
Control of a 7-DOF MRI Compatible Robot Arm

Naichen Zhao

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-100
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-100.html

May 16, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I am extremely grateful to Professor Ronald Fearing for his mentorship while
I was working as a part of the Biomimetic Millisystems Lab. None of this
work would have been possible without his guidance. I also appreciate the
work of our collaborators on the overarching MRI Robot project, especially
professor Michael Lustig who has provided advice on MRI compatibility and
also has agreed to be the second reader of this report.

I would like to thank Dr Binghan He for his work leading the robot arm
development and mechanical design. I would also like to thank Alfredo De
Goyeneche for his assistance with all of the MRI testing. I am also grateful
for all my peers in the Biomimetic Millisystems Lab, notably Charles Paxson,
Martin Zeng, and David Guo who also worked on the robot arm.

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
specific permission.

Acknowledgments

I am extremely grateful to Professor Ronald Fearing for his mentorship while I was working
as a part of the Biomimetic Millisystems Lab. None of this work would have been possible
without his guidance. I also appreciate the work of our collaborators on the overarching
MRI Robot project, especially professor Michael Lustig who has provided advice on MRI
compatibility and also has agreed to be the second reader of this report.

I would like to thank Dr Binghan He for his work leading the robot arm development and
mechanical design. I would also like to thank Alfredo De Goyeneche for his assistance with
all of the MRI testing. I am also grateful for all my peers in the Biomimetic Millisystems
Lab, notably Charles Paxson, Martin Zeng, and David Guo who also worked on various parts
of the robot arm.

2

Control of a 7-DOF MRI Compatible Robot
Arm

by Naichen Zhao

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University
of California at Berkeley, in partial satisfaction of the requirements for the degree of Master
of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee

Professor Ronald S. Fearing
Research Advisor

(Date)

ω ω ω ω ω ω ω

Professor Michael Lustig
Second Reader

(Date)

May 15, 2025

Michael Lustig
May 16, 2025

1

Abstract

Control of a 7-DOF MRI Compatible Robot Arm

by

Naichen Zhao

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Ronald S. Fearing, Chair

Professor Michael Lustig, Co-chair

This work describes the structure and testing of the software, firmware, and electronics used
to control a custom built MRI compatible 7DOF robot arm. The arm itself is designed to
maneuver a Transcranial Magnetic Stimulation (TMS) coil around a patient’s head within
a MRI bore, allowing for precise positioning of the TMS coil.

The Arm is constructed using MRI compatible materials, driven by 7 Ultrasonic motors,
each with its own Series Elastic Actuator (SEA), allowing for torque sensing on each joint.
A microcontroller oversees the arm’s low-level functions, running firmware written using the
Lingua Franca (LF) framework, while the higher level planning is performed on a Linux com-
puter running ROS2. The system is capable of tacking the force experienced on each joint
while performing gravity compensation to filter out any gravitational load. The controller is
also shown using position-based PID control to maneuver the arm to various positions while
operating with a variety of end-effector weights.

This project’s documents (including PCB schematics/layouts, microcontroller firmware, and
ROS packages) can be found at: [https://github.com/biomimetics/MRIRobotProject].

https://github.com/biomimetics/MRIRobotProject

2

Contents

Contents 2

List of Figures 3

List of Tables 4

1 Introduction 5
1.1 MRI Robot Project . 5
1.2 Related Work . 5
1.3 System Overview . 6

2 Software 9
2.1 Mechanical Integration . 9
2.2 ROS2 . 10
2.3 Arm Controller . 11
2.4 STM32 Bridge . 13

3 Firmware 17
3.1 Framework . 17
3.2 Firmware Architecture . 18

4 Electronics 24
4.1 Overview . 24
4.2 Circuit Boards . 25
4.3 FPGA . 26
4.4 Cables and MRI Compatibility . 28

5 Integration 31
5.1 Results . 31

6 Conclusion 42

Bibliography 43

3

List of Figures

1.1 Diagram of the Series Elastic Actuator taken from [15] 7
1.2 MRI robot room setup . 7
1.3 Robot system block diagram . 8
1.4 Robot arm in lab . 8

2.1 Solidworks model (left) and corresponding URDF (right) 10
2.2 ROS2 software block diagram . 11
2.3 rviz scene with robot arm inside MRI bore model 12
2.4 Gravity Compensator Block Diagram . 14
2.5 Robot arm calibration plots . 15
2.6 Robot state visualizer . 16

3.1 Lingua Franca top level block diagram . 18
3.2 Motor Controller Reactor Block Diagram . 20
3.3 Diff Joint Controller Reactor Block Diagram . 21
3.4 SEA Controller Reactor Block Diagram . 22
3.5 SEA Controller Finite State Machine . 22

4.1 Electronics block diagram . 24
4.2 Robot control PCBs . 25
4.3 Main PCBs . 26
4.4 Signal Reroute PCBs . 26
4.5 FPGA top-level RTL block diagram . 27
4.6 FPGA QDEC module block diagram . 28
4.7 Cable routing diagram . 29
4.8 Encoder filter block diagram . 29

5.1 Encoder angle over time from using the provided cable (red) and our custom cable
(blue) . 31

5.2 Encoder angle over time while inside a scanning MRI machine 32
5.3 Encoder angle over time while the MRI is scanning(blue) and idle(red) 32
5.4 Encoder velocity over time while the MRI is scanning(blue) and idle(red) 32
5.5 Encoder angle while being pulled through a scanning MRI bore 33
5.6 Encoder angle over time while the MRI is scanning(blue) and idle(red) (Only the

section of movement where the errors appear) 33
5.7 Encoder velocity over time while the MRI is scanning(blue) and idle(red) Only

the section of movement where the errors appear) 34

4

5.8 Encoder angle over time while the MRI is scanning(blue) and idle(red) 34
5.9 data from Zero-G manual movement. Joint angle (left) with measured angle

(red), target angle (blue) and SEA data (right) with measured displacement
(red), expected displacement(green), error bounds (grey). 35

5.10 Data from arm hitting wall. Joint angle (top) with measured angle (red), target
angle (blue) and SEA data (bottom) with measured displacement (red), expected
displacement (green), error bounds (grey). 36

5.11 Data from arm hitting table. Joint angle (top) with measured angle (red), target
angle (blue) and SEA data (bottom) with measured displacement (red), expected
displacement (green), error bounds (grey). 37

5.12 Data from position control with 0.9kg end-effector. Joint angle (left) with mea-
sured angle (red), target angle (blue) and SEA data (right) with measured dis-
placement (red), expected displacement (green), error bounds (grey). 38

5.13 Workspace data from position control with 0.9kg end-effector. Measured joint
angle (red), target angle (blue). 39

5.14 Workspace error from position control with 0.9kg end-effector. 39
5.15 Data from position control with 1.3kg end-effector. Joint angle (left) with mea-

sured angle (red), target angle (blue) and SEA data (right) with measured dis-
placement (red), expected displacement(green), error bounds (grey). 40

5.16 Workspace data from position control with 1.3kg end-effector. Measured joint
angle (red), target angle (blue). 41

5.17 Workspace error from position control with 1.3kg end-effector. 41

List of Tables

2.1 Robot arm joints . 10

4.1 Ultrasonic motor wire signals . 28

5.1 Workspace position errors with 0.9kg end-effector. 39
5.2 Workspace position errors with 1.3kg end-effector. 41

5

Chapter 1

Introduction

1.1 MRI Robot Project

Transcranial Magnetic Stimulation (TMS) is a medical technique which involves using mag-
netic fields to stimulate neurons in a patient’s brain, allowing for the treatment of various
disorders. However, the usage of such methods is still an active area of research, especially
in terms of properly measuring the brain’s responses to TMS pulses. This project is part
of an over-arching effort to develop a robot arm which would help perform TMS operations
within a MRI machine, allowing for greater insight into its impacts on the human brain [1].

