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‭Abstract‬
‭This work describes the experimental setup for automated acquisition of cell samples using‬
‭Differential Phase Contrast (DPC) and Fluorescence microscopy. As opposed to labeled methods‬
‭which require toxic chemical stains that damage the structure of cells and tissue, our methods are‬
‭label-free, requiring only hardware modifications to a commercial microscope.‬

‭We provide the implementation of automated acquisition of DPC images, both 2D and 3D, in a‬
‭commercial microscope with an LED array as its illumination source. We conducted real-world‬
‭experiments in which we gathered a large dataset of spatially registered DPC and fluorescence‬
‭images of U2OS (human osteosarcoma) cells. The application of these techniques is explored in‬
‭characterizing toxic protein aggregations in these samples.‬
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‭1. Related Work‬

‭1a. Quantitative Phase Imaging‬
‭Quantitative Phase Imaging (QPI) is a method to produce mappings of the phase delays‬
‭corresponding to differences between an object’s thickness and refractive index from its‬
‭surroundings. In the 2D case[7, 9, 20], QPI phase maps measure the change in refractive index‬

‭integrated along the thickness of the sample. This yields the relation‬ ‭. In the 3D‬
‭case [8], a 3D forward model based on a 3D volume’s scattering potential is used. 3D QPI‬
‭reconstruction methods disentangle thickness from refractive index, allowing for reconstruction‬
‭of the refractive index.‬

‭Figure 1.1: Our Programmable LED dome unit replaces the condenser and light source of a commercial microscope. The LED dome allows for‬
‭control over the intensity, illumination wavelength, and illumination pattern.‬

‭In many QPI techniques, multiple intensity images are captured and a reconstruction algorithm is‬
‭used to estimate phase and amplitude information. Several techniques can be implemented on a‬
‭programmable LED Array [1], which provides flexible control over illumination angles and‬
‭wavelengths. One well known QPI technique is Fourier Ptychographic Microscopy (FPM) [9].‬
‭Fourier Ptychography uses angled illumination (single-LED) to shift an object’s spectrum in‬
‭Fourier space, and low NA intensity images are taken under many different illumination angles.‬
‭Each coherent-illumination image samples a small region of the object’s spectrum in Fourier‬
‭Space. An iterative algorithm is used to stitch together these samples in order to reconstruct the‬
‭object’s transmission function. The resulting reconstruction contains an effective NA of‬
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‭(NA_objective + max(NA illumination)), where the second term can be as great as 0.8 using our‬
‭LED array. Thus Fourier ptychography enables wide-FOV high resolution images.‬

‭1b. Differential Phase Contrast‬
‭Coherent illumination techniques such as Fourier Ptychography are very sensitive to‬
‭misalignments in the illumination system, as well as to system aberrations and debris in the‬
‭optical path. Furthermore, FPM requires heavy compute overhead, and many different‬
‭measurements due to a large degree of overlap in Fourier space being necessary between‬
‭single-LED measurements in order for the reconstruction algorithm to properly converge. In‬
‭contrast to FPM, differential phase contrast (DPC) [7] uses partially coherent illumination.‬
‭Compared to FPM, DPC provides an imaging modality that is less sensitive to system‬
‭misalignment and requires far fewer measurements. As opposed to illumination from a coherent‬
‭source, the usage of partially coherent illumination provides a distinct focus plane. This section‬
‭contains a detailed discussion of the DPC forward model and phase retrieval methods.‬

‭In a typical 4-f system, the intensity at the image plane resulting from coherent illumination from‬
‭a point source can be derived as follows. Illumination by angled illumination introduces a phase‬
‭ramp corresponding to illumination angle. At the Fourier plane, the sample’s spectrum is thus‬
‭shifted according to this phase term, and subsequently low-pass filtered by the objective.‬
‭Equation 2 shows the full form of this forward model. q and o represent the illumination field‬
‭and the object’s complex transmittance function respectively. u’’ denotes spatial dimensions in‬
‭the Fourier Plane, r denotes spatial coordinates in the object plane. P is the pupil function, which‬
‭is a circular function with radius dependent on NA and illumination wavelength in the‬
‭unaberrated case.‬

‭Equation 1.2‬

‭Under the Köhler geometry, the intensity corresponding to Differential Phase Contrast is derived‬
‭from integrating over the source pattern, which represents summing over the contributions of‬
‭single LED’s. This is shown in Equation 1.3. The additional variable u’ represents coordinates at‬
‭the source plane, thus summing these contributions.‬

