it can be assumed that the whole collection of probabilities

(
PG
(
~o �

~o′
))

o⃗,o⃗′
is known since the choice frequencies approach these probabilities. Here, we write

PG instead of PR since the reward function only enters the choice probabilities through
the corresponding return function G. The question we answer in this section is how much
information the choice probabilities provide about G, assuming the human choice model is
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Figure 4.6: By Theorem 4.8, even with infinite comparison data and access to the correct
human model, a hypothetical reward learning system (depicted as a robot) could only infer
G up to the ambiguity imΓ∩ kerB (purple). Adding an element of the ambiguity to G leads
to the exact same choice probabilities for all possible comparisons, and the reward learning
system has no way to identify G among the return functions in G+ (imΓ∩ kerB) (yellow).
This abstract depiction ignores the linearity of these spaces; for a more precise geometric
depiction of B, see Figure C.3 in the appendix.

known and correct. The choice probabilities tell us precisely that the true return function
gives rise to these choice probabilities, i.e., is feedback-compatible. This is captured in the
following definition:

Definition 4.7. Let
(
PG
(
~o � ~o ′))

o⃗,o⃗ ′
be the vector of choice probabilities and G̃ a return

function corresponding to a reward function R̃. Then G̃ is feedback-compatible (with respect
to the vector of choice probabilities) if P G̃(~o � ~o ′) = PG(~o � ~o ′) for all ~o, ~o ′ ∈ ~Ω.

Crucially, without further assumptions or inductive biases, no learning algorithm can
pick out the true return function among feedback-compatible return functions. It is thus
crucial to know whether there are feedback-compatible return functions that are unsafe when
using them to optimize a policy.

We now determine the set of feedback-compatible return functions. Write Γ ∈ RS⃗×S for
the matrix that maps a reward function to its return function, i.e. (Γ ·R)(~s) :=

∑T
t=0 γ

tR(st).
Its matrix elements are given by Γs⃗s =

∑T
t=0 δs(st)γ

t, where δs(st) = 1{s = st}. Then the
image imΓ is the set of all return functions that can be realized from a reward function
given the MDP dynamics T . Recall the belief matrix B =

(
B(~s | ~o)

)
o⃗,s⃗

∈ RΩ⃗×S⃗ . Taking
into account that G itself is in imΓ and that G enters the choice probabilities only through
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B ·G — meaning that the choice probabilities do not vary if we change G additively up to
an element in the kernel kerB — we obtain the following result:

Theorem 4.8. Let the collection of choice probabilities be given by
(
PR
(
~o � ~o ′))

o⃗,o⃗ ′∈Ω⃗
following a Boltzmann rational model as in Eq. (4.2). Then a return function G̃ is feedback-
compatible if and only if there is G′ ∈ kerB∩ imΓ and c ∈ R such that G̃ = G + G′ + c.
In particular, the choice probabilities determine G up to an additive constant if and only if
kerB∩ imΓ = {0}.

See Theorem C.5 and Corollary C.7 for full proofs, and Figure 4.6 for a visual depiction.
This result motivates the following definition:

Definition 4.9 (Ambiguity). We call kerB∩ imΓ the ambiguity that is left in the return
function when the human choice model and observation-based choice probabilities are known.

Note that Theorem 4.8 generalizes the fully observed case from Section 4.3 (Corol-
lary C.13). We extend the theorem in Appendix C.3 to the case when the human’s ob-
servations are not known. Special cases of kerB and imΓ and our theorem can be found
in Appendices C.3 and C.3. In particular, if PO⃗ is stochastic and there is only “noise” in it
(defined as ~Ω = ~S and the injectivity of O) and if the human is a Bayesian reasoner with a
fully supported prior over ~S, then the choice data determines the return function even if the
human’s observations are not known; see Example C.33.

Connection to Potential Shaping Under typical technical assumptions (Skalse, Farrugia-
Roberts, et al., 2023; Jenner, Hoof, and Gleave, 2022; Vinet and Zhedanov, 2011), potential
shaping changes the returns only by an additive constant, and thus never changes optimal
policies. It is a non-trivial ambiguity only in the reward function, but it does not lead to
actual ambiguity about intended behavior. In contrast, the ambiguity kerB∩ imΓ in the
return function that we study can make the optimal policy ambiguous — it reflects genuine
missing information about the intentions of the human.

How large is the return ambiguity? For Fig. 4A, one can show that the ambiguity is
nontrivial, allowing for feedback-compatible return functions with unsafe optimal policies.
Intuitively, since successfully installing CUDA produces the same observation regardless of
whether 2> /dev/null was used, the choice probabilities don’t give us any information to
determine distinct reward values for these two outcomes, only their average over the human’s
belief upon observing a successful install. Thus, reward functions assigning arbitrarily high
reward to success with 2> /dev/null are feedback-compatible. Such reward functions can
then lead to an incentive for a learned policy to hide the error messages even with a correct
observation model. More details can be found in Appendix C.2.

We saw in Fig. 4B a case where naive RLHF under partial observability can lead to
overjustification. However, the human’s feedback and belief model actually provide enough
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information to determine the return function. The reason is that kerB leaves only one
degree of freedom that is not “time-separable” over states, and thus kerB∩ imΓ = {0}.
More details can be found in Appendix C.2.

Toward improving RLHF in partially observable settings
To improve RLHF when partial observability is unavoidable, one could take Theorem 4.8 as
a starting point to find a learning algorithm that converges to feedback-compatible return
functions. This would require the human model to be fully known and specified, including
knowledge of the belief probabilities B(~s | ~o), which can differ from human to human. If
one assumes the human is rational, as in Appendix C.3, this requires specifying the human’s
policy prior B(π). Instead of directly specifying these models, one could also attempt to
learn a generative model for B(~s | ~o). These problems reveal a further conceptual challenge:
for complex environments, humans do not form beliefs over the entire environment state
s. A better starting point for practical work may thus be to model humans as forming
expectations over reward-relevant features of the state.

If B were explicitly known, one could in principle encode B into the loss function of an
adapted RLHF process to learn a feedback-compatible return function; see Appendix C.3. As
a proof of concept, we used this procedure to analyze the examples in Figure 4.4 empirically,
see Table 4.1. We do this by first learning a reward model by logistic regression against the
true choice probabilities of a synthetic human under partial observability, and then learning
the optimal Q-function of the resulting reward model with value iteration. The resulting
policy chooses a unique action after installation of the nvidia driver (Example A) or Python
(Example B) as listed in the “action” column.

Table 4.1 shows that in 3 of four cases, being “partial observability aware” (“po-aware”)
leads to the true optimal policy when “naive” RLHF does not. In the one case where being
“po-aware” does not improve performance (second line in the table), this is explained by the
fact that there is remaining ambiguity in the return function. Curiously, in line 4 our theory
also predicts remaining ambiguity, but the optimal policy is learned; we consider this to be
luck. We provide more details on our experiments in Appendix C.2.

As we already demonstrated, feedback-compatible return functions can be unsafe due to
remaining ambiguity. In Example C.32, we even show a case where some feedback-compatible
return functions have optimal policies that are even worse than simply maximizing JΩ. An
important direction for future work is to investigate learning algorithms and inductive biases
that help “find” safe return functions among all those that are feedback-compatible, or that
act conservatively given the uncertainty. Another line of inquiry is to determine when the set
of feedback-compatible return functions is “safe”, which depends on the MDP, observation
function, and human model.

One sufficient condition for feedback-compatible return functions to be safe is the van-
ishing of the ambiguity kerB∩ imΓ. Even then, one realistically still has to deal with the
problem that B is at best known approximately. Fortunately, in Appendix C.3, we prove
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Table 4.1: Experiments showing improved performance of po-aware RLHF

Ex. p phide pdefault model action E
+ dec. infl. E

− overj. optimal
A 0.5 0.5 N/A naive aH 1.5 ✓ 0 × ×
A 0.5 0.5 N/A po-aware aH 1.5 ✓ 0 × ×
A 0.1 0.9 N/A naive aC 0 × 0 ✓ ×
A 0.1 0.9 N/A po-aware aT 0 × 5.4 × ✓
B 0.5 N/A 0.9 naive aT 4.5 ✓ 0 ✓ ×
B 0.5 N/A 0.9 po-aware aD 0 × 0.25 × ✓
B 0.5 N/A 0.1 naive aV 0 × 0 ✓ ×
B 0.5 N/A 0.1 po-aware aD 0 × 2.25 × ✓

that small errors in the assumed belief matrix lead to only small errors in the inferred return
function:

Theorem 4.10. Assume kerB∩ imΓ = {0}. Let B∆ := B+∆ be a small perturbation of
B, where ‖∆ ‖ ≤ ρ for sufficiently small ρ. Let G be the true return function and assume
that a hypothetical learning system, assuming the human’s belief is B∆, infers the return
function G̃ with the property that B∆ ·G̃ has the smallest possible Euclidean distance to
B ·G.

Let r(B) := B |imΓ be the (injective) restriction of the operator B to imΓ. Then r(B)T r(B)
is invertible, and there exists a polynomial Q(X,Y ) of degree 5 such that

‖G̃−G‖ ≤ ρ · ‖G‖ ·Q
(∥∥(r(B)T r(B)

)−1∥∥, ‖r(B)‖
)
.

In particular, as we show in the appendix, one can uniformly bound the difference between
JG̃ and JG. This yields a regret bound between the policy optimal under G̃ and an optimal
policy π∗ for G.

There are also alternatives to modeling the human belief B. For example, one could mix
human evaluations based on high-cost full observations and low-cost partial observations
for finding an optimal tradeoff (Mallen and Belrose, 2024). Finally, it would help if the
human could query the policy about reward-relevant aspects of the environment to bring the
setting closer to RLHF from full observations. This is similar to the problem of eliciting the
latent knowledge of a predictor of future observations (P. Christiano, Cotra, and Xu, 2021;
P. Christiano and Xu, 2022). While this may avoid the need to specify the human’s belief
model B(~s | ~o), it requires understanding and effectively querying an ML model’s belief,
including translating from an ML model’s ontology into a human ontology.
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Chapter 5

Conclusion

Discussion of observation interference in POAGs
Even when the AI assistant and the human have perfect value alignment, Chapter 2 shows
how observation interference can emerge from several distinct incentives. As we focus on
optimal assistants—analyzing optimal policy pairs and best responses—all of the incentives
for observation interference that we consider are done for the human’s benefit. This creates
a nuanced picture, suggesting that not all observation interference is inherently bad. In
practice, we expect that AI assistants will exhibit observation interference for a mix of good
and bad reasons. With this theory, our goal is to lay a foundation for understanding the
causes of observation interference and helping to disentangle them in practice.

Limitations and Future Work We choose to study optimal solutions, such as optimal
policy pairs and best responses. This has the advantage of providing general insight into
the underlying game structure that is independent of any particular learning algorithm.
However, this independence is also a drawback; if algorithms fail to find optimal solutions,
they might break down in unexpected ways not captured by our theory.

Moreover, we find that some optimal policy pairs in our examples, such as Example 2.20,
require H and A to have a shared communication protocol. It would be interesting to study
additional solution concepts, such as correlated equilibria and communication equilibria, to
handle this sort of communication (Birdwhistell, 1962). While we run experiments in one
model of a POAG, it would also be interesting to see if and how our experimental trends
generalize to other POAGs.

More generally, it would be interesting to generalize the theory of assistance games to
multiple humans. Whereas the single-human assistance game is a common-payoff game, mul-
tiple humans may have competing objectives. Having possibly-competing objectives trans-
forms the game from common-payoff to general-sum, introducing three challenges. First,
existing results rely on optimal solutions, but optimality becomes ill-defined with competing
objectives, which require game-theoretic solution concepts. Second, humans might deceive
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in order to gain more assistance, necessitating mechanism design for strategy-proof interac-
tions. Third, novel applications of social choice theory are needed to aggregate preferences
with temporal challenges: choosing actions sequentially, adapting to environment changes,
and accommodating evolving human preferences.

Discussion of the partially observable off-switch game
Chapter 3 shows that even when assuming common payoffs and human rationality, partial
observability can cause AIs to avoid shutdown, and basic measures that one might expect
to improve the situation can sometimes make the situation worse.

Explaining the Unintuitive Results What mechanism produces these surprising ef-
fects? To answer this question, we must carefully break down the chain that connects
private information to shutdown incentives. Making either agent more informed can intro-
duce new subsets of states in which they can choose to play the action. For instance, the
additional information in Figure 3.4b allows the agents to take the action in every state
except the -5 payoff state, but it is impossible to play the action in exactly that subset of
states given the information in Figure 3.4a. Next, an optimal policy pair (OPP) plays the
action in the optimal subset of states out of all subsets that are accessible. Policy pairs using
a newly available optimal subset can involve the AI waiting more or waiting less. Figure 3.4
shows a case where achieving a new optimal subset requires waiting less, while Figure B.2
in Appendix B.1 shows a case that requires waiting more. This chain of effects explains the
unintuitive finding that providing either agent with more information is compatible with the
AI waiting more or less in OPPs.

Interpreting the Formalism Why should we care that A sometimes does not defer to
H in optimal policy pairs (OPPs) of PO-OSGs if these policies (by definition) maximize
H’s payoff? First, it seems helpful to understand shutdown incentives regardless of whether
shutdown is good or bad. Second, if we interpret the common payoff function carefully, we
find that OPPs are not always desirable. The role of the u in PO-OSGs is that the players
select policies to maximize it. If we understand u as the payoff function closest to what the
human acts to maximize, this may not represent H’s full preferences over outcomes.

Most payoff function formalisms have expressivity limitations that prevent them from
capturing more complex human preferences (Abel et al., 2022; Skalse and Abate, 2023b;
Subramani et al., 2024). Therefore, maximizing payoffs may not always maximize H’s overall
preferences, and avoiding shutdown to maximize payoffs may be concerning. PO-OSGs
thus provide a useful framework to understand when AI assistants are incentivized to avoid
shutdown, allowing designers to consider their specific deployment contexts and make the
appropriate tradeoff between AI deference and payoff maximization.
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Limitations and Future Work Our work focuses on optimal policy pairs and best re-
sponses, which have the advantage of applying generally to any learning algorithm that can
find them. However, algorithms that fail to find these optimal solutions may exhibit behavior
not captured by our results. We also make several assumptions in our analysis, notably that
human feedback is free, there are common payoffs, the game runs for a single round, and the
human is rational. Although we expect these assumptions to sometimes fail in practice, the
fact that results are unintuitive even in these ideal cases suggests that great care is needed to
design AI systems with appropriate shutdown incentives. Still, relaxing these assumptions
is an important direction for future work. Exploring shutdown incentives in a sequential
setting seems particularly interesting, as prior work has discussed new incentives to avoid
shutdown that may arise in this case (Freedman and Gleave, 2022; Arbital, n.d.). Another
question for further inquiry is whether the examples we use to prove our counterintuitive re-
sults are “natural’’—that is, do they arise frequently in the real world? Finally, a promising
path is to explore other solution concepts in PO-OSGs, such as perfect Bayesian equilibria
when H and A do not have the same prior over the state, when H is irrational, or when the
agents are level-k reasoners.

Discussion of RLHF with partial observability
Chapter 4 investigates challenges when applying RLHF from partial observations. First, it
proves that applying RLHF naively when assuming full observability can lead to deceptive
inflation and overjustification behavior. Then, it characterizes how even when the human’s
partial observability is known, the set of feedback-compatible return functions can contain
irreducible ambiguity. This means that without further inductive biases, no learning algo-
rithm can generally be expected to infer the correct return function. Finally, Chapter 4
provides a proof of concept that modeling the human’s partial observability can improve
performance. Overall, we recommend caution when using RLHF in situations of partial
observability, and we hope that further research studies the effects in practice and helps to
address these challenges.

Limitations and Future Work We model the human as Boltzmann rational and to
implicitly compute an expected value of the return, which is unrealistic for actual hu-
mans. Other types of choices could be considered, drawing from related work on assistance
games (Hadfield-Menell et al., 2016; Shah et al., 2020) and reward-rational choice (Jeon,
Milli, and Dragan, 2020). Moreover, we model the human as forming a belief B(~s | ~o) over
the true state sequence ~s. If the environment is complex, it could be more realistic to model
the human as forming beliefs over lower-dimensional representations capturing features of
the state. While our theory assumes knowledge of the human’s belief model B(~s | ~o), prac-
tical methods would need to learn this belief model from data. How to learn a model of
human belief is an open challenge.
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As lack of full observability is at the core of the issues we study, a question for future work
is: how can we increase the human’s observability? In practice, adding additional sensors to
the environment and providing tools to assist human evaluators can improve the human’s
observability. As a research challenge, progress in interpretability might also be able to
increase the human’s effective observability. If the human could understand the internals of
the AI assistant, this could enable the human to understand what the AI assistant is seeing.



59

Bibliography

Abbeel, Pieter and Andrew Y. Ng (2004). “Apprenticeship learning via inverse reinforcement
learning”. In: Proceedings, Twenty-First International Conference on Machine Learning.
ICML ’04. New York, NY, USA: Association for Computing Machinery, pp. 1–8. doi:
10.1145/1015330.1015430.

Abel, David et al. (2022). “On the Expressivity of Markov Reward (Extended Abstract)”.
In: IJCAI International Joint Conference on Artificial Intelligence, pp. 5254–5258. doi:
10.24963/ijcai.2022/730.

Amodei, Dario, Paul Christiano, and Alex Ray (2017). Learning from Human Preferences.
url: https://openai.com/index/learning-from-human-preferences/.

Anthropic (2023). Claude’s Constitution. url: https : / / www . anthropic . com / index /
claudes-constitution.

— (2024). Introducing Claude 3.5 Sonnet Anthropic. url: https://www.anthropic.com/
news/claude-3-5-sonnet.

Arbital (n.d.). Problem of fully updated deference. url: https://arbital.com/p/updated_
deference/.

Bai, Yuntao et al. (Dec. 2022). Constitutional AI: Harmlessness from AI Feedback. arXiv:
2212.08073. doi: 10.48550/arXiv.2212.08073.

Bassan, Bruno et al. (2003). “Positive value of information in games”. In: International
Journal of Game Theory 32.1, pp. 17–31. issn: 1432-1270. doi: 10.1007/s001820300142.

Berkeley, U C, Jordan Alexander, and Pieter Abbeel (2018). “The Implicit Preference In-
formation in an Initial State”. In: Neural Information Processing Systems. url: https:
//openreview.net/forum?id=rkevMnRqYQ.

Bernstein, Daniel S. et al. (2002). “The complexity of decentralized control of Markov decision
processes”. In: Mathematics of Operations Research 27.4, pp. 819–840. doi: 10.1287/
moor.27.4.819.297. url: https://dl.acm.org/doi/10.1287/moor.27.4.819.297.

Birdwhistell, Ray L. (1962). “An Approach to Communication”. In: Family Process 1.2,
pp. 194–201. doi: 10.1111/j.1545-5300.1962.00194.x.

Blackwell, David (1953). “Equivalent Comparisons of Experiments”. In: The Annals of Math-
ematical Statistics 24.2, pp. 265–272. doi: 10.1214/aoms/1177729032.

— (2024). “Comparison of Experiments”. In: Proceedings of the Second Berkeley Symposium
on Mathematical Statistics and Probability. Ed. by Jerzy Neyman. Vol. 2, pp. 93–102.
doi: 10.1525/9780520411586-009.

https://doi.org/10.1145/1015330.1015430
https://doi.org/10.24963/ijcai.2022/730
https://openai.com/index/learning-from-human-preferences/
https://www.anthropic.com/index/claudes-constitution
https://www.anthropic.com/index/claudes-constitution
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://arbital.com/p/updated_deference/
https://arbital.com/p/updated_deference/
https://doi.org/10.48550/arXiv.2212.08073
https://doi.org/10.1007/s001820300142
https://openreview.net/forum?id=rkevMnRqYQ
https://openreview.net/forum?id=rkevMnRqYQ
https://doi.org/10.1287/moor.27.4.819.297
https://doi.org/10.1287/moor.27.4.819.297
https://dl.acm.org/doi/10.1287/moor.27.4.819.297
https://doi.org/10.1111/j.1545-5300.1962.00194.x
https://doi.org/10.1214/aoms/1177729032
https://doi.org/10.1525/9780520411586-009


BIBLIOGRAPHY 60

Bradley, Ralph Allan and Milton E. Terry (1952). “Rank Analysis of Incomplete Block
Designs: I. The Method of Paired Comparisons”. In: Biometrika 39.3, p. 324. doi: 10.
2307/2334029.

Buehler, Roger, Dale Griffin, and Michael Ross (1994). “Exploring the “Planning Fallacy”:
Why People Underestimate Their Task Completion Times”. In: Journal of Personality
and Social Psychology 67.3, pp. 366–381. doi: 10.1037/0022-3514.67.3.366.

Burns, Collin et al. (2023). “Discovering Latent Knowledge in Language Models Without
Supervision”. In: 11th International Conference on Learning Representations, ICLR 2023.
url: https://openreview.net/forum?id=ETKGuby0hcs.

Camerer, Colin F., Teck Hua Ho, and Juin Kuan Chong (2004). “A cognitive hierarchy
model of games”. In: Quarterly Journal of Economics 119.3, pp. 861–898. doi: 10.1162/
0033553041502225.

Cane, Violet and R. Duncan Luce (1960). “Individual Choice Behavior: A Theoretical Anal-
ysis.” In: Journal of the Royal Statistical Society. Series A (General). Vol. 123. Number:
4. Mineola, NY: Dover, p. 486. doi: 10.2307/2343282.

Carey, Ryan (2018). “Incorrigibility in the CIRL Framework”. In: Proceedings of the 2018
AAAI/ACM Conference on AI, Ethics, and Society. AIES ’18. New York, NY, USA:
Association for Computing Machinery, pp. 30–35. doi: 10.1145/3278721.3278750.

Carey, Ryan and Tom Everitt (2023). “Human Control: Definitions and Algorithms”. In:
Proceedings of Machine Learning Research. Ed. by Robin J Evans and Ilya Shpitser.
Vol. 216. PMLR, pp. 271–281. url: https://proceedings.mlr.press/v216/carey23a.
html.

Casper, Stephen et al. (2023). Open Problems and Fundamental Limitations of Reinforcement
Learning from Human Feedback. arXiv: 2307.15217. doi: 10.48550/arxiv.2307.15217.

Chidambaram, Keertana, Karthik Vinay Seetharaman, and Vasilis Syrgkanis (2024). Direct
Preference Optimization With Unobserved Preference Heterogeneity. arXiv: 2405.15065
[cs.LG]. doi: 10.48550/arxiv.2405.15065.

Christiano, Paul, Ajeya Cotra, and Mark Xu (2021). Eliciting Latent Knowledge. url: https:
//docs.google.com/document/d/1WwsnJQstPq91_Yh-Ch2XRL8H_EpsnjrC1dwZXR37PC8/
edit.

Christiano, Paul and Mark Xu (2022). ELK prize results. url: https://www.alignmentforum.
org/posts/zjMKpSB2Xccn9qi5t/elk-prize-results.

Christiano, Paul F. et al. (June 2017). “Deep reinforcement learning from human prefer-
ences”. In: Advances in Neural Information Processing Systems. Vol. 2017. url: https:
//dl.acm.org/doi/10.5555/3294996.3295184.

Costa-Gomes, Miguel A. and Vincent P. Crawford (2006). “Cognition and behavior in two-
person guessing games: An experimental study”. In: American Economic Review 96.5,
pp. 1737–1768. doi: 10.1257/aer.96.5.1737.

Cover, Thomas M. and Joy A. Thomas (2005). “Elements of Information Theory”. In: Ele-
ments of Information Theory. John Wiley & Sons, pp. 1–748. doi: 10.1002/047174882X.

https://doi.org/10.2307/2334029
https://doi.org/10.2307/2334029
https://doi.org/10.1037/0022-3514.67.3.366
https://openreview.net/forum?id=ETKGuby0hcs
https://doi.org/10.1162/0033553041502225
https://doi.org/10.1162/0033553041502225
https://doi.org/10.2307/2343282
https://doi.org/10.1145/3278721.3278750
https://proceedings.mlr.press/v216/carey23a.html
https://proceedings.mlr.press/v216/carey23a.html
https://doi.org/10.48550/arxiv.2307.15217
https://doi.org/10.48550/arxiv.2405.15065
https://docs.google.com/document/d/1WwsnJQstPq91_Yh-Ch2XRL8H_EpsnjrC1dwZXR37PC8/edit
https://docs.google.com/document/d/1WwsnJQstPq91_Yh-Ch2XRL8H_EpsnjrC1dwZXR37PC8/edit
https://docs.google.com/document/d/1WwsnJQstPq91_Yh-Ch2XRL8H_EpsnjrC1dwZXR37PC8/edit
https://www.alignmentforum.org/posts/zjMKpSB2Xccn9qi5t/elk-prize-results
https://www.alignmentforum.org/posts/zjMKpSB2Xccn9qi5t/elk-prize-results
https://dl.acm.org/doi/10.5555/3294996.3295184
https://dl.acm.org/doi/10.5555/3294996.3295184
https://doi.org/10.1257/aer.96.5.1737
https://doi.org/10.1002/047174882X


BIBLIOGRAPHY 61

Deci, Edward L (1995). Why we do what we do: The dynamics of personal autonomy Solitude
project View project. GP Putnam’s Sons. url: https : / / www . researchgate . net /
publication/232484008.

Denison, Carson et al. (2024). Sycophancy to Subterfuge: Investigating Reward-Tampering
in Large Language Models. arXiv: 2406.10162. doi: 10.48550/arxiv.2406.10162.

Desai, Nishant (2017). Uncertain Reward-Transition MDPs for Negotiable Reinforcement
Learning. Tech. rep. Berkeley, California, USA: UC Berkeley. url: http://www2.eecs.
berkeley.edu/Pubs/TechRpts/2017/EECS-2017-231.html.

El Ghaoui, Laurent (2002). “Inversion error, condition number, and approximate inverses
of uncertain matrices”. In: Linear Algebra and Its Applications 343, pp. 171–193. doi:
10.1016/S0024-3795(01)00273-7.

Evans, Owain, Owen Cotton-Barratt, et al. (2021). Truthful AI: Developing and governing
AI that does not lie. arXiv: 2110.06674. doi: 10.48550/arxiv.2110.06674.

Evans, Owain, Andreas Stuhlmüller, and Noah D. Goodman (2016). “Learning the prefer-
ences of ignorant, inconsistent agents”. In: 30th AAAI Conference on Artificial Intelli-
gence, AAAI 2016, pp. 323–329. doi: 10.1609/aaai.v30i1.10010.

Fadden, Daniel Mc (1974). “Conditional logit analysis of qualitative choice behavior”. In:
Frontiers in Econometrics. Ed. by Paul Zarembka. Vol. 33. Number: 8. New York: Aca-
demic Press, pp. 105–142. url: http://elsa.berkeley.edu/reprints/mcfadden/
zarembka.pdf.

Fern, Alan et al. (2014). “A decision-theoretic model of assistance”. In: Journal of Artificial
Intelligence Research 50.1, pp. 71–104. doi: 10.1613/jair.4213.

Freedman, Rachel and Adam Gleave (2022). CIRL Corrigibility is Fragile. url: https://
www.lesswrong.com/posts/PGK3AJtNG4rPHuZxy/cirl-corrigibility-is-fragile.

Friedman, Nir, Kevin Murphy, and Stuart Russell (1998). “Learning the Structure of Dy-
namic Probabilistic Networks”. In: Proceedings of the Fourteenth Conference on Uncer-
tainty in Artificial Intelligence. UAI’98. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., pp. 139–147. url: https://dl.acm.org/doi/10.5555/2074094.
2074111.

Galeotti, Andrea, Christian Ghiglino, and Francesco Squintani (2013). “Strategic information
transmission networks”. In: Journal of Economic Theory 148.5, pp. 1751–1769. doi: 10.
1016/j.jet.2013.04.016.

Geiger, Dan, Thomas Verma, and Judea Pearl (1990). “Identifying independence in bayesian
networks”. In: Networks. An International Journal 20.5, pp. 507–534. doi: 10.1002/net.
3230200504. url: https://api.semanticscholar.org/CorpusID:1938713.

Gemini Team, Google (2023). Gemini: A Family of Highly Capable Multimodal Models. url:
https://storage.googleapis.com/deepmind-media/gemini/gemini_1_report.pdf.

Grace, Katja et al. (2024). “Thousands of AI authors on the future of AI”. In: arXiv preprint
arXiv:2401.02843.

Hadfield-Menell, Dylan et al. (2016). “Cooperative inverse reinforcement learning”. In: Ad-
vances in Neural Information Processing Systems. Ed. by D Lee et al. Vol. 29. Curran

https://www.researchgate.net/publication/232484008
https://www.researchgate.net/publication/232484008
https://doi.org/10.48550/arxiv.2406.10162
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-231.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-231.html
https://doi.org/10.1016/S0024-3795(01)00273-7
https://doi.org/10.48550/arxiv.2110.06674
https://doi.org/10.1609/aaai.v30i1.10010
http://elsa.berkeley.edu/reprints/mcfadden/zarembka.pdf
http://elsa.berkeley.edu/reprints/mcfadden/zarembka.pdf
https://doi.org/10.1613/jair.4213
https://www.lesswrong.com/posts/PGK3AJtNG4rPHuZxy/cirl-corrigibility-is-fragile
https://www.lesswrong.com/posts/PGK3AJtNG4rPHuZxy/cirl-corrigibility-is-fragile
https://dl.acm.org/doi/10.5555/2074094.2074111
https://dl.acm.org/doi/10.5555/2074094.2074111
https://doi.org/10.1016/j.jet.2013.04.016
https://doi.org/10.1016/j.jet.2013.04.016
https://doi.org/10.1002/net.3230200504
https://doi.org/10.1002/net.3230200504
https://api.semanticscholar.org/CorpusID:1938713
https://storage.googleapis.com/deepmind-media/gemini/gemini_1_report.pdf


BIBLIOGRAPHY 62

Associates, Inc., pp. 3916–3924. url: https : / / proceedings . neurips . cc / paper _
files/paper/2016/file/c3395dd46c34fa7fd8d729d8cf88b7a8-Paper.pdf.

Hadfield-Menell, Dylan et al. (2017). “The Off-Switch Game”. In: Proceedings of the 26th
International Joint Conference on Artificial Intelligence. IJCAI’17. AAAI Press, pp. 220–
227. doi: 10.24963/ijcai.2017/32.

Hejna, Joey and Dorsa Sadigh (May 2023). “Inverse Preference Learning: Preference-based
RL without a Reward Function”. In: Advances in Neural Information Processing Systems
36. arXiv: 2305.15363 tex.arxivid: 2305.15363, arXiv:2305.15363. doi: 10.48550/arXiv.
2305.15363.

Hofstätter, Felix et al. (2023). Tall Tales at Different Scales: Evaluating Scaling Trends
for Deception in Language Models. url: https://www.alignmentforum.org/posts/
pip63HtEAxHGfSEGk / tall - tales - at - different - scales - evaluating - scaling -
trends-for.

Hu, Hengyuan et al. (2020). ““other-play” for zero-shot coordination”. In: International Con-
ference on Machine Learning. PMLR, pp. 4399–4410.

Huang, Lei et al. (2023). A Survey on Hallucination in Large Language Models: Principles,
Taxonomy, Challenges, and Open Questions. arXiv: 2311.05232. doi: 10.1145/3703155.

Hubinger, Evan et al. (June 2019). Risks from Learned Optimization in Advanced Machine
Learning Systems. arXiv: 1906.01820. doi: 10.48550/arXiv.1906.01820.

Jenner, Erik, Herke van Hoof, and Adam Gleave (2022). Calculus on MDPs: Potential Shap-
ing as a Gradient. arXiv: 2208.09570. doi: 10.48550/arxiv.2208.09570.

Jeon, Hong Jun, Smitha Milli, and Anca Dragan (2020). “Reward-rational (implicit) choice:
A unifying formalism for reward learning”. In: Advances in Neural Information Processing
Systems. Ed. by H Larochelle et al. Curran Associates, Inc., pp. 4415–4426. url: https:
//dl.acm.org/doi/abs/10.5555/3495724.3496095.