The mechanical design for the arm was previously completed by Dr. Bingham He while work-
ing under Professor Ronald Fearing in Berkeley’s Biomimetic Millisystems Lab. This report
will build on his work, developing the robot’s planning software, firmware, and electronics.
It will also detail the initial integration and testing of the robot arm.

1.2 Related Work

Robot-assisted TMS operations

Robot-assisted positioning has been recognized as a useful tool in the area of TMS research [2]
[3] [4] generally leading to better positioning accuracy. However, these tests are performed
outside of an MRI machine, with the patient first getting an MRI scan, and then the re-
searchers later using that data to perform TMS operations. This means we cannot use the
MRI to directly measure the brain’s immediate response to the TMS pulses, making it more
difficult to understand its full impact. The best option would be to place the robot within
the MRI bore, taking advantage of better positioning while gaining greater insight into brain
activity.

CHAPTER 1. INTRODUCTION 6

MRI Robots

Designing robots which can function within a MRI bore is quite challenging, as there are
strict limitations on what sensing, actuation, and materials are available [5]. Notably,
standard magnetic driven DC motors cannot be used, with most robots powered by either
pneumatics/hydraulics, piezoelectric motors, or more non-conventional methods of move-
ment [6] [7] [8] [9]. These robots are usually designed to perform surgical tasks within a
MRI bore [10] [11] [12] with design optimizations focusing on being lightweight and precise.
However, positioning a TMS coil requires a significantly more heavy duty arm. The TMS
coil is expected to weight over 1kg, meaning the robot must be robust enough to accurately
manipulate such a weight within the bore and around a patient’s head.

Sensing withing a MRI machine is also extremely important, especially when operating
in close proximity to a patient. Force-based control is a common method of ensuring
patient safety, with there being several papers that describe MRI-compatible force sen-
sors [13]. Specifically, series elastic actuators have been used to enable force-feedback on
non-backdrivable motors [14], allowing for better compliance to be built into the system,
increasing the level of safety.

1.3 System Overview

The primary challenge of this project is to ensure the robot is fully MRI compatible, both
in terms of being able to operate within a MRI bore and minimizing its impact on scanner
noise. Thus, the robot arm itself is primarily built using plastic, with small amounts of brass
and aluminum. Although non-ferromagnetic metals are allowed inside a MRI machine, they
can cause artifacts in the scanning process, meaning their usage should ideally be minimized.

For joint actuation, we used ultrasonic motors developed by Tekceleo. These are one of the
few commercially available MRI compatible motors, as conventional DC, BLDC, and stepper
motors are built using magnets. However, ultrasonic motors are non-backdrivable, meaning
compliance must be introduced elsewhere to ensure safety when operating in close proximity
to a patient. Each joint is fitted with a Series Elastic Actuator (SEA) [15] which allow us
to measure the torque experienced at each joint. These sensors consist of two encoders on
either side of an elastic element (Fig. 1.1), using the relative displacement of the encoders
to solve for the torque. this allows us to track the measured torque at each angle, letting us
know if the robot has collided with a wall or object.

All electronics are yo be placed outside the MRI room in an adjacent control room (Fig. 1.2).
The PCBs and electronics contain a number of magnetic materials - like inductors used for
the ultrasonic motor drivers - meaning they must be kept far away from the MRI. All the
motor control and sensor signals must be routed through 15+ meter cables from the control
room all the way to the robot arm. All wires must be properly shielded and any sensor
readings filtered to minimize any induced noise generated by MRI scans.

CHAPTER 1. INTRODUCTION 7

Figure 1.1: Diagram of the Series Elastic Actuator taken from [15]

Figure 1.2: MRI robot room setup

The robot’s control stack consists of two components: A Linux-based computer used for
high-level planning, and a STM32 F446RE microcontroller for low-level operations. The
main computer handles planning and robot dynamics, getting the target position from the
user and generating the desired path and necessary joint angles. Meanwhile, the low-level
controller takes those position commands and moves the robot to the desired location, mon-
itoring the arm’s state to ensure safety. Other sensing interfaces are also used, including
MRI markers which allow us to get absolute positioning of the end-effector within the MRI
bore [16].

CHAPTER 1. INTRODUCTION 8

Figure 1.3: Robot system block diagram

Figure 1.4: Robot arm in lab

9

Chapter 2

Software

2.1 Mechanical Integration

Since this project involves using a custom robot arm, the first step was to integrate the
robot’s physical properties into our dynamics software. This involves converting the robot
arm’s CAD representation into a file format format which is understood by the software stack.

Universal Robot Description Format

A Universal Robot Description Format (URDF) file is an .xml file specifying a robot’s prop-
erties, including: joints, sensors, movement range, and mass. It is used as a baseline for
inverse kinematics solving, collision detection, and gravity compensation. The URDF file
also points to meshes of the robot’s joints which can be used for state visualization.

URDF Exporting

To generate a URDF, we use the Solidworks URDF exporter toolchain. This involves
selecting the robot’s joints and defining their relative positions and movement constraints.
The robot has 7 total joints as seen in Table 2.1. The mass properties and moments of
inertia are also automatically generated through this process, though the joint masses were
also verified against physical measurements to ensure accuracy.

CHAPTER 2. SOFTWARE 10

Joint type

Shoulder Base Revolute
Shoulder Joint Revolute
Arm Upper Revolute

Elbow Revolute
Arm Lower Revolute

Wrist Revolute
TMS Coil Revolute

Table 2.1: Robot arm joints

Figure 2.1: Solidworks model (left) and corresponding URDF (right)

2.2 ROS2

The software can be found here: [https://github.com/biomimetics/MRIRobot ROS.git].

We decided to use ROS2 framework to construct the robot’s high-level planner. ROS2 (Robot
Operating System 2) [17] is an open source framework for deploying software onto robotics
platforms. the ROS2 instance runs on our high-level control computer, using a using a USB-
UART serial interface to communicate with a STM32 microcontroller. Specifically, the robot
arm will be using ROS2 Jazzy paired with the latest version of Ubuntu Linux - Ubuntu 24.04.

The robot’s software architecture can be broken up into two components, as seen in Fig. 2.2.

1. The Arm Controller which receives the target end-effector location and performs the
necessary path planning.

https://github.com/biomimetics/MRIRobot_ROS.git

CHAPTER 2. SOFTWARE 11

2. The STM32 Bridge which communicates with the STM32, visualizes the current
state, and performs the gravity compensation.