‭Equation 1.3‬
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‭Equation 1.4‬

‭The weak object approximation is a linear approximation of the transmission function of a thin‬
‭sample. The weak object approximation is commonly used when the phase delay corresponding‬
‭to a sample is less than 0.65 radians. This allows the DPC forward model to be linearized into a‬
‭sum of contributions from the background, absorption, and phase. In literature, the transfer‬
‭functions for phase and absorption are referred to as weak optical transfer functions (WOTF’s)‬
‭and their closed form is shown in Equation 1.4, using the same notation as the previous‬
‭equations. As seen in figure 1.5, the resulting absorption transfer function is a low-pass filter,‬
‭while the resulting phase WOTF resembles an antisymmetric band-pass.‬

‭Figure 1.5: the Weak Optical Transfer Functions (WOTFs) corresponding to angled illumination from the bottom, top, left, and right half circles.‬

‭Using only the bright-field illuminations in a half-circular region containing angles up to the NA‬
‭of the objective, DPC is able to achieve theoretical resolution up to twice the NA of the‬
‭objective, thereby providing superior phase contrast as opposed to methods using coherent‬
‭illumination such as TIE. A single half-circle illumination intensity image corresponds to a phase‬
‭transfer function that contains zeros along the axis of asymmetry. By differencing opposite pairs‬
‭of DPC illuminations, we are able to obtain qualitative phase images that contain frequencies‬
‭along these missing directions, leading to high contrast images containing characteristic‬
‭“shadows” where phase gradients are encountered.‬



‭9‬

‭The Differential Phase Contrast model approximates a derivative in phase. Phase retrieval from‬
‭DPC thereby approximates integration along gradient boundaries. Due to noise introduced from‬
‭measurements as well as mismatch between the real-world system and our forward model, which‬
‭assumes a thin object, we introduce regularization in solving our inverse problem.‬

‭Tikhonov-regularization imposes a dampening factor that is applied equally across all spatial‬
‭frequencies present in the measured data. In the Tikhonov-regularization case, the regularization‬
‭term is a penalty on the squared loss of the recovered object’s spectrum. This is done by solving‬
‭the linear system in Equation 1.6. Tilde’s denote the Fourier Transform Operation. I denotes‬
‭DPC intensity measurements.‬ ‭is a matrix whose‬‭blocks are matrices corresponding to the‬‭𝐻‬

‭𝑗‬

‭absorption and phase WOTF’s.‬ ‭is a matrix consisting‬‭of the absorption and phase matrices‬ϕ

‭concatenated‬ ‭, and‬ ‭denoting element-wise‬‭multiplication.‬ ‭and‬ ‭are‬ϕ‭ ‬ = ‭ ‬[µ‭ ‬φ]‭𝑇‬ • γ
‭𝑅𝐸‬

γ
‭𝐼𝑚‬

‭regularization coefficients, chosen based on the sample. Typically for a thin sample, a prior‬
‭assumption is that the absorption terms are insignificant, so‬ ‭is made large in order to account‬γ

‭𝑅𝐸‬

‭for this prior.‬

‭Equation 1.6‬

‭Equation 1.7‬

‭The Tikhonov-regularization yields a closed form solution as shown in equation 1.7. * denotes‬
‭conjugate, and‬ ‭=‬ ‭,‬ ‭=‬ ‭.This provides a simple and computationally cheap solution.‬γ

‭𝑅𝐸‬
γ

µ
γ

‭𝐼𝑚‬
γ

ϕ

‭However, due to effects from high frequency noise and the discrepancy between the DPC‬
‭forward model, which assumes a sum over infinitesimal point sources uniformly distributed on a‬
‭half-circle, high-frequency noise is amplified in reconstructions where only Tikhonov‬
‭regularization is used.‬
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‭Figure 1.8: a QPI reconstruction from a single U2OS cell, with high frequency artifacts in the reconstruction from Tikhonov-Regularized‬
‭deconvolution.‬

‭Another form of regularization is TV regularization, where a TV penalty term corresponding to a‬
‭sparsity prior is used. Equation 1.9 shows the TV-regularized DPC objective function. The‬
‭superscript d denotes the order of the difference operator. d=1 encourages sparsity in the‬
‭first-differences, thereby yielding piecewise-flat solutions.‬
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‭Equation 1.9‬