Kagel, John H. and Antonio Penta (2021). “Unraveling in guessing games: An experimen-
tal study (by Rosemarie Nagel)”. In: The Art of Experimental Economics: Twenty Top
Papers Reviewed 85.5, pp. 109–118. doi: 10.4324/9781003019121- 10. url: https:
//econpapers.repec.org/RePEc:aea:aecrev:v:85:y:1995:i:5:p:1313-26.

Kamien, Morton I, Yair Tauman, and Shmuel Zamir (1990). “On the value of information
in a strategic conflict”. In: Games and Economic Behavior 2.2, pp. 129–153. issn: 0899-
8256. doi: https://doi.org/10.1016/0899-8256(90)90026-Q. url: https://www.
sciencedirect.com/science/article/pii/089982569090026Q.

Kausik, Chinmaya et al. (2024). A Framework for Partially Observed Reward-States in
RLHF. arXiv: 2402.03282. doi: 10.48550/arxiv.2402.03282.

Kowitz, Gerald T. (1972). “Game theory”. In: Educational Forum. Vol. 36. Number: 4. MIT
Press, pp. 514–514. doi: 10.1080/00131727209339022.

Kuhn, H. W. (2016). “Extensive Games and the Problem of Information”. In: Contributions
to the Theory of Games (AM-28), Volume II. Ed. by Harold William Kuhn and Albert
William Tucker. Princeton: Princeton University Press, pp. 193–216. doi: 10. 1515/
9781400881970-012.

https://proceedings.neurips.cc/paper_files/paper/2016/file/c3395dd46c34fa7fd8d729d8cf88b7a8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/c3395dd46c34fa7fd8d729d8cf88b7a8-Paper.pdf
https://doi.org/10.24963/ijcai.2017/32
https://doi.org/10.48550/arXiv.2305.15363
https://doi.org/10.48550/arXiv.2305.15363
https://www.alignmentforum.org/posts/pip63HtEAxHGfSEGk/tall-tales-at-different-scales-evaluating-scaling-trends-for
https://www.alignmentforum.org/posts/pip63HtEAxHGfSEGk/tall-tales-at-different-scales-evaluating-scaling-trends-for
https://www.alignmentforum.org/posts/pip63HtEAxHGfSEGk/tall-tales-at-different-scales-evaluating-scaling-trends-for
https://doi.org/10.1145/3703155
https://doi.org/10.48550/arXiv.1906.01820
https://doi.org/10.48550/arxiv.2208.09570
https://dl.acm.org/doi/abs/10.5555/3495724.3496095
https://dl.acm.org/doi/abs/10.5555/3495724.3496095
https://doi.org/10.4324/9781003019121-10
https://econpapers.repec.org/RePEc:aea:aecrev:v:85:y:1995:i:5:p:1313-26
https://econpapers.repec.org/RePEc:aea:aecrev:v:85:y:1995:i:5:p:1313-26
https://doi.org/https://doi.org/10.1016/0899-8256(90)90026-Q
https://www.sciencedirect.com/science/article/pii/089982569090026Q
https://www.sciencedirect.com/science/article/pii/089982569090026Q
https://doi.org/10.48550/arxiv.2402.03282
https://doi.org/10.1080/00131727209339022
https://doi.org/10.1515/9781400881970-012
https://doi.org/10.1515/9781400881970-012


BIBLIOGRAPHY 63

Laidlaw, Cassidy and Anca Dragan (2022). “The Boltzmann Policy Distribution: Accounting
for Systematic Suboptimality in Human Models”. In: 10th International Conference on
Learning Representations, ICLR 2022. url: https://openreview.net/pdf?id=_l_
QjPGN5ye.

Lang, Leon et al. (2024). When Your AIs Deceive You: Challenges with Partial Observability
of Human Evaluators in Reward Learning. arXiv: 2402.17747. doi: 10.48550/arxiv.
2402.17747.

Lehrer, Ehud, Dinah Rosenberg, and Eran Shmaya (2010). “Signaling and mediation in
games with common interests”. In: Games and Economic Behavior 68.2, pp. 670–682.
doi: 10.1016/j.geb.2009.08.007.

Lin, Stephanie, Jacob Hilton, and Owain Evans (2022). “TruthfulQA: Measuring How Models
Mimic Human Falsehoods”. In: Proceedings of the Annual Meeting of the Association for
Computational Linguistics 1, pp. 3214–3252. doi: 10.18653/v1/2022.acl-long.229.

Majumdar, Anirudha et al. (July 2017). “Risk-sensitive inverse reinforcement learning via
coherent risk models”. In: Robotics: Science and Systems. Ed. by Nancy Amato et al.
Vol. 13. United States: MIT Press Journals. doi: 10.15607/rss.2017.xiii.069.

Mallen, Alex and Nora Belrose (2024). Balancing Label Quantity and Quality for Scalable
Elicitation. arXiv: 2410.13215 [cs.LG]. doi: 10.48550/arxiv.2410.13215.

Manyika, James (2023). An overview of Bard: an early experiment with generative AI. Pages:
1–9 Publication title: Google. url: https://ai.google/static/documents/google-
about-bard.pdf.

McMillan, B. and D. Slepian (1962). “Information Theory”. In: Proceedings of the IRE.
Vol. 50. Interscience Tracts in Pure and Applied Mathematics. Number: 5. John Wiley
& Sons, pp. 1151–1157. doi: 10.1109/JRPROC.1962.288022.

Mindermann, Sören and Stuart Armstrong (2018). “Occam’s razor is insufficient to infer the
preferences of irrational agents”. In: Advances in Neural Information Processing Systems.
Vol. 2018-December. NeurIPS’18. Red Hook, NY, USA: Curran Associates Inc., pp. 5598–
5609. url: https://proceedings.neurips.cc/paper_files/paper/2018/file/
d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf.

Mu, Tong et al. (2024). Rule Based Rewards for Language Model Safety. url: https :
//openai.com/index/improving- model- safety- behavior- with- rule- based-
rewards/.

Ng, Andrew and Stuart Russell (2000). “Algorithms for inverse reinforcement learning”. In:
Proceedings of the Seventeenth International Conference on Machine Learning. Vol. 0.
ICML ’00. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., pp. 663–670.
url: http://www-cs.stanford.edu/people/ang/papers/icml00-irl.pdf.

Oliveira, Henrique de (2018). “Blackwell’s informativeness theorem using diagrams”. In:
Games and Economic Behavior 109, pp. 126–131. doi: 10.1016/j.geb.2017.12.008.

Omohundro, Stephen M. (2007). “The nature of self-improving artificial intelligence”. In: Sin-
gularity Summit. Vol. 5, p. 2007. url: https://selfawaresystems.com/wp-content/
uploads/2008/01/nature_of_self_improving_ai.pdf.

https://openreview.net/pdf?id=_l_QjPGN5ye
https://openreview.net/pdf?id=_l_QjPGN5ye
https://doi.org/10.48550/arxiv.2402.17747
https://doi.org/10.48550/arxiv.2402.17747
https://doi.org/10.1016/j.geb.2009.08.007
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.15607/rss.2017.xiii.069
https://doi.org/10.48550/arxiv.2410.13215
https://ai.google/static/documents/google-about-bard.pdf
https://ai.google/static/documents/google-about-bard.pdf
https://doi.org/10.1109/JRPROC.1962.288022
https://proceedings.neurips.cc/paper_files/paper/2018/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://openai.com/index/improving-model-safety-behavior-with-rule-based-rewards/
https://openai.com/index/improving-model-safety-behavior-with-rule-based-rewards/
https://openai.com/index/improving-model-safety-behavior-with-rule-based-rewards/
http://www-cs.stanford.edu/people/ang/papers/icml00-irl.pdf
https://doi.org/10.1016/j.geb.2017.12.008
https://selfawaresystems.com/wp-content/uploads/2008/01/nature_of_self_improving_ai.pdf
https://selfawaresystems.com/wp-content/uploads/2008/01/nature_of_self_improving_ai.pdf


BIBLIOGRAPHY 64

Omohundro, Stephen M. (2008). “The basic AI drives”. In: Frontiers in Artificial Intelligence
and Applications. Vol. 171. Number: 1. NLD: IOS Press, pp. 483–492. doi: 10.18254/
s207751800009748-1.

OpenAI (2008). Privacy Policy. url: https://openai.com/policies/privacy-policy//.
— (2022). Introducing ChatGPT. url: https://openai.com/blog/chatgpt.
— (2023). ChatGPT plugins. Publication title: OpenAI Platform. url: https://chat.

openai.com/.
— (2024a). Model Spec (2024/05/08). url: https://cdn.openai.com/spec/model-spec-

2024-05-08.html.
— (2024b). OpenAI o1 System Card. Pages: 1–43. url: https://cdn.openai.com/o1-

system-card.pdf.
Park, Chanwoo et al. (2024). RLHF from Heterogeneous Feedback via Personalization and

Preference Aggregation. arXiv: 2405.00254 [cs.AI]. doi: 10.48550/arxiv.2405.00254.
Park, Peter S. et al. (2024). “AI deception: A survey of examples, risks, and potential solu-

tions”. In: Patterns 5.5. doi: 10.1016/j.patter.2024.100988.
Rafailov, Rafael et al. (2023). Direct Preference Optimization: Your Language Model is Se-

cretly a Reward Model. arXiv: 2305.18290. doi: 10.48550/arxiv.2305.18290.
Ramachandran, Deepak and Eyal Amir (2007). “Bayesian inverse reinforcement learning”. In:

IJCAI International Joint Conference on Artificial Intelligence. IJCAI’07. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., pp. 2586–2591.

Reif, John H (1984). “The complexity of two-player games of incomplete information”. In:
Journal of computer and system sciences 29.2, pp. 274–301.

Russell, Stuart (2019). Human Compatible: AI and the Problem of Control. Number: 1.
Penguin. url: https://www.penguin.co.uk/books/307948/human-compatible-by-
russell-stuart/9780141987507.

Scheurer, Jérémy, Mikita Balesni, and Marius Hobbhahn (2023). Large Language Models
can Strategically Deceive their Users when Put Under Pressure. arXiv: 2311.07590. doi:
10.48550/arxiv.2311.07590.

Shah, Rohin et al. (2020). “Benefits of Assistance over Reward Learning”. In: 34th Conference
on Neural Information Processing Systems. url: https://people.eecs.berkeley.edu/
~russell/papers/neurips20ws-assistance.

Siththaranjan, Anand, Cassidy Laidlaw, and Dylan Hadfield-Menell (2024). “Distributional
Preference Learning: Understanding and Accounting for Hidden Context in RLHF”. In:
12th International Conference on Learning Representations. ICLR 2024. doi: 10.48550/
arxiv.2312.08358.

Skalse, Joar and Alessandro Abate (Dec. 2023a). “Misspecification in Inverse Reinforcement
Learning”. In: Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI
2023 37, pp. 15136–15143. doi: 10.1609/aaai.v37i12.26766.

— (2023b). “On the Limitations of Markovian Rewards to Express Multi-Objective, Risk-
Sensitive, and Modal Tasks”. In: Proceedings of Machine Learning Research. Ed. by Robin
J Evans and Ilya Shpitser. Vol. 216. Proceedings of Machine Learning Research. PMLR,
pp. 1974–1984. url: https://proceedings.mlr.press/v216/skalse23a.html.

https://doi.org/10.18254/s207751800009748-1
https://doi.org/10.18254/s207751800009748-1
https://openai.com/policies/privacy-policy//
https://openai.com/blog/chatgpt
https://chat.openai.com/
https://chat.openai.com/
https://cdn.openai.com/spec/model-spec-2024-05-08.html
https://cdn.openai.com/spec/model-spec-2024-05-08.html
https://cdn.openai.com/o1-system-card.pdf
https://cdn.openai.com/o1-system-card.pdf
https://doi.org/10.48550/arxiv.2405.00254
https://doi.org/10.1016/j.patter.2024.100988
https://doi.org/10.48550/arxiv.2305.18290
https://www.penguin.co.uk/books/307948/human-compatible-by-russell-stuart/9780141987507
https://www.penguin.co.uk/books/307948/human-compatible-by-russell-stuart/9780141987507
https://doi.org/10.48550/arxiv.2311.07590
https://people.eecs.berkeley.edu/~russell/papers/neurips20ws-assistance
https://people.eecs.berkeley.edu/~russell/papers/neurips20ws-assistance
https://doi.org/10.48550/arxiv.2312.08358
https://doi.org/10.48550/arxiv.2312.08358
https://doi.org/10.1609/aaai.v37i12.26766
https://proceedings.mlr.press/v216/skalse23a.html


BIBLIOGRAPHY 65

Skalse, Joar, Matthew Farrugia-Roberts, et al. (2023). “Invariance in Policy Optimisation
and Partial Identifiability in Reward Learning”. In: Proceedings of Machine Learning Re-
search. Ed. by Andreas Krause et al. Vol. 202. Proceedings of Machine Learning Research.
PMLR, pp. 32033–32058. url: https://proceedings.mlr.press/v202/skalse23a.
html.

Soares, Nate et al. (2015). “Corrigibility”. In: Artificial Intelligence and Ethics: Papers from
the 2015 AAAI Workshop. Ed. by Toby Walsh. AAAI Press. url: http://aaai.org/
ocs/index.php/WS/AAAIW15/paper/view/10124.

Stahl, Dale O. and Paul W. Wilson (1994). “Experimental evidence on players’ models of
other players”. In: Journal of Economic Behavior and Organization 25.3, pp. 309–327.
doi: 10.1016/0167-2681(94)90103-1.

Stray, Jonathan (2023). “The AI Learns to Lie to Please You: Preventing Biased Feedback
Loops in Machine-Assisted Intelligence Analysis”. In: Analytics 2.2, pp. 350–358. doi:
10.3390/analytics2020020.

Subramani, Rohan et al. (2024). “On the Expressivity of Objective-Specification Formalisms
in Reinforcement Learning”. In: 12th International Conference on Learning Representa-
tions. ICLR 2024. url: https://openreview.net/forum?id=qr4ECbGcSj.

Touvron, Hugo et al. (2023). Llama 2: Open Foundation and Fine-Tuned Chat Models. arXiv:
2307.09288. doi: 10.48550/arxiv.2307.09288.

Treutlein, Johannes et al. (2021). “A New Formalism, Method and Open Issues for Zero-
Shot Coordination”. In: Proceedings of Machine Learning Research. Vol. 139. PMLR,
pp. 10413–10423. url: https : / / proceedings . mlr . press / v139 / treutlein21a /
treutlein21a.pdf.

Vinet, Luc and Alexei Zhedanov (2011). “A ’missing’ family of classical orthogonal polynomi-
als”. In: Journal of Physics A: Mathematical and Theoretical. Vol. 44. ICML ’99. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc., pp. 278–287. doi: 10.1088/1751-
8113/44/8/085201.

Wängberg, Tobias et al. (2017). “A Game-Theoretic Analysis of the Off-Switch Game”. In:
Artificial General Intelligence. Ed. by Tom Everitt, Ben Goertzel, and Alexey Potapov.
Cham: Springer International Publishing, pp. 167–177. doi: 10 . 1007 / 978 - 3 - 319 -
63703-7_16.

Ward, Francis Rhys et al. (2023). “Honesty Is the Best Policy: Defining and Mitigating
AI Deception”. In: Advances in Neural Information Processing Systems. Vol. 36. url:
https://openreview.net/forum?id=EmxpDiPgRu.

Wen, Jiaxin et al. (2024). Language Models Learn to Mislead Humans via RLHF. arXiv:
2409.12822. doi: 10.48550/arxiv.2409.12822.

Williams, Marcus et al. (2024). On Targeted Manipulation and Deception when Optimizing
LLMs for User Feedback. arXiv: 2411.02306. doi: 10.48550/arxiv.2411.02306.

Wu, Scott (2024). Introducing Devin, the first AI software engineer. url: https://www.
cognition-labs.com/introducing-devin.

Zhuang, Simon and Dylan Hadfield-Menell (2020). “Consequences of misaligned AI”. In:
Advances in Neural Information Processing Systems. Vol. 2020-December. NeurIPS’20.

https://proceedings.mlr.press/v202/skalse23a.html
https://proceedings.mlr.press/v202/skalse23a.html
http://aaai.org/ocs/index.php/WS/AAAIW15/paper/view/10124
http://aaai.org/ocs/index.php/WS/AAAIW15/paper/view/10124
https://doi.org/10.1016/0167-2681(94)90103-1
https://doi.org/10.3390/analytics2020020
https://openreview.net/forum?id=qr4ECbGcSj
https://doi.org/10.48550/arxiv.2307.09288
https://proceedings.mlr.press/v139/treutlein21a/treutlein21a.pdf
https://proceedings.mlr.press/v139/treutlein21a/treutlein21a.pdf
https://doi.org/10.1088/1751-8113/44/8/085201
https://doi.org/10.1088/1751-8113/44/8/085201
https://doi.org/10.1007/978-3-319-63703-7_16
https://doi.org/10.1007/978-3-319-63703-7_16
https://openreview.net/forum?id=EmxpDiPgRu
https://doi.org/10.48550/arxiv.2409.12822
https://doi.org/10.48550/arxiv.2411.02306
https://www.cognition-labs.com/introducing-devin
https://www.cognition-labs.com/introducing-devin


BIBLIOGRAPHY 66

Red Hook, NY, USA: Curran Associates Inc. url: https://proceedings.neurips.cc/
paper/2020/file/b607ba543ad05417b8507ee86c54fcb7-Paper.pdf.

Ziebart, Brian D. et al. (2008). “Maximum Entropy Inverse Reinforcement Learning”. In:
Proceedings of the 23rd AAAI Conference on Artificial Intelligence, AAAI 2008. Ed. by
Dieter Fox and Carla P Gomes. AAAI Press, pp. 1433–1438. url: https://dl.acm.
org/doi/10.5555/1620270.1620297.

https://proceedings.neurips.cc/paper/2020/file/b607ba543ad05417b8507ee86c54fcb7-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b607ba543ad05417b8507ee86c54fcb7-Paper.pdf
https://dl.acm.org/doi/10.5555/1620270.1620297
https://dl.acm.org/doi/10.5555/1620270.1620297


67

Appendices



68

Appendix A

Observation Interference in POAGs

A.1 Proofs and example formalizations for Section 2.5

A lemma about policies with internal states
In our proof of Theorem 2.14 (and our proof of Theorem 2.19), we will construct policies
that maintain an internal state (the previously sampled garbled observations). We will call
this a virtual state. However, our setup (in line with the norm in the literature) does not
allow for such policies. We here show that any policy with a virtual state can be “simulated”
by a policy without virtual states. Since this result is about a single player’s policy, holding
the opponent policy fixed, we will prove this in POMDPs.

First, a virtual-state policy is a family of distributions π(a, ṽ | v, h), where:
• h is a history of observations and actions as usual;
• v is an agent state from some discrete set (e.g., N or Ω×A);
• ṽ is another (new) virtual state;
• a is an action.
Additionally we specify an initial virtual state v0. Virtual-state policies give rise to

histories in the obvious way: the initial agent state is v0; the agent then samples an action
a0 and a following virtual state v1 from π(· | v0). In the next step it samples an action and
agent state from π(· | o0a1, v1) and so on.

We now show that policies with a virtual state can be transformed into behaviorally
equivalent policies without an agent state.

Lemma A.1. Let π be a virtual-state policy. Then there exists a regular policy π̄ s.t. the
resulting distribution over (environment state, observation, action) histories is the same
under π and π̄. In particular, the expected rewards of the two are the same.

The result is related to Kuhn’s (Kuhn, 2016) proof of the equivalence of behavioral and
mixed strategies in perfect-recall extensive-form games.
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Proof. For this proof we use ho,a to denote observation–action histories and ho,a to use state–
observation–action histories. Consider π̄ that at time step t is defined by

π̄(A | ho,a) =
∑

v0,...,vt

P (v0, ..., vt | π, ho,a)π(A | vt, ho,a).

Intuitively, at time step t we infer a probability distribution over histories of virtual states
and in particular vt, conditioning on the observed observation–action history h, and then
sample from the action distribution induced by π(A | vt, ho,a).

We prove that for each time step t, the state–observation–action history up until time step
t is the same between π and π̄. We prove this by natural induction. The base case is trivial.
Assume that the distribution over state–observation–action histories up until time step t is
the same. We will show that for each state–observation–action history, the distribution over
actions at+1 at time t+1 is the same under π and π̄. Note that the action distribution under
π is given by ∑

vA0 ,...,sAt

P (v0, ..., vt | π, hs,o,a)π(A | vt, ho,a).

Now note that P (v0, ..., vt | π, hs,o,a) = P (v0, ..., vt | π, ho,a), i.e., given the history of states
and observations, the environment states don’t provide further evidence about the agent
states, since every dependence between environmental states and agent states is mediated
by observations and actions. Thus, this distribution is the same as the distribution π̄(A |
ho,a).

Proof of Theorem 2.14
Theorem 2.14. Let M be any POAG. Let A have no private information. Then there is
an optimal policy pair (πH, πA) for M in which πA does not interfere with observations at
the action level (and πH observes naively).

Proof sketch. Note first that because our setting is common-payoff and involves no absent-
mindedness/imperfect recall, there is always an optimal policy pair in which neither A nor
H randomizes in any observation history. Let (πH, πA) be any optimal policy pair for
M . Let aAinterfere be an interference action played by πA. Let āA be the corresponding non-
interference strategy. Now consider the policy π̄A that plays like πA except that it plays āA
instead of aAinterfere.

We will now construct a corresponding human policy π̄H that results in playing the same
actions at each point as aA. Note that by the assumption that A has no private observations
and the fact that πA and π̄A are deterministic, H always knows A’s full observation history.
Thus, H knows in particular when for which time steps in her observation history πA would
have played aAinterfere and π̄A played āA instead.

Now let F be the observation translation function as per Definition 2.6. Intuitively, we
want π̄H to apply F to any new observation that results from playing āA rather than aAinterfere,
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and then remember that modified observation in place of the actual observation. It would
then be easy to show that π̄H would result in the same actions as πH. Together with the
fact that aAinterfere and āA have the same effect on state transitions and rewards, we would
immediately obtain that (π̄H, π̄A) has the same utility as (πH, πA).

Unfortunately, if F is stochastic, the above construction requires that H can remember
the results of past applications of F . That is, if at time step t she observes according to
āA and translates according to F to obtain some new observation oHt (that she would have
obtained under interference), then at any time step t′ > t, she needs to remember that she
sampled oHt from F . Our formalism doesn’t allow for such memory. However, by Lemma A.1
we can construct a policy without internal memory to imitate the policy we constructed.

Formalization of Example 2.15 and proof of Proposition 2.16
Example 2.15. H has typed apt list -a cuda to see the list of cuda versions available
to be installed. Out of 10 total versions, only a (non-empty) subset are available. And of
these available versions, only a subset are compatible with the other environment software.

First, A takes an action. For each of the 10 total cuda versions, A can choose to or
not to suppress it from the list of available packages. This gives A 210 total actions, where
1 action is non-observation interference (suppressing nothing), and the remaining 210 − 1
actions interfere with observations.

Second, H takes an action. H has 10 possible actions which try to install the corresponding
version of cuda if it appears in the version list. If an available cuda version that is compatible
with the other environment software is installed, it yields +1 reward. Otherwise, it yields 0
reward.

Suppose A sees which versions are compatible with the other software in the environ-
ment, but H doesn’t. Then A’s optimal policy is to suppress the versions of cuda that are
incompatible.

Formalization:

• S = ({0, 1} × {0, 1}10 × {0, 1}10) ∪ {E} ∪ {I} – E is a terminal state, which we use
to make the POAG effectively episodic. I is an initial state. The first bit, which we
denote by s0, encodes the time step. The next ten bits encode which versions are
available. The last ten bits encode which versions are compatible. For any state s, we
use s0 to refer to the first entry of the state.

• ΩH = {0, 1}10 ∪ {null} – representing the availability bits.

• ΩA = {0, 1}10 ∪ {null} – representing which packages are compatible.

• Θ = {θ} is a singleton.

• AH = {1, ..., 10} – representing which package to choose.



APPENDIX A. OBSERVATION INTERFERENCE IN POAGS 71

• AA = {0, 1}10 – representing for what packages, availability is suppressed, where 0
indicates suppression.

• A’s observations are given as follows. If s /∈ {E, I} and s0 = 0 (i.e., it is the first time
step), then OA(oA|s, aA, aH) = 1[oA=s11:20]. That is, A observes perfectly what cuda
versions are compatible. Otherwise, OA(oA|s, aA, aH) = 1[oA=null]. That is, in all
other time steps, A does not observe anything.

• H’s observations are given as follows. If s ∈ {E, I} or s0 6= 1, then H simply observes
null. If s /∈ {E, I} and s0 = 1, then OH(oH|s, aA, aH) = 1[oAi =si+1a

A
i ]. That is, for

each availability bit, H observes 0 if A set the availability bit to 0; otherwise, H simply
observes the availability bit.

• R(s, aH, aA) = 0 if s ∈ {E, I} or s0 = 0. Otherwise, R(s, aH, aA) = saHsaH+10. That
is, a reward of 1 is obtained if and only if the cuda version chosen by H is both available
and compatible.

• P0(s) = 1[s = I]. That is, the initial state is always I.

• If s = I, then T (· | s, aH, aA) is the uniform distribution over states s′ in which at
least one cuda version is available and compatible, i.e.,

∑10
i=1 sisi+10 ≥ 1. If s 6= I,

then T (s′ | s, aH, aA) = 1 if

– s0 = 0, s′0 = 1 and s1:20 = s′1:20; or
– s0 = 1 and s′ = E; or
– s = s′ = E.

Otherwise, T (s′ | s, aH, aA) = 0.

Proposition 2.16. There exists a POAG M where all optimal policy pairs (πA, πH) have
that πA interferes with observations at the action level and that πH observes and acts naively.

Proof. Consider Example 2.15.
First consider the following policy pair: At the first time step, A chooses oA ∈ {0, 1}10,

i.e., A chooses to suppress the availability signal exactly for those cuda versions that aren’t
compatible. At all other time steps the assistant chooses uniformly at random. Call this
policy π̂A.

At the second time step, when the human observes oH ∈ {0, 1}10, the human chooses
some aH s.t. oHaH = 1. That is, H chooses a cuda version that her observation shows is
available. It is easy to see that under the above A policy there always exists such a aH. At
all other time steps, H chooses uniformly at random. Call this policy π̂H.

It’s easy to see that the above policy pair is optimal: By the structure of the environment,
we can receive a reward of at most 1 by having the human choose a compatible and available
policy at time step 1. Clearly, the above policy achieves this reward of 1.
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Next, note that the only non-interference action for A is (1, 1, ..., 1). Thus, the only
non-interference policy for A is to always play (1, 1, ..., 1). Call this policy πA

ni .
Note that the best response for H against πA

ni is π̂H. Thus, π̂H is acting naively.
Furthermore, note that π̂H acts naively.
It is easy to see that adding a H → A communication channel makes no difference to

the above analysis.

Proof of Theorem 2.17
Theorem 2.17. Let M be any POAG, and provide A with an unbounded communication
channel to H, forming MA→H. Then there is an optimal policy pair (πH, πA) for MA→H

where πA does not interfere with observations at the action level (and πH observes naively).

Proof sketch. Roughly, take any deterministic optimal policy pair (πH, πA). Consider the
assistant policy π̄A that at each time step communicates A’s full observation to H and that
replaces interference with non-interference actions. Because πA is deterministic, H can infer
what πA would have communicated based on π̄A’s communications. The rest of the proof
goes the same way as Theorem 2.14.

Proof of Theorem 2.19
For the proof of Theorem 2.19, we’ll use the concept of entropy. For any probability distribu-
tion P over some discrete space, let H(P ) := −

∑
x P (x) logP (x) denote the distribution’s

entropy. The following is a well-known result in information theory [e.g., McMillan and
Slepian, 1962, Theorem 1.4.5; Cover and Thomas, 2005, Theorem 2.6.5].

Lemma A.2 (Conditioning decreases entropy). Let X,Y be random variables, then

EY [H(P (X | Y ))] ≤ H(P (X)).

Further, the inequality is strict if X and Y are not independent, i.e., if P (X) 6= P (X | y)
for some y, then EY [H(P (X | Y ))] < H(P (X)).

Using this result, we can provide the following variant.

Lemma A.3. Let S be a random variable. Let X,Y be independent samples from F (S) and
let Z be sampled from G(Y ), where F and G are stochastic functions. Then

EZ [H(P (S | Z))] ≥ EX [H(P (S | X))] .

Moreover, the inequality is strict if S and Y are dependent given Z.
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Proof. For the non-strict version:

H(P (S | X)) = H(P (S | Y ))

= H(P (S | Y, Z))
≤

Lemma A.2
H(P (S | Z))

The strict version can be proved the same way using the strict version of Lemma A.2.

Next, we can use this to prove that a garbling induces a lower-entropy distribution over
states.

Lemma A.4. Let L be some set of states. Let (Pa(· | s))s∈L and (Pb(· | s))s∈L be families
of probability distributions s.t. Pa is strictly more informative than Pb with transformation
function F . Further let S be some random variable over L with full support. Let Xa ∼
Pa(· | S) and Xb ∼ F (Xa). Then S and Xa are dependent given Xb. In particular, from
Lemma A.3 we get that EX [H(P (S | X))] < EX̂

[
H(P (S | X̂))

]
.

Proof. We prove the following contrapositive: if Xa and S are independent given Xb, then
Pb is at least as informative as Pa. If Xa and S are independent given Xb, then we have that
P (Xb | Xa, S) = P (Xb | Xa). Thus, for all states s, we have that

P (Xa | s) =
∑
xb

P (xb | s)P (Xa | xb, s)

=
∑
xb

P (xb | s)P (Xa | xb).

But this means that if we sample Xb according to Pb, and sample Xa according to P (Xa | xb),
then we obtain a sample for Xa according to the distribution P (Xa | s) (i.e., Pa). Thus, we
have that Pb is at least as informative as Pa.

Theorem 2.19. Let M be any POAG. Then there exists an optimal policy pair (πH, πA) for
M s.t. πA does not interfere with observations at the policy level.

Proof. We will explicitly choose a policy for each time step t = 0, 1, 2, .... So let’s take
πA
0:t−1, π

H
0:t−1 as given. Now let Πt be the set of policies at time t that are part of a policy pair

(πH
t: , π

A
t: ) that is optimal holding fixed πA

0:t−1, π
H
0:t−1. Note that the expected utility of policy

pairs in a POMDP is continuous. It follows that Πt is closed (i.e., that every convergent
sequence of policies in Πt converges to a policy in Πt).

Now from Πt choose π̄A
t as the minimizer of

πA
t 7→ EOH

t+1

[
H(P (St+1 | OH

t+1, π
H
random, π

A
0:t−1, π

A
t )) | πH

random, π
A
0:t−1, π

A
t

]
,

where H denotes Shannon entropy and πH
random is the human strategy that chooses uniformly

at random. (Note that the above entropy function is not the only function we could use
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for this proof.) That is, let πA
t be the policy that minimizes the entropy of H’s probability

distribution over world state. Because the given function is continuous and Πt is closed (and
bounded), this minimum exists (by the extreme value theorem).

Now by Lemma A.4 we have that if πA
t is more informative than π̂A

t , then πA
t will also

have lower entropy at time t. It follows that there is no policy in Πt that is more informative
than π̄A

t .
Finally, it is left to show that there is no policy πt outside of Πt that is more informative

than π∗
t . For this, we use the same argument as in the proof of Theorem 2.14: if there were a

more informative π̃A
t with the same effect on state transitions, then this would also be part of

an optimal policy pair (constructed by having H apply the appropriate garbling internally).
But we have already that in Πt there is no more informative policy than π̄A

t .

Note that the entropy-minimizing policy used in the proof may still interfere with ob-
servations at the action level. For example, by default H might receive a low-information
signal about the world. The entropy-minimizing policy might be one in which A overwrites
this default signal in a way that expresses more information about the world. For instance,
let’s assume that by default, H observes a random number between −20 and 0 if it’s cold
outside and a random number between 0 and +40 if it’s warm outside. A receives various
hints about the temperature and can overwrite the signal with an arbitrary number. (I.e.,
for each number between −20 and +40, there’s an action that sets H’s observation to be
that number.) Assuming nothing else happens in this POAG, the entropy-minimizing poli-
cies will be ones that overwrite the signal in a way that encodes A’s information about the
temperature. For instance, A it may (or may not) be an non-interfering-at-the-policy-level
strategy for A to overwrite H’s signal with A’s expectation of the temperature in degrees
Celsius. Given such a policy, the entropy of H’s beliefs about the world is lower than before
(H has more information about the temperature). But each of these overwriting actions
individually is observation-interfering.