Figure 2.2: ROS2 software block diagram

2.3 Arm Controller

The Arm Controller block acts as the main core of the high-level planner. It takes in a
desired end-effector pose and makes the relevant calls to Moveit2’s inverse kinematics and
path planner libraries to generate a desired trajectory for the arm.

Moveit2

Moveit2 is an open source ROS2 compatible library which incorporates control, kinematics,
navigation, and planning. It is compatible with multiple standard robot arm platforms and
also allows the user to import their own robot description (Using a URDF file) through their
import wizard.

Moveit2 can be called through the MoveItPy python library. The user provides the current
and target poses in workspace coordinates, and MoveIt will generate a planned trajectory
to move to the desired location. Internally, Moveit2 performs collision detection, ensuring
the robot does not hit either itself or the surrounding environment. It will also create a

CHAPTER 2. SOFTWARE 12

visualization of the intended path through rviz which the user can visually inspect for ab-
normalities.

rviz

Rviz is ROS2’s built in 3D visualization interface. It is has support for multiple data types,
being able to render basic geometries, transform frames, point clouds, and custom STL mod-
els. rviz is also able to read the robot’s URDF, directly importing the relevant meshes to
display the robot’s state, alongside any relevant environmental objects.

Planner Core

The main high-level controller is found within the planner Core Node. To initiate a move-
ment, a desired position is published to the target pose ROS2 topic, either from the Input
Node (for internal testing purposes) or from an external source (This is intended to be the
MRI control computer). The Planner Core Node will then send a request to Moveit2 with
the robot’s current position, as well as the desired end-effector pose. The returned path is
compared against predefined movement criteria, ensuring the path stays within the robot’s
joint limits. If it fails, a new request is generated, with this process repeating until a satisfac-
tory trajectory is found. The plan is then executed, with joint positions being sent published
to the /joint states topic.

The planner core also adds relevant scene objects. Since the robot will be operating inside
a MRI bore, it is important to define the MRI’s walls so that the Moveit2 can plan around
it. We also insert an estimate of where the patient’s head will be so that the robot arm also
avoid that area.

Figure 2.3: rviz scene with robot arm inside MRI bore model

CHAPTER 2. SOFTWARE 13

2.4 STM32 Bridge

Serial Interface

To communicate between the STM32 and ROS2, we utilize python’s pySerial library, which
sends messages over the Linux computer’s USB ports. This connects to a USB to UART
bridge on the STM32 PCB, running at 921600 baud.

On startup, the Interface Node will attempt to connect to the USB device, currently hard-
coded as /dev/ttyUSB0. If a device is not detected, it will enter LookBack mode where
we directly connect the robot’s current and target positions. This allows us to perform pure
software debugging - i.e. running the ROS2 components without the need to connect to a
physical STM32. If a device is detected, we will enter normal operation mode and commu-
nicate with the STM32.

To allow for better concurrency, we generate two child threads to monitor the USB-Serial
interface’s input and output respectively. The first thread is in charge of regularly transmit-
ting the current target positions to the STM32, while the second thread monitors incoming
data, updating the robot’s current state. This allows for both of these operations to operate
in parallel, allowing for non-blocking operation.

Data Transmit

The Interface Node transmits two types of data packages to the STM32: [p] for target
positions and [o] for SEA offsets. Target position data packets consist of 7 floating point
values containing the robot’s desired joint angles derived from the /joint states ROS2 topic.
Before transmitting the data, we must also clamp the target angles, ensuring they do not
exceed the robot’s joint limits. SEA offset packets consist of 7 floating point values which
describe the estimated SEA angle given the current orientation. This data is calculated by
the Gravity Compensation Node and received through the /arm status ROS2 topic.

When transmitting data to the STM32, the values must first be compressed. Since we have
a limited work area, we compress the data per joint into two bytes. This means, along with
the indicator character, each packet consists of 15 bytes of data. With the communication
speed set to 921000 baud, each message takes approximately 130µs to transmit.

Data Receive

When receiving data from the STM32, all the relevant state data comes in one packet. The
information itself is split into multiple parts: [indicator, joint angle, sea angle, sea off-
set]. The indicator is a single character indicator indicating we are sending the joint status.
The joint angle consists of 7 floating point values, denoting the current robot’s current orien-
tation in radians. The sea angle denotes the current SEA angles (in radians), which allows
us to calculate the torque experienced by each joint. The sea offset denotes the current
expected SEA offset of each joint. This is primarily used for debugging purposes, allowing

CHAPTER 2. SOFTWARE 14

us to verify that the STM32 is using the same values that we have sent it.

The information is received in the form of a comma separated string with all the relevant
data values, rounded to three decimal places. This allows for ease of use on the python side
in translating and storing the data. Each packet consists of 60 bytes of data. With the
communication speed set to 921600 baud, each transmission takes approximately 521µs.

Gravity Compensator

The Gravity compensator is used to calculate the estimated torque due to gravity on each
joint depending on the robot’s current configuration. This allows us to filter out gravitational
forces and focus on unexpected disturbances.

Figure 2.4: Gravity Compensator Block Diagram

Gravity compensation is calculated using the PyKDL library. We can use the library to
convert the robot arm’s URDF file into a kinematic tree, which contains each joint’s position,
mass, and inertia. Then, we set the gravitational vector as [0, 0,−9.81] and apply it to each
of the robot’s links, given its current orientation. The Gravity Compensation Node receives
updated state information from the STM32 Interface Node through the arm meas ROS2
topic, meaning the estimated force is continually being updated based on the robots current
status. This estimated joint torque is then translated to SEA encoder offset values, which
are then published to the arm status ROS2 topic.

The mapping from joint torques to SEA displacement values was done experimentally through
manually applying a set load onto each joint and recording the SEA encoder angle. Separate
tests were done for each differential gear joint (Wrist, Shoulder, and Elbow) since each joint
used different springs and gear reduction ratios for their SEAs. Each of the calibration plots
are shown in Fig. 2.5.

CHAPTER 2. SOFTWARE 15

(a) Wrist joint calibration (b) Elbow joint calibration

(c) Shoulder joint calibration

Figure 2.5: Robot arm calibration plots

We can then model each joint using an affine function, determining the mapping between the
estimated torque and the estimated SEA angle. After obtaining the transformations, tests
were performed to verify the results, with the model doing a relatively good job of tracking
the measured SEA angle. This allows us to ignore gravitational forces when reading the
torque along each joint, isolating the relevant data which pertains to the amount of external
forces experienced by each joint.

Visualizer

To better see the current robot state, we also have a built-in visualizer (Fig. 2.6). The 3D
visualizer on the left uses rviz to display the robot’s current configuration, showing what the
robot’s current orientation. The live graphs on the right plots the robot’s joint angles (blue)
and SEA angles (cyan) in tandem with the current SEA estimate (green). This provides an
easy way to verify our SEA angle estimates, and see if any of the joints are experiencing
unexpected forces.