‭Figure 1.10: TV regularization reduces the high frequency intensity fluctuations in this cell image.‬

‭1c. Aberration Correction‬
‭In real-world applications, no microscopy system is completely free of aberrations. Optical‬
‭aberrations limit the achievable resolution of microscopy systems. Furthermore, in‬
‭phase-imaging techniques, aberrations introduce model mismatch between the real-world system‬
‭and the forward model that is assumed in solving the relevant inverse problem. There are‬
‭methods to estimate aberrations using wavefront sensors. Furthermore, there is an area of study‬
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‭known as algorithmic self-calibration that aims to parametrize the aberrations and optimize an‬
‭aberration function jointly with the reconstruction problem. Algorithmic self-calibration has been‬
‭explored in Fourier Ptychography [18, 19] and extended to Differential Phase Contrast [10].‬

‭In the Differential Phase Contrast case, DPC measurements provide good phase contrast but very‬
‭little aberration contrast, so aberration correction becomes an ill-posed problem given only DPC‬
‭measurements. To provide aberration contrast, an additional coherent illumination measurement‬
‭is used.‬

‭Fig 1.11: Above: example aberrated pupil phase. An aberration-free system would contain all 0’s within the stop. Below: Zernike coefficients for‬
‭the 3rd - 20th Zernike modes‬



‭13‬

‭Fig 1.12: The WOTF’s derived from the above pupil aberration. Note the loss of signal in the higher spatial frequencies compared to the‬
‭unaberrated DPC case.‬

‭We use the DPC aberration correction procedure as discussed in [10]. This procedure‬
‭parametrizes the aberration function as a phase term applied to the pupil.‬

‭Fig 1.13: Simulated bead sample. DPC provides good phase contrast, but limited aberration contrast.‬
‭Using coherent illumination, we see clear differences in the shape of the diffraction rings between the two cases‬

‭1d. Biological Applications‬
‭Quantitative Phase Imaging has applications in biology due to its ability to identify intracellular‬
‭structures and soft tissues. This suggests applications in settings where traditionally invasive and‬
‭time-consuming techniques have been used to perform such visualizations. One example of such‬
‭an application is in Virtual Staining [3-5]. In traditional histological staining techniques,‬
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‭chemicals such as Hematoxylin and eosin (H&E) are used to mark certain cell and tissue‬
‭structures. While histological staining has been standard practice in the medical community,‬
‭there are several drawbacks. Histological stains use toxic chemical compounds which alter the‬
‭structure of biological samples. Furthermore, it is time-consuming and requires expertise to‬
‭produce these stains, thereby making the procedure extremely costly. As an alternative to‬
‭histological stains, virtual staining has been proposed, where a label-free methodology such as‬
‭bright-field microscopy or a quantitative phase method is first used to produce an image of the‬
‭sample. Then, a neural network is used to map the label-free image to a synthetic stained image,‬
‭which is then used by a pathologist for various downstream applications. In order to train the‬
‭image-translation models in virtual staining, a separate registration step is required, since the‬
‭same sample must be stained after it was first imaged in a label-free manner. This introduces‬
‭error due to the possibility of the sample being damaged during this procedure. Another method‬
‭commonly used in virtual staining uses unsupervised learning and does not require a registration‬
‭step. These methods typically utilize a generative model such as CycleGAN [21] or Pix2Pix [15]‬
‭that is trained on large datasets of unpaired data, and the model learns to style transfer between‬
‭the two groups. Empirically, unsupervised methods have been shown to underperform supervised‬
‭methods when labeled data is available, and the computational cost is also costlier in the‬
‭unsupervised case.‬

‭The work that is most similar to ours is the usage of label-free imaging to identify protein‬
‭aggregates in neurons [11]. In this work, registered fluorescence and phase images are acquired,‬
‭while a U-Net Convolutional Neural Network [14] is trained on labeled pairs. Previous work‬
‭uses a coherent illumination technique where axial scans using coherent illumination at various‬
‭defocus positions provide phase contrast. Compared to these methods, DPC provides better‬
‭optical sectioning and up to two times better resolution due to the increase of effective NA due to‬
‭partial coherence.‬
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‭2. Multimodal Imaging Setup‬
‭In this section, we describe a microscopy system that we use to multiplex DPC and fluorescence‬
‭measurements.‬

‭Figure 2.1: Our multimodal imaging septum which is built on a commercial inverted microscope. Box 1: the LED light source. Box 2: objective‬
‭turret and filterwheel. Box 3: XCite 120PC Excitation source.‬