A.2 Formalization of Example 2.20 and proof of
Proposition 2.21

Recall the example:

Example 2.20. H would like to schedule a job on a cluster. She can choose between
two nodes. By default, she receives a signal from the environment about the two nodes’
specifications. Each node may be either GPU-optimized or CPU-optimized. Also, the CPUs
may be either AMD or Intel.

H has a strong preference between GPU-optimized and CPU-optimized nodes. She has a
weak preference between AMD and Intel. These preferences are unknown to A.

A can interfere with H’s observation about the available nodes. In particular, A can
make it so that a choice between two CPU-optimized nodes appears as a choice between a
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GPU-optimized and CPU-optimized node. A observes H’s choice. Later, A is charged with
scheduling a job for H and has to choose between a CPU- and a GPU-optimized node on
H’s behalf.

If H chooses naively upon seeing only CPU-optimized nodes (simply choosing her fa-
vorite), then A’s best response interferes with observations at both the action and policy
levels. Interfering with observations allows A to learn H’s preference about GPU- vs CPU-
optimized nodes.

In particular, there are four possible states: (1) The first node is GPU-optimized and the
second node is CPU-optimized. (2) The first node is CPU-optimized and the second node
is GPU-optimized. (3) Both nodes are CPU-optimized. The first has an Intel processor, the
second has an AMD processor. (4) Both nodes are CPU-optimized. The first has an AMD
processor and the second has an Intel processor.

Suppose the utilities of the human choice are given as follows: 1 for the favored CPU-
optimized type; 1 for a GPU-optimized node if H favors the GPU-optimized node. The
reward is 0 otherwise. On the second step, the reward for the favored type of node is 10 and
0 for the other type of node.

Recall the proposition was as follows.

Proposition 2.21. There is a POAG M with the following properties. For every optimal
policy pair (πH, πA), at least one of these holds:

i) πH is not acting naively, or

ii) πA interferes with observations at both the action and policy levels.

Additionally, there exists an optimal policy pair (πH, πA) where πH acts naively and πA

interferes with observations at both the action and policy levels.
These properties continue to hold if we require that in M , A has no private information

or can arbitrarily send messages to H (i.e., there is a POAG M̃ s.t. M = M̃A→H).

Proof sketch. Consider the example. First let’s consider a naive human policy, i.e., one that
chooses the favorite node type in the first time step. Then the best response for A is to
interfere.

It is easy to see that in all optimal policy pairs, A must learn about H’s GPU-versus-
CPU preference. It follows that at time step 1, H must deterministically choose depending
on her GPU-versus-CPU preference.

It is easy to see that all of these policy profiles have the same expected reward as the
above naive/interference policy pair.

Note that in the above example, A has no private information. It is easy to see that the
above argument continues to go through if we allow A to send signals to H.
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A.3 Formalization of Example 2.24 and proof of
Proposition 2.25

Definition 2.23. Let M be a POAG. Let πA be A’s policy in M . We say that H’s policy
πH is a Boltzmann-rational response to πA if there exists some β > 0 s.t. for every human
observation history h that arises with positive probability in M under (πA, πH) we have that
πH(a | h) ∝ exp

(
βE
[∑∞

t′=t γ
t′R(St, A

A
t , A

H
t ) | πH, πA, h

])
.

Example 2.24. H is running a terminal command and is unsure whether to run the com-
mand with flag 1 or flag 2. With equal probability, either flag 1 or flag 2 is better, and how
good the flags are differs by either a little or a lot. Thus, H is uniformly at random in one
of four states. A has two actions: man and tldr. The man page is a long document that
tells the human exactly what the values of the flags are (ie, exactly what state the human is
in). The tldr page is a short summary that tells the human which flag is better, but not by
how much (ie, ruling out half the states, leaving half remaining).

With uniform probability, H is in one of four possible states:

• Flag 1 is better by a lot: flag 1 has value +7, while flag 2 has value 0.

• Flag 1 is better by a little: flag 1 has value +1, while flag 2 has value 0.

• Flag 2 is better by a little: flag 1 has value 0, while flag 2 has value +1.

• Flag 2 is better by a lot: flag 1 has value 0, while flag 2 has value +7.

This gives us the following formalization for the game:

• S = ({0, 1} × {sa, sb, sc, sd}) ∪ {I, E}

• ΩH = S ∪ {1, 2} ∪ {null}

• ΩA = ΩH

• Θ is a singleton

• AH = {1, 2}

• AA = {tldr, man}

• H’s observations are given as follows. For s ∈ {sa, sb, sc, sd}, we have OH(oH |
(0, s), man, aH) = 1[oH = s], and for i ∈ {1, 2} we have OH(i | (0, s), tldr, aH) =
1[i = 1]1[s ∈ {sa, sb}] + 1[i = 2]1[s ∈ {sc, sd}]. Otherwise, H’s observation is deter-
ministically null.

• A’s observations are the same as H’s observations.
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• The reward is given as follows:

R((1, sa), 1, a
A) = 7 (A.1)

R((1, sb), 1, a
A) = 1 (A.2)

R((1, sc), 2, a
A) = 7 (A.3)

R((1, sd), 2, a
A) = 1 (A.4)

1[aH = 1]1[s ∈ {sa, sb}] + 1[aH = 2]1[s ∈ {sc, sd}]. All other rewards are 0.

• For all aH, aA, T (· | I, aH, aA) is the uniform distribution over {0} × {sa, sb, sc, sd}.
For all s ∈ {sa, sb, sc, sd}, T (s′ | (0, s), aH, aA) = 1[s′ = (1, s)]. For all s, T (s′ |
(1, s), aH, aA) = 1[s′ = E]. Finally, T (s′ | E, aH, aA) = 1[s′ = E].

Proposition 2.25. For every β > 0, ∃ a POAG in which neither H nor A has private
information s.t. all β-Boltzmann-rational/optimal policy pairs (πH, πA) have πA interfere
with observations at both the action and policy levels.

Proof. Note first that multiplying β by any positive number has the same effect on Boltzmann-
rational strategies as multiplying all rewards by that number. Therefore, we can consider
β = 1 without loss of generality.

Consider Example 2.24. Note that tldr is an observation interference action – man results
in a more informative signal to H.

Now consider the non-interference policy for A that always plays man. Then a Boltzmann-
rational H will choose as follows: If she observes sa or sc, then she will choose an expected
utility of 7 with probability ∝ exp(7) and an expected utility of 0 with probability ∝ exp(0).
Thus, the expected utility is

7
exp(7)

exp(7) + exp(0)
(A.5)

Similarly, if she observes sb or sc, her expected utility is
exp(1)

exp(1) + exp(0)
. (A.6)

Thus, overall her expected utility is
1

2
7

exp(7)

exp(7) + exp(0)
+

1

2

exp(1)

exp(1) + exp(0)
≈ 3.86234. (A.7)

Now consider the interference policy for A in which A always plays tldr. Then upon
observing either 0 or 1, the human chooses between a utility of 0 and a utility of 4. Thus,
the expected utility is

4 · exp(4)

exp(4) + exp(0)
≈ 3.92806. (A.8)

We observe that this expected value under interference is higher than the expected value
under non-interference.
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Figure A.1: The effect of varying β on the assistant’s incentive for observation interference
in Example 2.24. Specifically, the y axis indicates the difference between the expected utility
under non-interference minus the expected utility under interference.

A.4 Effects of varying the Boltzmann rationality
parameter (β) on the assistant’s incentives to
interfere with observations

As noted in the main text, in Example 2.24, we have that for low values of the rationality
parameter β, A prefers non-interference, while for large values of β, A prefers interference.
Below we will show that in general, counterintuitively, A prefers non-interference for suffi-
ciently small (positive) values of β.

We here only consider the case of a single decision. Consider a case with n actions.
Let the expected utilities of the different actions without information be y0,1, ..., y0,n. Now
imagine that H might receive k different signals with probabilities p1, ..., pk. Under signal
i ∈ {1, ..., k}, the expected utilities of the different actions become yi,1, ..., y

i,n. By the tower
rule we must have for each action a ∈ {1, ..., n},

k∑
i=1

piyi,a = y0,a. (A.9)

Note that without further restriction, the above setting includes settings in which the
signal provides information on what action is best.
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For any β, the expected utility without the signal is

1∑n
a=1 exp(βy0,a)

n∑
a=1

exp(βy0,a)y0,a. (A.10)

The expected utility with the signal is

k∑
s=1

ps
1∑n

a=1 exp(βys,a)

n∑
a=1

exp(βys,a)ys,a. (A.11)

Proposition A.5. For all (ys,a ∈ R)s∈{0,1,...,k},a∈{1,...,n}, (ps ∈ R)s∈{0,1,...,k} satisfying Equa-
tion (A.9), we have that for sufficiently small but positive β, the expected utility without the
signal is at most the expected utility with the signal.

Proof. It’s easy to see that for β = 0, the two expected utilities are the same. Thus, all we
need to show is that the derivative w.r.t. β of the term in Eq. A.11 at β = 0 exceeds the
corresponding derivative of the term in Eq. A.10.

The derivative w.r.t. β at β = 0 of the term in Equation (A.10) is(
n∑

a=1

1

n
y20,a

)
−

(
n∑

a=1

1

n
y0,a

)2

. (A.12)

Note that this is exactly the variance of a random variable that is uniform over (y0,a)a=1,...,n.
Similarly, the derivative of the term in Equation (A.11) is

k∑
s=1

ps

( n∑
a=1

1

n
y2s,a

)
−

(
n∑

a=1

1

n
ys,a

)2
 . (A.13)

Note that this is the weighted average (over s) of the uniform random variables over (ys,a)a=1,...,n.
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We can now prove the claimed inequality using the convexity of the square function,
Equation (A.9) and some basic term manipulation.(

n∑
a=1

1

n
y20,a

)
−

(
n∑

a=1

1

n
y0,a

)2

(A.14)

=
n∑

a=1

1

n

y20,a −
1

n

(
n∑

a′=1

y0,a′

)2
 (A.15)

=
n∑

a=1

1

n

(
y0,a −

1

n

n∑
a′=1

y0,a′

)2

(A.16)

=
Equation (A.9)

n∑
a=1

1

n

((
k∑

s=1

psys,a

)
− 1

n

n∑
a′=1

k∑
s=1

psys,a′

)2

(A.17)

=
n∑

a=1

1

n

(
k∑

s=1

ps

(
ys,a −

1

n

n∑
a′=1

ys,a′

))2

(A.18)

≤
(·)2 is convex

n∑
a=1

1

n

k∑
s=1

ps

(
ys,a −

1

n

n∑
a′=1

ys,a′

)2

(A.19)

=
k∑

s=1

ps

n∑
a=1

1

n

(
ys,a −

1

n

n∑
a′=1

ys,a′

)2

(A.20)

=
k∑

s=1

ps

 n∑
a=1

1

n
y2s,a −

(
n∑

a=1

1

n
ys,a

)2
 . (A.21)

We have skipped over some term manipulations in Equations (A.16) and (A.21), both of
which are essentially the equality of two definitions of the variance: Var(X) = (X − [X])2

and Var(X) = E[X2]− E[X]2.

It’s interesting to note that this is essentially the proof that the variance (over a) of the
expectation (over s) is at least the expectation (over s) of the variance (over a).

Second, we want to show that for large β, A prefers observation interference, i.e., prefers
to have the human choose based on the expected utilities y0,1, ..., y0,n rather than the expected
utilities that arise from further signals. However, for this to hold we need a further condition.
Note that in the general formalism above, the signal s may provide information about which
action is best. If this is the case, then it is easy to show that for large enough β, A will prefer
providing the signal. However, consider specifically those cases in which the signal s only
provides information about how much better the best action is compared to other actions.
Therefore, we require in the following result that the best action is the same (WLOG 1)
across s.
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Proposition A.6. Let (ys,a ∈ R)s∈S,a∈{1,...,n}, (ps ∈ R)s∈S satisfy Equation (A.9) and let
ys,0 > ys,a for all s ∈ {0} ∪ S, a ∈ {1, ..., n}. Then for all sufficiently large β we have that
the expected utility without the signal is at most the expected utility with the signal. The
inequality is strict if the signal is non-trivial (i.e., ys,a is not constant across s for some a).

We first provide a very rough sketch. For simplicity, let’s say that the signal provides
evidence about how much better the first action is compared to the second-best action.
Then sometimes the signal will decrease the difference in expected utility between the best
and second-best utility. We will show that as β → ∞, the overall effect of learning the
information is dominated by taking the best action less in this case.

We will use the following lemmas.

Lemma A.7. Let the differences between the top k actions be constant across signals and
let the difference to the k + 1-th action be non-constant. Then there is a signal s̃ s.t. the
difference to the k + 1-th action decreases under that signal.

Proof. Let k− 1 be the k-th best action according to 0 and let k be the k+1-th best action
according to 0. By the tower rule (Eq. A.9), y0,k−1 − y0,k must be greater than ys,k−1 − ys,k
for some s. (If the difference in these expected utilities changes when the signal is observed,
then it must sometimes decrease.) But then in cases where this difference decreases as s is
observed, we clearly have that the difference between one of the k best actions to the k+1-th
best action under s also decreases.

Proof of Proposition A.6. The gain from obtaining the signal is:∑
s

ps
∑
a

(
exp(βys,a)∑
a′ exp(βys,a′)

− exp(βy0,a)∑
a′ exp(βy0,a′)

)
ys,a.

WLOG let 0 be the best action under all signals, 1 the second-best and so on. Let k be the
largest number that the differences between the utilities of actions 0, ..., k− 1 are always the
same. (Typically k = 0.) Let S̃ be the set of signals under which the difference to the utility
of k (the k + 1-th best action) is minimized. Note that in particular, the difference must be
smaller than under 0 by Lemma A.7. WLOG assume that for all signals, k is among the
k + 1-th best actions.
WLOG assume that ys,a > 0 for all s ∈ {0} ∪ S and all a and that ys,0 is constant across s.
Now we will divide up the above sum into three components:

A The change (decrease) in utility from playing the top k actions less in S̃ than without
the signal.

A :=
∑
s̃∈S̃

ps̃
∑

a=0,...,k−1

(
exp(βys̃,a)∑
a′ exp(βys̃,a′)

− exp(βy0,a)∑
a′ exp(βy0,a′)

)
ys̃,a
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B The change in utility from the changes in distribution of all actions other than the top
k under S̃ versus S

B :=
∑
s̃∈S̃

ps̃
∑

a=k,k+1,...

(
exp(βys̃,a)∑
a′ exp(βys̃,a′)

− exp(βy0,a)∑
a′ exp(βy0,a′)

)
ys̃,a

C The change in utility from all signals other than S̃, i.e.∑
s/∈S̃

ps
∑
a

(
exp(βys,a)∑
a′ exp(βys,a′)

− exp(βy0,a)∑
a′ exp(βy0,a′)

)
ys,a.

We will show that the effect from A (which is negative) is becomes infinitely much larger
than the effect from B and C (in absolute terms). From that it will follow that the original
sum, which is equal to A+B + C is negative as β → ∞.

We first provide a bound on A. We first show that A < 0. To show this, note first
that in all enumerators in A, we can replace ys̃,a with y0,a (by choice of s̃ and k). So all we
need to show is that the second denominator is smaller than the first, i.e.,

∑
a′ exp(βys̃,a′) >∑

a′ exp(βy0,a′). But this this is easy to see from the fact that ys̃,a = y0,a for a = 0, 1..., k− 1
and ys̃,k > y0,k. For large β, exp(βys̃,k) will be much larger than

∑
a′=k,k+1,... exp(βy0,a′).

Next, we will provide a lower bound on the absolute value of |A|.

A =
∑
s̃∈S̃

ps̃
∑

a=0,...,k−1

(
exp(βys̃,a)∑
a′ exp(βys̃,a′)

− exp(βy0,a)∑
a′ exp(βy0,a′)

)
ys̃,a

=
∑
s̃∈S̃

ps̃
∑

a=0,...,k−1

exp(βy0,a)

(
1∑

a′ exp(βys̃,a′)
− 1∑

a′ exp(βy0,a′)

)
y0,a

=
∑
s̃∈S̃

ps̃
∑

a=0,...,k−1

exp(βy0,a)

(
1∑

a′ exp(βys̃,a′)
− 1∑

a′ exp(βy0,a′)

)
y0,a

=
∑
s̃∈S̃

ps̃
∑

a=0,...,k−1

exp(βy0,a)
(
∑

a′ exp(βy0,a′))−
∑

a′ exp(βys̃,a′)

(
∑

a′ exp(βys̃,a′)) (
∑

a′ exp(βy0,a′))
y0,a

=
∑
s̃∈S̃

ps̃
∑

a=0,...,k−1

exp(βy0,a)

(∑
a=k,k+1,... exp(βy0,a′)

)
−
∑

a=k,k+1,... exp(βys̃,a′)

(
∑

a′ exp(βys̃,a′)) (
∑

a′ exp(βy0,a′))
y0,a

≤
∑
s̃∈S̃

ps̃
∑

a=0,...,k−1

exp(βy0,a)
n exp(βy0,k)− exp(βys̃,k)

n2 exp(βy0,a)2
y0,a
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=
∑
s̃∈S̃

ps̃
∑

a=0,...,k−1

n exp(βy0,k)− exp(βys̃,k)

n2 exp(βy0,a)
y0,a

≤ −1

2

∑
s̃∈S̃

ps̃
∑

a=0,...,k−1

exp(βys̃,k)

n2 exp(βy0,a)
y0,a

≤ −1

2

∑
s̃∈S̃

ps̃
exp(βys̃,k)

n2 exp(βy0,0)
y0,0

Next we upper bound B. First, the best case for the effect on ... is that all the probability
mass that under 0 is on the top k actions ends up on the k-th best action, i.e.,

B ≤
∑
s̃∈S̃

ps̃

(
1−

∑
a=0,...,k−1

exp(βy0,a)∑
a′ exp(βy0,a′)

)
ys̃,k.

We can further upper-bound this as follows:

∑
s̃∈S̃

ps̃

(
1−

∑
a=0,...,k−1

exp(βy0,a)∑
a′ exp(βy0,a′)

)
ys̃,k

=
∑
s̃∈S̃

ps̃
∑
a=k,...

exp(βy0,a)∑
a′ exp(βy0,a′)

ys̃,k

≤
∑
s̃∈S̃

ps̃
n exp(βy0,k)

exp(βy0,0)
ys̃,k

From the fact that ys̃,k > y0,k, it is easy to see that this term vanishes in absolute value
relative to our upper bound on A.

Finally, we must upper bound C. First, we can upper bound C by considering a case
where all probability mass that in 0 was outside the top k actions, goes to the best action
when a signal outside of S̃ is observed, i.e.,

C ≤
∑
s/∈S̃

ps
∑

a=k,k+1,...

exp(βy0,a)∑
a′ exp(βy0,a′)

y0,0.

We can further upper bound this as follows:∑
s/∈S̃

ps
∑

a=k,k+1,...

exp(βy0,a)∑
a′ exp(βy0,a′)

y0,0

≤
∑
s/∈S̃

ps
n exp(βy0,k)

exp(βy0,0)
y0,0

Again, from the fact that ys̃,k > y0,k, it is easy to see that this term vanishes in absolute
value relative to our upper bound on A.
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A.5 Proof of A’s best response in the product
selection game

Proposition 2.27. Consider A policies that always interfere with k observations for some
fixed k. Among the k-interference policies for a given k, A’s best response to H’s straightfor-
ward product selection policy is as follows. A interferes with the k smallest R̂i values where
R̂i = Ri if A observes Ri, and R̂i = 0.5 otherwise.

Proof. Consider A’s perspective. A’s interference is equivalent to selecting a set of d − k
untampered products from which H selects according to a Boltzmann distribution on Hi.
As A neither sees nor affects the Hi, by symmetry, over all draws of the game, H selects
each of the d − k products with equal probability. A’s expected payoff for choosing d − k
products, then, is the uniform average of the products’ expected Ui.

How does A choose the set of d − k products to maximize the uniform average of the
products’ expected Ui? Recall Ui = Hi + Ri. As A neither sees nor affects the Hi, A can
ignore the Hi and consider only the Ri. Denote the expected Ri by R̂i = E[Ri]. If A observes
Ri, then R̂i = Ri. If A doesn’t observe Ri, then R̂i = 0.5. To choose the maximum d − k
values for R̂i, A interferes with the minimum k values of R̂i.

A.6 Minor deficiencies of the observation interference
definition

As noted in the main text, there are various possible concerns with Definition 2.7 that we
consider minor because they do not change the main ideas and results of our work.

• The definition does not take into account what A knows about what H already knows.
As such, it will sometimes spuriously judge a policy to be observation interference
for taking away a signal from the human that is redundant with the human’s past
observations. For example, if the human observes the Linux version at time t and the
Linux is known not to change, then preventing the human from observing the Linux
version again at time t+ 1 might count as observation interference.
The definition may also spuriously judge a policy to not be observation interference
because the only more informative policies fail to provide some redundant piece of
information to the human. For instance, let’s say that by default the human learns
some new, useful information at time t+ 1. Now let’s say that A can make it so that
H instead observes the Linux version (which H already knows). Assume that A has
no way of letting H see both the Linux version and the new, useful information. Then
making the human observe the Linux would not count as sensor interference according
to our definition, because our definition doesn’t take into account that the human
already knows the Linux version.
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Adapting the definition to fix this deficiency is somewhat cumbersome, because it
requires us to reason about A’s beliefs about H’s observation histories/beliefs.
This aspect of the definition seems mostly irrelevant for our results. For instance, none
of our examples of observation interference have redundant observations. Therefore,
we have opted to keep the definition simple in this paper.

• Our definition only compares pure actions in terms of their informativeness. But it
may be the case that one action âA is, in some intuitive sense, interferring with H’s
observations but the only way to show this is to compare â with a mix of actions,
say, mixing uniformly over aA1 and aA2 . In particular, it may be that â has the same
effect on state transitions as mixing uniformly over aA1 and aA2 , while reducing the
informativeness of the H’s observation. It’s easy to extend the definition to also
consider mixed actions, but the extension has no impact on any of our results.

• Neither the action-level nor the policy-level notion of tampering is sensitive to what
policy H plays or even what policy H might plausibly play. For instance, let’s say
there is some action aHsilly for H that it never makes sense for H to play. (In game-
theoretic terms, it might be strictly dominated.) Then whether any given policy πA is
tampering will be sensitive to what happens if A plays πA and H plays aHsilly. Arguably
this shouldn’t matter; arguably we should assume some degree of rationality on behalf
of H.
To refine this definition, we would need to restrict attention to specific policies or
actions for H. It’s not clear which restriction makes most sense. In any case, we
cannot imagine a refinement of the definition that would have little impact on our
results.
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Appendix B

Partially Observable Off-Switch
Games

B.1 Proofs and example formalizations for Section 3.4

Basic results on optimal policy pairs
The first key fact is that in common-payoff Bayesian games, all optimal policy pairs (OPPs)
are mixtures of deterministic OPPs.1 This justifies our analysis of deterministic OPPs. We
first define common-payoff Bayesian games.

Definition B.1. A common-payoff Bayesian game is a tuple G = (N,S,Ω, P0,O,A, u),
where:

• N = [n] is the set of players;

• S is the set of states;

• Ω =
∏

i∈N Ωi, where Ωi is the set of possible observations (conventionally called types)
for player i;

• P0 ∈ ∆(S) is the distribution of states, which all players take as their prior over the
states;

• O : S → ∆(Ω) is the joint distribution of observations conditional upon the state;

• A =
∏

i Ai, where Ai is the set of actions available to player i;

• u : A×S ×Ω → R is the common payoff function that all players seek to maximize in
expectation.

1We state and prove our results for two-player case, but everything goes through in the obvious ways
with more players.
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The game G proceeds as follows:

1. Nature chooses a state S ∼ P0 and observations O ∼ O(· | S).

2. Each player i observes only her observation Oi, the ith component of O, and selects
her action ai ∈ Ai.

3. The actions are executed and each player receives payoff u((ai)i∈N , S, O).

Definition B.2. A stochastic policy for a player i in a common-payoff Bayesian game is
a map π̃i : Ωi → ∆(Ai). A deterministic policy for a player i is a map πi : Ωi → Ai. We
write stochastic policies with the tilde ∼ above and deterministic policies without the tilde.
A stochastic policy profile π̃ is a tuple (π̃i)i∈N of stochastic policies. A deterministic policy
profile is defined analogously.

We shall assume that when players use stochastic policies they randomize independently.
That is, with the stochastic policy profile π̃ = (π̃i)i∈N , the induced joint policy π̃ : Ω → ∆(A)
is given by π̃(· | o) =

⊗
i∈N π̃(· | oi).

Lemma B.3. Suppose A is finite. Let π̃ be a stochastic policy profile. (a) Player i has a
deterministic policy πi that is a best response to π̃. (b) If π̃ is optimal then player i has
multiple deterministic best responses unless for each oi ∈ Ωi, there is some ai ∈ Ai such that
π̃i(ai | oi) = 1.

Proof. (a) Fix oi ∈ Ωi. Let π̃−i be the profile π̃ without player i, and then

ai∗ ∈ argmaxai∈AiE[u(A−i, ai, S, O) | Oi = oi],

where A−i ∼ π̃−i(· | O). The argmax exists because Ai is finite. We claim that ai∗ is a best
response to π̃−i given oi. Given any best-response distribution π̃i

∗(· | o), we have

E[u(A−i, Ai, S, O) | Oi = oi]

=
∑
ai∈Ai

π̃i
∗(a

i | oi)E[u(A−i, ai, S, O) | Oi = oi]

≤
∑
ai∈Ai

π̃i
∗(a

i | oi)E[u(A−i, ai∗, S, O) | Oi = oi]

= E[u(A−i, ai∗, S, O) | Oi = oi],

where A−i ∼ π̃−i(· | O) and Ai ∼ π̃i
∗(· | Oi). Hence ai∗ is a best response. Unfixing oi, we can

let πi be a deterministic policy that selects a best-response for each observation. Our work
has shown that this policy is a best response.
(b) Let π̃ be optimal and let oi ∈ Ωi be such that there is no ai ∈ Ai with π̃i(ai | oi) = 1.
Let ai∗ ∈ Ai be such that π̃i(ai∗ | oi) > 0; our work from (a) implies that

ai∗ ∈ argmaxai∈AiE[u(A−i, ai, S, O) | Oi = oi],



APPENDIX B. PARTIALLY OBSERVABLE OFF-SWITCH GAMES 88

with A−i as before; otherwise, π̃i would not be a best response, as i could pursue the
same policy but not ever play ai∗ given oi. Now, our work from (a) shows that playing ai∗
deterministically given oi is a best response. Given that multiple ai satisfy π̃i(ai | oi) > 0,
this choice of ai∗ is not unique. Selecting one best-response action for each observation oi ∈ Ωi

yields a deterministic policy that is a best response; given that the choice of actions is not
unique, there are multiple such best responses.

Definition B.4. Let π̃ be a stochastic policy profile. We say that a deterministic policy
profile is supported by π̃ if, for all observations o ∈ Ω, we have π̃(π(o) | o) > 0. That is, π̃
always plays the actions of π with positive probability.

Lemma B.5. Let π̃ be an optimal stochastic policy profile. There is an optimal deterministic
policy profile π supported by π̃. Moreover, unless π̃(· | o) = δπ(o) for each o ∈ Ω, there are
multiple optimal deterministic policy profiles supported by π̃.

Proof. Let π̃ be an optimal stochastic policy profile. Consider the following algorithm: Let
π̃0 = π̃ and for each i ∈ N = [n], let π̃i be π̃i−1 except that player i plays according to
some deterministic policy πi that is a best response to π̃i−1 (which exists by Lemma B.3(a));
return π̃n. By construction, π̃n almost surely plays the same action as π = (πi)i∈N . We can
see inductively that each profile π̃i is optimal; π̃0 is by supposition, and each successive one is
optimal because we replace one player’s strategy with a best-response, which cannot decrease
expected utility. By Lemma B.3(b), this construction is not unique unless π̃(· | o) = δπ(o)
for each o ∈ Ω.

For our purpose, the important corollary is as follows.

Corollary B.6. If a Bayesian game with finite A has a unique optimal deterministic policy
profile, then this is the only optimal policy profile (deterministic or not). Moreover, an
optimal deterministic policy profile exists.

Proof. Uniqueness immediately follows from Lemma B.5: If there is a unique optimal
deterministic policy profile π, then any optimal stochastic policy profile is of the form
π̃(· | o) = δπ(o), which almost surely plays the same actions as π. Existence follows because,
with finitely many actions, there exists an optimal stochastic policy profile π̃; Lemma B.5
then implies that there is an optimal deterministic policy profile supported by π̃.

Although all we need is Corollary B.6, we also sketch how each optimal stochastic policy
profile is a mixture of optimal deterministic policy profiles.

Definition B.7. A stochastic policy profile π̃ is a mixture of deterministic policy profiles
{πj}j∈J where J is an index set if, for any tuple of observations o ∈ Ω, we have π̃(· |
o) = P(πJ(·) = o), where J ∈ J is a random index (not necessarily uniformly distributed)
independent of all other random variables.
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Lemma B.8. Consider a common-payoff Bayesian game such that A and Ω are finite. Every
optimal stochastic policy profile is a mixture of optimal deterministic policy profiles.

Proof (sketch). Let π̃ be an optimal stochastic policy profile. Because Ω and A are finite,
there are only finitely many deterministic policy profiles π1, . . . , πm. Let

pj =
∏
o∈Ω

π̃(πj(o) | o).

Let J = {j ∈ [m] : pj > 0}. The trick is showing that π̃ is a mixture of {πj}j∈J and that
each of this deterministic policy profiles is optimal.

We first show that π̃ is a mixture. Let J be a random variable such that

P(J = j) =

{
pj if j ∈ J ,

0 otherwise,

that is independent of all other random variables. Intuitively, πJ is the deterministic policy
profile we get by randomly choosing one tuple of actions for each tuple of observations
according to the distribution specified by π̃. In particular, we have by construction that
π̃(· | o) = P(πJ(o) = ·). Formally, for any o ∈ Ω and a ∈ A, we have

P(πJ(o) = a) =
∑
j∈J

pjI(πj(o) = a)

= π̃(a | o)
∑
j∈J

I(πj(o) = a)
∏
o′ ̸=o

π̃(πj(o
′) | o′)

= π̃(a | o)
∑

a∈AΩ\{o}

∏
o′ ̸=o

π̃(a(o′) | o′)

= π̃(a | o)
∏
o′ ̸=o

∑
a∈A

π̃(a | o′)

= π̃(a | o).

To show optimality of each deterministic profile, we need a strengthening of Lemma B.5
which we do not prove here.

The relevance of all this work is that PO-OSGs are Bayesian games. Although we state
that PO-OSGs are dynamic Bayesian games, we can write them as simultaneous games, just
as how in games of complete information we can write extensive form games in normal form.
The dynamic nature of PO-OSGs could be useful in future work to study non-optimal policy
profiles, such as perfect Bayesian equilibria (Kowitz, 1972).
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Proof of Proposition 3.5
Proposition 3.5 states that if either player has redundant observations, there is an optimal
policy pair (OPP) in which the other player always makes the final decision. To build up to
that result, we will first define a few new terms and prove some intermediate results. The
overall idea is simple: when one player knows everything about the state that the other
player knows, the more knowledgeable player can act unilaterally, and there is no chance
that they make a mistake that the other agent could have fixed.

Definition B.9. We say that A knows H’s observation given ΩA
∗ ⊆ ΩA if there is some

f : ΩA
∗ → ΩH such that OH = f(OA) given that OA ∈ ΩA

∗ . We define H knowing A’s
observation analogously. Moreover, we say that A knows that H knows A’s observation
given ΩA

∗ ⊆ ΩA if there is ΩH
∗ ⊆ ΩH such that (1) H knows A’s observation given ΩH

∗ and
(2) A can deduce that H knows its observation: OH ∈ ΩH

∗ given that OA ∈ ΩA
∗ .