CHAPTER 2. SOFTWARE 16

Figure 2.6: Robot state visualizer

17

Chapter 3

Firmware

3.1 Framework

While the higher-level tasks (like path planning or inverse kinematics solving) are run on
the Linux machine, a STM32 F446RE microcontroller is responsible for the more hardware
adjacent tasks. This allows for faster monitoring and control of important low-level tasks,
especially in relation to patient safety. The low-level controller’s firmware was developed
using the Lingua Franca framework [18].

Lingua Franca

Lingua Franca is an open source embedded system framework developed as a collaboration
project between Berkeley and several other research institutions. It was developed with a
special focus on stability and determinism, allowing for concurrency without the inherent
synchronization issues generated by multi-threaded programs. Lingua Franca primarily acts
as a coordination language, organizing and scheduling blocks of conventional C code called
reactors. Reactors can be strung together in dependency chains to form complex programs,
with Lingua Franca ensuring relations are always deterministic.

Since the robot will be moving around to a patient’s head, consistency and predictability
are an important step in ensuring safety. Lingua Franca has been proven to ensure safety
constraints are met in these situations [19], helping add another level of protection during
operation.

STM32 Flow

Lingua Franca is written using .lf files, chaining together blocks of C code and defining the
firmware’s overall structure. This is then fed into the Lingua Franca Compiler (lfc) which
synthesizes everything into C code and triggers the relevant build steps to compile and flash
the firmware.

CHAPTER 3. FIRMWARE 18

To use Lingua Franca for our project, we needed to add support for the STM32 platform -
specifically for our microcontroller, the STM32-F446RE. To allow Lingua Franca to recog-
nize the STM32, we added the necessary platform.c and platform.h files which implement
basic API functions (like enabling/disabling interrupts and interfacing with timers). This
was accomplished through the STM32’s MX Hardware Abstraction Library (HAL) to inter-
face with IO and hardware devices.

The STM32’s cmake build flow also had to be integrated into lfc’s cmake generator, which
produces all the necessary CMakeLists.txt files. This also includes adding pointers to the
STM32 MX HAL library files so that the linker can import relevant binaries. Through
running the lfc command, the relevant code is both generated and built, allowing for quick
development. Finally, binary flashing was performed using OpenOCD through the ST-link
programmer/debugging interface.

3.2 Firmware Architecture

The firmware can be found here: [https://github.com/biomimetics/MRIRobot Firmware.git].

The firmware consists of several reactors, namely: QDEC, HomeController, ROSInter-
face,MotorController, andUSM. The top level reactor block diagram is shown in Fig. 3.1.

Figure 3.1: Lingua Franca top level block diagram

QDEC

The QDEC reactor acts as the interface between the STM32 and the FPGA, receiving up-
dates on the angles of each encoder (One for each motor and one for each SEA).

https://github.com/biomimetics/MRIRobot_Firmware.git

CHAPTER 3. FIRMWARE 19

The reactor requests new state data from the FPGA every 5 milliseconds. Each data packet
consists of 8 bytes, concatenated into one int64 variable denoting the encoder tick count.
This is then converted from ticks to radians and then stored on the STM32 as a fp32 value.
Conversion from ticks to radians is done through the following:

Joint Encoder:

encoderrad = encoderticks ·
2π

23040
ticks

rev

· 1

gear ratiomotor

(3.1)

SEA Encoder:

encoderrad = encoderticks ·
25.4mm

8000
ticks

mm

· gear ratioSEA

gear ratiomotor

(3.2)

Communication is performed through the STM32s UART controller, running at a speed of
921600 baud. To transfer all 8 bytes describing a single encoder angle, it takes approxi-
mately 65µs. Adding together all 14 encoders, this brings the estimated transfer time to
approximately 973µs or 0.973ms.

To decrease the CPU load, all the UART operations are done through the STM32’s built-in
DMA. The Direct Memory Access Controller (DMA) is a peripheral which initiates memory
operations between the microcontroller’s peripherals and/or memory space without CPU
interference. If we were to receive data through a blocking statement, we will need to wait
0.973ms every 5ms, meaning the QDEC alone would use approximately 15% of the CPU’s
total up-time. After requesting new data from the FPGA, the DMA handles receiving the
necessary data, storing everything into a local memory address. Receiving data is done
completely asynchronously from the main reactor, with minimal impact to the CPU’s per-
formance. The QDEC reactor can then read the local state data whenever necessary, do
the relevant unit conversions, and send it downstream to the other modules.

HomeController

Since all joints use relative encoders, we must first determine their absolute positioning on
startup. The HomeController reactor performs this homing sequence to ensure we know
what the robot’s current state.

During operation, the robot has two possible startup sequences: Cold Boot and Warm Boot.
The Homing sequence is only run on Cold Boot where we perform the full initialization se-
quence. On Warm Boot the homing sequence is skipped and we assume the encoders start in
their homed position. This is primarily used for debugging and to allow the microcontroller
to quickly reset its position estimates without having to go through a lengthy calibration
process.

CHAPTER 3. FIRMWARE 20

ROSInterface

The ROSInterface reactor acts as the other side of the ROS ⇔ STM32 communication
bridge. It handles receiving joint targets from and periodically sends state updates to the
ROS computer.

Like with the QDEC reactor, the ROSInterface also uses the DMA to help minimize CPU
load. On the receive end, new target positions and SEA offsets are asynchronously stored
in memory, with downstream reactors being updated every 20ms. On the transmit end, the
current joint states are locally storied in memory. They are then transmitted through UART
every 50ms.

MotorController

The motor controller (Fig. 3.2) consist of multiple individual controllers for each of the
robot’s joints.

Figure 3.2: Motor Controller Reactor Block Diagram

CHAPTER 3. FIRMWARE 21

The robot’s Elbow, Wrist, and Shoulder joints are each powered by differential drives, mean-
ing commands in motor space (The angles of the motor) must be transformed to joint space
(The angles of the joints). The bottom rotary axis, however, is directly driven so no trans-
formations are required.

Diff Joint Controller

The Diff Joint Controller is used to drive each of the differential drives, using the mapping
described in Eq. (3.3) to transform angles in motor space (MS) measurements to joint space
(JS).

[
encoder 0JS
encoder 1JS

]
=

[
1 −1
1 1

]
∗
[
encoder 0MS

encoder 1MS

]
(3.3)

For block IO, the target joint and sea offset inputs are given in joint space while sea pos
and current pos are given in motor space and thus need to be converted. During operation,
all control operations are performed in joint space coordinates to better follow our high-
level control scheme. On the output side, pos joint and pos sea are in joint space, while the
speed out is in motor space and fed directly to the ultrasonic motors.

Figure 3.3: Diff Joint Controller Reactor Block Diagram

The reactor itself (Fig. 3.3) consists of two SEAController reactors, one for each of the
two axes - pitch and roll. Each joint is operated independently for both position control and
force feedback.

CHAPTER 3. FIRMWARE 22

SEA Controller

Each joint is controlled by a SEA Controller reactor which consists of two modules: a
PIDController and a FFBController placed in parallel.

Figure 3.4: SEA Controller Reactor Block Diagram

The SEA controller (Fig. 3.4) has an internal finite state machine of two states. Normally,
the joint will operate in PID mode,acting as a standard PID position controller. However,
when the SEA angle is above a certain threshold - indicating an unexpectedly large torque -
we switch to FFB mode. In FFB mode, the goal is to zero the SEA’s angle, simulating full
back-drivability on the arm’s joints. We will stay in this state until we receive a new target
position, where we will transition back into the PID mode state.