‭Our multimodal imaging setup consists of a commercial microscope (Nikon TE2000-U) with its‬
‭illumination unit replaced by a programmable LED array. We use a broadband excitation light‬
‭source for fluorescence channel measurements (XCite 120PC). A camera (CMOS Edge) is‬
‭attached to the camera port on the microscope, allowing for capture of 2160x2560 full-FOV‬
‭images. We utilize a 0.65/40x objective (nikon cfi plan), allowing for capture of high resolution‬
‭differential phase contrast images. The resulting QPI techniques achieve phase images with‬
‭effective NA of 0.65 * 2 = 1.3 due to the use of partially coherent illumination from angles up to‬
‭the bright-field cutoff. The diffraction-limited resolution formula yields‬ ‭for the spatial‬λ

‭2‬*‭𝑁𝐴‬

‭resolution limit. Thus, using red illumination with a wavelength of 625nm, we are able to attain a‬
‭theoretical spatial resolution limit of 0.24 microns.‬

‭Lateral controls are made possible by the Proscan II stage, which can be controlled through user‬
‭inputs to the appropriate port or though joystick controls. In this work, we also implemented‬
‭axial controls by replacing the hand-turned focus knob with a focus motor, which can also be‬
‭programmably controlled. We use custom Matlab scripts to alternate the source illumination and‬
‭control the camera exposure time and trigger timing, as well as to control the shutter of the‬
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‭excitation source. This enables us to automatically acquire registered DPC and fluorescence‬
‭measurements.‬

‭Figure 2.2: The excitation and absorption curves for the fluorescent compound fed to our U2OS samples. The red filtercube contains‬
‭an excitation bandpass filter and an emittance bandpass filter, allowing us to capture both excitation and emission peaks.‬

‭3. U2OS Cell Dataset‬
‭Our collaborators provided us with a set of fixed cells from the U2OS (human osteosarcoma)‬
‭line mounted on Petri dishes in PBS. The cells consist of a group which has been fed a toxic‬
‭protein aggregate and a group of negative controls.‬
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‭Figure 3.1: A subregion of the FOV which contains several U2OS cells. The left column shows the illumination source. The middle column‬
‭contains the intensity measurement while the right column shows the spectrum, with the dashed circle representing the theoretical resolution‬

‭cutoff of twice the NA of the objective. We note that the spectrum of each intensity image resembles the lobes present in the phase WOTF, which‬
‭is expected because the cells are weakly absorbing.‬
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‭Figure 3.2: Annotations produced by fine-tuned Cellpose model‬

‭In order to isolate single-cell regions without contributions from background artifacts coming‬
‭from defocused debris which is harmful for both quantitative phase reconstruction and‬
‭downstream tasks, a segmentation step is necessary to isolate individual cells. Cellpose [12, 13]‬
‭is a generalist architecture used for cell segmentation. Community contributions have led to‬
‭foundation models that are pre-trained on thousands of manually annotated microscope images.‬
‭We utilized a fine-tuned CellPose model to segment single-cell regions. The fine-tuning step is‬
‭necessary because the base CellPose model (Cyto2) is only trained on Zernike qualitative phase‬
‭images, and thus does not perform well on DPC images. We fine-tuned the segmentation model‬
‭using DPC qualitative phase images for the best possible resolution. Qualitatively, this required‬
‭only 40 manually labeled ROI’s, each containing several distinct morphologies and labels for‬
‭cells with distinct nuclei, for the CellPose model to learn how to draw high quality cell‬
‭boundaries. Then using the bounds of each segmentation cell-mask, we are able to acquire‬
‭rectangular single-cell regions containing little background contribution. Under the assumption‬
‭of the DPC forward process being linear and spatially invariant, we are able to both save‬
‭compute resources and eliminate the contributions from background intensity fluctuations in our‬
‭reconstructions by running our QPI reconstruction algorithms on each bounding box separately.‬
‭We manually removed cell images that contained insufficient phase contrast due to background‬
‭debris and intensity fluctuations. After these steps, we produce a dataset consisting of 323 cells‬
‭in the “positive” label class and 1538 negative controls.‬