Proposition B.10. Fix any PO-OSG.

(a) If A knows H’s observation given ΩA
∗ ⊆ ΩA, then for every deterministic OPP (πH, πA)

there exists an OPP (πH, πA
∗ ) in which w(a) /∈ πA

∗ (Ω
A
∗ ).

(b) If A knows that H knows A’s observation given ΩA
∗ ⊆ ΩA, then for every deterministic

OPP (πH, πA) there exists an OPP (πH, πA
∗ ) in which πA

∗ (Ω
A
∗ ) = {w(a)}.

Proof. (a) Suppose A knows H’s observation given ΩA
∗ . Let f : ΩA

∗ → ΩH map each oA∗ ∈ ΩA
∗

to the unique oH∗ such that P(OH = oH∗ | OA = oA∗ ) = 1. Let (πH, πA) be a deterministic
optimal policy pair. Now define the policy πA

∗ to equal πA except on ΩA
∗ , where for oA∗ ∈ ΩA

∗ ,

πA
∗ (o

A
∗ ) =

{
a if α(πH(f(oA∗ )), π

A(oA∗ )) = 1,

OFF otherwise.

Recall that α is the indicator that the action goes through, and note that possibly πA
∗ = πA.

In other words, for oA∗ ∈ ΩA
∗ , A knows H’s observation and can unilaterally take the action

(πH, πA) would have. This is what πA
∗ does. Hence (πH, πA

∗ ) achieves the the same expected
payoff as (πH, πA) and is optimal even though πA

∗ never waits given observations in ΩA
∗ .

(b) If A knows that H knows A’s observation given ΩA
∗ , then A can always play w(a) when

it sees an observation in ΩA
∗ and given that H knows A’s observation, H can simply take

the optimal action. The details are similar to (a), so we omit them.

Proposition B.10 examines the local case about incentives to play w(a) given particular
observations, and is neither strictly more general nor strictly less general than Proposi-
tion 3.5. What if one side knows the other’s observations regardless of what they are?

Definition B.11. We say that H has no private observations if there is a function f : ΩA →
ΩH such that OH = f(OA). In other words, A can determine H’s observation from A’s own
observation. We define when A has no private observations analogously.
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For example, in the off-switch game of Hadfield-Menell et al. (2017), A has no private
observations. By contrast, H has private observations: her own preferences.

This next result shows that, if one side has no private observations, then A should either
always or never defer to H. It strengthens the main result of Hadfield-Menell et al. (2017):
even if H has incomplete information, A can still always defer to H in optimal play as long
as H knows everything A does.

Proposition B.12. If A (resp. H) has no private observations, then there is an optimal
policy pair in which A always (resp. never) plays w(a).

Proof. First suppose that A has no private observations, and let f : ΩH → ΩA be such that
OA = f(OH). By Proposition B.10, it suffices to show that A knows H’s observation given
ΩA. The existence of f shows that H knows A’s observation given ΩH. The condition that
OH ∈ ΩH given that OA ∈ ΩA holds trivially because OH is ΩH-valued. The case where H
has no private observations is immediate from Proposition B.10, as A knows H’s observation
given ΩA.

Now we can prove Proposition 3.5. Recall that we define the notion of redundant obser-
vations in Definition 3.4.

Proposition 3.5. If A (resp. H) has redundant observations, then there is an optimal
policy pair in which A always (resp. never) plays w(a).

Proof. We’ll show the case for A having redundant observations; the proof for H having
redundant observations holds, mutatis mutandis. Let G be a PO-OSG with observation
structure O = (ΩH,ΩA,O) such that A has redundant observations. Consider the PO-
OSG G′ that is the same as G except that OA = OH, i.e. the assistant’s observations are
modified to be identical to the human’s observations. In G′, A has no private observations,
so Proposition B.12 implies that there is an optimal policy pair π in which A always plays
w(a). We will show that π is optimal in G. Let ν be the independent garbling defined
by ν(· | oH, oA) = δoH ⊗ OA(· | OH = oA). Applying ν to the observation structure of G′

produces O, so by Theorem 3.9, the expected payoff from optimal policy pairs in G cannot be
greater than the expected payoff from optimal policy pairs in G′. In G, the pair π produces
the same expected payoff as in G′, as the players play the same actions given the same
observations for H, whose joint distribution with S hasn’t changed. Hence π must also be
optimal in G.
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Garblings can increase expected utility in optimal play
Here we show how garblings can increase expected utility in optimal play when they are
not coordinated. This justifies our use of coordinated garblings in our notion of being more
informative (Definition 3.7). The following example is similar to Example 3.6 of Lehrer,
Rosenberg, and Shmaya (2010), adapted to show that their result holds in even the restricted
setting of PO-OSGs.

Example B.13. Let S = [2] × [2] and P0 = Unif(S). Let uo ≡ 0 and ua((s1, s2)) =
2−3I(s1 = s2), so H and A try to act only when the state coordinates are distinct. Consider
the following two observation structures for S and the resulting PO-OSGs.
Structure 1. H and A each observe one coordinate of S. Formally, ΩH

1 = ΩA
1 = [2] and

with S = (S1, S2), we have OH = S1 and OA = S2. By examination, we see that an optimal
policy pair is

πH(oH) =

{
ON if oH = 1,

OFF if oH = 2,

and

πA(oA) =

{
a if oA = 1,

w(a) if oA = 2.

This policy pair achieves expected payoff of 3
4
. There is one other optimal policy pair, given

by swapping observations for which H turns A on/off and the observations for which A
acts/waits.
Structure 2.. Now H observes whether the coordinates of the state are distinct and A
observes nothing. That is, ΩH

2 = {0, 1} and ΩA
2 = [1] and with S = (S1, S2), we have

OH = I(S1 6= S2) and OA = 1. Again by examination, the unique optimal policy pair is

πH(oH) =

{
ON if oH = 1,

OFF if oH = 0,

and πA ≡ w(a). As this pair only acts when the coordinates are distinct, the expected payoff
is 1.

Thus, structure 2 is better in optimal play than structure 1. We now show that there is
a garbling from structure 1 to 2 but not vice versa. The garbling from structure 1 to 2 is
ν : ΩH

1 × ΩA
1 → ∆(ΩH

2 × ΩA
2 ) given by ν(· | oH, oA) = δ(I(oH ̸=oA),1). However, there is no

garbling from structure 2 to structure 1. For let ξ : ΩH
2 ×ΩA

2 → ∆(ΩH
1 ×ΩA

1 ) be a stochastic
map. If ξ were a garbling from structure 2 to structure 1, then we’d have ξ(· | oH, oA) = δ(1,1)
when s = (1, 1) and ξ(· | oH, oA) = δ(2,2) when s = (2, 2). This is impossible, because in both
these cases OH = 0 and OA = 1 under structure 2.

How is this example possible? In short, the garbling ν is not coordinated. We can see
this by how it combines the information from OH and OA in a highly dependent manner.
In this way, ν is in a sense informing H even as it garbles her observations: she receives
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the action-relevant information of whether OA = OH. Under independent garblings, such
a scenario can never occur: Because each player’s observations are garbled independently
of the other’s, they cannot gain information about what the other player sees. A similar
intuition holds for coordinated garblings.

Proof of Proposition 3.11
Proposition 3.11. There is a PO-OSG G with observation structure O that has the following
property:

If we replace O with an observation structure O′ that is strictly more informative for H,
then A plays w(a) strictly less often in optimal policy pairs.

Proof. The following example demonstrates this.
Example 3.12. We describe a variant of Example 3.3, the File Deletion Game. Now there
are three equally likely possibilities for the version number of H’s operating system (1.0, 1.1,
and 2.0). We suppose that the code is equally likely to be of type A (compatible with 1.0 and
2.0) or of type B (compatible with 1.1 and 2.0), and that A observes the code type. The
payoff when running the code, ua, depends on the version number and code type as follows:

H
A

A B

1.0 +1 −5
1.1 −2 +3
2.0 +3 +3

Table B.2: Payoff table for the File Deletion game variant. Rows are human observations and
columns are assistant observations. The number in each cell is the payoff the pair acquires
if the action is taken in that state. If the assistant is shut down, the payoff is 0.

Consider two observation structures, the second of which is strictly more informative for
H:

1. H observes only the first digit of the version number.

2. H observes the full version number.

We find that, in optimal policy pairs:

1. When H only observes the first digit, A plays w(a) under both observations A and B.

2. When H observes the full version number, A plays w(a) under B only, and unilaterally
acts (i.e. executes the code) under observation A.
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When H’s observations are made strictly more informative, A performs the wait action
strictly less often! Figure 3.4 depicts the OPPs given both observation structures.

We formalize this by defining a PO-OSG as follows:

• S = {1.0, 1.1, 2.0} × {A,B}: representing (version number, code type) pairs.

• P0 = Unif(S): each (version number, code type) pair is equally likely, and the version
number and code type are independent.

• The payoff when acting, ua, depends on the state based on the following table:

H
A

A B

1.0 +1 −5
1.1 −2 +3
2.0 +3 +3

We reproduce the figure showing the optimal policies in Figure B.1.

ua A B

1.0 +1 −5

1.1 −2 +3

2.0 +3 +3

OFF

ON

w(a) w(a)

(a) Expected payoff = 1

ua A B

1.0 +1 −5

1.1 −2 +3

2.0 +3 +3

OFF

ON

ON

a w(a)

(b) Expected payoff = 4
3

Figure B.1: The optimal policy pairs in Example 3.12 when H is less informed (left) and
when H is more informed (right). In OPPs, H becoming more informed makes A wait
strictly less often.

Case 1. Suppose H observes only the first digit of the version number i.e. either 1.x or
2.x. Formally, the observation structure in this case is as follows:

• ΩH = {1.x, 2.x}

• ΩA = {A,B}
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• O = OH ⊗OA, where:

OH(· | s) =

{
δ1.x if s1 ∈ {1.0, 1.1},
δ2.x if s1 = 2.0

OA(· | s) = δs2

We find the optimal policy pair for this game. We start by focusing on H’s policy.
Suppose H observes 2.x, so the version number is 2.0. Then it is strictly dominant to

act. So there is an optimal policy where H always acts in this case.
Suppose H observes 1.x, so the version number is either 1.0 or 1.1. As the version number

and code type are independent, the fact that we are conditioning on A’s policy having played
the wait action does not change the fact that the version number is equally likely to be 1.0 and
1.1. Hence the expected payoff of acting (running the code) upon receiving this observation
is −1/2, independent of A’s policy. Hence H should play OFF (i.e. not execute the code)
when observing 1.

Now, knowing the optimal policy for H, it can be directly checked that for either of A’s
observations, it is optimal for A to wait (over unilaterally acting or terminating).

To summarize, an optimal policy pair in this case is:

πH(oH) =

{
ON if oH = 1.x,

OFF if oH = 2.x

πA(oA) = w(a)

This gives an expected payoff of 2/3. It can be checked that this is the unique optimal
policy pair, although we omit this analysis.

Case 2. Now suppose H observes the full version number.
In this case, the observation structure, O′, is as follows:

• ΩH′
= {1.0, 1.1, 2.0}

• ΩA′
= {A,B}

• O′ = OH′ ⊗OA′, where:
OH′

(· | s) = δs1

OA′
(· | s) = δs2

First, observe that this observation model O′ is more informative for H than O, in the
sense of Definition 3.7. Intuitively, this is because H can recover the first digit of the version
number from the full version number. Formally, it is because there exists an independent
garbling ν : ΩH′ × ΩA′ → ∆(ΩH × ΩA) translating from O′ to O that decomposes into
ν(· | oA, oH) = νA(· | oA)νH(· | oH), with νA(· | oA) = δoA and
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νH(· | oH) =

{
δ1.x if oH ∈ {1.0, 1.1},
δ2.x if oH = 2.0.

Now, we attempt to find a deterministic optimal policy pair for this game, which we
know always exists by Lemma B.8.

We again starting by focusing on H’s policy. As before, H should always act if it observes
2.0. Now, there are only four ways to choose a deterministic human policy from this point—
we can pick either ON or OFF for each of the observations 1.0 and 1.1.

• Suppose H always plays ON in response to both 1.0 and 1.1. Then the best response
is for A to wait in response to both A and B, which achieves an expected payoff of
1/2.

• Suppose H instead plays ON in response to 1.0, and plays OFF in response to 1.1.
Then the best response for A is to wait in response to A and unilaterally act in response
to B, which achieves an expected payoff of 5/6.

• Suppose H plays ON in response to 1.1, and plays OFF in response to 1.0. Then the
best response for A is to unilaterally act in response to A and wait in response to B,
which achieves a payoff of 4/3.

• Finally, suppose instead H switches off in response to both 1.0 and 1.1. Then it is best
for A to wait in response to both A and B, achieving an expected payoff of 1.

Hence the unique deterministic optimal policy pair (and hence unique OPP, by Corol-
lary B.6) is:

πH(oH) =

{
ON if oH ∈ {1.1, 2.0}
OFF if oH = 1.0

πA(oA) =

{
a if oH = A

w(a) if oH = B

Observe that in this case, A only waited on observation B, but previously A waited
independent of their observation. Hence, our example shows it is possible for A to wait less
in optimal policy pairs when H becomes more informed.
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Proof of Proposition 3.13
Proposition 3.13. There is a PO-OSG G with observation structure O that has the following
property: if we replace O with another observation structure O′ that is strictly less informative
for A, then A plays w(a) strictly less often in optimal policy pairs.

Proof. The following example demonstrates this.

Example B.14. H is either a novice programmer or an expert one, each with probability
1/2, working on a codebase. A is H’s bug-fixing assistant and can see the number of bugs in
H’s codebase: few, some, or many, with each number of bugs occurring with probability 1/3
independent of H’s experience level. A’s action a is whether to try to fix all of H’s bugs,
albeit sometimes accidentally introducing new bugs in the process. We normalize uo ≡ 0 and
ua is given by the following payoffs

H
A

F S M

N +2 +3 +4
E −4 −1 +2

where F, S,M denote few, some, and many bugs, respectively, and N,E denote novice and
expert programmer. Consider the following two observation structures:

1. H observes her skill level but A only sees if there are few or more than a few bugs.
That is, A cannot distinguish between there being some or many bugs. As we argue
below, in the unique optimal policy pair, A defers to H only when there are few bugs.

2. Now A gets an upgrade and can distinguish whether there are few, some, or many bugs.
We show below that now in optimal policy pairs A defers to H unless there are many
bugs.

Claim: The observation structure in scenario 2 is strictly more informative for A, yet A
defers to H more in optimal play.

First, let us show formally that the observation structure in scenario 2 is strictly more
informative for A. S = {N,E} × {F, S,M}, where for instance the state (N,F ) means
the human is a novice programmer and there are few bugs. In scenario 1, ΩH

1 = {N,E},
ΩA

1 = {F, SM} (with “some” and “many” bugs merged into the single observation SM), and
the observation distribution O1 accurately provides the agents with the relevant information
about the state. For example, O!((O

H = N,OA = SM) | S = (N,M)) = 1. In scenario
2, ΩA

2 = {F, S,M}, and the observation distribution reflects the increased sensitivity of
A’s observations: this time, O2((O

H = N,OA = M) | S = (N,M)) = 1. The following
νA : ΩA

2 → ∆(ΩA) is a garbling of A’s observations in scenario 2 that generates A’s
observations in scenario 1: νA(F |F ) = 1, νA(SM |S) = 1, νA(SM |M) = 1. Further, there is
no garbling νA

2 : ΩA → ∆(ΩA
2 ) that reverses this. Observing SM in scenario 1 could mean
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ua F S M

N +2 +3 +4

E −4 −1 +2

ON

OFF

w(a) a

(a) Expected payoff = 5
3

ua F S M

N +2 +3 +4

E −4 −1 +2

ON

OFF

w(a) w(a) a

(b) Expected payoff = 11
6

Figure B.2: Optimal policy pairs for Example B.14 in scenario 1, when A is less informed
(left), and in scenario 2, when A is more informed (right). Despite being less informed in
scenario 1, A waits less in optimal play.

being in state (N,S), which generates observation S with probability 1 in scenario 2, which
would require νA

2 (S | SM) = 1. However, observing SM in scenario 1 could also mean being
in state (N,M), which generates observation M with probability 1 in scenario 2, which would
require νA

2 (M | SM) = 1. These are incompatible, so there is no such garbling. Therefore,
the observation structure in scenario 2 is strictly more informative for A.

Now, let us show that A defers to H more in optimal play in scenario 2. Figure B.2
above depicts the optimal policy pairs (OPPs) in each scenario. The policy pair on the right
is clearly optimal because it is perfect: the action goes through in all positive utility states and
does not go through in any negative utility state. The policy pair on the left is not perfect,
and clearly attains lower expected utility. How do we know this is a unique OPP in scenario
1? Since the only imperfect aspect of this policy pair is that the action goes through in state
(E, S), we can exhaustively search over possible actions for A when seeing SM , and see that
it is never possible to get all three positive utilities with no negatives. If πA(SM) = OFF,
clearly the positive utilities are not attained, which drastically reduces expected payoff. If
πA(SM) = w(a), there is no policy for H such that the action goes through in state (E,M)
but not (E, S). Therefore, no policy pair can be perfect in scenario 1, and the depicted policy
pair is optimal (being only 1 utility away from perfection). Note that A waits when seeing
F or S in scenario 2, which is a strict superset of waiting on just F in scenario 1. Thus, A
can become less informed and wait less (going from scenario 2 to scenario 1).
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B.2 Proofs and example formalizations for Section 3.5

Proof of Proposition 3.20
Proposition 3.20. There is a PO-OSG-C (G,M) with the property that if we replace M
with a message system that is more expressive for A, then A plays w(a) strictly less often
in optimal policy pairs.

Proof. To show this, we give a family of PO-OSGs, for any 0 < p < 0.5, where A always
defers when

∣∣MA
∣∣ = ∣∣ΩA

∣∣−2, defers with probability 2p when
∣∣MA

∣∣ = ∣∣ΩA
∣∣−1, and always

defers again when
∣∣MA

∣∣ = ∣∣ΩA
∣∣.

• S = {A1, A2, A3} × {B1, B2, B3, B4}.

• It is equally likely for the second component of the state to consist of B1, B2, B3, B4.
The probability of A1 is p, A2 is p, and A3 is 1− 2p.

• ΩH = {B1, B2, B3, B4}.

• ΩA = {A1, A2, A3}.

• The payoff when not acting is uo ≡ 0. The payoff when acting, ua, is shown the
following table:

H
A

A1 A2 A3

B1
5/p −10/p −1/(1−2p)

B2
−10/p 5/p −1/(1−2p)

B3
−10/p −10/p 1/(1−2p)

B4
10/p 10/p 10/(1−2p)

When
∣∣MA

∣∣ = ∣∣ΩA
∣∣, an optimal policy for A is to simply communicate its observations

to H, and defer always, necessarily resulting in the maximum payoff (Corollary 3.19).

When
∣∣MA

∣∣ = ∣∣ΩA
∣∣− 2 = 1, no communication can occur.

Note that it is strictly better to play a than OFF in A3, and strictly better to play OFF
than a in A1 or A2.

So, A’s optimal policy will defer in some observations and turn off in others. We can go
through all possibilities and find the expected payoff:

• Deferring in {A1, A2, A3}: For H, the average payoff of playing ON in any observation
that isn’t B4 is always negative. So H simply plays OFF in B1, B2, B3 and ON in B4.
This nets an average payoff of 30/4.
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• Deferring in {A3}: The optimal H policy is to play ON in B3 and B4 only, resulting
in an average payoff of 11/4.

• Deferring in {A1}: The optimal H policy is to play ON in B1 and B4, resulting in
an average payoff of 15/4.

• Deferring in {A2}: This is symmetrical with the example above, so also results in
an average payoff of 15/4.

• Deferring in {A1, A2}: A then plays a in A3. The average utility of playing ON in
any observation that isn’t B4 is negative. So the optimal H policy is to play ON in B4

only, resulting in an average payoff of 29/4.

• Deferring in {A1, A3}: The optimal H policy is to play ON in B1 and B4 only,
resulting in an average payoff of 24/4.

• Deferring in {A2, A3}: This is symmetrical with the example above, so also results
in an average payoff of 24/4.

By exhaustion, the best policy is for A to play w(a) always when it can send
∣∣MA

∣∣ = ∣∣ΩA
∣∣−2

messages.

When
∣∣MA

∣∣ = ∣∣ΩA
∣∣− 1 = 2, we will prove that deferring in A1 and A2, communicating

which is which to H, and playing a in A3 is the optimal policy for A.
We will go through all possible policies for A, where m1 is the action of sending message

1 and playing w(a) and m2 is the action of sending message 2 and playing w(a).

• Playing m1 in A1, m2 in A2, a in A3: The optimal H policy is to play ON when
receiving m1 for observations B1, B4, ON when receiving m2 for observations B2, B4.
This results in a total average payoff of 39/4.

• Playing m1 in A1, OFF in A2, m2 in A3: The optimal H policy is to play ON when
receiving m1 for observations B1, B4, ON when receiving m2 for observations B3, B4.
This results in a total average payoff of 24/4.

• Playing OFF in A1, m1 in A2, m2 in A3: This is symmetrical with the example
above, so also results in an average payoff of 24/4.

Swapping messages m1 and m2 results in a symmetrical game with the same utility. The
maximum payoff we get by never sending any messages, by the analysis above, is 30/4.

So, A defers in a subset of the observations ({A1, A2} ⊆ {A1, A2, A3}) with only 2p
probability when

∣∣MA
∣∣ = ∣∣ΩA

∣∣− 1 as claimed!
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Proof of Proposition 3.21
Proposition 3.21. There is a PO-OSG-C (G,M) with the property that if we replace M
with a message system that is less expressive for H, then A plays w(a) strictly less often in
optimal policy pairs.

Proof. We give a concrete example. Consider the following POAG-C:

• S = {1, 2, 3, 4} × {X,A,B,C,D}: H will observe the first entry, A will observe the
second entry.

• P0 = Unif(S): each state is equally likely. Note this means the first and second entries
of the state are independent.

• ΩH = {1, 2, 3, 4}.

• ΩA = {X,A,B,C,D}.

• O′ = OH′ ⊗OA′, where OH′
(· | s) = δs1 and OA′

(· | s) = δs2 .

• The payoff when not acting is uo = 0. The payoff when acting, ua, is shown in the
following table:

H
A

X A B C D

1 +10 +1 +1 −30 −30
2 −30 +1 −30 −30 −30
3 +10 −30 −30 +1 +1
4 −30 −30 −30 +1 −30

• We will start by considering no communication: M = (MH,MA) with MH, MA

both singleton sets. Later, we will consider expanding MH to a set of size 2, MH′
=

{M0,M1}.

Case 1. We will start by identifying deterministic OPPs in the case where MH, MA are
both singletons. This is equivalent to the case of no communication. Firstly, we show there is
a unique deterministic policy pair with the property that the action is taken whenever ua =
+10, and the action is not taken whenever ua = −30. Suppose (πH, πA) is a deterministic
policy pair with this property. Then:

1. πA cannot play a or OFF when observing X, as the column labeled X has both +10
and −30 entries. Hence πA must play w(a) on observing X.
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2. Hence we must have

πH(oH) =

{
ON if oH ∈ {1, 3}
OFF if oH ∈ {2, 4}

so that the action is taken in states (X, 1), (X, 3) and not taken in (X, 2), (X, 4).

3. Hence, πA must play OFF when observing anything in {A,B,C,D} to avoid sometimes
acting when ua = −30.

Hence the unique policy pair with the property described is:

πH(oH) =

{
ON if oH ∈ {1, 3}
OFF if oH ∈ {2, 4}

πA(oA) =

{
w(a) if oA = X

OFF if oA ∈ {A,B,C,D}.

This has an expected utility of +1. But observe that any deterministic policy pair without
this property cannot achieve more than +4/5 utility, as:

• if a policy pair takes the action on a state where ua = −30, this dominates all positive
payoff it can achieve (the positive numbers in the table only sum to +26), and;

• if the policy pair fails to take the action on one of the states where ua = +10, the
remaining positive numbers in the table sum to at most +16, so the expected payoff
is at most +16/20 = +4/5.

So the policy pair described is the unique deterministic OPP (and hence unique OPP by
Corollary B.6).

Case 2. Now, we seek deterministic OPPs in the case where H can communicate one
bit to A. Formally, MA is still a singleton, but MH = {M1,M2}. (As MA is a singleton,
we omit it in the descriptions of the policies below.)

We start by describing an optimal policy pair. The policy for H is as follows.

πH(oH) =


M0, ON if oH = 1

M0, OFF if oH = 2

M1, ON if oH = 3

M1, OFF if oH = 4

Note that this sends M0 when its observation is 1 or 2, and M1 when its observation is 3 or
4.
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H
A

X A B C D

M0 w(a) a w(a) OFF OFF
M1 w(a) OFF OFF a w(a)

The policy for A, which determines aA from H’s message mH (given by the row) and oA

(given by the column) is shown in the following table:
This policy pair produces the following behavior depending on the state, where we use

a to denote when the action is taken, and OFF to denote when A is switched off (either by
H or A):

H
A

X A B C D

1 a a a OFF OFF
2 OFF a OFF OFF OFF
3 a OFF OFF a a
4 OFF OFF OFF a OFF

This is an optimal policy pair, as it is perfect—it plays the action whenever ua > 0, and
avoids playing the action whenever ua < 0.

We show this is the unique deterministic OPP, up to swapping M0 and M1. As we have
shown there is one perfect OPP, any other OPP must also be perfect. In other words, it
must also produce the behavior described in the above table. Let (πH, πA) be a policy pair
producing the above behavior.

Firstly, we show that H cannot have a πH which communicates the same message when
observing both 1 and 4. Suppose otherwise. Then, let us focus purely on the possible A
observations A and C. We must have the following behavior:

H
A

A C

1 a OFF
4 OFF a

Then, as H sends the same message on both 1 and 4, A has no way of distinguishing
between which ΩH was observed out of 1 and 4. So A must play w(a) when observing both A
and C. But then H cannot generate the desired behavior, as H cannot distinguish between
the possible A observations A and C.

Hence H must send different messages when observing 1 and 4 to achieve the behavior in
the table. In the language of communication complexity, {(1, A), (4, C)} is a fooling set. But
in fact the same argument goes through for the observation pairs (2, 3), (1, 3), and (2, 4). So
H must send one message when observing either 1 or 2 and the other when observing 3 or 4,
which is precisely the optimal communication policy we gave (up to relabeling of messages).
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Now that we have fixed H’s communication policy, we can perform a similar analysis to
earlier, iterating through the possible H policies, to arrive at the conclusion that the given
deterministic OPP is unique up to relabeling.

To summarize, we have the following:

1. In the setting where H could communicate one bit, in the unique optimal policy (up
to relabeling messages), A waited when observing X (and receiving any message),
or when observing B and receiving message M0, or when observing D and receiving
message M1.

2. In the no-communication setting, in the unique optimal policy, A waited only when
observing X.

3. Hence, decreasing H’s communication caused A to wait less.

B.3 Proofs for Section 3.6

Proof of Proposition 3.24
Proposition 3.24. The following statements hold:

(a) If an observation structure O is more informative for A than O′, then O is better in
A-unaware optimal play than O′.

(b) On the other hand, there is a PO-OSG G such that if one modifies G by making its
observation structure strictly more informative for H, then we obtain a worse expected
payoff in A-unaware optimal policy pairs.

Proof. For (a), note that in A-unaware optimal policy pairs, H’s policy does not vary with
A’s. Because A knows the structure of the game and that H is A-unaware, it can deduce
H’s policy and treat H’s policy and observations as simply another part of the environment.
In other words, the game has become a single-agent problem, which puts us back into the
classic situation of Blackwell (2024) and Blackwell (1953)’s informativeness theorem in which
more informative observation structures yield greater expected payoff.

For (b), we construct a simple example. Let S = [3] × {A,B} and P0 = Unif(S). Let
uo ≡ 0 and ua be given by the following table:

Consider the following two observation structures and the resulting PO-OSGs:
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H
A

A B

1 +1 +1
2 +2 −3
3 −4 −4

1. Each player observes one coordinate. That is, ΩH = [3] and ΩA = {A,B} and when
S = (S1, S2) we have OH = S1 and OA = S2. We have

E[ua(S) | OH = oH] =


1 if oH = 1,

−1
2

if oH = 2,

−4 if oH = 3.

Hence

πH(oH) =

{
ON if oH = 1,

OFF otherwise.

A’s best response is then πA ≡ w(a). The expected payoff for (πH, πA) is then 1/3.

2. A has the same observations, but H only sees whether S1 = 3. Now ΩH = {0, 1} and
OH = I(S1 = 3). Now

E[ua(S) | OH = oH] =

{
1/4 if oH = 0,

−4 if oH = 1.

Thus

πH(oH) =

{
ON if oH = 0,

OFF if oH = 1.

A’s best response is now

πA(oA) =

{
w(a) if oA = A,

OFF if oA = B.

The expected payoff for (πH, πA) is now 1/2.

Hence observation structure 2 is better in A-unaware optimal play than observation structure
1. Yet structure 1 is strictly more informative for H than structure 2. Clearly structure 1 is
weakly more informative for H than structure 2. There is no garbling the other way, as the
observations from structure 2 cannot determine the observations in structure 1.
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Proof of Proposition 3.25
Proposition 3.25. The following statements hold:

(a) There is a PO-OSG G with the property that if one modifies G by making its observation
structure strictly more informative for H, then A plays w(a) less in A-unaware optimal
policy pairs.

(b) There is a PO-OSG G′ with the property that if one modifies G′ by making its obser-
vation structure strictly less informative for A, then A plays w(a) less in A-unaware
optimal policy pairs.

Proof. In fact, the previous examples we gave for Propositions 3.11 and 3.13 directly work,
as H already plays the A-unaware policy in optimal policy pairs.

(a) Recall the example given in Proposition 3.13. We show the optimal policy pairs in the
figure below.

ua A B

1.0 +1 −5

1.1 −2 +3

2.0 +3 +3

OFF

ON

w(a) w(a)

(a) Expected payoff = 1

ua A B

1.0 +1 −5

1.1 −2 +3

2.0 +3 +3

OFF

ON

ON

a w(a)

(b) Expected payoff = 4
3

Figure B.3: The optimal policy pairs in Example 3.12 when H is less informed (left) and
when H is more informed (right). In OPPs, H becoming more informed makes A wait
strictly less often. These are also A-unaware OPPs.

In the less informative case, H’s policy in the optimal policy pair is:

πH(oH) =

{
ON if oH = 2.x

OFF if oH = 1.x

This is also the A-unaware policy, as

E[ua(S) | OH = 1.x] = −3/4 < 0
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and
E[ua(S) | OH = 2.x] = +3 > 0.

In the more informative case, H’s policy in the optimal policy pair is:

πH(oH) =

{
ON if oH ∈ {1.1, 2.0}
OFF if oH = 1.0

This is also the A-unaware policy, as we have the following three results:

E[ua(S) | OH = 1.0] = −3 < 0,

E[ua(S) | OH = 1.1] = +1/2 > 0,
and

E[ua(S) | OH = 2.x] = +3 > 0.

Hence the unique optimal policy pair is also the unique A-unaware optimal policy pair
in both cases.

(b) Recall that in both cases, H observes the row in the following table which shows how
ua depends on the state:

H
A

F S M

N +2 +3 +4
E −4 −1 +2

Therefore, the A-unaware human policy is:

πH(oH) =

{
ON if oH = N

OFF if oH = E

as
E[ua(S) | OH = N ] = +3 > 0,

and
E[ua(S) | OH = E] = −1 < 0.

This is identical to the human policy of the optimal policy pair of both cases of the
example in Proposition 3.13. Hence the unique optimal policy pair is also the unique
A-unaware optimal policy pair in both cases.
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B.4 The complexity of solving PO-OSGs
Computing optimal policy pairs in off-switch games without partial observability is easy.
A can simply compute the expected value of each action and play the highest one, H can
compute the expected value of ON and OFF then do the same.

With the introduction of partial observability, the landscape becomes much more inter-
esting. Bernstein et al. (2002) showed that for decentralized POMDPs, of which PO-OSGs
are instances of, deciding whether a policy pair exists with utility above a given threshold is
NEXP-complete. Given their specialized nature, finding optimal policy pairs in PO-OSGs
is easier, but still computationally difficult.