Figure 3.5: SEA Controller Finite State Machine

CHAPTER 3. FIRMWARE 23

For gravity compensation, we provide an offset to the SEA encoder angle as a way to indicate
an expected torque. This allows the robot ignore any gravitational forces and only trigger
the SEA FSM based on external forces.

USM

The USM reactor acts as the actual interface for all the robot’s ultrasonic motors. The re-
actor takes in floating point values describing each of the motors desired speeds, converting
them to a control input signal. The motors themselves consist of a relatively basic control
scheme: PWM for speed and two pins for direction and enable respectively.

Before directly setting the output values, we also clamp our speed values, imposing a max-
imum speed on each of the robot’s joints. Since we are operating within an MRI bore and
need to be wary of eddy currents, the robot must move relatively slowly. We also implement
a motor start/stop switch in software so that there is a way to quickly disable the motors if
needed.

24

Chapter 4

Electronics

4.1 Overview

The robot arm’s electronics are controlled by a STM32 microcontroller housed on a primary
printed circuit board (PCB). Signals are then broken out to the Ultrasonic motor controllers
(provided by Tekceleo) and a number of intermediary PCBs which help with rerouting var-
ious signals. All the electronics are designed to sit outside the MRI scanning room, with
cables being funneled through a hole in the wall. A block diagram is shown in Fig. 4.1.

Figure 4.1: Electronics block diagram

CHAPTER 4. ELECTRONICS 25

4.2 Circuit Boards

The robot’s PCBs can be found here: [https://github.com/biomimetics/MRIRobot PCB.git].

Figure 4.2: Robot control PCBs

Main PCB

The main PCB is broken into two components: compute and power. The main compute
PCB is a 4-layer board containing our low-level microcontroller (The STM32 F446RE) and
FPGA co-processor (Xilinx Artix-7 35T). The board contains the necessary IO breakouts
to control each of the 7 Ultrasonic motors, and read data from the SEA encoders. It also
contains its own power step-down, taking in 24V as the input, and converting it to the nec-
essary 5V and 3.3V to power the board’s components. Since the SEA encoders operate at
5V, we also include level shifters so we do not damage the 3.3V microcontroller.

We also have a secondary power distribution PCB which is a two-layer board manufactured
using 2oz copper, primarily used to provide power to the ultrasonic motor controllers. Each
ultrasonic motor can draw up to 3A at 24V, meaning the power board must be capable of
handling a max current of over 21A. All power to the motor controllers is routed through a
relay, allowing our microcontroller to act as a dead-mans-switch for the system. This ensures
that the motors can only be powered when the STM32 is active, adding an additional level
of safety.

https://github.com/biomimetics/MRIRobot_PCB.git

CHAPTER 4. ELECTRONICS 26

(a) Main compute PCB (b) Main power PCB

Figure 4.3: Main PCBs

Signal Reroute PCB

To minimize the number of cables going from the robot to the control room, we designed
a number of signal reroute PCBs. These worked to consolidate the signals into two wires
per motor: one 3-pin MTA-156 header pin containing the ultrasonic motor’s control signals,
as well as an Ethernet cable containing the encoder signals from both the motor and SEA.
Connector selection was especially important for the motor control signals, since they operate
at 220V, meaning we had to ensure everything was high-voltage compliant. Between all 7
motors, we have a total of 14 cables going from the control room into the MRI room.

(a) Controller side reroute PCB (b) Robot arm side reroute PCB

Figure 4.4: Signal Reroute PCBs

4.3 FPGA

The robot’s FPGA RTL can be found here: [https://github.com/biomimetics/MRIRobot FPGA.git].

To calculate the joint and SEA displacements, we need 2 rotary encoders per axis, totaling
14 encoders for the entire robot. These encoders work by reading offset two square signals
- A and B - with the sequence of offset rising/falling edges indicating the direction and

https://github.com/biomimetics/MRIRobot_FPGA.git

CHAPTER 4. ELECTRONICS 27

displacement. Performing those calculations on a CPU can be quite costly, with most imple-
mentations relying on either polling (in which case you can lose steps) or interrupts (which
can lead to a decrease in CPU performance as the ISR is constantly firing in the background).

We use a FPGA co-processor to perform these calculations in hardware, allowing for faster
speed and parallel processing. We sample at 4 points along a single duty cycle (A rise, B rise,
A fall, B fall) which allows us to achieve 23040 steps per rotation for the ultrasonic motor
and 89759 steps per rotation for the SEA encoder. With a FPGA clock speed of 125MHz,
we can operate at a maximum speed of 34088 rad/s on the ultrasonic motor and 8750 rad/s
on the SEA encoders - Both well beyond our requirements.

As seen in Fig. 4.5, the architecture of the FPGA consists of 14 QDEC block modules (7 for
the SEAs and 7 for the ultrasonic motors), an arbiter, Serdes module, and UART transmit-
ter/receiver. All IO inputs are passed through a synchronizer to help align IO signals to the
FPGA’s internal clock, ensuing data is properly timed and helping remove IO capture errors.

Once a request has been received from the UART module, the FPGA will load the desired
QDEC’s data into the FIFO where it will be fed into the serdes module. Since the encoder
ticks are storied as int64 and we can only transmit 8 bits at once through UART, the tick
count must be serialized into 8 packets. These packets are then transmitted one at a time
through the UART port. Along with getting encoder ticks, there are also commands for
resetting encoder values, as well as disabling the QDEC modules which stops the counters
from incrementing (this is used for when the MRI is scanning and there could be noise on
the encoder wires).

Figure 4.5: FPGA top-level RTL block diagram

As seen in Fig. 4.6, the QDEC modules consist of an edge detector, control logic, and counter.
For the SEA QDEC modules, since we don’t know if the springs are pre-loaded on startup,
we take advantage of the encoder’s index pin to get absolute positioning. The counter is
reset when the index signal is asserted, with a manual offset being applied to zero each of
the SEA encoder angles.

CHAPTER 4. ELECTRONICS 28

Figure 4.6: FPGA QDEC module block diagram

4.4 Cables and MRI Compatibility

By default, Tekceleo uses Pico SPOX 87438 connectors to connect their ultrasonic motors to
their motor controllers. However, these cables are not shielded very well and have exposed
metal contacts, which is dangerous. These cables combine the motor’s control signals with
the encoder signals coming from the ultrasonic motor’s built-in encoders.

Pin Name Direction Voltage

1 Sin Wave Output 220V
2 GND - -
3 Cos Wave Output 220V
4 Encoder Power Output 5V
5 GND - -
6 Encoder A Input 3.3V
7 Encoder B Input 3.3V
8 Encoder Index Input 3.3V

Table 4.1: Ultrasonic motor wire signals

CHAPTER 4. ELECTRONICS 29

Instead, we decided to design our own cable interface between the control PCB and the
ultrasonic motors, allowing us to better control the shielding and signal grouping. Each
motor consists of two cables:

1. A 3-pin MTA-156 used to connect the motor control signals [sin, cos, gnd] .

2. A Ethernet containing all the signals for both the motor’s and SEA’s encoders.

Figure 4.7: Cable routing diagram

The motor control wires are connected through a 3-pin shielded cable. These signals are also
purposefully separated from our encoder wires to minimize induced interference, especially
since the ultrasonic motors operate at 220V. However, since the motors use such high volt-
ages, they are less prone to induced noise from the MRI machine.