‭4. Statistical Analysis of DPC Measurements‬
‭In order to compare the differences in organelle morphology and density between the cells from our‬
‭treatment group and those from our control group, we used an organelle segmentation model implemented‬
‭using Ilastik[17], which is an opensource segmentation library providing a user interface for semantic‬
‭segmentation of cell images using sparse user-annotated examples.‬
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‭Figure 4.1: feature selections in Ilastik. Features are computed on DPC qualitative phase images. We omit the selection of Color/Intensity features‬
‭to improve generalizability given fluctuations in LED lighting and SnR‬

‭2‬‭The classification models implemented in Ilastik‬‭classify images on a per-pixel level. For best‬
‭generalizability, we use a Random Forest Classifier using edge and texture-level features.‬
‭Because this approach lacks spatial context apart from pixel-level features that include spatial‬
‭context due to blurring operations, we also apply a separate morphological closing operation in‬
‭order to produce contiguous segmentation boundaries of large label classes such as the cytosolic‬
‭region and the background.‬
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‭Figure 4.2: Segmentation Results. Above: post-processing steps on Ilastik output for Cyto segmentation. Below: High-phase-contrast feature‬
‭segmentation.‬

‭One notable feature class was regions of high phase contrast (phase “bubbles”) that appear in the‬
‭cytosolic regions of U2OS cells. We define the density of such features as the area of their‬
‭segmentation mask over the area of the segmented region corresponding to the Cytosol. We‬
‭compute this measure on cell images from the positive group to negative controls, observing that‬
‭the distribution corresponding to diseased cells appears right-shifted with respect to the control‬
‭cells. We use the Kolmogorov-Smirnov Test to test the statistical significance of the difference‬
‭between the 2 distributions. The Kolmogorov-Smirnov Test yields a p-value of 9.53e-4,‬
‭suggesting the statistical significance of this difference.‬
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‭Figure 4.3: The distribution of high-phase features for Positive samples compared to the control set.‬
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‭5. Methods in Deep-Learning‬

‭Image Classification‬

‭Due to the availability of samples in both control and treatment groups, we investigated the‬
‭usage of convolutional neural networks to computationally classify cells.‬

‭We used a pytorch implementation of VGGNet [16], which is a convolutional neural network‬
‭commonly used for image classification. We trained VGGNet models on both DPC qualitative‬
‭phase (obtained by subtracting opposite pairs and dividing over their sum) and the corresponding‬
‭QPI reconstructions. We trained our models on an NVIDIA RTX 5090 GPU, using the‬
‭cross-entropy loss function and ADAM optimizer (betas=(0.9, 0.999)). We validated the‬
‭performance of our classifier by using the ROC curve’s Area-Under-Curve (AUC) on the testing‬
‭set.‬

‭Figure 5.1: Left: An example quantitative phase reconstruction. Right: Overlay of QPI Reconstruction with thresholded fluorescence channel.‬

‭We compared the performance of the classification networks when trained on qualitative phase‬
‭images versus QPI reconstructions obtained using Tikhonov regularization and a regularization‬
‭coefficient of 1e-1. This level of regularization was used due to the qualitative observation that it‬
‭is able to eliminate background low-frequency content while preserving high spatial frequencies.‬
‭Notably, the classifiers trained on our quantitative phase reconstructions did better than when‬
‭trained on the qualitative phase data, suggesting that quantitative phase information encodes‬
‭important information about the presence or lack thereof of protein aggregates and effectively‬
‭removes problematic high and low-frequency noise through the use of regularization.‬
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‭Figure 5.2: ROC curve for classifier performance on held-out set.‬

‭A classification network can also be used to do weakly supervised labeling of cell samples,‬
‭which aims to make use of salient regions in the classification task in order to predict the‬
‭location of protein aggregates in the labeled dataset. In order to do this, we implemented an‬
‭attention mechanism on the baseline VGGNet as described in [22]. This creates a classifier that‬
‭also enables interpretable attention maps that illustrate which regions are most salient for pixel‬
‭classification. Qualitatively, it appears that the network attends to regions at different depths‬
‭corresponding to their quantitative phase values. However, we do not observe high fluorescence‬
‭intensity in all regions with high phase contrast, suggesting that additional investigation needs to‬
‭be done in order to characterize the morphology of such structures.‬
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‭Figure 5.3: top: QPI input to Cell Classification. Bottom (left-to-right): Attention maps for earlier to later depths in the neural network.‬
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‭6. Future Work‬