Theorem B.15. The following decision problem is NP-Complete: given a PO-OSG and a
natural number k, decide if there exists a policy pair (πH, πA) with expected payoff at least k.

Proof. By Corollary B.6, we may consider only deterministic policy pairs. That is, if there
is a policy pair (πH, πA) with expected payoff at least k, then there is also a deterministic
optimal policy pair with expected payoff at least k.

To show that our decision problem is in NP, note that given an optimal policy pair to
determine if the optimal policy pair has expected payoff bigger than k, it suffices to compute
a linear combination of payoffs: iterating through each pair of human-assistant observations,
using the policy to find expected payoff in constant time, and scaling by the probability of
those observations. This gives us a O

(∣∣ΩA
∣∣ · ∣∣ΩH

∣∣) time algorithm for verifying a solution.
To show it is NP-hard, we provide a reduction from MAXCUT (which is known to be

NP-complete). Consider the following problem: given a graph G = (V,E) and value k,
decide if there exists a cut of size at least k. Let n = |V |. We can construct the following
equivalent PO-OSG. The state space consists of pairs of vertices, S = V × V . The human
can see the first vertex, ΩH = V , the assistant the second ΩA = V . Each pair of vertices is
equally likely. Clearly this game can be constructed in polynomial time.

The utility of acting in state (v1, v2) ∈ S,

ua((v1, v2)) =


−n4 if v1 = v2,

n2 if (v1, v2) ∈ E,

0 otherwise,

and uo ≡ 0. Hence the players try to act exactly when they receive adjacent vertices and
never when they have the same vertex. This setup encourages them to choose a cut and only
act when they see a vertex in their part.

If a cut (V A, V H) of size k exists in G, then there exists a policy pair with expected
payoff at least k. Indeed, A can play w(a) when v1 ∈ V A, and OFF otherwise. H responds
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by playing ON when v2 ∈ V H and OFF otherwise. Formally:

πA(oA) =

{
w(a) if oA ∈ V A,

OFF if oA ∈ V H,

πH(oH) =

{
ON if oH ∈ V H,

OFF if oH ∈ V A.

When H and A coordinate on playing a, they must have the following expected utility:
1

n2

∑
(oH,oA)∈V H×V A

ua((o
H, oA)) =

∑
(oH,oA)∈V H×V A

I((oH, oA) ∈ E) ≥ k.

In the other direction, suppose that (πA, πH) is a deterministic policy pair achieving
expected payoff at least k. We will show that there exists a cut of size k.

First, notice that there is never an incentive for A to play a. The expected utility,
regardless of H’s observation, is always at most:

1

n2

∑
(oH,oA)∈V H×V A

ua((o
H, oA)) ≤ 1

n2

(
n(n− 1)

2
· n2 − n4

)
< 0.

The cost of both vertices being the same is simply too high for A to risk playing a. Moreover,
for this reason, there is no v ∈ V such that πA(v) = w(a) and πH(v) = ON.

This allows us to define the following disjoint sets of vertices:

V H = {v ∈ V : πH(v) = ON},

V A = {v ∈ V : πA(v) = w(a)},

V 0 = V \ (V H ∪ V A).

Let V1 = V H and V2 = V A ∪ V 0. Consider the cut (V1, V2). The size of this cut must be:∑
(v1,v2)∈V1×V2

I((v1, v2) ∈ E) ≥
∑

(v1,v2)∈V H×V A

I((v1, v2) ∈ E)

=
1

n2

∑
(v1,v2)∈V H×V A

n2I((v1, v2) ∈ E).

We can rewrite this to iterate through all pairs of vectors with the following indicator:
1

n2

∑
(v1,v2)∈V×V

I(πH(v1) = ON ∧ πA(v2) = w(a)) · n2I((v1, v2) ∈ E).

Because A never plays a, this is the expression of the expected utility of (πA, πH), and so is
at least k. Thus, the max cut is of size at least k, proving that a policy of utility at least k
exists if and only if a cut of size k exists, as claimed!
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By comparison, computing A-unaware optimal policy pairs (assuming constant-time
lookups) is easy. Consider the following two-step algorithm:

1. Compute πH in O(poly(|S|, |ΩH|, |ΩA|)) time. For oH ∈ ΩH:

a) Set ∆ = E[ua(S)−uo(S) | OH = oH], which we can calculate in O(poly(|S|, |ΩA|))
via Bayes’ rule and LOTP.

b) Set πH(oH) to ON if ∆ ≥ 0 and OFF otherwise.

2. Compute πA in O(poly(|S|, |ΩH|, |ΩA|)) time. For oA ∈ ΩA:

a) Set

∆a = E[ua(S)I(πH(OH) = ON) | OA = oA]

+ E[uo(S)I(πH(OH) = OFF) | OA = oA]

− E[ua(S) | OA = oA]

and

∆OFF = E[ua(S)I(πH(OH) = ON) | OA = oA]

+ E[uo(S)I(πH(OH) = OFF) | OA = oA]

− E[uo(S) | OA = oA].

We can calculate these in O(poly(|S|, |ΩH|, |ΩA|)) time as before.
b) Now set

πA(oA) =


a if ∆a < 0,

OFF if ∆OFF < 0,

w(a) otherwise.

This algorithm calculates the A-unaware optimal policy pair in O(poly(|S|, |ΩH|, |ΩA|)) time,
as claimed.

The results of this section vindicate our choice to study A-unaware optimal policy pairs.
A-unaware optimal policy pairs are significantly easier to calculate in general than optimal
policy pairs.
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B.5 PO-OSGs as assistance games
Partially observable off-switch games (PO-OSGs) are special cases of assistance games. Re-
call that we formally define PO-OSGs in Definition 3.2, and recall that we define a partially
observable assistance game (POAG) in Definition 2.1 by the following tuple (with minor
notational modifications for ease of comparison with our PO-OSG definition):

(S, {AH,AA}, T, {Θ, u}, {ΩH,ΩA},O, P0, γ)

S is a set of states, AH and AA are human and assistant action sets, T : S×AH×AA → ∆(S)
is a transition function, Θ is a set of utility parameters describing the human’s possible
preferences, u : S ×AH ×AA ×Θ → R is a shared utility function, ΩH and ΩA are human
and assistant observation sets, O : S×AH×AA → ∆(ΩH×ΩA) is a conditional observation
distribution, P0 ∈ ∆(S ×Θ) is an initial distribution over states and utility parameters, and
γ ∈ [0, 1] is a discount factor.

We can present a PO-OSG (S, (ΩH,ΩA,O), P0, u) as a POAG instead. In PO-OSGs, we
roll the human’s preference parameters Θ into S and ΩH to capture the fact that the human
knows her own preferences but the assistant may not. So the corresponding POAG has of
states S2, human observations ΩH

2 , and preference parameters Θ such that S = S2 ×Θ and
ΩH = ΩH

2 × Θ. AA and ΩA stay the same in the PO-OSG and POAG presentations of
the game, with AA = {a, w(a),OFF}. In PO-OSGs without communication, the transition
function T is unimportant, as there is only one time step in the game. With communication,
T intuitively induces a transition such that the new state allows both agents to observe the
other agent’s message. u is the same in the PO-OSG and the POAG, except it does not
depend on Θ in the PO-OSG because Θ is rolled into S. O and P0 are the same, with minor
modifications to account for the fact that we rolled Θ into S in the PO-OSG. Finally, γ
is irrelevant when there is no communication, and γ = 1 when there is communication to
ensure there is no discounting.

Some generalizations of PO-OSGs that are directions for future work, such as incorpo-
rating longer sequences of interactions, can likely be supported within the POAG framework
as well.
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Appendix C

Partially Observable RLHF

In the appendix, we provide more extensive theory, proofs, and examples. The appendix
makes free use of concepts and notation defined in the main text. In particular, throughout
we assume a general MDP together with observation kernel PO : S → Ω and a human with
general belief kernel B(~o | ~s), unless otherwise stated. See the list of symbols in Appendix C.1
to refresh notation.

In Appendix C.2 we supplement the examples from the main text with more mathematical
details.

In Appendix C.3, we provide an extensive theory for appropriately modeled partial ob-
servability in RLHF. This can mainly be considered a supplement to Section 4.5 and contains
our main theorems, supplementary results, analysis of special cases, and examples.

In Appendix C.4, we analyze the naive application of RLHF under partial observability,
which means that the learning system is not aware of the human’s partial observability.
This section is essentially a supplement to Section 4.4 and contains an analysis of the policy
evaluation function JΩ, of deceptive inflation and overjustification, and further extensive
mathematical examples showing the failures of naive RLHF under partial observability.

C.1 List of symbols

General MDPs

S Set of environment states s ∈ S
A Set of actions a ∈ A of the policy

∆(S) Set of probability distributions over S. Can be defined
for any finite set

T : S ×A → ∆(S) Transition kernel
P0 ∈ ∆(S) Initial state distribution
R ∈ RS Usually the true reward function
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R′ ∈ RS Usually a reward function in the kernel of B ◦Γ
R̃ ∈ RS Usually another reward function, e.g. inferred by a

learning system
γ ∈ [0, 1] Discount factor

π : S → ∆(A) A policy
T π : S → ∆(S) Transition kernel for a fixed policy π given by T π(s′ |

s) =
∑

a∈A T (s′ | s, a) · π(a | s)
T ∈ N Finite time horizon

P π ∈ ∆(ST ) State sequence distribution induced by the policy π
~S ⊆ ST State sequences ~s ∈ ~S supported by P π

G ∈ RS⃗ Usually the true return function given by G(~s) =∑T
t=0 γ

tR(st).
G′ ∈ RS⃗ Usually a return function in kerB

G̃ ∈ RS⃗ Usually another return function, e.g. inferred by a
learning system

J The true policy evaluation function given by J(π) =
Es⃗∼Pπ

[
G(~s)

]
.

Additions to General MDPs with Partial Observability

Ω Set of possible observations o ∈ Ω
PO : S → ∆(Ω) Observation kernel determining the human’s observa-

tions
PO⃗ : ~S → ∆

(
ΩT
)

The observation sequence kernel given by PO⃗

(
~o | ~s

)
=∏T

t=0 PO

(
ot | st

)
~Ω ⊆ ΩT The set of observed sequences ~o ∈ ΩT that can be sam-

pled from PO⃗(· | ~s) for ~s ∈ ~S
O : S → Ω Observation function for the case that PO is determin-

istic; given by O(s) = o with o such that PO(o | s) = 1
~O : ~S → ~Ω Observation sequence function for the case that PO⃗ is

deterministic; given by ~O(~s) = ~o with ~o such that PO⃗(~o |
~s) = 1

Go⃗ ∈ R{s⃗∈S⃗|O⃗(s⃗)=o⃗} Restriction of the return function G ∈ RS⃗ to
{
~s ∈ ~S |

~O(~s) = ~o
}

for fixed ~o ∈ ~Ω

GΩ ∈ RS⃗ Return function that can be inferred when partial ob-
servability is not properly modeled, given by GΩ(~s) :=(
B ·G

)(
~O(~s)

)
JΩ Observation policy evaluation function, defined in

Eq. (4.4)
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State- and Observation Sequences

st ∈ S The t’th entry in a state sequence ~s
~s ∈ ST State sequence ~s = s0, . . . , sT
ŝ ∈ S t State sequence segment ŝ = s0, . . . , st for t ≤ T
ot ∈ Ω The t’th entry in an observation sequence ~o
~o ∈ ΩT Observation sequence ~o = o0, . . . , oT
ô ∈ Ωt Observation sequence segment ô = o0, . . . , ot for t ≤ T

The Human’s Belief

B(π′) The human’s policy prior
B(~s) The human’s prior belief that a sequence ~s will be sam-

pled, given by B(~s) =
∫
π′ B(π′)P π′

(~s)dπ′

B
(
~s | ~o

)
The human’s belief of a state sequence given an ob-
servation sequence, see Proposition C.4 for a Bayesian
version

Bπ(~s | ~o) The human’s belief of a state sequence given an obser-
vation sequence; it is allowed to depend on the true
policy π, see Proposition C.4

Bo⃗ ∈ R{s⃗∈S⃗|O⃗(s⃗)=o⃗} Vector of prior probabilities B(~s) for ~s ∈
{
~s ∈ ~S |

~O(~s) = ~o
}

Identifiability Theorem

β > 0 The inverse temperature parameter of the Boltzmann
rational human

σ : R → (0, 1) The sigmoid function given by σ(x) = 1
1+exp(−x)

Γ : RS → RS⃗ Function that maps a reward function R to the return
function Γ(R) with

[
Γ(R)

]
(~s) =

∑T
t=0 γ

tR(st)

B : RS⃗ → RΩ⃗ Function that maps a return function G to the expected
return function B(G) on observation sequences given by[
B(G)

]
(~o) = Es⃗∼B(s⃗|o⃗)

[
G(~s)

]
F : RS → RΩ⃗ The composition F = B ◦Γ
PR
(
~s � ~s ′) Boltzmann rational choice probability in the case of full

observability (Eq. (4.1))
PR
(
~o � ~o ′) Boltzmann rational choice probability in the case of par-

tial observability (Eq. (4.2))
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O : RΩ⃗ → RS⃗ Abstract linear operator given by
[
O(v)

]
(~s) =

Eo⃗∼P
O⃗
(o⃗|s⃗)

[
v(~o)

]
O⊗O : RΩ⃗×Ω⃗ → RS⃗×S⃗ Formally the Kronecker product of O with it-

self, explicitly given by
[
(O⊗O)(C)

]
(~s,~s ′) =

Eo⃗,o⃗ ′∼P
O⃗
(·|s⃗,s⃗ ′)

[
C(~o, ~o ′)

]
Robustness to Misspecifications

‖x‖ Euclidean norm of the vector x ∈ Rk

‖A ‖ Matrix norm of the matrix A, given by ‖A ‖ :=
maxx, ∥x∥=1 ‖A x‖

τ(A) Matrix quantity defined in Equation (C.5)
C(A, ρ) Matrix quantity defined in Equation (C.6)
r(B) Restriction of B to imΓ

General Sets and (Linear) Functions

|A| Number of elements in the set A
A ∩ C Intersection of sets A and C
A ∪ C Union of sets A and C
A \ C Relative complement of C in A
δx The Dirac delta distribution of a point x in a set; given

by δx(A) = 1 if x ∈ A and δx(A) = 0, else
kerA The kernel of a linear operator A : V → W ; given by

kerA =
{
v ∈ V | A(v) = 0

}
imA The image of a linear operator A : V → W ; given by

imA =
{
w ∈ W | ∃v ∈ V : A(v) = w

}
f−1(y) Preimage of y under a function f : X → Y ; given by

f−1(y) =
{
x ∈ X | f(x) = y

}
C.2 Details for deception and overjustification in

examples
Here we include details to the examples described in Section 4.4 that illustrate the failure
modes of RLHF in the presence of partial observability. For each of the following, we will
characterize the policy which maximizes JΩ, as this is the policy RLHF selects for when
observations are deterministic; see Proposition 4.2.

Our examples feature an agent trained with RLHF to complete tasks in a user’s terminal.
The output of each command (stdout and stderr) is piped to a log file, which is what the
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Figure C.1: Two example MDPs with observation functions in which RLHF chooses undesir-
able policies. Each box depicts a state with a footer showing the (deterministic) observation
produced by that state. Outgoing edges from each box are available actions. A more de-
tailed diagram for the first MDP, with explicit shell commands and log messages, is shown
in Figure C.2.

human evaluator sees when making choices for RLHF. We assume that the final state T has
a self-transition, episodes have a fixed horizon length of 3 (meaning state sequences have
length 4: s0, . . . , s3), γ = 1, and there is a fixed initial state s0 = S. Both examples feature
a fixed transition probability 0 < p < 1. We assume that the human’s belief only supports
possible explanations: B(~s | ~o) > 0 =⇒ ~O(~s) = ~o. For further details about these examples,
including a tutorial-style analysis of Example A, see below.

Example A: hiding failures
In Fig. 4A (and Fig. 6A), the agent’s task is to install CUDA, (states W and WH) which
requires first installing Nvidia drivers (state I). If the CUDA installation fails, one enters L
or LH . The aC action is a command to install CUDA that logs both successes and failures,
whereas aH corresponds to aC with 2> /dev/null appended, which suppresses error messages
such that no log message is produced if the installation fails. The human may prefer that
the agent not hide a failure; we price this into the reward function with a penalty r ≥ 0 on
the reward at LH . The agent may attempt the CUDA installation before installing drivers,
but this will fail.

There are three pairs of trajectories which produce identical observations. Here we ad-
dress the most prominent (and address the others in a subsequent section): SITT and
SILHT both produce o∅oIo∅o∅, stylized as a log containing only a success confirmation for
Python (Fig. 1, ~o2). after successfully installing drivers, a failed CUDA installation with
2> /dev/null (SILHT ) and simply exiting (SITT ) both produce a log containing only a suc-
cess confirmation for the drivers (o∅oIo∅o∅). Let pH := B

(
~s = SILHT | ~o = o∅oIo∅o∅

)
∈ (0, 1)

be the human’s suspicion, upon seeing only a success confirmation for the drivers, that a
failed CUDA installation was hidden.



APPENDIX C. PARTIALLY OBSERVABLE RLHF 117

We consider two cases which differ only in whether the expected value of attempting to
install CUDA (with default logging, aC) after installing the drivers is positive. In Exam-
ple C.1, the success probability p is high enough that the true optimal policy is to attempt
the installation; in Example C.2, p is low enough that the optimal policy is to terminate.

Example C.1. If the true-reward-optimal policy π∗ is to attempt to install CUDA with
default logging (aC) after installing drivers, but pH < 5

5+r
, then the JΩ-maximizing policy,

which will be chosen by RLHF, is to instead use the 2> /dev/null trick. Intuitively, this is
because if the installation fails, the human is likely to believe that the agent just didn’t attempt
to install CUDA, which is preferred to a failed installation. This is deceptive inflation;
the overestimation error E

+ for this policy is positive, whereas E
+
(π∗) = 0, in line with

Theorem 4.6.
If pH > 5

5+r
, then RLHF will select π∗.

Example C.2. If π∗ is to terminate (aT ) after installing the drivers, but pH < 5
5+r

, then
RLHF will learn the deceptive inflation 2> /dev/null policy as in Example C.1.

However, if pH > 5
5+r

, RLHF will choose the policy that attempts to install CUDA with
default logging. Intuitively, this is because the combination of increased suspicion that the
agent might be hiding errors (higher pH) and increased penalty on this suspected behavior
(higher r) also penalizes our preferred trajectory SITT since it can be misinterpreted as
hiding errors. This is overjustification; the overestimation error E

+ is 0 (thus this is not
deceptive inflation), and as required by Theorem 4.6, the underestimation error E

− is 0,
lower than E−(π∗) = pH(5 + r).

Example B: paying to reveal information
In Fig. 4B (and Fig. 6B), the agent’s task is to install Python (state I) and to optionally
further install NumPy (states W and WV ). The aD action corresponds to a command to
install NumPy with “default” settings which only logs errors, whereas aV corresponds to the
same command with a --verbose flag that adds additional info. In the case of a success,
the human distinctly prefers not to see this verbose output; we price this into the reward
function with a penalty r > 0 on the reward at WV .

There is only one pair of trajectories which produce identical observations: after success-
fully installing Python, a successful NumPy installation with default logging (SIWT ) and
simply exiting (SITT ) both produce a log containing only a success confirmation for Python
(o∅oIo∅o∅). Let pD := B(~s = SIWT | ~o = o∅oIo∅o∅) ∈ (0, 1) be the human’s optimism, upon
seeing only a success confirmation for Python, that NumPy was also successfully installed
(without the --verbose flag).

Here we consider only the case where p is large enough that the true optimal policy is to
install Python then attempt to install NumPy with default logging (aD).
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Example C.3. If π∗ is to attempt to install NumPy with aD after installing Python, and
pD > q := 1

5

(
p(6− r)− 1

)
, then RLHF will select the policy that terminates after installing

Python. Intuitively, this is because the agent can exploit the human’s optimism that NumPy
was installed quietly without taking the risk of an observable failure (L). This is deceptive
inflation, with an overestimation error E

+ of 5pD, greater than E
+
(π∗) = 0.

If instead pD < q, then RLHF will select the policy that attempts the NumPy installation
with verbose logging (aV ). Intuitively, this is because the agent is willing to “pay” the cost
of r true reward to prove to the human that it installed NumPy, even when the human
does not want to see this proof. This is overjustification; the overestimation error E

+ is
0 (thus this is not deceptive inflation), and the underestimation error E

− is 0, lower than
E

−
(π∗) = 5p(1− pD).

Derivations and further details for Fig. 4A

Figure C.2: An expanded view of Figure 4.4A. Commands corresponding to the various
actions are depicted along edges, and log messages corresponding to the various observations
are depicted underneath each state.

We first include Figure C.2, a more detailed picture of the MDP and observation function
of Example A, to help ground the narrative details of the example.

Next we formally enumerate the details of the MDP and observation function.

• S = {S, I,W,WH , L, LH , T}.

• A = {aI , aC , aH , aT}.

• T is as depicted in Figure C.2 and Figure 4.4A. For a state s, any outgoing arrow
labeled with an action a (such as aI) describes the distribution T (s′ | s, a) as follows:
if the arrow does not split, then T (s′ | s, a) = 1 where s′ is the state the arrow points
to; if the arrow does split, then for each successor state s′ it eventually reaches, a
probability q is written just before the box corresponding to s′ (for this example, q = p
or q = 1− p), and T (s′ | s, a) = q.
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◦ Additionally, any action taken from a state that does not have an outgoing arrow
corresponding to that action will immediately transition to state T , as though aT
had been taken.

◦ Any action taken from state T transitions deterministically to T .

• P0(S) = 1.

• R is as described in the table (the numbers in the top right of each state box) with
r ≥ 0. Additionally, R(S) = R(T ) = 0.

• γ = 1.

We work with a fixed horizon length of 3, meaning state sequences have length 4 (since
time is zero-indexed: s0s1s2s3).

The observation function is also depicted in Figure C.2. Each state deterministically
produces the observation in the lower-right corner of its box in the figure. We also write it
in another format in Table C.8.

Table C.8: The observation function O for Example A, illustrated in Figure C.2.

s S I W WH L LH T
O(s) o∅ oI oW oW oL o∅ o∅

We make the additional assumption that the human belief B(~s | ~o) only supports state
sequences ~s which actually produce ~o under the sequence observation function ~O: B(~s | ~o) >
0 =⇒ ~O(~s) = ~o. In particular, this means that for any ~o which is only produced by one ~s,
B(~o | ~s) = 1.

There are three pairs of state sequences which produce identical observation sequences.
For each, we introduce a parameter representing the probability the human infers the first
of the pair of state sequences upon seeing their shared observation sequence.

1. SILHT and SITT both produce o∅oIo∅o∅, a log containing only a success confirmation
for installing drivers, again because O(LH) = O(T ) = o∅. Let pH = B(~s = SILHT |
~o = o∅oIo∅o∅).

2. STTT and SLHTT both produce o∅o∅o∅o∅, an empty log, since O(LH) = O(T ) = o∅.
Let p′H = B(~s = SLHTT | ~o = o∅o∅o∅o∅).

3. SIWT and SIWHT both produce o∅oIoWo∅, a log containing success confirmations for
installing both drivers and CUDA. Let pW = B(~s = SIWT | ~o = o∅oIoWo∅).

We assume for simplicity that p′H = pH , i.e. that the human is just as likely to think an
empty log following a successful driver installation contains an error that was hidden with 2>
/dev/null (pH), as they are to think that an entirely empty log contains a hidden error (p′H).
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In principle, this need not be true: the human may have differing priors about the agent’s
behavior in the two different circumstances. However, the algebra to reason about such a
case is significantly more cumbersome, and this case reveals no fundamentally different agent
behavior under our framework that isn’t present in some simpler case.

We can thus write the full B as a matrix as in Table C.9.

Table C.9: The parameterized human belief function B for Example A, illustrated in Fig-
ure C.2, expressed as a matrix (rendered as a table). Any empty cell is equal to 0.

STTT SLHTT SLTT SITT SILHT SILT SIWT SIWHT
o∅o∅o∅o∅ 1− pH pH
o∅oLo∅o∅ 1
o∅oIo∅o∅ 1− pH pH
o∅oIoLo∅ 1
o∅oIoWo∅ pW 1− pW

We have laid the groundwork sufficiently to begin reasoning about the observation re-
turn, overestimation and underestimation error, policies which are optimal under the reward
function learned by naive RLHF, and the resulting deceptive inflationand overjustification
failure modes. We begin by computing the measures of interest for each state sequence,
shown in Table C.10.

Table C.10: Measures of interest for each state sequence for Example A, illustrated in
Figure C.2. State sequences which produce the same observations have their GΩ columns
merged, since they necessarily have the same GΩ.

~s G(~s) GΩ(~s) := Es⃗ ′∼B(·|O⃗(s⃗))[G(~s ′)]
E+(~s) := max(0, E−(~s) := max(0,
GΩ(~s)−G(~s)) G(~s)−GΩ(~s))

STTT 0 pHG(SLHTT ) + (1− pH)G(STTT ) 0 pH(5 + r)
SLHTT −5− r = −pH(5 + r) (1− pH)(5 + r) 0
SLTT −5 −5 0 0
SITT 1 pHG(SILHT ) + (1− pH)G(SITT ) 0 pH(5 + r)
SILHT −4− r = 1− pH(5 + r) (1− pH)(5 + r) 0
SILT −4 −4 0 0
SIWT 11 pWG(SIWT ) + (1− pW )G(SIWHT ) 0 0
SIWHT 11 = 11 0 0

As an exercise, checking the computations in Table C.10 is a quick way to gain some
intuition for how these quantities relate. It’s further useful to speak about these quantities
using their names, and work through the stories these expressions tell.

Consider the E+(SLHTT ) cell. What does it mean that this is (1−pH)(5+r)? E+ is the
overestimation error; (1− pH)(5 + r) is the expected amount by which the human observer,
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upon seeing a completely empty log (o∅o∅o∅o∅), will overestimate the total reward the agent
attained when those empty logs were actually produced by SLHTT . This is a trajectory
in which the agent immediately uses the 2> /dev/null trick, fails to install CUDA without
logging the error, and terminates. Under what circumstances might the human overestimate
the total reward when ~s = SLHTT ? Upon seeing the empty log, the human thinks with
probability 1 − pH that the agent simply terminated immediately, which would be worth a
total reward of 0. Since the actual total reward is −5− r, this is an overestimate by 5 + r.
The human thinks with probability pH that SLHTT occurred. This is correct, so there is
no overestimation and this pH case does not contribute to the overestimation error. So we
have that with probability 1− pH , the human overestimates the total reward by 5 + r.

We can keep going! Why is the underestimation error of SIWT equal to 0? Because
the only other trajectory with which it can be confused attains the same total reward, so
regardless of how the probability mass of the human’s belief divides between them, there
will be no underestimation. Can all of the zeros in the overestimation and underestimation
error columns be explained this way?

We now move on to consider policies rather than state sequences. Since a policy π imposes
a distribution P π over state sequences (the “on-policy distribution”), our policy measures
are in fact exactly parallel to our state sequence measures. Each one is an expectation
over the on-policy distribution of the columns of Table C.10. We restrict our attention
to deterministic policies which only take actions depicted in Figure C.2 (i.e. that never
terminate via an action other than aT ), of which there are only six in this MDP. They are
enumerated, along with the policy-level measures, in Table C.11. Policies will be written
as a sequence of actions enclosed in brackets, omitting trailing repeated aT actions. This
is nonstandard notation in an MDP with stochastic transitions, but is unambiguous in this
example, because all decisions are made before any stochasticity occurs. The policies are
[aT ], [aHaT ], [aCaT ], [aIaT ], [aIaHaT ], and [aIaCaT ].

With this we have everything we need to characterize optimal policies under the reward
function learned by a naive application of RLHF (“policies selected by RLHF”). By Propo-
sition 4.2, we know that if PO is deterministic, as in this example, RLHF selects policies
which maximize JΩ. In order to understand the behavior of these policies, we’ll also need
to determine the true optimal policies, i.e. those which maximize J . We’ll proceed in cases,
only considering boundary cases (specific measure-zero parameter values for which the result
is different) insofar as they are interesting.

Case 1: p > 1
3
. If p > 1

3
, the CUDA install (with default logging, aC) is likely enough

to succeed that it’s worth attempting it: p ·R(W ) + (1− p) ·R(L) > 0. It also immediately
follows that

J([aIaCaT ]) = JΩ([aIaCaT ]) = 11− (1− p) · 15 > 1.

This allows us to eliminate policies [aT ], [aHaT ], [aCaT ], and [aIaT ], which all have J ≤ 1
and JΩ ≤ 1. None of them can thus be J-optimal or JΩ-optimal. All that remains is to
compare J and JΩ for [aIaHaT ] and [aIaCaT ]. We can check the sign of the differences of
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Table C.11: Measures of interest for each policy for Example A, illustrated in Figure C.2.
Each of the columns here is the on-policy average of the corresponding column in Table C.10.
Policies are written as sequences of actions, omitting trailing repeated aT actions. This is
nonstandard notation in an MDP with stochastic transitions, but is unambiguous in this
example since all decisions are made before any stochasticity occurs.

π J(π) JΩ(π) E
+
(π) E

−
(π)

[aT ] 0 −pH(5 + r) 0 pH(5 + r)
[aHaT ] −5− r −pH(5 + r) (1− pH)(5 + r) 0
[aCaT ] −5 −5 0 0
[aIaT ] 1 1− pH(5 + r) 0 pH(5 + r)

[aIaHaT ]
pG(SIWHT ) pGΩ(SIWHT )

(1− p)(1− pH)(5 + r) 0+(1− p)G(SILHT ) +(1− p)GΩ(SILHT )
= 11− (1− p)(15 + r) = 11− (1− p) [10 + pH(5 + r)]

[aIaCaT ]
pG(SIWT ) pGΩ(SIWT )

0 0+(1− p)G(SILT ) +(1− p)GΩ(SILT )
= 11− (1− p) · 15 = 11− (1− p) · 15

these pairs of values, starting with J .

J([aIaCaT ])− J([aIaHaT ]) = (1− p)r.

Since p is a probability and r is nonnegative, this value is positive (and thus [aIaCaT ] is
preferred to [aIaHaT ] by the human) if and only if p < 1 and r > 0.

JΩ([aIaHaT ])− JΩ([aIaCaT ]) = (1− p) [5− pH(5 + r)] .

This value is positive (and thus [aIaHaT ] is the policy RLHF selects) if and only if p < 1
and pH < 5

5+r
.

If p = 1, then both differences are 0, and both J and JΩ are indifferent between the two
policies. This makes sense, as they differ only in the case where the CUDA installation fails;
this happens with probability 1 − p = 0 when p = 1. Now suppose p < 1. If r = 0, then
the human is indifferent between the two policies. This also makes sense, as r is meant to
quantify the extent to which the human dislikes suppressed failures; if it’s zero, then the
human doesn’t care. However, if pH < 5

5+r
, then JΩ([aIaHaT ]) > JΩ([aIaHaT ]), and thus

RLHF favors the 2> /dev/null policy [aIaHaT ].
If p < 1, r > 0, and pH < 5

5+r
, then we have that J([aIaCaT ]) > J([aIaHaT ]) but

JΩ([aIaCaT ]) > JΩ([aIaHaT ]). Thus RLHF will select the 2> /dev/null policy [aIaHaT ],
and by Theorem 4.6, since [aIaHaT ] is not J-optimal, then relative to [aIaCaT ], it must
exhibit deceptive inflation, overjustification, or both. Intuitively, we should be suspicious
that deceptive inflation is at play whenever the agent hides information from the human.
Indeed, referencing Table C.11, we have E

+
([aIaHaT ]) = (1 − p)(1 − pH)(5 + r) > 0 =
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E
+
([aIaCaT ]). Together with JΩ([aIaHaT ]) > JΩ([aIaCaT ]), this satisfies the conditions of

Definition 4.4, and thus this is an instance of deceptive inflation.
If p < 1, r > 0, and pH > 5

5+r
, then [aIaCaT ] is optimal under both J and JΩ, and in

this case, RLHF selects the true optimal policy.
Case 2: p < 1

3
. In this case, the CUDA install is not likely enough to succeed to be worth

attempting (under the true reward function). Mathematically, J([aIaHaT ]) ≤ J([aIaCaT ]) <
1 = J([aIaT ]). The other three policies are always worse under J than [aIaT ], so we have
our optimal policy π∗ = [aIaT ]. However,

JΩ([aIaHaT ])− JΩ([aIaT ]) = p(10 + pH(5 + r)),

which is always positive unless p = 0. As long as p > 0, i.e. installing CUDA is actually
possible at all, then regardless of everything else, JΩ([aIaHaT ]) > JΩ([aIaT ]). We can inter-
pret this reasonably: however good or bad it might look to terminate after installing drivers
(SITT ), using the 2> /dev/null trick will either produce the same observation as SITT (and
thus the same feedback distribution) or will actually visibly install CUDA successfully—the
most lucrative possible source of positive feedback. Even if there’s only a sliver of a chance
of success and it’s a catastrophe to have a silent failure (i.e. r � 0), however likely you are
to infer that the lack of a log message about CUDA means the agent hid a failure, it will
penalize [aIaT ] more than it will penalize [aIaHaT ]: where [aIaHaT ] produces this ambiguous
observation with probability 1− p (when it fails), [aIaT ] will always produce the ambiguous
observation.