The encoder signals, on the other hand, are routed through an 8-pin shielded Cat-7 Ethernet
cable. The cable is shielded to minimize external interference which is especially important
since these signals operate at only 3.3V. These signals also go through a number of filters
before actually reaching the FPGA.

Figure 4.8: Encoder filter block diagram

CHAPTER 4. ELECTRONICS 30

First, we use TVS diodes as voltage protection to protect our electronics. The MRI can
induce significant voltage spikes the control wires, leading to instances where the microcon-
troller has become damaged. The TVS diodes work to shunt any high transients, ensuring
that everything downstream remains safe. Then, we use a set of low-pass filters to remove
high-frequency interference. The encoder output has a maximum frequency in the 10kHz
range, while the MRI machine induces noise in the 100MHz range. Thus, we place the filter
poles at around 1.6MHz to attenuate MRI noise. Finally, we noticed some GND noise issues
on the ultrasonic motor’s encoders which could be problematic. To ensure proper separation,
we added a set of non-inverting buffers to help better separate the signals.

31

Chapter 5

Integration

5.1 Results

MRI Cable Testing

First, we tested the performance of our custom cable setup. To verify this, we had the motor
oscillate between two positions [0, 0.5] graphing the position over time. Based on our testing
(Fig. 5.1), the two movement profiles look almost identical, meaning that changing the cable
made no significant impact on the motor’s movements.

Figure 5.1: Encoder angle over time from using the provided cable (red) and our custom
cable (blue)

Then, we tested the custom cables inside the MRI machine to see its resilience to MRI
induced noise. This involved monitoring the motor’s SEA readings inside the MRI while
performing a scan. Our main concern was the MRI’s changing magnetic fields causing the
voltages levels in the encoder cables to oscillate, creating phantom steps.

First, we tested the stationary motor inside the MRI machine. The goal is to ensure the
encoder readings to not change due to interference, causing the encoders to lose steps. As
seen in Fig. 5.2, the motor shielding combined with the filters resisted the induced magnetic
noise, as evidenced by the encoder reading remaining stationary across multiple MRI scans.

CHAPTER 5. INTEGRATION 32

Figure 5.2: Encoder angle over time while inside a scanning MRI machine

Then, we tested moving the motor inside the MRI machine. As seen in Fig. 5.3, we also
observe that the cable shielding is able to protect our controller and encoder signals across
multiple MRI tests. This means we could be able to operate the robot arm within the MRI
bore during a scan.

Figure 5.3: Encoder angle over time while the MRI is scanning(blue) and idle(red)

We also performed tests to verify the motor’s velocity control. This involved alternating the
desired velocity input between 0 and a set value, creating a square wave. Once again, we
observe promising results when comparing the results with and without the MRI scanning
Fig. 5.4.

Figure 5.4: Encoder velocity over time while the MRI is scanning(blue) and idle(red)

CHAPTER 5. INTEGRATION 33

However, one issue we did encounter was the fact that the cables could not be completely
shielded, as there is a small sliver of wire which adapts the shielded cables to the ultrasonic
motor. This creates a gap in which the MRI signals can still interfere with the encoder
counts. A demonstration of a stationary encoder is seen in Fig. 5.5 where it is pulled along
the bore of a scanning MRI machine. There is a small segment (indicated by the dotted
lines) where phantom steps are observed.

Figure 5.5: Encoder angle while being pulled through a scanning MRI bore

This noise leakage also interferes with the motor’s movement. In Fig. 5.6, the motor was
pulled through the MRI bore again, performing the same movement profile as above. Due
to the MRI noise, the ultrasonic motor’s built controller is confused by the noise encoder
wires, interfering with the motor’s movement.

Figure 5.6: Encoder angle over time while the MRI is scanning(blue) and idle(red) (Only
the section of movement where the errors appear)

A similar outcome can also be seen when performing the velocity control tests (Fig. 5.7).

CHAPTER 5. INTEGRATION 34

Figure 5.7: Encoder velocity over time while the MRI is scanning(blue) and idle(red) Only
the section of movement where the errors appear)

However, with better shielding along the entire cable, our issues can be attenuated. As seen
in Fig. 5.8 even adding basic copper shielding around the exposed areas can greatly improve
tracking.

Figure 5.8: Encoder angle over time while the MRI is scanning(blue) and idle(red)

Thus, we are able to demonstrate that the shielded cables and filters work to remove MRI
induced interference where they exist. However, when the shielding is not present, we still
see evidence of encoder noise. Nevertheless, our results indicate that it is viable for us to
move the robot while the MRI is scanning, allowing us to better utilize the MRI itself as a
way of localization [16].

Robot Homing

On boot-up, the robot performs its initial calibration sequence to home and get the absolute
angle of each of its joints. This involves moving each joint towards its defined limits, using
the SEA’s spring deflection as a way to determining the bounds (and thus the angle) of each
of the joints.

A video of the homing sequence: [https://youtube.com/shorts/rpanKMerBhk].

https://youtube.com/shorts/rpanKMerBhk

CHAPTER 5. INTEGRATION 35

Zero-G Mode

Zero-G mode works by using the gravity compensator to filter out the gravitational forces
on the robots joints. This allows us to isolate and only respond to external forces. In Zero-G
mode, the user is able to move the robot to whatever position they desire with minimal force.
Once the robot has been moved to a desired pose, the arm will retain its current orientation
without drooping due to gravity.

A video of the arm in Zero-G mode: [https://youtube.com/shorts/kUzvczj3raE].

Figure 5.9: data from Zero-G manual movement. Joint angle (left) with measured angle
(red), target angle (blue) and SEA data (right) with measured displacement (red), expected
displacement(green), error bounds (grey).

Force Sensing

Using the gravity compensator to isolate external forces, we are able to isolate external forces
acting on the arm. Therefore, any spikes in observed torque are due to the arm coming into

https://youtube.com/shorts/kUzvczj3raE

CHAPTER 5. INTEGRATION 36

contact with an unexpected object, telling the robot that it need to stop moving.

Below, Fig. 5.10 shows the robot arm coming into contact with a vertical wall. When a spike
in the joint torque is detected, the robot stops in place.

A video of the test: [https://youtube.com/shorts/9NbPLNKhEzY].

Figure 5.10: Data from arm hitting wall. Joint angle (top) with measured angle (red),
target angle (blue) and SEA data (bottom) with measured displacement (red), expected
displacement (green), error bounds (grey).

Similarly, Fig. 5.11 shows the robot arm coming into contact with the table. When a spike
in the joint torque is detected, the robot stops in place.