‭6a. Autofluorescence Filtering‬
‭An unexpected result from our initial datasets was the unwanted presence of autofluorescence in‬
‭the red emission channel. Autofluorescence can come from unwanted debris such as dead cell‬
‭parts or contamination from dust particles in the air. In contrast to TAMRA, autofluorescence‬
‭contains a broadband emission spectrum, which suggests that the red channel’s fluorescence‬
‭measurements alone cannot isolate the signal coming from protein aggregates. In order to‬
‭provide the most accurate quantitative information about the localization and density of protein‬
‭aggregates, we include a set of filtercubes for green excitation wavelengths. Additional work‬
‭must be done to assess the level of cross-talk between channels and to develop a postprocessing‬
‭step for filtering out the autofluorescent structures.‬

‭6b. Extensions to 3D and Live-Cell Settings‬
‭The datasets that we captured in this work consist of fixed cells. In the future, our methods can‬
‭be extended to study live-cell dynamics. However, several modifications are needed. In DPC‬
‭microscopy, multiple images are needed for high quality reconstructions. For good coverage of‬
‭the Fourier plane, it is necessary to take multiple images, which introduces the issue of motion‬
‭registration. Neural space-time models (NSTM) [23] are a technique leveraging implicit neural‬
‭representations to accurately register images along space and time. By using a NSTM, synthetic‬
‭spatially-registered DPC datasets can be acquired and used for more accurate reconstruction of‬
‭moving cells, and the original NSTM paper demonstrates successful performance of the method‬
‭on DPC. NSTM learns spatially varying motion kernels that can be used to transform the DPC‬
‭and fluorescence pairs, allowing for more accurate registration that can be done as a‬
‭preprocessing step before the DPC reconstruction routine is invoked.‬
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‭Fig 6.1: Above: x-z of labeled line. Below: x-y cross section of focus plane.‬

‭Figure 6.2: 3D reconstructions of the labeled borosilicate microsphere from the top figure. The microspheres have a mean diameter of 10 microns,‬
‭and under the red wavelength have RI 1.56. The microspheres are immersed in closely index-matched oil (RI 1.544). Rendering produced using‬

‭TomViz [24]‬

‭The analysis in this work extends only to QPI reconstructions in the 2D case due to our samples‬
‭having limited depth, but we have additionally implemented an axial scanning mechanism using‬
‭a motor attachment (Proscan Focus Drive) attached to the z focus-knob of the microscope. We‬
‭have used this mechanism to construct accurate 3D refractive index reconstructions of test‬
‭samples and performed high resolution reconstructions of samples using the opensource code‬
‭provided alongside [8].‬
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‭6c. Improvements to System Resolution‬
‭In Differential Phase Contrast, the theoretical maximum achievable resolution is determined by‬
‭the NA of the objective and the wavelength. Thus, improvements can be made by using higher‬
‭frequency illumination, or by using a more powerful objective lens. However, by using the‬
‭typical half-circle pattern, there is a substantial drop-off in the SNR in the high spatial‬
‭frequencies. In the original DPC work [7], a notable effect was that by using annular illumination‬
‭patterns, there is better signal in these regions, allowing for better effective spatial resolution in‬
‭the presence of noise.‬

‭Figure 6.3: Side-by-side views of the Phase WOTF’s corresponding to half-circle illumination with illumination angle up to the NA of the‬
‭aperture (left) and illumination angles between 0.75 and 1.25 times the NA of the aperture (right). Notice that the WOTF for the annular‬

‭illumination contains more substantial coverage of Fourier space from approximately the NA of the objective to twice the NA of the objective‬
‭(diffraction-limited upper bound). WOTF’s generated using the opensource Solver from [7].‬

‭Figure 6.4: Annular illumination provides both improved signal for low and high spatial frequencies compared to the traditional half-circle‬
‭patterns.‬
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‭Appendix‬

‭Code and Data Availability‬
‭Matlab scripts for the automated acquisition of DPC images, including with coherent‬
‭illumination and 3D acquisition, along with our implementations/training loops for image‬
‭classification neural networks, will be uploaded to the following repository:‬
‭https://github.com/william14641/EECS_MS_Project‬

‭Fluorescence intensities, Raw DPC measurements, as well as QPI reconstructions are available‬
‭upon request.‬

‭Documents containing visualizations of the dataset, including DPC and fluorescence channels‬
‭along with overlays, will be uploaded to the following Google Drive folder:‬
‭https://drive.google.com/drive/folders/1DZp9cijKQQmKb-KFqaoI-KgEX91d4tu6?usp=sharing‬