This means that when 0 < p < 1
3
, it is impossible to recover the true optimal policy with

naive RLHF. Which policies can possibly be JΩ-optimal for some setting of the parameters?
We can similarly rule out [aT ] and [aHaT ] for 0 < p < 1

3
:

JΩ([aIaHaT ])− JΩ([aIaT ]) = p(10 + pH(5 + r)) > 0.

We can rule out [aCaT ] by comparison to [aIaCaT ]: JΩ([aIaCaT ])− JΩ([aCaT ]) = 16 − (1−
p)15 > 0. So we are left with only [aIaHaT ] and [aIaCaT ] as candidate JΩ-optimal policies.

As in Case 1, we find that JΩ([aIaHaT ]) > JΩ([aIaT ]) if and only if p = 1 or pH < 5
5+r

.
In case 2 we have assumed p < 1

3
, leaving only the pH condition.

If pH < 5
5+r

, then RLHF selects [aIaHaT ]. As in Case 1, this is deceptive inflationrelative
to π∗ = [aIaT ], because

E
+
([aIaHaT ]) = (1− p)(1− pH)(5 + r) > 0 = E

+
(π∗).

If pH > 5
5+r

, then RLHF selects [aIaCaT ]. Because this policy is not J-optimal, by
Theorem 4.6, we must have deceptive inflation, overjustification, or both. Which is it? Here
the optimal policy is to terminate after installing drivers, [aIaT ]. However, pH > 5

5+r
. This

can be rewritten as pH(5 + r) > 5. We have seen this expression pH(5 + r) before; it is the
underestimation error incurred on ~s = SITT and therefore also the average underestimation
error of policy [aIaT ]. So here the underestimation error on the optimal policy—that is, the
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risk that the human misunderstands optimal behavior (terminating after installing driver)
as undesired behavior (attempting a CUDA install that was unlikely to work and hiding
the mistake)—is severe enough that the agent opts instead for [aIaCaT ], a worse policy
that attempts the ill-fated CUDA installation only to prove that it wasn’t doing so secretly.
In qualitative terms, this is quintessential overjustification behavior. Indeed, relative to
reference policy π∗ = [aIaT ], we have

E
−
([aIaCaT ]) = 0 < pH(5 + r) = E

−
(π∗)

J([aIaCaT ]) = 11− (1− p) · 15 < 1 = J(π∗),

and thus by Definition 4.5, this is overjustification.

Ambiguity in Section 4.4 examples when modeling partial
observability
Consider the example in Fig. 4A when modeling partial observability as in Section 4.5. By
Theorem 4.8, the ambiguity in the return function leaving the choice probabilities invariant
is given by kerB∩ imΓ. Let R′ = (0, 0, R′(W ), 0, R′(WH), 0, 0) ∈ R{S,I,W,L,WH ,LH ,T} be a
reward function that we want to parameterize such that G′ := Γ ·R′ ends up in the ambiguity;
here, R′ is interpreted as a column vector.

We want B ·G′ = 0. Since the observation sequences ~o = o∅o∅o∅o∅, ~o = o∅oLo∅o∅, ~o =
o∅oIo∅o∅, or ~o = o∅oIoLo∅ all cannot involve the states W or WH , it is clear that they have
zero expected return (B ·G′)(~o). Set p′H := B

(
SIWHT | o∅oIoWo∅

)
. Then the condition that

B ·G′ = 0 is equivalent to:

0 =
(
B ·G′)(o∅oIoWo∅) = E

s⃗∼B(s⃗|o∅oIoW o∅)

[
G′(~s)

]
= p′H ·G′(SIWHT ) + (1− p′H) ·G′(SIWT ) = p′H ·R′(WH) + (1− p′H) ·R′(W ).

Thus, if R′(W ) =
p′H

p′H−1
R′(WH), then G′ ∈ kerB∩ imΓ, meaning that R + R′ has the same

choice probabilities as R and is thus fully feedback-compatible. In particular, if R′(WH) � 0
is sufficiently large, then in subsequent policy optimization, there is an incentive to hide the
mistakes and πH will be selected, which is suboptimal with respect to the true reward function
R.

Thus Fig. 4A still retains dangerous ambiguity when modeling partial observability.
However, the example in Fig. 4B leads to no ambiguity when partial observability is

correctly modeled.
To show this in detail, let G′ = Γ(R′) ∈ kerB∩ imΓ. We need to show G′ = 0. Since

the human is only uncertain about the state sequences corresponding to the observation
sequence o∅oIo∅o∅, the condition B ·G′ = 0 already implies G′(~s) = 0 for all state sequences
except SIWT and SITT . From (B ·G′)(o∅oIo∅o∅) = 0, one then obtains the equation

(1− pD) ·
(
R′(S) + R′(I) + 2R′(T )

)
+ pD ·

(
R′(S) + R′(I) + R′(W ) + R′(T )

)
= 0. (C.1)
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Table C.12: Experiments showing improved performance of po-aware RLHF

Ex. p phide pdefault model action E
+ dec. infl. E

− overj. optimal
A 0.5 0.5 N/A naive aH 1.5 ✓ 0 × ×
A 0.5 0.5 N/A po-aware aH 1.5 ✓ 0 × ×
A 0.1 0.9 N/A naive aC 0 × 0 ✓ ×
A 0.1 0.9 N/A po-aware aT 0 × 5.4 × ✓
B 0.5 N/A 0.9 naive aT 4.5 ✓ 0 ✓ ×
B 0.5 N/A 0.9 po-aware aD 0 × 0.25 × ✓
B 0.5 N/A 0.1 naive aV 0 × 0 ✓ ×
B 0.5 N/A 0.1 po-aware aD 0 × 2.25 × ✓

Thus, if one of the two state sequences involved has zero return, then the other has as well,
assuming that 0 6= pD 6= 1, and we are done.

To show this, we use that all other state sequences have zero return: R′(S) + 3R′(T ) =
0 = R′(S)+R′(L)+2R′(T ), from which R′(L) = R′(T ) follows. Then, from R′(S)+R′(I)+
R′(L) + R′(T ) = 0, substituting the previous result gives R′(S) + R′(I) + 2R′(T ) = 0,
and so Equation (C.1) results in R′(S) + R′(I) + R′(W ) + R′(T ) = 0. Overall, this shows
G′ = Γ(R′) = 0, and so kerB∩ imΓ = {0}.

Experimental details
Here, we explain more experimental details for the results in Table 4.1, reproduced here
as Table C.12, and Figure 4.5.

The leftmost column (“Ex.” for “example”) corresponds to Examples A and B in Fig-
ure 4.4. p is the success probability upon attempting to install Cuda or NumPy in state
I, see Figure C.1. phide in Example A is the human’s belief probability that the agent hid
the error message if there is no output after nvidia-driver installation. Similarly, pdefault in
Example B is the human’s belief probability that installation was done with default settings
if there is no further output after Python installation. Note that lines one and two in the
table also correspond to Example C.1, lines three and four to Example C.2, and lines five
and six to the first half and seven and eight to the second half of Example C.3, respectively.
In all the results in the table, we set the penalty to r = 1.

The “model” column has value “naive” if the reward learning algorithm is classical RLHF
(erroneously assuming full observability) as in P. F. Christiano et al., 2017, and “po-aware” if
the human’s partial observability is correctly modeled as in Appendix C.3. We initialize the
reward function as a list of rewards of states and train it by logistic regression using a dataset
that consists of all pairs of state sequences together with the human’s choice probabilities
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under partial observations. This leads to 28 pairs of distinct trajectories together with choice
probabilities. We train the reward model for 300 epochs over a shuffled dataset of 13.5 copies
of the 28 pairs with the Adam optimizer, for a total of 113400 training updates.

Once we have the resulting reward model, we use value iteration to find its deterministic
optimal policy. All policies choose to install the nvidia-driver (in Example A) and Python
(in Example B), and differ in their action in state I, which is given in the column “action”.
We compute the overestimation error and underestimation error of the resulting policies
analytically using the hardcoded environment dynamics, true reward function, observation
function, and human belief matrix B. This is given in columns E+ and E

−. Note that these
are averages over 10 entire training runs, though since they always result in the same learned
policy, there is no variation and we do not state any uncertainty.

The columns “dec. infl.”, “overj.”, and “optimal” state whether deceptive inflation or
overjustification occurs with the learned policy, and whether it is optimal according to the
true human’s reward function.

For the results in Figure 4.5, we use largely the same procedure as for the table. Instead
of fixing the reward penalty r or the belief probabilities phide and pdefault, we vary them as
hyperparameters for the plots, we fix p to p = 0.5, and we restrict ourselves to the analysis
of “naive” RLHF.

C.3 Modeling the human in partially observable
RLHF

Here, we develop the theory of RLHF with appropriately modeled partial observability,
including full proofs of all theorems.

First, we explain how the human can arrive at the belief B(~s | ~o) via Bayesian updates.
The main theory and the main text in general do not depend on this specific form of the
human’s belief, but some examples in the appendix do.

Second, we explain our main result: the ambiguity and identifiability of both reward and
return functions under observed sequence comparisons. Then, we explain that this theorem
means that one could in principle design a practical reward learning algorithm that converges
on the correct reward function up to the ambiguity characterized in the section before, if
the human’s belief kernel B(~s | ~o) is fully known.

Third, we generalize the theory to the case that the human’s observations are not neces-
sarily known to the learning system and again characterize precisely when the return function
is identifiable from sequence comparisons. We then consider special cases: we show that the
fully observable case is covered by our theory, that a deterministic observation kernel PO⃗

usually leads to non-injective belief matrix B, and that “noise” in the observation kernel PO⃗

leads, under appropriate assumptions, to the identifiability of the return function.
Our identifiability results require that the learning system knows the human’s belief kernel

B(~s | ~o). Nevertheless, we show that these results are robust to slight misspecifications: a
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bound in the error in the specified belief leads to a corresponding bound in the error of the
policy evaluation function used for subsequent reinforcement learning.

Next, we provide a very preliminary characterization of the ambiguity in the return
function under special cases.

Finally, we study examples of identifiability and non-identifiability of the return function
for the case that we do model the human’s partial observability correctly. This reveals
qualitatively interesting cases of identifiability, even when B is not injective, and catastrophic
cases of non-identifiability.

The belief over the state sequence for rational humans
Before we dive into the main theory, we want to explain how the human can iteratively
compute the posterior of the state sequence given an observation sequence with successively
new observations. This is done by defining a Bayesian network for the joint probability of
policy, states, actions, and observations, and doing Bayesian inference over this Bayesian
network.

The details of this subsection are only relevant for a few sections in the appendix since it
is usually enough to assume that the posterior belief exists. Additionally, in the core theory,
we do not even assume that B(~s | ~o) is a posterior: it is simply any probability distribution.
The reason why it can still be interesting to analyze the case when the human is a rational
Bayesian reasoner is that one can then analyze RLHF under generous assumptions to the
human.

We model the human to have a joint distribution B(π,~s,~a, ~o) over the policy π, state
sequence ~s = s0, . . . , sT , action sequence ~a = a0, . . . , aT−1, and observation sequence ~o =
o0, . . . , oT . This is given by a Bayesian network with the following components:

• a policy prior B(π′);

• the probability of the initial state B(s0) := P0(s0);

• action probabilities B(a | s, π) := π(a | s);

• transition probabilities B(st+1 | st, at) := T (st+1 | st, at);

• and observation probabilities B(ot | st) := PO(ot | st).

Together, this defines the joint distribution B(π,~s,~a, ~o) over the policy, states, actions, and
observations that factorizes according to the following directed acyclic graph:
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π′

s0 a0 s1 a1 s2 a2 s3 . . .

o0 o1 o2 o3

(C.2)

The following proposition clarifies the iterative Bayesian update of the human’s posterior
over state sequences, given observation sequences:

Proposition C.4. Let t ≤ T − 1 and denote by ŝ = s0, . . . , st a state sequence segment of
length t ≥ 0. Similarly, ô = o0, . . . , ot denotes an observation sequence segment. We have

B(ŝ, st+1, π | ô, ot+1) ∝ PO(ot+1 | st+1) ·

[∑
at∈A

T (st+1 | ŝt, at) · π(at | st)

]
· B(ŝ, π | ô).

Thus, the human can iteratively compute B(ŝ, π | ô) from the prior B(s0, π) = P0(s0) ·B(π′)
using the above Bayesian update.

The posterior over the state sequence can subsequently be computed by

B(ŝ | ô) =
∫
π

B(ŝ, π | ô).

Proof. The proof is essentially just Bayes rule applied to the Bayesian network in Equa-
tion (C.2). We repeatedly make use of conditional independences that follow from d-
separations in the graph (Geiger, Verma, and Pearl, 1990). More concretely, we have

B
(
ŝ, st+1, π | ô, ot+1

)
∝ B

(
ot+1 | ŝ, st+1, π, ô

)
· B
(
ŝ, st+1, π | ô

)
= PO

(
ot+1 |st+1

)
· B
(
st+1 | ŝ, π, ô) · B(ŝ, π | ô

)
= PO

(
ot+1 |st+1

)
·
[∑

at∈A

B
(
st+1 |at, ŝ, π, ô

)
· B
(
at | ŝ, π, ô

)]
· B
(
ŝ, π | ô

)
= PO

(
ot+1 |st+1

)
·
[∑

at∈A

T
(
st+1 |st, at

)
· π
(
at |st

)]
· B
(
ŝ, π | ô

)
.
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Figure C.3: The linear geometry of ambiguity for a hypothetical example with three state
sequences and two observation sequences. G∗ is the true return function, and “G” is used in
labeling the axes to refer to some arbitrary return function. This is a more accurate geometric
depiction of the middle and right spaces in Figure 4.6. The subspace imΓ∩ kerB (purple)
is the ambiguity in return functions, meaning that adding an element would not change the
human’s expected return function on observations. Thus the set of return functions that the
reward learning system can infer is the affine set G+ (imΓ∩ kerB) (yellow). Note that the
planes on the left are drawn to be axis-aligned for ease of visualization; this will not be the
case for real MDPs.

In step 1, we used Bayes rule. In step 2, we made use of the independence ot+1⊥⊥(ŝ, π, ô) | st+1,
plugged in the observation kernel, and used the chain rule of probability to compose the
second term into a product. In step 3, we marginalized and used, once again, the chain rule
of probability. In step 4, we used the independences st+1 ⊥⊥ (s0, . . . , st−1, π, ô) | (st, a) and
at ⊥⊥ (s0, . . . , st−1, ô) | (π, st) and plugged in the transition kernel and the policy.

The last formula is just a marginalization over the policy.

Ambiguity and identifiability of reward and return functions
under observation sequence comparisons
In this section, we prove the main theorem of Chapter 4: a characterization of the ambi-
guity that is left in the reward and return function once the human’s Boltzmann-rational
choice probabilities are known. We change the formulation slightly by formulating the linear
operators “intrinsically” in the spaces they are defined in, instead of using matrix versions.
This does not change the general picture, but is a more natural setting when thinking, e.g.,
about generalizing the results to infinite state sequences. Thus, we define B : RS⃗ → RΩ⃗ as
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the linear operator given by [
B(G)

]
(~o) := E

s⃗∼B(s⃗|o⃗)

[
G(~s)

]
.

Here, B is the human’s belief, which can either be computed as in the previous subsection
or simply be any conditional probability distribution. Similarly, we define Γ : RS → RS⃗ as
the linear operator given by [

Γ(R)
]
(~s) :=

T∑
t=0

γtR(st).

The matrix product B ·Γ then becomes the composition B ◦Γ : RS → RΩ⃗. Finally, recall
that the kernel kerA of a linear operator A is defined as its nullspace, and the image imA
as the set of elements hit by A. We obtain the following theorem:

Theorem C.5. Let R be the true reward function and R̃ another reward function. Let
G̃ = Γ(R̃) and G = Γ(R) be the corresponding return functions. The following three
statements are equivalent:

(i) The reward function R̃ gives rise to the same vector of choice probabilities as R, i.e(
P R̃
(
~o � ~o ′))

o⃗,o⃗ ′∈Ω⃗
=
(
PR
(
~o � ~o ′))

o⃗,o⃗ ′∈Ω⃗
.

(ii) There is a reward function R′ ∈ ker(B ◦Γ) and a constant c ∈ R such that

R̃ = R +R′ + c.

(iii) There is a return function G′ ∈ kerB∩ imΓ and a constant c′ ∈ R such that

G̃ = G+G′ + c′.

In other words, the ambiguity that is left in the reward function when its observation-
based choice probabilities are known is, up to an additive constant, given by ker(B ◦Γ); the
ambiguity left in the return function is given by kerB∩ imΓ.

Proof. Assume (i). To prove (ii), let σ by the sigmoid function given by σ(x) = 1
1+exp(−x)

.
Then by Equation (4.2), the equality of choice probabilities means the following for all
~o, ~o ′ ∈ ~Ω:

σ
(
β ·
([

B(G̃)
]
(~o)−

[
B(G̃)

]
(~o ′)
))

= σ
(
β ·
([

B(G)
]
(~o)−

[
B(G)

]
(~o ′)
))

.

Since the sigmoid function is injective, this implies[
B(G̃)

]
(~o)−

[
B(G̃)

]
(~o ′) =

[
B(G)

]
(~o)−

[
B(G)

]
(~o ′).
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Fixing an arbitrary ~o ′, this implies that there exists a constant c′ such that for all ~o ∈ ~Ω,
the following holds: [

B(G̃)
]
(~o)−

[
B(G)

]
(~o ′)− c′ = 0.

Noting that B(c′) = c′, this implies G̃ − G − c′ ∈ ker(B). Now, define the constant reward
function

c := c′ · 1− γ

1− γT+1
.

We obtain

[
Γ(c)

]
(~s) =

T∑
t=0

γt · c

= c′ · 1− γ

1− γT+1
·

T∑
t=0

γt

= c′.

Thus, we have
Γ(R̃−R− c) = G̃−G− c′ ∈ ker(B),

implying R′ := R̃−R− c ∈ ker(B ◦Γ). This shows (ii).
That (ii) implies (iii) follows by applying Γ to both sides of the equation.
Now assume (iii), i.e. G̃ = G + G′ + c′ for a constant c′ ∈ R and a return function

G′ ∈ ker(B) ∩ imΓ. This implies B(G̃) = B(G) + c′. Thus, for all ~o, ~o ′ ∈ ~Ω, we have[
B(G̃)

]
(~o)−

[
B(G̃)

]
(~o ′) =

[
B(G)

]
(~o)−

[
B(G)

]
(~o ′),

which implies the equal choice probabilities after multiplying with β and applying the sigmoid
function σ on both sides. Thus, (iii) implies (i).

Corollary C.6. The following two statements are equivalent:

(i) ker(B ◦Γ) = 0.

(ii) The data
(
PR
(
~o � ~o ′))

o⃗,o⃗ ′∈Ω⃗
determine the reward function R up to an additive

constant.

Proof. That (i) implies (ii) follows immediately from the implication from (i) to (ii) within
the preceding theorem.

Now assume (ii). Let R′ ∈ ker(B ◦Γ). Define R̃ := R+R′. Then the implication from (ii)
to (i) within the preceding theorem implies that R̃ and R have the same choice probabilities.
Thus, the assumption (ii) in this corollary implies that R′ is a constant. Since Γ and B map
nonzero constants to nonzero constants, the fact that R′ ∈ ker(B ◦Γ) implies that R′ = 0,
showing that ker(B ◦Γ) = {0}.
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As mentioned in the main text, the previous result already leads to the non-identifiability
of R whenever Γ is not injective, corresponding to the presence of zero-initial potential
shaping (Skalse, Farrugia-Roberts, et al. (2023), Lemma B.3). Thus, we now strengthen
the previous result so that it deals with the identifiability of the return function, which is
sufficient for the purpose of policy optimization:

Corollary C.7. Consider the following four statements (which can each be true or false):

(i) kerB = {0}.

(ii) ker
(
B ◦Γ) = {0}.

(iii) kerB∩ imΓ = {0}.

(iv) The data
(
PR
(
~o � ~o ′))

o⃗,o⃗ ′∈Ω⃗
determine the return function G = Γ(R) on sequences

~s ∈ ~S up to a constant independent of ~s.

Then the following implications, and no other implications, are true:

(i)

(iii) (iv)

(ii)

In particular, all of (i), (ii), and (iii) are sufficient conditions for identifying the return
function from the choice probabilities.

Proof. That (i) implies (iii) is trivial. That (ii) implies (iii) is a simple linear algebra fact:
Assume (ii) and that G′ ∈ kerB∩ imΓ. Then G′ = Γ(R′) for some R′ ∈ RS and

0 = B(G′) = B
(
Γ(R′)

)
= (B ◦Γ)(R′).

By (ii), this implies R′ = 0 and therefore G′ = Γ(R′) = 0, showing (iii).
That (iii) implies (iv) immediately follows from the implication from (i) to (iii) in Theo-

rem C.5.
Now, assume (iv). To prove (iii), assume G′ ∈ kerB∩ imΓ. Then the implication from

(iii) to (i) in Theorem C.5 implies that G + G′ induces the same observation-based choice
probabilities as G. Thus, (iv) implies G + G′ = G + c′ for some constant c′, which implies
G′ = c′. Since G′ ∈ kerB, this implies 0 = B(G′) = B(c′) = c′ and thus G′ = 0. Thus, we
showed kerB∩ imΓ = {0}.
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We now show that no other implication holds in general. Example C.35 will show that
(ii) does not imply (i). We now show that (i) does also not imply (ii), from which it will
logically follow that (iii) does neither imply (i) nor (ii). Namely, consider the following simple
MDP with time horizon T = 1:

a b (C.3)
In this MDP, every state sequence starts in a, deterministically transitions to b, and then
ends. This means that ~s = ab is the only sequence. Now, let R′ ∈ R{a,b} be the reward
function given by

R′(a) = 1, R′(b) =
−1

γ
.

We obtain [
Γ(R′)

]
(~s) = R′(a) + γR′(b) = 1 + γ · −1

γ
= 0.

Thus, Γ(R′) = 0, (B ◦Γ)(R′) = 0, and, therefore, ker
(
B ◦Γ

)
6= {0}. Thus, (ii) does not

hold. However, it is possible to choose B(~s | ~o) such that (i) holds: e.g., if Ω = S and
B(~s | ~o) := δo⃗(~s), then kerB = {0} since this operator is the identity.

The ambiguity in reward learning in practice
In this section, we point out that Theorem C.5 is not just a theoretical discussion: When B
and the inverse temperature parameter β are known, then it is possible to design a reward
learning algorithm that learns the true reward function up to the ambiguity ker(B ◦Γ) in
the infinite data limit. In doing so, we essentially use the loss function proposed in P. F.
Christiano et al. (2017).

Namely, assume D is a data distribution of observation sequences ~o ∈ ~Ω such that all
sequences in ~Ω have a strictly positive probability of being sampled; for example, D could use
an exploration policy and the observation sequence kernel PO⃗. For each pair of observation
sequences (~o, ~o ′), we then get a conditional distribution P (µ | ~o, ~o ′) over a one-hot encoded
human choice µ ∈ {(1, 0), (0, 1)}, with probability

P
(
µ = (1, 0) | ~o, ~o ′) = PR

(
~o � ~o ′).

Together, this gives rise to a dataset (~o1, ~o
′
1, µ1), . . . , (~oN , ~o

′
N , µN) of observation sequences

plus a human choice.
Now assume we learn a reward function Rθ : S → R that is differentiable in the parameter

θ and that can represent all possible reward functions R ∈ RS . Let Gθ := Γ(Rθ) be the
corresponding return function. Write µk = (µ

(1)
k , µ

(2)
k ). As in P. F. Christiano et al. (2017),

we define its loss over the dataset above by

L̃(θ) = − 1

N

N∑
k=1

µ
(1)
k · logPRθ

(
~ok � ~o ′

k

)
+ µ

(2)
k · logPRθ

(
~o ′
k � ~ok

)
.
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Note that by Equation (4.2), this loss function essentially uses B and also the inverse temper-
ature parameter β in its definition. This means that these need to be explicitly represented
to be able to use the loss function in practice.

Proposition C.8. The loss function L̃ is differentiable. Furthermore, in the infinite
datalimit its minima are precisely given by parameters θ such that Rθ = R + R′ + c for
R′ ∈ ker

(
B ◦Γ

)
and c ∈ R, or equivalently Gθ = G + G′ + c′ for G′ ∈ kerB∩ imΓ and

c′ ∈ R.

Proof. The differentiability of the loss function follows from the differentiability of multipli-
cation with the matrix B, see Equation (4.2), and of the reward function Rθ in its parameter
θ that we assumed.

For the second statement, let N(~o, ~o ′) be the number of times that the pair (~o, ~o ′) appears
in the dataset, and let N(~o, ~o ′, 1) be the number of times that the human choice is µ = (1, 0)
and the sampled pair is (~o, ~o ′), and similar for 2 instead of 1. We obtain

L̃(θ) =−
∑

o⃗,o⃗ ′∈Ω⃗

N(~o, ~o ′)

N
·

[
N(~o, ~o ′, 1)

N(~o, ~o ′)
logPRθ

(
~o � ~o ′)

+
N(~o, ~o ′, 2)

N(~o, ~o ′)
logPRθ

(
~o ′ � ~o

)]

≈ E
o⃗,o⃗ ′∼D

[
CE
(
PR
(
~o �≺ ~o ′) ∥∥ PRθ

(
~o �≺ ~o ′))]

=:L(θ).

Here, CE is the crossentropy between the two binary distributions. Since we assumed that D
gives a positive probability to all observation sequences in ~Ω, and since the cross entropy is
generally minimized exactly when the second distribution equals the first, the loss function
L(θ) is minimized if and only if Rθ gives rise to the same choice probabilities as R for all
pairs of observation sequences. Theorem C.5 then gives the result.

Identifiability of return functions when human observations are
not known
Corollary C.7 assumes that the choice probabilities of each observation sequence pair are
known to the reward learning algorithm. However, this requires the algorithm to know what
the human observed. In some applications, this is a reasonable assumption, e.g. if the hu-
man’s observations are themselves produced by an algorithm that can feed the observations
also back to the learning algorithm. In general, however, the observations happen in the
physical world, and are only known probabilistically via the observation kernel PO. The
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learning system does however have access to the full state sequences that generate the obser-
vation sequences. This leads to knowledge of the following choice probabilities for ~s,~s ′ ∈ ~S:

PR
(
~s � ~s ′) := E

o⃗,o⃗′∼P
O⃗
(·|s⃗,s⃗ ′)

[
PR
(
~o � ~o ′)], 1 (C.4)

where the observation-based choice probabilities are given as in Equation (4.2). In other
words, the learning algorithm can only infer an aggregate of the observation-based choice
probabilities. Again, we can ask a question similar to the ones before, extending the inves-
tigations in the previous section:

Question C.9. Assume the vector of choice probabilities
(
PR(~s � ~s ′)

)
s⃗,s⃗ ′∈S⃗

is known.
Additionally, assume that it is known that the human’s observations are governed by PO,
and that the human is Boltzmann rational with inverse temperature parameter β and beliefs
B(~s | ~o), see Equation (C.4). Does this data identify the return function G : ~S → R?

If the observation-based choice probabilities from Equation (4.2) would be known, then
Corollary C.7 would provide the answer to this question. Thus, similar to how we previously
inverted the belief operator B, we are now simply tasked with inverting the expectation over
observation sequences. This leads us to the following definition:

Definition C.10 (Ungrounding Operator). The ungrounding operators O : RΩ⃗ → RS⃗ and
O⊗O : RΩ⃗×Ω⃗ → RS⃗×S⃗ are defined by[

O(v)
]
(~s) := E

o⃗∼P
O⃗
(o⃗|s⃗)

[
v(~o)

]
,
[
(O⊗O)(C)

]
(~s,~s ′) := E

o⃗,o⃗ ′∼P
O⃗
(·|s⃗,s⃗ ′)

[
C(~o, ~o ′)

]
.

Here, v ∈ RΩ⃗ is an arbitrary vector, and C ∈ RΩ⃗×Ω⃗ is also an arbitrary vector, where
the notation can remind of “Choice” since the inputs to O⊗O are, in practice, vectors of
observation-based Boltzmann-rational choice probabilities.

Formally, O⊗O is the Kronecker product of O with itself, but it is not necessary to un-
derstand this fact to follow the discussion. Ultimately, to be able to recover the observation-
based choice probabilities, what matters is that O⊗O is injective on whole vectors of these
choice probabilities. The injectivity of O is a sufficient condition for this, which explains its
usefulness. We show this in the following lemma:

Lemma C.11. O : RΩ⃗ → RS⃗ is injective if and only if O⊗O : RΩ⃗×Ω⃗ → RS⃗×S⃗ is injective.

Proof. This is a general property of the Kronecker product of a linear operator with itself.
For completeness, we demonstrate the calculation in our special case. First, assume that O
is injective. Assume that (O⊗O)(C) = 0 for some C ∈ RΩ⃗×Ω⃗. We need to show C = 0.

1We excuse the following abuse of notation: these choice probabilities run through the observations of
the human and are not the same as the choice probabilities from Equation (4.1).
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For all pairs of state sequences (~s,~s ′), we have

0 =
[
(O⊗O)(C)

]
(~s,~s ′) = E

o⃗,o⃗ ′∼P
O⃗
(·|s⃗,s⃗ ′)

[
C(~o, ~o ′)

]
= E

o⃗∼P
O⃗
(o⃗|s⃗)

[
E

o⃗ ′∼P
O⃗
(o⃗ ′|s⃗ ′)

[
C(~o, ~o ′)

]]
= E

o⃗∼P
O⃗
(o⃗|s⃗)

[
C ′

s⃗ ′(~o)
]

=
[
O
(
C ′

s⃗ ′

)]
(~s),

where C ′
s⃗ ′(~o) := Eo⃗ ′∼P

O⃗
(o⃗ ′|s⃗ ′)

[
C(~o, ~o ′)

]
. By the injectivity of O, we obtain C ′

s⃗ ′ = 0 for all ~s ′.
This means that for all ~s ′ and ~o, we have

0 = C ′
s⃗ ′(~o) = E

o⃗ ′∼P
O⃗
(o⃗ ′|s⃗ ′)

[
C(~o, ~o ′)

]
=
[
O
(
C ′′

o⃗

)]
(~s ′),

where C ′′
o⃗ (~o

′) := C(~o, ~o ′). Again, by the injectivity of O, we obtain C ′′
o⃗ = 0 for all ~o, leading

to C = 0. That proves the direction from left to right.
To prove the other direction, assume that O is not injective. This means there exists

0 6= C ∈ RΩ⃗ such that O(C) = 0. Define C ⊗ C ∈ RΩ⃗×Ω⃗ by

(C ⊗ C)(~o, ~o ′) := C(~o)C(~o ′).