A video of the test: [https://youtube.com/shorts/sXyTCPKkxF8].

https://youtube.com/shorts/9NbPLNKhEzY
https://youtube.com/shorts/sXyTCPKkxF8

CHAPTER 5. INTEGRATION 37

Figure 5.11: Data from arm hitting table. Joint angle (top) with measured angle (red),
target angle (blue) and SEA data (bottom) with measured displacement (red), expected
displacement (green), error bounds (grey).

Position control

With the rest of the pipeline completed, the robot is able to operate with full ROS2-based
position control. In this case, desired joint angles are fed from a ROS2 controller node to
the STM32 Bridge Node. Then, the bridge forwards that information to the STM32 which
uses the PID joint controller to move the arm. The Robot’s current state is also sent back
from the STM32 into ROS2 so that the user can visualize current joint angles.

To also test the controller’s robustness, we also tested across multiple end-effector weights
to make sure it would automatically adjust estimations based on the expected weight. Since
dynamics are derived from the robot’s URDF, a user only needs to update the end-effector
mass descriptor to change the robot’s gravity compensation estimates.

CHAPTER 5. INTEGRATION 38

Position control 0.9kg weight

The first movement test was performed with a end-effector mass of 0.9kg or 2lb. Below,
Fig. 5.12 shows the joint space data.

A video of the test: [https://youtube.com/shorts/2tNHJcir Ok].

Figure 5.12: Data from position control with 0.9kg end-effector. Joint angle (left) with
measured angle (red), target angle (blue) and SEA data (right) with measured displacement
(red), expected displacement (green), error bounds (grey).

We also performed a test to see the accuracy of the PID control scheme based on how close
it is able to move its end-effector to a desired location. Fig. 5.13 shows the end-effector
workspace positions, and Fig. 5.14 shows the workspace error.

A video of the test: [https://youtube.com/shorts/pbG8SM9nE1c].

https://youtube.com/shorts/2tNHJcir_Ok
https://youtube.com/shorts/pbG8SM9nE1c

CHAPTER 5. INTEGRATION 39

Figure 5.13: Workspace data from position control with 0.9kg end-effector. Measured joint
angle (red), target angle (blue).

Figure 5.14: Workspace error from position control with 0.9kg end-effector.

Table 5.1 shows the estimated end-effector position errors based on the desired and actual
positions taken from joint encoders.

Measurement Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean STD

Target error (cm) 0.100 0.070 0.0456 0.106 0.209 0.106 0.0624
Return error (cm) 0.057 0.104 0.112 0.069 0.128 0.094 0.030

Table 5.1: Workspace position errors with 0.9kg end-effector.

CHAPTER 5. INTEGRATION 40

Position control 1.3kg weight

The second movement test was performed with a end-effector mass of 1.3kg or 3lb. Below,
Fig. 5.15 shows the joint space data.

A video of the test: [https://youtube.com/shorts/aOf9k9tYXgw].

Figure 5.15: Data from position control with 1.3kg end-effector. Joint angle (left) with
measured angle (red), target angle (blue) and SEA data (right) with measured displacement
(red), expected displacement(green), error bounds (grey).

We also performed a test to see the accuracy of the PID control scheme based on how close
it is able to move its end-effector to a desired location. Fig. 5.16 shows the end-effector
workspace positions, and Fig. 5.17 shows the workspace error.

A video of the test: [https://youtube.com/shorts/ILhWXRuAdxo].

https://youtube.com/shorts/aOf9k9tYXgw
https://youtube.com/shorts/ILhWXRuAdxo

CHAPTER 5. INTEGRATION 41

Figure 5.16: Workspace data from position control with 1.3kg end-effector. Measured joint
angle (red), target angle (blue).

Figure 5.17: Workspace error from position control with 1.3kg end-effector.

Table 5.2 shows the estimated end-effector position errors based on the desired and actual
positions taken from joint encoders.

Measurement Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean STD

Target error (cm) 0.326 0.097 0.129 0.311 0.129 0.1984 0.111
Return error (cm) 0.087 0.069 0.091 0.026 0.084 0.0714 0.0267

Table 5.2: Workspace position errors with 1.3kg end-effector.

42

Chapter 6

Conclusion

In this report, we described the steps taken to integrate and test a custom-built MRI compati-
ble robot arm. This included developing the necessary software and electronics infrastructure
so that the arm can be controlled directly from our higher-level planner. This gives us a
functional baseline, allowing us to expand for future research and development.

This report has described the process in which a lot of the low-level frameworks have been
built, everything from setting up the electronics, developing the firmware, and creating the
software stack. The current tests show the viability of the robot as a platform, indicating
a fully functioning operation pipeline. Moreover, we have also performed a number of MRI
testing with the sables and motors, laying the necessary groundwork for full MRI testing of
the robot.
However, In the current iteration, we are still using relatively simple planning and control al-
gorithms. Things like position-based PID and Moveit2’s built in path planning libraries work
to create a functional demonstration of the robot, but there are more effective alternatives
which could be leveraged. Moreover, there are still a number of mechanical pain points that
can be improved upon. The elbow joint experiences a significant amount of spring pre-load
(and stress) during normal operation, making movement and sensing difficult. It would be
beneficial to perform a partial re-design of the joint, especially with the possibility of using
heavier end-effectors.

A number of these issues remain to be addressed as the project progresses, with the current
timeline for the MRI robot project having it continue for another year. At this point, the
low-level infrastructure have been completed, which allows for a significant amount of the
robot’s operation to be abstracted away. Thus, the future plans are to further fine-tune the
robot’s planning and control algorithms so that we have better defined and smoother actu-
ation. With that complete, we will then perform the final in-MRI testing with all systems
integrated.

Ultimately, this report has demonstrated the functionality of the MRI robot arm, developing
the necessary infrastructure for the future continuation of this project.

43

Bibliography

[1] D. J. Oathes, N. L. Balderston, K. P. Kording, et al., “Combining transcranial magnetic
stimulation with functional magnetic resonance imaging for probing and modulating
neural circuits relevant to affective disorders,” WIREs Cognitive Science, vol. 12, no. 4,
e1553, 2021. doi: https://doi.org/10.1002/wcs.1553. eprint: https://wires.
onlinelibrary.wiley.com/doi/pdf/10.1002/wcs.1553. [Online]. Available: https:
//wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcs.1553.

[2] S. R. Kantelhardt, T. Fadini, M. Finke, et al., “Robot-assisted image-guided transcra-
nial magnetic stimulation for somatotopic mapping of the motor cortex: A clinical pilot
study,” en, Acta Neurochir. (Wien), vol. 152, no. 2, pp. 333–343, Feb. 2010.

[3] J. G. Grab, E. Zewdie, H. L. Carlson, et al., “Robotic TMS mapping of motor cortex
in the developing brain,” en, J. Neurosci. Methods, vol. 309, pp. 41–54, Nov. 2018.

[4] H. Shin, H. Jeong, W. Ryu, et al., “Robotic transcranial magnetic stimulation in the
treatment of depression: A pilot study,” en, Sci. Rep., vol. 13, no. 1, p. 14 074, Aug.
2023.

[5] S. Huang, C. Lou, Y. Zhou, et al., “MRI-guided robot intervention—current state-of-
the-art and new challenges,” Med-X, vol. 1, no. 1, p. 4, 2023, issn: 2731-8710. doi:
10.1007/s44258-023-00003-1. [Online]. Available: https://doi.org/10.1007/
s44258-023-00003-1.