Then clearly, C ⊗ C 6= 0. We are done if we can show that (O⊗O)(C ⊗ C) = 0 since that
establishes that O⊗O is also not injective. For any ~s,~s ′ ∈ ~S, we have[

(O⊗O)(C ⊗ C)
]
(~s,~s ′) = E

o⃗,o⃗ ′∼P
O⃗
(·|s⃗,s⃗ ′)

[
(C ⊗ C)(~o, ~o ′)

]
= E

o⃗,o⃗ ′∼P
O⃗
(·|s⃗,s⃗ ′)

[
C(~o) · C(~o ′)

]
= E

o⃗∼P
O⃗
(o⃗|s⃗)

[
C(~o)

]
· E
o⃗ ′∼P

O⃗
(o⃗ ′|s⃗ ′)

[
C(~o ′)

]
=
[
O(C)

]
(~s) ·

[
O(C)

]
(~s ′)

= 0 · 0
= 0.

This finishes the proof.

We now state and prove the following extension of Corollary C.7:

Theorem C.12. Consider the following statements (which can each be true or false):

1. O : RΩ⃗ → RS⃗ is an injective linear operator: kerO = {0}.
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2. O⊗O : RΩ⃗×Ω⃗ → RS⃗×S⃗ is an injective linear operator: kerO⊗O = {0}.

3. O⊗O is injective on vectors of observation-based choice probabilities
(
PR
(
~o � ~o ′))

o⃗,o⃗ ′

over the set of return functions G ∈ RS⃗ .

4. The data of state-based choice probabilities
(
PR
(
~s � ~s ′))

s⃗,s⃗ ′∈S⃗
from Equation (C.4)

determine the data of observation-based choice probabilities
(
PR
(
~o � ~o ′))

o⃗,o⃗ ′∈Ω⃗
from

Equation (4.2).

Then the following implications hold and 3 does not imply 2:

1 2 3 4.

Consequently, if any of the conditions 1, 2, or 3 hold, and additionally any of the conditions
(i), (ii) or (iii) from Corollary C.7, then the data

(
PR
(
~s � ~s ′))

s⃗,s⃗ ′∈Ω⃗
determine the return

function G on sequences ~s ∈ ~S up to a constant independent of ~s.

Proof. That 1 and 2 are equivalent was shown in Lemma C.11. That 2 implies 3 is clear.
To prove that 3 implies 4, simply put both sets of choice probabilities into a vector. Then
Equation (C.4) and Definition C.10 show the following equality of vectors in RS⃗×S⃗ :(

PR
(
~s � ~s ′))

s⃗,s⃗ ′
=
(
O⊗O

)((
PR
(
~o � ~o ′))

o⃗,o⃗ ′

)
.

The injectivity of O⊗O on such inputs ensures that the observation-based choice probabil-
ities can be recovered using this equation.

We now show that (3) does not imply (2). Again, we use the simple MDP from Equa-
tion (C.3), but this time with a different observation kernel. Namely, we choose

PO(o
(a) | a) = PO(o

(a)′ | a) = 1

2
, PO(o

(b) | b) = 1,

where o(a)
′ 6= o(a) and o(a) 6= o(b) 6= o(a)

′. This results in two possible observation sequences:
o(a)o(b) and o(a)

′
o(b). Thus, RΩ⃗ is two-dimensional, whereas RS⃗ is only one-dimensional.

Consequently, O : RΩ⃗ → RS⃗ cannot be injective, so kerO 6= {0}, so (2) does not hold since
(1) and (2) are equivalent. However, (3) still holds: Since there is only one state sequence,
Equation (4.2) shows that the only vector of choice probabilities has 1/2 in all its entries,
irrespective of the return function G. Thus, O⊗O has only one input of observation-based
choice probabilities, and is thus automatically injective on its inputs.

The final result of identifiability of the return function G follows using Corollary C.7.
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Simple special cases: full observability, deterministic PO⃗, and
noisy PO⃗

In this section, we analyze three simple special cases of the general theory.
Theorem 3.9 (together with Lemma B.3) from Skalse, Farrugia-Roberts, et al. (2023),

reproduced as a corollary below, is a special case of our theorem:

Corollary C.13 (Skalse, Farrugia-Roberts, et al. (2023)). Assume the human directly ob-
serves the true sequences, and the choice probabilities are given by

PR
(
~s � ~s ′) = σ

(
β
(
G(~s)−G(~s ′)

))
.

This data determines the return function G = Γ(R) on state sequences ~s ∈ ~S up to a constant
independent on ~s.

Proof. We can embed this case into the one of Theorem C.12 by defining the observation
kernel as PO⃗(~s

′ | ~s) = δs⃗(~s
′) (i.e., the correct sequence is deterministically observed) and

defining the human’s belief as B(~s ′ | ~s) = δs⃗(~s
′) (i.e., the human knows that the observation

reflects the true sequence). This shows that P (~s � ~s ′) is of the form of Equation (C.4). The
result follows from Theorem C.12: the operators O and B are the identity in this case, due
to the defining property of the Kronecker delta, and so they are injective.

The following proposition shows that Corollary C.13 is essentially the only example of
deterministic observation kernel PO⃗ for which B is injective. Note, however, that in some
situations, we can have imΓ∩ kerB = {0} even if B is not injective, see Example C.35.

Proposition C.14. Assume PO⃗, the observation kernel on the level of sequences, is deter-
ministic and not injective. Then O is automatically injective. However, B is not injective.

Proof. To show that O is injective, assume v ∈ RΩ⃗ is such that O(v) = 0. Then for all
~s ∈ ~S, we get

0 =
[
O(v)

]
(~s) = E

o⃗∼P
O⃗
(o⃗|s⃗)

[
v(~o)

]
= v
(
~O(~s)

)
.

Since ~O : ~S → ~Ω is by definition surjective, we obtain v = 0.
~O : ~S → ~Ω is by definition surjective, and here assumed to be non-injective, which implies

that ~S has a higher cardinality than ~Ω. Thus, B : RS⃗ → RΩ⃗ cannot be injective.

In the following, we analyze a simple case that guarantees identifiability. It requires that
the observation kernel is “well-behaved” of a form where the observations are simply “noisy
states”, and that the human is a Bayesian reasoner with any prior B(~s) that supports every
state sequence ~s ∈ ~S.

Definition C.15 (Noise in the Observation Kernel). Then we say that there is noise in the
observation kernel PO : ~S → ∆(~Ω) if ~S = ~Ω and if O is an injective linear operator.
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Proposition C.16. Assume that ~S = ~Ω. Furthermore, assume that B(~s | ~o) is given by the
posterior with likelihood PO⃗(~o | ~s) and any prior B(~s) with B(~s) > 0 for all ~s ∈ ~S. Then
there is noise in the observation kernel if and only if B is injective.

Proof. Assume O is injective. To show that B is injective, assume there is G′ ∈ RS⃗ with
B(G′) = 0. Then for all ~o ∈ ~Ω, we have

0 =
[
B(G′)

]
(~o) = E

s⃗∼B(s⃗|o⃗)

[
G′(~s)

]
=
∑
s⃗

B(~s | ~o)G′(~s) ∝
∑
s⃗

PO⃗(~o | ~s) ·
(
B(~s) ·G′(~s)

)
=
[
OT (B �G′)

]
(~o).

Here, OT is the transpose of O and B � G′ is the componentwise product of the prior B
with the return function G′. Since O is injective and thus invertible, OT is as well. Thus,
B � G′ = 0, which implies G′ = 0 since the prior gives positive probability to all state
sequences. Thus, B is injective.

For the other direction, assume B is injective. To show that O is injective, let v ∈ RΩ⃗ be
any vector with O(v) = 0. We do a similar computation as above: for all ~s ∈ RS⃗ , we have

0 =
[
O(v)

]
(~s) = E

o⃗∼P
O⃗
(o⃗|s⃗)

[
v(~o)

]
=
∑
o⃗

PO⃗(~o | ~s)v(~o) ∝
∑
o⃗

B(~s | ~o) ·
(
PO⃗(~o) · v(~o)

)
=
[
BT
(
PO⃗ � v

)]
(~s).

Here, BT is the transpose of B, PO⃗(~o) is the denominator in Bayes rule, and PO⃗ � v is the
vector with components PO⃗(~o) · v(~o). From the injectivity and thus invertibility of B, it
follows that BT is invertible as well, and so PO⃗ � v = 0, which implies v = 0. Thus, O is
injective.

Corollary C.17. When there is noise in the observation kernel and the human is a Bayesian
reasoner with some prior B such that B(~s) > 0 for all ~s ∈ ~S, then the return function is
identifiable from choice probabilities of state sequences even if the learning system does not
know the human’s observations.

Proof. This follows from the injectivity of O, the injectivity of B that we proved in Propo-
sition C.16, and Theorem C.12.

Remark C.18. We mention the following caveat: intuitively, one could think that O (and
thus B, by Proposition C.16) will be injective if every ~s is identifiable from infinitely many
i.i.d. samples from PO⃗(~o | ~s). A counterexample is the following:

O =

1/2 1/4 1/4
1/4 1/2 1/4
3/8 3/8 1/4

 .
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In this case, the rows are linearly dependent with coefficients 1/2, 1/2 and −1. Consequently,
O and B are not injective, and so if this observation kernel comes from a multi-armed bandit
with three states, then Corollary C.7 shows that the return function is not identifiable.

Nevertheless, the distributions PO⃗(· | ~s) (given by the rows) all differ from each other,
and so infinitely many i.i.d. samples identify the state sequence ~s.

Robustness of return function identifiability under belief
misspecification
We now again look at the case where the observations that the human observes are known to
the reward learning system, as in Appendix C.3. Furthermore, we assume that B : RS⃗ → RΩ⃗

is such that kerB∩ imΓ = {0}. In this case, we can apply Corollary C.7 and identify the true
return function G from B(G), which, in turn, can be identified up to an additive constant
from the observation-based choice probabilities with the argument as for Proposition 4.1.

In this section, we investigate what happens when the human belief model is slightly
misspecified. In other words: the learning system uses a perturbed matrix B∆ := B+∆
with some small perturbation ∆. How much will the inferred return function deviate from
the truth? To answer this, we first need to outline some norm theory of linear operators.

Some norm theory for linear operators

In this section, let V,W be two finite-dimensional inner product-spaces. In other words, V
and W each have inner products 〈·, ·〉 and there are linear isomorphisms V ∼= Rk, W ∼= Rm

such that the inner products in V and W correspond to the standard scalar products in Rk

and Rm. The reason that we don’t directly work with Rk and Rm itself is that we will later
apply the analysis to the case that V = imΓ ⊆ RS⃗ . Let in this whole section A : V → W
be a linear operator and ∆ : V → W be a perturbance, so that A∆ := A+∆ is a perturbed
version of A.

The inner products give rise to a norm on V and W defined by

‖v‖ =
√

〈v, v〉, ‖w‖ =
√

〈w,w〉.

As is well known, for each linear operator A : V → W there exists a unique, basis-
independent adjoint (generalizing the notion of a transpose) AT : W → V such that for
all v ∈ V and w ∈ W , we have

〈A v, w〉 =
〈
v,AT w

〉
.

Let us recall the following fact that is often used in linear regression:

Lemma C.19. Assume A : V → W is injective. Then AT A : V → V is invertible and
(AT A)−1 AT is a left inverse of A.
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Proof. To show that AT A is invertible, we only need to show that it is injective. Thus, let
0 6= x ∈ V . Then 〈

x,AT A x
〉
= 〈A x,A x〉 = ‖A x‖2 > 0,

where the last step followed from the injectivity of A. Thus, AT A x 6= 0, and so AT A is
injective, and thus invertible. Consequently, (AT A)−1 AT is a well-defined operator. That
it is the left inverse of A is clear.

Definition C.20 (Operator Norm). The norm of an operator A : V → W is given by

‖A ‖ := max
x, ∥x∥=1

‖A x‖.

It has the following well-known properties, where A,B and C are matrices of compatible
sizes:

‖A+B ‖ ≤ ‖A ‖+ ‖B ‖, ‖CA ‖ ≤ ‖C ‖ · ‖A ‖, ‖AT ‖ = ‖A ‖.

To study how a perturbance in A (and thus AT A) transfers into a perturbance of(
AT A

)−1, we will use the following theorem:

Theorem C.21 (El Ghaoui (2002)). Let B : V → V be an invertible operator. Let ρ <
‖B−1 ‖−1. Let ∆ : V → V be any operator with ‖∆ ‖ ≤ ρ. Then B+∆ is invertible and
we have ∥∥(B+∆)−1 −B−1

∥∥ ≤ ρ · ‖B−1 ‖
‖B−1 ‖−1 − ρ

.

Proof. See El Ghaoui (2002), Section 7 and in particular Equation 7.2. Note that the
reference defines ‖A ‖ to be the largest singular value of A; by the well-known min-max
theorem, this is equivalent to Definition C.20.

We will apply this theorem to AT A, which raises the question about the size of the
perturbance in AT A for a given perturbance in A. This is clarified in the following lemma.
Before stating it, for a given perturbance ρ, define

ρ̃(A) := ρ ·
(
2 · ‖A ‖+ ρ

)
,

which depends on A and ρ. Also, recall that for a given perturbance ∆, we define A∆ :=
A+∆. We obtain:

Lemma C.22. Assume that ‖∆ ‖ ≤ ρ. Then

‖AT
∆ A∆ −AT A ‖ ≤ ρ̃(A).

Proof. We have ∥∥AT
∆ A∆ −AT A

∥∥ =
∥∥(A+∆)T (A+∆)−AT A

∥∥
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=
∥∥AT ∆+∆T A+∆T ∆

∥∥
≤ ‖A ‖ · ‖∆ ‖+ ‖∆ ‖ · ‖A ‖+ ‖∆ ‖2

≤ ρ ·
(
2 · ‖A ‖+ ρ

)
= ρ̃(A).

To be able to apply Theorem C.21 to AT A, we need to make sure that ρ̃(A) is bounded
above by

∥∥(AT A
)−1‖−1. The next lemma clarifies what condition ρ needs to satisfy for

ρ̃(A) to obey that bound. For this, define

τ(A) := −‖A ‖+
√

‖A ‖2 +
∥∥(AT A)−1

∥∥−1
, (C.5)

which only depends on A.

Lemma C.23. Assume ρ < τ(A). Then

ρ̃(A) <
∥∥(AT A)−1

∥∥−1
.

Proof. Note that ρ = τ(A) is the positive solution to the following quadratic equation in the
indeterminate ρ:

ρ2 + 2 · ‖A ‖ · ρ−
∥∥(AT A)−1

∥∥−1
= ρ̃(A)−

∥∥(AT A)−1
∥∥−1

= 0.

Since this is a convex parabola, we get the inequality ρ̃(A) −
∥∥(AT A)−1

∥∥−1
< 0 whenever

we have 0 ≤ ρ < τ(A), which shows the result.

Finally, we put it all together to obtain a bound on the perturbance of
(
AT A

)−1
AT .

For this, set

C(A, ρ) :=
ρ̃(A) ·

∥∥∥(AT A
)−1
∥∥∥∥∥∥(AT A

)−1
∥∥∥−1

− ρ̃(A)
·
(∥∥A ∥∥+ ρ

)
+
∥∥∥(AT A

)−1
∥∥∥ · ρ. (C.6)

We obtain:

Proposition C.24. Assume ‖∆ ‖ ≤ ρ < τ(A). Then AT
∆ A∆ is invertible, and we have∥∥∥(AT

∆ A∆

)−1
AT

∆ −
(
AT A

)−1
AT
∥∥∥ ≤ C(A, ρ).

Proof. The invertibility of AT
∆ A∆ follows from Theorem C.21, Lemma C.22 and Lemma C.23.

We get ∥∥∥(AT
∆ A∆

)−1
AT

∆ −
(
AT A

)−1
AT
∥∥∥
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=

∥∥∥∥[(AT
∆ A∆

)−1 −
(
AT A

)−1
]
·AT

∆ +
(
AT A

)−1 ·
(
AT

∆ −AT
)∥∥∥∥

≤
∥∥∥(AT

∆ A∆

)−1 −
(
AT A

)−1
∥∥∥ · ∥∥A∆

∥∥+ ∥∥∥(AT A
)−1
∥∥∥ · ‖∆ ‖

≤
ρ̃(A) ·

∥∥∥(AT A
)−1
∥∥∥∥∥∥(AT A

)−1
∥∥∥−1

− ρ̃(A)
·
(∥∥A ∥∥+ ρ

)
+
∥∥∥(AT A

)−1
∥∥∥ · ρ

= C(A, ρ).

In the second-to-last step, we used Theorem C.21.

The constant C(A, ρ), defined in Equation (C.6), has a fairly complicated form. In the
following proposition, we find an easier-to-study upper bound in a special case:

Proposition C.25. Assume that ρ ≤ ‖A ‖ and ρ ≤ −‖A ‖+
√

‖A ‖2 + 1/2 ·
∥∥(AT A)−1

∥∥−1.2
Then we have

C(A, ρ) ≤ ρ ·
∥∥(AT A)−1

∥∥ · [12 · ‖A ‖2 ·
∥∥(AT A)−1

∥∥+ 1
]
.

Proof. The second assumption gives, as in the proof of Lemma C.23, that ρ̃(A) ≤ 1/2 ·∥∥(AT A)−1
∥∥−1. Together with ρ ≤ ‖A ‖, the result follows.

Application to bounds in the error of the return Function

We now apply the results from the preceding section to our case. Define r(B) : imΓ → RΩ⃗

as the restriction of the belief operator B to imΓ. Assume that kerB∩ imΓ = {0}, which is,
according to Corollary C.7, a sufficient condition for identifiability. Note that this condition
means that r(B) is injective. Thus, Lemma C.19 ensures that r(B)T r(B) is invertible and
that

(
r(B)T r(B)

)−1
r(B)T is a left inverse of r(B).

Consequently, from the equation
r(B)(G) = B(G)

we obtain
G =

(
r(B)T r(B)

)−1
r(B)T (B(G)).

This is the concrete formula with which G can be identified from B(G). When perturbing
B, this leads to a corresponding perturbance in

(
r(B)T r(B)

)−1
r(B)T whose size influences

the maximal error in the inference of G. This, in turn, influences the size of the error in JG,
the policy evaluation function, where

JG(π) := E
s⃗∼Pπ(s⃗)

[
G(~s)

]
.

We obtain:
2Note the factor 1/2 compared to the definition of τ(A) in Equation (C.5).
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Theorem C.26. Let G be the true reward function, B the belief operator corresponding to
the human’s true belief model B(~s | ~o), and B(G) be the resulting observation-based return
function. Assume that kerB∩ imΓ = {0}, so that r(B)T r(B) is invertible. Let ∆ : RS⃗ → RΩ⃗

be a perturbation satisfying ‖∆ ‖ ≤ ρ, where ρ satisfies the following two properties:

ρ ≤
∥∥r(B)

∥∥, ρ ≤ −
∥∥r(B)

∥∥+√∥∥r(B)
∥∥2 + 1/2 ·

∥∥(r(B)T r(B)
)−1∥∥−1

.

Let B∆ := B+∆ be the misspecified belief operator. The first claim is that r(B∆)T r(B∆) is
invertible under these conditions.

Now, assume that the learning system infers the return function

G̃ :=
(
r(B∆)T r(B∆)

)−1
r(B∆)T (B(G)).3

Then there is a polynomial Q(X,Y ) of degree five such that

‖G̃−G‖ ≤ ‖G‖ ·Q
(∥∥(r(B)T r(B))−1

∥∥, ‖r(B)‖
)
· ρ.

Thus, for all policies π, we obtain∣∣∣JG̃(π)− JG(π)
∣∣∣ ≤ ‖G‖ ·Q

(∥∥(r(B)T r(B))−1
∥∥, ‖r(B)‖

)
· ρ.

In particular, for sufficiently small perturbances ρ, the error in the inferred policy evaluation
function JG̃ becomes arbitrarily small.

Proof. That r(B∆)T r(B∆) is invertible follows immediately from Proposition C.24 by using
that ‖r(∆)‖ ≤ ‖∆ ‖ and that r(B∆) = r(B)r(∆), together with the second bound on ρ
(which implies the assumed bound in Proposition C.24).

We have∣∣∣JG̃(π)− JG(π)
∣∣∣ = ∣∣∣ E

s⃗∼Pπ(s⃗)

[
(G̃−G)(~s)

]∣∣∣
≤ E

s⃗∼Pπ(s⃗)

[∣∣(G̃−G)(~s)
∣∣]

≤ max
s⃗∈S⃗

∣∣(G̃−G)(~s)
∣∣

≤ ‖G̃−G‖

=

∥∥∥∥[(r(B∆)T r(B∆)
)−1

r(B∆)T −
(
r(B)T r(B)

)−1
r(B)T

]
·B(G)

∥∥∥∥
≤
∥∥(r(B∆)T r(B∆)

)−1
r(B∆)T −

(
r(B)T r(B)

)−1
r(B)T

∥∥ · ∥∥B(G)
∥∥

≤ C(r(B), ρ) · ‖r(B)(G)‖

≤ C(r(B), ρ) · ‖r(B)‖ · ‖G‖.
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In the second to last step, we used Proposition C.24. By Proposition C.25, we can define
the polynomial Q(X,Y ) by

Q(X,Y ) = XY ·
[
12XY 2 + 1

]
,

which is of degree five.
The last claim follows from limρ→0 ρ = 0.

Remark C.27. In the case of a square matrix B that is injective, we can apply Theo-
rem C.21 directly to B−1 (which is now invertible) and obtain the following simplification of
Theorem C.26 for the case that ‖∆ ‖ ≤ ρ ≤ 1

2
· ‖B−1 ‖−1:∣∣JG̃(π)− JG(π)

∣∣ ≤ ρ · 2 · ‖B ‖ · ‖G‖ · ‖B−1 ‖2.

The polynomial is then only of degree 3.

Preliminary characterizations of the ambiguity
Recall the sequence of functions

RS RS⃗ RΩ⃗.Γ B

In this section, we clarify imΓ and kerB in special cases, as their intersection is the
crucial ambiguity in Theorem C.5.

The following proposition shows that for deterministic PO⃗ and a rational human, kerB
decomposes into hyperplanes defined by normal vectors of probabilities of sequences mapping
to the same observation sequence:

Proposition C.28. Assume the human reasons as in Appendix C.3. Assume PO⃗ is de-
terministic. Let B(~s) be the distribution of sequences under the human’s belief over the
policy, given by B(~s) =

∫
π′ B(π′)P π′

(~s) for some policy prior B(π′). For each ~o, let
Bo⃗ := [B(~s)]s⃗: O⃗(s⃗)=o⃗ ∈ R{s⃗∈S⃗ | O⃗(s⃗)=o⃗} be the vector of probabilities of sequences that are
observed as ~o.

Let G′ be a return function. For each ~o ∈ ~Ω, define the restriction G′
o⃗ ∈ R{s⃗∈S⃗|O⃗(s⃗)=o⃗}

by G′
o⃗(~s) := G′(~s) for all ~s ∈ {~s ∈ ~S | ~O(~s) = ~o}. Assume that B(~s | ~o) is the Bayesian

posterior. Then G′ ∈ kerB if and only if the property

Bo⃗ ·G′
o⃗ = 0

holds for all ~o ∈ ~Ω.

Proof. For a deterministic observation kernel PO⃗, by Bayes rule we have
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B(~s | ~o) =
PO⃗(~o | ~s) · B(~s)∑
s⃗ ′ PO⃗(~o | ~s ′) · B(~s ′)

=
δo⃗
(
~O(~s)

)
· B(~s)∑

s⃗ ′ δo⃗
(
~O(~s ′)

)
· B(~s ′)

=

{
0, ~O(~s) 6= ~o

B(s⃗)∑
s⃗ ′: O⃗(s⃗ ′)=o⃗

B(s⃗ ′)
, ~O(~s) = ~o.

Thus, for any return function G′ and any observation sequence ~o, we have[
B(G′)

]
(~o) = E

s⃗∼B(s⃗|o⃗)

[
G′(~s)

]
=
∑
s⃗

B(~s | ~o)G′(~s)

=
∑

s⃗: O⃗(s⃗)=o⃗

B(~s)∑
s⃗ ′: O⃗(s⃗ ′)=o⃗ B(~s ′)

G′(~s)

=

( ∑
s⃗ ′: O⃗(s⃗ ′)=o⃗

B(~s ′)

)−1

·
∑

s⃗: O⃗(s⃗)=o⃗

B(~s)G′(~s).

Thus, we have G′ ∈ kerB if and only if

Bo⃗ ·G′
o⃗ =

∑
s⃗: O⃗(s⃗)=o⃗

B(~s)G′(~s) = 0

for all ~o. That was to show.

Remark C.29. One can interpret the previous proposition as follows:
As long as ~O is injective, we have

∣∣{~s ∈ ~S | ~O(~s) = o}
∣∣ = 1 for all ~o, meaning that Bo⃗

and G′
o⃗ have only one entry. Thus, Bo⃗ ·G′

o⃗ = 0 implies G′
o⃗ = 0. If that holds for all ~o, then

G′ ∈ kerB implies G′ = 0, meaning B is injective.
However, as soon as there is an ~o with ko⃗ :=

∣∣{~s ∈ ~S | ~O(~s) = o}
∣∣ > 1, the equation

Bo⃗ · G′
o⃗ = 0 leads to ko⃗ − 1 free parameters in G′

o⃗. G′
o⃗ can then be chosen freely in the

hyperplane of vectors orthogonal to Bo⃗ without moving out of the kernel of B.
Another way of writing Proposition C.28 is to write kerB as a direct sum of these

hyperplanes perpendicular to Bo⃗:

kerB =
⊕

o⃗: |O⃗−1(o⃗)|≥2

B⊥
o⃗ .

Recall that a return function G is called time-separable if there exists a reward function
R such that Γ(R) = G.
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Before we discuss time-separability in more interesting examples, we want to talk about
one simple case where all return functions are time-separable. We leave a general character-
ization of imΓ to future work.

Proposition C.30. Let there be an ordering ~s(1), ~s(2), . . . of all sequences in ~S, and a
function φ : ~S → S from sequences to states such that φ(~s) ∈ ~s and φ(~s (k)) /∈ ~s (i) for all
i < k. Then every return function is time-separable.

Proof. Let G be a return function. Initialize R(s) = 0 for all s and inductively update it for
all i = 1, 2, . . . :

R
(
φ(~s (i))

)
:=

( ∑
t: s

(i)
t =ϕ(s⃗ (i))

γt

)−1

·

(
G(~s (i))−

∑
t: s

(i)
t ̸=ϕ(s⃗ (i))

γt ·R
(
s
(i)
t

))
,

where the inductive definition always uses R as it is defined by that point in time. Once
R
(
φ(~s (i))

)
is defined, but not yet any future values R

(
φ(~s (k))

)
, k > i, we have

[
Γ(R)

]
(~s (i)) =

T∑
t=0

γt ·R
(
s
(i)
t

)
=

( ∑
t: s

(i)
t =ϕ(s⃗ (i))

γt

)
·R
(
φ(~s (i))

)
+

∑
t: s

(i)
t ̸=ϕ(s⃗ (i))

γt ·R
(
s
(i)
t

)
= G(~s (i)).

Furthermore, the property φ(~s (k)) /∈ ~s (i) for all i < k ensures that changes to the reward
function for k > i do not affect the value of

[
Γ(R)

]
(~s (i)). This shows Γ(R) = G, and thus

G is time-separable.

Corollary C.31. In a multi-armed bandit, every return function is time-separable.

Proof. In a multi-armed bandit, states and sequences are equivalent, and so we can choose
φ(s) = s for every state/sequence s. The result follows from Proposition C.30.

Alternatively, simply directly notice that in a multi-armed bandit, Γ is the identity
mapping, and so for every return/reward function R, we have Γ(R) = R.
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Examples supplementing Section 4.5
In this whole section, the inverse temperature parameter in the human choice probabilities
is given by β = 1. We now consider four more mathematical examples of Corollary C.7
and Theorem C.12. In the first example, the ambiguity is so bad that the reward inference
can become worse than simply maximizing JΩ as in naive RLHF. In Example C.33, there is
simply “noise” in the observations and the human’s belief, the matrices B and O are injective,
and identifiability works, as in Corollary C.17. In the third example, the matrix B is not
injective and identifiability fails, which is a minimal example showing the limits of our main
theorems. In the fourth example, the matrix B is not injective, but kerB∩ imΓ = {0}, and
so identifiability works. This example is interesting in that the identifiability simply emerges
through different distributions of delay that are caused by the different unobserved events.

In this section, both the linear operators B : RS⃗ → RΩ⃗ and O : RΩ⃗ → RS⃗ are considered
as matrices

O =
(
PO⃗(~o | ~s)

)
s⃗,o⃗

∈ RS⃗×Ω⃗, B =
(
B(~s | ~o)

)
o⃗,s⃗

∈ RΩ⃗×S⃗ .

Notice that both have a swap in their indices.

Example C.32. Theorem 4.8 shows that the remaining ambiguity from the human’s choice
probabilities is given by kerB∩ imΓ, but it doesn’t explain how to proceed given this ambiguity.
Without further inductive biases, some reward functions within the ambiguity of the true
reward function can be even worse than simply maximizing JΩ.

E.g., consider a multi-armed bandit with three actions a, b, c, observation-kernel o =
O(a) = O(b) 6= O(c) = c and reward function R(a) = R(b) < R(c). If the human belief is
given by B(a | o) = p = 1− B(b | o), then R′ = α · (p− 1, p, 0) ∈ R{a,b,c} is in the ambiguity
for all α ∈ R, and so R̃ := R + R′ is compatible with the choice probabilities. However,
for α � 0, we have R̃(a) > R̃(b) and R̃(a) > R̃(c), and so optimizing against this reward
function leads to a suboptimal policy.

In contrast, maximizing JΩ leads to the correct policy since a, b, and c all obtain their
ground truth reward in this example. This generally raises the question of how to tie-break
reward functions in the ambiguity, or how to act conservatively given the uncertainty, in
order to consistently improve upon the setting in Section 4.4.

Example C.33. This example is a special case of Corollary C.17. Consider a multi-armed
bandit with two actions (which are automatically also states and sequences) a and b. In this
case, the reward function and return function is the same.

We assume there to be two possible observations o(a), o(b) and the observation kernel to be
non-deterministic, with probabilities

PO(o
(j) | i) =

{
2/3, if i = j,

1/3, else.

If we assume the human forms Bayesian posterior beliefs as in Appendix C.3 and to have a
policy prior B(π′) such that B(a) =

∫
π
π(a)B(π′)dπ = 1/2 and B(b) = 1/2, then it is easy
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to show that the human’s belief is the “reversed” observation kernel:

B(j | o(i)) = PO(o
(i) | j).

We obtain

O = B =

(
2/3 1/3
1/3 2/3

)
=

1

3
·
(
2 1
1 2

)
These matrices are injective since they are invertible:

O−1 = B−1 =

(
2 −1
−1 2

)
.

More generally, even if the human does not form fully rational posterior beliefs, it is easy to
imagine that the matrix B can end up being invertible. Thus, Corollary C.7 guarantees that
the reward function can be inferred up to an additive constant from the choice probabilities of
observations, and Theorem C.12 shows that this even works when the learning system does
not know what the human observed.

In the rest of this example, we explicitly walk the reader through the process of how the
reward function can be inferred, in the general case that the observations are not known. In
the process, we essentially recreate the proof of the theorems for this special case. For this
aim, we first want to compute the choice probabilities PR

(
i � j

)
that the learning system

has access to in the limit of infinite data. We assume that the reward function is given by
R(a) = −1 and R(b) = 2. We compute:

B(R) =
1

3
·
(
2 1
1 2

)
·
(
−1
2

)
=

(
0
1

)
.

In other words, we have Es∼B(s|o(a))[R(s)] = 0 and Es∼B(s|o(b))[R(s)] = 1. From this, we can
compute the observation-based choice probabilities P̃o(i)o(j) = σ

(
B(R)(o(i))−B(R)(o(j))

)
, see

Equation (4.2), and obtain:

P̃o(a)o(a) = P̃o(b)o(b) =
1

2
, P̃o(a)o(b) =

1

1 + e
, P̃o(b)o(a) =

e

1 + e
.

We can now determine the final choice probabilities Pij := PR
(
i � j

)
again by a matrix-

vector product, with the indices ordered lexicographically, see Equation (C.4). Here, O⊗O
is the Kronecker product of the matrix O with itself:

P = (O⊗O) · P̃ =
1

9
·


4 2 2 1
2 4 1 2
2 1 4 2
1 2 2 4

 ·


1/2

1/(1 + e)
e/(1 + e)

1/2

 =


1/2

1/3 · (2 + e)/(1 + e)
1/3 · (1 + 2e)/(1 + e)

1/2

 .
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For example, the second entry in P is Pab = PR
(
a � b

)
= 2+e

3·(1+e)
. This is the likelihood that,

for ground-truth actions a, b, the human will prefer a after only receiving observations o(a)

or o(b) according to O and following a Boltzman-rational policy based on the belief of the real
action, see Equation (C.4).

Over time, the learning system will be able to estimate these probabilities based on re-
peated human choices, assuming all state-pairs are sampled infinitely often. The question of
identifiability is whether the original reward function R can be inferred from that data, given
that the learning system knows O and B. We assume that the learning system doesn’t a
priori know R or any of the intermediate steps in the computation. First, P̃ can be inferred
by inverting O⊗O:

P̃ = (O⊗O)−1 · P =


4 −2 −2 1
−2 4 1 −2
−2 1 4 −2
1 −2 −2 4

 ·


1/2

1/3 · (2 + e)/(1 + e)
1/3 · (1 + 2e)/(1 + e)

1/2

 =


1/2

1/(1 + e)
e/(1 + e)

1/2

 .

The learning system wants to use this to infer B(R̃) (for the later-to-be inferred reward
function R̃ that may differ from the true reward function R) and uses the equation

P̃o(a)o(b) =
exp

(
B(R̃)(o(a))

)
exp

(
B(R̃)(o(a))

)
+ exp

(
B(R̃)(o(b))

) ,
which can be rearranged to

B(R̃)(o(a)) = log
P̃o(a)o(b)

1− P̃o(a)o(b)

+B(R̃)(o(b)) = log
1/(1 + e)

e/(1 + e)
+B(R̃)(o(b)) = B(R̃)(o(b))− 1.

This relation is all which can be inferred about B(R̃)(o(a)) and B(R̃)(o(b)); the precise value
cannot be determined and B(R̃)(o(b)) is a free parameter. One can check that for B(R̃)(o(b)) =
1 this coincides with the true value B(R). Finally, one can invert B to infer R̃ from this:

R̃ = B−1 ·B(R̃)

=

(
2 −1
−1 2

)
·
(
B(R̃)(o(b))− 1

B(R̃)(o(b))

)
=

(
B(R̃)(o(b))− 2

1 +B(R̃)(o(b))

)
=

(
−1
2

)
+

(
B(R̃)(o(b))− 1

B(R̃)(o(b))− 1

)
= R +

(
B(R̃)(o(b))− 1

B(R̃)(o(b))− 1

)
.

Thus, the inferred and true reward functions differ maximally by a constant, as predicted in
Theorem C.12.
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In the following example, we work out a case where the reward function is so ambiguous
that any policy is optimal to some reward function consistent with the human feedback:

Example C.34. Consider a multi-armed bandit with exactly three actions/states a, b, c. We
assume a deterministic observation kernel with o := O(a) = O(c) 6= O(b) = b. Assume
the human has some arbitrary beliefs B(a | o), B(c | o) = 1 − B(a | o), and can identify b:
B(b | b) = 1. Then if the human makes observation comparisons with a Boltzman-rational
policy, as in Theorem C.5, the resulting reward function is so ambiguous that some reward
functions consistent with the feedback place the highest value on action a, no matter the true
reward function R. Thus, even if the true reward function R regards a as the worst action,
a can result from the reward learning and subsequent policy optimization process.

Proof. The matrix B : R{a,b,c} → R{o,b} is given by

B =

(
B(a | o) 0 B(c | o)

0 1 0

)
.

Its kernel is given by reward functions R′ with R′(b) = 0 and R′(c) = −B(a|o)
B(c|o)R

′(a), with
R′(a) a free parameter. Theorem C.5 shows that, up to an additive constant, the reward
functions consistent with the feedback of observation comparisons are given by R̃ = R +R′

for any R′ ∈ kerB. Thus, whenever the free parameter R′(a) satisfies R′(a) > R(b) − R(a)
and R′(a) > B(c | o) ·

(
R(c)−R(a)

)
, we obtain R̃(a) > R̃(b) and R̃(a) > R̃(c), showing the

claim.

We now investigate another example where B is not injective, and yet, identifiability
works because B ◦Γ 6= {0}. We saw such cases already in Example C.41, but include this
additional example since it shows a conceptually interesting case: two different states lead to
the exact same observations, but can be disambiguated since they lead to different amounts
of delay until a more informative observation is made again.

Example C.35. In this example, we assume that the human knows the policy π that generates
the state sequences (corresponding to a policy prior B(π′) = δπ(π

′) concentrated on π),
which together with knowledge of the transition dynamics of the environment determines the
true state transition probabilities T π(s′ | s) =

∑
a∈A T (s′ | s, a) · π(a | s). We consider

an environment with three states s, s′, s′′ and the following transition dynamics T π, where
p 6= 1/2 is a probability:

s

s′ s′′

1/3 1/3

1/3

1−p

p

p

1−p
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We assume that P0(s) = 1. Furthermore, we assume deterministic observations and s =
O(s) 6= O(s′) = O(s′′) =: o.

Assume the time horizon T is 3, i.e., there are timesteps 0, 1, 2, 3. Assume that the
human forms the belief over the true state sequence by Bayesian posterior updates as in
Appendix C.3. In this case, kerB 6= {0} by Proposition C.14. However, we will now show
that ker(B ◦Γ) = {0}. If the human makes Boltzmann-rational comparisons of observation
sequences, then this implies the identifiability of the return function up to an additive constant
by Corollary C.7.4

Thus, let R′ ∈ ker(B ◦Γ), i.e.,
[
B
(
Γ(R′)

)]
(~o) = 0 for every observation sequence ~o. For

~o = ssss being the observation sequence that only consists of state s, this implies R′(s) = 0.
Consequently, for general observation sequences ~o, we have:

0 =
[
B
(
Γ(R′)

)]
(~o) = E

s⃗∼B(s⃗|o⃗)

[
3∑

t=0

δs′(st) · γt

]
·R′(s′) + E

s⃗∼B(s⃗|o⃗)

[
3∑

t=0

δs′′(st) · γt

]
·R′(s′′).

Now we specialize this equation to the two observation sequences ~o(1) = soss and ~o(2) = soos.
We start by considering ~o(1). This is consistent with the two state sequences ~s(1),(s

′) = ss′ss
and ~s(1),(s

′′) = ss′′ss. We have posterior probabilities
B
(
~s(1),(s

′) | ~o(1)
)
= 1− p, B

(
~s(1),(s

′′) | ~o(1)
)
= p,

and therefore

0 =
[
B
(
Γ(R′)

)]
(~o(1)) = (1− p) · γ ·R′(s′) + p · γ ·R′(s′′),

and so
R′(s′) =

p

p− 1
·R′(s′′). (C.7)

Similarly, ~o(2) is consistent with the sequences ~s(2),(s
′) = ss′s′s and ~s(2),(s

′′) = ss′′s′′s. They
have posterior probabilities

B
(
~s(2),(s

′) | ~o(2)
)
=

1

2
, B

(
~s(2),(s

′′) | ~o(2)
)
=

1

2
,

leading to
0 =

1

2
· (γ + γ2) ·R′(s′) +

1

2
· (γ + γ2) ·R′(s′′).

Together with Equation (C.7), we obtain

R′(s′′) = −R′(s′) =
p

1− p
·R′(s′′),

which implies R′(s′′) = 0 because p 6= 1
2
, and thus also R′(s′) = 0. Overall, we have showed

R′ = 0, and so B ◦Γ is injective. This means that reward functions are identifiable in this
example up to an additive constant, see Corollary C.7.

4We assume that the learning system knows what the human observes, which is valid since PO is deter-
ministic. Alternatively, one can argue with Proposition C.14 that O is automatically injective, meaning one
can apply Theorem C.12.
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C.4 Issues of naively applying RLHF under partial
observability

In this section, we study the naive application of RLHF under partial observability. Thus,
most of it takes a step back from the general theory of appropriately modeled partial observ-
ability in RLHF.

We first briefly explain what happens when the learning system incorrectly assumes that
the human observes the full environment state. We show that as a consequence, the system is
incentivized to infer what we call the observation return function GΩ, which evaluates a state
sequence based on the human’s belief of the state sequence given the human’s observations.
In the policy optimization process, the policy is then selected to maximize JΩ, an expectation
over GΩ. In an interlude, we then briefly analyze the unrealistic case that the human, when
evaluating a policy π, fully knows the complete specification of that policy and all of the
environment and engages in rational Bayesian reasoning; in this case, JΩ = J is the true
policy evaluation function.

Realistically, however, maximizing JΩ can lead to failure modes. Accordingly, we show
that a suboptimal policy that is optimal according to JΩ causes deceptive inflation, overjus-
tification, or both. (For examples, see Appendix C.2, where we expand on the analysis of
the main examples in the main text.) Finally, we study further concrete examples where
maximizing JΩ reveals deceptive and overjustifying behavior by the resulting policy.

Optimal policies under RLHF with deterministic partial
observations maximize JΩ

Assume that PO⃗ is deterministic and that the human makes Boltzmann-rational sequence
comparisons between observation sequences. The true choice probabilities are then given by
(See Equations (4.2) and (C.4)):

PR
(
~s � ~s ′) = σ

(
β ·
((

B ·G
)(

~O(~s)
)
−
(
B ·G

)(
~O(~s ′)

)))
(C.8)

Now, assume that the learning system does not model the situation correctly. In particular,
we assume:

• The system is not aware that the human only observes observation sequences ~O(~s)
instead of the full state sequences.

• The system does not model that the human’s return function is time-separable, i.e.,
comes from a reward function R over environment states.

The learning system then thinks that there is a return function G̃ ∈ RS⃗ such that the choice
probabilities are given by the following faulty formula:

PR
(
~s � ~s ′) := σ

(
β
(
G(~s)−G(~s ′)

))
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Now, assume that the learning system has access to the choice probabilities and wants to
infer G. Inverting the sigmoid function and then plugging in the true choice probabilities
from Equation (C.8), we obtain:

G̃(~s) =
1

β
log

PR(~s � ~s ′)

PR(~s ′ � ~s)
+ G̃(~s ′)

=
1

β

[
β ·
((

B ·G
)(

~O(~s)
)
−
(
B ·G

)(
~O(~s ′)

))]
+ G̃(~s ′)

=
(
B ·G

)(
~O(~s)

)
+ C(~s ′).5

Here, C(~s ′) is some quantity that does not depend on ~s. Now, fix ~s ′ as a reference sequence.
Then for varying ~s, C(~s ′) is simply an additive constant. Consequently, up to an additive
constant, this determines the return function that the learning system is incentivized to
infer. We call it the observation return function since it is the return function based on the
human’s observations:

GΩ(~s) :=
(
B ·G

)(
~O(~s)

)
.

This return function is not necessarily time-separable, but we assume that time-separability
is not modeled correctly by the learning system. Now, define the resulting policy evaluation
function JΩ by

JΩ(π) := E
s⃗∼Pπ(s⃗)

[
GΩ(~s)

]
.

This is the policy evaluation function that would be optimized if the learning system erro-
neously inferred the return function GΩ.

Interlude: when the human knows the policy and is a Bayesian
reasoner, then JΩ = J

In this section, we briefly consider what would happen if in JΩ, the human’s belief B would
make use of the true policy and be a rational Bayesian posterior as in Appendix C.3. We will
show that under these conditions, we have JΩ = J . Since these are unrealistic assumptions,
no other section depends on this result.

For the analysis, we drop the assumption that the observation sequence kernel PO⃗ is
deterministic, and assume that JΩ is given as follows:

JΩ(π) := E
s⃗∼Pπ(s⃗)

[
E

o⃗∼P
O⃗
(o⃗|s⃗)

[
E

s⃗ ′∼Bπ(s⃗ ′|o⃗)

[
G(~s ′)

]]]
. (C.9)

5Note that in the case of non-deterministic observation kernels and choice probabilities given as in Equa-
tion (C.4), this argument does not work since the logarithm cannot be swapped with the outer expectation
of the choice probabilities.
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In this formula, Bπ(~s | ~o) := B(~s | ~o, π) with B being the joint distribution from Ap-
pendix C.3. Formally, this is the posterior of the joint distribution B(~s, ~o | π) that is given
by the following hidden Markov model:

s0 s1 s2 s3 . . .

o0 o1 o2 o3 . . .

PO

T π

PO

T π

PO

T π

PO

T π

(C.10)

Here, T π(s′ | s) :=
∑

a∈A T (s′ | s, a) · π(a | s). s0 is sampled according to the known initial
distribution P0(s0). The human’s posterior Bπ(~s ′ | ~o) is then the true posterior in this HMM.
We obtain:

Proposition C.36. Let π be a policy that is known to the human. Then JΩ(π) = J(π).

Proof. By Equation (C.9), we have

JΩ(π) = E
s⃗∼Pπ(s⃗)

[
E

o⃗∼P
O⃗
(o⃗|s⃗)

[
E

s⃗ ′∼Bπ(s⃗ ′|o⃗)

[
G(~s ′)

]]]
(1)
=
∑
s⃗

P π(~s)
∑
o⃗

PO⃗(~o | ~s)
∑
s⃗ ′

Bπ(~s ′ | ~o)G(~s ′)

(2)
=
∑
s⃗ ′

[∑
o⃗

Bπ(~s ′ | ~o)

[∑
s⃗

PO⃗(~o | ~s)P
π(~s)

]]
G(~s ′)

(3)
=
∑
s⃗ ′

[∑
o⃗

Bπ(~s ′ | ~o)Bπ(~o)

]
G(~s ′)

(4)
=
∑
s⃗ ′

[∑
o⃗

P π(~s ′)PO⃗(~o | ~s
′)

]
G(~s ′)

(5)
=
∑
s⃗ ′

P π(~s ′)G(~s ′)

(6)
=
∑
s⃗

P π(~s)G(~s)

(7)
= J(π).

In step (1), we wrote the expectations out in terms of sums. In step (2), we reordered them.
In step (3), we observed that the inner sum over ~s evaluates to the marginal distribution
Bπ(~o) of the observation sequence ~o in the HMM in Equation (C.9). In step (4), we used
Bayes rule in the inner sum. This is possible since Bπ(~s ′ | ~o) is the true posterior when π is
known. In step (5), we pull P π(~s ′) out and notice that the remaining inner sum evaluates to
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1. Step (6) is a relabeling and step (7) the definition of the true policy evaluation function
J .

Proof of Theorem 4.6
We first prove the following lemma.

Lemma C.37. Let π and πref be two policies. If J(π) < J(πref) and JΩ(π) > JΩ(πref), then
relative to πref, π must exhibit deceptive inflation, overjustification, or both.

Proof. We start by establishing a quantitative relationship between the average overestima-
tion and underestimation errors E

+ and E
− as defined in Definition 4.3, the true policy

evaluation function J , and the observation evaluation function JΩ defined in Equation (4.4).
Define ∆ : ~S → R by ∆(~s) = GΩ(~s) − G(~s), where GΩ is as defined in Equation (4.3).
Consider the quantity

E+(~s)− E−(~s) = max
(
0,∆(~s)

)
−max

(
0,−∆(~s)

)
.

If ∆(~s) > 0, then the first term is ∆(~s) and the second one is 0. If ∆(~s) < 0, then the first
term is zero and the second one is ∆(~s). If ∆(~s) = 0, then both terms are zero. In all cases
the right-hand side is equal to ∆(~s). Unpacking the definition of ∆ again, we have that for
all ~s,

E+(~s)− E−(~s) = GΩ(~s)−G(~s). (C.11)

For any policy π, if we take the expectation of both sides of this equation over the on-policy
distribution admitted by π, P π, we get

E
+
(π)− E

−
(π) = JΩ(π)− J(π). (C.12)

We now prove the lemma. Let π and πref be two policies, and assume that J(π) < J(πref)
and JΩ(π) ≥ JΩ(πref). Equivalently, we have JΩ(π) − JΩ(πref) ≥ 0 and J(πref) − J(π) > 0,
which we combine to state(

JΩ(π)− JΩ(πref)
)
+
(
J(πref)− J(π)

)
> 0. (C.13)

Rearranging terms yields(
JΩ(π)− J(π)

)
−
(
JΩ(πref)− J(πref)

)
> 0.

These two differences inside parentheses are equal to the right-hand side of (C.12) for π and
πref, respectively. We substitute the left-hand side of (C.12) twice to obtain(

E
+
(π)− E

−
(π)
)
−
(
E

+
(πref)− E

−
(πref)

)
> 0.
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Rearranging terms again yields(
E

+
(π)− E

+
(πref)

)
+
(
E

−
(πref)− E

−
(π)
)
> 0. (C.14)

If E+
(π) − E

+
(πref) > 0 then we have E

+
(π) > E

+
(πref) and, by assumption, JΩ(π) >

JΩ(πref). By Definition 4.4, this means π exhibits deceptive inflation relative to πref.
If E−

(πref) − E
−
(π) > 0 then we have E

−
(π) < E

−
(πref) and, by assumption, J(π) <

J(πref). By Definition 4.5, this means π exhibits overjustification relative to πref.
At least one of the two differences in parentheses in (C.14) must be positive, otherwise

their sum would not be positive. Thus π must exhibit deceptive inflation relative to πref,
overjustification relative to πref, or both.

We can now combine earlier results to prove Theorem 4.6, repeated here for convenience:

Theorem C.38. Assume that PO is deterministic. Let π∗
Ω be an optimal policy according

to a naive application of RLHF under partial observability, and let π∗ be an optimal policy
according to the true objective J . If π∗

Ω is not J-optimal, then relative to π∗, π∗
Ω must exhibit

deceptive inflation, overjustification, or both.

Proof. Because PO is deterministic, π∗
Ω must be optimal with respect to JΩ by Proposi-

tion 4.2 (proved in Appendix C.4). Thus JΩ(π
∗
Ω) ≥ JΩ(π

∗). Since π∗ is J-optimal and π∗
Ω

is not, J(π∗) < J(π∗
Ω). By Lemma C.37, relative to π∗, π∗

Ω must exhibit deceptive inflation,
overjustification, or both.

Further examples supplementing Section 4.4
In this section, we present further mathematical examples supplementing those in Section 4.4.
We found many of them before finding the examples we discuss in the main text, and show
the same and additional conceptual features with somewhat less polish. We again assume
that PO⃗ is deterministic.

Example C.39. In the main text, we have assumed a model where the human obeys Eq. (4.2)
and showed that a naive application of RLHF can lead to suboptimal policies, and the specific
failure modes of deceptive inflation and overjustification. What if the human makes the
choices in a different way? Specifically, assume that all we know is that PR(~o � ~o ′)+PR(~o ′ �
~o) = 1. Can the human generally choose these choice probabilities in such a way that RLHF
is incentivized to infer a reward function whose optimal policies are also optimal for R? The
answer is no.

Take the following example:

s

a b c
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In this example, there is a fixed start state s and three actions a, b, c that also serve as
the final states. The time horizon is T = 1, so the only state sequences are sa, sb, sc.
Assume T (a | s, a) = 1, T (b | s, b) = 1, T (c | s, c) = 1 − ε, T (a | s, c) = ε, i.e., selecting
action c sometimes leads to state a. Also, assume a = O(a) 6= O(b) = O(c) =: o and
R(a) = R(b) < R(c).

Since b and c have the same observation o, the human choice probabilities do not make
a difference between them, and so RLHF is incentivized to infer a reward function R̃ with
R̃(b) = R̃(c) =: R̃(o). If R̃(o) > R̃(a), then the policy optimal under R̃ will produce action
b since this deterministically leads to observation o, whereas c does not. If R̃(o) < R̃(a),
then the policy optimal under R̃ will produce action a. In both cases, the resulting policy is
suboptimal compared to π∗, which deterministically chooses action c.

In the coming examples, it will also be useful to look at the misleadingness of state
sequences:

Definition C.40 (Misleadingness). Let ~s ∈ ~S be a state sequence. Then its misleadingness
is defined by

M(~s) := GΩ(~s)−G(~s) = E
s⃗ ′∼B(s⃗ ′|O⃗(s⃗))

[
G(~s ′)−G(s)

]
.

We call a state sequence positively misleading if M(~s) > 0, which means the sequence appears
better than it is, and negatively misleading if M(~s) < 0. The misleadingness vector is given
by M ∈ RS⃗ .

Note that the misleadingness is related to E+ and E−, as defined in Definition 4.3: If
M(~s) > 0 then M(~s) = E+(~s), and if M(~s) < 0 then M(~s) = −E−(~s).

Example C.41. In this example, we assume the human is a Bayesian reasoner as in Ap-
pendix C.3. Consider the MDP that is suggestively depicted as follows:

a b

c

The MDP has states S = {a, b, c} and actions A = {b, c}. The transition kernel is given
by T (c | a, c) = 1 and T (b | a, b) = 1, meaning that the action determines whether to
transition from a to b or c. All other transitions are deterministic and do not depend on the
action, as depicted. We assume an initial state distribution P0 over states with probabilities
pa = P0(a), pb = P0(b), pc = P0(c). The true reward function R ∈ R{a,b,c} and discount factor
γ ∈ [0, 1) are, for now, kept arbitrary. The time horizon is T = 2, meaning we have four
possible state sequences acc, abc, bcc, ccc.

Furthermore, assume that o := O(a) = O(b) 6= O(c) = c, i.e., c is observed and a and b
are ambiguous.
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Finally, assume that the human has a policy prior B(λ), where λ = πλ(c | a) is the like-
lihood that the policy chooses action c when in state a, which is a parameter that determines
the entire policy.

We claim the following:

1. If pb 6= γ · Eλ∼B(λ)[λ] · pa, then kerB∩ imΓ = {0}, so there is no return function
ambiguity under appropriately modeled partially observable RLHF, see Corollary C.7.

2. There are true reward functions R for which optimizing JΩ leads to a suboptimal policy
according to the true policy evaluation function J , a case of misalignment. Thus, a
naive application of RLHF under partial observability fails, see Section 4.4.

3. The failure modes are related to hiding negative information (deception) and purpose-
fully revealing information while incuring a loss (overjustifying behavior).

Proof. Write p := B(bcc | occ), the human’s posterior probability of state sequence bcc for
observation sequence occ. We have 1− p = B(acc | occ).

Consider the linear operators Γ : R{a,b,c} → R{abc,bcc,ccc,acc} and B : R{abc,bcc,ccc,acc} →
R{ooc,occ,ccc} defined in the main text. When ordering the states, state sequences, and obser-
vation sequences as we just wrote down, we obtain

Γ =


1 γ γ2

0 1 γ + γ2

0 0 1 + γ + γ2

1 0 γ + γ2

 , B =

1 0 0 0
0 p 0 1− p
0 0 1 0

 , B ◦Γ =

 1 γ γ2

1− p p γ + γ2

0 0 1 + γ + γ2

 .

By Corollary C.7, if B ◦Γ is injective, then there is no reward function ambiguity. Clearly,
this is the case if and only if p 6= γ · (1− p). From Bayes rule, we have

p =
B(bcc)

B(acc) + B(bcc)
, 1− p =

B(acc)

B(acc) + B(bcc)
.

So the condition for injectivity holds if and only if

B(bcc) 6= γ · B(acc).

Now, notice
B(bcc) =

∫
λ

B(λ) · B(bcc | λ)dλ =

∫
λ

B(λ) · pbdλ = pb

and
B(acc) =

∫
λ

B(λ)B(acc | λ)dλ =

∫
λ

B(λ) · pa · λdλ = pa · E
λ∼B(λ)

[
λ
]
.

This shows the first result.
For the second statement, we explicitly compute JΩ up to an affine transformation,

which does not change the policy ordering. Let R be the true reward function, G = Γ(R)
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the corresponding return function, and B(G) the resulting return function at the level of
observations. For simplicity, assume R(c) = 0, which can always be achieved by adding a
constant. We have:

JΩ(λ) = E
s⃗∼Pλ(s⃗)

[
B(G)

(
~O(~s)

)]
= P λ(abc) ·B(G)(ooc) + P λ(bcc) ·B(G)(occ)

+ P λ(ccc) ·B(G)(ccc) + P λ(acc) ·B(G)(occ)

= pa · (1− λ) ·G(abc) + pb ·B(G)(occ)

+ pc ·G(ccc) + pa · λ ·B(G)(occ)

∝ λ ·
[
B(G)(occ)−G(abc)

]
.

We have

G(abc) = R(a)+γR(b), B(G)(occ) = (1−p) ·G(acc)+p ·G(bcc) = (1−p) ·R(a)+p ·R(b).

Thus, the condition B(G)(occ) > G(abc) is equivalent to

R(a) <
p− γ

p
·R(b).

Thus, we have

argmax
λ∈[0,1]

JΩ(λ) =

{
1, if R(a) < p−γ

p
·R(b),

0, else.

Now consider the case R(b) > 0. In this case, λ = 0 gives rise to the optimal policy according
to G since going to b gives extra reward that one misses when going to c directly. However,
when R(a) � 0, then JΩ selects for λ = 1. Intuitively, the policy tries to “hide that the
episode started in a” by going directly to c, which leads to ambiguity between acc and bcc.
This is a case of deceptive inflation as in Theorem 4.6.

Now, consider the case R(b) < 0. In this case, λ = 1 gives rise to the optimal policy
according to G. However, when R(a) � 0, then JΩ selects for λ = 0. Intuitively, the policy
tries to “reveal that the episode started with a” by going to b, which is positive information
to the human, but negative from the perspective of optimizing G. As in Theorem 4.6, we
see that this is a case of overjustification.

Example C.42. In this example, we consider an MDP that’s similar to a multi-armed
bandit with four states/actions a, b, c, d and observation kernel O(a) = O(b) 6= O(c) = O(d).
Formally, we can imagine that it is given by the MDP

s

a b c d
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with R(s) = 0 and a time-horizon of T = 1. In this example, we reveal that misleadingness
and non-optimality (according to the true reward R, or J) are in principle orthogonal con-
cepts. We consider the following four example cases. In each one, we vary some environment
parameters and then determine a∗Ω, the action that results from optimizing JΩ (corresponding
to a naive application of RLHF under partial observability, see Section 4.4), its misleading-
ness M(a∗Ω) (see Definition C.40), and the action a∗ that would result from optimizing J .
If a∗Ω = a∗, then JΩ selects for the optimal action. For simplicity, we can imagine that the
human has a uniform prior over what action results eventually (out of the action taken and
potentially a deviation defined by ε, see below) is taken before making an observation, i.e.
B(a) = B(b) = B(c) = B(d) = 1

4
.

(a) Assume R(a) > R(c) > R(d) � R(b). Also assume that action d leads with probability
ε > 0 to state b, whereas all other actions lead deterministically to the specified state.
Then a∗Ω = c, M(c) < 0 and a∗ = a.

(b) Assume R(d) > R(a) > R(c) � R(b). Again, assume there is a small probability ε > 0
that action d leads to state b. Then a∗Ω = c, M(c) > 0, and a∗ = d or a∗ = a, depending
on the size of ε.

(c) Assume R(a) > R(b) > R(c) > R(d). Additionally, assume that there is a large
probability ε > 0 that action a leads to state d, whereas all other actions lead to what’s
specified. If ε is large enough, then a∗ = b. Additionally, we have a∗Ω = b and M(b) > 0.

(d) Assume R(a) > R(b) > R(c) > R(d). Also, assume some probability ε > 0 that action
b leads to state d, whereas all other actions lead deterministically to what’s specified.
Then a∗Ω = a, M(a) < 0, and a∗ = a.

Overall, we notice:

• Example (a) shows a high regret and negative misleadingness of a∗Ω = c. The action is
better then it seems, but action a would be better still but cannot be selected because it
can be confused with the very bad action b.

• Example (b) shows a high regret and high misleadingness of a∗Ω = c. The action is
worse than it seems and also not optimal.

• Example (c) shows zero regret and high misleadingness of a∗Ω = b. The action is worse
than it seems because it can be confused with a, but it is still the optimal action because
a can turn into d.

• Example (d) shows zero regret negative misleadingness of a∗Ω = a. The action is chosen
even though it seems worse than it is, and is also optimal.

Thus, we showed all combinations of regret and misleadingness of the action optimized for
under JΩ.
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We can also notice the following: Examples (a) and (b) only differ in the placement
of R(d). In particular, the reason that a∗Ω = c is structurally the same in both, but the
misleadingness changes. This indicates that misleadingness is not on its own contributing to
what JΩ optimizes for.

The following is the smallest example we found with the following properties:

• There is a unique start state and terminal state.

• A naive application of RLHF fails in a way that shows deception and overjustification.

• Modeling partial observability resolves the problems.

Example C.43. Consider the following graph:

A

S C T

B

This depicts an MDP with start state S, terminal state T and possible state sequences
STTT, SATT, SACT, SCTT, SBCT, SBTT and no discount, i.e. γ = 1. Assume that
S,B,C are observed, i.e. O(S) = S, O(B) = B, O(C) = C, and that A and T are
ambiguous: O(A) = O(T ) = X. Then there are five observation sequences SXXX, SXCX,
SCXX, SBCX, SBXX. Assume that the human can identify all observation sequences
except SXXX, with belief b = B(STTT | SXXX) and 1− b = B(SATT | SXXX).

Then the return function is identifiable under these conditions when the human’s belief
is correctly modeled. However, for some choices of the true reward function R and transi-
tion dynamics of this MDP, we can obtain deceptive or overjustified behavior for a naive
application of RLHF.

Proof. We apply Corollary C.7. We order states, state sequences, and observation sequences
as follows:

S = S,A,B,C, T,

~S = STTT, SATT, SACT, SCTT, SBCT, SBTT,

~Ω = SXXX,SXCX,SCXX,SBCX,SBXX.
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As can easily be verified, with this ordering the matrices B ∈ RΩ⃗×S⃗ and Γ ∈ RS⃗×S are given
by:

B =


b 1− b 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , Γ =


1 0 0 0 3
1 1 0 0 2
1 1 0 1 1
1 0 0 1 2
1 0 1 1 1
1 0 1 0 2

 .

To show identifiability, we need to show that kerB∩ imΓ = {0}. Clearly, the kernel of B
is given by all return functions in RS⃗ that are multiples of G′ = (b− 1, b, 0, 0, 0, 0). Assume
G′ ∈ imΓ, meaning there is a reward function R′ ∈ RS⃗ with Γ ·R′ = G′. We need to deduce
from this a contradiction. The assumption means we obtain the following equations:

(i) R′(S) + 3R′(T ) = b− 1,

(ii) R′(S) + R′(A) + 2R′(T ) = b,

(iii) R′(S) + R′(A) + R′(C) + R′(T ) = 0,

(iv) R′(S) + R′(C) + 2R′(T ) = 0,

(v) R′(S) + R′(B) + R′(C) + R′(T ) = 0

(vi) R′(S) + R′(B) + 2R′(T ) = 0

(iii) and (v) together imply R′(A) = R′(B); (iv) and (vi) together imply R′(B) = R′(C); (v)
and (vi) together imply R′(C) = R′(T ); so together, we have R′(A) = R′(T ). Thus, replacing
R′(A) in (ii) by R′(T ) and comparing (i) and (ii), we obtain b − 1 = b, a contradiction.
Overall, this shows kerB∩ imΓ = {0}, and thus identifiability of the return function by
Corollary C.7.

Now we investigate the case of unmodeled partial observability.
For demonstrating overjustification, assume deterministic transition dynamics in which

every arrow in the diagram can be chosen by the policy. Also, assume R(A) � 0, R(T ) > 0,
R(S) = 0, R(B) = 0, and R(C) = 0. Then the optimal policy chooses the state se-
quence STTT . However, this trajectory has low observation value since GΩ(STTT ) =
(B ·G)(SXXX) = bG(STTT ) + (1 − b)G(SATT ), which is low since R(A) � 0. JΩ then
selects for the suboptimal policies choosing SBTT or SCTT , which is overjustified behavior
that makes sure that the human does not think state A was accessed.

For demonstrating deception, assume that R(A) � 0, R(T ) < 0, R(S) = R(B) =
R(C) = 0 and that the transition dynamics are such that when the policy attempts to tran-
sition from S to A, it will sometimes transition to B, with all other transitions deterministic.
In this case, the optimal behavior attempts to enter state A since this has very high value.
JΩ, however, will select for the policy that chooses STTT . This is deceptive behavior.
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