[6] Y. Koseki, T. Tanikawa, and K. Chinzei, “MRI-compatible micromanipulator; design
and implementation and MRI-compatibility tests,” in 2007 29th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 465–
468. doi: 10.1109/IEMBS.2007.4352324.

[7] H. Elhawary, A. Zivanovic, M. Rea, et al., “The feasibility of MR-image guided prostate
biopsy using piezoceramic motors inside or near to the magnet isocentre,” en, vol. 9,
no. Pt 1, pp. 519–526, 2006.

[8] J. Futterer, M. Schouten, T. Scheenen, and J. Barentsz, “Mr-compatible transrectal
prostate biopsy robot: A feasibility study,” International Society for Magnetic Reso-
nance in Medicine, 2010.

[9] P. A., B. L., W. B., et al., “A 3d-printed needle driver based on auxetic structure and
inchworm kinematics,” ser. International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, vol. Volume 5A: 42nd
Mechanisms and Robotics Conference, Aug. 2018, V05AT07A057. doi: 10 . 1115 /
DETC2018-85371. eprint: https://asmedigitalcollection.asme.org/IDETC-CIE/

https://doi.org/https://doi.org/10.1002/wcs.1553
https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wcs.1553
https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wcs.1553
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcs.1553
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcs.1553
https://doi.org/10.1007/s44258-023-00003-1
https://doi.org/10.1007/s44258-023-00003-1
https://doi.org/10.1007/s44258-023-00003-1
https://doi.org/10.1109/IEMBS.2007.4352324
https://doi.org/10.1115/DETC2018-85371
https://doi.org/10.1115/DETC2018-85371
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2018/51807/V05AT07A057/2476392/v05at07a057-detc2018-85371.pdf
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2018/51807/V05AT07A057/2476392/v05at07a057-detc2018-85371.pdf

BIBLIOGRAPHY 44

proceedings-pdf/IDETC-CIE2018/51807/V05AT07A057/2476392/v05at07a057-

detc2018-85371.pdf. [Online]. Available: https://doi.org/10.1115/DETC2018-
85371.

[10] G. S. Fischer, I. Iordachita, C. Csoma, et al., “MRI-compatible pneumatic robot for
transperineal prostate needle placement,” IEEE/ASME Transactions on Mechatronics,
vol. 13, no. 3, pp. 295–305, 2008. doi: 10.1109/TMECH.2008.924044.

[11] Z. Guo, Z. Dong, K.-H. Lee, et al., “Compact design of a hydraulic driving robot for
intraoperative MRI-guided bilateral stereotactic neurosurgery,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 2515–2522, 2018. doi: 10.1109/LRA.2018.
2814637.

[12] N. Tsekos, J. Shudy, E. Yacoub, P. Tsekos, and I. Koutlas, “Development of a robotic
device for MRI-guided interventions in the breast,” in Proceedings 2nd Annual IEEE
International Symposium on Bioinformatics and Bioengineering (BIBE 2001), 2001,
pp. 201–208. doi: 10.1109/BIBE.2001.974430.

[13] R. Gassert, R. Moser, E. Burdet, and H. Bleuler, “MRI/fMRI-compatible robotic sys-
tem with force feedback for interaction with human motion,” IEEE/ASME Transac-
tions on Mechatronics, vol. 11, no. 2, pp. 216–224, 2006. doi: 10.1109/TMECH.2006.
871897.

[14] F. Sergi, A. C. Erwin, and M. K. O’Malley, “Interaction control capabilities of an
mr-compatible compliant actuator for wrist sensorimotor protocols during fMRI,”
IEEE/ASME Transactions on Mechatronics, vol. 20, no. 6, pp. 2678–2690, 2015. doi:
10.1109/TMECH.2015.2389222.

[15] B. He, N. Zhao, D. Y. Guo, et al., “Design and control of a compact series elastic
actuator module for robots in MRI scanners,” arXiv preprint, 2024. [Online]. Available:
https://arxiv.org/pdf/2406.07670.

[16] A. D. Goyeneche, N. Zhao, C. Paxson, et al., “Towards accurate and automated tms
coil placement with a robotic system in MRI: A preliminary study,” International
Society for Magnetic Resonance in Medicine, 2025.

[17] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot operat-
ing system 2: Design, architecture, and uses in the wild,” Science Robotics, vol. 7,
no. 66, eabm6074, 2022. doi: 10.1126/scirobotics.abm6074. eprint: https://
www.science.org/doi/pdf/10.1126/scirobotics.abm6074. [Online]. Available:
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074.

[18] M. Lohstroh, C. Menard, S. Bateni, and E. A. Lee, “Toward a lingua franca for deter-
ministic concurrent systems,” ACM Trans. Embed. Comput. Syst., vol. 20, no. 4, May
2021, issn: 1539-9087. doi: 10.1145/3448128. [Online]. Available: https://doi.org/
10.1145/3448128.

[19] E. A. Lee, R. Akella, S. Bateni, S. Lin, M. Lohstroh, and C. Menard, “Consistency
vs. availability in distributed cyber-physical systems,” ACM Trans. Embed. Comput.
Syst., vol. 22, no. 5s, Sep. 2023, issn: 1539-9087. doi: 10.1145/3609119. [Online].
Available: https://doi.org/10.1145/3609119.

https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2018/51807/V05AT07A057/2476392/v05at07a057-detc2018-85371.pdf
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2018/51807/V05AT07A057/2476392/v05at07a057-detc2018-85371.pdf
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2018/51807/V05AT07A057/2476392/v05at07a057-detc2018-85371.pdf
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2018/51807/V05AT07A057/2476392/v05at07a057-detc2018-85371.pdf
https://doi.org/10.1115/DETC2018-85371
https://doi.org/10.1115/DETC2018-85371
https://doi.org/10.1109/TMECH.2008.924044
https://doi.org/10.1109/LRA.2018.2814637
https://doi.org/10.1109/LRA.2018.2814637
https://doi.org/10.1109/BIBE.2001.974430
https://doi.org/10.1109/TMECH.2006.871897
https://doi.org/10.1109/TMECH.2006.871897
https://doi.org/10.1109/TMECH.2015.2389222
https://arxiv.org/pdf/2406.07670
https://doi.org/10.1126/scirobotics.abm6074
https://www.science.org/doi/pdf/10.1126/scirobotics.abm6074
https://www.science.org/doi/pdf/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://doi.org/10.1145/3448128
https://doi.org/10.1145/3448128
https://doi.org/10.1145/3448128
https://doi.org/10.1145/3609119
https://doi.org/10.1145/3609119

	Contents
	List of Figures
	List of Tables
	Introduction
	MRI Robot Project
	Related Work
	System Overview

	Software
	Mechanical Integration
	ROS2
	Arm Controller
	STM32 Bridge

	Firmware
	Framework
	Firmware Architecture

	Electronics
	Overview
	Circuit Boards
	FPGA
	Cables and MRI Compatibility

	Integration
	Results

	Conclusion
	Bibliography

